Model Question Paper-I Ph. D. Entrance Test STATISTICS (Objective)

Time: 01 hour M.M.: 100

1. The incidence of occupational disease in an industry is such that the workmen

	have a 20% of chance of suffering from it. What is the probability that out of si workmen, 4 or more will contact the disease?				X	
	(a) 0.015	(b) 0.0		(c) 0.019	(d) 0.15	
2.	The mean and P(X=1) is equa	e mean and variance of a binomial districted in the control of the			d 4, respectively then,	
	(a) $\frac{1}{2^{12}}$	$(b)\frac{1}{2^4}$	(c) $\frac{1}{2^6}$	(d) $\frac{1}{2^8}$		
3.	3. 800 employees of a company are covered under the medical group insura scheme. Under the term of coverage, 40 employees are identified as belonging 'high risk' category. If 50 employees are selected are random, what is probability that at the most two are in the high risk category?			lentified as belonging to e random, what is the	o	
	(a) 0.644	(b) 0.5	49	(c) 0.744	(d) 0.844	
4.	_		ne number of		verage score was 42 and g between 30 and 54. (d) 393	t
5.	If a random var X: -1 $P(X)$: $\frac{1}{3}$ then the expect	$\begin{array}{ccc} -2 & 1 \\ \frac{1}{6} & \frac{1}{6} \\ \text{ed value of } X \end{array}$	$ \begin{array}{c} 2 \\ \frac{1}{3} \\ \text{is:} \end{array} $			
	(a) $\frac{3}{2}$	(b) $\frac{1}{6}$	(c) $\frac{1}{2}$	(d) none of th	nese	
	Normal distribu (a) Laplace		-	(c) Gauss	(d) None of these	
7.	4.7. The value	of the statistic	Z to test H_0 :		of 576 items has a mean	n
8.	To test an hypo	` ,	` '	. ,	, the usual test is	

	9. Two samples of size 10 and 8 had sample means 18 cm and 12 cm with variance 25 and 16. Supposing that the samples have been drawn from normal populations $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, the value of statistic-t for testing H_0 : $\mu_1 = \mu_2$ under $\sigma_1^2 \neq \sigma_2^2$ is						
	$6_1 \neq 6_2$ is (a) 2.67	(b) 2.75	(c) 1.33	(d) 2.8	33		
10		variance 0.033 (b) 5.55		statistic		ariance. 18 of his I_0 : $\sigma^2 = 1$ is	
11		sed can be teste	-			e hypothesis that th	ie
12	. To construct the	the confidence	interval for the	e populat	ion varianc	ce, we should use	
	(a) Normal d (c) F-distribu			, ,	tribution qure distrib	oution	
13	Significance (a) t-test	of a regression (b) F-test	coefficient car (c) both (a) &		•	r (a) nor (b)	
14	14. If the correlation between the variables X and Y is 0.5, then the correlation between the variables 2x-4 and 3-2y is:						
	(a) 1	(b) 0	1.5	(c) -	0.5	(d) 0	
15. If ρ is the simple correlation coefficient, the quantity ρ^2 is known as (a) coefficient of determination (b) coefficient of non-determination (c) coefficient of alienation (d) none of these							
e	(d) none of the X_1, X_2 and	nese X_3 are three	variables, the			between X_2 and X_3 ients is given by the	
e	(d) none of the X_1 , X_2 and eliminating the formula	nese X_3 are three	variables, the rms of simple	correlat		ients is given by th	
e	(d) none of the formula $(a) r_{23.1} = \frac{1}{\sqrt{100}}$	hese X_3 are three effect X_1 in te	variables, the rms of simple (b) r	correlat	ion coeffici $\frac{r_{32} - r_{21}r_3}{1 - r_{21}^2 \left(1 - \frac{r_{21}}{r_{21}}\right)}$	ients is given by th	

18. Given the expected values for variables X and Y as E(X) = 2, E(X²) = 10, E(Y) = 3, E(Y²) = 20 and E(XY) = 16 we conclude that (a) correlation coefficient will be positive (b) correlation coefficient will be negative (c) expected values are incompatible (d) none of these					
them. The o	ther 10 have the	letter T printe same order,	ed on them. If	Is have the letter I pri you pick up 3 cards naking the word IIT i (d) 5/38	at
are thrown, the an odd numb	nen the probabilit per is	ty that the sur	n on the uppe	11 and 13. If two such	
(a) 5/18	(b) 5/36	(0	e) 13/18	(d) 25/36	
21. An urn A contains 5 white and 3 black balls and urn B contains 4 white and 4 black balls. An urn is selected and a ball is drawn from it, the probability that the ball is white, is					
(a) $\frac{9}{8}$	(b) $\frac{9}{16}$	(c) $\frac{5}{32}$	(d) $\frac{5}{16}$		
	cossed repeatedly d at least four tin		d is obtained,	the probability that t	the coin
(a) $\frac{1}{2}$	(b) $\frac{1}{4}$	$(c)\frac{1}{6}$	(d) $\frac{1}{8}$		
If the mean ar		d from the sa or of sample	mple are 90 a mean?	niverse containing 85 and 4 respectively. W	
24. Variance of \bar{x}_{st} under random sampling, proportional allocation and optimum allocation hold the correct inequality as (a) $V_{ran}(\bar{x}_{st}) \leq V_{prop}(\bar{x}_{st}) \leq V_{opt}(\bar{x}_{st})$ (b) $V_{ran}(\bar{x}_{st}) \geq V_{opt}(\bar{x}_{st}) \geq V_{prop}(\bar{x}_{st})$ (c) $V_{ran}(\bar{x}_{st}) \geq V_{prop}(\bar{x}_{st}) \geq V_{opt}(\bar{x}_{st})$ (d) none of these					
25. Under proportional allocation, the size of the sample from each stratum depends on (a) total sample size (b) size of stratum (c) population size (d) all of these					

26. In Simple random sampling with replacement, the same sampling unit may be included in the sample:			
(a) only once	(b) only twice		
(c) more than once	(d) none of these		
27. Local control is a device to ma (a) homogeneity among blocks (c) both (a) & (b)			
20 M : 1			
28. Missing observation in a CRD (a) estimated (b) deleted			
29. A randomized block design hat (a) two - way classification (c) three - way classification	(b) one - way classification		
30. While analyzing the data of a equal to	k×k Latin square, the error d.f. in analysis of variance is		
	$k (k-1) (k-2)$ (c) k^2-2 (d) k^2-k-2		
31. Trend in a time series means: (a) long-term regular moveme (c) both (a) and (b)	ent (b) short-term regular movement (d) neither (a) nor (b)		
32. If the trend line with 1975 as origin is:	origin is $Y = 20.6 + 1.68X$, the trend line with 1971 as		
(a) $Y = 20.6 + 6.72 X$	(b) $Y = 13.88 + 1.68 X$		
(c) $Y = 34.61 + 1.68 X$	(d) none of these		
33. Linear trend of a time series in	ndicates towards:		
(a) constant rate of change	(b) constant rate of growth		
(c) change in geometric progr	ression (d) all the above		
34. Seasonal variation means the variations occurring within:			
(a) a number of years	(b) parts of a year		
(c) parts of a month	(d) none of the above		
35. If an estimator T _n of population infinity is said to be	on parameter θ converges in probability to θ as n tends to		
	efficient (c) consistent (d) unbiased		
36. A sufficient statistic (a) is consistent (b) is unbiased (c) uses all information a san (d) is always efficient	nple contains about the parameter to be estimated.		

37. The idea of testing of hypo (a) R. A. Fisher	thesis was first s (b) J. Neyman	set forth by (c) E. L. Lehn	nan (d) A. Wald		
38. Critical region of size α w called (a) powerful critical region		β amongst all critical	-		
(c) best critical region		l) worst critical regi	•		
39. In simplex table of a max $(2; -1, 0, -3)^T$. The z_j - c_j = (a) the solution is unbound	2 is not most ne	gative. Then	nding to a variable x_j is solution is bounded		
(c) the solution may be bo		nded (d) not	ne of these		
 40. If in a simplex table, there is a tie in the leaving variable, then (a) the next BFS will be non – degenerate BFS (b) the next BFS will be degenerate BFS (c) the next BFS will be optimal (d) none of these 					
41. The north – west corner ru (a) initial feasible solution (c) non – optimal solution	(b	o) an optimal solutic l) none of these	n		
42. In a transportation problem (TP) the dual variables u_i and u_j are unrestricted in sign because (a) the TP is a minimization problem (b) the TP is with all equality constraints (c) in TP all decision variables are ≥ 0 (d) none of these					
43. The arrival of customers stated as	(with no departu	ıre) in system, in (Queueing theory can be		
(a) the pure birth process (c) both (a) & (b)	` . ´ . *	are death process er (a) nor (b)			
44. If arrival rate is 3 custor queueing systems. The exp	ected number of	f customers in the sy	ystem at certain day is		
(a) 1.5 (b) 2	`	,			
45. If the interarrival time is e t) is	xponential with	mean $1/\lambda$ then the n	umber of arrivals in (0,		
(a) poisson distributed(c) binomial distributed		exponential distriblenone of these	outed		
(c) omomiai distributed	(0	if none of these			

46. Under memoryless property, the arrival (a) previous arrival (c) state of system	of the customer is independent of (b) future arrival (d) none of these
47. Age-specific mortality rates fail to revea (a) mortality conditions (c) sex ratio	al: (b) age distribution of persons (d) all the above
48. Fertility rates mainly depend on:(a) total female population(c) female population of child bearing	(b) total populationage (d) number of newly borned babies
49. Fertility rate provide an adequate basis f(a) population growth(c) checking the infant mortality	for: (b) family planning (d) all the above
50. If P ₁ and P ₂ are the populations at an integral years will be: (a) $\frac{1}{2}(P_1 + P_2)$ (b) $\sqrt{P_1 \times P_2}$	erval of 10 years, the population just after five (c) $\frac{1}{2} \left(\frac{1}{P_1} + \frac{1}{P_2} \right)$ (d) $\sqrt{P_1 + P_2}$