DEPARTMENT OF MECHANICAL ENGINEERING

Kurukshetra University, Kurukshetra (K.U.K) – 136119, Haryana, INDIA (Established by the state Legislature Act XII of 1956; 'A+' Grade, NAAC Accredited)

A. Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1Hour Tutorial (T) per week	1 credit
1 Hour Practical (P) per week	0.5 credit
2 Hours Practical (Lab) per week	1 credit

B. Range of Credits:

A total credit of 160 is required for a student to be eligible to get Under Graduate degree in **Mechanical Engineering**. A student will be eligible to get Under Graduate degree (**B.Tech.**) with Honours, if he/she completes an additional 20 credits. These could be acquired through MOOCs at Swayam portal or with in-house examination being conducted. In order to have an Honours degree, a student may choose minimum 20 credits provided that the student must ensure the course is approved by the Competent Authority, Government of India.

BACHELOR OF TECHNOLOGY (MECHANICAL ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA SCHEME OF STUDIES/EXAMINATION SEMESTER III(w.e.f. session 2019-2020)

S. No.	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Exar	nination So	chedule (Mar	ks)	Duration of Exam (Hrs.)
						Major Test	Minor Test	Practical	Total	
1	BS-201A	Optics & Waves	3:0:0	3	3	75	25	0	100	3
2	BS-205A	Advanced Engineering Mathematics	3:0:0	3	3	75	25	0	100	3
3	ES-203A	Basic Electronics Engineering	3:0:0	3	3	75	25	0	100	3
4	MEC-201A	Theory of Machines	3:1:0	4	4	75	25	0	100	3
5	MEC-203A	Mechanics of Solids-I	3:1:0	4	4	75	25	0	100	3
6	MEC-205A	Thermodynamics	3:1:0	4	4	75	25	0	100	3
7	MEC-207LA	Theory of Machines Lab	0:0:2	2	1	0	40	60	100	3
8	MEC-209LA	Mechanics of Solids Lab	0:0:2	2	1	0	40	60	100	3
9	*MEC-211A	Industrial Training-I	2:0:0	2	-	-	100	-	100	
10	**MC-901A	Environmental Sciences	3:0:0	3	-	100	-	0	100	3
			Total	30	23	450	230	120	800	

*MEC-211Ais a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 2nd semester and students will be required to get passing marks to qualify.

**MC-901A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

BACHELOR OF TECHNOLOGY (MECHANICAL ENGINEERING) CREDIT BASED

KURUKSHETRA UNIVERSITY KURUKSHETRA

SCHEME OF STUDIES/EXAMINATION

SEMESTER IV(w.e.f. session 2019-2020)

S. No.	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Examinat	tion Sched	ule (Marks)		Duration of Exam (Hrs.)
						Major Test	Minor Test	Practical	Total	
1	ES-204A	Materials Engineering	3:0:0	3	3	75	25	0	100	3
2	MEC-202A	Applied Thermodynamics	3:0:0	3	3	75	25	0	100	3
3	MEC-204A	Fluid Mechanics & Fluid Machines	3:1:0	4	4	75	25	0	100	3
4	MEC-206A	Mechanics of Solids-II	3:1:0	4	4	75	25	0	100	3
5	MEC-208A	Instrumentation& Control	3:0:0	3	3	75	25	0	100	3
6	ES-206LA	Materials Engineering Lab	0:0:2	2	1	0	40	60	100	3
7	MEC-210LA	Fluid Mechanics & Fluid Machines Lab	0:0:2	2	1	0	40	60	100	3
8	*MC-902A	Constitution of India	3:0:0	3	-	100	-	-	100	3
			Total	24	19	375	205	120	700	

*MC-902A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

Note: All the students have to undergo 4 to 6 weeks Industrial Training after 4th semester which will be evaluated in 5th semester.

SEMESTER V(w.e.f. session 2020-2021)

S. No.	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Examinatio	on Schedul	e (Marks)		Duration of Exam (Hrs.)
						Major Test	Minor Test	Practical	Total	(1113.)
1	HM-905A	Entrepreneurship	3:0:0	3	3	75	25	0	100	3
2	MEC-301A	Heat Transfer	3:1:0	4	4	75	25	0	100	3
3	MEC-303A	Production Technology	3:0:0	3	3	75	25	0	100	3
4	MEC-305A	Mechanical Vibrations and Tribology	3:0:0	3	3	75	25	0	100	3
5	MEC-307LA	Heat Transfer lab	0:0:2	2	1	0	40	60	100	3
6	MEC-309LA	Production Technology Lab	0:0:2	2	1	0	40	60	100	3
7	MEC-311LA	Mechanical Vibrations and Tribology Lab	0:0:2	2	1	0	40	60	100	3
8	MEC-313LA	Project-I	0:0:2	2	1	-	0	100	100	3
9	*MEC-315A	Industrial Training-II	2:0:0	2	-	-	100	-	100	-
10	**MC-903A	Essence of Indian Traditional Knowledge	3:0:0	3	-	100	-	-	100	3
			Total	26	17	300	220	280	800	

*MEC-315A is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

**MC-903Ais a mandatory credit-less course in which the students will be required to get passing marks in the majortest.

10(1149)

SEMESTER VI(w.e.f. session 2020-2021)

S. No.	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Examina	ation Sche	edule (Marks)		Duration of Exam (Hrs.)
						Major Test	Minor Test	Practical	Total	
1	HM-901A	Organizational Behaviour	3:0:0	3	3	75	25	0	100	3
2	MEC-302A	Manufacturing Technology	3:0:0	3	3	75	25	0	100	3
3	MEC-304A	Design of Machine Elements	2:4:0	6	6	75	25	0	100	4
4	MEC-306LA	Mechanical Engineering Lab-I	0:0:2	2	1	0	40	60	100	3
5	MEC-308LA	Mechanical Engineering Lab-II	0:0:2	2	1	0	40	60	100	3
6	MEC-310LA	Project-II	0:0:6	6	3	0	0	100	100	3
7	MEP*	Program Elective-I	3:1:0	4	4	75	25	0	100	3
8	MEP*	Program Elective -II	3:1:0	4	4	75	25	0	100	3
			Total	30	25	375	205	220	800	

Course No.	ProgramElective I	C	Course No.	ProgramElective II
MEP-302A	Internal Combustion Engines	N	MEP-308A	Composite Materials
MEP-304A	Gas Dynamics and Jet Propulsion	N	MEP-310A	Refrigeration and Air Conditioning
MEP-306A	Design of Transmission Systems	N	MEP-312A	Product Engineering

Note: All the students have to undergo 4 to 6 weeks Industrial Training after 6th semester which will be evaluated in 7th semester.

* The course of Program Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

BACHELOR OF TECHNOLOGY (MECHANICAL ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA SCHEME OF STUDIES/EXAMINATION SEMESTER VII(w.e.f. session 2021-2022)

S. No.	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Еха	mination Sc	hedule (Mark	s)	Duration of Exam (Hrs.)
					-	Major Test	Minor Test	Practical	Total	
1	MEO*	Open Elective-I	3:0:0	3	3	75	25	0	100	3
2	MEC-401A	Automation in Manufacturing	3:0:0	3	3	75	25	0	100	3
3	MEC-403LA	Mechanical Engineering Lab-III	0:0:2	2	1	0	40	60	100	3
4	MEC-405LA	Project-III	0:0:10	10	5	0	100	100	200	3
5	MEP*	Program Elective-III	3:0:0	3	3	75	25	0	100	3
6	MEP*	Program Elective -IV	3:0:0	3	3	75	25	0	100	3
7	**MEC-407A	Industrial Training-III	2:0:0	2	-	-	100	-	100	
		•	Total	26	18	300	240	160	700	

Pro	ogram Elective-III	Program Elec	ctive-IV	Open Electiv	es-l
Course No.	Course Name	Course No.	Course Name	Course No.	Course Name
MEP-401A	Computer Aided Design	MEP-407A	Mechatronic Systems	MEO-401A	Smart Materials
MEP-403A	Finite Element Analysis	MEP-409A	Industrial Robotics	MEO-405A	Non-Destructive Testing
MEP-405A	Power Plant Engineering	MEP-411A	Solar Energy Analysis	MEO-407A	Manufacturing Cost Estimation
				MEO-409A	Ergonomics
				MEO-411A	Air and Noise Pollution

* The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

**MEC-407A is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify.

10(1151)

SEMESTER VIII(w.e.f. session 2021-2022)

S. No.	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Examin	ation Sch	edule (Marks	5)	Duration of Exam (Hrs.)
						Major Test	Minor Test	Practical	Total	
1	MEC-402LA	Project-IV	0:0:10	10	5	-	100	100	200	3
2	MEO*	Open Elective-II	3:0:0	3	3	75	25	0	100	3
3	MEO*	Open Elective-III	3:0:0	3	3	75	25	0	100	3
4	MEP*	Program Elective-V	3:0:0	3	3	75	25	0	100	3
5	MEP*	Program Elective-VI	3:0:0	3	3	75	25	0	100	3
			Total	22	17	300	200	100	600	

	Program Elective- V		Program Elective-VI
Course No.	Course Name	Course No.	Course Name
MEP-402A	Non-Conventional Machining	MEP-408A	Welding Technology
MEP-404A	Automobile Engineering	MEP-410A	Design of Pressure Vessels and Piping
MEP-406A	Product Design and Manufacturing	MEP-412A	Quality and Reliability Engineering

ſ		Open Elective- II		Open Elective-III
	Course No.	Course Name	Course No.	Course Name
Ī	MEO-402A	Supply Chain Management	MEO-408A	Lubricants and Lubrication
	MEO-404A	Competitive Manufacturing Systems	MEO-410A	Total Quality Management
	MEO-406A	Concurrent Engineering	MEO-412A	Energy Conservation and Management

* The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

BACHELOR OF TECHNOLOGY (AERONAUTICAL ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA SCHEME OF STUDIES/EXAMINATION SEMESTER-IIIw.e.f. 2019-20 ONWARDS

S. No.	Course Code	Course Title	Teaching Schedule			Schedule		Ex)	Duration of Exam (Hrs.)		
			L	T	Р	Hours/Week	Credits	Major Test	Minor Test	Practical	Total	
1	AER-201	Elements of Aeronautics	3	0	0	3	3	75	25	0	100	3
2	#BS-205A	Advance Engineering Mathematics	3	0	0	3	3	75	25	0	100	3
3	#ES-203A	Basic Electronics Engineering	3	0	0	3	3	75	25	0	100	3
4	AER-203	Fluid Mechanics	3	1	0	4	4	75	25	0	100	3
5	#MEC-203A	Mechanics of Solids-I	3	1	0	4	4	75	25	0	100	3
6	#MEC-205A	Thermodynamics	3	1	0	4	4	75	25	0	100	3
7	AER-205	Fluid Mechanics Lab	0	0	2	2	1	0	40	60	100	3
8	#MEC-209LA	Mechanics of Solids Lab	0	0	2	2	1	0	40	60	100	3
9	*AER-207	Industrial Training – I	2	0	0	2	-	-	100	-	100	
10	**MC-901A	Environmental Sciences	3	0	0	3	-	100	-	-	100	3
		Total	23	3	4	30	23	450	230	120	800	

Note:

1. *AER-207 is a mandatory non-credit course in which students will be evaluated for the industrial training undergone after 2nd semester and students will be required to get passing marks to qualify.

2. **MC-901A is mandatory credit-less course in which the students will be required to get passing marks in the major test.

3. # The coursesare common with B. Tech. (Mechanical Engineering).

BACHELOR OF TECHNOLOGY (AERONAUTICAL ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA SCHEME OF STUDIES/EXAMINATION SEMESTER-IV w.e.f.2019-20 ONWARDS

S. No.	Course Code	Course Title	Te	Teaching Schedule				Exa	Examination Schedule (Marks)			Duration of Exam (Hrs.)
			L	Т	Ρ	Hours/ Week	Credits	Major Test	Minor Test	Practical	Total	
1	#ES-204A	Materials Engineering	3	0	0	3	3	75	25	0	100	3
2	AER-202	Aircraft Structure-I	3	1	0	4	4	75	25	0	100	3
3	AER-204	Aerodynamics-I	3	1	0	4	4	75	25	0	100	3
4	#MEC-206A	Mechanics of Solids-II	3	1	0	4	4	75	25	0	100	3
5	AER-206	Propulsion-I	3	0	0	3	3	75	25	0	100	3
6	#ES-206LA	Materials Engineering Lab	0	0	2	2	1	0	40	60	100	3
7	AER-208	Propulsion Lab	0	0	2	2	1	0	40	60	100	3
8	*MC-902A	Constitution of India	3	0	0	3	-	100	-	-	100	3
		Total	18	3	4	25	20	375	205	120	700	

Note:

1. *MC-902A is a mandatory credit-less course in which the students will be required to get passing marks in major test.

2. All the students have to undergo 4 to 6 weeks industrial training after 4th semester and it will be evaluated in 5th semester.

3. #The coursesare common with B.Tech. (Mechanical Engineering).

SEMESTER-V w.e.f 2020-21 ONWARDS

S. No.	Course Code	Course Title	Tea	chi	ng So	:hedule		Exar	nination S	chedule (Marl	(s)	Duration
			L	Т	Ρ	Hours/ Week	Credit	Major Test	Minor Test	Practical	Total	of Exam (Hrs.)
1	#HM-905A	Entrepreneurship	3	0	0	3	3	75	25	0	100	3
2	AER-301	Aircraft Structure-II	3	1	0	4	4	75	25	0	100	3
3	AER-303	Aerodynamics-II	3	1	0	4	4	75	25	0	100	3
4	AER-305	Propulsion-II	3	0	0	3	3	75	25	0	100	3
5	AER-307	Aircraft Materialsand Manufacturing Processes	3	0	0	3	3	75	25	0	100	3
6	AER-309	Aircraft Structure Lab	0	0	2	2	1	0	40	60	100	3
7	AER-311	Aerodynamics Lab	0	0	2	2	1	0	40	60	100	3
8	AER-313	Project-I	0	0	2	2	1	0	0	100	100	3
9	*AER-315	Industrial Training-II	2	0	0	2	-	0	100	0	100	
10	**MC-903A	Essence of Indian Traditional Knowledge	3	0	0	3	-	100	-	-	100	3
		Total	20	2	6	28	20	375	205	220	800	

Note:

1. *AER-315 is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

2. **MC-903A is mandatory credit-less course in which the students will be required to get passing marks in the major test.

3. #The course is common with B.Tech. (Mechanical Engineering).

SEMESTER-VI w.e.f.2020-21 ONWARDS **Course Title** Teaching Schedule **Examination Schedule (Marks)** Duration of S. Course Code Hours/ Credit Major Test Minor Test No. L Т Ρ Practical Total Exam (Hrs.) Week #HM-901A Organizational Behaviour AER-302 Aircraft Design AER-304 Aircraft Stability and Control AER-306 Aircraft Design Lab AER-308 Aircraft Structure Repair Lab AER-310 Project-II AEP* Program Elective-I AEP* Program Elective-II Total

F	Program Elective-I		Program Elective-II
Course Code	Course Title	Course Code	Course Title
AEP-302	Aeroelasticity	AEP-308	Aircraft Systems
AEP-304	Aircraft Composite Materials	AEP-310	Aircraft Engineering Practices
AEP-306	Aerospace Heat Transfer	AEP-312	Airplane Performance

Note:

1. *The course of Program Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

2. All the students have to undergo 4 to 6 weeks industrial training after 6th semester and it will be evaluated in 7th semester.

3. #The course is common with B.Tech. (Mechanical Engineering).

SEMESTER-VII w.e.f.2021-22 ONWARDS

S. No.	Course	Course Title		Teac	ching S	chedule		Exar	nination Sche	dule (Marks)		Duration of
	Code											Exam
											(Hrs.)	
			L	Τ	Р	Hours/Week	Credit	Major Test	Minor Test	Practical	Total	
1	AEO*	Open Elective-I	3	0	0	3	3	75	25	0	100	3
2	AER-401	Avionics	3	0	0	3	3	75	25	0	100	3
3	AER-403	Avionics Lab	0	0	2	2	1	0	40	60	100	3
4	AER-405	Project-III	0	0	10	10	5	0	100	100	200	3
5	AEP*	Program Elective – III	3	0	0	3	3	75	25	0	100	3
6	AEP*	Program Elective-IV	3	0	0	3	3	75	25	0	100	3
7	**AER-407	Industrial Training-III	2	2 0 0 2		-	0	100	0	100		
		Total	14	14 0 12 26			18	300 240 160 700				

	Program Elective-III		Program Elective-IV		Open Elective-I
Course Code	Course Title	Course	Course Title	Course Code	Course Title
		Code			
AEP-401	Principles of Helicopter Engineering	AEP-409	Computational Fluid Dynamics	AEO-401	Flight Dynamics
AEP-403	Boundary Layer Theory	AEP-411	Finite Element Methods	AEO-403	Aircraft Communication and
					Navigation Systems
AEP-405	Aircraft Maintenance of Power Plant	AEP-413	Aircraft Maintenance of Airframe and	AEO-405	Experimental Aerodynamics
	and Systems		Systems		
AEP-407	Fuels and Propellant Technology	AEP-415	Ergonomics in Aerospace	AEO-407	Microprocessor and Interfacing

Note:

1. *The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

2. **AER-407 is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify.

S. No.	Course Code	Course Title		Teaching Schedule				Exa)	Duration of Exam(Hrs.)		
			L	Т	Р	Hours/Week	Credit	Major Test	Minor Test	Practical	Total	
1	AER-402	Project-IV	0	0	10	10	5	0	100	100	200	3
2	AEO*	Open Elective-II	3	0	0	3	3	75	25	0	100	3
3	AEO*	Open Elective-III	3	0	0	3	3	75	25	0	100	3
4	AEP*	Program Elective-V	3	0	0	3	3	75	25	0	100	3
5	AEP*	Program Elective-VI	3	0	0	3	3	75	25	0	100	3
		Total	12	0	10	22	17	300	200	100	600	

SEMESTER-	/III w.e.f.2021-22 ONWARDS

	Open Elective-II		Open Elective-III
Course Code	Course Title	Course Code	Course Title
AEO-402	Wind Tunnel Techniques	AEO-410	Rockets and Missiles
AEO-404	Robotics and Automation	AEO-412	Introduction to Automatic Flight Control
AEO-406	Computer Aided Design	AEO-414	Aerospace Power Electronics
AEO-408	Product Design and Manufacturing	AEO-416	Non-Destructive Testing

	Program Elective-V		Program Elective-VI
Course Code	Course Title	Course Code	Course Title
AEP-402	Space Dynamics	AEP-410	Air Transportation and Aircraft Maintenance
			Management
AEP-404	Aircraft Quality Control, Quality	AEP-412	Aircraft Modeling and Simulation
	Assurance and Certification		
AEP-406	Aircraft Systemsand Instrumentation	AEP-414	Control Theory and Practices
AEP-408	Theory of Vibrations	AEP-416	Mechatronics

Note: 1.* The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

BACHELOR OF TECHNOLOGY (AUTOMOBILE ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA SCHEME OF STUDIES/EXAMINATION SEMESTER III (w. e.f. session 2019-2020)

						E	Examinatio	n Schedule ((Marks)	Duration
S. No	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Major Test	Minor Test	Practical	Total	of Exam (Hrs.)
1	#BS-201A	Optics & Waves	3:0:0	3	3	75	25	0	100	3
2	#BS-205A	Advanced Engineering Mathematics	3:0:0	3	3	75	25	0	100	3
3	#ES-203A	Basic Electronics Engineering	3:0:0	3	3	75	25	0	100	3
4	#MEC-201A	Theory of Machines	3:1:0	4	4	75	25	0	100	3
5	#MEC-203A	Mechanics of Solids-I	3:1:0	4	4	75	25	0	100	3
6	#MEC-205A	Thermodynamics	3:1:0	4	4	75	25	0	100	3
7	#MEC-207A	Theory of Machines Lab	0:0:2	2	1	0	40	60	100	3
8	#MEC-209A	Mechanics of Solids Lab	0:0:2	2	1	0	40	60	100	3
9	*AEC-201	Industrial Training-I	2:0:0	2	-	-	100	-	100	
10	**MC-901A	Environmental Sciences	3:0:0	3	-	100	-	0	100	3
		Total	23:3:4	30	23	350	230	120	800	

Note: *AEC-201 is a mandatory non-credit course in which students will be evaluated for the industrial training undergone after 2nd semester and students will be required to get passing marks to qualify.

**MC-901A is mandatory credit-less course in which the students will be required to get passing marks in the major test.

The course is common with B. Tech. (Mechanical Engineering).

SEMESTER IV(w.e.f. session 2019-2020)

S. No.	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Examina	ation Schec	lule (Marks)		Duration of Exam (Hrs.)
						Major Test	Minor Test	Practical	Total	
1	#ES-204A	Materials Engineering	3:0:0	3	3	75	25	0	100	3
2	AEC-202	Auto Fuels and Lubricants	3:0:0	3	3	75	25	0	100	3
3	#MEC-204A	Fluid Mechanics and Fluid Machines	3:1:0	4	4	75	25	0	100	3
4	#MEC-206A	Mechanics of Solids-II	3:1:0	4	4	75	25	0	100	3
5	AEC-204	Two and Three Wheeler Vehicles	3:0:0	3	3	75	25	0	100	3
6	#ES-206A	Materials Engineering Lab	0:0:2	2	1	0	40	60	100	3
7	#MEC-210A	Fluid Mechanics and Fluid Machines Lab	0:0:2	2	1	0	40	60	100	3
8	*MC-902A	Constitution of India	3:0:0	3	-	100	-	-	100	3
		Total	18:2:4	24	19	375	205	120	700	

*Note:***MC-902A is a mandatory credit-less course in which the students will be required to get passing marks in major test.* *The course is common with B.Tech (Mechanical Engineering).

All the students have to undergo 4 to 6 weeks industrial training after 4th semester and it will be evaluated in 5th semester.

BACHELOR OF TECHNOLOGY (AUTOMOBILE ENGINEERING) CREDIT BASED

KURUKSHETRA UNIVERSITY KURUKSHETRA

SCHEME OF STUDIES/EXAMINATION

SEMESTER V (w.e.f. session 2020-2021)

S. No.	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Examinat	ion Schedu	le (Marks)		Duration of Exam (Hrs.)
						Major Test	Minor Test	Practical	Total	
1	#HM-905A	Entrepreneurship	3:0:0	3	3	75	25	0	100	3
2	#MEC-301A	Heat Transfer	3:1:0	4	4	75	25	0	100	3
3	AEC-301	Design of Automobile Components	3:0:0	3	3	75	25	0	100	3
4	AEC-303	Auto Transmission and Electrical Systems	3:0:0	3	3	75	25	0	100	3
5	#MEC-307A	Heat Transfer lab	0:0:2	2	1	0	40	60	100	3
6	AEC-305	Design of Automobile Components Lab	0:0:2	2	1	0	40	60	100	3
7	AEC-307	Auto Transmission and Electrical Systems Lab	0:0:2	2	1	0	40	60	100	3
8	AEC-309	Project-I	0:0:2	2	1	-	0	100	100	3
9	*AEC-311	Industrial Training-II	2:0:0	2	-	-	100	-	100	-
10	**MC-903A	Essence of Indian Traditional Knowledge	3:0:0	3	-	100	-	-	100	3
		Total	17:1:8	26	17	300	220	280	800	

Note:*AEC-311 is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify. **MC-903A is mandatory credit-less course in which the students will be required to get passing marks in the major test.

*The course is common with B.Tech (Mechanical Engineering).

BACHELOR OF TECHNOLOGY (AUTOMOBILE ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA SCHEME OF STUDIES/EXAMINATION SEMESTER VI(w.e.f. session 2020-2021)

S. No.	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Examination Schedule (Marks)			Duration of Exam	
										(Hrs.)
						Major Test	Minor Test	Practical	Total	
1	#HM-901A	Organizational Behaviour	3:0:0	3	3	75	25	0	100	3
2	AEC-302	Automotive Engines	3:1:0	4	4	75	25	0	100	3
3	AEC-304	Auto Pollution and Control	4:1:0	5	5	75	25	0	100	3
4	AEC-306	Auto Pollution and Control Lab	0:0:2	2	1	0	40	60	100	3
5	AEC-308	Automotive Engines Lab	0:0:2	2	1	0	40	60	100	3
6	AEC-310	Project-II	0:0:6	6	3	0	0	100	100	3
7	AEP*	Program Elective-I	3:1:0	4	4	75	25	0	100	3
8	AEP*	Program Elective -II	3:1:0	4	4	75	25	0	100	3
		Total	16:4:10	30	25	375	205	220	800	

Course No.	Program Elective-I	Course No.	Program Elective-II
AEP-302	Internal Combustion Engineering	AEP-308	Microprocessor and Interfacing
AEP-304	Marketing and Sales Management	AEP-310	Automotive Air Conditioning
AEP-306	Tribology and Preventive Maintenance	AEP-312	Production Engineering

Note:* The course of Program Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

*The course is common with B.Tech (Mechanical Engineering).

All the students have to undergo 4 to 6 weeks industrial training after 6th semester and it will be evaluated in 7th semester.

BACHELOR OF TECHNOLOGY (AUTOMOBILE ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA SCHEME OF STUDIES/EXAMINATION SEMESTER VII(w.e.f. session 2021-2022)

S. No.	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Examinatior	n Schedule (1	Schedule (Marks)		
						Major Test	Minor Test	Practical	Total	
1	AEO*	Open Elective-I	3:0:0	3	3	75	25	0	100	3
2	AEC-401	Vehicle Body Engineering	3:0:0	3	3	75	25	0	100	3
3	AEC-403	Vehicle Maintenance Lab	0:0:2	2	1	0	40	60	100	3
4	AEC-405	Project-III	0:0:10	10	5	0	100	100	200	3
5	AEP*	Program Elective-III	3:0:0	3	3	75	25	0	100	3
6	AEP*	Program Elective -IV	3:0:0	3	3	75	25	0	100	3
7	**AEC-407	Industrial Training-III	2:0:0	2	-	-	100	-	100	
		Total	14:0:12	26	18	300	240	160	700	

	Program Elective-III	Program Ele	ctive-IV	Open Elective-I	
Course No.	Course Name	Course No.	Course Name	Course No.	Course Name
AEP-401	Computer Integrated Manufacturing	AEP-407	Mechatronics Engineering	AEO-401	Tractor and Farm Equipments
AEP-403	Finite Element Analysis	AEP-409	Robotics and Automation	AEO-403	Non-Destructive Testing and Techniques
AEP-405	Mechanical Vibrations	AEP-411	Hybrid Vehicle Systems	AEO-405	Process Planning and Cost Estimation
				AEO-407	Modern Vehicle Technology
				AEO-409	Automotive Aerodynamics

Note: *The course of both Program Elective and Open Elective will be offered at 1/3rdstrength or 20 students (whichever is smaller) of the section. **AEC-407 is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 6thsemester and students will be required to get passing marks to qualify.

BACHELOR OF TECHNOLOGY (AUTOMOBILE ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA SCHEME OF STUDIES/EXAMINATION SEMESTER VIII(w.e.f. session 2021-2022)

S. No.	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Examination Schedule (Marks)				Duration of Exam (Hrs.)
						Major Test	Minor Test	Practical	Total	
1	AEC-402	Project-IV	0:0:10	10	5	-	100	100	200	3
2	AEO*	Open Elective-II	3:0:0	3	3	75	25	0	100	3
3	AEO*	Open Elective-III	3:0:0	3	3	75	25	0	100	3
4	AEP*	Program Elective-V	3:0:0	3	3	75	25	0	100	3
5	AEP*	Program Elective-VI	3:0:0	3	3	75	25	0	100	3
		Tota	12:0:10	22	17	300	200	100	600	

	Program Elective-V		Program Elective-VI
Course No.	Course Name	Course No.	Course Name
AEP-402	Modern Machining Technology	AEP-408	Energy Management
AEP-404	Manufacturing Management	AEP-410	Management Information Systems
	Statistical Quality Control and Reliability		
AEP-406	Engineering	AEP-412	Motor Vehicle and Environment Protection

	Open Elective-II		Open Elective-III
Course No.	Course Name	Course No.	Course Name
AEO-402	Materials Handling Management	AEO-408	Lubricants and Lubrication Technology
	Mechanical Measurement and		
AEO-404	Metrology	AEO-410	Transport Management
AEO-406	Industrial Safety and Environment	AEO-412	Vehicle Design and Data Characteristics

* The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section

New Scheme for Bachelor of Technology of Civil Engineering (CE), and Syllabus For Bachelor of Technology First Year in Civil Engineering (CE), To be implemented from session 2018- 2019 in, KUK (Credit - based system) As per Model Curriculum Provided by AICTE

Course Code	Break up of Credits	Definitions
BS	26	Basic Science
ES	23	Engineering Science
HM	11	Humanities and Social Sciences including Management
MC	Non Credits	Mandatory coarse
CE	67	Professional Core
PE	18	Program Elective
OE	6	Open Elective
CEL	9	Project Work, seminar and internship in industry
Total	160	

Course Code and Definition for First Year Scheme

SCHEME OF STUDIES/EXAMINATIONS (Semester -III)

S.	Course No./	Subject	L:T:P	Hours/	Credits	E	Examination S	chedule (Mar	ks)	Duration
No.	Code			Week		Major Test	Minor Test	Practical	Total	of exam (Hours)
1	HM-251A	Introduction to Civil Engineering	2:0:0	2	2	75	25	0	100	3
2	CE-201A	Introduction to solid Mechanics	2:0:0	2	2	75	25	0	100	3
3	ES-205A	Engineering Mechanics	2:0:0	2	2	75	25	0	100	3
4	CE-203A	Fluid Mechanics	2:1:0	3	3	75	25	0	100	3
5	CE-205A	Surveying & Geomatics	2:0:0	2	2	75	25	0	100	3
6	CE-207A	Building Construction Practice	2:0:0	2	2	75	25	0	100	3
7	CE-213LA	Fluid Mechanics Lab	0:0:2	2	1	-	40	60	100	3
8	CE-215LA	Surveying & Geomatics Lab	0:0:2	2	1	-	40	60	100	3
9	CE-217LA	Computer-aided Civil Engineering Drawing	0:0:2	2	1	-	40	60	100	3
10	MC-201A	Environmental Sciences	2:0:0	2	0		100	0	100	3
11	SIM-201A*	Seminar on Summer Internship*	2:0:0	2	0		50	0	50	
		Total	14:1:6	21	16	450	370	180	1000	

Note: *Note: SIM-201A* is a mandatory credit-less course in which the students will be evaluated for the Summer Internship (training) undergone after 2nd semester and students will be required to get passing marks to qualify.

SCHEME OF STUDIES/EXAMINATIONS (Semester -IV)

S.	Course No./	Subject	L:T:P	Hours/	Credits	E	Examination S	Schedule (Mar	ks)	Duration
No.	Code			Week		Major Test	Minor Test	Practical	Total	of exam (Hours)
1	HM-252A	Civil Engineering - Societal & Global Impact	2:0:0	2	2	75	25	0	100	3
2	BS-104A	Mathematics –III	3:1:0	4	4	75	25	0	100	3
3	CE-202A	Structural Analysis-I	2:1:0	3	3	75	25	0	100	3
4	CE-204A	Design of Steel Structure-I	2:0:0	2	2	75	25	0	100	3
5	CE-206A	Soil Mechanics	2:0:0	2	2	75	25	0	100	3
6	CE-208A	Concrete Technology	2:0:0	2	2	75	25	0	100	3
7	CE-212LA	Structural Analysis-I Lab	0:0:2	2	1	-	40	60	100	3
8	CE-216LA	Soil Mechanics Lab	0:0:2	2	1		40	60	100	3
9	CE-218LA	Concrete Technology Lab	0:0:2	2	1		40	60	100	3
		Total	13:2:6	21	18	450	270	180	900	

SCHEME OF STUDIES/EXAMINATIONS (Semester -V)

S.	Course No./	Subject	L:T:P	Hours/	Credits	E	Examination S	chedule (Marl	ks)	Duration
No.	Code			Week		Major Test	Minor Test	Practical	Total	of exam (Hours)
1	HM-255A	Professional Practice, Law & Ethics	2:0:0	2	2	75	25	0	100	3
2	CE-301A	Structural Analysis-II	2:1:0	3	3	75	25	0	100	3
3	CE-303A	Design of Concrete Structure-I	2:0:0	2	2	75	25	0	100	3
4	CE-305A	Hydrology	2:0:0	2	2	75	25	0	100	3
5	CE-307A	Geotechnical Engineering	2:0:0	2	2	75	25	0	100	3
6	CE-309A	Engineering Geology	2:0:0	2	2	75	25	0	100	3
7	CE-311LA	Structural Analysis-II Lab	0:0:2	2	1	-	40	60	100	3
8	CE-317LA	Geotechnical Engineering Lab	0:0:2	2	1		40	60	100	3
9	CE-319LA	Engineering Geology Lab	0:0:2	2	1		40	60	100	3
10	CE-315LA	Survey Camp	0:0:0	0	0		40	60	100	
		Total	12:1:6	19	16	450	310	240	1000	

Note: (1) All students have to undertake the Survey Camp for 2 weeks after 4th semester which will be evaluated in 5th semester.

SCHEME OF STUDIES/EXAMINATIONS (Semester -VI)

S.	Course No./	Subject	L:T:P	Hours/	Credits	E	Examination S	chedule (Mar	ks)	Duration
No.	Code			Week		Major Test	Minor Test	Practical	Total	of exam (Hours)
1	CE-302A	Design of Steel Structure-II	2:0:0	2	2	75	25	0	100	3
2	CE-304A	Transportation Engineering	2:0:0	2	2	75	25	0	100	3
3	CE-306A	Irrigation Engineering	2:0:0	2	2	75	25	0	100	3
4	OE-I	Open Elective-I	2:0:0	2	2	75	25	0	100	3
5	EL-I	Elective-I	3:0:0	3	3	75	25	0	100	3
6	EL-II	Elective-II	3:0:0	3	3	75	25	0	100	3
7	CE-314LA	Transportation Engineering Lab	0:0:2	2	1	-	40	60	100	3
8	CE-316LA	Irrigation Engineering Drawing	0:0:3	3	1.5		40	60	100	3
9	CE-318LA	Field Training-II	0:0:0	0	0		100	0	100	3
10	*MC-902A	Constitution of India*	3:0:0	3	0	75	25	0	100	3
		Total	17:0:5	22	16.5	525	430	120	1000	

Note: (1) *MC-902A is a mandatory credit-less course in which the students will be required to get passing marks in the major test

(1) SIM-903 is a credit course in which the students will be evaluated for the Summer Internship (training) undergone after 6th semester and whose credit will be evaluated in 7th semester.

OPEN ELECTIVE-I

Sl.	Code No. Subject S		Semester	Credits
No				
		Soft Skills and Interpersonal Communication		
1.	OE-308A		VI	3
		Introduction to Art and Aesthetics		
2.	OE-310A		VI	3
3.	OE-312A	Cyber Law and Ethics	VI	3
3.	OE-320A	Human Resource Development and Organizational Behavior	VI	3

ELECTIVE-I

SI. No	Code No.	Subject	Semester	Credits
		Disaster Preparedness & Planning		
1.	EL-322A		VI	3
		Solid and Hazardous waste		
2.	EL-324A	Management	VI	3
		Open Channel flow		
3.	EL-326A		VI	3
4.	EL-328A	Ground Water	VI	3

ELECTIVE-II

SI. No	Code No.	Subject	Semester	Credits
		Repair & Rehabilitation of		
1.	EL-330A	Structures	VI	3
2.	EL-332A	Construction Engineering & Management	VI	3
		Structure Analysis by Matrix		
3.	EL-334A	Method	VI	3
4.	EL-336A	Structure Dynamics	VI	3

SCHEME OF STUDIES/EXAMINATIONS (Semester -VII)

S.	Course No./	Subject	L:T:P	Hours/	Credits	E	Examination S	chedule (Mar	ks)	Duration
No.	Code			Week		Major Test	Minor Test	Practical	Total	of exam (Hours)
1	CE-401A	Design of Concrete Structure-II	2:0:0	2	2	75	25	0	100	3
2	ES-212A	Energy Science & Engineering	2:0:0	2	2	75	25	0	100	3
3	CE-405A	Water Resources Engineering	2:0:0	2	2	75	25	0	100	3
4	OE-II	Open Elective-II	2:0:0	2	2	75	25	0	100	3
5	EL-III	Elective-III	3:0:0	3	3	75	25	0	100	3
6	EL-IV	Elective-IV	3:0:0	3	3	75	25	0	100	3
7	CE-411LA	Concrete Drawing	0:0:3	3	1.5	-	40	60	100	3
8	ES-212LA	Energy Science & Engineering Lab	0:0:2	2	1	-	40	60	100	3
9	CE-415LA	Minor Project	0:0:8	8	4	-	40	60	100	3
	SIM-903A	Seminar on Summer Internship	1:0:0	1	0		50		50	3
		Total	15:0:13	28	22.5	450	320	180	950	

Note: (1) SIM-903 is a credit course in which the students will be evaluated for the Summer Internship (training) undergone after 6th semester. (2) The student have to carry out the MINOR Project either from Transportation Engineering, Hydraulic Engineering and Geotechnical

Engineering.

OPEN ELECTIVE - II

Sl. No	Code No.	Subject	Semester	Credits
1.	OE-407A	Metro Systems and Engineering	VII	3
2.	OE-409A	Indian Music System	VII	3
3.	OE-417A	Introduction to Philosophical Thoughts	VII	3

ELECTIVE-III

Sl.	Code	Subject		
No	No.		Semester	Credits
1.	EL-419A	Environmental Impact Assessment	VII	3
		Air and Noise Pollution Control		
2.	EL-421A		VII	3
3.	EL-423A	Foundation engineering	VII	3
4.	EL-425A	Rock Mechanics	VII	3

ELECTIVE-IV

SI. No	Code No.	Subject	Semester	Credits
1.	EL-427A	Railway Engineering	VII	3
2.	EL-429A	Airport Planning and Design	VII	3
3.	EL-431A	River Engineering	VII	3
4.	EL-433A	Pipeline Engineering	VII	3

SCHEME OF STUDIES/EXAMINATIONS (Semester -VIII)

S.	Course No./	Subject	L:T:P	Hours/	Credits	E	Examination Schedule (Marks)			
No.	Code			Week		Major Test	Minor Test	Practical	Total	of exam (Hours)
1	CE-402A	Engineering Economics, Estimation & Costing	2:0:0	2	2	75	25	0	100	3
2	CE-404A	Bridge Engineering	2:0:0	2	2	75	25	0	100	3
3	OE-III	Open Elective-III	2:0:0	2	2	75	25	0	100	3
4	EL-V	Elective-V	3:0:0	3	3	75	25	0	100	3
5	EL-VI	Elective-VI	3:0:0	3	3	75	25	0	100	3
6	CE-412LA	Compressive Viva	0:0:0	0	0			50	50	3
7	CE-414LA	Major Project	0:0:10	10	5	-	40	60	100	3
8	CE-416LA	Seminar-II	2:0:0	2	0		50	0	50	3
		Total	14:0:10	24	19	375	215	110	700	

Note: The student have to carry out the MAJOR Project either from Structural Engineering, Environmental Engineering and Water Resource Engineering.

OPEN	ELECTIVE	- III
-------------	-----------------	-------

Sl.	Code No.	Subject	Semester	Credits
No				
1	OE-406A	ICT for Development	VII	3
2	OE-408A	Comparative Study of Literature	VIII	3
3	OE-410A	History of Science & Engineering	VIII	3
4	OE-418A	Economic Policies in India	VIII	3

ELECTIVE-V

Sl. No	Code No.	Subject	Semester	Credits
1.	EL-420A	Prestress Concrete	VIII	3
		Earthquake Engineering		
2.	EL-422A		VIII	3
		Offshore Engineering		
3.	EL-424A		VIII	3
		Structural Geology		
4.	EL-426A		VIII	3

ELECTIVE-VI

SI. No	Code No.	Subject	Semester	Credits
1.	EL-428A	Wastewater Treatment	VIII	3
2.	EL-430A	Water and Air Quality Modelling	VIII	3
3.	EL-432A	Traffic Engineering and Management	VIII	3
4.	EL-434A	Infrastructure Planning and Design	VIII	3

ANNEXURE-A

Additional Courses for B.Tech. (Honours Degree)Branch/Course: B.Tech. -Civil Engineering

A student will be eligible to get Under Graduate degree '**B.Tech. with Honours'**, if he/she completes an additional 20 credits. These could be acquired through MOOCs or with in-house examination being conducted. In order to have an Honours degree, a student may choose minimum 20 credits from the following professional electives courses in addition, provided that the student must ensure the course is approved by the Competent Authority, Government of India. The professional electives courses may be selected excluding these. In addition to the following list, the student can also opt some more courses offered under MOOCs at Swayam portal from time to time.

	Bachelor of Technology (Civil Engg.)														
	Credit-Based Scheme of Studies/Examination														
Additional Courses for B.Tech. (Honours Degree)															
S.No. Course Subject L:T:P Hours/ Week Examination Schedule (Marks) Code Code Wook Credits Credits Credits										Duration of Exam					
	Coure			week	Creuits	Major Test	Minor Test	Practical	Total	(Hrs)					
1	CE-501A	Contracts Mangement, construction Equipment & Automation	3:1:0	4	4	100	-	0	100	3					
2	CE-502A	Advance Design of Steel Structure	3:1:0	4	4	100	-	0	100	3					
3	CE-503A	Advanced Design of Concrete Structure	3:1:0	4	4	100	-	0	100	3					
4	CE-504A	Earthquake Engineering	3:1:0	4	4	100	-	0	100	3					
5	CE-505A	Urban Transport Planning	3:1:0	4	4	100	-	0	100	3					
6	CE-506A	Hydraulic Modeling	3:1:0	4	4	100	-	0	100	3					
7	CE-507A	Advanced Soil Mechanics	3:1:0	4	4	100	-	0	100	3					
8	CE- 513LA	Material Testing Lab	0:0:2	2	1	0	-	100	100	3					
9	CE- 514LA	Geomatics Lab	0:0:2	2	1	0	-	100	100	3					
10	CE- 515LA	Advance CAD Lab	0:0:2	2	1	0	-	100	100	3					

Bachelor of Technology (Mechatronics Engineering) Kurukshetra University, Kurukshetra SCHEME OF STUDIES/EXAMINATIONSw. e. f. 2019-20 onwards

Semester-III

~				T (I	5)	Duration		
S. No.	Course No.	Course Title	L:T:P	Hours/ Week	Credits	Major Test	Minor Test	Practical	Total	of Exam (Hours)
1	[#] BS-201A	Optics & Waves	3:0:0	3	3	75	25	0	100	3
2	[#] BS-205A	Advanced Engineering Mathematics	3:0:0	3	3	75	25	0	100	3
3	[#] ES-203A	Basic Electronics Engineering	3:0:0	3	3	75	25	0	100	3
4	MTC-201	Thermal Engineering	3:0:0	3	3	75	25	0	100	3
5	MTC-203	Applied Engineering Mechanics	3:1:0	4	4	75	25	0	100	3
6	MTC-205	Theory of Machines-I	3:1:0	4	4	75	25	0	100	3
7	ES-205L	Basic Electronics Engineering Lab	0:0:2	2	1	0	40	60	100	3
8	MTC-207	Applied Engineering Mechanics Lab	0:0:2	2	1	0	40	60	100	3
9	MTC-209	Theory of Machines-I Lab	0:0:2	2	1	0	40	60	100	3
10	*MTC-211	Industrial Training-I	2:0:0	2	-	-	100	-	100	
11	**MC-901A	Environmental Sciences	3:0:0	3	-	100	-	0	100	3
		Total	23:2:6	31	23	450	270	180	900	

Note:

1. * *MTC-211* is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 2^{nd} semester and students will be required to get passing marks to qualify.

2.**MC-901A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

3. Students are allowed to use programmable scientific calculator during examination.

4. [#]*The courses are common with B. Tech. Mechanical Engineering.*

Bachelor of Technology (Mechatronics Engineering) Kurukshetra University, Kurukshetra SCHEME OF STUDIES/EXAMINATIONSw. e. f. 2019-20 onwards

Semester-IV

~	~					E	5)	Duration		
S. No.	Course No.	Course Title	L:T:P	Hours/ Week	Credits	Major Test	Minor Test	Practical	Total	of Exam (Hours)
1	[#] ES-204A	Materials Engineering	3:0:0	3	3	75	25	0	100	3
2	MTC-202	Digital Electronics	3:0:0	3	3	75	25	0	100	3
3	MTC-204	Fluid Mechanics and Heat Transfer	3:0:0	3	3	75	25	0	100	3
4	MTC-206	Production Technology-I	3:0:0	3	3	75	25	0	100	3
5	MTC-208	Theory of Machines-II	3:1:0	4	4	75	25	0	100	3
6	MTC-210	Fluid Mechanics and Heat Transfer Lab	0:0:3	3	1.5	0	40	60	100	3
7	MTC-212	Theory of Machines-II Lab	0:0:3	3	1.5	0	40	60	100	3
8	MTC-214	Digital Electronics Lab	0:0:2	2	1	0	40	60	100	3
9	*MC-902A	Constitution of India	3:0:0	3	-	100	-	-	100	3
		Total	18:1:8	27	20	375	245	180	800	

Note:

1. *MC-902Ais a mandatory credit-less course in which the students will be required to get passing marks in the major test.

- 2. Students are allowed to use programmable scientific calculator during examination.
- 3. All the students have to undergo six weeks industrial training after 4th semester and it will be evaluated in 5th semester.
- *4.* [#]*The courses are common with B. Tech. Mechanical Engineering.*

Bachelor of Technology (Mechatronics Engineering) Kurukshetra University, Kurukshetra SCHEME OF STUDIES/EXAMINATIONSw. e. f. 2020-21 onwards

Semester-V

~						F	Examination Sc	hedule (Marks	5)	Duration
S. No.	Course No.	Course Title	L:T:P	Hours/ Week	Credits	Major Test	Minor Test	Practical	Total	of Exam (Hours)
1	[#] HM-905A	Entrepreneurship	3:0:0	3	3	75	25	0	100	3
2	MTC-301	Communication Systems	3:1:0	4	4	75	25	0	100	3
3	MTC-303	Production Technology-II	3:0:0	3	3	75	25	0	100	3
4	MTC-305	Automatic Control Systems	3:0:0	3	3	75	25	0	100	3
5	MTC-307	Embedded Systems-I	3:0:0	3	3	75	25	0	100	3
6	MTC-309	Communication Systems Lab	0:0:2	2	1	0	40	60	100	3
7	MTC-311	Production Technology-II Lab	0:0:4	4	2	0	40	60	100	3
8	MTC-313	Embedded Systems-I Lab	0:0:2	2	1	0	40	60	100	3
9	MTC-315	Project-I	0:0:2	2	1	0	0	100	100	3
10	*MTC-317	Industrial Training-II	2:0:0	2	-	0	100	0	100	
11	**MC-903A	Essence of Indian Traditional Knowledge	3:0:0	3	-	100	-	-	100	3
		Total	20:1:10	31	21	375	245	280	900	

Note:

- 1. **MTC-317* is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 4th semester.
- 2. **MC-903A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.
- 3. Students are allowed to use programmable scientific calculator during examination.
- *4.* [#]*The courses are common with B. Tech. Mechanical Engineering.*

Bachelor of Technology (Mechatronics Engineering) Kurukshetra University, Kurukshetra SCHEME OF STUDIES/EXAMINATIONSw. e. f. 2020-21 onwards

Semester-VI

~						I	s)	Duration		
S. No.	Course No.	Course Title	L:T:P	Hours/ Week	Credits	Major Test	Minor Test	Practical	Total	of Exam (Hours)
1	[#] HM-901A	Organizational Behaviour	3:0:0	3	3	75	25	0	100	3
2	MTC-302	Embedded Systems-II	3:0:0	3	3	75	25	0	100	3
3	MTC-304	Pneumatic and Hydraulic Instrumentation	3:0:0	3	3	75	25	0	100	3
4	MTP*	Program Elective-I	3:0:0	3	3	75	25	0	100	3
5	MTP*	Program Elective-II	3:0:0	3	3	75	25	0	100	3
6	MTC-306	Embedded Systems-II Lab	0:0:3	3	1.5	0	40	60	100	3
7	MTC-308	Pneumatic and Hydraulic InstrumentationLab	0:0:3	3	1.5	0	40	60	100	3
8	MTC-310	Project-II	0:0:6	6	3	0	0	100	100	3
		Total	15:0:12	27	21	375	205	220	800	

	Program Elective-I	Program Elective-II				
Course No.	Course Title	Course No	Course Title			
MTP-302	Internal Combustion Engines	MTP-308	Computer Aided Design and Manufacturing			
MTP-304	Refrigeration and Air Conditioning	MTP-310	Microcontrollers			
MTP-306	Digital Image Processing	MTP-312	Automobile Engineering and Autotronics			

Note:

1. All the students have to undergo 4 to 6 weeks Industrial Training after 6^{th} semester which will be evaluated in 7^{th} semester.

2. The course of Program Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

3. Students are allowed to use programmable scientific calculator during examination.

4.[#]The courses are common with B. Tech. Mechanical Engineering.

Bachelor of Technology (Mechatronics Engineering) Kurukshetra University, Kurukshetra SCHEME OF STUDIES/EXAMINATIONSw. e. f. 2021-22 onwards

Semester-VII

ä						I	Duration			
S. No.	Course No.	Course Title	L:T:P	Hours/ Week	Credits	Major Test	Minor Test	Practical	Total	of Exam (Hours)
1	MTO*	Open Elective-I	3:0:0	3	3	75	25	0	100	3
2	MTC-401	Robotics and Automation	3:0:0	3	3	75	25	0	100	3
3	MTP*	Program Elective-III	3:0:0	3	3	75	25	0	100	3
4	MTP*	Program Elective-IV	3:0:0	3	3	75	25	0	100	3
5	MTC-403	Robotics and Automation Lab	0:0:2	2	1	0	40	60	100	3
6	MTC-405	Project-III	0:0:8	8	4	0	100	100	200	3
7	*MTC-407	Industrial Training-III	2:0:0	2	-	0	100	0	100	
		Total	14:0:10	24	17	300	240	160	700	

Course No.	Program Elective-III	Course No.	Program Elective-IV	Course No.	Open Elective-I
MTP-401	Advanced Manufacturing Technology	MTP-407	Renewable Energy Resources	MTO-401	Applied Numerical Techniques and Computer Programming
MTP-403	Finite Element Methods	MTP-409	Computational Fluid Dynamics	MTO-403	Non-Destructive Testing
MTP-405	Smart Materials	MTP-411	Consumer Electronics	MTO-405	Internet of Things

Note:

1.*MTC-407 is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify.

2. *The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

3. Students are allowed to use programmable scientific calculator during examination.

Bachelor of Technology (Mechatronics Engineering) Kurukshetra University, Kurukshetra SCHEME OF STUDIES/EXAMINATIONSw. e. f. 2021-22 onwards

Semester-VIII

~	Course No.	Course Title	L:T:P	Hours/ Week		I	s)	Duration		
S. No.					Credits	Major Test	Minor Test	Practical	Total	of Exam (Hours)
1	MTC-402	Project-IV	0:0:10	10	5	-	100	100	200	3
2	MTO*	Open Elective-II	3:0:0	3	3	75	25	0	100	3
3	MTO*	Open Elective-III	3:0:0	3	3	75	25	0	100	3
4	MTP*	Program Elective-V	3:0:0	3	3	75	25	0	100	3
5	MTP*	Program Elective-VI	3:0:0	3	3	75	25	0	100	3
		Total	12:0:10	22	17	300	200	100	600	

Course No.	Program Elective-V	Course No.	Program Elective-VI	Course No.	Open Elective-II	Course No.	Open Elective-III
MTP-402	Non-Conventional Machining	MTP-408	Artificial Intelligence & Expert Systems	MTO-402	Sound and Noise Control	MTO-408	Operation Research and Optimization Techniques
MTP-404	Welding Technology	MTP-410	Micro Electro Mechanical Systems	MTO-404	Lubricants and Lubrication	MTO-410	Sensors and Actuators
MTP-406	Industrial Ergonomics	MTP-412	Quality and Reliability Engineering	MTO-406	Competitive Manufacturing Systems	MTO-412	Solar Energy

Note:

1. The course of both Program Elective and open elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

2. Students are allowed to use programmable scientific calculator during examination.
Bachelor of Technology (Textile Technology) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester III (w.e.f. session 2019-2020)

Sr No	Course No /Code	Subject	L:T:P	Hours/Week	Credits	Exa	Duration of Exam			
						Major Test	Minor Test	Practical	Total	(Hrs)
1	PCC-TEX-201A	Textile Fibre – I	3:1:0	4	4	75	25	0	100	3
2	PCC-TEX-203A	Yarn Manufacturing-I	3:1:0	3:1:0 4		75	25	0	100	3
3	PCC-TEX-205A	Fabric Manufacturing-I	3:1:0	4	4	75	25	0	100	3
4	PCC-TEX-207A	Textile Chemical Processing-I	3:1:0	4	4	75	25	0	100	3
5	PCC-TEX-209LA	Textile Fibre - I Lab	0:0:2	2	1	-	40	60	100	3
6	PCC-TEX-211LA	Yarn Manufacturing-I Lab	0:0:2	2	1	-	40	60	100	3
7	PCC-TEX-213LA	Fabric Manufacturing-I Lab	0:0:2	2	1	-	40	60	100	3
8	PCC-TEX-215LA	Textile Chemical Processing-I Lab	0:0:2	2	1	-	40	60	100	3
Total			24	20	300	260	240	800		
9	9 *MC-901A Environmental Sciences		3:0:0	3	-	100	-	0	100	3
*MC-901A	is a mandatory credit-les	ss course in which the students will be r	equired to g	et passing marks in	n the major te	est.				

Bachelor of Technology (Textile Technology) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester IV (w.e.f. session 2019-2020)

C No	Course No /Code	Subject	L.T.D	Hours/	Crodito	Exa	Duration of Exam			
5. NO.	Course No./Code		LIP	Week	Creaits	Major Test	Minor Test	Practical	Total	(Hrs)
1	PCC-TEX-202A	Textile Fibre – II	3:1:0	4	4	75	25	0	100	3
2	PCC-TEX-204A	Yarn Manufacturing-II	3:1:0	4	4	75	25	0	100	3
3	PCC-TEX-206A	Fabric Manufacturing-II	3:1:0	4	4	75	25	0	100	3
4	PCC-TEX-208A	Textile Chemical Processing-II	3:1:0	4	4	75	25	0	100	3
5	PCC-TEX-210LA	Yarn Manufacturing-II Lab	0:0:2	2	1	-	40	60	100	3
6	PCC-TEX-212LA	Fabric Manufacturing-II Lab	0:0:2	2	1	-	40	60	100	3
7	PCC-TEX-214LA	Textile Chemical Processing-II Lab	0:0:2	2	1	-	40	60	100	3
Total			22	19	300	220	180	700		
8 *MC-902A Constitution of India			3:0:0	3	-	100	-	0	100	3
*MC-902	A is a mandatory credi	t-less course in which the students will be re	quired to g	et passing	marks in the	major test.				

Note: All the students have to undergo 4 to 6 weeks Industrial Training after 4th semester which will be evaluated in 5th semester.

Bachelor of Technology (Textile Technology) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester V (w.e.f. session 2020-2021)

		e Subject		Hours/	Cradits	Exa	Duration of Exam (Hrs.)			
5. NO.	Course No./Code		L:I:P	Week	Credits	Major Test	Minor Test	Practical	Total	
1	PCC-TEX-301A	Textile Testing-I	3:1:0	4	4	75	25	-	100	3
2 PCC-TEX-303A		Yarn Manufacturing-III	3:1:0	4	4	75	25	-	100	3
3	PCC-TEX-305A	Fabric Manufacturing-III	3:1:0	4	4	75	25	-	100	3
4	PCC-TEX-307A	Fabric Structure & Design	3:1:0	4	4	75	25	-	100	3
5	PCC-TEX-309LA	Textile Testing-I Lab	0:0:2	2	1	-	40	60	100	3
6	PCC-TEX-311LA	Fabric Manufacturing-III Lab	0:0:2	2	1	-	40	60	100	3
7	*SI-301A	Seminar on Summer Internship-I	2:0:0	2	-	-	100	-	100	3
		Total		22	18	300	280	120	700	
8 **MC-903A Essence of Indian Traditional Knowledge		3:0:0	3	-	100	-	-	100	3	
**MC-90	3A is a mandatory cr	edit-less course in which the students	will be requ	ired to get	passing ma	irks in the ma	ajor test.			

*SI-301A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

Bachelor of Technology (Textile Technology) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester VI (w.e.f. session 2020-2021)

S No	Course No /Code	Cubicut.		Hours/	Oradita	Exa	Duration			
5. IVO.	Course No./Code	Subject	L:I:P	Week	Credits	Major Test	Minor Test	Practical	Total	of Exam (Hrs.)
1	PCC-TEX-302A	Textile Testing-II	3:1:0	4	4	75	25	0	100	3
2	PCC-TEX-304A	Garment Technology	3:1:0	4	4	75	25	0	100	3
3	PCC-TEX-306A	Knitting Technology	3:1:0	4	4	75	25	0	100	3
4	PCC-TEX-308A	Theory of Textile Structure	3:1:0	4	4	75	25	0	100	3
5	PCC-TEX-310LA	Textile Testing-II Lab	0:0:2	2	1	-	40	60	100	3
6	PCC-TEX-312LA	Garment Technology Lab	0:0:2	2	1	-	40	60	100	3
7	PCC-TEX-314LA	Knitting Technology Lab	0:0:2	2	1	-	40	60	100	3
8	*PEC-TEX	Program Elective-I	3:1:0	4	4	75	25	0	100	3
		Total		26	23	375	245	180	800	

Course No.	ProgramElective I
PECTEX-316A	Multi Fibre Spinning
PEC-TEX-318A	Structure and Properties of Fibre
PEC-TEX-320A	Manufacturing of Speciality Fabrics

* The course of Program Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Note: All the students have to undergo 4 to 6 weeks Industrial Training after 6th semester which will be evaluated in 7th semester.

Bachelor of Technology (Textile Technology) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester VII (w.e.f. session 2021-2022)

S No	Course No /Code	Subject	L.T.D	Hours/	Cradita	Exar	Duration of			
5. INO.	Course No./Code		LIP	Week	Creaits	Major Test	Minor Test	Practical	Total	Exam (Hrs)
1	PCC-TEX-401A	Technical Textiles-I	3:1:0	4	4	75	25	0	100	3
2	PCC-TEX-403A	Advanced Chemical Processing	3:1:0	4	4	75	25	0	100	3
3	*PEC-TEX	Program Elective-II	3:1:0	4	4	75	25	0	100	3
4	*OEC-TEX	Open Elective-I	3:1:0	4	4	75	25	0	100	3
5	PCC-TEX-405LA	Advanced Chemical Processing Lab	0:0:2	2	1	-	40	60	100	3
6	PROJ-TEX-407A	Project-I	0:0:6	6	3	100	-	100	200	3
7	**SI-401A	Seminar on Summer Internship-II	2:0:0	2	-	-	100	-	100	3
		Total		26	20	400	240	160	800	

CourseNo.	Program Elective-II	CourseNo.	Open Elective-I
PEC-TEX-409A	Process Control in Spinning & Weaving	OEC-TEX-415A	Fundamentals of Management
PEC-TEX-411A	Process Control in Garment	OEC-TEX-417A	Statistical Analyses
PEC-TEX-413A	Process Control in Chemical Processing	OEC-TEX-419A	Theory and Design of Textile Machinery

* The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

**SI-401Ais a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify.

Bachelor of Technology (Textile Technology) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester VIII (w.e.f. session 2021-2022)

S. No.	Course No./Code	Subject	L .T.D	Hours/	Hours/		nination S	Duration of Exam		
			L	Week	Credits	Major Test	Minor Test	Practical	Total	(Hrs)
1	PCC-TEX-402A	Technical Textiles-II	3:1:0	4	4	75	25	0	100	3
2	*PEC-TEX	Program Elective-III	3:1:0	4	4	75	25	0	100	3
3	*PEC-TEX	Program Elective-IV	3:1:0	4	4	75	25	0	100	3
4	*OEC-TEX	Open Elective-II	3:1:0	4	4	75	25	0	100	3
6	PROJ-TEX-404A	Project-II	0:0:6	3	3	100	-	100	200	3
7	**SIM-406A	Seminar	3:0:0	3	-	-	100	-	100	3
		Total		22	19	400	200	100	700	

ProgramElective-III		ProgramElectiv	ve-IV	OpenElectives-	I
CourseNo.	CourseNo. CourseName		CourseNo. CourseName		CourseName
PEC-TEX-408A	Post Extrusion Process	PEC-TEX-414A	Computer Aided Design	OEC-TEX-420A	Textile Costing
PEC-TEX-410A	High Performance Fibres	PEC-TEX-416A	Apparel Marketing & Merchandising	OEC-TEX-422A	Management of Textile Production
PEC-TEX-412A	Nonwoven Technology	PEC-TEX-418A	Quality Assurance in Apparel Industry	OEC-TEX-424A	Product Design and Development

*The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

**SIM-406A is a mandatory credit-less course in which the students will be required to get passing marks to qualify.

Additional Courses for B.Tech. (Honours Degree) Branch/Course: B.Tech. – Textile Technology

A student will be eligible to get Under Graduate degree '**B.Tech. with Honours**', if he/she completes an additional 20 credits. These could be acquired through MOOCs or with in-house examination being conducted. In order to have an Honours degree, a student may choose minimum 20 credits from the following professional electives courses in addition, provided that the student must ensure the course is approved by the Competent Authority, Government of India. The professional electives courses may be selected excluding these. In addition to the following list, the student can also opt some more courses offered under MOOCs at Swayam portal from time to time.

	Bachelor of Technology (Textile Technology)										
	Credit-Based Scheme of Studies/Examination										
Additional Courses for B.Tech. (Honours Degree)											
S.	S. Course Code	Subject	I •T•D	Hours/	Credits	Exam	rks)	Duration of			
No.	Course Coue		L	Week		Major Test	Minor Test	Practical	Total	Exam (Hrs)	
1	PEC-TEX-313A	Nanofibres& Nanotechnology in Textile	3:1:0	4	4	100		0	100	3	
2	PEC-TEX-315A	Processing of Manmade & Blended Textile	3:1:0	4	4	100		0	100	3	
3	PEC-TEX-322A	Advanced Apparel Production	3:1:0	4	4	100		0	100	3	
4	PEC-TEX-421A	Textile Composites	3:1:0	4	4	100		0	100	3	
5	PEC-TEX-423A	Science of Clothing Comfort	3:1:0	4	4	100		0	100	3	
6	PEC-TEX-426A	Coated & Laminated Textile	3:1:0	4	4	100		0	100	3	
7	PEC-TEX-428A	Plasma Technologies for Textile	3:1:0	4	4	100		0	100	3	
8	PEC-TEX-324LA	Apparel Construction Lab	0:0:2	2	1	0		100	100	3	
9	PEC-TEX-425LA	Comfort Lab	0:0:2	2	1	0		100	100	3	
10	PEC-TEX-430LA	Computer Aided Design Lab	0:0:2	2	1	0		100	100	3	

Model Curriculum Scheme for

Undergraduate Degree Course

in

Bachelor of Technology (B.Tech)

Chemical Engineering (CHE)

(Credit-Based Scheme of Studies/Examination for 3rd to

8th semester in Phased Manner)

KURUKSHETRA UNIVERSITY, KURUKSHETRA (K.U.K) – 136119, HARYANA, INDIA

Bachelor of Technology in CHEMICAL ENGINEERING KURUKSHETRA UNIVERSITY, KURUKSHETRA (K.U.K) – 136119, HARYANA, INDIA

A. Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1HourTutorial (T) per week	1 credit
1 HourPractical (P) per week	0.5 credit
2 Hours Practical (Lab) per week	1 credit

B. Range of Credits:

A total credit of 160is required for a student to be eligible to get Under Graduate degreeinChemicalEngineering. A student will be eligible to get Under Graduate degree with Honours or additional Minor Engineering, if he/she completes an additional 20 credits. These could be acquired through MOOCs.

C. Abbreviations Used for Various Course Codes:

BS: Basic Science Courses
ES: Engineering Science Courses
HM: Humanities and Social Sciences including Management Courses
PC: Professional Core Courses
MC: Mandatory Courses
PE: Professional Elective Courses/Program Elective Courses
OE: Open Elective Courses
PROJ: Project
CHE: Chemical Engineering
OE-CHE: Open Elective Courses-Chemical Engineering

Credit-Based Scheme of Studies/Examination

Semester III(w.e.f. session 2019-2020)	
--	--

S.	Course	Subject	Ι.Τ.Ρ	Hours	Credits	Examination Schedule (Marks)		larks)	Duration	
No.	Code	Jubjeet	E. I .I	k	orcuits	Major Test	Minor Test	Practical	Total	(Hrs.)
1.	ES-CHE- 201A	Chemical Engineering Thermodynamics-I	3:0:0	3	3	75	25	0	100	3
2.	BS-CH- 203A	Chemistry-II	3:0:0	3	3	75	25	0	100	3
3.	PC-CHE- 203A	Chemical Engineering Process Calculations	3:1:0	4	4	75	25	0	100	3
4.	PC-CHE- 205A	Fluid Flow	3:0:0	3	3	75	25	0	100	3
5.	BS-205A	Advanced Engineering Mathematics	3:0:0	3	3	75	25	0	100	3
6.	PC-CHE- 207A	Unit Processes	3:0:0	3	3	75	25	0	100	3
7.	BS-CH- 209LA	Chemistry-II (Lab)	0:0:3	3	1.5	0	40	60	100	3
8.	8. PC-CHE- Fluid Flow Lab		0:0:3	3	1.5	0	40	60	100	3
	Total			25	22	450	230	120	800	
9.	SIM- 201A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50	

***Note:** SIM-201A* is a mandatory credit-less course in which the students will be evaluated for the Summer Internship (training)undergone after 2nd semester and students will be required to get passing marks to qualify.

Credit-Based Scheme of Studies/Examination

Semester IV (w.e.f. session 2019-2020)

S.	Course	Subject	L:T:P	Hour s/We	Credits	Examination Schedule (Marks)				Duration of Exam
No.	Code			ek		Major Test	Minor Test	Practical	Total	(Hrs)
1	HM- 202A	Fundamental of management	3:0:0	3	3	75	25	0	100	3
2	PC-CHE- 204A	-CHE- Heat Transfer 4A		4	4	75	25	0	100	3
3	PC-CHE- 206A	C-CHE- Mechanical D6A Operations		3	3	75	25	0	100	3
4	PC-CHE- 208A in Chemical Engineering		3:0:0	3	3	75	25	0	100	3
5	ES-CHE- 212A	ES-CHE- Material 212A Technology		3	3	75	25	0	100	3
6	PC-CHE- 214LA	Heat Transfer (Lab)	0:0:3	4	1.5	0	40	60	100	3
7	PC-CHE- 216LA	Mechanical Operations (Lab)	0:0:3	4	1.5	0	40	60	100	3
	Total			24	19	375	205	120	700	
8	MC-901A	Environmental Sciences	3:0:0	3	0		100	0	100	3

Note:

- 1. Students be encouraged to go to 6-8 weeks summer internships mandatory during the summer break after the completion of fourth semester exams.
- **2.** MC-901A is a mandatory credit-less course in which the students will be required to get passing marks to qualify.

S.	Course	Subject	Hours L:T:P /Wee Credits		Credits	Examination Schedule (Marks)				Duration of Exam
No.	Code			k		Major Test	Minor Test	Practical	Total	(Hrs.)
1	PC-CHE- 301A	Chemical Reaction Engineering-I	3:1:0	4	4	75	25	0	100	3
2	PC-CHE- 303A	Chemical Technology-l	3:0:0	3	3	75	25	0	100	3
3	PC-CHE- 305A	Mass Transfer-I	3:0:0	3	3	75	25	0	100	3
4	PC-CHE- 307A	Thermodynamics-II	3:1:0	4	4	75	25	0	100	3
5	PC-CHE- 309A	Process Instrumentation	3:0:0	3	3	75	25	0	100	3
6	PC-CHE- 311LA	Chemical Reaction Engineering-I (Lab)	0:0:3	3	1.5	0	40	60	100	3
7	PC-CHE- 313LA	Mass Transfer-I (Lab)	0:0:3	3	1.5	0	40	60	100	3
	Total			23	20	375	205	120	700	
9	MC-904A	Energy Resources & Management	3:0:0	3	0	0	100	0	100	3
10	SIM- 301A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50	2

Bachelor of Technology (Chemical Engineering) Credit-Based Scheme of Studies/Examination Semester V(w.e.f. session 2020-2021)

*Note:

- SIM-301A*is a mandatory credit-less course in which the students will be evaluated for the Summer Internship undergone after 4th semester and students will be required to get passing marks to qualify.
- **2.** MC-904A is a mandatory credit-less course in which the students will be required to get passing marks to qualify.

Credit-Based Scheme of Studies/Examination

S.	Course	Subject	L:T:P	Hours	Credits	Examination Schedule (Marks)				Duration
No.	Code	Subject	L. I .F	k	creats	Major Test	Minor Test	Practical	Total	(Hrs)
1	PC- CHE- 302A	Chemical Reaction Engineering-II	3:1:0	4	4	75	25	0	100	3
2	PC- CHE- 304A	Chemical Technology-II	3:0:0	3	3	75	25	0	100	3
3	PC- CHE- 306A	Mass Transfer-II	3:0:0	3	3	75	25	0	100	3
4	PC- CHE- 308A	Process Dynamics Control	3:0:0	3	3	75	25	0	100	3
5	PE-	Elective-I	3:0:0	3	3	75	25	0	100	3
6	PC- CHE- 310LA	Chemical Reaction Engineering-II (Lab)	0:0:3	3	1.5	0	40	60	100	3
7	PC- CHE- 312LA	Mass Transfer-II (Lab)	0:0:2	2	1	0	40	60	100	3
8	PC- CHE- 314LA	Process Dynamics Control (Lab)	0:0:3	3	1.5	0	40	60	100	3
		Total		25	20	375	245	180	800	

Semester VI(w.e.f. session 2020-2021)

	PEC Elective-I						
S.No.	Course Code	Subject					
1.	PE-CHE-316A	Water Conservation and Management					
2.	PE-CHE-318A	Polymer Science and Engineering:					
3.	PE-CHE-320A	Nanoscience and Nanotechnology					
4.	PE-CHE-322A	Food Technology					

Note: Students be encouraged to go to 6-8 weeks summer internships mandatory during the summer break after the completion of sixth semester exams.

Credit-Based Scheme of Studies/Examination

S.	Course	Cubicat		Hours		Examination Schedule (Marks)				Duration
No	Code	Subject	LIP	/wee k	creatts	Major Test	Minor Test	Practical	Total	(Hrs)
1	PC-CHE- 401A	Process Modeling and Simulation	3:1:0	4	4	75	25	0	100	3
2	PC-CHE- 403A	Petroleum Processing Engineering	3:0:0	3	3	75	25	0	100	3
3	PC-CHE- 405A	Process Equipment Design	3:0:0	3	3	75	25	0	100	3
4	PE-	Elective-II	3:0:0	3	3	75	25	0	100	3
5	OE-	Open Elective-I	3:0:0	3	3	75	25	0	100	3
6	PC-CHE- 407LA	Process Modeling and Simulation (Lab)	0:0:2	2	1	0	40	60	100	3
	Total		18	17	375	165	60	600		
7	SIM- 401A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50	3

Semester VII (w.e.f. session 2021-2022)

		PEC Elective-II						
S.No.	Course Code	Subject						
1.	PE-CHE-409A	Pulp and Paper Technology						
2.	PE-CHE-411A	atalytic Processes						
3.	PE-CHE-413A	Novel Separation Techniques						
4.	PE-CHE-415A	Fermentation Technology						

		OEC Elective-I						
S.No.	Course Code	Subject						
1.	OE-CHE-417A	Pollution and Control						
2.	OE-CHE-419A	Management Information System						
3.	OE-CHE-421A	Energy Audit						
4.	OE-CHE-423A	Bioinformatics						

Note: SIM-401A is a mandatory credit-less course in which the students will be evaluated for Summer Internshipundergone after 6th semester and students will be required to get passing marks to qualify.

Credit-Based Scheme of Studies/Examination

S.	Course	Subiect	L:T:P	L:T:P /Wee Credits _ k		Exa	Examination Schedule (Marks)			
NO.	Code					Major Test	Minor Test	Practical	Total	(Hrs)
1	PC-CHE- 402A	Process Engineering and Technology	3:0:0	3	3	75	25	0	100	3
2	PC-CHE- 404A	Energy Technology	3:0:0	3	3	75	25	0	100	3
3	PC-CHE- 406A	Industrial Hazards and Safety	3:0:0	3	3	75	25	0	100	3
4	PE	Elective-II	3:0:0	3	3	75	25	0	100	3
5	OE	Open Elective-II	3:0:0	3	3	75	25	0	100	3
6	PROJ- CHE- 408A	Major Project	0:0:12	12	6	0	75	125	200	3
		Total		27	21	375	200	125	700	

Semester VIII (w.e.f. session 2021-2022)

		PEC Elective-III							
S.No.	Course Code	Subject							
1.	PE-CHE-410A	Introduction to Bio-chemical Engineering							
2.	PE-CHE-412A	Optimization Techniques in Chemical engineering							
3.	PE-CHE-414A	Petrochemical Engineering							
4.	PE-CHE-416A	Fuel Cell Technology							

		OEC Elective-II						
S.No.	Course Code	Subject						
1.	OE-CHE-418A	Energy Resources & Technology						
2.	OE-CHE-420A	Entrepreneurship						
3.	OE-CHE-422A	Consumer Electronics						
4.	OE-CHE-424A	Modern Vehicle Technology						

Note: The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Model Curriculum Scheme for Bachelor of Technology (B.Tech.) in Computer Science and Engineering (CSE) Program

(Credit-Based Scheme of Studies/Examination from 2019-20 Onwards in Phased Manner)

Kurukshetra University, Kurukshetra (K.U.K) – 136119, Haryana, INDIA

(Established by the state Legislature Act XII of 1956; 'A+' Grade, NAAC Accredited)

A. Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1Hour Tutorial (T) per week	1 credit
1 Hour Practical (P) per week	0.5 credit
2 Hours Practical (Lab) per week	1 credit

B. Range of Credits:

A total credit of 160 is required for a student to be eligible to get Under Graduate degree in Computer Science and Engineering. A student will be eligible to get Under Graduate degree **(B.Tech.) with Honours**, if he/she completes an additional 20 credits. These could be acquired through University Exam or through MOOCs (i.e. Swayam portal of Government of India) examination approved by the Competent Authority, Government of India.

C. Abbreviations Used for Various Course Codes:

BS: Basic Science Courses
ES: Engineering Science Courses
HM: Humanities and Social Sciences including Management Courses
PC: Professional Core Courses
MC: Mandatory Courses
PE: Professional Elective Courses/Program Elective Courses
OE: Open Elective Courses
PROJ: Project
CS: Computer Science & Engineering
OE-CS: Open Elective Courses-Computer Science & Engineering
A: Applications
D: Data Science and Machine Intelligence
S: Systems

T: Theory and Algorithms

		Bachelor of Tech	nnology	(Comp	uter Sci	ience &	Engine	ering)		
		Credit-Ba	sed Sch	neme of	Studies	s/Exami	nation			
		Seme	ster III (v	v.e.f. se	ession 2	019-202	0)			
S.	Course	Subject	L:T:P	Hour	Credit	Examir	nation S	chedule (N	Marks)	Duration
NO.	Code			s/we	S					Of Exam
				UN		Major	Minor	Practical	Total	(113)
						Test	Test			
	ES-205A	Principles of	3:0:0	3	3	75	25	0	100	3
1		Programming Languages								
2	PC-CS- 201A	Data Structure & Algorithms	3:0:0	3	3	75	25	0	100	3
3	ES-207A	Digital Electronics	3:0:0	3	3	75	25	0	100	3
4	PC-CS-	Object Oriented	3:0:0	3	3	75	25	0	100	3
4	203A	Programming								
5	BS-205A	Mathematics-III	3:0:0	3	3	75	25	0	100	3
6	HM-902A	Business Intelligence and Entrepreneurship	2:0:0	2	2	75	25	0	100	3
7	PC-CS-	Data Structure &	0:0:4	4	2	0	40	60	100	3
, 	205LA	Algorithms Lab	0.0.4	4		0	10	(0)	100	2
8	ES-209LA	Digital Electronics Lab	0:0:4	4	2	0	40	60	100	3
9	PC-CS- 205 LA	Object Oriented Programming Lab	0:0:4	4	2	0	40	60	100	3
		Total		29	23	450	270	180	900	
10	SIM-201A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50	

***Note:** SIM-201A^{*} is a mandatory credit-less course in which the students will be evaluated for the Summer Internship (training) undergone after 2nd semester and students will be required to get passing marks to qualify.

		Bachelor of Tech	nology	(Comp	outer Scie	ence &	Engine	ering)		
		Credit-Ba	sed Sch	ieme of	f Studies	/Exami	nation			
		Semes	ster IV (v	w.e.f. s	ession 20)19-202	0)			
S. No.	Course Code	Subject	L:T:P	Hour s/We	Credits	s Examination Schedul (Marks)		ule	Duration of Exam	
				ек		Major Test	Minor Test	Practical	Total	(115)
1	PC-CS- 202A	Discrete Mathematics	3:0:0	3	3	75	25	0	100	3
2	PC-CS- 204A	Internet Technology and Management	3:0:0	3	3	75	25	0	100	3
3	PC-CS- 206A	Operating Systems	3:0:0	3	3	75	25	0	100	3
4	PC-CS- 208A	Design & Analysis of Algorithms	3:0:0	3	3	75	25	0	100	3
5	HM-901A	Organizational Behaviour	3:0:0	3	3	75	25	0	100	3
6	PC-CS- 210LA	Internet Technology and Management Lab	0:0:4	4	2	0	40	60	100	3
7	PC-CS- 212LA	Operating Systems Lab	0:0:4	4	2	0	40	60	100	3
8	PC-CS- 214LA	Design & Analysis of Algorithms Lab	0:0:4	4	2	0	40	60	100	3
		Total		27	21	375	245	180	800	
9	MC-901A	Environmental Sciences	3:0:0	3	0		100	0	100	3

Note: Students be encouraged to go to 6-8 weeks summer internships mandatory during the summer break after the completion of fourth semester exams.

		Bachelor of Tech	nology	(Comp	uter Scie	ence &	Engine	ering)		
		Credit-Bas	sed Sch	ieme of	f Studies	/Examiı	nation			
		Semes	ster V (v	v.e.f. se	ession 20	20-202	1)			
S. No.	Course Code	Subject	L:T:P	Hour s/We	Credits	Examination Schedule (Marks)				Duration of Exam
				CR		Major Test	Minor Test	Practical	Total	(113)
1	ES-301A	Signals & Systems	3:0:0	3	3	75	25	0	100	3
2	PC-CS- 301A	Database Management Systems	3:0:0	3	3	75	25	0	100	3
3	PC-CS- 303A	Formal Language & Automata Theory	3:0:0	3	3	75	25	0	100	3
4	PC-CS- 305A	Essential of Information Technology	3:0:0	3	3	75	25	0	100	3
5	PC-CS- 307A	Computer Organization & Architecture	2:0:0	2	2	75	25	0	100	3
6	PE	Elective-I	3:0:0	3	3	75	25	0	100	3
7	PC-CS- 309LA	Database Management Systems Lab	0:0:4	4	2	0	40	60	100	3
8	PC-CS- 311LA	Essential of Information Technology Lab	0:0:4	4	2	0	40	60	100	3
	Total			25	21	450	230	120	800	
9	MC-904A	Energy Resources & Management	3:0:0	3	0	0	100	0	100	3
10	SIM-301A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50	

PEC Elective-I
Digital Data Communication: PE-CS-T301A
Parallel and Distributed Computing: PE-CS-T303A
Information Theory and Coding: PE-CS-T305A
Advanced Algorithms: PE-CS-T307A

Note: SIM-301A is a mandatory credit-less course in which the students will be evaluated for the Summer Internship undergone after 4th semester and students will be required to get passing marks to qualify.

		Bachelor of Tecl	hnology	(Comp	uter Scie	ence & E	ngineeri	ing)		
	Credit-Based Scheme of Studies/Examination									
		Seme	ster VI (v	w.e.f. s	ession 20)20-2021)			
S. No.	Course Subject Code	Subject	L:T:P	Hour s/We ek	Credits	Examination Schedule (Marks)				Duratio n of
					Major Test	Minor Test	Practical	Total	(Hrs)	
1	PC-CS- 302A	Complier Design	3:0:0	3	3	75	25	0	100	3
2	PC-CS- 304A	Computer Networks	3:0:0	3	3	75	25	0	100	3
3	*	Elective-II	3:0:0	3	3	75	25	0	100	3
4	**	Elective-III	3:0:0	3	3	75	25	0	100	3
5	***	Open Elective-I	3:0:0	3	3	75	25	0	100	3
6	PROJ – CS-302A	Project-1	0:0:6	6	3	0	40	60	100	3
7	PC-CS- 306LA	Complier Design Lab	0:0:4	4	2	0	40	60	100	3
8	PC-CS- 308LA	Computer Networks Lab	0:0:4	4	2	0	40	60	100	3
		Total		29	22	375	245	180	800	

* Elective-II	** Elective-III
Advanced Computer Architecture: PE-CS-S302A	Simulation & Modeling: PE-CS-S310A
Distributed Systems: PE-CS-S304A	Mobile Computing: PE-CS-S312A
Fault Tolerant Computing: PE-CS-S306A	Unix & Linux Programming: PE-CS-S314A
Ad-Hoc and Sensor Networks: PE-CS-S308A	Real Time Systems: PE-CS-S316A
*** Elective-I	
Soft Skills and Interpersonal Communication: OE-CS-302A	
Management Information System: OE-CS-304A	
Enterprise Resource Planning: OE-CS-306A	

Note: Students be encouraged to go to 6-8 weeks summer internships mandatory during the summer break after the completion of sixth semester exams.

The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

		Bachelor of Tec	hnology	(Com	outer Sci	ence & E	ngineer	ing)			
Credit-Based Scheme of Studies/Examination											
		Semes	ster VII (w.e.f. s	ession 2	021-2022	2)				
S. No.	Course Code	Subject	L:T:P	Hour s/We ek	Credits	Examination Schedule (Marks)			larks)	Duration of Exam	
				ÖN		Major	Minor	Practical	Total	(113)	
						Test	Test				
1	PE	Elective-IV	3:0:0	3	3	75	25	0	100	3	
2	PE	Elective-V	3:0:0	3	3	75	25	0	100	3	
3	OE	Open Elective-II	3:0:0	3	3	75	25	0	100	3	
4	PROJ-CS- 401A	Project-II	0:0:12	12	6	0	40	60	100	3	
5	PE-417LA	Elective-IV Lab	0:0:2	2	1	0	40	60	100	3	
6	PE-419LA	Elective-V Lab	0:0:2	2	1	0	40	60	100	3	
		Total		21	17	225	115	60	400		
7	SIM-401A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50		

PEC Elective-IV	PFC Flective-V
Data Mining: PE-CS-D401A	Soft Computing: PE-CS-D409A
Speech and Natural Language Processing: PE-CS-	Neural Networks and Deep Learning:
D403A	PE-CS-D411A
Information Retrieval: PE-CS-D405A	Object Oriented Software Engineering: PE-CS-
	D413A
Software Verification and	Expert Systems: PE-CS-D415A
Validation and Testing: PE-CS-D407A	
OEC Elective-II	
Cyber Law and Ethics: OE-CS-401A	
Bioinformatics: OE-CS-403A	
Fiber Optic Communications: OE-CS-405A	
Industrial Electrical Systems: OE-CS-407A	

The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Note: SIM-401A^{} is a mandatory credit-less course in which the students will be evaluated for Summer Internship undergone after 6th semester and students will be required to get passing marks to qualify.

		Bachelor of Te	chnology	(Comp	outer Scie	ence & E	Enginee	ering)		
		Credit-B	ased Sch	neme of	f Studies	/Examin	ation			
		Seme	ster VIII (w.e.f. s	ession 2	021-202	2)			
S. No.	S. Course Subject L:T:P Hour Credits Examination Schedul Io. Code (Marks)					le	Duration of Exam			
				U.		Major	Minor	Practical	Total	(113)
						Test	Test			
1	PE	Elective-VI	3:0:0	3	3	75	25	0	100	3
2	OE	Open Elective-III	2:0:0	2	2	75	25	0	100	3
3	OE	Open Elective-IV	2:0:0	2	2	75	25	0	100	3
4	PROJ-CS- 402A	Project-III	0:0:12	12	6	0	40	60	100	3
5	PE410-LA	Elective-VI Lab	0:0:4	4	2	0	40	60	100	3
		Total		23	15	225	155	120	500	

The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

PE Elective-VI	
Cloud Computing: PE-CS-A402A	
Computer Graphics: PE-CS-A404A	
Web and Internet Technology: PE-CS-A406A	
Mobile Apps Development: PE-CS-A408A	
OE Elective-III	OE Elective-IV
Cyber Security: OE-CS-402A	Software Quality Models: OE-CS-410A
Satellite Communication: OE-CS-404A	Automation in Manufacturing: OE-CS-412A
Social Networks: OE-CS-406A	IPR, Bioethics and Biosafety: OE-CS-414A
Agile Software Engineering: OE-CS-408A	Microprocessor & Interfacing: OE-CS-416A

Additional Courses for B.Tech. (Honours Degree) Branch/Course: B.Tech. - Computer Science Engineering

A student will be eligible to get Under Graduate degree '**B.Tech. with Honours**', if he/she completes an additional 20 credits. These could be acquired through University Exam or through MOOCs examination. The professional electives courses may be selected excluding these. In addition to the following list, the student can also opt some more courses offered under MOOCs at Swayam portal of Government of India from time to time.

		Bachelor of Tech	nnology	(Comp	uter Scie	ence & E	Enginee	ring)			
		Credit-Ba	sed Sch	neme of	Studies	/Examin	ation				
		Additional (Courses	for B.T	ech. (Ho	nours D	Degree)				
S.	Course	Subject	L:T:P	Hours	Credits	Examir	nation S	chedule (I	Marks)) Duration	
No.	Code			/Week					-	of Exam	
						Major	Minor	Practical	Total	(Hrs)	
						Test	Test				
1	PE-CS-	Graph Theory	3:0:0	3	3	100		0	100	3	
	T509A										
2	PE-CS-	Software Engineering	3:0:0	3	3	100		0	100	3	
	S611A										
3	PE-CS-	Embedded Systems	3:0:0	3	3	100		0	100	3	
_	5612A		2.0.0	2		100		0	100	0	
4	PE-CS-	Artificial Intelligence	3:0:0	3	3	100		0	100	3	
Б	DTUAA	Cryptography &	3.0.0	2	2	100		0	100	2	
J	A805A	Network Security	5.0.0	5	5	100		U	100	J	
6	PF-CS-	Internet-of-Things	3:0:0	3	3	100		0	100	3	
Ū	S613A	line of thing	0.0.0	, C	Ū			Ū			
7	PE-CS-	Data Analytics	3:0:0	3	3	100		0	100	3	
	D710A	5									
8	PE-CS-	Machine Learning	3:0:0	3	3	100		0	100	3	
	D711A										
9	PE-CS-	Software Engineering	0:0:4	4	2	0		100	100	3	
	S611LA	Lab									
10	PE-CS-	Embedded Systems	0:0:4	4	2	0		100	100	3	
11	S612LA	Lab Data Analytica Lab	0.0.1	4	2	0		100	100	2	
	175-02-	Data Analytics Lab	0:0:4	4	2	U		100	100	5	
12	DF-CS-	Machine Learning Lab	0.0.1	1	2	0		100	100	2	
12	D711LA		0.0.4	4	2	U		100	100	J	

Model Curriculum Scheme for Bachelor of Technology (B.Tech.) in Information Technology (IT) Program

(Credit-Based Scheme of Studies/Examination from 2018-19 Onwards in-Phased Manner)

Kurukshetra University, Kurukshetra

('A+' Grade, NAAC Accredited)

A. Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1HourTutorial (T) per week	1 credit
1 HourPractical (P) per week	0.5 credit
2 Hours Practical(Lab) per week	1 credit

B. Range of Credits:

C.

A total credit of 160is required for a student to be eligible to get Under Graduate degreein Information Technology (IT).

Abbreviations Used for Various Course Codes:BS: Basic Science CoursesES: Engineering Science CoursesHM: Humanities and Social Sciences including Management CoursesPC: Professional Core CoursesMC: Mandatory CoursesPE: Professional Elective Courses/Program Elective CoursesOE: Open Elective CoursesPROJ: ProjectIT: Information Technology (IT)OE-IT: Open Elective Courses-Information Technology (IT)A: ApplicationsD: Data Science and Machine IntelligenceS:SystemsT: Theory and Algorithms

	Bachelor of Technology (Information Technology)											
		Credit-Ba	sed Sch	ieme of	f Studies	s/Exami	nation					
	Semester III(w.e.f. session 2019-2020)											
S. No.	Course Code	Subject	L:T:P	Hour s/We	Credit s	Examir	Duration of Exam					
				CK		Major Test	Minor Test	Practical	Total	(113)		
1	ES-201A	Basic Electronics	3:0:0	3	3	75	25	0	100	3		
2	ES-203A	Digital Electronics and logic design	3:0:0	3	3	75	25	0	100	3		
3	PC-IT- 205A	Data Structure	3:0:0	3	3	75	25	0	100	3		
4	PC-IT- 207A	Object Oriented Programming using C++	3:0:0	3	3	75	25	0	100	3		
5	BS-209A	Mathematics - III	3:0:0	3	3	75	25	0	100	3		
6	HM-902A	Fundamentals of Management	3:0:0	3	3	75	25	0	100	3		
7	ES-211AL	Basic ElectronicsLab	0:0:2	2	1	0	40	60	100	3		
8	ES-213AL	Digital Electronics and logic designLab	0:0:2	2	1	0	40	60	100	3		
9	PC-IT- 215A L	Object Oriented Programming Lab	0:0:3	3	1.5	0	40	60	100	3		
		Total		25	21.5	450	270	180	900			
10	SIM-201A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50			

*Note:SIM-201A*is a mandatory credit-less course in which the students will be evaluated for the Summer Internship (training)undergone after 2nd semester and students will be required to get passing marks to qualify.

	Bachelor of Technology (Information Technology)											
		Credit-Ba	sed Sch	ieme of	Studies	/Exami	nation					
	Semester IV(w.e.f. session 2019-2020)											
S. No.	Course Code	Subject	L:T:P	Hour s/We ek	Credits	Ex	Duration of Exam (Hrs)					
						Major Test	Minor Test	Practical	Total			
1	ES-IT- 202A	Basics of Communication	3:0:0	3	3	75	25	0	100	3		
2	PC-IT- 204A	Discrete Mathematics	3:0:0	3	3	75	25	0	100	3		
3	PC-IT- 206A	Operating System	3:0:0	3	3	75	25	0	100	3		
4	PC-IT- 208A	Microprocessor Interfacing and Application	3:0:0	3	3	75	25	0	100	3		
5	PC-IT- 210A	Database Management Systems	3:0:0	3	3	75	25	0	100	3		
6	HM-901A	Management Information system	3:0:0	3	3	75	25	0	100	3		
7	PC-IT- 212AL	Microprocessor Interfacing and applicationLab	0:0:3	3	1.5	0	40	60	100	3		
8	PC-IT- 214AL	Operating Systems Lab	0:0:3	3	1.5	0	40	60	100	3		
9	PC-IT- 216AL	Database Management Systems Lab	0:0:3	3	1.5	0	40	60	100	3		
		Total		27	22.5	450	270	180	00			
10	MC-901A	Environmental Sciences	3:0:0	3	0		100	0	100	3		

Note: Students be encouraged to go to 6-8 weeks summer internships mandatory during the summer break after the completion of fourth semester exams.

	Bachelor of Technology (Information Technology)											
		Credit-Bas	sed Sch	eme of	f Studies	/Examiı	nation					
	Semester V(w.e.f. session 2020-2021)											
S. No.	Course Code	Subject	L:T:P	Hour s/We ek	Credits	Examination Schedule (Marks)				Duration of Exam (Hrs)		
						Major Test	Minor Test	Practical	Total			
1	ES-301A	JAVA Programming	3:0:0	3	3	75	25	0	100	3		
2	PC-IT- 301A	Internet and Web Technology	3:0:0	3	3	75	25	0	100	3		
3	PC-IT- 303A	Computer Graphics	3:0:0	3	3	75	25	0	100	3		
4	PC-IT- 305A	Computer Organization & Architecture	3:0:0	3	3	75	25	0	100	3		
5	PC-IT- 307A	Programming with MATLAB	2:0:0	2	2	75	25	0	100	3		
6	OE	Elective-I	3:0:0	3	3	75	25	0	100	3		
7	PC-IT- 309AL	JAVA programming Lab	0:0:4	4	2	0	40	60	100	3		
8	PC-IT- 311AL	Internet and Web TechnologyLab	0:0:4	4	2	0	40	60	100	3		
Total				25	21	450	230	120	800			
9	MC-904A	Energy Resources & Management	3:0:0	3	0	0	100	0	100	3		
10	SIM-301A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50			

OE Elective-I
Digital Data Communication: OE-IT-T301A
Computer Networks: OE-IT-T303A
Wireless sensor networks: OE-IT-T305A

*Note: SIM-301*is a mandatory credit-less course in which the students will be evaluated for the Summer Internship undergone after 4th semester and students will be required to get passing marks to qualify.

	Bachelor of Technology (Information Technology)												
		Credit-Ba	sed Sch	neme of	f Studies	/Examina	ation						
	Semester VI(w.e.f. session 2020-2021)												
S. No.	Course Code	Subject	L:T:P	Hour s/We	Credits	Examin	larks)	Duratio n of Exam					
						Major Test	Minor Test	Practical	Total	(Hrs.)			
1	PC-IT- 302A	Software Engineering	3:0:0	3	3	75	25	0	100	3			
2	PC-IT- 304A	Linux	3:0:0	3	3	75	25	0	100	3			
3	PE	Elective-II	3:0:0	3	3	75	25	0	100	3			
4	PE	Elective-III	3:0:0	3	3	75	25	0	100	3			
5	OE	Open Elective-I	3:0:0	3	3	75	25	0	100	3			
6	PROJ –IT- 302A	Project-1	0:0:6	6	3	0	40	60	100	3			
7	PC-IT- 306AL	Software Engineering Lab	0:0:3	3	1.5	0	40	60	100	3			
8	PC-IT- 308AL	Linux Lab	0:0:3	3	1.5	0	40	60	100	3			
		Total		29	21	375	245	180	800				

PEC Elective-II	PEC Elective-III
Data ware housing and Data Mining: PE-IT-S302A	Soft computing: PE-IT-S310A
Advance Database management System: PE-IT- S304A	Mobile Computing: PE-IT-S312A
Big Data Analytics: PE-IT-S306A	Agile Software Engineering:PE-IT-S314A
OEC Elective-I	
Soft Skills and Interpersonal Communication: OE-IT-	
302A	
Non conventional Energy Resources: OE-IT-304A	
Enterprise Resource Planning: OE-IT-306A	

Note: Students be encouraged to go to 6-8 weeks summer internships mandatory during the summer break after the completion of sixth semester exams.

The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

	Bachelor of Technology (Information Technology)											
	Credit-Based Scheme of Studies/Examination											
	Semester VII(w.e.f. session 2021-2022)											
S. No.	Course Code	Subject	L:T:P	Hour s/We ek	Credits	s Examination Schedule (Marks			larks)	Duration of Exam (Hrs)		
						Major Test	Minor Test	Practical	Total			
1	PE	Elective-IV	3:0:0	3	3	75	25	0	100	3		
2	PE	Elective-V	3:0:0	3	3	75	25	0	100	3		
3	OE	Open Elective-II	3:0:0	3	3	75	25	0	100	3		
4	PROJ-IT- 401A	Project-II	0:0:12	12	6	0	40	60	100	3		
5	PE-L	Server side programming Lab	0:0:3	3	1.5	0	40	60	100	3		
6	PE-L	Mobile Application Development lab	0:0:3	3	1.5	0	40	60	100	3		
Total				21	18	225	115	60	400			
7	SIM-401A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50			

PEC Elective-IV	PEC Elective-V
Advanced Computer Networks: PE-IT-D401A	Software Testing: PE-IT-D409A
Introduction to computer animation: PE-IT-D403A	Software Project management:PE-IT-D411A
Parallel Computing: PE-IT-D405A	Distributed Operating System: PE-IT-D413A
Complier Design: PE-IT-D407A	Natural Language Processing: PE-IT-D415A
OEC Elective-II	
Cyber Law and Ethics: OE-IT-401A	
Signal and System: OE-IT-403A	
Neural Networks and Deep Learning: OE-IT-405A	
Digital Signal Processing: OE-IT-407A	

The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

***Note:** SIM-401*is a mandatory credit-less course in which the students will be evaluated for Summer Internshipundergone after 6th semester and students will be required to get passing marks to qualify.

	Bachelor of Technology (Information Technology)											
	Credit-Based Scheme of Studies/Examination											
	Semester VIII(w.e.f. session 2021-2022)											
S. No.	Course Code	Subject	L:T:P	Hour s/We ek	Credits	Exa	Duration of Exam (Hrs.)					
						Major Test	Minor Test	Practical	Total			
1	PE	Elective-VI	3:0:0	3	3	75	25	0	100	3		
2	OE	Open Elective-III	2:0:0	2	2	75	25	0	100	3		
3	OE	Open Elective-IV	2:0:0	2	2	75	25	0	100	3		
4	PROJ-IT- 402A	Project-III	0:0:12	12	6	0	40	60	100	3		
5	PE-L	Elective-VI Lab	0:0:4	4	2	0	40	60	100	3		
		Total		23	15	225	155	120	500			

The course of both PE &OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

PE Elective-VI	
Introduction to Internet of Things: PE-IT-A402A	
Cloud Computing: PE-IT-A404A	
Machine learning: PE-IT-A406A	
Mobile Apps Development: PE-IT-A408A	
OE Elective-III	OE Elective-IV
Cyber Security: OE-IT-402A	Information Security: OE-IT-410A
Bioinformatics: OE-IT-404A	Image Processing: OE-IT-412A
Bioinformatics: OE-IT-404A Social Networks: OE-IT-406A	Image Processing: OE-IT-412A IPR, Bioethics and Biosafety: OE-IT-414A

KURUKSHETRA UNIVERSITY KURUKSHETRA

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based)

A. Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1Hour Tutorial (T) per week	1 credit
1 Hour Practical (P) per week	0.5 credit
2 Hours Practical (Lab) per week	1 credit

B. Range of Credits:

A total credit of 160 is required for a student to be eligible to get Under Graduate degree in **Electronics and Communication Engineering**. A student will be eligible to get Under Graduate degree (**B.Tech.**) with Honours, if he/she completes an additional 20 credits. These could be acquired through MOOCs at Swayam portal or with in-house examination being conducted. In order to have an Honours degree, a student may choose minimum 20 credits provided that the student must ensure the course is approved by the Competent Authority, Government of India.

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester III (w.e.f. session 2019-2020)

Sr. No.	Course No.	Subject	L:T:P	Hours/Week	Credits	Examination Schedule (Marks)				Duration of Exam (Hrs)
						Major Test	Minor Test	Practical	Total	(113)
1	BS-201A	Optics & Waves	3:0:0	3	3	75	25	0	100	3
2	EC-201A	Electronic Devices	3:0:0	3	3	75	25	0	100	3
3	EC-203LA	Electronic Devices Lab	0:0:2	2	1	-	40	60	100	3
4	EC-205A	Digital Electronics	3:0:0	3	3	75	25	0	100	3
5	EC-207LA	Digital Electronics Lab	0:0:2	2	1	-	40	60	100	3
6	EC-209A	Signals & Systems	3:0:0	3	3	75	25	0	100	3
7	EC-211LA	Signals & Systems Lab	0:0:2	2	1	-	40	60	100	3
8	EC-213A	Network Theory	3:0:0	3	3	75	25	0	100	3
9	ES-201A	Essentials of Information Technology	3:0:0	3	3	75	25	0	100	3
10	*EC-215A	Industrial Training-I	2:0:0	2	-	-	100	-	100	3
11	**MC-901A	Environmental Sciences	3:0:0	3	-	100	-	0	100	3
		Total		26	21	450	270	180	900	
*EC-215A	is a mandatory	credit-less course in which the stu	udents will be ev	aluated for the indu	ustrial training	gundergone	e after 2 nd s	emester and s	tudents wi	Il be required

to get passing marks to qualify. **MC-901A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester IV (w.e.f. session 2019-2020)

S. No.	Course No.	Subject	L:T:P	Hours/ Week	Credits	Examination Schedule (Marks)				Duration of Exam (Hrs)
						Major Test	Minor Test	Practical	Total	
1	BS-204A	Higher Engineering Mathematics	3:0:0	3	3	75	25	0	100	3
2	HM-903A	Soft Skills & Interpersonal Communication	3:0:0	3	3	75	25	0	100	3
3	EC- 202A	Digital Communication	3:0:0	3	3	75	25	0	100	3
4	EC-204LA	Communication Lab	0:0:2	2	1	-	40	60	100	3
5	EC-206A	Analog Circuits	3:0:0	3	3	75	25	0	100	3
6	EC-208LA	Analog Circuits Lab	0:0:2	2	1	-	40	60	100	3
7	EC-210A	Microprocessors & Microcontrollers	3:0:0	3	3	75	25	0	100	3
8	EC-212LA	Microprocessors & Microcontrollers Lab	0:0:2	2	1	0	40	60	100	3
9	ES-202A	Basics of Analog Communication	3:0:0	3	3	75	25	60	100	3
10	*MC-902A	Constitution of India	3:0:0	3	-	100	-	0	100	3
		Total		27	21	550	270	240	900	

*MC-902A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

Note: All the students have to undergo 4 to 6 weeks Industrial Training after 4th semester which will be evaluated in 5th semester.

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester V (w.e.f. session 2020-2021)

S. No.	Course No.	Subject	L:T:P	Hours/ Week	Credits	Examination Schedule (Marks)				Duration of Exam (Hrs.)
						Major Test	Minor Test	Practical	Total	(1113.)
1	EC-301A	Electromagnetic Waves	3:0:0	3	3	75	25	0	100	3
2	EC-303LA	Electromagnetic Waves Lab	0:0:2	2	1	-	40	60	100	3
3	EC-305A	Computer Organization & Architecture	3:0:0	3	3	75	25	0	100	3
4	EC-307A	Information Theory and Coding	3:0:0	3	3	75	25	0	100	3
5	EC-309A	Digital Signal Processing	3:0:0	3	3	75	25	0	100	3
6	EC-311LA	Digital Signal Processing Lab	0:0:2	2	1	0	40	60	100	3
7	ECP*	Program Elective-I	3:0:0	3	3	75	25	0	100	3
8	ECO*	Open Elective-I	3:0:0	3	3	75	25	0	100	3
9	**EC-313A	Industrial Training-II	2:0:0	2	-	-	*100	-	*100	3
10	***MC- 903A	Essence of Indian Traditional Knowledge	3:0:0	3	-	100	-	0	100	3
		Total		27	20	550	230	120	900	

* The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

**EC-313A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

***MC-903A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.
Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester VI (w.e.f. session 2020-2021)

S. No.	Course No.	Subject	L:T:P	Hours/ Week	Credits	Exa	Examination Schedule (Marks)			Duration of Exam	
						Major Test	Minor Test	Practical	Total	(Hrs.)	
1	HM-901A	Organizational Behavior	3:0:0	3	3	75	25	0	100	3	
2	EC-302A	Control System Engineering	3:0:0	3	3	75	25	0	100	3	
3	EC-304LA	Control System Engineering Lab	0:0:3	3	1.5	-	40	60	100	3	
4	EC-306A	Verilog HDL	3:0:0	3	3	75	25	0	100	3	
5	EC-308LA	Verilog HDL Lab	0:0:3	3	1.5	-	40	60	100	3	
6	EC-310LA	Mini Project/Electronic Design Workshop	0:0:4	4	2	-	40	60	100	3	
7	ECP*	Program Elective-II	3:0:0	3	3	75	25	0	100	3	
8	ECO*	Open Elective-II	3:0:0	3	3	75	25	0	100	3	
		Total		25	20	375	245	180	800		

* The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Note: All the students have to undergo 4 to 6 weeks Industrial Training after 6th semester which will be evaluated in 7th semester.

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester VII (w.e.f. session 2021-2022)

S. No.	Course No.	Subject	L:T:P	Hours/ Week	Credits	Exar	nination So	ks)	Duration of Exam (Hrs)	
						Major Test	Minor Test	Practical	Total	
1	HM- 904A	Intellectual Property Rights for Technology Development & Management	3:0:0	3	3	75	25	0	100	3
2	ECP*	Program Elective-III	3:0:0	3	3	75	25	0	100	3
3	ECP*	Program Elective-IV	3:0:0	3	3	75	25	0	100	3
4	ECP*	Program Elective-V	3:0:0	3	3	75	25	0	100	3
5	ECO*	Open Elective-III	3:0:0	3	3	75	25	0	100	3
6	EC-401LA	Project Stage-I	0:0:6	6	3	-	40	60	100	3
7	**EC- 403A	Industrial Training-III	2:0:0	2	-	-	*100	-	*100	3
		Total		23	18	375	165	60	600	
* The co **EC-403 required	* The course of both Program Elective and Open Elective will be offered at 1/3 rd strength or 20 students (whichever is smaller) of the section. **EC-403A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 6 th semester and students will be required to get passing marks to qualify.									f the section. ter and students will be

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester VIII(w.e.f. session 2021-2022)

S. No.	Course No.	Subject	L:T:P	Hours/ Week	Credits	Exa	amination S	(s)	Duration of Exam. (Hrs.)	
						Major Test	Minor Test	Practical	Total	
1	ECP*	Program Elective-VI	3:0:0	3	3	75	25	0	100	3
2	ECP*	Program Elective-VII	3:0:0	3	3	75	25	0	100	3
3	ECO*	Open Elective-IV	3:0:0	3	3	75	25	0	100	3
4	ECO*	Open Elective-V	3:0:0	3	3	75	25	0	100	3
5	EC-402LA	Project Stage-II	0:0:14	14	7	-	40	60	100	3
		Total		26	19	300	140	60	500	

*The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination

	LIST OF OPEN ELECTIVES (B.TECH. ECE)										
SEM	CODE	SUBJECT									
V	ECO-1A	Computer Networks									
	ECO-2A	Mechatronics									
	ECO-3A	Electronic Measurement and Instruments									
	ECO-4A	Renewable Energy Resources									
VI	ECO-5A	Data Structures									
	ECO-6A	Multimedia Communication									
	ECO-7A	Consumer Electronics									
	ECO-8A	Transducers and Their Applications									
VII	ECO-9A	Bio-informatics									
	ECO-10A	Electromechanical Energy Conversion									
	ECO-11A	Operating Systems									
	ECO-12A	Robotics									
VIII	ECO-13A	Machine Learning									
	ECO-14A	Soft Computing									
	ECO-15A	Neural Networks and Fuzzy Logic									
	ECO-16A	Software Defined Radio									
	ECO-17A	Statistics and Operational Research									
	ECO-18A	Biomedical Signal Processing									
	ECO-19A	Internet of Things									
	ECO-20A	Wireless Sensor Networks									

	LIST OF PRO	GRAM ELECTIVES (B.TECH. ECE)
SEM	CODE	SUBJECT
V	ECP-1A	Probability Theory & Stochastic Processes
	ECP-2A	Speech and Audio Processing
	ECP-3A	Introduction to MEMS
	ECP-4A	Power Electronics
	ECP-5A	VLSI
VI	ECP-6A	Antennas and Propagation
	ECP-7A	CMOS Design
	ECP-8A	Bio-Medical Electronics
	ECP-9A	Scientific Computing
VII	ECP-10A	Fiber Optic Communications
	ECP-11A	Nano electronics
	ECP-12A	Microwave Theory and Techniques
	ECP-13A	Adaptive Signal Processing
VIII	ECP-14A	Wireless Sensor Networks
	ECP-15A	Satellite Communication
	ECP-16A	High Speed Electronics
	ECP-17A	Wavelets
	ECP-18A	Embedded systems
	ECP-19A	Mixed Signal Design
	ECP-20A	Error correcting codes
	ECP-21A	Digital Image & Video Processing
	ECP-22A	Mobile Communication and Networks

KURUKSHETRA UNIVERSITYKURUKSHETRA Bachelor of Technology(ElectricalEngineering) Scheme of Studies/Examination SemesterIII(w.e.f.Session 2018-19 onwards)

Sr. No.	Course No.	Subject	L:T:P	Hours/Week	Credits	Examination Schedule (Marks) Durat					
						Major Test	Minor Test	Practical	Total	of Exam (Hrs)	
1	*EE-201A	Electrical Circuit Analysis	3:1:0	4	4	75	25	0	100	3	
2	EE-203A	Analog Electronics	3:0:0	3	3	75	25	0	100	3	
3	*EE-205A	Electrical Machines - I	3:1:0	4	4	75	25	0	100	3	
4	BSC-202A	Higher Engineering Mathematics	3:0:0	3	3	75	25	0	100	3	
5	HM-903A	Soft Skills & Interpersonal Communication	3:0:0	3	3	75	25	0	100	3	
6	*EE-211A	Electrical Machines- I Lab	0:0:2	2	1	-	40	60	100	3	
7	EE-207A	Analog Electronics Lab	0:0:2	2	1	-	40	60	100	3	
8	**EE-209A	Industrial Training-I	2:0:0	2	-	-	100	0	100	3	
9	***MC-901A	Environmental Sciences	3:0:0	3	-	100	-	0	100	3	
		Total		26	19	375	205	120	700		
* Subjects	Common with II	Ird Semester. B.Tech. [Electrical & Electrical & Electric	tronics Engg.] Scheme, K.U.K.	after and semi	ester and stud	ents will he rec	nuired to get bas	sina marks	to qualify	
***MC-901	I A is a mandatory	credit-less course in which the students will	be required to (pet passing marks in	the major test			jui cu lo yol pas	Sing marks	to quality.	

KURUKSHETRA UNIVERSITYKURUKSHETRA BachelorofTechnology(ElectricalEngineering) Scheme of Studies/Examination SemesterIV(w.e.f.Session2018-19 onwards)

S. No	Course No.	Subject	L:T:P	Hours/ Week	Credits		Examination Schedule (Marks)				
140.				WCCK	orcuits_	Major Test	Minor Test	Practical	Total	(Hrs)	
1	EE-202A	Digital Electronics	3:1:0	4	4	75	25	0	100	3	
2	EE-204A	Signals and Systems	3:1:0	4	4	75	25	0	100	3	
3	*EE- 206A	Electrical Machines – II	3:1:0	4	4	75	25	0	100	3	
4	*EE-208A	Power Electronics	3:1:0	4	4	75	25	0	100	3	
5	EE-216A	Electromagnetic Fields	3:0:0	3	3	75	25	0	100	3	
7	*EE-210A	Electrical Machines- II Lab	0:0:2	2	1	-	40	60	100	3	
8	*EE-212A	Power Electronics Lab	0:0:2	2	1	-	40	60	100	3	
9	EE-214A	Digital Electronics Laboratory	0:0:2	2	1	-	40	60	100	3	
10	**MC-902A	Constitution of India	3:0:0	3	-	100	-	0	100	3	
		Total		28	22	375	245	180	800		

* Subjects Common with IV Semester. B.Tech. [Electrical & Electronics Engg.] Scheme, K.U.K.

**MC-902A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

Note: All the students have to undergo 4 to 6 weeks Industrial Training after 4th semester which will be evaluated in 5th semester.

KURUKSHETRA UNIVERSITYKURUKSHETRA BachelorofTechnology(ElectricalEngineering) Scheme of Studies/Examination SemesterV(w.e.f.Session 2018-19 onwards)

S. No.							Examinatio	n Schedule (N	/larks)	Duration
	Course No.	Subject	L:T:P	Hours/ Week	Credits	Major Test	Minor Test	Practical	Total	of Exam (Hrs.)
1	*EE-301A	Power Systems – I	3:1:0	4	4	75	25	0	100	3
3	*EE-305A	Control Systems	3:1:0	4	4	75	25	0	100	3
4	EEP**	Program Elective-I	3:0:0	3	3	75	25	0	100	3
5	*EE-309A	Microprocessors	3:0:0	3	3	75	25	0	100	3
6	EEO**	Open Elective-I	3:0:0	3	3	75	25	0	100	3
7	*EE-313A	Power Systems- I Lab	0:0:2	2	1	-	40	60	100	3
8	*EE-315A	Microprocessors Lab	0:0:2	2	1	0	40	60	100	3
9	*EE-317A	Control Systems Lab	0:0:2	2	1	0	40	60	100	3
10	***EE-319A	Industrial Training-II	2:0:0	2	-	-	*100	-	*100	3
		Total		25	20	375	245	180	800	

* Subjects Common with Vth Semester. B.Tech. [Electrical& Electronics Engg.] Scheme, K.U.K.

**The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

***EE-319A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

**Program	EEP-307A	Electrical Machine Design
Elective-I	EEP-311A	Electrical Drives
	EEP-315A	Power Management
**Open Elective-I	EEO-321A	Electronic Device
	EEO-323A	Thermal and Fluid Engineering
	EEO-325A	Computer Networks
	EEO-327	Soft Computing

KURUKSHETRA UNIVERSITYKURUKSHETRA BachelorofTechnology(ElectricalEngineering) Scheme of Studies/Examination SemesterVI(w.e.f.Session2018-19 onwards)

S. No.	Course No.	Subject	L:T:P	Hours/		Examination Schedule (Marks		Marks)	rks) Duration	
				Week	Credits	Major Test	Minor Test	Practical	Total	of Exam (Hrs.)
1	*EE-302A	Power Systems – II	3:1:0	4	4	75	25	0	100	3
2	EEP**	Program Elective-II	3:0:0	3	3	75	25	0	100	3
3	EEP**	Program Elective-III	3:0:0	3	3	75	25	0	100	3
4	EEO**	Open Elective-II	3:0:0	3	3	75	25	0	100	3
5	*EE-310A	Electrical Measurements and Measuring Instrumentation	3:0:0	3	3	75	25	0	100	3
6	*EE-312A	Power Systems- II Lab	0:0:2	2	1	-	40	60	100	3
7	*EE-314A	Measurements and Instrumentation Lab	0:0:2	2	1	-	40	60	100	3
8	*EE-316A	Electronic Design Lab	0:0:6	6	3	-	40	60	100	3
9	HSMC 302A	Organizational Behaviour	3:0:0	3	3	75	25	0	100	3
		Total		29	24	450	270	180	900	

* Subjects Common with VIth Semester. B.Tech. [Electrical & Electronics Engg.] Scheme, K.U.K.

** The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section. Note: All the students have to undergo 4to 6 weeks Industrial Training after 6th semester which will be evaluated in 7th semester.

**Program Elective-II	EEP-304A	Power System Protection
	EEP-306A	Electrical Energy Conservation and Auditing
**Program Elective- III	EEP-308A	Digital Signal Processing
	EEP-318A	Computer Architecture
**Open Elective-II	EEO-320A	Electrical Materials
	EEO-322A	Strength of Materials

KURUKSHETRA UNIVERSITYKURUKSHETRA BachelorofTechnology(ElectricalEngineering) Scheme of Studies/Examination SemesterVII(w.e.f.session2018-19 onwards)

S. No.	Course No.	Subject	L:T:P	Hours/	Credits		Examinatior	Schedule (M	arks)	Duration of Exam
				Week		Major Test	Minor Test	Practical	Total	(Hrs)
1	HSMC-401A	Principles of Management	3:0:0	3	3	75	25	0	100	3
2	EEP*	Program Elective-IV	3:0:0	3	3	75	25	0	100	3
3	EEP*	Program Elective-V	3:0:0	3	3	75	25	0	100	3
4	EEO*	Open Elective-III	3:0:0	3	3	75	25	0	100	3
	EEO*	Open Elective-IV	3:0:0	3	3	75	25	0	100	3
5	EE-401LA	Project Stage-I	0:0:6	6	3	-	40	60	100	3
6	**EE-403A	Industrial Training-II	2:0:0	2	-	-	100	-	100	3
		Total		23	18	375	165	60	600	
* Theco	urseofbothProgra	amElective and Open Elective will	beoffereda	t 1/3 rd strengt	hor20studer	nts(whichev	erissmaller)	ofthesection		· · · · · · · · · · · · · · · · · · ·

**EE-403A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify.

**Program Elective-IV	EEP-405A	HVDC Transmission System
	EEP-407A	Industrial Electrical System
**Program Elective- V	EEP-409A	High Voltage Engineering
	EEP-411A	Digital Control System
**Open Elective-III	EEO-401A	Utilization of Electric Energy
	EEO-415A	Transducers and their Application
**Open Elective-IV	EEO-417A	Signal and Image Processing
	EEO-419A	Biomedical Instrumentation
	EEO-421A	Fluid Machinery

KURUKSHETRA UNIVERSITYKURUKSHETRA BachelorofTechnology(Electrical Engineering) Scheme of Studies/Examination SemesterVIII (w.e.f.Session 2018-19 onwards)

S. No.	Course No.	Subject	L:T:P	Hours/ Week	Credits		Examinat	<i>l</i> larks)	Duration of Exam. (Hrs.)	
						Major Test	Minor Test	Practical	Total	
1	EEP*	Program Elective-VI	3:0:0	3	3	75	25	0	100	3
3	EEO*	Open Elective-V	3:0:0	3	3	75	25	0	100	3
4	EEO*	Open Elective-VI	3:0:0	3	3	75	25	0	100	3
5	EE-402LA	Project Stage-II	0:0:12	12	6	-	40	60	100	3
		Total		21	15	225	115	60	400	

**Program Elective-VI	EEP-402A	Electrical & Hybrid Vehicles
	EEP-404A	Power Quality & FACTS
	EEP-406A	Control System Design
	EEP-408A	Wind and Solar Energy System
**Open Elective-V	EEO-410A	Power Plant Engineering
	EEO-412A	PLC and their application
**Open Elective-VI	EEO-414A	Embedded System
	EEO-416A	Automobile Engineering
	EEO-418A	Biomedical Signal & Image Processing

*The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Total Credits = 160

BachelorofTechnology(Electrical & ElectronicsEngineering)(CreditBased) Scheme of Studies/Examination SemesterIII(w.e.f.session2019-2020)

Sr. No.	Course No.	Subject	L:T:P	Hours/Week	Credits	Exa	mination S	chedule (Ma	arks)	Duration of Exam (Hrs)
		-				Major	Minor	Practical	Total	
						Test	Test			
1	*EE-201A	Electrical Circuit Analysis	3:1:0	4	4	75	25	0	100	3
2	BS-201A	Optics & Waves	3:0:0	3	3	75	25	0	100	3
3	*EE-205A	Electrical Machines - I	3:1:0	4	4	75	25	0	100	3
4	EEN-205A	Analog Electronics	3:0:0	3	3	75	25	0	100	3
5	EEN -209A	Signals and Systems	3:1:0	4	4	75	25	0	100	3
6	*EE-211A	Electrical Machines Lab – I	0:0:2	2	1	-	40	60	100	3
7	EEN -207A	Analog Electronics Lab	0:0:2	2	1	-	40	60	100	3
8	EEN -211A	Signal and Systems Lab	0:0:2	2	1	-	40	60	100	3
9	**EEN-215A	Industrial Training-I	2:0:0	2	-	-	100	-	100	3
10	***MC-901A	Environmental Sciences	3:0:0	3	-	100	-	0	100	3
		Total		29	21	375	245	180	800	
* Subject	s Common w	ith III Semester. B.Tech. [Electrical	Engg.] Sc	heme, K.U.K.						
**	A lo o mondato	waradit lago ogurog in which the students w	 میرامی ما الل	to d for the inductri	ol troining un	doraono offe	r and come	otor and atuda	nto will bo	required to get peopling marks

**EEN-215A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 2nd semester and students will be required to get passing marks to qualify.

***MC-901A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

KURUKSHETRA UNIVERSITYKURUKSHETRA BachelorofTechnology(Electrical & ElectronicsEngineering)(CreditBased) Scheme of Studies/Examination SemesterIV (w.e.f. session 2019-2020)

S.	Course No.	Subject	L:T:P	Hours/		Exa	amination So	chedule (Marks	s)	Duration of
No.				Week	Credits	Major Test	Minor Test	Practical	Total	Exam (Hrs)
1	BS-204A	Higher Engineering Mathematics	3:0:0	3	3	75	25	0	100	3
2	HM-903A	Soft Skills & Interpersonal Communication	3:0:0	3	3	75	25	0	100	3
3	*EE- 206A	Electrical Machines – II	3:1:0	4	4	75	25	0	100	3
4	*EE-208A	Power Electronics	3:0:0	3	3	75	25	0	100	3
5	EEN-210A	Digital Electronics	3:0:0	3	3	75	25	0	100	3
6	EEN -202A	Basics of Analog Communication	3:0:0	3	3	75	25	0	100	3
7	*EE-214A	Electrical Machines Lab - II	0:0:2	2	1	-	40	60	100	3
8	*EE-216A	Power Electronics Lab	0:0:2	2	1	0	40	60	100	3
9	EEN-218A	Digital Electronics Lab	0:0:2	2	1	-	40	60	100	3
10	**MC-902A	Constitution of India	3:0:0	3	-	100	-	0	100	3
		Total		28	22	450	270	180	900	

* Subjects Common with IVth Semester. B.Tech. [Electrical Engg.] Scheme, K.U.K.

**MC-202A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

Note: All the students have to undergo 4 to 6 weeks Industrial Training after 4th semester which will be evaluated in 5th semester.

BachelorofTechnology(Electrical & ElectronicsEngineering)(CreditBased) Scheme of Studies/Examination Semester V (w.e.f. session 2020-2021)

S.	Course No.	Subject	L:T:P	Hours/ Week	Credits	Examii	nation Sched	lule (Marks))	Duration of Exam (Hrs.)
No.						Major Test	Minor Test	Practical	Total	
1	*EE-301A	Power Systems – I	3:1:0	4	4	75	25	0	100	3
2	*EE-305A	Control Systems	3:1:0	4	4	75	25	0	100	3
3	EENP**	Program Elective - I	3:0:0	3	3	75	25	0	100	3
4	*EE-309A	Microprocessors	3:0:0	3	3	75	25	0	100	3
5	EENO**	Open Elective - I	3:0:0	3	3	75	25	0	100	3
6	*EE-313A	Power Systems Lab - I	0:0:2	2	1	-	40	60	100	3
7	*EE-315A	Microprocessors Lab	0:0:2	2	1	0	40	60	100	3
8	*EE-317A	Control Systems Lab	0:0:2	2	1	0	40	60	100	3
9	***EEN-319A	Industrial Training-II	2:0:0	2	-	-	*100	-	*100	3
10	****MC-903A	Essence of Indian Traditional	3:0:0	3	-	100	-	0	100	3
		Knowledge								
		Total		28	20	375	245	180	800	

* Subjects Common with Vth Semester. B.Tech. [Electrical Engg.] Scheme, K.U.K.

**The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

***EEN-319A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

****MC-903A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

Course No.	Program Elective I	Course No.	Open Elective I
EENP-301A	Digital Signal Processing	EENO-301A	Computer Networks
EENP-303A	Electrical Machine Design	EENO-303A	Big Data Analysis
EENP-305A	Electromagnetic Field Theory	EENO-305A	VLSI Circuits
EENP-307A	Computer Architecture	EENO-307A	Power Plant Engineering

BachelorofTechnology(Electrical & ElectronicsEngineering)(CreditBased) Scheme of Studies/Examination Semester VI (w.e.f. session 2020-2021)

S. No.	Course No.	Subject	L:T:P	Hours/		Exai	mination S	chedule (Mar	'ks)	Duration
				Week	Credits	Major	Minor	Practical	Total	of Exam
						Test	Test			(Hrs.)
1	*EE-302A	Power Systems – II	3:1:0	4	4	75	25	0	100	3
2	HM-901A	Organizational Behavior	3:0:0	3	3	75	25	0	100	3
3	EENP**	Program Elective - II	3:0:0	3	3	75	25	0	100	3
4	EENO**	Open Elective - II	3:0:0	3	3	75	25	0	100	3
5	*EE-310A	Electrical Measurements and Measuring	3:0:0	3	3	75	25	0	100	3
		Instrumentation								
6	*EE-312A	Power Systems Lab - II	0:0:2	2	1	-	40	60	100	3
7	*EE-314A	Measurements and Instrumentation Lab	0:0:2	2	1	-	40	60	100	3
8	EEN-316A	Electronic Design Lab	0:0:4	4	2	-	40	60	100	3
		Total		24	20	375	245	180	800	

* Subjects Common with VIth Semester. B.Tech. [Electrical Engg.] Scheme, K.U.K.

** The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section. Note: All the students have to undergo 4 to 6 weeks Industrial Training after 6th semester which will be evaluated in 7th semester.

Course No.	Program Elective II	Course No.	Open Elective II
EENP-302A	Power System Protection	EENO-302A	Electrical Materials
EENP-304A	Electrical Energy Conservation and Auditing	EENO-304A	Strength of Materials
EENP-306A	Electromagnetic Waves and Lines	EENO-306A	Modern Manufacturing Processes
EENP-308A	Biomedical Signal & Image Processing	EENO-308A	Internet of Things

BachelorofTechnology(Electrical & ElectronicsEngineering)(CreditBased) Scheme of Studies/Examination SemesterVII(w.e.f.session2021-2022)

S. No.	Course	Subject	L:T:P	Hours/	Credits	Exar	nination So	(s)	Duration of Exam		
	NU.			Week		Major Test	Minor Test	Practical	Total	(птз)	
		IntellectualPropertyRightsfor	3:0:0	3	3	75	25	0	100	3	
1	HM- 904A	Technology Development&									
		Management									
2	EENP*	Program Elective - III	3:0:0	3	3	75	25	0	100	3	
3	EENP*	Program Elective - IV	3:0:0	3	3	75	25	0	100	3	
4	EENO*	Open Elective - III	3:0:0	3	3	75	25	0	100	3	
5	EEN-401LA	Project Stage-I	0:0:6	3	3	-	40	60	100	3	
6	**EEN-403A	Industrial Training-III	2:0:0	2	-	-	*100	-	*100	3	
		Total		17	15	300	140	60	500		
*Theco	* The course of both Program Elective and Open Elective will be offered at 1/3 rd strength or 20 students (whichever is smaller) of the section.										

**EEN-403A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify.

Р	rogram Elective-III	Program El	ective-IV		Open Electives-III			
Course No. Course Name		Course No.	Course Name		Course No.	Course Name		
EENP-401A	Industrial Electrical System	EENP-407A	Electric Drives		EENO-401A	Electronic Devices		
EENP-403A	Digital Control System	EENP-409A	Wind and Solar Energy		EENO-403A	Data Structure & Algorithms		
EENP-405A	High Voltage Engineering	EENP-411A	Computational Electromagnetic		EENO-405A	Signal and Image Processing		
]				

KURUKSHETRA UNIVERSITYKURUKSHETRA

BachelorofTechnology(Electrical & Electronics Engineering)(CreditBased) Scheme of Studies/Examination SemesterVIII (w.e.f.session2021-2022)

S. No.	Course No.	Subject	L:T:P	Hours/ Week	Credits	Exa	amination S	s)	Duration of Exam. (Hrs.)	
						Major Test	Minor Test	Practical	Total	
1	EENP*	Program Elective-V	3:0:0	3	3	75	25	0	100	3
2	EENP*	Program Elective-VI	3:0:0	3	3	75	25	0	100	3
3	EENO*	Open Elective-IV	3:0:0	3	3	75	25	0	100	3
4	EENO*	Open Elective-V	3:0:0	3	3	75	25	0	100	3
5	EEN-402LA	Project Stage-II	0:0:12	12	6	-	40	60	100	3
		Total		26	20	300	140	60	500	

	Program Elective- V	Program Elective-VI			
Course No.	Course Name	Course No.	Course Name		
EENP-402A	Power Quality & FACTS	EENP-408A	HVDC Transmission System		
EENP-404A	Control System Design	EENP-410A	Power System Dynamics and Control		
EENP-406A	Electrical & Hybrid Vehicles	EENP-412A	Advanced Electric Drives		

	Open Elective- IV	Open Elective-V			
Course No.	Course Name	Course No.	Course Name		
EENO-402A	Analog & Digital Communication	EENO-408A	Mobile Communication & Networks		
EENO-404A	Wavelets Transform	EENO-410A	Thermal and Fluid Engineering		
EENO-406A	Embedded System	EENO-412A	Automobile Engineering		

*The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

DEPARTMENT OF ELECTRONICS ENGINEERING Kurukshetra University, Kurukshetra (K.U.K) – 136119, Haryana, INDIA (Established by the state Legislature Act XII of 1956; 'A+' Grade, NAAC Accredited) Phone: +91-1744-239155; Fax: +91-1744-238967, Web: http://www.uietkuk.org

A. Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1Hour Tutorial (T) per week	1 credit
1 Hour Practical (P) per week	0.5 credit
2 Hours Practical (Lab) per week	1 credit

B. Range of Credits:

A total credit of 160 is required for a student to be eligible to get Under Graduate degree in Electronics Engineering. A student will be eligible to get Under Graduate degree (B.Tech.) with Honours, if he/she completes an additional 20 credits more. These could be acquired through MOOCs at Swayam portal or with in-house examination being conducted. In order to have an Honours degree, a student may choose minimum 20 credits provided that the student must ensure the course is approved by the Competent Authority, Government of India.

Course Code and Definition for Scheme					
Course Code	Definitions				
BS	Basic Science				
ES	Engineering Science				
HM	Humanities and Social Sciences including				
	Management				

SCHEME OF STUDIES/EXAMINATIONS

w.e.f. July 2018 (Batch: 2018-2022)

Semester-III (Common with B.Tech ECE 3rd Sem as per AICTE Model curriculum)

S.	Course No.	Course Title	Teac	hing S	ched	ule			Duration		
No.			L	т	Ρ	Hours/ Week	Major Test	Minor Test	Practical (Major Test)	Total	of Exam (Hrs.)
1	BS – 201A	Optics and Wave	3	0	0	3	75	25	0	100	3
2	EC – 201A	Electronic Devices	3	0	0	3	75	25	0	100	3
3	EC – 203A	Electronic Devices Lab	0	0	2	2	-	40	60	100	3
4	EC-205A	Digital Electronics	3	0	0	3	75	25	0	100	3
5	EC – 207A	Digital Electronics Lab	0	0	2	2	-	40	60	100	3
6	EC – 209A	Signal and System	3	0	0	3	75	25	0	100	3
7	EC – 211A	Signal and System Lab	0	0	2	2	-	40	60	100	3
8	EC – 213A	Network Theory	3	0	0	3	75	25	0	100	3
9	ES – 201A	Essential of Information Theory	3	0	0	3	75	25	0	100	3
10	*EC-215 A	Industrial Training-I	2	0	0	2	-	100	-	100	3
11	**MC-901A	Environmental sciences	3	0	0	3	100	-	0		
		TOTAL	18	0	6	26	450	270	180	900	

*MC-901A is a mandatory course and student has to get passing marks in order to qualify for the award of degree but its marks will not be added in the grand total.

Students are allowed to use single memory, non-programmable scientific calculator during examination.

SCHEME OF STUDIES/EXAMINATIONS

w.e.f. July 2018 (Batch: 2018-2022)

Semester-IV (Common with B.Tech ECE 4th Sem as per AICTE Model curriculum)

S.	Course No.	Course Title	Te	aching	g Sche	dule	Allotment of Marks				Duration
No.			L	т	Р	Hours/ Week	Major Test	Minor Test	Practical (Major Test)	Total	of Exam (Hrs.)
1	BS - 204A	Higher Engineering Mathematics	3	0	0	3	75	25	0	100	3
				Ū	Ū						Ū.
2	HM – 903A	Soft Skills and Interpersonal Communication	3	0	0	3	75	25	0	100	3
3	EC – 202A	Digital Communication	3	0	0	3	75	25	0	100	3
4	EC – 204A	Digital Communication Lab	0	0	2	2	0	40	60	100	3
5	EC – 206A	Analog Circuits	3	0	0	3	75	25	0	100	3
6	EC – 208A	Analog Circuits Lab	0	0	2	2	0	40	60	100	3
7	EC- 210A	Microprocessor and Microcontroller	3	0	0	3	75	25	0	100	3
8	EC – 212A	Microprocessor and Microcontroller Lab	0	0	2	2	0	40	60	100	3
9	ES- 202A	Basic of Analog Communication	3	0	0	3	75	25	0	100	3
10	*MC-902A	Constitution of India	3	0	0	3	100	-	0	100	3
		Total	21	0	6	27	550	270	180	900	

*MC-902 A is a mandatory course and student has to get passing marks in order to qualify for the award of degree but its marks will not be added in the grand total.

Note: All the students have to undergo six weeks industrial training after IVth semester and it will be evaluated in Vth semester.

10(1236)

SCHEME OF STUDIES/EXAMINATIONS

w.e.f. July 2018 (Batch: 2018-2022)

Semester-V

S.No			Т	each	ing S	chedule		Marks Allo	tment		Duration of Exam
	Subject code	Course Title	L	т	Р	Total	Major Test	Minor Test	Practical (Major Test)	Total	
1	EC-301A#	Electromagnetic Waves	3	0	0	3	75	25	0	100	3
2	EC-303A#	Electromagnetic Waves Lab	0	0	2	2	0	40	60	100	3
3	EL-305A	Stochastic process and Probability Theory	3	0	0	3	75	25	0	100	3
4	EC-307A#	Information Theory and Coding	3	0	0	3	75	25	0	100	3
5	EC-309A#	Digital Signal Processing	3	1	0	4	75	25	0	100	3
6	EC-311A ³	Digital Signal Processing Lab	0	0	2	2	0	40	60	100	3
7	ELP	Program Elective-1	3	0	0	3	75	25	0	100	3
8	ELO	Open Elective-1	3	0	0	3	75	25	0	100	3
9	**EC-313A#	Industrial Training-II	2	0	0	2	0		100	*100	3
10	***MC-903A#	Essence of Indian Traditional Knowledge	3	0	0	3	100			100	3
		Total	23	1	2	26	550	230	220	900	27

* The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

**EC-313 A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

***MC-903A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

The Subjects are common with B.Tech Electronics & Communication Engineering

	Course Name	Course Title		Course Name	Course Title
	ECP-7A [#]	CMOS Design		ELO-301A	Smart Material and Systems
Program Elective-1	ECP-11A [#]	Nano Electronics	Open Elective-1	ELO-303 A	Intelligent Instrumentation
	ECP-4A [#]	Power Electronics		ECO-10A#	Electromechanical Energy Conversion
	ECP-3A [#]	Introduction to MEMS		ECO-3A [#]	Electronic Measurement and
					Instrumentation

SCHEME OF STUDIES/EXAMINATIONS

w.e.f. July 2018 (Batch: 2018-2022)

Semester – VI

S. No.	Course No.	Course Title		Teach	ing Scl	hedule			Duration of		
			L	Т	Ρ	Hours/ Week	Major Test	Minor Test	Practical (Major Test)	Total	Exam (Hrs.)
1	HM 901 A#	Organizational Behavior	3	0	0	3	75	25	0	100	3
2	EC-302A#	Control System Engineering	3	0	0	3	75	25	0	100	3
3	EC-304A#	Control System Lab	0	0	3	3	0	40	60	100	3
4	EC-306A#	Verilog HDL	3	0	0	3	75	25	0	100	3
5	EC-308 A#	Verilog HDL Lab	0	0	3	3	0	40	60	100	3
6	EC-310 A#	Mini Project/Electronic Design Workshop	0	0	4	4	0	40	60	100	3
6	ELP	Program Elective-II	3	0	0	3	75	25	0	100	3
8	ELO	Open Elective-II	3	0	0	3	75	25	0	100	3
		Total	15	0	10	25	375	245	180	800	24

* The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

The Subjects are common with B.Tech Electronics & Communication Engineering

Note: All the students have to undergo 4 to 6 weeks Industrial Training after 6th semester which will be evaluated in 7th semester.

	Course Name	Course Title
	ECP-2A [#]	Speech and Audio Processing
Program Elective-II	ECP-8A [#]	Bio Medical Electronics
	ECO-1 A [#]	Computer Network
	ECP-22A [#]	Mobile Communication and network
Open Elective-II	ELO -302 A	Quality and Reliability of Electronics System
	ELO-304 A	Electronics Waste Management

SCHEME OF STUDIES/EXAMINATIONS

w.e.f. July 2018 (Batch: 2018-2022)

Semester-VII

Subject code	Course Title	Teaching Schedule			Marks Allotment					Duration of Exam
		L	Т	Р	Total	Major Test	Minor Test	Practical (Major Test)	Total	
EL-401A	Fuzzy Logics and Neural Network	3	0	0	3	75	25	0	100	3
ELP	Program Elective- III	3	0	0	3	75	25		100	3
ELP	Program Elective- IV	3	0		3	75	25		100	3
ELP	Program Elective- V	3	0	0	3	75	25		100	
ELO	Open Elective- III	3	0		3	75	25		100	3
EC-401A#	Project Stage -I			6	6		50	50	100	3
EC-403A#	Industrial Training-III						100		100	3
	Total	12	0	13	25	300	290	110	700	21

COURSES	Course Name	Course Title
	ELP-401A	High Speed Electronics
Program Elective-III	ECP-19A [#]	Mixed Signal Design
	ELP-403 A	Electronics System Design
	ELP-405 A	Operation Research
Program Elective-IV	ECO-14A [#]	Soft computing
	ELP-407 A	Microcontrollers
Program Elective-V	ELP-409A	Microwave Theory and Techniques
	ECO16A [#]	Software Defined Radio
	ECP-21A [#]	Digital Image and Video Processing
	ECO-4A [#]	Renewable Energy Resources
Open Elective-III	ELO-401 A	Industrial Safety Engineering
	ELO-403A	Quality Management

The Subjects are common with B.Tech Electronics & Communication Engineering

Bachelor of Technology (Electronics Engineering) Kurukshetra University, Kurukshetra SCHEME OF STUDIES/EXAMINATIONS

w.e.f. July 2018 (Batch: 2018-2022)

Semester-VIII

			Те	eachi	ng Sch	edule		Marks Allotment					
Sr. No.	Subject code	Course Title	L	т	Р	Total	Major Test	Minor Test	Practical (Major Test)	Total			
1	ELO	Open Elective –IV	3	0	0	3	75	25	0	100	3		
2	ELO	Open Elective –V	3	0	0	3	75	25	0	100	3		
3	ELP	Program Elective – VI	3	0	0	4	75	25	0	100	3		
4							75	25					
	ELP	Program Elective-VII	3	0	0	3			0	100	3		
5	EC-402A#	Project stage –II	0	0	14	14		40	60	100	3		
		Total	12	0	14	26	300	140	60	500	15		

Sr. No.	Program Elective -VI	CODE	Sr. No.	Open Elective -IV	CODE
1	Cyber Law and Security	ELP-402A	1	Wireless Sensor Networks	ECO-20A#
2	Artificial Intelligence and expert system	ELP-404A	2	Mechatronics	ECO-2A [#]
3	Analog Filter Design	ELP-406A	3	Software Defined Radio	ECO-16A [#]
Sr. No.	Program Elective -VII	CODE	Sr. No.	Open Elective -V	CODE
1	Human Resource Management	ELP-408A	1	Wavelets	ECP-17A [#]
2	Scientific Computing	ECP-9A [#]	2	Transducers and its Application	ECO-8A [#]
3	Robotics	ECO-12A [#]	3	Electronic Switching Theory	ELO-402A

The Subjects are common with B.Tech Electronics & Communication Engineering

Kurukshetra University Kurukshetra (Established by the State Legislature Act XII of 1956; 'A+' Grade, NAAC Accredited) Model Curriculum for Bachelor of Technology (B.Tech.) in Bio-Technology General, Course Structure & Scheme&Semester-Wise Credit Distribution (Credit-Based Scheme of Studies/Examination ((2018-19 Onwards in Phased Manner)

A. Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1Hour Tutorial (T) per week	1 credit
1 Hour Practical (P) per week	0.5 credit
2 Hours Practical (Lab) per week	1 credit

B. Range of credits:

A total credit of about 160 is required for a student to be eligible to get Under Graduate degree in Biotechnology. A student will be eligible to get Under Graduate degree (B.Tech.) with Honours, if he/she completes an additional 20 credits. These could be acquired through MOOCs at Swayam portal or with in-house examination being conducted. In order to have an Honours degree, a student may choose minimum 20 credits provided that the student must ensure the course is approved by the Competent Authority, Government of India.

Semester – III	
----------------	--

S.	Course No.	Course Title	Т	eachir	ng Sc	hedule	Credits Allotment of Marks					Duration of Exam
			L	Т	Р	Hours/W		Major	Minor	Practical	Total	
						eek		Test	lest			(Hrs.)
1	BTE-201A	Cell Biology & Genetics	3	0	0	3	3.0	75	25	0	100	3
2	BTE-203A	Microbiology	3	0	0	3	3.0	75	25	0	100	3
3	BTE-205A	Biochemistry	3	0	0	3	3.0	75	25	0	100	3
4	BTE-207A	Principles of Biostatistics	3	0	0	3	3.0	75	25	0	100	3
5	HM-901A	OrganizationalBehavior	3	0	0	3	3.0	75	25	0	100	3
6	BTE-209LA	Cell Biology & Genetics Lab	0	0	3	3	1.5	0	40	60	100	3
7	BTE-211LA	Microbiology Lab	0	0	3	3	1.5	0	40	60	100	3
8	BTE-213LA	Biochemistry Lab	0	0	3	3	1.5	0	40	60	100	3
		Total	15	0	9	24	19.5	375	245	180	800	
9	BTE-215A	Industrial Training-I	2	0	0	2	-	-	100	-	100	-
10	*MC-902A	Constitution of India	3	0	0	3		75	25	0	100	3

Note: BTE-215A is a mandatory credit less course in which the students tobe evaluated for the industrial training undergone after 2nd semester and students will be required to get passing marks to qualify.

*MC-902A is a mandatory credit less course in which the student will be required to get passing marks in the major test.

Semester – IV

S.	Course No.	Course Title	Teaching Schedule				Credits		Duration			
NO.			L	Т	Р	Hours/ Week		Major Test	Minor Test	Practical	Total	(Hrs.)
1	BTE-202A	Molecular Biology	3	0	0	3	3.0	75	25	0	100	3
2	BTE-204A	Bio-analytical Techniques	3	0	0	3	3.0	75	25	0	100	3
3	BTE-206A	Immunology	3	0	0	3	3.0	75	25	0	100	3
4	BTE-208A	Industrial Biotechnology	3	0	0	3	3.0	75	25	0	100	3
5	BS-202A	Organic Chemistry	3	0	0	3	3.0	75	25	0	100	3
6	BTE-212LA	Molecular Biology Lab	0	0	3	3	1.5	0	40	60	100	3
7	BTE-214LA	Bio-analytical Techniques Lab	0	0	3	3	1.5	0	40	60	100	3
8	BTE-216LA	Industrial Microbiology Lab	0	0	3	3	1.5	0	40	60	100	3
9	BTE-218LA	Immunology Lab	0	0	3	3	1.5	0	40	60	100	3
		Total	15	0	12	27	21	375	285	240	900	
10	MC-901A*	Environmental Sciences*	3	0	0	3		75	25	0	100	3

*MC-901A is a mandatory credit less course in which the student will be required to get passing marks in the major test. Note:All the students have to undergo 4-6 weeks industrial training after IV semester and to be evaluated in V semester.

Semester – V

S.	Course	Course Title	Tea	chi	ng So	chedule	Credits		Allotme	nt of Marks		Duration
No.	No.		L	Т	Ρ	Hours /Week		Major Test	Minor Test	Practical	Total	of Exam(Hrs.)
1	BTE-301A	Recombinant DNA Tech	3	0	0	3	3.0	75	25	0	100	3
2	BTE-303A	Bioprocess Engineering	3	0	0	3	3.0	75	25	0	100	3
3	BTE-305A	Downstream Processing	3	0	0	3	3.0	75	25	0	100	3
4	BTE-307A	Healthcare Biotechnology	3	0	0	3	3.0	75	25	0	100	3
5	OEC-I*		3	0	0	3	3.0	75	25	0	100	3
6	BTE- 307LA	Recombinant DNA Technology Lab	0	0	3	3	1.5	0	40	60	100	3
7	BTE- 309LA	Fermentation & Downstream Processing Lab	0	0	3	3	1.5	0	40	60	100	3
8	OEC-ILA		0	0	2	2	1.0	0	40	60	100	3
		Total	15	0	10	25	19	375	245	180	800	
9	**MC- 903A	Essence of Indian Traditional Knowledge	3	0	0	3		100		0	100	3
10	*BTE- 311A	Industrial Training-II	0	0	2	2	0	0	100		100	

**MC-903A is a mandatory credit less course in which the student will be required to get passing marks in the major test.

* BTE-311A is a mandatory credit less course in which the students to be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

The students should select one open Elective Courses (OEC) from the following list.

Course No.	OEC-I*
ES-201A	Essentials of Information Technology
ES-211LA	Information Technology Lab
ES-213A	Python
ES-215LA	Python Lab
MOOC-1A	Any one MOCC course with lab through SWAYAM

Semester -	VI
------------	----

S.	Course	Course Title	T	eachin	ig Sche	edule	Credits		Allotmen	t of Marks		Duratio
No.	No.		L	Т	Ρ	Hours/ Week		Major Test	Minor Test	Practical	Total	n of Exam (Hrs.)
1	OEC-IIA		3	0	0	3	3.0	75	25	0	100	3
2	BTE-304A	Plant Biotechnology	3	0	0	3	3.0	75	25	0	100	3
3	BTE-306A	Animal Biotechnology	3	0	0	3	3.0	75	25	0	100	3
4	BTE-308A	Food Biotechnology	3	0	0	3	3.0	75	25	0	100	3
5	BTE-310A	Environmental Biotechnology& Engineering	3	0	0	3	3.0	75	25	0	100	3
6	HM-902A	Business Intelligence & Entrepreneurship	3	0	0	3	3.0	75	25	0	100	3
7	BTE-312LA	Animal Cell Culture Lab	0	0	3	3	1.5	0	40	60	100	3
8	BTE-314LA	Plant Cell Culture Lab	0	0	3	3	1.5	0	40	60	100	3
9	BTE-316LA	Food & Environmental Biotechnology Lab	0	0	3	3	1.5	0	40	60	100	3
		Total	18	0	9	27	22.5	450	270	180	900	

Note:All the students have to undergo 4-6 weeks industrial training after VI semester and it will be evaluated in VII semester. The students should select two open Elective Courses (OEC) from the following list.

The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Course No.	OEC-II	Course No.	OEC-II
OEC-BT-302A	Nano Biotechnology	OEC-BT-322A	Introduction to Arts & Aesthetics
OEC-BT-318A	Introduction to MEMS	MOOC-2A	Anyone MOOC through SWAYAM
OEC-BT-320A	Non Conventional Energy		
	Resources		

Semester – VII

S.	Course No.	Course Title	Teaching Schedule				Credits Allotment of Marks					Duration of Exam
NO.			L	Т	Р	Hours/ Week		Major Test	Minor Test	Practical	Total	(Hrs.)
1	BTE-401A	Bioinformatics	2	1	0	3	3.0	75	25	0	100	3
2	BTE-403A	Pharmaceutical Biotechnology	3	0	0	3	3.0	75	25	0	100	3
3	*PE-IA	Program Elective-I*	2	1	0	3	3.0	75	25	0	100	3
4	*PE-IIA	Program Elective-II*	2	1	0	3	3.0	75	25	0	100	3
5	BTE-405LA	Bioinformatics Lab	0	0	3	3	1.5	0	40	60	100	3
7	BTE-407LA	Project-I**	0	0	8	8	4.0	0	100	100	200	3
		Total	9	3	11	23	17.5	300	240	160	700	
8	*BTE-409A	Industrial Training (Viva-Voce)***	0	0	2	2	-	0	0	100	100	

The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Course No.	*PE-I	Course No.	*PE-II
BTE-411A	Biosensor and Bioinstrumentation	BTE-417A	Advanced Management Information System and Information Technology
BTE-413A	Biochips and Microarray Technology	BTE-419A	Stem Cell Technology
BTE-415A	Enzyme Technology	BTE-421A	Herbal Drug Technology

**The project should be initiated by the students in the beginning of VII semester and will be evaluated at the end of the semester on the basis of a presentation and report.

*BTE-409Ais a mandatory credit less course in which the students to be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify.

Semester – VIII

S.	Course No.	Course Title		Teaching Schedule			Credits	Allotment of Marks				Duration
No.			L	Т	Р	Hours/		Major	Minor Test	Practical	Total	of Exam
						Week		Test				(Hrs.)
1	*PE-IIIA		2	1	0	3	3.0	75	25	0	100	3
2	*PE-IVA		2	1	0	3	3.0	75	25	0	100	3
3	BTE-402A	Biocatalysis& Biotransformation	3	0	0	3	3.0	75	25	0	100	3
4	**OEC-IIIA		3	0	0	3	3.0	75	25	0	100	3
5	BTE-416LA	Project-II	0	0	15	15	7.5	0	100	100	200	3
		Total	10	2	15	27	19.5	300	200	100	600	

The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section. *The student should select two Program Elective Courses (PEC) from the following list.

Course No.	PE-III	Course No.	PE-IV
BTE-404A	Metagenomics	BTE-410A	Developmental Biology
BTE-406A	Molecular Modeling and Drug Design	BTE-412A	Protein Engineering
BTE-408A	Cancer Biology	BTE-414A	Bioethics, IPR and Bio-safety

*The student should select one Open Elective Courses (OEC) from the following list.

Course No.	OEC-III					
OEC-BT-418A	Biomedical Electronics					
OEC-BT-420A MATLAB & Simulation						
OEC-BT-422A	History of Science					
OEC-BT-424A	Internet of things					
MOOC-3A	Anyone MOOC through SWAYAM					

Open Elective Course for B. Tech. Students of other Departments

Course No.	OEC
BTE 401A	Bioinformatics
BTE-414A	Bioethics, IPR and Biosafety

Kurukshetra UniversityKurukshetra (Established by the State Legislature Act XII of 1956; 'A+' Grade, NAAC Accredited) Model Curriculum for Bachelor of Technology (B.Tech.) in Food Technology General, Course Structure &Scheme&Semester-Wise Credit Distribution (Credit-Based Scheme of Studies/Examination ((2018-19 Onwards in Phased Manner))

A. Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1Hour Tutorial (T) per week	1 credit
1 Hour Practical (P) per week	0.5 credit
2 Hours Practical (Lab) per week	1 credit

B. Range of credits:

A total credit of about 160 is required for a student to be eligible to get Under Graduate degree in Food Technology. A student will be eligible to get Under Graduate degree (B.Tech.) with Honours, if he/she completes an additional 20 credits. These could be acquired through MOOCsatSwayam portal or with in-house examination being conducted. In order to have an Honours degree, a student may choose minimum 20 credits provided that the student must ensure the course is approved by the Competent Authority, Government of India.

Semester – III

S.	Course No.	Course Title	Т	Teaching Schedule			Credits		Allotment	t of Marks		Duration of Exam
			L	Т	Р	Hours/W eek		Major Test	Minor Test	Practical	Total	(Hrs.)
1	FTT-201A	Food Microbiology	3	0	0	3	3.0	75	25	0	100	3
2	FTT-203A	Food chemistry	3	0	0	3	3.0	75	25	0	100	3
3	FTT-205A	Unit Operation In Food Engg. – I	3	0	0	3	3.0	75	25	0	100	3
4	FTT-207A	Food processing	3	0	0	3	3.0	75	25	0	100	3
5	FTT -211L A	Food Microbiology Lab	3	0	0	3	3.0	75	25	0	100	3
6	FTT – 213LA	Food chemistry Lab	0	0	3	3	1.5	0	40	60	100	3
7	FTT – 215 LA	Unit Operation In Food Engg I Lab	0	0	3	3	1.5	0	40	60	100	3
8	FTT – 217 LA	Food processing Lab	0	0	3	3	1.5	0	40	60	100	3
		Total	15	0	9	24	19.5	375	245	180	800	
9	FTT-219A	Industrial Training-I	2	0	0	2	-	-	100	-	100	-
10	*MC-902LA	Constitution of India	3	0	0	3		75	25	0	100	3

Note: FTT-219 A is a mandatory credit less course in which the studentstobeevaluated for the industrial training undergone after 2nd semester and students will be required to get passing marks to qualify.

*MC-902A is a mandatory credit less course in which the student will be required to get passing marks in the major test.

Semester – IV

S.	Course No.	Course Title		Teaching Schedule			Credits		Allotmen	t of Marks		Duration
NO.			L	Т	Р	Hours/ Week	•	Major Test	Minor Test	Practical	Total	(Hrs.)
1	FTT-202A	Human Nutrition	3	0	0	3	3.0	75	25	0	100	3
2	FTT- 204A	Thermal Processing	3	0	0	3	3.0	75	25	0	100	3
3	FTT – 206A	Unit Operation In Food Engg. – II	3	0	0	3	3.0	75	25	0	100	3
4	FTT- 208 A	Dairy Technology	3	0	0	3	3.0	75	25	0	100	3
5	FTT-210A	Fruit and Vegetable Processing	3	0	0	3	3.0	75	25	0	100	3
6	FTT- 214LA	Thermal Processing Lab	0	0	3	3	1.5	0	40	60	100	3
7	FTT -216LA	Unit Operation In Food Engg. - II Lab	0	0	3	3	1.5	0	40	60	100	3
8	FTT-218LA	Dairy Technology Lab	0	0	3	3	1.5	0	40	60	100	3
9	FTT-220LA	Fruit and Vegetable Processing Lab	0	0	3	3	1.5	0	40	60	100	3
		Total	15	0	12	27	21	375	285	240	900	
10	MC-901A*	Environmental Sciences*	3	0	0	3		75	25	0	100	3

*MC-901A is a mandatory credit less course in which the student will be required to get passing marks in the major test. Note:All the students have to undergo 4-6 weeks industrial training after IV semester and to be evaluated in V semester.

Semester – V

S.	Course No.	Course Title	Tea	ichi	ng So	chedule	Credits		Allotme	nt of Marks		Duration
No.			L	Τ	Р	Hours /Week		Major Test	Minor Test	Practical	Total	of Exam(Hrs.)
1	FTT – 301A	Dairy product Technology	3	0	0	3	3.0	75	25	0	100	3
2	FTT – 303A	Fruit and Vegetable Technology	3	0	0	3	3.0	75	25	0	100	3
3	FTT – 307A	Food Engg.	3	0	0	3	3.0	75	25	0	100	3
4	FTT – 309A	Industrial Pollution Control	3	0	0	3	3.0	75	25	0	100	3
5	FTT – 305A	Food Analysis and Quality Control	3	0	0	3	3.0	75	25	0	100	3
6	FTT – 311LA	Dairy product Technology Lab	0	0	3	3	1.5	0	40	60	100	3
7	FTT – 313LA	Fruit and Vegetable Technology Lab	0	0	3	3	1.5	0	40	60	100	3
8	FTT – 317LA	Food Engg. Lab	0	0	2	2	1.0	0	40	60	100	3
	FTT – 315LA	Food Analysis and Quality Control Lab										
		Total	15	0	10	23	19	375	245	180	800	
9	**MC-903A	Essence of Indian Traditional Knowledge	3	0	0	3		100		0	100	3
10	*FTT-319A	Industrial Training-II	0	0	2	2	0	0	100		100	

**MC-903A is a mandatory credit less course in which the student will be required to get passing marks in the major test.

* FTT-319A is a mandatory credit less course in which the students to be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section. The students should select one open Elective Courses (OEC) from the following list.

Course No.	OEC-I*								
ES-201A	Essentials of Information Technology								
ES-211LA Information Technology Lab									
ES-213A	Technology Of Plantation Crops								
ES-215LA	Technology Of Plantation Crops Lab								

MOOC-1A Any one MOCC course with lab through SWAYAM

Bachelor of Technology (Food technology) Credit-Based

SCHEME OF STUDIES/EXAMINATIONS

Semester – VI

S.	Course No.	Course Title	T	[eachin	ig Sche	edule	Credits		Allotmen	t of Marks		Duratio
No.			L	T	Р	Hours/ Week		Major Test	Minor Test	Practical	Total	n of Exam (Hrs.)
1	FTT-302A	Technology Of Cereals, Pulses, & Oil Seeds	3	0	0	3	3.0	75	25	0	100	3
2	FTT-304A	Meat, Fish, Poultry Technology	3	0	0	3	3.0	75	25	0	100	3
3	FTT-306A	Packaging Technology	3	0	0	3	3.0	75	25	0	100	3
4	FTT-308A	Food Biotechnology	3	0	0	3	3.0	75	25	0	100	3
5	FTT-310A	Bio Chemical Engg.	3	0	0	3	3.0	75	25	0	100	3
6	FTT-312LA	Technology Of Cereals, Pulses, & Oil Seeds Lab	3	0	0	3	3.0	75	25	0	100	3
7	FTT- 314LA	Meat, Fish, Poultry Technology Lab	0	0	3	3	1.5	0	40	60	100	3
8	FTT- 318LA	Food Biotechnology Lab	0	0	3	3	1.5	0	40	60	100	3
9	FTT- 320LA	Bio Chemical Engg Lab.	0	0	3	3	1.5	0	40	60	100	3
		Total	18	0	9	27	22.5	450	270	180	900	

Note: All the students have to undergo 4-6 weeks industrial training after VI semester and it will be evaluated in VII semester.

The students should select two open Elective Courses (OEC) from the following list.

The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Course No.	OEC-II	Course No.	OEC-II
OEC-FT-302A	Health Foods	OEC-FT-322A	Types Of Fats and Oils
OEC-FT-318A	Plant Maintain Safety and Hygeine	MOOC-2A	Anyone MOOC through SWAYAM
-------------	-----------------------------------	---------	----------------------------
OEC-FT-320A	Food Marketing, Branding and		
	Advertising		

Bachelor of Technology (Food Technology) Credit-Based

SCHEME OF STUDIES/EXAMINATIONS

Semester – VII

S.	Course No.	Course Title	T	eachin	g Sch	edule	Credits		Allotment	t of Marks		Duration
NO.			L	Т	Ρ	Hours/ Week		Major Test	Minor Test	Practical	Total	(Hrs.)
1	FTT-401A	Utilization Of Industrial Waste and By Products	2	1	0	3	3.0	75	25	0	100	3
2	FTT -403A	Food Processing Plant Layout and Design	3	0	0	3	3.0	75	25	0	100	3
3	FTT- 405A	Tech. Of Spices, Herbs and Food Additives	2	1	0	3	3.0	75	25	0	100	3
4	FTT- 407 A	Bakery Confectionay Technology	2	1	0	3	3.0	75	25	0	100	3
5	FTT- 411LA	Utilization Of Industrial Waste and By Products Lab	0	0	3	3	1.5	0	40	60	100	3
6	FTT 413LA	Tech. Of Spices, Herbs and Food Additives Lab	0	0	8	3	4.0	0	100	100	200	3
7	FTT- 415LA	Bakery Confectionay Technology Lab	0	0	8	3	4.0	0	100	100	200	3
		Total	9	3	11	21	17.5	300	240	160	700	
8	*FTT-409A	Industrial Training (Viva-Voce)***	0	0	2	2	-	0	0	100	100	

The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Course No.	*PE-I	Course No.	*PE-II
FTT-411A	Heat & Mass Transfer	FTT-417A	Technologies Of Beverages
FTT-413A	Grains Handling & Storage Technology	FTT-419A	Tech. of Snacks Foods
FTT-415A	Food Toxicology	FTT-421A	Statistical Quality Control For Food Industry

**The project should be initiated by the students in the beginning of VII semester and will be evaluated at the end of the semester on the basis of a presentation and report.

*FTT-409Ais a mandatory credit less course in which the students to be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify.

Bachelor of Technology (Food Technology) Credit-Based SCHEME OF STUDIES/EXAMINATIONS

Semester – VIII

S.	Course No.	Course Title	ך	Feachin	g Sch	edule	Credits		Allotment of Marks			
No.			L	Т	Р	Hours/		Major	Minor Test	Practical	Total	of Exam
						Week		Test				(Hrs.)
1	*PE-IIIA		2	1	0	3	3.0	75	25	0	100	3
2	*PE-IVA		2	1	0	3	3.0	75	25	0	100	3
3	FTT-412A	Food Storage Engg.	3	0	0	3	3.0	75	25	0	100	3
4	**OEC-IIIA		3	0	0	3	3.0	75	25	0	100	3
5	FTT-416A	Project-II	0	0	15	11	7.5	0	100	100	200	3
		Total	10	2	15	25	19.5	300	200	100	600	

The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section. *The student should select two Program Elective Courses (PEC) from the following list.

Course No.	PE-III	Course No.	PE-IV
BTE-404A	Cold Chain Management	BTE-410A	Food Supply Chain Management
BTE-406A	Innovative Techniques In Food Processing	BTE-412A	Enterpreunership Development & Management
BTE-408A	Products and Design Development	BTE-414A	Computer Application In Food Technology

*The student should select one Open Elective Courses (OEC) from the following list.

Course No.	OEC-III
OEC-FT-418A	Biomedical Electronics
OEC-FT-420A	MATLAB & Simulation
OEC-FT-422A	History of Science
OEC-FT-424A	Internet of things
MOOC-3A	Anyone MOOC through SWAYAM

Additional Courses for B.Tech. (Honours Degree) Branch/Course: Food Technology

In order to have an Honours degree, a student may choose 20credits from the following professional electives courses or MOOC through SWAYAM in addition. The student can opt courses offered under MOOCs at Swayam portal from time to time

Open Elective Course for B. Tech. Students of other Departments

Course No.	OEC
BTE 401A	Bioinformatics
BTE-414A	Bioethics, IPR and Biosafety

Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of Technology in Mechanical Engineering(Credit Based)

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

Semester I (w.e.f. session 2018-2019)

	CoursoNo /			Hours/			ExaminationSchedul		(Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagneticTheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-135A	Multi-variableCalculus&LinearAlgebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches. Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of TechnologyMechanical Engineering(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

				Hours/			Examina	tionSchedule	(Marks)	Duration
S.No.	Courseivo./ Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	of exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagnetictheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-136A	Calculus&OrdinaryDifferentialEquations	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

10(1259)

BS-119/	A	Intr	oduction	to Electr	omagnetic	Theory			
L	Т	Р	Credit	Major	Minor	Total	Time		
				Test	Test				
3	1	-	4	75	25	100	3h		
Purpose To introduce the fundamentals of electromagnetic theory to the students for									
	applications in Engineering field.								
			Course C)utcomes					
CO 1	Introduce th	e basic conce	pts of Ele	ctrostatio	s in vacuu	n.			
CO 2	Introduce th	e basic conce	pts of Ma	gnetostat	tics in vacu	um.			
CO 3	Discuss electrostatics and magnetostatics in linear dielectric medium.								
CO 4	Basics of Max	kwell's equat	ions and	electroma	agnetic wav	/es.			

Unit - I

Electrostatics in Vacuum: Calculation of Electric Field: Coulomb's law, Continuous charge distribution; Divergence and Curl of Electrostatic Fields: Field lines, flux, Gauss's law, Applications of Gauss's law; Electrostatic Potential: Comments on potential, Poisson's and Laplace's Equation, the potential of a localized charge distribution; Electrostatic Boundary Conditions; Work and Energy in Electrostatics: the work done to move a charge, the energy of a point and continuous charge distribution.

Unit - II

Electrostatics in a Linear Dielectric Medium: Polarization:dielectrics, induced dipoles, alignments of polar molecules; The field of a Polarized Object: bound charges and its physical interpretation; The Filed Inside a Dielectric; The Electric Displacement: Gauss's law in the presence of dielectrics, A deceptive parallel, Boundary conditions; Linear Dielectrics: Susceptibility, Permittivity, dielectric constant, Boundary value problems with linear dielectrics, Energy in dielectric systems, Forces in dielectrics.

Unit - III

Magnetostatics: The Lorentz Force Law: magnetic fields, magnetic forces, currents; Biot- Savart law, Divergence and Curl of magnetic field, Magnetic Vector Potential: vector potential, magnetostatic boundary conditions, multiple expansion of vector potential.

Magnetostatics in a linear magnetic: Magnetization: Effect of magnetic field on atomic orbits; The Field of a Magnetized Object: Bound currents, Physical interpretation of bound currents; The Auxiliary Magnetic Field: Ampere's law in magnetized materials, A deceptive parallel, Boundary conditions; Linear and Nonlinear Media: magnetic susceptibility and permeability, ferromagnetism.

Unit - IV

Faraday's law: Electromotive Force: Ohm's law, Motional emf; Electromagnetic Induction: Faraday's law, The induced electric field, inductance, energy in magnetic fields.

Maxwell's Equations: Electrodynamics before Maxwell, How Maxwell fixed Ampere's law, Maxwell's equations, Maxwell's equations in matter.

Electromagnetic Waves: Electromagnetic Waves in Vacuum: the wave equation for electric and magnetic field; Electromagnetic Waves in Matter: propagation in linear media.

Suggested Books:

- 1. David J. Griffiths, Introduction to Electrodynamics, Pearson Education.
- 2. Halliday and Resnick, Physics
- 3. W. Saslow, Electricity, Magnetism and Light

BS-121L	A	Electromagnetics Lab										
L	Т	Р	Credit	Practical	Minor	Total	Time					
					Test							
-	-	3	1.5	30	20	50	3h					
Purpose	e To give t	he practic	al knowledge	e of handling th	ne instrumei	nts.						
			Course	Outcomes								
CO	CO To make the students familiar with the experiments related with Electromagnetic											
	Theory.			-			-					

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 2. To study induced e.m.f. as a function of velocity of magnet.
- 3. To study the growth and decay of current in a LR circuit using magnetic core inductor.
- 4. To find the coefficient of self-inductance by Rayleigh's method.
- 5. To find the coefficient of mutual inductance of two coils.
- 6. To determine the magnetic induction field between the pole pieces of an electromagnet.
- 7. To study Bio-Savart's law.
- 8. To study the dependency of magnetic field on coil diameter and number of turns.
- 9. To investigate the equipotential liens of electric fields.
- 10. To draw the equipotential lines of bar electrode.
- 11. To draw the equipotential lines for ring electrode.
- 12. Verification of Farady and Lenz's law of induction by measuring the induced voltage as function of time.
- 13. Measurement of induced voltage impulse as a function of the velocity of magnet.
- 14. To determine the dielectric constant of different dielectric materials.
- 15. To measure the spatial distribution of the magnetic field between a pair of identical coils in Helmholtz arrangement.
- 16. To investigate the spacing between coils at which magnetic field is uniform and to measure its spatial distribution.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry									
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
3	1	-	4	75	25	100	3h				
Purpose	To fan	To familiarize the students with basic and applied concept in chemistry									
CO1	An ins	ight into the	atomic and	molecular	structure						
CO2	Analy	tical techniqu	ues used in i	identificati	ion of molec	ules					
CO3	Toun	To understand Periodic properties									
CO4	Toun	derstand the	spatial arra	ngement o	of molecules	5					

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

- 1) University chemistry, by B. M. Mahan, Pearson Education
- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab									
L	Т	Р	Credit	Practical	Minor Test	Total	Time				
-	-	3	1.5	30	20	50	3h				

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES- 105A		Programming for Problem Solving									
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
3	-	-	3	75	25	100	3h				
Purpos	To familiarize the students with the basics of Computer System and C										
е	Programming										
	Course Outcomes										
CO 1	Describe Language	the over s.	view of (Computer	System a	nd Levels	of Programming				
CO 2	Learn to t	ranslate th	e algorithr	ns to progr	ams (in C I	anguage).					
CO 3	Learn de recursion	Learn description and applications of conditional branching, iteration and recursion.									
CO 4	To use ari	rays, point	ers and str	uctures to	formulate a	algorithms	and programs.				

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators. Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union. Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. Subrata Saha, Subhodip Mukherjee: Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India..
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications
- 10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA	Programming for Problem Solving Lab										
L	Т	Р	Credit	Practica	Minor	Total	Time				
				I	Test						
-	-	2	1	30	20	50	3h				
Purpos	To Introduce students with problem solving using C Programming language										
е											
			Cour	se Outcom	es						
CO 1	To formula	te the algo	rithms for	simple pro	blems						
CO 2	Implement	ation of a	rrays and	functions.							
CO 3	Implement	ation of p	ointers an	d user defiı	ned data ty	pes.					
CO 4	Write indiv and results	vidual and	group rep	orts: prese	nt objectiv	es, describ	e test procedures				

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-101	Α	English										
L	Т	Р	Credit	Major	Minor	Total	Time					
				Test	Test							
2	-	-	2 75		25	100	3h					
			Course	e Outcomes	S							
CO 1	Building up	the vocabu	lary									
CO 2	2 Students will acquire basic proficiency in English including writing skills											

UNIT-1

Vocabulary Building

- 1.1 The concept of Word Formation
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations.

UNIT-2

Basic Writing Skills

2.1 Sentence Structures

- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT- 4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA		Language Lab									
L	Т	Р	Credit	Practical	Minor Test	Tota I	Time				
-	-	2	1	30	20	50	3h				

OBJECTIVES

- 1.
- 2.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm Common Everyday Situations: Conversations and Dialogues Communication at Workplace 3.
- 4.
- Interviews 5.
- **Formal Presentations** 6.

BS-135/	4		Multivaria	ble Calcu	lus and Lin	ear Algebr	a			
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
3	1	-	4	75 25 100		3 h				
Purpose	e To famili	arize the	arize the prospective engineers with techniques in calculus, sequence							
	& series, multivariable calculus, and linear algebra.									
Course Outcomes										
CO1	To introduce the idea of applying differential and integral calculus to notions of									
	improper integrals. Apart from some applications it gives a basic introduction on									
	Beta and G	amma fun	ctions.		-	-				
CO 2	To introdu analysis to	ce the fall Engineeri	outs of Rol	le's Theo ms	rem that is	fundamen	tal to application of			
CO 3	To develor	the tool	of power	series ar	nd Fourier	series for	learning advanced			
	Engineerin	g Mathem	atics.				iouring uurunoou			
CO 4	To familia	rize the st	udent with	n function	s of severa	I variables	s that is essential in			
	most brand	ches of eng	gineering.							
CO 5	To develop	the essei	ntial tool o	of matrice	s and linea	r algebra	in a comprehensive			
	manner.									
					/401					

UNIT-I

(12 hrs)

Calculus: Evaluation of definite and improper integrals: Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions. Rolle's Theorem, Mean value theorems, Indeterminate forms and L'Hospital's rule.

UNIT-II

(12 hrs) Sequence and Series: Convergence of sequence and series, tests for convergence (Comparison test, D'Alembert's Ratio test, Logarithmic test, Cauchy root test, Raabe's test); Power series.

Fourier series: Introduction, Fourier-Euler Formula, Dirichlet's conditions, Change of intervals, Fourier series for even and odd functions, Half range sine and cosine series.

UNIT-III

(09 hrs)

Multivariable Calculus (differentiation): Taylor's series (for one and more variables), series for exponential, trigonometric and logarithm functions.

Partial derivatives, Total differential, Chain rule for differentiation, Homogeneous functions, Euler's theorem, Jacobian, Maxima, minima and saddle points; Method of Lagrange multipliers. (07 hrs)

UNIT-IV

Matrices: Rank of a matrix, elementary transformations, elementary matrices, Gauss Jordon method to find inverse using elementary transformations, normal form of a matrix, linear dependence and independence of vectors, consistency of linear system of equations, linear and orthogonal transformations, eigenvalues and eigenvectors, properties of eigenvalues, Cayley – Hamilton theorem and its applications.

Suggested Books:

1. ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

- 2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

BS-136A			Calculus a	and Ordinar	y Differentia	l Equations				
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
3	1	-	4	75	25	100	3 h			
Purpose	Purpose To familiarize the prospective engineers with techniques inmultivariate integration, ordinary									
and partial differential equations and complex variables.										
Course Outcomes										
CO1	To introduce	effective m	athematical	tools for th	ne solutions of	of differentia	al equations that model			
	physical proc	esses.								
CO 2	To acquaint	the student	with mathe	ematical to	ols needed ir	n evaluating	multiple integrals and			
	their usage.									
CO 3	To introduce	the tools of	differentiat	ion and inte	gration of fu	nctions of co	omplex variable thatare			
	used in vario	us technique	es dealing er	ngineering p	oroblems.					

UNIT-I

(10 hrs)

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree:equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

Ordinary differential equations of higher orders:

Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-II

(10 hrs)

Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar)

Applications: areas and volumes; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds.

UNIT-III

(10hrs)

Vector Calculus: Introduction, Scalar and Vector point functions, Gradient, divergence & Curl and their properties, Directional derivative.

Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

UNIT-IV

(10 hrs)

Complex Variable – Differentiation: Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, findingharmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties;

Complex Variable – Integration:Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (withoutproof), Taylor's series,zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).

Suggested Books:

1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

3. Erwin kreyszig and SanjeevAhuja, Applied Mathematics- II, Wiley India Publication, 2015.

4. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary ValueProblems, 9th Edn., Wiley India, 2009.

5. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.

6. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice HallIndia, 1995.

7. E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.

8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

9. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

10. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

Course code	ES-1	ES-109A									
Coursetitle	Engi	EngineeringGraphics&Design									
Scheme and Credits	L	Т	Р	Credits	Major Test	Minor Test	Tota I	Time			
	1	2	0	3	75	25	100	3h			

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing, graphics and Projections.

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of
	Isometric views to Orthographic views and vice-versa.

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections of Points and lines inclined to both planes; Projections of planes inclined to one principal Plane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular solids like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. Corresponding'stoCADSoftwareTheoryandUserManuals.

Course code	FS-1	13I A							
Coursetitle	Engi	ngineeringGraphics&Design Practice							
Scheme and Credits	L	Т	Ρ	Credit	Practical	Minor	Total	Time	
				S		Test			
	-	-	3	1.5	30	20	50	3h	
Pre-requisites(if any)	-								

Aim: To make student practice on engineering graphics and design softwares and provide exposure to the visual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.	
CO-2	To understand to customize settings of CAD software and produce CAD drawing.	
CO-3	To practice performing various functions in CAD softwares.	ſ
CO-4	To Learn about solid modelling and demonstration of a simple team design project.	
		_

Module 1: Overview of Computer Graphics:

Listing the computer technologies that impact on graphical communication,Demonstrating Knowledge ofthetheory of CAD software[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingup ofunitsanddrawing limits;ISOand ANSIstandardsforcoordinatedimensioningandtolerancing; Orthographic constraints, Snap to objects manually and automatically; Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvariou swaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduse of Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changingline lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids and project the true shape of the sectioned surface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises.Dimensioning guidelines, tolerancing techniques; dimensioningandscalemulti viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing; Useof solid-modelingsoftwareforcreating associative models assemblylevels;floorplans atthecomponentand thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM). Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
 - 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
 - 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
 - 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
 - 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
 - 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
 - 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
 - 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
 - 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
 - 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
 - 11. (Correspondingsetof)CADSoftwareTheoryandUserManuals
 - 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
 - 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
 - 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
 - 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
 - 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-11	ES-111LA								
Coursetitle	Manu	anufacturingProcessesWorkshop								
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time		
	0	0	3	1.5	60	40	100	3h		
Pre-requisites (if any)				• 						

Aim: To make student gain a hands on work experience in a typical manufacturing industry environment.

CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry

- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., " Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS- 141A			Biology								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
2	1	-	3	75	25	100	3h				
Purpos	To far	To familiarize the students with the basics of Biotechnology									
е											
		Cou	urse Outco	mes							
CO1	Introduct	tion to ess	sentials of	life and ma	cromolecules ess	ential for growt	h and				
	Developr	Development									
CO2	Defining	Defining the basic concepts of cell division, genes and Immune system									
CO3	Introduc	Introduction of basic Concept of ThermoGenetic Engg. & Biochemistry									
CO4	Introduc	tion of ba	sic Concep	t of Microb	iology & Role of B	iology in Differe	ent Fields				

Unit – I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria, chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1273ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation. Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, Dhanpat Rai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009. D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Note: The paper setter will set the paper as per the question paper templates provided

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

. 6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

FC 101A												
ES-101A	BASIC ELECTRICAL ENGINEERING											
L	Т	Р	Credit	Total	Time(Hrs)							
4	1	-	5	75	25	100	3					
		To fami	liarize th	ne students with t	he basics of	Electrical						
Purpose	rpose Engineering											
			Cou	irse Outcomes								
CO1	Deals with st	eady state c	ircuit ana	lysis subject to DC.								
CO 2	Deals with A	C fundamen	tals & stea	ady state circuit resp	onse subject to	AC.						
	Deals with	introductor	y Baland	ed Three Phase S	ystem analysis	and Sir	ngle Phase					
CO 3	Transformer		-				-					
CO 4	Explains the	Basics of Ele	ectrical Ma	achines & Electrical i	nstallations							

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit. Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts. including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phase emf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon. Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutator action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena& Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC	ELECTRIC	AL ENGIN	IEERING LAB					
L	Т	Practic	Credit	Minor Test	(Practical)	Tota	Time (Hrs)		
-	-	al 2	1	20	30	50	3		
Purpose	То	familiarize	the stude	ents with the El	ectrical Techn	ologyP	racticals		
			Cou	rse Outcomes					
CO1	Understand basic concepts of Network theorems								
CO 2	Deals with ste techniques	eady state f	requenc	y response of	RLC circuit p	barame	eters solution		
CO 3	Deals with introductory Single Phase Transformer practicals								
CO 4	Explains the co Machines	onstructior	nal featur	res and praction	cals of variou	s types	of Electrical		

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of Technology in Aeronautical Engineering(Credit Based)

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

Semester I (w.e.f. session 2018-2019)

	CourseNo /			Hours/			Examinati	onSchedule((Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagneticTheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-135A	Multi-variableCalculus&LinearAlgebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches. Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of TechnologyAeronautical Engineering(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

	Course No /			Hours/			Examinat	ionSchedule((Marks)	Duration
S.No.	Courseivo./ Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	of exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagnetictheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-136A	Calculus&OrdinaryDifferentialEquations	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Programme (Three Weeks Duration) is a part of scheme of first year in 1st semester for all branches

BS-119/	4	Introduction to Electromagnetic Theory								
L	Т	ТР		Major	Minor	Total	Time			
				Test	Test					
3	1	-	4	75	25	100	3h			
Purpose	To introduce	To introduce the fundamentals of electromagnetic theory to the students for								
	applications	in Engineeri	ng field.		-	-				
			Course C	Outcom es						
CO 1	Introduce th	e basic conce	pts of Ele	ctrostatio	s in vacuu	n.				
CO 2	Introduce th	Introduce the basic concepts of Magnetostatics in vacuum.								
CO 3	Discuss elect	Discuss electrostatics and magnetostatics in linear dielectric medium.								
CO 4	Basics of Max	kwell's equat	ions and	electroma	agnetic wav	/es.				

Unit - I

Electrostatics in Vacuum: Calculation of Electric Field: Coulomb's law, Continuous charge distribution; Divergence and Curl of Electrostatic Fields: Field lines, flux, Gauss's law, Applications of Gauss's law; Electrostatic Potential: Comments on potential, Poisson's and Laplace's Equation, the potential of a localized charge distribution; Electrostatic Boundary Conditions; Work and Energy in Electrostatics: the work done to move a charge, the energy of a point and continuous charge distribution.

Unit - II

Electrostatics in a Linear Dielectric Medium: Polarization:dielectrics, induced dipoles, alignments of polar molecules; The field of a Polarized Object: bound charges and its physical interpretation; The Filed Inside a Dielectric; The Electric Displacement: Gauss's law in the presence of dielectrics, A deceptive parallel, Boundary conditions; Linear Dielectrics: Susceptibility, Permittivity, dielectric constant, Boundary value problems with linear dielectrics, Energy in dielectric systems, Forces in dielectrics.

Unit - III

Magnetostatics: The Lorentz Force Law: magnetic fields, magnetic forces, currents; Biot- Savart law, Divergence and Curl of magnetic field, Magnetic Vector Potential: vector potential, magnetostatic boundary conditions, multiple expansion of vector potential.

Magnetostatics in a linear magnetic: Magnetization: Effect of magnetic field on atomic orbits; The Field of a Magnetized Object: Bound currents, Physical interpretation of bound currents; The Auxiliary Magnetic Field: Ampere's law in magnetized materials, A deceptive parallel, Boundary conditions; Linear and Nonlinear Media: magnetic susceptibility and permeability, ferromagnetism.

Unit - IV

Faraday's law: Electromotive Force: Ohm's law, Motional emf; Electromagnetic Induction: Faraday's law, The induced electric field, inductance, energy in magnetic fields.

Maxwell's Equations: Electrodynamics before Maxwell, How Maxwell fixed Ampere's law, Maxwell's equations, Maxwell's equations in matter.

Electromagnetic Waves: Electromagnetic Waves in Vacuum: the wave equation for electric and magnetic field; Electromagnetic Waves in Matter: propagation in linear media.

Suggested Books:

- 1. David J. Griffiths, Introduction to Electrodynamics, Pearson Education.
- 2. Halliday and Resnick, Physics
- 3. W. Saslow, Electricity, Magnetism and Light

BS-121L	A	Electromagnetics Lab									
L	Т	Р	Credit	Practical	Practical Minor		Time				
					Test						
-	-	3	1.5	30	20	50	3h				
Purpose	e To give t	he practic	al knowledge	e of handling th	ne instrumei	nts.					
			Course	Outcomes							
CO To make the students familiar with the experiments related with Electromag							magnetic				
Theory.							-				

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 2. To study induced e.m.f. as a function of velocity of magnet.
- 3. To study the growth and decay of current in a LR circuit using magnetic core inductor.
- 4. To find the coefficient of self-inductance by Rayleigh's method.
- 5. To find the coefficient of mutual inductance of two coils.
- 6. To determine the magnetic induction field between the pole pieces of an electromagnet.
- 7. To study Bio-Savart's law.
- 8. To study the dependency of magnetic field on coil diameter and number of turns.
- 9. To investigate the equipotential liens of electric fields.
- 10. To draw the equipotential lines of bar electrode.
- 11. To draw the equipotential lines for ring electrode.
- 12. Verification of Farady and Lenz's law of induction by measuring the induced voltage as function of time.
- 13. Measurement of induced voltage impulse as a function of the velocity of magnet.
- 14. To determine the dielectric constant of different dielectric materials.
- 15. To measure the spatial distribution of the magnetic field between a pair of identical coils in Helmholtz arrangement.
- 16. To investigate the spacing between coils at which magnetic field is uniform and to measure its spatial distribution.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time					
3	1	1 - 4 75 25 100 3h										
Purpose	To fan	niliarize the s	students wit	th basic an	d applied co	ncept in cl	nemistry					
CO1	An ins	ight into the	atomic and	molecular	structure							
CO2	Analy	tical techniqu	ues used in i	identificati	ion of molec	ules						
CO3	To un	To understand Periodic properties										
CO4	Toun	derstand the	spatial arra	angement o	of molecules							

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

- 1) University chemistry, by B. M. Mahan, Pearson Education
- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab										
L	Т	Р	Credit	Practical	Minor Test	Total	Time					
-	-	3	1.5	30	20	50	3h					

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES- 105A	Programming for Problem Solving										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
3	-	-	3	75	25	100	3h				
Purpos	То	To familiarize the students with the basics of Computer System and C									
е		Programming									
			Cou	rse Outcor	nes						
CO 1	Describe Language	the over s.	view of (Computer	System a	nd Levels	of Programming				
CO 2	Learn to t	ranslate th	e algorithr	ns to progr	ams (in C I	anguage).					
CO 3	Learn de recursion	Learn description and applications of conditional branching, iteration and recursion.									
CO 4	To use ari	rays, point	ers and str	uctures to	formulate a	algorithms	and programs.				

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators. Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union. Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. Subrata Saha, Subhodip Mukherjee: Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India..
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications
- 10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA	Programming for Problem Solving Lab										
L	Т	Р	Credit	Practica	Minor	Total	Time				
				I	Test						
-	-	2	1	30	20	50	3h				
Purpos	To Intro	To Introduce students with problem solving using C Programming language									
е											
			Cour	se Outcom	es						
CO 1	To formula	te the algo	rithms for	simple pro	blems						
CO 2	Implement	ation of a	rrays and	functions.							
CO 3	Implementation of pointers and user defined data types.										
CO 4	Write indiv and results	vidual and	group rep	orts: prese	nt objectiv	es, describ	e test procedures				

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-101	Α	English						
L	Т	T P Credit Major Minor Total Time						
				Test	Test			
2	-			75	25	100	3h	
	Course Outcomes							
CO 1	Building up the vocabulary							
CO 2	Students will acquire basic proficiency in English including writing skills							

UNIT-1

Vocabulary Building

- 1.1 The concept of Word Formation
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations.

UNIT-2

Basic Writing Skills

2.1 Sentence Structures

- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT-4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA	Language Lab						
L	Т	Р	Credit	Practical	Minor	Tota	Time
					1621	I	
-	-	2	1	30	20	50	3h

OBJECTIVES

- 1.
- 2.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm Common Everyday Situations: Conversations and Dialogues Communication at Workplace 3.
- 4.
- Interviews 5.
- **Formal Presentations** 6.

Multivariable Calculus and Linear Algebra							
Т	Р	Credit	Major	Minor	Total	Time	
Tes		Test	Test				
3 1 - 4 7		75	25	100	3 h		
e To familiarize the prospective engineers with techniques in calculus, sequer						n calculus, sequence	
& series,	multivari	able calcul	lus, and li	near algebi	ra.		
		Cou	rse Outco	mes			
To introdu	ce the ide	a of apply	ing differ	ential and i	integral ca	Iculus to notions of	
improper integrals. Apart from some applications it gives a basic introduction o					asic introduction on		
Beta and Gamma functions.							
To introduce the fallouts of Rolle's Theorem that is fundamental to application of analysis to Engineering problems							
To develop the tool of power series and Fourier series for learning advanced							
Engineering Mathematics.							
To familiarize the student with functions of several variables that is essential in							
most branches of engineering.							
To develop the essential tool of matrices and linear algebra in a comprehensive							
manner.							
	To famili & series, To introdu improper i Beta and Ga To introduc analysis to To develop Engineerin To familiar most brand To develop manner.	TP1-To familiarize the & series, multivariTo introduce the ide improper integrals.Beta and Gamma fun To introduce the falle analysis to Engineeri To develop the tool Engineering Mathem To familiarize the st most branches of eng To develop the esser manner.	TPCredit1-4To familiarize the prospective & series, multivariable calcul CourtTo introduce the idea of apply improper integrals. Apart from Beta and Gamma functions.To introduce the fallouts of Rol analysis to Engineering problem To develop the tool of power 	TPCreditMajor Test1-475To familiarize the prospective engines & series, multivariable calculus, and line Course OutcomCourse OutcomTo introduce the idea of applying different improper integrals. Apart from some app Beta and Gamma functions.To introduce the fallouts of Rolle's Theorem analysis to Engineering problems.To develop the tool of power series an Engineering Mathematics.To familiarize the student with function most branches of engineering.To develop the essential tool of matrices manner.To develop the essential tool of matrices manner.	TPCreditMajorMinorTestTestTest1-47525To familiarize the prospective engineers with teo & series, multivariable calculus, and linear algebr Course OutcomesCourse OutcomesTo introduce the idea of applying differential and i improper integrals. Apart from some applications i Beta and Gamma functions.To introduce the fallouts of Rolle's Theorem that is analysis to Engineering problems.To develop the tool of power series and Fourier Engineering Mathematics.To familiarize the student with functions of severa most branches of engineering.To develop the essential tool of matrices and linear manner.To hat hematices and linear matrices and linear	TPCreditMajorMinorTotal1-47525100To familiarize the prospective engineers with techniques in & series, multivariable calculus, and linear algebra. Course OutcomesCourse OutcomesTo introduce the idea of applying differential and integral ca improper integrals. Apart from some applications it gives a ba Beta and Gamma functions.To introduce the fallouts of Rolle's Theorem that is fundament analysis to Engineering problems.To develop the tool of power series and Fourier series for Engineering Mathematics.To familiarize the student with functions of several variables most branches of engineering.To develop the essential tool of matrices and linear algebra manner.	

UNIT-I

(12 hrs)

Calculus: Evaluation of definite and improper integrals: Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions. Rolle's Theorem, Mean value theorems, Indeterminate forms and L'Hospital's rule.

UNIT-II

(12 hrs) Sequence and Series: Convergence of sequence and series, tests for convergence (Comparison test, D'Alembert's Ratio test, Logarithmic test, Cauchy root test, Raabe's test); Power series.

Fourier series: Introduction, Fourier-Euler Formula, Dirichlet's conditions, Change of intervals, Fourier series for even and odd functions, Half range sine and cosine series.

UNIT-III

(09 hrs)

Multivariable Calculus (differentiation): Taylor's series (for one and more variables), series for exponential, trigonometric and logarithm functions.

Partial derivatives, Total differential, Chain rule for differentiation, Homogeneous functions, Euler's theorem, Jacobian, Maxima, minima and saddle points; Method of Lagrange multipliers. (07 hrs)

UNIT-IV

Matrices: Rank of a matrix, elementary transformations, elementary matrices, Gauss Jordon method to find inverse using elementary transformations, normal form of a matrix, linear dependence and independence of vectors, consistency of linear system of equations, linear and orthogonal transformations, eigenvalues and eigenvectors, properties of eigenvalues, Cayley – Hamilton theorem and its applications.

Suggested Books:

1. ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

- 2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

BS-136A		Calculus and Ordinary Differential Equations						
L	Т	Р	Credit	Major	Minor	Total	Time	
				Test	Test			
3	1 - 4 75 25 100 3h						3 h	
Purpose	To familia	rize the pros	spective eng	ineers with	techniques i	nmultivaria	te integration, ordinary	
	and partia	and partial differential equations and complex variables.						
Course Outcomes								
CO1	To introduce	o introduce effective mathematical tools for the solutions of differential equations that model						
	physical proc	hysical processes.						
CO 2	To acquaint	o acquaint the student with mathematical tools needed in evaluating multiple integrals and						
	their usage.	their usage.						
CO 3	To introduce	Fo introduce the tools of differentiation and integration of functions of complex variable thatare						
	used in vario	sed in various techniques dealing engineering problems.						

UNIT-I

(10 hrs)

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree:equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

Ordinary differential equations of higher orders:

Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-II

(10 hrs)

Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar)

Applications: areas and volumes; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds.

UNIT-III

(10hrs)

Vector Calculus: Introduction, Scalar and Vector point functions, Gradient, divergence & Curl and their properties, Directional derivative.

Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

UNIT-IV

(10 hrs)

Complex Variable – Differentiation: Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, findingharmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties;

Complex Variable – Integration:Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (withoutproof), Taylor's series,zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).

Suggested Books:

1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

3. Erwin kreyszig and SanjeevAhuja, Applied Mathematics- II, Wiley India Publication, 2015.

4. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary ValueProblems, 9th Edn., Wiley India, 2009.

5. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.

6. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice HallIndia, 1995.

7. E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.

8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

9. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008. 10. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

Note: The paper setter will set the paper as per the question paper templates provide

Course code	ES-1	ES-109A							
Coursetitle	EngineeringGraphics&Design								
Scheme and Credits	L	Т	Р	Credits	Major Test	Minor Test	Tota I	Time	
	1	2	0	3	75	25	100	3h	

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing, graphics and Projections.

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of
	Isometric views to Orthographic views and vice-versa.

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections of Points and lines inclined to both planes; Projections of planes inclined to one principal Plane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular solids like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. Corresponding'stoCADSoftwareTheoryandUserManuals.
| Course code | ES-1 | ES-113LA | | | | | | | | | |
|------------------------|------|-------------------------------------|---|--------|-----------|-------|-------|------|--|--|--|
| Coursetitle | Engi | EngineeringGraphics&Design Practice | | | | | | | | | |
| Scheme and Credits | L | Т | Ρ | Credit | Practical | Minor | Total | Time | | | |
| | | | | S | | Test | | | | | |
| | - | - | 3 | 1.5 | 30 | 20 | 50 | 3h | | | |
| Pre-requisites(if any) | - | | | | | | | | | | |

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.
CO-2	To understand to customize settings of CAD software and produce CAD drawing.
CO-3	To practice performing various functions in CAD softwares.
CO-4	To Learn about solid modelling and demonstration of a simple team design project.

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingup ofunitsanddrawing limits;ISOand ANSIstandardsforcoordinatedimensioningandtolerancing; Orthographic constraints, Snap to objects manually and automatically; Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvari ouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduse of Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changingline lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids and project the true shape of the sectioned surface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory, includingsketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises.Dimensioning guidelines, tolerancing techniques; dimensioningandscalemulti viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM). Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof)CADSoftwareTheoryandUserManuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-1	ES-111LA							
Coursetitle	Manu	AanufacturingProcessesWorkshop							
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time	
	0	0	3	1.5	60	40	100	3h	
Pre-requisites (if any)									

Aim: 1	To make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., " Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS-	Biology											
141A												
L	Т	Р	Credit	Major Test	Minor Test	Total	Time					
2	1	-	3	75	25	100	3h					
Purpos	To fan	To familiarize the students with the basics of Biotechnology										
e												
		Со	urse Outco	mes								
CO1	Introduct	ion to es	sentials of	life and ma	cromolecules ess	ential for growt	h and					
	Developn	nent				-						
CO2	Defining	the basic	concepts o	of cell divisi	on, genes and Imr	nune system						
CO3	Introduct	ion of ba	sic Concep	t of Thermo	Genetic Engg. & E	Biochemistry						
CO4	Introduct	ion of ba	sic Concep	t of Microb	iology & Role of B	iology in Differe	ent Fields					

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria, chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1293ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation. Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, Dhanpat Rai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.

D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

ES 101A											
E3-IUTA		DAJIC ELEC	RICAL EI	NGINEERING	1						
L	Т	Р	Credit	Major Test	Minor Test	Total	Time(Hrs)				
4	1	-	5	75	25	100	3				
	To familiarize the students with the basics of Electrical										
Purpose	e Engineering										
	Course Outcomes										
CO1	Deals with st	eady state c	ircuit ana	lysis subject to DC.							
CO 2	Deals with A	C fundament	tals & stea	ady state circuit respo	nse subject to	AC.					
	Deals with	Deals with introductory Balanced Three Phase System analysis and Single Phase									
CO 3	Transformer		-	-	-		-				
CO 4	Explains the	Basics of Ele	ctrical Ma	achines & Electrical in	stallations						

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit. Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts. including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phase emf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon. Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutator action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena& Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC	ELECTRIC	AL ENGIN	IEERING LAB						
L	Т	Practic	Credit	Minor Test	(Practical)	Tota	Time (Hrs)			
-	-	al 2	1	20	30	50	3			
Purpose	То	familiarize	the stude	ents with the El	ectrical Techn	ologyP	racticals			
Course Outcomes										
CO1	Understand basic concepts of Network theorems									
CO 2	Deals with ste techniques	eady state f	requenc	y response of	RLC circuit p	barame	eters solution			
CO 3	Deals with introductory Single Phase Transformer practicals									
CO 4	Explains the co Machines	onstructior	nal featur	res and praction	cals of variou	s types	of Electrical			

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of Technology in Automobile Engineering(Credit Based)

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

Semester I (w.e.f. session 2018-2019)

	CourseNo /			Hours/			Examinati	ionSchedule((Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagneticTheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-135A	Multi-variableCalculus&LinearAlgebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches. Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of TechnologyAutomobile Engineering(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

				Hours/			Examina	tionSchedule	(Marks)	Duration
S.No.	Courseivo./ Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagnetictheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-136A	Calculus&OrdinaryDifferentialEquations	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

10(1298)

BS-119/	4	Intr	oduction	to Electr	omagnetic	Theory				
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
3	1	-	4	75	25	100	3h			
Purpose To introduce the fundamentals of electromagnetic theory to the students for										
	applications in Engineering field.									
			Course C	Outcom es						
CO 1	Introduce th	e basic conce	pts of Ele	ctrostatio	s in vacuu	n.				
CO 2	CO 2 Introduce the basic concepts of Magnetostatics in vacuum.									
CO 3	Discuss elect	rostatics and	l magneto	ostatics in	linear die	lectric me	edium.			
CO 4	Basics of Max	kwell's equat	ions and	electroma	agnetic wav	/es.				

Unit - I

Electrostatics in Vacuum: Calculation of Electric Field: Coulomb's law, Continuous charge distribution; Divergence and Curl of Electrostatic Fields: Field lines, flux, Gauss's law, Applications of Gauss's law; Electrostatic Potential: Comments on potential, Poisson's and Laplace's Equation, the potential of a localized charge distribution; Electrostatic Boundary Conditions; Work and Energy in Electrostatics: the work done to move a charge, the energy of a point and continuous charge distribution.

Unit - II

Electrostatics in a Linear Dielectric Medium: Polarization:dielectrics, induced dipoles, alignments of polar molecules; The field of a Polarized Object: bound charges and its physical interpretation; The Filed Inside a Dielectric; The Electric Displacement: Gauss's law in the presence of dielectrics, A deceptive parallel, Boundary conditions; Linear Dielectrics: Susceptibility, Permittivity, dielectric constant, Boundary value problems with linear dielectrics, Energy in dielectric systems, Forces in dielectrics.

Unit - III

Magnetostatics: The Lorentz Force Law: magnetic fields, magnetic forces, currents; Biot- Savart law, Divergence and Curl of magnetic field, Magnetic Vector Potential: vector potential, magnetostatic boundary conditions, multiple expansion of vector potential.

Magnetostatics in a linear magnetic: Magnetization: Effect of magnetic field on atomic orbits; The Field of a Magnetized Object: Bound currents, Physical interpretation of bound currents; The Auxiliary Magnetic Field: Ampere's law in magnetized materials, A deceptive parallel, Boundary conditions; Linear and Nonlinear Media: magnetic susceptibility and permeability, ferromagnetism.

Unit - IV

Faraday's law: Electromotive Force: Ohm's law, Motional emf; Electromagnetic Induction: Faraday's law, The induced electric field, inductance, energy in magnetic fields.

Maxwell's Equations: Electrodynamics before Maxwell, How Maxwell fixed Ampere's law, Maxwell's equations, Maxwell's equations in matter.

Electromagnetic Waves: Electromagnetic Waves in Vacuum: the wave equation for electric and magnetic field; Electromagnetic Waves in Matter: propagation in linear media.

Suggested Books:

- 1. David J. Griffiths, Introduction to Electrodynamics, Pearson Education.
- 2. Halliday and Resnick, Physics
- 3. W. Saslow, Electricity, Magnetism and Light

BS-121L	A	Electromagnetics Lab										
L	Т	Р	Credit	Practical	Minor	Total	Time					
					Test							
-	-	3	1.5	30	20	50	3h					
Purpose	e To give t	he practic	al knowledge	e of handling th	ne instrumei	nts.						
			Course	Outcomes								
CO	CO To make the students familiar with the experiments related with Electromagnetic											
	Theory.			-			-					

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 2. To study induced e.m.f. as a function of velocity of magnet.
- 3. To study the growth and decay of current in a LR circuit using magnetic core inductor.
- 4. To find the coefficient of self-inductance by Rayleigh's method.
- 5. To find the coefficient of mutual inductance of two coils.
- 6. To determine the magnetic induction field between the pole pieces of an electromagnet.
- 7. To study Bio-Savart's law.
- 8. To study the dependency of magnetic field on coil diameter and number of turns.
- 9. To investigate the equipotential liens of electric fields.
- 10. To draw the equipotential lines of bar electrode.
- 11. To draw the equipotential lines for ring electrode.
- 12. Verification of Farady and Lenz's law of induction by measuring the induced voltage as function of time.
- 13. Measurement of induced voltage impulse as a function of the velocity of magnet.
- 14. To determine the dielectric constant of different dielectric materials.
- 15. To measure the spatial distribution of the magnetic field between a pair of identical coils in Helmholtz arrangement.
- 16. To investigate the spacing between coils at which magnetic field is uniform and to measure its spatial distribution.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time					
3	1	1 - 4 75 25 100 3h										
Purpose	To fan	To familiarize the students with basic and applied concept in chemistry										
CO1	An ins	ight into the	atomic and	molecular	structure							
CO2	Analy	tical techniqu	ues used in i	identificati	ion of molec	ules						
CO3	To un	To understand Periodic properties										
CO4	Toun	derstand the	spatial arra	angement o	of molecules	5						

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine.Vibrational and rotational spectroscopy of diatomic molecules.Applications.Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

1) University chemistry, by B. M. Mahan, Pearson Education

- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab									
L	Т	Р	Credit	Practical	Minor Test	Total	Time				
-	-	3	1.5	30	20	50	3h				

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES- 105A		Programming for Problem Solving										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time					
3	-	-	3	75	25	100	3h					
Purpos	To familiarize the students with the basics of Computer System and C											
е	Programming											
			Cou	rse Outcor	nes							
CO 1	Describe Language	the over s.	view of C	Computer	System a	nd Levels	of Programming					
CO 2	Learn to t	ranslate th	e algorithr	ns to progr	ams (in C I	anguage).						
CO 3	Learn de recursion	scription	and applie	cations of	condition	al branchi	ng, iteration and					
CO 4	To use ari	rays, pointe	ers and str	uctures to	formulate a	lgorithms	and programs.					

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators. Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union. Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India..
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications
- 10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA		Programming for Problem Solving Lab										
L	Т	Р	Credit	Practica	Minor	Total	Time					
				I	Test							
-	-	2	1	30	20	50	3h					
Purpos	Purpos To Introduce students with problem solving using C Programming language											
е												
			Cour	se Outcom	es							
CO 1	To formula	te the algo	rithms for	simple pro	blems							
CO 2	Implement	ation of a	rrays and	functions.								
CO 3	Implementation of pointers and user defined data types.											
CO 4	Write indiv and results	vidual and	group rep	orts: prese	nt objectiv	es, describ	e test procedures					

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-101	A	English										
L	Т	Р	Credit	Major	Minor	Total	Time					
				Test	Test							
2	2		- 2 75 2		25	100	3h					
	· · · ·		Course	e Outcomes	S							
CO 1	CO 1 Building up the vocabulary											
CO 2	CO 2 Students will acquire basic proficiency in English including writing skills											

UNIT-1

Vocabulary Building

- 1.1 The concept of Word Formation
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations.

UNIT- 2

Basic Writing Skills

2.1 Sentence Structures

- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT- 4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA		Language Lab									
L	Т	Р	Credit	Practical	Minor	Tota	Time				
					Test						
-	-	2	1	30	20	50	3h				

OBJECTIVES

- Listening Comprehension 1.
- 2.
- Pronunciation, Intonation, Stress and Rhythm Common Everyday Situations: Conversations and Dialogues 3.
- Communication at Workplace 4.
- Interviews 5.
- **Formal Presentations** 6.

BS-135A			Multivaria	ble Calcu	lus and Lin	ear Algebr	a
L	Т	Р	Credit	Major	Minor	Total	Time
				Test	Test		
3	1	-	4	75	25	100	3 h
Purpose	To famili	iarize the	prospectiv	ve enginee	ers with tea	chniques ii	n calculus, sequence
	& series,	multivari	able calcu	lus, and li	near algeb	ra.	
			Cou	rse Outco	mes		
CO1	To introdu	ce the ide	a of apply	ing differ	ential and	integral ca	Iculus to notions of
	improper i	ntegrals. A	Apart from	n some ap	plications i	t gives a ba	asic introduction on
	Beta and G	amma fun	ctions.				
CO 2	To introdu	ce the fall	outs of Ro	lle's Theo	rem that is	fundamer	ital to application of
	analysis to	Engineeri	ng proble	ms.			
CO 3	To develop	o the tool	of power	series ar	nd Fourier	series for	learning advanced
	Engineerin	g Mathem	atics.				
CO 4	To familia	rize the st	udent with	n function	s of severa	al variable	s that is essential in
	most brand	ches of eng	jineering.				
CO 5	To develop	o the esser	ntial tool o	of matrice	s and linea	ar algebra	in a comprehensive
	manner.				(
UNIT-I					(12 h	nrs)	
Calculus:	Evaluation of	of definite	and impro	oper integ	rals: Beta	and Gamm	ha functions and their
properties;	Application	s of definite	e integrals :	to evaluate	e surface are	eas and volu	umes of revolutions.
Rolle's The	orem, Mean	value theor	ems, Indet	erminatef	orms and L	'Hospital's	rule.
UNIT-II		•	<i>c</i>		(12 r	nrs)	
Sequence	and Series:	Convergen	ce of seque	ence and so	eries, tests i	for converg	ence (Comparison test
D'Alemberi	i's Ratio test,	Logarithm	ic test, Cau	chy root te	est, Raabe's	test); Powe	er series.
Fourier se	ries: Introdu	iction, Fol	irier-Euler	Formula,	Dirichlet's	conditions	s, Change of Intervals
Fourier ser	les for even a	and odd ful	nctions, Ha	if range sir	he and cosir	ne series.	
UNIT-III		(1.00		F . II	(09 n	rs)	
wuttvaria		s (airrerer	itiation):	i aylor s se	eries (for or	he and mor	e variables), series for
exponential dem	i, trigonome	u ic and iog	iar inm tun	ICTIONS.	forontiation		aqua funationa Fulant
UNIT-III Multivaria exponentia Partial deri	ble Calculu I, trigonome	s (differer tric and log	ntiation): ⁻ arithm fun	Taylor's sentions.	(09 h ries (for or	rs) ne and mor	re variables), series for

Total differential, Chain rule for differentiation, Homogeneous functions, Euler's Partial C theorem, Jacobian, Maxima, minima and saddle points; Method of Lagrange multipliers.

UNIT-IV

(07 hrs)

Matrices: Rank of a matrix, elementary transformations, elementary matrices, Gauss Jordon method to find inverse using elementary transformations, normal form of a matrix, linear dependence and independence of vectors, consistency of linear system of equations, linear and orthogonal transformations, eigenvalues and eigenvectors, properties of eigenvalues, Cayley – Hamilton theorem and its applications.

Suggested Books:

1.ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

- 2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

BS-136A			Calculus a	nd Ordinar	y Differentia	I Equations				
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
3	1	-	4	75	25	100	3 h			
Purpose	Purpose To familiarize the prospective engineers with techniques inmultivariate integration, ordinary									
	and partial differential equations and complex variables.									
			Cou	Irse Outcon	nes					
CO1	To introduce	effective m	athematical	tools for th	ne solutions (of differenti	ial equations that model			
	physical proc	esses.					-			
CO 2	To acquaint	the student	with mathe	ematical to	ols needed ir	n evaluating	g multiple integrals and			
	their usage.									
CO 3	To introduce	the tools of	differentiat	ion and inte	egration of fu	inctions of a	complex variable thatare			
	used in vario	us techniqu	es dealing er	naineerina i	oroblems					

Note: The paper setter will set the paper as per the question paper templates provided.

UNIT-I

(10 hrs)

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree:equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

Ordinary differential equations of higher orders:

Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-II

(10 hrs) Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar)

Applications: areas and volumes; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds.

UNIT-III

(10hrs)

Vector Calculus: Introduction, Scalar and Vector point functions, Gradient, divergence & Curl and their properties, Directional derivative.

Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

UNIT-IV

(10 hrs)

Complex Variable – Differentiation: Differentiation, Cauchy-Riemann equations, analytic functions,

harmonic functions, findingharmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties;

Complex Variable – Integration:Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (withoutproof), Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).

Suggested Books:

1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

3. Erwin kreyszig and SanjeevAhuja, Applied Mathematics- II, Wiley India Publication, 2015.

4. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary ValueProblems, 9th Edn., Wiley India, 2009.

5. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.

6. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice HallIndia, 1995.

7. E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.

8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

9. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008. 10. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

Course code	ES-1	ES-109A									
Coursetitle	Engi	EngineeringGraphics&Design									
Scheme and Credits	L	Т	Р	Credits	Major Test	Minor Test	Tota I	Time			
	1	2	0	3	75	25	100	3h			

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing, graphics and Projections.

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of
	Isometric views to Orthographic views and vice-versa.

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

Principles of Orthographic Projections-Conventions-Projections of Points and lines inclined to both planes; Projections of planes inclined to one principal Plane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular solids like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. Corresponding'stoCADSoftwareTheoryandUserManuals.

Note: The paper setter will set the paper as per the question paper templates provided.

Course code	ES-1	13L/						
Coursetitle	Engi	gineeringGraphics&Design Practice						
Scheme and Credits	L	Т	Ρ	Credit	Practical	Minor	Total	Time
				S		Test		
	-	-	3	1.5	30	20	50	3h
Pre-requisites(if any)	-							

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.	
CO-2	To understand to customize settings of CAD software and produce CAD drawing.	
CO-3	To practice performing various functions in CAD softwares.	
CO-4	To Learn about solid modelling and demonstration of a simple team design project.	

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingupofunitsanddrawinglimits;ISOandANSIstandardsforcoordinatedimensioningandtolerancing;Orthographicconstraints,Snaptoobjectsmanuallyandautomatically;Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvariouswaysofdrawingcircles;ouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduse of Layers, layerstocreatedrawings, Create, editandusecustomized layers;

10(1309)

Changingline

lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids andprojectthetrueshapeof thesectionedsurface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory,includingsketching of perspective,isometric,multiview,auxiliary,andsectionviews.Spatialvisualization exercises.Dimensioning guidelines,tolerancingtechniques; dimensioningandscalemulti viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM).

Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof)CADSoftwareTheoryandUserManuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-1	ES-111LA								
Coursetitle	Manu	nufacturingProcessesWorkshop								
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time		
	0	0	3	1.5	60	40	100	3h		
Pre-requisites (if any)										

Aim: T	o make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., " Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS-			Biology							
141A										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
2	1	-	3	75	25	100	3h			
Purpos	To fan	niliarize	the studen	ts with the l	basics of Biotechr	nology				
e										
		Со	urse Outco	mes						
CO1	Introduct	ion to es	sentials of	life and ma	cromolecules ess	ential for growt	h and			
	Developn	nent				-				
CO2	Defining	Defining the basic concepts of cell division, genes and Immune system								
CO3	Introduct	Introduction of basic Concept of ThermoGenetic Engg. & Biochemistry								
CO4	Introduction of basic Concept of Microbiology & Role of Biology in Different Fields									

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria, chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1312ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation.Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.

D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

ES-101A		BASIC ELEC	TRICAL EN	IGINEERING							
L	Т	Р	Credit	Credit Major Test Minor Test Total							
4	1	-	5	75	25	100	3				
		To familiarize the students with the basics of Electrical									
Purpose	Engineering										
			Cou	Irse Outcomes							
CO1	Deals with st	eady state o	ircuit ana	lysis subject to DC.							
CO 2	Deals with A	<u>C fundamer</u>	tals & stea	ady state circuit respo	nse subject to	AC.					
	Deals with	introducto	ry Baland	ed Three Phase Sy	stem analysis	and Sir	ngle Phase				
CO 3	Transformer	•			_						
CO 4	Explains the	Basics of El	ectrical Ma	achines & Electrical in	stallations						

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit.Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts.including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phaseemf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon.Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutator action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena&Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC ELECTRICAL ENGINEERING LAB										
L	T Practic Credit Minor Test (Practical) Tota Time (Hrs										
-	-	al 2	1	20	30	50	3				
Purpose	То	familiarize	the stude	ents with the El	ectrical Techn	ologyP	racticals				
			Cou	rse Outcomes							
CO1	Understand b theorems	asic conce	ots of Ne	twork							
CO 2	Deals with ste techniques	eady state f	requenc	y response of	RLC circuit p	barame	eters solution				
CO 3	Deals with introductory Single Phase Transformer practicals										
CO 4	Explains the co Machines	onstructior	nal featur	res and praction	cals of variou	s types	of Electrical				

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of Technology in Civil Engineering(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

Semester I (w.e.f. session 2018-2019)

	CoursoNo /			Hours/			Examinati	onSchedule((Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagneticTheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-135A	Multi-variableCalculus&LinearAlgebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches. Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of TechnologyCivil Engineering(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

				Hourd			Examina	tionSchedule(Marks)	Duration
S.No.	Courseivo./ Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagnetictheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-136A	Calculus&OrdinaryDifferentialEquations	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

BS-119/	4	Introduction to Electromagnetic Theory								
L	Т	Т Р		Major	Minor	Total	Time			
				Test	Test					
3	1	-	4	75	25	100	3h			
Purpose	To introduce	e the fundan	nentals of	f electror	nagnetic th	neory to	the students for			
	applications	in Engineeri	ng field.		_	-				
			Course C	Outcom es						
CO 1	Introduce th	e basic conce	pts of Ele	ctrostatio	s in vacuu	n.				
CO 2	Introduce th	Introduce the basic concepts of Magnetostatics in vacuum.								
CO 3	Discuss elect	viscuss electrostatics and magnetostatics in linear dielectric medium.								
CO 4	Basics of Max	kwell's equat	ions and	electroma	agnetic wav	/es.				

Unit - I

Electrostatics in Vacuum: Calculation of Electric Field: Coulomb's law, Continuous charge distribution; Divergence and Curl of Electrostatic Fields: Field lines, flux, Gauss's law, Applications of Gauss's law; Electrostatic Potential: Comments on potential, Poisson's and Laplace's Equation, the potential of a localized charge distribution; Electrostatic Boundary Conditions; Work and Energy in Electrostatics: the work done to move a charge, the energy of a point and continuous charge distribution.

Unit - II

Electrostatics in a Linear Dielectric Medium: Polarization:dielectrics, induced dipoles, alignments of polar molecules; The field of a Polarized Object: bound charges and its physical interpretation; The Filed Inside a Dielectric; The Electric Displacement: Gauss's law in the presence of dielectrics, A deceptive parallel, Boundary conditions; Linear Dielectrics: Susceptibility, Permittivity, dielectric constant, Boundary value problems with linear dielectrics, Energy in dielectric systems, Forces in dielectrics.

Unit - III

Magnetostatics: The Lorentz Force Law: magnetic fields, magnetic forces, currents; Biot- Savart law, Divergence and Curl of magnetic field, Magnetic Vector Potential: vector potential, magnetostatic boundary conditions, multiple expansion of vector potential.

Magnetostatics in a linear magnetic: Magnetization: Effect of magnetic field on atomic orbits; The Field of a Magnetized Object: Bound currents, Physical interpretation of bound currents; The Auxiliary Magnetic Field: Ampere's law in magnetized materials, A deceptive parallel, Boundary conditions; Linear and Nonlinear Media: magnetic susceptibility and permeability, ferromagnetism.

Unit - IV

Faraday's law: Electromotive Force: Ohm's law, Motional emf; Electromagnetic Induction: Faraday's law, The induced electric field, inductance, energy in magnetic fields.

Maxwell's Equations: Electrodynamics before Maxwell, How Maxwell fixed Ampere's law, Maxwell's equations, Maxwell's equations in matter.

Electromagnetic Waves: Electromagnetic Waves in Vacuum: the wave equation for electric and magnetic field; Electromagnetic Waves in Matter: propagation in linear media.

Suggested Books:

- 1. David J. Griffiths, Introduction to Electrodynamics, Pearson Education.
- 2. Halliday and Resnick, Physics
- 3. W. Saslow, Electricity, Magnetism and Light

BS-121L	A	Electromagnetics Lab									
L	Т	Р	Credit	Practical	Minor	Total	Time				
					Test						
-	-	3	1.5	30	20	50	3h				
Purpose	e To give t	he practic	al knowledge	e of handling th	ne instrumei	nts.					
			Course	Outcomes							
CO	0 To make the students familiar with the experiments related with Electromagnetic										
Theory.							-				

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 2. To study induced e.m.f. as a function of velocity of magnet.
- 3. To study the growth and decay of current in a LR circuit using magnetic core inductor.
- 4. To find the coefficient of self-inductance by Rayleigh's method.
- 5. To find the coefficient of mutual inductance of two coils.
- 6. To determine the magnetic induction field between the pole pieces of an electromagnet.
- 7. To study Bio-Savart's law.
- 8. To study the dependency of magnetic field on coil diameter and number of turns.
- 9. To investigate the equipotential liens of electric fields.
- 10. To draw the equipotential lines of bar electrode.
- 11. To draw the equipotential lines for ring electrode.
- 12. Verification of Farady and Lenz's law of induction by measuring the induced voltage as function of time.
- 13. Measurement of induced voltage impulse as a function of the velocity of magnet.
- 14. To determine the dielectric constant of different dielectric materials.
- 15. To measure the spatial distribution of the magnetic field between a pair of identical coils in Helmholtz arrangement.
- 16. To investigate the spacing between coils at which magnetic field is uniform and to measure its spatial distribution.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time					
3	1	1 - 4 75 25 100 3h										
Purpose	To fan	niliarize the s	students wit	th basic an	d applied co	oncept in cl	hemistry					
CO1	An ins	ight into the	atomic and	molecular	structure							
CO2	Analy	Analytical techniques used in identification of molecules										
CO3	To un	To understand Periodic properties										
CO4	Toun	derstand the	spatial arra	angement o	of molecules	5						

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine.Vibrational and rotational spectroscopy of diatomic molecules.Applications.Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

- 1) University chemistry, by B. M. Mahan, Pearson Education
- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab										
L	Т	Р	Credit	Practical	Minor Test	Total	Time					
-	-	3	1.5	30	20	50	3h					

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES- 105A	Programming for Problem Solving										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
3	-	-	3	75	25	100	3h				
Purpos	То	familiarize	the studer	nts with the	e basics of (Computer S	ystem and C				
е		Programming									
			Cou	rse Outcor	nes						
CO 1	Describe Language	the over s.	view of C	Computer	System a	nd Levels	of Programming				
CO 2	Learn to t	ranslate th	e algorithr	ns to progr	ams (in C I	anguage).					
CO 3	Learn de recursion	Learn description and applications of conditional branching, iteration and recursion.									
CO 4	To use ari	rays, pointe	ers and str	uctures to	formulate a	lgorithms	and programs.				

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators. Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union. Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India..
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications
- 10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA	Programming for Problem Solving Lab											
L	Т	Р	Credit	Practica	Minor	Total	Time					
				I	Test							
-	-	2	1	30	20	50	3h					
Purpos	To Intro	To Introduce students with problem solving using C Programming language										
е												
			Cour	se Outcom	es							
CO 1	To formula	te the algo	rithms for	simple pro	blems							
CO 2	Implement	ation of a	rrays and	functions.								
CO 3	Implementation of pointers and user defined data types.											
CO 4	Write indiv and results	vidual and	group rep	orts: prese	nt objectiv	es, describ	e test procedures					

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-101	A	English						
L	Т	Р	Credit	Major	Major Minor		Time	
				Test	Test			
2	-	-	2	75	25	100	3h	
Course Outcomes								
CO 1	Building up the vocabulary							
CO 2	Students will acquire basic proficiency in English including writing skills							

UNIT-1

Vocabulary Building

- 1.1 The concept of Word Formation
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations.

UNIT- 2

Basic Writing Skills

2.1 Sentence Structures

- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT- 4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA	Language Lab							
L	Т	Р	Credit	Practical	Minor	Tota	Time	
					Test			
-	-	2	1	30	20	50	3h	

OBJECTIVES

- 1. Listening Comprehension
- 2. Pronunciation, Intonation, Stress and Rhythm
- 3. Common Everyday Situations: Conversations and Dialogues
- 4. Communication at Workplace
- 5. Interviews
- 6. Formal Presentations

BS-135A		Multivariable Calculus and Linear Algebra							
L	Т	Р	Credit	Major	Minor	Total	Time		
				Test	Test				
3	1	-	4	75	25	100	3 h		
Purpose	To famili	arize the	prospectiv	ve enginee	ers with tee	chniques ii	n calculus, sequence		
_	& series,	multivari	able calcu	lus, and li	near algeb	ra.	_		
			Cou	rse Outco	mes				
CO1	To introduce the idea of applying differential and integral calculus to notions								
	improper integrals. Apart from some applications it gives a basic introduction o								
	Beta and Gamma functions.								
CO 2	To introduce the fallouts of Rolle's Theorem that is fundamental to application of								
	analysis to	analysis to Engineering problems.							
CO 3	To develop	o the tool	of power	series ar	nd Fourier	series for	learning advanced		
	Engineerin	Engineering Mathematics.							
CO 4	To familia	rize the st	udent with	n function	s of severa	al variable	s that is essential in		
	most branches of engineering.								
CO 5	To develop the essential tool of matrices and linear algebra in a comprehensive								
	manner.								
UNIT-I					(12 h	nrs)			
Calculus:	Evaluation of	of definite	and impro	oper integ	rals: Beta	and Gamm	na functions and thei		
properties;	; Application:	s of definite	e integrals	to evaluate	e surface are	eas and volu	umes of revolutions.		
Rolle's The	orem, Mean	value theor	rems, Indet	erminate f	orms and L	'Hospital's	rule.		
UNIT-II				(12 hrs)					
Sequence	and Series:	Convergen	ce of seque	ence and se	eries, tests f	for converg	ence (Comparison test		
D'Alember	t's Ratio test,	Logarithm	ic test, Cau	chy root te	est, Raabe's	test); Powe	er series.		
Fourier se	ries: Introdu	uction, Fou	irier-Euler	Formula,	Dirichlet's	conditions	s, Change of intervals		
Fourier ser	ies for even a	and odd fui	nctions, Ha	If range sir	he and cosir	ne series.			
UNIT-III		((09 h	rs)			
Multivaria	ible Calculu	s (differer	ntiation):	l aylor's se	eries (for or	he and mor	e variables), series foi		
exponentia	II, trigonome	tric and log	arithm fun	ctions.	· · · · ·				
Partial der	ivatives fot:	al ditterent	ial. Chain r	rule for dif	terentiation	ו Homoder	eous tunctions. Fuler/		

Partial derivatives, Total differential, Chain rule for differentiation, Homogeneous functions, Euler's theorem, Jacobian, Maxima, minima and saddle points; Method of Lagrange multipliers.
UNIT-IV

(07 hrs)

Matrices: Rank of a matrix, elementary transformations, elementary matrices, Gauss Jordon method to find inverse using elementary transformations, normal form of a matrix, linear dependence and independence of vectors, consistency of linear system of equations, linear and orthogonal transformations, eigenvalues and eigenvectors, properties of eigenvalues, Cayley – Hamilton theorem and its applications.

Suggested Books:

1.ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

- 2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

BS-136A			Calculus a	and Ordinar	y Differentia	l Equations				
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
3 1 - 4 75 25				100	3 h					
Purpose	e To familiarize the prospective engineers with techniques inmultivariate integration, ordinary									
_	and partial differential equations and complex variables.									
			Cou	urse Outcon	nes					
CO1	To introduce	effective m	athematical	tools for th	ne solutions	of differentia	al equations that model			
	physical proc	esses.					-			
CO 2	To acquaint	the student	with mathe	ematical to	ols needed i	n evaluating	multiple integrals and			
	their usage.					_				
CO 3	To introduce	the tools of	differentiat	ion and inte	egration of fu	unctions of co	omplex variable thatare			
	used in vario	us techniqu [,]	es dealing er	naineerina r	problems					

Note: The paper setter will set the paper as per the question paper templates provided.

UNIT-I

(10 hrs)

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree:equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

Ordinary differential equations of higher orders:

Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-II

(10 hrs) Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar)

Applications: areas and volumes; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds.

UNIT-III

(10hrs)

Vector Calculus: Introduction, Scalar and Vector point functions, Gradient, divergence & Curl and their properties, Directional derivative.

Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

UNIT-IV

(10 hrs)

Complex Variable – Differentiation: Differentiation, Cauchy-Riemann equations, analytic functions,

harmonic functions, findingharmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties;

Complex Variable – Integration:Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (withoutproof), Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).

Suggested Books:

1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

3. Erwin kreyszig and SanjeevAhuja, Applied Mathematics- II, Wiley India Publication, 2015.

4. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary ValueProblems, 9th Edn., Wiley India, 2009.

5. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.

6. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice HallIndia, 1995.

7. E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.

8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

9. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008. 10. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

Course code	ES-1	ES-109A									
Coursetitle	Engi	EngineeringGraphics&Design									
Scheme and Credits		Т	Р	Credits	Major Test	Minor Test	Tota I	Time			
	1	2	0	3	75	25	100	3h			

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing, graphics and Projections.

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of
	Isometric views to Orthographic views and vice-versa.

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections ofPointsandlinesinclined tobothplanes; Projectionsofplanesinclined to one principalPlane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular solids like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. Corresponding'stoCADSoftwareTheoryandUserManuals.

Note: The paper setter will set the paper as per the question paper templates provided.

Course code	ES-1	ES-113LA									
Coursetitle	Engi	neer	ingGr	aphics&	Design Pra	ctice					
Scheme and Credits	L	Т	Ρ	Credit	Practical	Minor	Total	Time			
				S		Test					
	-	-	3	1.5	30	20	50	3h			
Pre-requisites(if any)	-										

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.	
CO-2	To understand to customize settings of CAD software and produce CAD drawing.	
CO-3	To practice performing various functions in CAD softwares.	
CO-4	To Learn about solid modelling and demonstration of a simple team design project.	

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingupofunitsanddrawinglimits;ISOandANSIstandardsforcoordinatedimensioningandtolerancing;Orthographicconstraints,Snaptoobjectsmanuallyandautomatically;Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvariouswaysofdrawingcircles;output

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduse of Layers, layerstocreatedrawings, Create, editandusecustomized layers;

10(1328)

Changingline

lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids andprojectthetrueshapeof thesectionedsurface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory,includingsketching of perspective,isometric,multiview,auxiliary,andsectionviews.Spatialvisualization exercises.Dimensioning guidelines,tolerancingtechniques; dimensioningandscalemulti viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM).

Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof)CADSoftwareTheoryandUserManuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-1	S-111LA								
Coursetitle	Manu	nufacturingProcessesWorkshop								
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time		
	0	0	3	1.5	60	40	100	3h		
Pre-requisites (if any)										

Aim: T	o make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., " Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS- 141A			Biology				
L	Т	Р	Credit	Major Test	Minor Test	Total	Time
2	1	-	3	75	25	100	3h
Purpos e	To far	niliarize	the studen	ts with the	basics of Biotechr	ology	
		Co	urse Outco	mes			
CO1	Introduct Developm	tion to es nent	sentials of	life and ma	cromolecules ess	ential for growt	h and
CO2	Defining	the basic	concepts o	of cell divisi	on, genes and Imr	nune system	
CO3	Introduct	tion of ba	sic Concep	t of Thermo	oGenetic Engg. & E	Biochemistry	
CO4	Introduct	tion of ba	sic Concep	t of Microb	iology & Role of B	iology in Differe	ent Fields
)4	Introduct	tion of ba	sic Concep	t of Microbi Ui	iology & Role of B nit – I	iology in Diff	ere

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria, chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1331ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation.Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.

D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

FC 101A										
ES-101A		BASIC ELEC	I RICAL EP	IGINEERING		-	-			
L	Т	Р	Credit	Major Test	Minor Test	Total	Time(Hrs)			
4	1	-	5	75	25	100	3			
	To familiarize the students with the basics of Electrical									
Purpose	Engineering									
	Course Outcomes									
CO1	Deals with st	eady state c	ircuit ana	lysis subject to DC.						
CO 2	Deals with A	C fundamen	tals & stea	ady state circuit resp	onse subject to	AC.				
	Deals with	introductor	y Baland	ed Three Phase S	ystem analysis	and Sir	ngle Phase			
CO 3	Transformer		-				-			
CO 4	Explains the	Basics of Ele	ectrical Ma	achines & Electrical i	nstallations					

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit.Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts.including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phaseemf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon.Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutator action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena&Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC ELECT	RICAL ENGIN	IEERING LAB								
L	T Practio	c Credit	Minor Test	(Practical)	Tota	Time (Hrs)					
-	al - 2	1	20	30	50	3					
Purpose	To familiarize the students with the Electrical TechnologyPracticals										
Course Outcomes											
004	Understand basic concepts of Network										
CO1	theorems										
CO 2	Deals with steady sta techniques	ite frequenc	y response of	RLC circuit p	barame	eters solution					
CO 3	Deals with introductory Single Phase Transformer practicals										
	Explains the construc	tional featui	res and praction	cals of variou	s types	s of Electrical					
CO 4	Machines		-		-						

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of Technology in Mechatronics Engineering(Credit Based)

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

Semester I (w.e.f. session 2018-2019)

	CourseNo /			Hours/			Examinati	ionSchedule	(Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	oi exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagneticTheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-135A	Multi-variableCalculus&LinearAlgebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches. Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of TechnologyMechatronics Engineering(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

				Hours/			Examina	tionSchedule	(Marks)	Duration
S.No.	Coursewo./ Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	of exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagnetictheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-136A	Calculus&OrdinaryDifferentialEquations	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

BS-119/	4	Introduction to Electromagnetic Theory									
L	Т	ТР		Major	Minor	Total	Time				
				Test	Test						
3	1	1 - 4 75 25 100 3h									
Purpose To introduce the fundamentals of electromagnetic theory to the students for											
	applications	in Engineeri	ng field.		_	-					
			Course C	Outcom es							
CO 1	Introduce th	e basic conce	pts of Ele	ctrostatio	s in vacuu	n.					
CO 2	Introduce th	e basic conce	pts of Ma	gnetostat	tics in vacu	um.					
CO 3	Discuss electrostatics and magnetostatics in linear dielectric medium.										
CO 4	Basics of Max	Basics of Maxwell's equations and electromagnetic waves.									

Unit - I

Electrostatics in Vacuum: Calculation of Electric Field: Coulomb's law, Continuous charge distribution; Divergence and Curl of Electrostatic Fields: Field lines, flux, Gauss's law, Applications of Gauss's law; Electrostatic Potential: Comments on potential, Poisson's and Laplace's Equation, the potential of a localized charge distribution; Electrostatic Boundary Conditions; Work and Energy in Electrostatics: the work done to move a charge, the energy of a point and continuous charge distribution.

Unit - II

Electrostatics in a Linear Dielectric Medium: Polarization:dielectrics, induced dipoles, alignments of polar molecules; The field of a Polarized Object: bound charges and its physical interpretation; The Filed Inside a Dielectric; The Electric Displacement: Gauss's law in the presence of dielectrics, A deceptive parallel, Boundary conditions; Linear Dielectrics: Susceptibility, Permittivity, dielectric constant, Boundary value problems with linear dielectrics, Energy in dielectric systems, Forces in dielectrics.

Unit - III

Magnetostatics: The Lorentz Force Law: magnetic fields, magnetic forces, currents; Biot- Savart law, Divergence and Curl of magnetic field, Magnetic Vector Potential: vector potential, magnetostatic boundary conditions, multiple expansion of vector potential.

Magnetostatics in a linear magnetic: Magnetization: Effect of magnetic field on atomic orbits; The Field of a Magnetized Object: Bound currents, Physical interpretation of bound currents; The Auxiliary Magnetic Field: Ampere's law in magnetized materials, A deceptive parallel, Boundary conditions; Linear and Nonlinear Media: magnetic susceptibility and permeability, ferromagnetism.

Unit - IV

Faraday's law: Electromotive Force: Ohm's law, Motional emf; Electromagnetic Induction: Faraday's law, The induced electric field, inductance, energy in magnetic fields.

Maxwell's Equations: Electrodynamics before Maxwell, How Maxwell fixed Ampere's law, Maxwell's equations, Maxwell's equations in matter.

Electromagnetic Waves: Electromagnetic Waves in Vacuum: the wave equation for electric and magnetic field; Electromagnetic Waves in Matter: propagation in linear media.

Suggested Books:

- 1. David J. Griffiths, Introduction to Electrodynamics, Pearson Education.
- 2. Halliday and Resnick, Physics
- 3. W. Saslow, Electricity, Magnetism and Light

BS-121L	A	Electromagnetics Lab									
L	Т	T P		Practical	Minor	Total	Time				
					Test						
-	3 1.5		1.5	30	20	50	3h				
Purpose	e To give t	he practic	al knowledge	e of handling th	ne instrumei	nts.					
			Course	Outcomes							
CO	CO To make the students familiar with the experiments related with Electromagnetic										
	Theory.										

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 2. To study induced e.m.f. as a function of velocity of magnet.
- 3. To study the growth and decay of current in a LR circuit using magnetic core inductor.
- 4. To find the coefficient of self-inductance by Rayleigh's method.
- 5. To find the coefficient of mutual inductance of two coils.
- 6. To determine the magnetic induction field between the pole pieces of an electromagnet.
- 7. To study Bio-Savart's law.
- 8. To study the dependency of magnetic field on coil diameter and number of turns.
- 9. To investigate the equipotential liens of electric fields.
- 10. To draw the equipotential lines of bar electrode.
- 11. To draw the equipotential lines for ring electrode.
- 12. Verification of Farady and Lenz's law of induction by measuring the induced voltage as function of time.
- 13. Measurement of induced voltage impulse as a function of the velocity of magnet.
- 14. To determine the dielectric constant of different dielectric materials.
- 15. To measure the spatial distribution of the magnetic field between a pair of identical coils in Helmholtz arrangement.
- 16. To investigate the spacing between coils at which magnetic field is uniform and to measure its spatial distribution.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry									
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
3	1	1 - 4 75 25 100 3h									
Purpose	To fan	To familiarize the students with basic and applied concept in chemistry									
CO1	An ins	ight into the	atomic and	molecular	structure						
CO2	Analy	tical techniqu	ues used in i	identificati	ion of molec	ules					
CO3	To un	To understand Periodic properties									
CO4	Toun	To understand the spatial arrangement of molecules									

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine.Vibrational and rotational spectroscopy of diatomic molecules.Applications.Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

- 1) University chemistry, by B. M. Mahan, Pearson Education
- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab									
L	Т	Р	Credit	Practical	Minor Test	Total	Time				
-	-	3	1.5	30	20	50	3h				

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES- 105A		Programming for Problem Solving									
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
3	-	-	3	75	25	100	3h				
Purpos	To	To familiarize the students with the basics of Computer System and C									
е		Programming									
			Cou	rse Outcor	nes						
CO 1	Describe Language	the over s.	view of (Computer	System a	nd Levels	of Programming				
CO 2	Learn to t	ranslate th	e algorithr	ns to progr	ams (in C I	anguage).					
CO 3	Learn de recursion	Learn description and applications of conditional branching, iteration and recursion.									
CO 4	To use ari	rays, point	ers and str	uctures to	formulate a	algorithms	and programs.				

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators. Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union. Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India..
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications
- 10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA		Programming for Problem Solving Lab								
L	Т	Р	Credit	Practica	Minor	Total	Time			
				I	Test					
-	-	- 2 1 30 20 50 3h								
Purpos	To Intro	To Introduce students with problem solving using C Programming language								
е										
			Cour	se Outcom	es					
CO 1	To formula	te the algo	rithms for	simple pro	blems					
CO 2	Implement	ation of a	rrays and	functions.						
CO 3	Implementation of pointers and user defined data types.									
CO 4	Write individual and group reports: present objectives, describe test procedures and results.									

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-101	Α	English								
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
2	-	2		75	25	100	3h			
			Course	e Outcomes	S					
CO 1	CO 1 Building up the vocabulary									
CO 2	CO 2 Students will acquire basic proficiency in English including writing skills									

UNIT-1

Vocabulary Building

- 1.1 The concept of Word Formation
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations.

UNIT- 2

Basic Writing Skills

2.1 Sentence Structures

- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT- 4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA		Language Lab							
L	Т	Р	Credit	Practical	Minor	Tota	Time		
					1621				
-	-	2	1	30	20	50	3h		

OBJECTIVES

- 1.
- 2.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm Common Everyday Situations: Conversations and Dialogues Communication at Workplace 3.
- 4.
- Interviews 5.
- **Formal Presentations** 6.

BS-135A			Multivaria	ble Calcu	lus and Line	ear Algebr	а	
L	Т	Р	Credit	Major	Minor	Total	Time	
				Test	Test			
3	1	-	4	75	25	100	3 h	
Purpose	To famili	arize the	prospectiv	e enginee	ers with tec	hniques ir	n calculus, sequence	
	& series,	multivaria	able calcul	us, and li	near algebr	a.		
			Cour	rse Outco	mes			
CO1	To introdu	ce the ide	a of apply	ing differ	ential and i	ntegral ca	Iculus to notions of	
	improper integrals. Apart from some applications it gives a basic introduction on							
<u></u>	Beta and Gamma functions.							
CU 2	10 Introdu	ce the fallo	DUIS OF ROI		rem that is	fundamen	tal to application of	
CO 2	To dovelor	the tool	of power	IIS.	d Fourior	sorios for	loarning advanced	
003	Fngineerin	a Mathem	atics	series ai	iu roui iei	261 162 101	learning auvanceu	
CO 4	To familiar	ize the sti	udent with	function	s of severa	l variables	s that is essential in	
00 4	most brand	thes of end	lineering.	ranction	5 01 500010			
CO 5	To develop	the esser	ntial tool o	f matrice	s and linea	r algebra	in a comprehensive	
	manner.			i mati ioo		i aigobia		
UNIT-I					(12 h	rs)		
Calculus :	Evaluation c	of definite	and impro	oper integ	rals: Beta	and Gamm	a functions and their	
properties;	Applications	s of definite	e integrals t	to evaluate	e surface are	as and volu	umes of revolutions.	
Rolle's The	orem, Mean v	value theor	ems, Indet	erminate f	orms and L'	Hospital's	rule.	
UNIT-II					(12 h	rs)		
Sequence	and Series:	Convergen	ce of seque	ence and se	eries, tests f	or converg	ence (Comparison test,	
D'Alembert	's Ratio test,	Logarithm	ic test, Cau	chy root te	est, Raabe's	test); Powe	er series.	
Fourier se	ries: Introdu	iction, Fou	irier-Euler	Formula,	Dirichlet's	conditions	s, Change of intervals,	
Fourier ser	ies for even a	and odd fur	nctions, Ha	lf range sir	he and cosin	e series.		
		1.1.55			(09 h	rs)		
Multivaria		s (annerer	Itiation):	aylor's se	eries (for or	ie and mor	e variables), series for	
exponential dor	i, trigonomei	li ic and iog	ar ithin iun ial-Chain r	CLIONS. Tulo for dif	Forontiation	llomogon	aque functione Fulerie	
theorem la	valives, Tola		a and cadd	la pointail	Votbod of L	i, Humoyen	ieous iurictions, Eurer s	
	icodiai I, ividXI	111a, 111111111	a anu sauu	ie points; i	νιστησά ΟΓ L (Ω7 h	ayı anye mi rs)	anipileis.	
					(0711	13)		

Matrices: Rank of a matrix, elementary transformations, elementary matrices, Gauss Jordon method to find inverse using elementary transformations, normal form of a matrix, linear dependence and independence of vectors, consistency of linear system of equations, linear and orthogonal transformations, eigenvalues and eigenvectors, properties of eigenvalues, Cayley – Hamilton theorem and its applications.

Suggested Books:

1. ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

- 2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

BS-136A			Calculus a	nd Ordinar	y Differentia	l Equations		
L	Т	Р	Credit	Major	Minor	Total	Time	
				Test	Test			
3	1	-	4	75	25	100	3 h	
Purpose	se To familiarize the prospective engineers with techniques inmultivariate integration, ordinary							
	and partial differential equations and complex variables.							
	Course Outcomes							
CO1	To introduce physical proc	effective m esses.	athematical	tools for th	e solutions o	of differentia	al equations that model	
CO 2	CO 2 To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.							
CO 3	To introduce used in vario	o introduce the tools of differentiation and integration of functions of complex variable thatare sed in various techniques dealing engineering problems.						

UNIT-I

(10 hrs)

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree:equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

Ordinary differential equations of higher orders:

Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-II

(10 hrs) Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar)

Applications: areas and volumes; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds.

UNIT-III

(10hrs)

Vector Calculus: Introduction, Scalar and Vector point functions, Gradient, divergence & Curl and their properties, Directional derivative.

Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

UNIT-IV

(10 hrs) **Complex Variable – Differentiation:** Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, findingharmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties;

Complex Variable – Integration:Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (withoutproof), Taylor's series,zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).

Suggested Books:

1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

3. Erwin kreyszig and SanjeevAhuja, Applied Mathematics- II, Wiley India Publication, 2015.

4. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary ValueProblems, 9th Edn., Wiley India, 2009.

5. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.

6. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice HallIndia, 1995.

7. E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.

8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

9. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008. 10. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

ES-1	ES-109A								
Engi	EngineeringGraphics&Design								
L	Т	Р	Credits	Major Test	Minor Test	Tota I	Time		
1	2	0	3	75	25	100	3h		
	ES-1 Engi L 1	ES-109A Engineer L T 1 2	ES-109A EngineeringGr L T P 1 2 0	ES-109A EngineeringGraphics&D L T P Credits 1 2 0 3	ES-109AEngineeringGraphics&DesignLTPCreditsMajor120375	ES-109AEngineeringGraphics&DesignLTPCreditsMajorMinor12037525	ES-109AEngineeringGraphics&DesignLTPCreditsMajorMinorTota12037525100		

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing, graphics and Projections.

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of
	Isometric views to Orthographic views and vice-versa.

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections of Points and lines inclined to both planes; Projections of planes inclined to one principal Plane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular solids like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. Corresponding'stoCADSoftwareTheoryandUserManuals.

Note: The paper setter will set the paper as per the question paper templates provided.

Course code	FS_1	121/	<u>۱</u>								
	L3-1	L3-113LA									
Coursetitle	Engi	EngineeringGraphics&Design Practice									
Scheme and Credits	L	L T P Credit Practical Minor Total Time									
				S		Test					
	-	-	3	1.5	30	20	50	3h			
Pre-requisites(if any)	-										

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.
CO-2	To understand to customize settings of CAD software and produce CAD drawing.
CO-3	To practice performing various functions in CAD softwares.
CO-4	To Learn about solid modelling and demonstration of a simple team design project.

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingup ofunitsanddrawing limits;ISOand ANSIstandardsforcoordinatedimensioningandtolerancing; Orthographic constraints, Snap to objects manually and automatically; Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvari ouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects,applyingannotationstodrawings;SettingupanduseofLayers,layerstocreatedrawings,Create,editandusecustomizedlayers;Changinglinelengthsthroughmodifyingexistinglines(extend/lengthen);Printingdocumentstopaper

usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids andprojectthetrueshapeof thesectionedsurface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof parts and assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwo-dimensionaldocumentationofmodels.Planarprojectiontheory,includingsketching of perspective,isometric,multiview,auxiliary,andsectionviews.Spatialvisualization exercises.Dimensioning guidelines,tolerancingtechniques; dimensioningandscalemulti viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice; Drawingsectional elevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM).

Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof) CADS of tware Theory and User Manuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-1	ES-111LA								
Coursetitle	Manu	AanufacturingProcessesWorkshop								
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time		
	0	0	3	1.5	60	40	100	3h		
Pre-requisites (if any)										

Aim: T	o make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., " Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS-			Biology								
141A											
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
2	1	-	3	75	25	100	3h				
Purpos	To familiarize the students with the basics of Biotechnology										
e											
		Со	urse Outco	mes							
CO1	Introduct	ion to es	sentials of	life and ma	cromolecules ess	ential for growt	h and				
	Developn	nent				-					
CO2	Defining	the basic	concepts o	of cell divisi	on, genes and Imr	nune system					
CO3	Introduct	ion of ba	sic Concep	t of Thermo	Genetic Engg. & E	Biochemistry					
CO4	Introduct	Introduction of basic Concept of Microbiology & Role of Biology in Different Fields									

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria, chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1350ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation.Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.

D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

ES-101A		BASIC ELEC	TRICAL EN	IGINEERING							
L	Т	Р	Credit	Major Test	Minor Test	Total	Time(Hrs)				
4	1	-	5	75	25	100	3				
	To familiarize the students with the basics of Electrical										
Purpose	Engineering										
	Course Outcomes										
CO1	Deals with st	eady state o	ircuit ana	lysis subject to DC.							
CO 2	Deals with A	<u>C fundamer</u>	tals & stea	ady state circuit respo	nse subject to	AC.					
	Deals with	Deals with introductory Balanced Three Phase System analysis and Single Phase									
CO 3	Transformer	•			_						
CO 4	Explains the	Basics of El	ectrical Ma	achines & Electrical in	stallations						

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit.Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts.including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phaseemf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon.Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutator action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena&Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC ELECT	RICAL ENGIN	IEERING LAB								
L	T Practio	c Credit	Credit Minor Test		Tota	Time (Hrs)					
-	al - 2	1	20	30	50	3					
Purpose	se To familiarize the students with the Electrical TechnologyPracticals										
Course Outcomes											
004	Understand basic concepts of Network										
CO1	theorems										
CO 2	Deals with steady sta techniques	ite frequenc	y response of	RLC circuit p	barame	eters solution					
CO 3	Deals with introductory Single Phase Transformer CO 3 practicals										
	Explains the construc	tional featui	res and praction	cals of variou	s types	s of Electrical					
CO 4	Machines		-		-						

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of Technology in Textile Engineering(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA

	CourcoNo			Hours/			Examinat	ionSchedule((Marks)	Duration
S.No.	Coursewo./ Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	of exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagneticTheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-135A	Multi-variableCalculus&LinearAlgebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Scheme of Studies/Examination Semester I (w.e.f. session 2018-2019)

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches. Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of TechnologyTextile Engineering(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

	CourseNo /			Hours/			Examina	tionSchedule	(Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	of exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagnetictheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-136A	Calculus&OrdinaryDifferentialEquations	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

BS-119/	4	Intr	oduction	to Electr	omagnetic	Theory			
L	Т	Р	Credit	Major	Minor	Total	Time		
				Test	Test				
3	1	-	4	75	25	100	3h		
Purpose To introduce the fundamentals of electromagnetic theory to the students for									
	applications	in Engineeri	ng field.		_	-			
			Course C	Outcom es					
CO 1	Introduce th	e basic conce	pts of Ele	ctrostatio	s in vacuu	n.			
CO 2	CO 2 Introduce the basic concepts of Magnetostatics in vacuum.								
CO 3	Discuss electrostatics and magnetostatics in linear dielectric medium.								
CO 4	Basics of Max	kwell's equat	ions and	electroma	agnetic wav	/es.			

Unit - I

Electrostatics in Vacuum: Calculation of Electric Field: Coulomb's law, Continuous charge distribution; Divergence and Curl of Electrostatic Fields: Field lines, flux, Gauss's law, Applications of Gauss's law; Electrostatic Potential: Comments on potential, Poisson's and Laplace's Equation, the potential of a localized charge distribution; Electrostatic Boundary Conditions; Work and Energy in Electrostatics: the work done to move a charge, the energy of a point and continuous charge distribution.

Unit - II

Electrostatics in a Linear Dielectric Medium: Polarization:dielectrics, induced dipoles, alignments of polar molecules; The field of a Polarized Object: bound charges and its physical interpretation; The Filed Inside a Dielectric; The Electric Displacement: Gauss's law in the presence of dielectrics, A deceptive parallel, Boundary conditions; Linear Dielectrics: Susceptibility, Permittivity, dielectric constant, Boundary value problems with linear dielectrics, Energy in dielectric systems, Forces in dielectrics.

Unit - III

Magnetostatics: The Lorentz Force Law: magnetic fields, magnetic forces, currents; Biot- Savart law, Divergence and Curl of magnetic field, Magnetic Vector Potential: vector potential, magnetostatic boundary conditions, multiple expansion of vector potential.

Magnetostatics in a linear magnetic: Magnetization: Effect of magnetic field on atomic orbits; The Field of a Magnetized Object: Bound currents, Physical interpretation of bound currents; The Auxiliary Magnetic Field: Ampere's law in magnetized materials, A deceptive parallel, Boundary conditions; Linear and Nonlinear Media: magnetic susceptibility and permeability, ferromagnetism.

Unit - IV

Faraday's law: Electromotive Force: Ohm's law, Motional emf; Electromagnetic Induction: Faraday's law, The induced electric field, inductance, energy in magnetic fields.

Maxwell's Equations: Electrodynamics before Maxwell, How Maxwell fixed Ampere's law, Maxwell's equations, Maxwell's equations in matter.

Electromagnetic Waves: Electromagnetic Waves in Vacuum: the wave equation for electric and magnetic field; Electromagnetic Waves in Matter: propagation in linear media.

Suggested Books:

- 1. David J. Griffiths, Introduction to Electrodynamics, Pearson Education.
- 2. Halliday and Resnick, Physics
- 3. W. Saslow, Electricity, Magnetism and Light

BS-121L	A	Electromagnetics Lab										
L	L T P Credit		Practical	Minor	Total	Time						
					Test							
-	-	3	1.5	30	20	50	3h					
Purpose	e To give t	he practic	al knowledge	e of handling th	ne instrumei	nts.						
			Course	Outcomes								
CO	CO To make the students familiar with the experiments related with Electromagnetic											
	Theory.			-			-					

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 2. To study induced e.m.f. as a function of velocity of magnet.
- 3. To study the growth and decay of current in a LR circuit using magnetic core inductor.
- 4. To find the coefficient of self-inductance by Rayleigh's method.
- 5. To find the coefficient of mutual inductance of two coils.
- 6. To determine the magnetic induction field between the pole pieces of an electromagnet.
- 7. To study Bio-Savart's law.
- 8. To study the dependency of magnetic field on coil diameter and number of turns.
- 9. To investigate the equipotential liens of electric fields.
- 10. To draw the equipotential lines of bar electrode.
- 11. To draw the equipotential lines for ring electrode.
- 12. Verification of Farady and Lenz's law of induction by measuring the induced voltage as function of time.
- 13. Measurement of induced voltage impulse as a function of the velocity of magnet.
- 14. To determine the dielectric constant of different dielectric materials.
- 15. To measure the spatial distribution of the magnetic field between a pair of identical coils in Helmholtz arrangement.
- 16. To investigate the spacing between coils at which magnetic field is uniform and to measure its spatial distribution.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time					
3	1	1 - 4 75 25 100 3h										
Purpose	To familiarize the students with basic and applied concept in chemistry											
CO1	An ins	ight into the	atomic and	molecular	structure							
CO2	Analy	tical techniqu	ues used in i	identificati	ion of molec	ules						
CO3	To un	To understand Periodic properties										
CO4	Toun	derstand the	spatial arra	angement o	of molecules	5						

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine.Vibrational and rotational spectroscopy of diatomic molecules.Applications.Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

- 1) University chemistry, by B. M. Mahan, Pearson Education
- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA	Chemistry Lab							
L	Т	Р	Credit	Practical	Minor Test	Total	Time	
-	-	3	1.5	30	20	50	3h	

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES- 105A	Programming for Problem Solving							
L	Т	Р	Credit	Major Test	Minor Test	Total	Time	
3	-	-	3	75	25	100	3h	
Purpos	To familiarize the students with the basics of Computer System and C							
е	Programming							
Course Outcomes								
CO 1	Describe the overview of Computer System and Levels of Programming Languages.							
CO 2	Learn to translate the algorithms to programs (in C language).							
CO 3	Learn description and applications of conditional branching, iteration and recursion.							
CO 4	To use arrays, pointers and structures to formulate algorithms and programs.							

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators. Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union. Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India..
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications
- 10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA	Programming for Problem Solving Lab							
L	Т	Р	Credit	Practica	Minor	Total	Time	
				I	Test			
-	-	2	1	30	20	50	3h	
Purpos	To Introduce students with problem solving using C Programming language							
е								
Course Outcomes								
CO 1	To formulate the algorithms for simple problems							
CO 2	Implementation of arrays and functions.							
CO 3	Implementation of pointers and user defined data types.							
CO 4	Write individual and group reports: present objectives, describe test procedures and results.							

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.
HM-101	Α	English								
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
2	-	-	2	75	25	100	3h			
			Course	e Outcomes	S					
CO 1	Building up	the vocabu	lary							
CO 2	Students w	ill acquire b	oasic profic	iency in Er	nglish includ	ing writing s	kills			

UNIT-1

Vocabulary Building

- 1.1 The concept of Word Formation
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations.

UNIT- 2

Basic Writing Skills

2.1 Sentence Structures

- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT- 4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA				Language L	ab		
L	Т	Р	Credit	Practical	Minor	Tota	Time
					Test		
-	-	2	1	30	20	50	3h

OBJECTIVES

- 1. Listening Comprehension
- 2. Pronunciation, Intonation, Stress and Rhythm
- 3. Common Everyday Situations: Conversations and Dialogues
- 4. Communication at Workplace
- 5. Interviews
- 6. Formal Presentations

BS-135A			Multivaria	ble Calcu	lus and Lin	ear Algebr	a
L	Т	Р	Credit	Major	Minor	Total	Time
				Test	Test		
3	1	-	4	75	25	100	3 h
Purpose	To famil	arize the	prospectiv	ve enginee	ers with tec	hniques i	n calculus, sequence
	& series,	multivaria	able calcu	lus, and li	near algeb	ra.	
			Cou	rse Outco	mes		
CO1	To introdu	ce the ide	a of apply	ing differ	ential and	integral ca	Iculus to notions of
	improper i	ntegrals. <i>I</i>	Apart from	some ap	plications i	t gives a ba	asic introduction on
	Beta and G	amma fun	ctions.				
CO 2	To introdu	ce the falle	outs of Ro	le's Theo	rem that is	fundamer	ital to application of
	analysis to	Engineeri	ng proble	ms.			
CO 3	To develop	o the tool	of power	series ar	nd Fourier	series for	learning advanced
	Engineerin	g Mathem	atics.				
CO 4	To familia	rize the st	udent with	n function	s of severa	l variable	s that is essential in
	most brand	ches of eng	ineering.				
CO 5	To develop	the esser	ntial tool o	of matrice	s and linea	r algebra	in a comprehensive
	manner.						
UNIT-I					(12 h	irs)	
Calculus	Evaluation of	of definite	and impro	oper integ	rals: Beta	and Gamm	ha functions and thei
properties;	Application	s of definite	e integrals :	to evaluate	e surface are	eas and volu	umes of revolutions.
Rolle's The	orem, Mean	value theor	rems, Indet	erminatef	orms and L	Hospital's	rule.
UNIT-II		•	r		(12 h	irs)	
Sequence	and Series:	Convergen	ce of seque	ence and se	eries, tests i	or converg	ence (Comparison test
D'Alember	t's Ratio test,	Logarithm	ic test, Cau	chy root te	est, Raabe's	test); Powe	er series.
Fourier se	ries: Introdu	iction, Fou	irier-Euler	Formula,	Dirichlet's	conditions	s, Change of intervals
Fourier ser	ties for even a	and odd fui	nctions, Ha	If range sir	he and cosir	ie series.	
UNIT-III					(09 h	rs)	
Multivaria	ble Calculu	s (differer	ntiation):	Faylor's se	eries (for or	ne and mor	e variables), series fo
exponentia	l, trigonome	tric and log	arithm fun	ctions.			

Partial derivatives, Total differential, Chain rule for differentiation, Homogeneous functions, Euler's

Matrices: Rank of a matrix, elementary transformations, elementary matrices, Gauss Jordon method to find inverse using elementary transformations, normal form of a matrix, linear dependence and independence of vectors, consistency of linear system of equations, linear and orthogonal transformations, eigenvalues and eigenvectors, properties of eigenvalues, Cayley – Hamilton theorem and its applications.

Suggested Books:

1. ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.

- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

BS-136A			Calculus a	and Ordinar	y Differentia	l Equations	•
L	Т	Р	Credit	Major	Minor	Total	Time
				Test	Test		
3	1	-	4	75	25	100	3 h
Purpose	To familia and partia	rize the pro I differentia	spective eng l equations a	ineers with and complex	techniques variables.	inmultivaria	te integration, ordinary
			Cou	urse Outcon	nes		
CO1	To introduce physical proc	e effective m cesses.	athematical	tools for th	ne solutions	of differentia	al equations that model
CO 2	To acquaint their usage.	the student	with mathe	ematical too	ols needed i	n evaluating	multiple integrals and
CO 3	To introduce used in vario	the tools of us technique	differentiat es dealing er	ion and intending provide the second se	egration of fu problems.	unctions of co	omplex variable thatare

Note: The paper setter will set the paper as per the guestion paper templates provided.

UNIT-I

(10 hrs)

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree:equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

Ordinary differential equations of higher orders:

Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-II

(10 hrs) Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar)

Applications: areas and volumes; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds.

UNIT-III

(10hrs)

Vector Calculus: Introduction, Scalar and Vector point functions, Gradient, divergence & Curl and their properties, Directional derivative.

Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

(10 hrs)

Complex Variable – Differentiation: Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, findingharmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties;

Complex Variable – Integration:Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (withoutproof), Taylor's series,zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).

Suggested Books:

1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

3. Erwin kreyszig and SanjeevAhuja, Applied Mathematics- II, Wiley India Publication, 2015.

4. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary ValueProblems, 9th Edn., Wiley India, 2009.

5. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.

6. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice HallIndia, 1995.

7. E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.

8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

9. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008. 10. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

ES-1	09A						
Engi	ineer	ingGr	aphics&D	esign			
L	L T P Credits Major Minor Tot						Time
1	2	0	3	75	25	100	3h
	ES-1 Engi L 1	ES-109A Engineer L T 1 2	ES-109A EngineeringGr L T 1 2 0	ES-109AEngineeringGraphics&DLTPCredits1203	ES-109AEngineeringGraphics&DesignLTPCreditsMajor120375	ES-109AEngineeringGraphics&DesignLTPCreditsMajorMinor12037525	ES-109AEngineeringGraphics&DesignLTPCreditsMajorMinorTota112037525100

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing, graphics and Projections.

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of
	Isometric views to Orthographic views and vice-versa.

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections of Points and lines inclined to both planes; Projections of planes inclined to one principal Plane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular solids like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. Corresponding'stoCADSoftwareTheoryandUserManuals.

Note: The paper setter will set the paper as per the question paper templates provided.

Course code	ES-1	13L/	ł					
Coursetitle	Engi	neer	ingGr	aphics&	Design Pra	ctice		
Scheme and Credits	L	Т	Р	Credit	Practical	Minor	Total	Time
				s		Test		
	-	-	3	1.5	30	20	50	3h
Pre-requisites(if any)	-							

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.	
CO-2	To understand to customize settings of CAD software and produce CAD drawing.	
CO-3	To practice performing various functions in CAD softwares.	
CO-4	To Learn about solid modelling and demonstration of a simple team design project.	

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids]; Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingup ofunitsanddrawing limits;ISOand ANSIstandardsforcoordinatedimensioningandtolerancing; Orthographic constraints, Snap to objects manually and automatically; Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvariouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduse of Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changingline lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids and project the true shape of the sectioned surface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory, includingsketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises.Dimensioning guidelines, tolerancingtechniques; dimensioningandscalemulti viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir andas3Dwire-frameandshadedsolids;meshed presentationinstandard2Dblueprintform generationforcomponentmanufacture; topologies for engineering analysis and tool-path solid-modelingsoftwareforcreating geometricdimensioningandtolerancing;Useof associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM).

Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof) CADS of tware Theory and User Manuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-1	11LA						
Coursetitle	Manu	ufactur	ingPro	cessesWo	rkshop			
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time
	0	0	3	1.5	60	40	100	3h
Pre-requisites (if any)								

Aim: T	o make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., " Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS- 141A			Biology				
L	Т	Р	Credit	Major Test	Minor Test	Total	Time
2	1	-	3	75	25	100	3h
Purpos e	To far	niliarize	the studen	ts with the	basics of Biotechr	ology	
		Co	urse Outco	mes			
CO1	Introduct Developm	tion to es nent	sentials of	life and ma	cromolecules ess	ential for growt	h and
CO2	Defining	the basic	concepts o	of cell divisi	on, genes and Imr	nune system	
CO3	Introduct	tion of ba	sic Concep	t of Thermo	oGenetic Engg. & E	Biochemistry	
CO4	Introduct	tion of ba	sic Concep	t of Microb	iology & Role of B	iology in Differe	ent Fields
)4	Introduct	tion of ba	sic Concep	t of Microbi Ui	iology & Role of B nit – I	iology in Diff	ere

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria, chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1369ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation.Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.

D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

FC 101A													
ES-101A		BASIC ELECTRICAL ENGINEERING											
L	Т	T P Credit Major Test Minor Test Total Time(Hrs)											
4	1	1 - 5 75 25 100 3											
		To fami	liarize th	ne students with t	he basics of	Electrical							
Purpose	Engineering												
			Cou	irse Outcomes									
CO1	Deals with st	eady state c	ircuit ana	lysis subject to DC.									
CO 2	Deals with A	C fundamen	tals & stea	ady state circuit resp	onse subject to	AC.							
	Deals with	introductor	y Baland	ed Three Phase S	ystem analysis	and Sir	ngle Phase						
CO 3	Transformer		-				-						
CO 4	Explains the	Basics of Ele	ectrical Ma	achines & Electrical i	nstallations								

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit.Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts.including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phaseemf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon.Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutator action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena&Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC ELECT	RICAL ENGIN	IEERING LAB							
L	T Practic Credit Minor Test (Practical) Tota Time (Hrs)									
-	al - 2	1	20	30	50	3				
Purpose	To familia	rize the stude	ents with the El	ectrical Techn	ologyP	racticals				
	Course Outcomes									
004	Understand basic concepts of Network									
CO1	theorems									
CO 2	Deals with steady sta techniques	ite frequenc	y response of	RLC circuit p	barame	eters solution				
CO 3	Deals with introductory Single Phase Transformer practicals									
	Explains the constructional features and practicals of various types of Electrical									
CO 4	Machines		-		-					

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of Technology in Chemical Engineering(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

	CourcoNo			Hours			Examinati	onSchedule((Marks)	Duration
S.No.	Coursewo./ Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagneticTheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-135A	Multi-variableCalculus&LinearAlgebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Semester I (w.e.f. session 2018-2019)

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches.

Cluster –I: Common with B.Tech in (a) Mechanical Engineering, (b) Aeronautical Engineering (c) Automobile Engineering (d) Civil Engineering (e) Mechatronics Engg. (f) Textile Engineering (g) Chemical Engg.

Bachelor of TechnologyChemical Engineering(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

				Hourd			Examina	tionSchedule(Marks)	Duration
S.No.	Courseivo./ Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-119A	IntroductiontoElectromagnetictheory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-136A	Calculus&OrdinaryDifferentialEquations	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	ElectromagneticsLab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

BS-119/	4	Intr	oduction	to Electr	omagnetic	Theory				
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
3	1	25	100	3h						
Purpose	To introduce	e the fundam	nentals of	f electror	nagnetic th	neory to t	the students for			
	applications	in Engineerii	ng field.		-	-				
			Course C)utcomes						
CO 1	Introduce th	e basic conce	pts of Ele	ctrostatio	s in vacuu	n.				
CO 2	Introduce th	Introduce the basic concepts of Magnetostatics in vacuum.								
CO 3	Discuss elect	Discuss electrostatics and magnetostatics in linear dielectric medium.								
CO 4	Basics of Max	kwell's equat	ions and	electroma	agnetic wav	/es.				

Unit - I

Electrostatics in Vacuum: Calculation of Electric Field: Coulomb's law, Continuous charge distribution; Divergence and Curl of Electrostatic Fields: Field lines, flux, Gauss's law, Applications of Gauss's law; Electrostatic Potential: Comments on potential, Poisson's and Laplace's Equation, the potential of a localized charge distribution; Electrostatic Boundary Conditions; Work and Energy in Electrostatics: the work done to move a charge, the energy of a point and continuous charge distribution.

Unit - II

Electrostatics in a Linear Dielectric Medium: Polarization:dielectrics, induced dipoles, alignments of polar molecules; The field of a Polarized Object: bound charges and its physical interpretation; The Filed Inside a Dielectric; The Electric Displacement: Gauss's law in the presence of dielectrics, A deceptive parallel, Boundary conditions; Linear Dielectrics: Susceptibility, Permittivity, dielectric constant, Boundary value problems with linear dielectrics, Energy in dielectric systems, Forces in dielectrics.

Unit - III

Magnetostatics: The Lorentz Force Law: magnetic fields, magnetic forces, currents; Biot- Savart law, Divergence and Curl of magnetic field, Magnetic Vector Potential: vector potential, magnetostatic boundary conditions, multiple expansion of vector potential.

Magnetostatics in a linear magnetic: Magnetization: Effect of magnetic field on atomic orbits; The Field of a Magnetized Object: Bound currents, Physical interpretation of bound currents; The Auxiliary Magnetic Field: Ampere's law in magnetized materials, A deceptive parallel, Boundary conditions; Linear and Nonlinear Media: magnetic susceptibility and permeability, ferromagnetism.

Unit - IV

Faraday's law: Electromotive Force: Ohm's law, Motional emf; Electromagnetic Induction: Faraday's law, The induced electric field, inductance, energy in magnetic fields.

Maxwell's Equations: Electrodynamics before Maxwell, How Maxwell fixed Ampere's law, Maxwell's equations, Maxwell's equations in matter.

Electromagnetic Waves: Electromagnetic Waves in Vacuum: the wave equation for electric and magnetic field; Electromagnetic Waves in Matter: propagation in linear media.

Suggested Books:

- 1. David J. Griffiths, Introduction to Electrodynamics, Pearson Education.
- 2. Halliday and Resnick, Physics
- 3. W. Saslow, Electricity, Magnetism and Light

BS-121L	A	Electromagnetics Lab												
L	Т	Р	Credit	Practical	Minor	Total	Time							
					Test									
-	-	3	1.5	30	20	50	3h							
Purpose	e To give t	he practic	al knowledge	e of handling th	ne instrumei	nts.								
			Course	Outcomes										
CO	To make th	make the students familiar with the experiments related with Electromagnetic												
	Theory.			-		eory.								

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 2. To study induced e.m.f. as a function of velocity of magnet.
- 3. To study the growth and decay of current in a LR circuit using magnetic core inductor.
- 4. To find the coefficient of self-inductance by Rayleigh's method.
- 5. To find the coefficient of mutual inductance of two coils.
- 6. To determine the magnetic induction field between the pole pieces of an electromagnet.
- 7. To study Bio-Savart's law.
- 8. To study the dependency of magnetic field on coil diameter and number of turns.
- 9. To investigate the equipotential liens of electric fields.
- 10. To draw the equipotential lines of bar electrode.
- 11. To draw the equipotential lines for ring electrode.
- 12. Verification of Farady and Lenz's law of induction by measuring the induced voltage as function of time.
- 13. Measurement of induced voltage impulse as a function of the velocity of magnet.
- 14. To determine the dielectric constant of different dielectric materials.
- 15. To measure the spatial distribution of the magnetic field between a pair of identical coils in Helmholtz arrangement.
- 16. To investigate the spacing between coils at which magnetic field is uniform and to measure its spatial distribution.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry										
L	Т	P Credit Major Minor Total Time Test Test										
3	1	1 - 4 75 25 100 3h										
Purpose	To fan	niliarize the s	students wit	th basic an	d applied co	oncept in cl	hemistry					
CO1	An ins	ight into the	atomic and	molecular	structure							
CO2	Analy	Analytical techniques used in identification of molecules										
CO3	To un	To understand Periodic properties										
CO4	Toun	derstand the	spatial arra	angement o	of molecules	5						

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine.Vibrational and rotational spectroscopy of diatomic molecules.Applications.Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

- 1) University chemistry, by B. M. Mahan, Pearson Education
- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab									
L	Т	Р	Credit	Practical	Minor Test	Total	Time				
-	-	- <u>3 1.5 30 20 50 3</u> r									

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES- 105A		Programming for Problem Solving										
L	Т	TPCreditMajorMinorTotalTimeTestTestTest										
3	-	-	3	75	25	100	3h					
Purpos	То	familiarize	the studer	nts with the	e basics of (Computer S	ystem and C					
е				Program	nming							
			Cou	rse Outcor	nes							
CO 1	Describe Language	the over s.	view of C	Computer	System a	nd Levels	of Programming					
CO 2	Learn to t	ranslate th	e algorithr	ns to progr	ams (in C I	anguage).						
CO 3	Learn description and applications of conditional branching, iteration and recursion.											
CO 4	To use ari	rays, pointe	ers and str	uctures to	formulate a	lgorithms	and programs.					

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators. Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union. Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India..
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications
- 10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA		Programming for Problem Solving Lab										
L	Т	T P Credit Practica Minor Total Time										
				I	Test							
-	-	2	1	30	20	50	3h					
Purpos	To Intro	duce stude	ents with p	roblem sol	ving using	C Program	nming language					
е												
			Cour	se Outcom	es							
CO 1	To formula	te the algo	rithms for	simple pro	blems							
CO 2	Implement	Implementation of arrays and functions.										
CO 3	Implementation of pointers and user defined data types.											
CO 4	Write indiv	vidual and	group rep	orts: prese	nt objectiv	es, descrit	be test procedures					
	and results											

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-101	Α	English									
L	Т	T P Credit Major Minor Total Time									
				Test	Test						
2	-	-	2	75	25	100	3h				
			Course	e Outcomes	S						
CO 1	Building up	uilding up the vocabulary									
CO 2	Students w	ill acquire b	oasic profic	iency in Er	nglish includ	ing writing s	kills				

UNIT-1

Vocabulary Building

- 1.1 The concept of Word Formation
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations.

UNIT-2

Basic Writing Skills

2.1 Sentence Structures

- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT-4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA				Language L	ab		
L	Т	Р	Credit	Practical	Minor	Tota	Time
					Test		
-	-	2	1	30	20	50	3h

OBJECTIVES

- 1. Listening Comprehension
- 2. Pronunciation, Intonation, Stress and Rhythm
- 3. Common Everyday Situations: Conversations and Dialogues
- 4. Communication at Workplace
- 5. Interviews
- 6. Formal Presentations

BS-135A	Multivariable Calculus and Linear Algebra										
L	Т	Р	Credit	Major	Minor	Total	Time				
				Test	Test						
3	1	-	4	75	25	100	3 h				
Purpose	To famili	iarize the	prospectiv	ve enginee	ers with tea	hniques in	n calculus, sequence				
	& series,	multivaria	able calcul	lus, and li	near algeb	ra.					
			Cou	rse Outco	mes						
CO1	To introdu	ce the ide	a of apply	ing differ	ential and	integral ca	Iculus to notions of				
	improper i	ntegrals. <i>F</i>	Apart from	some ap	olications i	t gives a ba	asic introduction on				
	Beta and G	amma fun	ctions.								
CO 2	To introdu	ce the falle	outs of Rol	le's Theo	rem that is	fundamer	ital to application of				
	analysis to	Engineeri	ng problei	ms.							
CO 3	To develop	the tool	of power	series ar	nd Fourier	series for	learning advanced				
00.4	Engineerin	g Mathem	atics.	6		1					
CO 4	To familiar	rize the st	udent with	n function	s of severa	I variable	s that is essential in				
	most brand	ches of eng	ineering.	<u> </u>	<u> </u>	<u> </u>					
CO 5	To develop manner.	the esser	ntial tool o	of matrice	s and linea	ir algebra	in a comprehensive				
UNIT-I					(12 h	nrs)					
Calculus :	Evaluation o	of definite	and impro	oper integ	rals: Beta	and Gamm	na functions and their				
properties;	Applications	s of definite	e integrals f	to evaluate	e surface are	eas and volu	umes of revolutions.				
Rolle's The	orem, Mean	value theor	ems, Indet	erminate f	orms and L	'Hospital's	rule.				
UNIT-II		_	_	_	(12 h	irs)					
Sequence	and Series:	Convergen	ce of seque	ence and se	eries, tests f	for converg	ence (Comparison test				
D'Alembert	's Ratio test,	Logarithm	ic test, Cau	chy root te	est, Raabe's	test); Powe	er series.				
ourier series: Introduction, Fourier-Euler Formula, Dirichlet's conditions, Change of intervals,											
Fourier ser	ourier series for even and odd functions, Half range sine and cosine series.										
UNIT-III		(1100	、 -		(09 h	rs)					
Nultivaria	ble Calculu	s (differer	itiation):	aylor's se	eries (for or	ne and mor	re variables), series for				
exponentia	I, trigonome ⁻	tric and log	arithm fun	ctions.							

Partial derivatives, Total differential, Chain rule for differentiation, Homogeneous functions, Euler's

Matrices: Rank of a matrix, elementary transformations, elementary matrices, Gauss Jordon method to find inverse using elementary transformations, normal form of a matrix, linear dependence and independence of vectors, consistency of linear system of equations, linear and orthogonal transformations, eigenvalues and eigenvectors, properties of eigenvalues, Cayley – Hamilton theorem and its applications.

Suggested Books:

1.ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

- 2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

BS-136A **Calculus and Ordinary Differential Equations** Ρ Minor L т Credit Major Total Time Test Test 4 100 3 1 75 25 3 h To familiarize the prospective engineers with techniques inmultivariate integration, ordinary Purpose and partial differential equations and complex variables. **Course Outcomes** CO1 To introduce effective mathematical tools for the solutions of differential equations that model physical processes. CO 2 To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage. CO 3 To introduce the tools of differentiation and integration of functions of complex variable thatare used in various techniques dealing engineering problems.

Note: The paper setter will set the paper as per the question paper templates provided.

UNIT-I

(10 hrs)

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree:equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

Ordinary differential equations of higher orders:

Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-II

Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar)

Applications: areas and volumes; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds.

UNIT-III

(10hrs)

(10 hrs)

Vector Calculus: Introduction, Scalar and Vector point functions, Gradient, divergence & Curl and their properties, Directional derivative.

Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

(10 hrs)

Complex Variable – Differentiation: Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, findingharmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties;

Complex Variable – Integration:Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (withoutproof), Taylor's series,zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).

Suggested Books:

1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

3. Erwin kreyszig and SanjeevAhuja, Applied Mathematics- II, Wiley India Publication, 2015.

4. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary ValueProblems, 9th Edn., Wiley India, 2009.

5. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.

6. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice HallIndia, 1995.

7. E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.

8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

9. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008. 10. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

ES-1	ES-109A									
Engi	EngineeringGraphics&Design									
L	Т	Р	Credits	Major Test	Minor Test	Tota I	Time			
1	2	0	3	75	25	100	3h			
	ES-1 Engi L 1	ES-109A Engineer L T 1 2	ES-109A EngineeringGr L T 1 2 0	ES-109AEngineeringGraphics&DLTPCredits1203	ES-109AEngineeringGraphics&DesignLTPCreditsMajor120375	ES-109AEngineeringGraphics&DesignLTPCreditsMajorMinor12037525	ES-109AEngineeringGraphics&DesignLTPCreditsMajorMinorTota112037525100			

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing, graphics and Projections.

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of
	Isometric views to Orthographic views and vice-versa.

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections of Points and lines inclined to both planes; Projections of planes inclined to one principal Plane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular solids like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. Corresponding'stoCADSoftwareTheoryandUserManuals.

Note: The paper setter will set the paper as per the question paper templates provided.

Course code	ES-1	ES-113LA									
Coursetitle	Engi	EngineeringGraphics&Design Practice									
Scheme and Credits	L	L T P Credit Practical Minor Total									
				S		Test					
	-	-	3	1.5	30	20	50	3h			
Pre-requisites(if any)	-										

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisualaspectsofengineeringdesign.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.	
CO-2	To understand to customize settings of CAD software and produce CAD drawing.	
CO-3	To practice performing various functions in CAD softwares.	
CO-4	To Learn about solid modelling and demonstration of a simple team design project.	

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids]; Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingup ofunitsanddrawing limits;ISOand ANSIstandardsforcoordinatedimensioningandtolerancing; Orthographic constraints, Snap to objects manually and automatically; Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvari ouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduse of Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changingline lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids and project the true shape of the sectioned surface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory, includingsketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises.Dimensioning guidelines, tolerancingtechniques; dimensioningandscalemulti viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed generationforcomponentmanufacture; topologies for engineering analysis and tool-path solid-modelingsoftwareforcreating geometricdimensioningandtolerancing;Useof associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM).

Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof) CADS of tware Theory and User Manuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-1	ES-111LA									
Coursetitle	Manu	anufacturingProcessesWorkshop									
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time			
	0	0	3	1.5	60	40	100	3h			
Pre-requisites (if any)											

Aim: T	o make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., " Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS-			Biology						
141A									
L	Т	Р	Credit	Major Test	Minor Test	Total	Time		
2	1	-	3	75	25	100	3h		
Purpos	To fan	niliarize	the studen	ts with the	basics of Biotechr	nology			
e									
		Со	urse Outco	mes					
CO1	Introduct	ion to es	sentials of	life and ma	cromolecules ess	ential for growt	h and		
	Developn	nent				-			
CO2	Defining	the basic	concepts o	of cell divisi	on, genes and Imr	nune system			
CO3	Introduct	ion of ba	sic Concep	t of Thermo	Genetic Engg. & E	Biochemistry			
CO4	Introduct	Introduction of basic Concept of Microbiology & Role of Biology in Different Fields							

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria, chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1388ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation.Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.

D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

ES-101A		BASIC ELECTRICAL ENGINEERING										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time(Hrs)					
4	1	-	5	75	25	100	3					
	To familiarize the students with the basics of Electrical											
Purpose	Engineering											
			Cou	Irse Outcomes								
CO1	Deals with st	eady state o	ircuit ana	lysis subject to DC.								
CO 2	Deals with A	<u>C fundamer</u>	tals & stea	ady state circuit respo	nse subject to	AC.						
	Deals with	introducto	ry Baland	ed Three Phase Sy	stem analysis	and Sir	ngle Phase					
CO 3	Transformer	•			_							
CO 4	Explains the	Basics of El	ectrical Ma	achines & Electrical in	stallations							

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit.Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts.including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phaseemf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon.Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutator action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena&Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC	ELECTRIC	AL ENGIN	IEERING LAB				
L	Т	Practic	Credit	Minor Test	(Practical)	Tota	Time (Hrs)	
-	-	al 2	1	20	30	50	3	
Purpose	То	familiarize	the stude	ents with the El	ectrical Techn	ologyP	racticals	
			Cou	rse Outcomes				
CO1	Understand basic concepts of Network theorems							
CO 2	Deals with ste techniques	eady state f	requenc	y response of	RLC circuit p	barame	eters solution	
CO 3	Deals with introductory Single Phase Transformer practicals							
CO 4	Explains the co Machines	onstructior	nal featur	res and praction	cals of variou	s types	of Electrical	

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Cluster –II: Common with B.Tech in (a) ComputerSci. & Engg. (b) Information Technology (c) Electronics & Communication Engg. (d) Electrical Engineering (e) Electrical & Electronics Engineering (f) Electronics Engg.

Bachelor of Technology inComputerSci. & Engg.(Credit Based)

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

Semester I (w.e.f. session 2018-2019)

	CourseNo /			Hours/			Examinati	onSchedule((Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-133A	Calculus&LinearAlgebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches. Cluster –II: Common with B.Tech in (a) ComputerSci. & Engg. (b) Information Technology (c) Electronics & Communication Engg. (d) Electrical Engineering (e) Electrical & Electronics Engineering (f) Electronics Engg.

Bachelor of Technology in ComputerSci. & Engg. (Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

	CourcoNo			Houre/		ExaminationSchedule(Marks)				Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	ot exam(Ho urs)
1A	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-134A	Probablity& Statistics	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

10(1393)

BS-115	A	Semiconductor Physics								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
3	1	-	4	75	25	100	3h			
Purpose	To introduce the fundamentals of solid state physics and its applications to the students.									
	Course Outcomes									
C01	To make the students aware of basic terminology of crystal structure.									
CO 2	Introduce the elementary quantum mechanics, which will be useful in understanding the concepts of solid state physics.									
CO 3	Discussion of classical free electron theory, quantum theory and Band theory of solids.									
CO 4	Basics and applications of semiconductors.									

Unit - I

Crystal Structure: Crystalline and Amorphous solids, Crystal Structure: lattice translation vector, symmetry operations, space lattice, basis; Unit cell and Primitive cell, Fundamental types of lattices: two-dimensional and three dimensional Bravais lattices; Characteristics of Unit cells: Simple Cubic (SC), Body Centred Cubic (BCC), Face Centred Cubic (FCC), Hexagonal Close Packed (HCP) structure; Simple crystal structures: Sodium Chloride, Cesium Chloride, Diamond, Cubic Zinc Sulfide; Miller Indices, Bonding in Solids, Point defects in crystals: Schottky and Frenkel defects.

Unit – II

Quantum Theory: Need and origin of Quantum concept, Wave-particle duality, Phase velocity and group velocity, Uncertainty Principle and Applications; Schrodinger's wave equation: time-dependent and time –independent; Physical Significance of wave function ψ .

Unit – III

Free Electron Theory: Classical free electron theory: electrical conductivity in metals, thermal conductivity in metals, Wiedemann-Franz law, success and drawbacks of free electron theory; Quantum free electron theory: wave function, eigen values; Fermi-Dirac distribution function, Density of states, Fermi energy and its importance, Thermionic Emission (qualitative).

Band theory of Solids: Bloch theorem, Kronig-Penney Model (qualitative), E versus k diagram, Brillouin Zones, Concept of effective mass of electron, Energy levels and energy bands, Distinction between metals, insulators and semiconductors, Hall effect and its Applications.

Unit –IV

Semiconductors: Conduction in Semiconductors, Intrinsic Semiconductors: Conductivity of charge carriers, Carrier concentration in intrinsic semiconductors; Extrinsic Semiconductors: n-type semiconductors, p-type semiconductors, charge carrier concentration in extrinsic semiconductors.

Semiconductor Devices: The p-n junction, Current-voltage characteristics of p-n junction; The Transistor: Bipolar Junction Transistor (BJT), Field Effect Transistor (FET), Metal-Semiconductor Junction (Ohmic and Schottky); Semiconductor Laser.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Introduction to Solid State Physics, John Wiley & Sons. .
- 3. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 4. Solid State Physics, New Age International (P) Limited.
- 5. A Textbook of Quantum Mechanics, McGraw Hill Education (India) Private Limited. Introduction to Nanotechnology, John Wiley & Sons.

BS-117LA			S	Semiconductor Physics Lab						
L	Т	Р	Credit	Practical	Minor Test	Total	Time			
-	-	3	1.5	30	20	50	3h			
Purpos	e To give t	To give the practical knowledge of handling the sophisticated instruments.								
Course Outcomes										
C0	0 To make the students familiar with the experiments related with Semiconductor Physics.									

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the V-I characteristics of a p-n diode.
- 2. To find the flashing and quenching potential of Argon and to find the capacitance of unknown capacitor.
- 3. To find the value of Planck's constant by using photoelectric cell.
- 4. To find the temperature coefficient of resistance by using Pt resistance thermometer by post office box.
- 5. To find the ionization potential of Argon/Mercury using a thyratron tube.
- 6. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 7. To study the characteristics of (Cu-Fe, Cu-Constantan) thermocouple.
- 8. To find the value of Hall Coefficient of semiconductor.
- 9. To find the value of e/m for electrons by Helical method.
- 10. To find the band gap of intrinsic semiconductor using four probe method.
- 11. To calculate the hysteresis loss by tracing a B-H curve.
- 12. To find the frequency of ultrasonic waves by piezoelectric methods.
- 13. To verify Richerdson thermionic equation.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry									
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
3	1	-	4	75	25	100	3h				
Purpose	To fam	To familiarize the students with basic and applied concept in chemistry									
CO1	An insi	An insight into the atomic and molecular structure									
CO2	Analyti	Analytical techniques used in identification of molecules									
CO3	To und	To understand Periodic properties									
CO4	To und	To understand the spatial arrangement of molecules									

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine.Vibrational and rotational spectroscopy of diatomic molecules.Applications.Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

1) University chemistry, by B. M. Mahan, Pearson Education

- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA			Che	mistry Lab			
L	Т	Р	Credit	Practical	Minor Test	Total	Time
-	-	3	1.5	30	20	50	3h

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.
ES-105A	Programming for Problem Solving										
L	Т	Р	Credit	Major	Minor	Total	Time				
				Test	Test						
3	-	-	3	75	25	100	3h				
Purpose	To familiarize the students with the basics of Computer System and C Programming										
			Cou	irse Outcom	ies						
CO 1	Describe t	he overview	of Compute	er System ar	nd Levels of	Programmi	ng Languages.				
CO 2	Learn to tr	anslate the	algorithms	to programs	s (in C langu	age).					
CO 3	Learn desc	ription and	application	s of condition	onal branchi	ing, iteratio	n and recursion.				
CO 4	To use arra	ays, pointer	s and struct	ures to forn	nulate algori	ithms and p	orograms.				

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators.

Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union.

Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India...
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications

10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA	Programming for Problem Solving Lab										
L	Т	Р	Credit	Practica I	Minor Test	Total	Time				
-	-	2	1	30	20	50	3h				
Purpose	To Introduce students with problem solving using C Programming language										
			Cou	rse Outcome	s						
CO 1	To formula	te the algo	rithms for	simple pro	blems						
CO 2	Implement	ation of a	rrays and	functions.							
CO 3	Implement	ation of p	ointers an	d user defi	ned data ty	pes.					
CO 4	Write indivand results	vidual and	group rep	orts: prese	nt objectiv	es, describ	e test procedures				

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-10 ²	IA			English							
L	Т	Р	P Credit M		Minor Test	Total	Time				
2	-	-	2	75	25	100	3h				
			Course	e Outcomes	5						
CO 1	Building up	Building up the vocabulary									
CO 2	Students w	ill acquire b	asic profic	iency in Er	nglish includ	ing writing s	kills				
			l	JNIT- 1							
Vocabula	ry Building										
1.1 The co	ncept of Word	Formation									
1.2 Root v	vords from for	eign languag	es and thei	r use in End	lish						
1.3 Acqua	intance with p	refixes and s	uffixes fror	n foreign la	, nguages in Er	nglish to form	derivatives.				

1.4 Synonyms, antonyms, and standard abbreviations.

UNIT- 2

Basic Writing Skills

- 2.1 Sentence Structures
- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT- 4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA		Language Lab											
L	Т	Р	Credit	Practical	Minor Test	Tota I	Time						
-	-	2	1	30	20	50	3h						

OBJECTIVES

- 1.
- 2.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm Common Everyday Situations: Conversations and Dialogues Communication at Workplace 3.
- 4.
- 5. Interviews
- **Formal Presentations** 6.

BS-133 A			C	alculus and	Linear Algel	bra					
L	Т	Р	Credit	Major	Minor	Total	Time				
				Test	Test						
3	1	-	4	75	25	100	3 h				
Purpose	To familiarize the prospective engineers with techniques in calculus, sequence & series, multivariable calculus, and linear algebra.										
Course Outcomes											
CO1	To introduce the idea of applying differential and integral calculus to notions of improper										
	integrals. Apart from some applications it gives a basic introduction on Beta and Gamma										
	functions.										
CO 2	To introduce	the fallouts	s of Rolle's	Theorem th	nat is fundan	nental to ap	plication of analysis to				
	Engineering	problems.					-				
CO 3	To develop t	he essential	tool of matr	ices and lir	ear algebra i	in a comprel	nensive manner.				
CO 4	To familiariz	e the stud	ent with ve	ector space	e as an ess	sential tool	in most branches of				
UNIT-I	(12 hrs)										

Calculus:

Evaluation of definite and improper integrals: Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

(8 hrs)

Rolle's Theorem, Mean value theorems, Indeterminate forms and L'Hospital's rule.

UNIT-II

Matrices

Matrices, vectors: addition and scalar multiplication, matrix multiplication; Linear systems of equations, linear Independence, rank of a matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan elimination. (10 hrs)

UNIT-III

Vector spaces

Vector Space, linear dependence of vectors, basis, dimension; Linear transformations (maps), range and kernel of a linear map, rank and nullity, Inverse of a linear transformation, rank nullity theorem, composition of linear maps. **UNIT-IV** (10 hrs)

Vector spaces

Eigenvalues, eigenvectors, symmetric, skew-symmetric, and orthogonal Matrices, eigenbases. Diagonalization; Inner product spaces.

Suggested Books:

1. ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

- 2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- 7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

9. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East–West press, Reprint 2005.

10. S. Lipschutz and M. Lipson, Schaum's outline of Linear Algebra, McGraw Hill Education; 3 edition (1 July 17).

Note: The paper setter will set the paper as per the question paper templates provided.

10(1402)

L	L T P Credit Major Test M					Minor Test	Total	Time			
4		1 - 4.5 75					100	3 h			
Purpos	To familiarize the prospective students with techniques of probability and statistics.										
Course Outcomes											
CO1	O1 Probability theory provides models of probability distributions(theoretical models of the observable reality involving chance effects) to be tested by statistical methods which has various engineering applications, for instance, in testing materials, control of production processes, robotics, and automatization in general, production planning and so on										
CO 2	To dev	elop the ess	ential tool of s	tatistics in a co	mprehensive mai	nner.					
CO 3	To fan	niliarize the s	student with t	he problem of	discussing unive	erse of which th	ey in which o	complete			
	enume	eration is impl	ractical, tests	of significance	plays a vital role	in their hypothes	sis testing.				
UNIT-I		(10 Hrs)									

Probability & Statistics

UNIT-I

BS-134 A

Basic Probability: Introduction, additive law of probability, Conditional Probability, Independent Events, Bayes' Theorem.

Random Variables: Discrete random variables, probability distribution. Probability mass function and distribution function, Expectation, Moments, Variance and standard deviation of discrete random variables. (10 Hrs)

UNIT-II

Continuous Probability distribution:

Continuous random variables, probability distribution, Probability density function and distribution function, Expectation, Moments, Variance and standard deviation of Continuous random variables.

Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions.

UNIT-III

Basic Statistics:

Measures of Central tendency: Mean, median, guartiles, mode, Geometric mean, Harmonic mean, Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, coefficient of variation, Moments, Skewness and Kurtosis, Correlation, Coefficient of correlation, methods of calculations, Lines of regression, Rank correlation.

UNIT-IV

Applied Statistics:

Curve fitting by the method of least squares: Introduction, Fitting of a straight line, fitting of second degree curve, fitting of a polynomial of degree m, fitting of a geometric or power curve of the form $y = ax^{b}$, fitting of an exponential curve of the form $y = ab^x$.

Test of significance: Basic terminology, Large sample test for single proportion, difference of proportions, single mean, difference of means, Small samples test for single mean, difference of means, Chi-square test for goodness of fit.

Suggested Books:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

2. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003 (Reprint).

3. S. Ross, A First Course in Probability, 6th Ed., Pearson Education India, 2002.

4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.

5. N.P. Bali and and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

6. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

7. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

8. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

(10 hrs)

(10 hrs)

Course code	ES-1	ES-109A										
Coursetitle	Engi	EngineeringGraphics&Design										
Scheme and Credits	L	Т	Р	Credits	Major Test	Minor Test	Tota I	Time				
	1	2	0	3	75	25	100	3h				

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing , graphics and Projections.

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of Isometric views to Orthographic views and vice-versa.

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections ofPointsandlinesinclined tobothplanes; Projectionsofplanesinclined to one principalPlane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular soilds like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. CorrespondingsetofCADSoftwareTheoryandUserManuals.

	-										
Course code	ES-1	ES-113LA									
Coursetitle	Engi	EngineeringGraphics&Design Practice									
Scheme and Credits	L	Т	Ρ	Credit	Practical	Minor	Total	Time			
				S		Test					
	-	-	3	1.5	30	20	50	3h			
Pre-requisites(if any)	-										

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.
CO-2	To understand to customize settings of CAD software and produce CAD drawing.
CO-3	To practice performing various functions in CAD softwares.
CO-4	To Learn about solid modelling and demonstration of a simple team design project.

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingup ofunitsanddrawing limits;ISOand ANSIstandardsforcoordinatedimensioningandtolerancing; Orthographic constraints, Snap to objects manually and automatically; Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvari ouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduse of Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changingline lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids and project the true shape of the sectioned surface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory, includingsketching of perspective, isometric, multi-view, auxiliary, and section views. Spatial visualization dimensioningandscalemulti exercises.Dimensioning guidelines, tolerancingtechniques; viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM). Suggested Books(ES-113L):

Course code	ES-1	ES-113LA									
Coursetitle	Engi	EngineeringGraphics&Design Practice									
Scheme and Credits	L	Т	Р	Credit	Practical	Minor	Total	Time			
				S		Test					
	-	-	3	1.5	30	20	50	3h			
Pre-requisites(if any)	-										

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

		_
CO-1	To give an overview of the user interface and toolboxes in a CAD software.	
CO-2	To understand to customize settings of CAD software and produce CAD drawing.	
CO-3	To practice performing various functions in CAD softwares.	
CO-4	To Learn about solid modelling and demonstration of a simple team design project.	
		_

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingup ofunitsanddrawing limits;ISOand ANSIstandardsforcoordinatedimensioningandtolerancing; Orthographic constraints, Snap to objects manually and automatically; Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvari ouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduseof Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changingline lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids and project the true shape of the sectioned surface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory, includingsketching of perspective, isometric, multi-view, auxiliary, and section views. Spatial visualization exercises.Dimensioning guidelines,tolerancingtechniques; dimensioningandscalemulti viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir andas3Dwire-frameandshadedsolids;meshed presentationinstandard2Dblueprintform topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM).

Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof) CADSoftware Theory and User Manuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-111LA									
Coursetitle	Manu	ManufacturingProcessesWorkshop								
Scheme and Credits	L	L T P Credits Practical Minor Total Test								
	0	0	3	1.5	60	40	100	3h		
Pre-requisites (if any)					·					

Aim: 1	o make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1. ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools

- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

Course code	ES-1	ES-111LA								
Coursetitle	Manu	ManufacturingProcessesWorkshop								
Scheme and Credits	L	L T P Credits Practical Minor Total Test								
	0	0	3	1.5	60	40	100	3h		
Pre-requisites (if any)										

Aim: 1	o make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1. ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS-141A			Biology								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
2	1	-	3	75	25	100	3h				
Purpose	To familiarize the students with the basics of Biotechnology										
		Course	e Outcomes	5							
CO1	Introduc	tion to ess	entials of	life and ma	cromolecules ess	ential for growt	h and				
	Develop	ment				-					
CO2	Defining	the basic	concepts o	of cell division	on, genes and Im	mune system					
CO3	Introduction of basic Concept of ThermoGenetic Engg. & Biochemistry										
CO4	Introduc	tion of bas	sic Concep	t of Microbi	ology & Role of B	iology in Differe	ent Fields				

Unit – I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria,chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1410ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation.Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.

D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

ES-101A		BASIC ELECTRICAL ENGINEERING											
L	Т	P Credit Major Test Minor Test Total Time(Hrs											
4	1	-	5	7	5	2!	5	100	3				
		To familiarize the students with the basics of Electrical											
Purpose	Engineering												
	Course Outcomes												
CO1	Deals with st	eady state ci	rcuit anal	ysis subje	ct to DC.								
CO 2	Deals with A	C fundament	als & stea	dy state ci	rcuit res	ponse si	ubject to A	AC.					
	Deals with introductory Balanced Three Phase System analysis and Single Phase												
CO 3	Fransformer.												
CO 4	Explains the	Basics of Ele	ctrical Ma	chines & E	lectrical	installa	tions						

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit.Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts.including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phaseemf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon.Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutateor action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic.

Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena&Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC	ELECTRIC	AL ENGIN	IEERING LAB							
L	Т	Practic	Credit Minor Test (Practical) Tota Time (Hrs)								
-	-	ai 2	1	20	30	50	3				
Purpose	То	familiarize	the stude	ents with the El	ectrical Techn	ology F	Practicals				
Course Outcomes											
CO1	Understand basic concepts of Network theorems										
CO 2	Deals with ste techniques	eady state f	requenc	y response of	RLC circuit p	barame	eters solution				
CO 3	Deals with introductory Single Phase Transformer practicals										
CO 4	Explains the co Machines	onstructior	nal featur	res and praction	cals of variou	s types	s of Electrical				

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Cluster –II: Common with B.Tech in (a) ComputerSci. & Engg. (b) Information Technology (c) Electronics & Communication Engg. (d) Electrical Engineering (e) Electrical & Electronics Engineering (f) Electronics Engg.

Bachelor of Technology inInformation Technology(Credit Based)

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

Semester I (w.e.f. session 2018-2019)

	CourseNo/			Hours/			Examinati	onSchedule	(Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-133A	Calculus&LinearAlgebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches. Cluster –II: Common with B.Tech in (a) ComputerSci. & Engg. (b) Information Technology (c) Electronics & Communication Engg. (d) Electrical Engineering (e) Electrical & Electronics Engineering (f) Electronics Engg.

Bachelor of Technology in Information Technology(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

	CourcoNo			Hours			Examina	tionSchedule	(Marks)	Duration
S.No.	Coursewo./ Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	of exam(Ho urs)
1A	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-134A	Probablity& Statistics	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

BS-115	Α		Sem	iconducto	r Physics					
L	Т	Р	Credit	Credit Major Test		Total	Time			
3	1	-	4	75	25	100	3h			
Purpose	To introduce the fundamentals of solid state physics and its applications to the students.									
			Course Ou	itcomes						
C01	To make the stud	lents aware of b	oasic termin	ology of c	rystal structu	re.				
CO 2	Introduce the elementary quantum mechanics, which will be useful in understanding the concepts of solid state physics.									
CO 3	Discussion of cla	assical free elec	tron theory	, quantum	theory and Ba	and theory	y of solids.			
CO 4	Basics and appli	cations of semi	conductors.							

Unit - I

Crystal Structure: Crystalline and Amorphous solids, Crystal Structure: lattice translation vector, symmetry operations, space lattice, basis; Unit cell and Primitive cell, Fundamental types of lattices: two-dimensional and three dimensional Bravais lattices; Characteristics of Unit cells: Simple Cubic (SC), Body Centred Cubic (BCC), Face Centred Cubic (FCC), Hexagonal Close Packed (HCP) structure; Simple crystal structures: Sodium Chloride, Cesium Chloride, Diamond, Cubic Zinc Sulfide; Miller Indices, Bonding in Solids, Point defects in crystals: Schottky and Frenkel defects.

Unit – II

Quantum Theory: Need and origin of Quantum concept, Wave-particle duality, Phase velocity and group velocity, Uncertainty Principle and Applications; Schrodinger's wave equation: time-dependent and time –independent; Physical Significance of wave function ψ .

Unit – III

Free Electron Theory: Classical free electron theory: electrical conductivity in metals, thermal conductivity in metals, Wiedemann-Franz law, success and drawbacks of free electron theory; Quantum free electron theory: wave function, eigen values; Fermi-Dirac distribution function, Density of states, Fermi energy and its importance, Thermionic Emission (qualitative).

Band theory of Solids: Bloch theorem, Kronig-Penney Model (qualitative), E versus k diagram, Brillouin Zones, Concept of effective mass of electron, Energy levels and energy bands, Distinction between metals, insulators and semiconductors, Hall effect and its Applications.

Unit –IV

Semiconductors: Conduction in Semiconductors, Intrinsic Semiconductors: Conductivity of charge carriers, Carrier concentration in intrinsic semiconductors; Extrinsic Semiconductors: n-type semiconductors, p-type semiconductors, charge carrier concentration in extrinsic semiconductors.

Semiconductor Devices: The p-n junction, Current-voltage characteristics of p-n junction; The Transistor: Bipolar Junction Transistor (BJT), Field Effect Transistor (FET), Metal-Semiconductor Junction (Ohmic and Schottky); Semiconductor Laser.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Introduction to Solid State Physics, John Wiley & Sons. .
- 3. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 4. Solid State Physics, New Age International (P) Limited.
- 5. A Textbook of Quantum Mechanics, McGraw Hill Education (India) Private Limited. Introduction to Nanotechnology, John Wiley & Sons.

BS-117LA		Semiconductor Physics Lab										
L	Т	Р	Credit	Practical	Minor Test	Total	Time					
-	-	3	1.5	30	20	50	3h					
Purpos	e To give t l	ne practical	l knowledge	of handling the	sophisticated ir	nstruments.						
	Course Outcomes											
CO	To make the st	udents fam	hiliar with the	e experiments re	elated with Semi	conductor Ph	ysics.					

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the V-I characteristics of a p-n diode.
- 2. To find the flashing and quenching potential of Argon and to find the capacitance of unknown capacitor.
- 3. To find the value of Planck's constant by using photoelectric cell.
- 4. To find the temperature coefficient of resistance by using Pt resistance thermometer by post office box.
- 5. To find the ionization potential of Argon/Mercury using a thyratron tube.
- 6. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 7. To study the characteristics of (Cu-Fe, Cu-Constantan) thermocouple.
- 8. To find the value of Hall Coefficient of semiconductor.
- 9. To find the value of e/m for electrons by Helical method.
- 10. To find the band gap of intrinsic semiconductor using four probe method.
- 11. To calculate the hysteresis loss by tracing a B-H curve.
- 12. To find the frequency of ultrasonic waves by piezoelectric methods.
- 13. To verify Richerdson thermionic equation.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time					
3	1	-	4	75	25	100	3h					
Purpose	To fam	iliarize the s	students wit	th basic an	d applied co	oncept in ch	nemistry					
CO1	An insi	ght into the	atomic and	molecular	structure							
CO2	Analyti	Analytical techniques used in identification of molecules										
CO3	To und	To understand Periodic properties										
CO4	To und	erstand the	spatial arra	ngement o	of molecules	6						

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine.Vibrational and rotational spectroscopy of diatomic molecules.Applications.Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

1) University chemistry, by B. M. Mahan, Pearson Education

- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab									
L	Т	Р	Credit	Practical	Minor Test	Total	Time				
-	-	3	1.5	30	20	50	3h				

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES-105A			Progra	amming for	Problem Sol	ving				
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
3	-	-	3	75	25	100	3h			
Purpose To familiarize the students with the basics of Computer System and C Programming										
	Course Outcomes									
CO 1	Describe t	he overview	of Compute	er System ar	nd Levels of	Programmi	ng Languages.			
CO 2	Learn to tr	anslate the	algorithms	to programs	s (in C langu	age).				
CO 3	CO 3 Learn description and applications of conditional branching, iteration and recursion.									
CO 4	To use arra	ays, pointer	s and struct	ures to forn	nulate algori	ithms and p	orograms.			

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators.

Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union.

Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India...
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications

10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA			Programn	ning for Pro	blem Solvi	ing Lab				
L	Т	Р	Credit	Practica I	Minor Test	Total	Time			
-	-	2	1	30	20	50	3h			
Purpose	Purpose To Introduce students with problem solving using C Programming language									
	Course Outcomes									
CO 1	To formula	te the algo	rithms for	simple pro	blems					
CO 2	Implement	ation of a	rrays and	functions.						
CO 3	Implement	ation of p	ointers an	d user defi	ned data ty	pes.				
CO 4	Write indivand results	vidual and	group rep	orts: prese	nt objectiv	es, describ	e test procedures			

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-101				Engli	sh		
L	Т	Р	Credit	Major Test	Minor Test	Total	Time
2	-	-	2	75	25	100	3h
			Course	e Outcomes	S		
CO 1	Building up	the vocabul	ary				
CO 2	Students w	ill acquire b	asic profic	iency in Er	nglish includ	ing writing s	kills
			l	JNIT- 1			
Vocabula	ry Building						
1.1 The co	ncept of Word	d Formation					
1.2 Root v	vords from for	eign languag	es and thei	r use in End	lish		
1.3 Acqua	intance with p	prefixes and s	uffixes fror	n foreign la	, nguages in Er	nglish to form	derivatives

1.4 Synonyms, antonyms, and standard abbreviations.

UNIT- 2

Basic Writing Skills

- 2.1 Sentence Structures
- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT- 4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA		Language Lab									
L	Т	Р	Credit	Practical	Minor Test	Tota I	Time				
-	-	2	1	30	20	50	3h				

OBJECTIVES

- 1.
- 2.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm Common Everyday Situations: Conversations and Dialogues Communication at Workplace 3.
- 4.
- 5. Interviews
- **Formal Presentations** 6.

BS-133 A			C	alculus and	Linear Algel	bra				
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
3	1	-	4	75	25	100	3 h			
Purpose	To familia	rize the pro	spective er	ngineers wi	th technique	s in calculu	is, sequence & series,			
	multivarial	ble calculus	, and linear a	algebra.						
Course Outcomes										
CO1	To introduce the idea of applying differential and integral calculus to notions of improper									
	integrals. Apart from some applications it gives a basic introduction on Beta and Gamma									
	functions.									
CO 2	To introduce	the fallouts	s of Rolle's	Theorem th	nat is fundan	nental to ap	plication of analysis to			
	Engineering	problems.								
CO 3	To develop the essential tool of matrices and linear algebra in a comprehensive manner.									
CO 4	To familiariz	e the stud	ent with ve	ector space	e as an ess	sential tool	in most branches of			
	engineering.									
UNIT-I					(12 h	rs)				

Calculus:

Evaluation of definite and improper integrals: Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

(8 hrs)

Rolle's Theorem, Mean value theorems, Indeterminate forms and L'Hospital's rule.

UNIT-II

Matrices

Matrices, vectors: addition and scalar multiplication, matrix multiplication; Linear systems of equations, linear Independence, rank of a matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan elimination. (10 hrs)

UNIT-III

Vector spaces

Vector Space, linear dependence of vectors, basis, dimension; Linear transformations (maps), range and kernel of a linear map, rank and nullity, Inverse of a linear transformation, rank nullity theorem, composition of linear maps. **UNIT-IV** (10 hrs)

Vector spaces

Eigenvalues, eigenvectors, symmetric, skew-symmetric, and orthogonal Matrices, eigenbases. Diagonalization; Inner product spaces.

Suggested Books:

1. ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

- 2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- 7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

9. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East–West press, Reprint 2005.

10. S. Lipschutz and M. Lipson, Schaum's outline of Linear Algebra, McGraw Hill Education; 3 edition (1 July 17).

Note: The paper setter will set the paper as per the question paper templates provided.

10(1424)

L		Т	Р	Credit	Major Test	Minor Test	Total	Time					
4		1	-	4.5	75	25	100	3 h					
Purpose To familiarize the prospective students with techniques of probability a						hniques of probability and statistics.							
Course Outcomes													
CO1	Proba reality applic autom	ability theory p involving ch ations, for in natization in go	provides mod ance effects) nstance, in t eneral, produc	els of probabi to be tested esting materia tion planning a	lity distributions(by statistical met als, control of p and so on.	theoretical mod thods which has production proc	els of the ob s various enq esses, robot	servable gineering ics, and					
CO 2	To develop the essential tool of statistics in a comprehensive manner.												
CO 3	To fa	miliarize the s	student with the	he problem of	discussing unive	erse of which th	ey in which (complete					
	CIUIII		ומטווטמו, ופטוט	u signineance	plays a vital fulle	in their Hypothes	ns iesiiny.						

Probability & Statistics

UNIT-I

BS-134 A

Basic Probability: Introduction, additive law of probability, Conditional Probability, Independent Events, Bayes' Theorem.

Random Variables: Discrete random variables, probability distribution. Probability mass function and distribution function, Expectation, Moments, Variance and standard deviation of discrete random variables. (10 Hrs)

UNIT-II

Continuous Probability distribution:

Continuous random variables, probability distribution, Probability density function and distribution function, Expectation, Moments, Variance and standard deviation of Continuous random variables.

Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions.

UNIT-III

Basic Statistics:

Measures of Central tendency: Mean, median, guartiles, mode, Geometric mean, Harmonic mean, Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, coefficient of variation, Moments, Skewness and Kurtosis, Correlation, Coefficient of correlation, methods of calculations, Lines of regression, Rank correlation.

UNIT-IV

Applied Statistics:

Curve fitting by the method of least squares: Introduction, Fitting of a straight line, fitting of second degree curve, fitting of a polynomial of degree m, fitting of a geometric or power curve of the form $y = ax^{b}$, fitting of an exponential curve of the form $y = ab^x$.

Test of significance: Basic terminology, Large sample test for single proportion, difference of proportions, single mean, difference of means, Small samples test for single mean, difference of means, Chi-square test for goodness of fit.

Suggested Books:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

2. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003 (Reprint).

3. S. Ross, A First Course in Probability, 6th Ed., Pearson Education India, 2002.

4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.

5. N.P. Bali and and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

6. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

7. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

8. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

(10 hrs)

(10 hrs)

(10 Hrs)

Course code	ES-1	ES-109A									
Coursetitle	Engi	EngineeringGraphics&Design									
Scheme and Credits	L	Т	Р	Credits	Major Test	Minor Test	Tota I	Time			
	1	2	0	3	75	25	100	3h			

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing , graphics and Projections.

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of Isometric views to Orthographic views and vice-versa.

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections ofPointsandlinesinclined tobothplanes; Projectionsofplanesinclined to one principalPlane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular soilds like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. CorrespondingsetofCADSoftwareTheoryandUserManuals.

	-								
Course code	ES-1	S-113LA							
Coursetitle	Engi	ineeringGraphics&Design Practice T P Credit Practical Minor Total Time							
Scheme and Credits	L	Т	Ρ	Credit	Practical	Minor	Total	Time	
				S		Test			
	-	-	3	1.5	30	20	50	3h	
Pre-requisites(if any)	-								

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.
CO-2	To understand to customize settings of CAD software and produce CAD drawing.
CO-3	To practice performing various functions in CAD softwares.
CO-4	To Learn about solid modelling and demonstration of a simple team design project.

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingup ofunitsanddrawing limits;ISOand ANSIstandardsforcoordinatedimensioningandtolerancing; Orthographic constraints, Snap to objects manually and automatically; Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvari ouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduse of Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changingline lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids and project the true shape of the sectioned surface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory, includingsketching of perspective, isometric, multi-view, auxiliary, and section views. Spatial visualization dimensioningandscalemulti exercises.Dimensioning guidelines, tolerancingtechniques; viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM). Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof)CADSoftwareTheoryandUserManuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	rse code ES-111LA									
Coursetitle	Manu	nufacturingProcessesWorkshop								
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time		
	0	0	3	1.5	60	40	100	3h		
Pre-requisites (if any)										

Aim: 1	o make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS-141A			Biology				
L	Т	Р	Credit	Major Test	Minor Test	Total	Time
2	1	-	3	75	25	100	3h
Purpose	To familiarize the students with the basics of Biotechnology						
	Course Outcomes						
CO1	Introduction to essentials of life and macromolecules essential for growth and						
	Development						
CO2	Defining the basic concepts of cell division, genes and Immune system						
CO3	Introduction of basic Concept of ThermoGenetic Engg. & Biochemistry						
CO4	Introduction of basic Concept of Microbiology & Role of Biology in Different Fields						

Unit – I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria,chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1430ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation.Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009. D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Note: The paper setter will set the paper as per the question paper templates provided

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

ES-101A	BASIC ELECTRICAL ENGINEERING							
L	Т	Р	Credit	Major Test	Minor Test	Total	Time(Hrs)	
4	1	-	5	75	25	100	3	
	To familiarize the students with the basics of Electrical							
Purpose	Purpose Engineering							
	Course Outcomes							
CO1	Deals with steady state circuit analysis subject to DC.							
CO 2	Deals with AC fundamentals & steady state circuit response subject to AC.							
	Deals with introductory Balanced Three Phase System analysis and Single Phase							
CO 3	Transformer.							
CO 4	Explains the Basics of Electrical Machines & Electrical installations							

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit.Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts.including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phaseemf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon.Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutateor action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena&Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC	BASIC ELECTRICAL ENGINEERING LAB						
L	Т	Practic	Credit	Minor Test	(Practical)	Tota	Time (Hrs)	
		al				I		
-	-	2	1	20	30	50	3	
Purpose	To familiarize the students with the Electrical Technology Practicals							
			Cou	rse Outcomes				
	Understand basic concepts of Network							
CO1	theorems							
Deals with steady state frequency response of RLC circuit parameters solut							eters solution	
CO 2	techniques							
Deals with introductory Single Phase Transformer								
CO 3	CO 3 practicals							
	Explains the co	Explains the constructional features and practicals of various types of Electrical						
CO 4	Machines							

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.
Cluster –II: Common with B.Tech in (a) ComputerSci. & Engg. (b) Information Technology (c) Electronics & Communication Engg. (d) Electrical Engineering (e) Electrical & Electronics Engineering (f) Electronics Engg.

Bachelor of Technology inElectronics & Communication Engg.(Credit Based)

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

Semester I (w.e.f. session 2018-2019)

	CourseNo/			Hours/			Examinati	ionSchedule((Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-133A	Calculus&LinearAlgebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches. Cluster –II: Common with B.Tech in (a) ComputerSci. & Engg. (b) Information Technology (c) Electronics & Communication Engg. (d) Electrical Engineering (e) Electrical & Electronics Engineering (f) Electronics Engg.

Bachelor of Technology in IElectronics & Communication Engg.(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

	CourcoNo			Hours/			Examina	tionSchedule	onSchedule(Marks)		
S.No.	Coursewo./ Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	of exam(Ho urs)	
1A	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3	
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3	
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3	
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3	
3	BS-134A	Probablity& Statistics	3:1:0	4	4	75	25	0	100	3	
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3	
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3	
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3	
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3	
6A	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3	
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3	
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3	
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3	
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3	
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3	
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/		
			12:3:10	25	20.0	300			650B		

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

10(1435)

BS-115	Α		Sem	iconducto	r Physics				
L	Т	Р	Credit	Major Test	Minor Test	Total	Time		
3	1	-	4	75	25	100	3h		
Purpose	e To introduce the fundamentals of solid state physics and its applications to the students.								
			Course Ou	itcomes					
C01	To make the stud	lents aware of b	oasic termin	ology of c	rystal structu	re.			
CO 2	Introduce the elementary quantum mechanics, which will be useful in understanding the concepts of solid state physics.								
CO 3	Discussion of classical free electron theory, quantum theory and Band theory of solids.								
CO 4	Basics and applications of semiconductors.								

Unit - I

Crystal Structure: Crystalline and Amorphous solids, Crystal Structure: lattice translation vector, symmetry operations, space lattice, basis; Unit cell and Primitive cell, Fundamental types of lattices: two-dimensional and three dimensional Bravais lattices; Characteristics of Unit cells: Simple Cubic (SC), Body Centred Cubic (BCC), Face Centred Cubic (FCC), Hexagonal Close Packed (HCP) structure; Simple crystal structures: Sodium Chloride, Cesium Chloride, Diamond, Cubic Zinc Sulfide; Miller Indices, Bonding in Solids, Point defects in crystals: Schottky and Frenkel defects.

Unit – II

Quantum Theory: Need and origin of Quantum concept, Wave-particle duality, Phase velocity and group velocity, Uncertainty Principle and Applications; Schrodinger's wave equation: time-dependent and time –independent; Physical Significance of wave function ψ .

Unit – III

Free Electron Theory: Classical free electron theory: electrical conductivity in metals, thermal conductivity in metals, Wiedemann-Franz law, success and drawbacks of free electron theory; Quantum free electron theory: wave function, eigen values; Fermi-Dirac distribution function, Density of states, Fermi energy and its importance, Thermionic Emission (qualitative).

Band theory of Solids: Bloch theorem, Kronig-Penney Model (qualitative), E versus k diagram, Brillouin Zones, Concept of effective mass of electron, Energy levels and energy bands, Distinction between metals, insulators and semiconductors, Hall effect and its Applications.

Unit –IV

Semiconductors: Conduction in Semiconductors, Intrinsic Semiconductors: Conductivity of charge carriers, Carrier concentration in intrinsic semiconductors; Extrinsic Semiconductors: n-type semiconductors, p-type semiconductors, charge carrier concentration in extrinsic semiconductors.

Semiconductor Devices: The p-n junction, Current-voltage characteristics of p-n junction; The Transistor: Bipolar Junction Transistor (BJT), Field Effect Transistor (FET), Metal-Semiconductor Junction (Ohmic and Schottky); Semiconductor Laser.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Introduction to Solid State Physics, John Wiley & Sons. .
- 3. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 4. Solid State Physics, New Age International (P) Limited.
- 5. A Textbook of Quantum Mechanics, McGraw Hill Education (India) Private Limited. Introduction to Nanotechnology, John Wiley & Sons.

BS-117LA			S	emiconductor P	hysics Lab						
L	Т	Р	Credit	dit Practical Minor Test		Total	Time				
-	-	3	1.5	30	20	50	3h				
Purpos	e To give t l	ne practical	l knowledge	of handling the	sophisticated ir	nstruments.					
	Course Outcomes										
CO	To make the students familiar with the experiments related with Semiconductor Physics.										

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the V-I characteristics of a p-n diode.
- 2. To find the flashing and quenching potential of Argon and to find the capacitance of unknown capacitor.
- 3. To find the value of Planck's constant by using photoelectric cell.
- 4. To find the temperature coefficient of resistance by using Pt resistance thermometer by post office box.
- 5. To find the ionization potential of Argon/Mercury using a thyratron tube.
- 6. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 7. To study the characteristics of (Cu-Fe, Cu-Constantan) thermocouple.
- 8. To find the value of Hall Coefficient of semiconductor.
- 9. To find the value of e/m for electrons by Helical method.
- 10. To find the band gap of intrinsic semiconductor using four probe method.
- 11. To calculate the hysteresis loss by tracing a B-H curve.
- 12. To find the frequency of ultrasonic waves by piezoelectric methods.
- 13. To verify Richerdson thermionic equation.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry										
L	Т	T P Credit Major Minor Total Time Test Test										
3	1	1 - 4 75 25 100 3h										
Purpose	To fam	iliarize the s	students wit	th basic an	d applied co	oncept in ch	nemistry					
CO1	An insi	ght into the	atomic and	molecular	structure							
CO2	Analyti	Analytical techniques used in identification of molecules										
CO3	To und	To understand Periodic properties										
CO4	To und	erstand the	spatial arra	ngement o	of molecules	6						

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine.Vibrational and rotational spectroscopy of diatomic molecules.Applications.Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

1) University chemistry, by B. M. Mahan, Pearson Education

- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab									
L	Т	Р	Credit	Practical	Minor Test	Total	Time				
-	-	3	1.5	30	20	50	3h				

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES-105A			Progra	amming for	Problem Sol	ving							
L	Т	Р	Credit	Major	Minor	Total	Time						
	Test Test												
3	-	3 75 25 100 3h											
Purpose	To familiarize the students with the basics of Computer System and C Programming												
			Cou	irse Outcom	ies								
CO 1	Describe t	he overview	of Compute	er System ar	nd Levels of	Programmi	ng Languages.						
CO 2	Learn to translate the algorithms to programs (in C language).												
CO 3	Learn description and applications of conditional branching, iteration and recursion.												
CO 4	To use arrays, pointers and structures to formulate algorithms and programs.												

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators.

Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union.

Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India...
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications

10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA			Programn	ning for Pro	blem Solvi	ing Lab							
L	Т	TPCreditPracticaMinorTotalTimeITest											
-	-	- 2 1 30 20 50 3h											
Purpose	To Introduce students with problem solving using C Programming language												
			Cou	rse Outcome	s								
CO 1	To formula	te the algo	rithms for	simple pro	blems								
CO 2	Implement	ation of a	rrays and	functions.									
CO 3	Implement	Implementation of pointers and user defined data types.											
CO 4	Write indivand results	Write individual and group reports: present objectives, describe test procedures and results.											

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-101	Α		English							
L	Т	T P Credit Major Minor Test Test		Total	Time					
2	-	-	2	75	25	100	3h			
Course Outcomes										
CO 1	Building up	ilding up the vocabulary								
CO 2	Students wi	ll acquire b	asic profic	iency in Er	nglish includ	ing writing s	kills			
			U	JNIT- 1						
Vocabula	ry Building									
1.1 The co	ncept of Word	Formation								
1.2 Root words from foreign languages and their use in English										
1.3 Acquai	ntance with p	refixes and s	uffixes fror	n foreign la	, nguages in Er	glish to form	derivatives.			

1.4 Synonyms, antonyms, and standard abbreviations.

UNIT-2

Basic Writing Skills

- 2.1 Sentence Structures
- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT- 4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA		Language Lab										
L	Т	Р	Credit	Practical	Minor Test	Tota I	Time					
-	-	2	1	30	20	50	3h					

OBJECTIVES

- 1.
- 2.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm Common Everyday Situations: Conversations and Dialogues Communication at Workplace 3.
- 4.
- 5. Interviews
- **Formal Presentations** 6.

BS-133 A			C	alculus and	Linear Algel	bra					
L	Т	Р	Credit	Major	Minor	Total	Time				
				Test	Test						
3	1	-	4	75	25	100	3 h				
Purpose	Purpose To familiarize the prospective engineers with techniques in calculus, sequence & series multivariable calculus, and linear algebra.										
	Course Outcomes										
CO1	To introduce the idea of applying differential and integral calculus to notions of improper										
	integrals. Ap	oart from so	ome applica	tions it giv	ves a basic	introduction	on Beta and Gamma				
	functions.										
CO 2	To introduce	the fallouts	s of Rolle's	Theorem th	nat is fundan	nental to ap	plication of analysis to				
	Engineering	problems.					-				
CO 3	To develop t	ne essential	tool of matr	ices and lir	ear algebra i	in a comprel	nensive manner.				
CO 4	To familiarize the student with vector space as an essential tool in most branches of engineering.										
UNIT-I	IT-I (12 hrs)										

Calculus:

Evaluation of definite and improper integrals: Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

(8 hrs)

Rolle's Theorem, Mean value theorems, Indeterminate forms and L'Hospital's rule.

UNIT-II

Matrices

Matrices, vectors: addition and scalar multiplication, matrix multiplication; Linear systems of equations, linear Independence, rank of a matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan elimination. (10 hrs)

UNIT-III

Vector spaces

Vector Space, linear dependence of vectors, basis, dimension; Linear transformations (maps), range and kernel of a linear map, rank and nullity, Inverse of a linear transformation, rank nullity theorem, composition of linear maps. **UNIT-IV** (10 hrs)

Vector spaces

Eigenvalues, eigenvectors, symmetric, skew-symmetric, and orthogonal Matrices, eigenbases. Diagonalization; Inner product spaces.

Suggested Books:

1. ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

- 2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- 7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

9. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East–West press, Reprint 2005.

10. S. Lipschutz and M. Lipson, Schaum's outline of Linear Algebra, McGraw Hill Education; 3 edition (1 July 17).

Note: The paper setter will set the paper as per the question paper templates provided.

10(1444)

L		Т	Р	Credit	Major Test	Minor Test	Total	Time	
4		1	-	4.5	75	25	100	3 h	
Purpos	se To fa	miliariz	e the prospect	ive students w	ith techniques of	probability and s	statistics.		
				Course Ou	utcomes				
CO1	Probability reality invo applications automatiza	theory lving ch s, for i tion in g	provides mod- ance effects) nstance, in t eneral, produc	els of probabi to be tested esting materia tion planning a	lity distributions(by statistical mel als, control of p and so on.	theoretical mod hods which has production proc	els of the ob s various enç esses, robot	servable gineering ics, and	
CO 2	To develop	the ess	ential tool of s	tatistics in a co	omprehensive mai	nner.			
CO 3	To familiarize the student with the problem of discussing universe of which they in which complete								
	enumeration is impractical, tests of significance plays a vital role in their hypothesis testing.								
UNIT-I	NIT-I (10 Hrs)								

Probability & Statistics

UNIT-I

BS-134 A

Basic Probability: Introduction, additive law of probability, Conditional Probability, Independent Events, Bayes' Theorem.

Random Variables: Discrete random variables, probability distribution. Probability mass function and distribution function, Expectation, Moments, Variance and standard deviation of discrete random variables. (10 Hrs)

UNIT-II

Continuous Probability distribution:

Continuous random variables, probability distribution, Probability density function and distribution function, Expectation, Moments, Variance and standard deviation of Continuous random variables.

Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions.

UNIT-III

Basic Statistics:

Measures of Central tendency: Mean, median, guartiles, mode, Geometric mean, Harmonic mean, Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, coefficient of variation, Moments, Skewness and Kurtosis, Correlation, Coefficient of correlation, methods of calculations, Lines of regression, Rank correlation.

UNIT-IV

Applied Statistics:

Curve fitting by the method of least squares: Introduction, Fitting of a straight line, fitting of second degree curve, fitting of a polynomial of degree m, fitting of a geometric or power curve of the form $y = ax^{b}$, fitting of an exponential curve of the form $y = ab^x$.

Test of significance: Basic terminology, Large sample test for single proportion, difference of proportions, single mean, difference of means, Small samples test for single mean, difference of means, Chi-square test for goodness of fit.

Suggested Books:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

2. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003 (Reprint).

3. S. Ross, A First Course in Probability, 6th Ed., Pearson Education India, 2002.

4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.

5. N.P. Bali and and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

6. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

7. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

8. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

(10 hrs)

(10 hrs)

Course code	ES-1	ES-109A									
Coursetitle	Engi	EngineeringGraphics&Design									
Scheme and Credits	L	L T P Credits Major Minor Test Test					Tota I	Time			
	1	2	0	3	75	25	100	3h			

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing , graphics and Projections.

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of Isometric views to Orthographic views and vice-versa.

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections ofPointsandlinesinclined tobothplanes; Projectionsofplanesinclined to one principalPlane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular soilds like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. CorrespondingsetofCADSoftwareTheoryandUserManuals.

	-									
Course code	ES-1	ES-113LA								
Coursetitle	Engi	IngineeringGraphics&Design Practice								
Scheme and Credits	L	Т	Ρ	Credit	Practical	Minor	Total	Time		
				S		Test				
	-	-	3	1.5	30	20	50	3h		
Pre-requisites(if any)	-									

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.
CO-2	To understand to customize settings of CAD software and produce CAD drawing.
CO-3	To practice performing various functions in CAD softwares.
CO-4	To Learn about solid modelling and demonstration of a simple team design project.

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingup ofunitsanddrawing limits;ISOand ANSIstandardsforcoordinatedimensioningandtolerancing; Orthographic constraints, Snap to objects manually and automatically; Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvari ouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduse of Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changingline lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids and project the true shape of the sectioned surface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory, includingsketching of perspective, isometric, multi-view, auxiliary, and section views. Spatial visualization dimensioningandscalemulti exercises.Dimensioning guidelines, tolerancingtechniques; viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM). Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof)CADSoftwareTheoryandUserManuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-1	ES-111LA								
Coursetitle	Manu	lanufacturingProcessesWorkshop								
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time		
	0	0	3	1.5	60	40	100	3h		
Pre-requisites (if any)										

Aim: 1	o make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS-141A			Biology					
L	Т	Р	Credit	Major Test	Minor Test	Total	Time	
2	1	-	3	75	25	100	3h	
Purpose	se To familiarize the students with the basics of Biotechnology							
	Course Outcomes							
CO1	Introduc	tion to ess	entials of	life and ma	cromolecules ess	ential for growt	h and	
	Developr	nent						
CO2	Defining	the basic of	concepts o	of cell divisi	on, genes and Im	mune system		
CO3	Introduction of basic Concept of ThermoGenetic Engg. & Biochemistry							
CO4	Introduction of basic Concept of Microbiology & Role of Biology in Different Fields							

Unit – I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria,chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1450ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation.Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009. D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Note: The paper setter will set the paper as per the question paper templates provided

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

ES-101A		BASIC ELECTRICAL ENGINEERING										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time(Hrs)					
4	1	-	5	75	25	100	3					
	To familiarize the students with the basics of Electrical											
Purpose	Engineering											
	Course Outcomes											
CO1	Deals with st	eady state c	ircuit ana	lysis subject to DC.								
CO 2	Deals with A	C fundamen [®]	tals & stea	ady state circuit respo	nse subject to .	AC.						
	Deals with	introductor	y Baland	ed Three Phase Sy	stem analysis	and Sir	ngle Phase					
CO 3	Transformer	•										
CO 4	Explains the	Basics of Ele	ctrical Ma	achines & Electrical in	stallations							

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit.Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts.including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phaseemf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon.Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutateor action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena&Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC	ELECTRIC	AL ENGIN	IEERING LAB				
L	Т	Practic	Credit Minor Test		(Practical)	Tota	Time (Hrs)	
-	-	ai 2	1	20	30	50	3	
Purpose	То	familiarize	the stude	ents with the El	ectrical Techn	ology F	Practicals	
Course Outcomes								
CO1	Understand basic concepts of Network theorems							
CO 2	Deals with ste techniques	eady state f	requenc	y response of	RLC circuit p	barame	eters solution	
Deals with introductory Single Phase Transformer CO 3 practicals								
CO 4	Explains the co Machines	onstructior	nal featur	res and praction	cals of variou	s types	s of Electrical	

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Cluster –II: Common with B.Tech in (a) ComputerSci. & Engg. (b) Information Technology (c) Electronics & Communication Engg. (d) Electrical Engineering (e) Electrical & Electronics Engineering (f) Electronics Engg.

Bachelor of Technology inElectrical Engineering(Credit Based)

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

Semester I (w.e.f. session 2018-2019)

	CourseNo/			Hours/			Examinati	onSchedule	(Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-133A	Calculus&LinearAlgebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches. Cluster –II: Common with B.Tech in (a) ComputerSci. & Engg. (b) Information Technology (c) Electronics & Communication Engg. (d) Electrical Engineering (e) Electrical & Electronics Engineering (f) Electronics Engg.

Bachelor of Technology inElectrical Engineering(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

	CourcoNo			Hours			Examina	tionSchedule	(Marks)	Duration
S.No.	Coursewo./ Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	of exam(Ho urs)
1A	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-134A	Probablity& Statistics	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

BS-115	Α		Sem	iconducto	r Physics			
L	Т	Р	Credit	Major Test	Minor Test	Total	Time	
3	1	-	4	75	25	100	3h	
Purpose	rpose To introduce the fundamentals of solid state physics and its applications to the students.							
			Course Ou	itcomes				
C01	To make the stud	lents aware of b	oasic termin	ology of c	rystal structu	re.		
CO 2	Introduce the elementary quantum mechanics, which will be useful in understanding the concepts of solid state physics.							
CO 3	Discussion of classical free electron theory, quantum theory and Band theory of solids.							
CO 4	Basics and applications of semiconductors.							

Unit - I

Crystal Structure: Crystalline and Amorphous solids, Crystal Structure: lattice translation vector, symmetry operations, space lattice, basis; Unit cell and Primitive cell, Fundamental types of lattices: two-dimensional and three dimensional Bravais lattices; Characteristics of Unit cells: Simple Cubic (SC), Body Centred Cubic (BCC), Face Centred Cubic (FCC), Hexagonal Close Packed (HCP) structure; Simple crystal structures: Sodium Chloride, Cesium Chloride, Diamond, Cubic Zinc Sulfide; Miller Indices, Bonding in Solids, Point defects in crystals: Schottky and Frenkel defects.

Unit – II

Quantum Theory: Need and origin of Quantum concept, Wave-particle duality, Phase velocity and group velocity, Uncertainty Principle and Applications; Schrodinger's wave equation: time-dependent and time –independent; Physical Significance of wave function ψ .

Unit – III

Free Electron Theory: Classical free electron theory: electrical conductivity in metals, thermal conductivity in metals, Wiedemann-Franz law, success and drawbacks of free electron theory; Quantum free electron theory: wave function, eigen values; Fermi-Dirac distribution function, Density of states, Fermi energy and its importance, Thermionic Emission (qualitative).

Band theory of Solids: Bloch theorem, Kronig-Penney Model (qualitative), E versus k diagram, Brillouin Zones, Concept of effective mass of electron, Energy levels and energy bands, Distinction between metals, insulators and semiconductors, Hall effect and its Applications.

Unit –IV

Semiconductors: Conduction in Semiconductors, Intrinsic Semiconductors: Conductivity of charge carriers, Carrier concentration in intrinsic semiconductors; Extrinsic Semiconductors: n-type semiconductors, p-type semiconductors, charge carrier concentration in extrinsic semiconductors.

Semiconductor Devices: The p-n junction, Current-voltage characteristics of p-n junction; The Transistor: Bipolar Junction Transistor (BJT), Field Effect Transistor (FET), Metal-Semiconductor Junction (Ohmic and Schottky); Semiconductor Laser.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Introduction to Solid State Physics, John Wiley & Sons. .
- 3. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 4. Solid State Physics, New Age International (P) Limited.
- 5. A Textbook of Quantum Mechanics, McGraw Hill Education (India) Private Limited. Introduction to Nanotechnology, John Wiley & Sons.

BS-117LA		Semiconductor Physics Lab										
L	Т	T P Credit Practical Minor Test Total										
-	-	3	20	50	3h							
Purpos	Purpose To give the practical knowledge of handling the sophisticated instruments.											
	Course Outcomes											
CO	CO To make the students familiar with the experiments related with Semiconductor Physics.											

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the V-I characteristics of a p-n diode.
- 2. To find the flashing and quenching potential of Argon and to find the capacitance of unknown capacitor.
- 3. To find the value of Planck's constant by using photoelectric cell.
- 4. To find the temperature coefficient of resistance by using Pt resistance thermometer by post office box.
- 5. To find the ionization potential of Argon/Mercury using a thyratron tube.
- 6. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 7. To study the characteristics of (Cu-Fe, Cu-Constantan) thermocouple.
- 8. To find the value of Hall Coefficient of semiconductor.
- 9. To find the value of e/m for electrons by Helical method.
- 10. To find the band gap of intrinsic semiconductor using four probe method.
- 11. To calculate the hysteresis loss by tracing a B-H curve.
- 12. To find the frequency of ultrasonic waves by piezoelectric methods.
- 13. To verify Richerdson thermionic equation.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry										
L	Т	TPCreditMajorMinorTotalTimTestTestTestTestTestTest										
3	1	-	4	75	25	100	3h					
Purpose	To fam	iliarize the s	students wit	th basic an	d applied co	oncept in ch	nemistry					
CO1	An insi	ght into the	atomic and	molecular	structure							
CO2	Analyti	Analytical techniques used in identification of molecules										
CO3	To und	To understand Periodic properties										
CO4	To und	erstand the	spatial arra	ngement o	of molecules	6						

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine.Vibrational and rotational spectroscopy of diatomic molecules.Applications.Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

1) University chemistry, by B. M. Mahan, Pearson Education

- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab										
L	Т	Р	Credit	Practical	Minor Test	Total	Time					
-	-	3	1.5	30	20	50	3h					

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES-105A		Programming for Problem Solving										
L	Т	Р	Credit	Major	Minor	Total	Time					
				Test	Test							
3	-	3 75 25 100 3h										
Purpose	To familiarize the students with the basics of Computer System and C Programming											
			Cou	irse Outcom	ies							
CO 1	Describe t	he overview	of Compute	er System ar	nd Levels of	Programmi	ng Languages.					
CO 2	Learn to tr	anslate the	algorithms	to programs	s (in C langu	age).						
CO 3	Learn description and applications of conditional branching, iteration and recursion.											
CO 4	To use arra	ays, pointer	s and struct	ures to forn	nulate algori	ithms and p	orograms.					

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators.

Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union.

Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India...
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications

10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA	Programming for Problem Solving Lab										
L	TPCreditPracticaMinorTotalTimeIITest										
-	-	- 2 1 30 20 50 3h									
Purpose	To Introduce students with problem solving using C Programming language										
			Cou	rse Outcome	s						
CO 1	To formula	te the algo	rithms for	simple pro	blems						
CO 2	Implement	ation of a	rrays and	functions.							
CO 3	Implement	Implementation of pointers and user defined data types.									
CO 4	Write indivand results	vidual and	group rep	orts: prese	nt objectiv	es, describ	e test procedures				

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-10 ²	IA	A English									
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
2	-	-	2	75	25	100	3h				
			Course	e Outcomes	5						
CO 1	Building up	uilding up the vocabulary									
CO 2	Students w	ill acquire b	asic profic	iency in Er	nglish includ	ing writing s	kills				
			l	JNIT- 1							
Vocabula	ry Building										
1.1 The co	ncept of Word	Formation									
1.2 Root v	vords from for	eign languag	es and thei	r use in End	lish						
1.3 Acqua	intance with p	refixes and s	uffixes fror	n foreign la	, nguages in Er	nglish to form	derivatives.				

1.4 Synonyms, antonyms, and standard abbreviations.

UNIT- 2

Basic Writing Skills

- 2.1 Sentence Structures
- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT- 4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA		Language Lab										
L	Т	Р	Credit	Practical	Minor Test	Tota I	Time					
-	-	2	1	30	20	50	3h					

OBJECTIVES

- 1.
- 2.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm Common Everyday Situations: Conversations and Dialogues Communication at Workplace 3.
- 4.
- 5. Interviews
- **Formal Presentations** 6.

BS-133 A			C	alculus and	Linear Alge	bra						
L	Т	Р	Credit	Major	Minor	Total	Time					
				Test	Test							
3	1	-	4	75	25	100	3 h					
Purpose	To familia multivarial	To familiarize the prospective engineers with techniques in calculus, sequence & series, multivariable calculus, and linear algebra.										
	Course Outcomes											
CO1	To introduce the idea of applying differential and integral calculus to notions of improper											
	integrals. Ap	oart from so	ome applica	tions it giv	ves a basic	introduction	on Beta and Gamma					
	functions.											
CO 2	To introduce	the fallouts	s of Rolle's	Theorem th	nat is fundan	nental to ap	plication of analysis to					
	Engineering	problems.										
CO 3	To develop t	ne essential	tool of matr	ices and lir	ear algebra i	in a comprel	nensive manner.					
CO 4	To familiariz	e the stud	ent with ve	ector space	e as an es	sential tool	in most branches of					
	engineering.											
UNIT-I					(12 h	rs)						

Calculus:

Evaluation of definite and improper integrals: Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

(8 hrs)

Rolle's Theorem, Mean value theorems, Indeterminate forms and L'Hospital's rule.

UNIT-II

Matrices

Matrices, vectors: addition and scalar multiplication, matrix multiplication; Linear systems of equations, linear Independence, rank of a matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan elimination. (10 hrs)

UNIT-III

Vector spaces

Vector Space, linear dependence of vectors, basis, dimension; Linear transformations (maps), range and kernel of a linear map, rank and nullity, Inverse of a linear transformation, rank nullity theorem, composition of linear maps. **UNIT-IV** (10 hrs)

Vector spaces

Eigenvalues, eigenvectors, symmetric, skew-symmetric, and orthogonal Matrices, eigenbases. Diagonalization; Inner product spaces.

Suggested Books:

1. ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

- 2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- 7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

9. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East–West press, Reprint 2005.

10. S. Lipschutz and M. Lipson, Schaum's outline of Linear Algebra, McGraw Hill Education; 3 edition (1 July 17).

Note: The paper setter will set the paper as per the question paper templates provided.

10(1464)

L		Т	Р	Credit	Major Test	Minor Test	Total	Time				
4		1	-	4.5	75	25	100	3 h				
Purpos	se	To familiarize the prospective students with techniques of probability and statistics.										
		Course Outcomes										
CO1	Probability theory provides models of probability distributions(theoretical models of the observable reality involving chance effects) to be tested by statistical methods which has various engineering applications, for instance, in testing materials, control of production processes, robotics, and automatization in general production planning and so on											
CO 2	To dev	elop the ess	ential tool of s	tatistics in a co	mprehensive mai	nner.						
CO 3	To fan	niliarize the s	student with t	he problem of	discussing unive	erse of which th	ey in which o	complete				
	enume	eration is impl	ractical, tests	of significance	plays a vital role	in their hypothes	sis testing.					
UNIT-I					(10	Hrs)						

Probability & Statistics

UNIT-I

BS-134 A

Basic Probability: Introduction, additive law of probability, Conditional Probability, Independent Events, Bayes' Theorem.

Random Variables: Discrete random variables, probability distribution. Probability mass function and distribution function, Expectation, Moments, Variance and standard deviation of discrete random variables. (10 Hrs)

UNIT-II

Continuous Probability distribution:

Continuous random variables, probability distribution, Probability density function and distribution function, Expectation, Moments, Variance and standard deviation of Continuous random variables.

Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions.

UNIT-III

Basic Statistics:

Measures of Central tendency: Mean, median, guartiles, mode, Geometric mean, Harmonic mean, Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, coefficient of variation, Moments, Skewness and Kurtosis, Correlation, Coefficient of correlation, methods of calculations, Lines of regression, Rank correlation.

UNIT-IV

Applied Statistics:

Curve fitting by the method of least squares: Introduction, Fitting of a straight line, fitting of second degree curve, fitting of a polynomial of degree m, fitting of a geometric or power curve of the form $y = ax^{b}$, fitting of an exponential curve of the form $y = ab^x$.

Test of significance: Basic terminology, Large sample test for single proportion, difference of proportions, single mean, difference of means, Small samples test for single mean, difference of means, Chi-square test for goodness of fit.

Suggested Books:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

2. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003 (Reprint).

3. S. Ross, A First Course in Probability, 6th Ed., Pearson Education India, 2002.

4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.

5. N.P. Bali and and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

6. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

7. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

8. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

(10 hrs)

(10 hrs)

Course code	ES-1	ES-109A									
Coursetitle	Engi	EngineeringGraphics&Design									
Scheme and Credits	L	Т	Р	Credits	Major Test	Minor Test	Tota I	Time			
	1	2	0	3	75	25	100	3h			

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing , graphics and Projections.

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of Isometric views to Orthographic views and vice-versa.

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections ofPointsandlinesinclined tobothplanes; Projectionsofplanesinclined to one principalPlane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular soilds like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. CorrespondingsetofCADSoftwareTheoryandUserManuals.

	-									
Course code	ES-1	ES-113LA								
Coursetitle	Engi	EngineeringGraphics&Design Practice								
Scheme and Credits	L	Т	Ρ	Credit	Practical	Minor	Total	Time		
				S		Test				
	-	-	3	1.5	30	20	50	3h		
Pre-requisites(if any)	-									

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.
CO-2	To understand to customize settings of CAD software and produce CAD drawing.
CO-3	To practice performing various functions in CAD softwares.
CO-4	To Learn about solid modelling and demonstration of a simple team design project.

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingup ofunitsanddrawing limits;ISOand ANSIstandardsforcoordinatedimensioningandtolerancing; Orthographic constraints, Snap to objects manually and automatically; Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvari ouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduse of Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changingline lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids and project the true shape of the sectioned surface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory, includingsketching of perspective, isometric, multi-view, auxiliary, and section views. Spatial visualization dimensioningandscalemulti exercises.Dimensioning guidelines, tolerancingtechniques; viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM). Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof)CADSoftwareTheoryandUserManuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code ES-111LA								
Coursetitle	Manu	ManufacturingProcessesWorkshop						
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time
	0	0	3	1.5	60	40	100	3h
Pre-requisites (if any)								

Aim: 1	o make student gain a hands on work experience in a typical manufacturing			
industry environment.				
CO-1	To familiarize with different manufacturing methods in industries and work on			
	CNC machine.			
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,			
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.			
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.			

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.
| BS-141A | | | Biology | | | | | | | | | |
|---------|----------|---|------------|----------------|--------------------|--------------------|------------|--|--|--|--|--|
| L | Т | Р | Credit | Major
Test | Minor Test | Total | Time | | | | | |
| 2 | 1 | 1 - 3 75 25 100 3h | | | | | | | | | | |
| Purpose | To far | To familiarize the students with the basics of Biotechnology | | | | | | | | | | |
| | | Course | Outcomes | 6 | | | | | | | | |
| CO1 | Introduc | tion to ess | entials of | life and ma | cromolecules ess | ential for growt | h and | | | | | |
| | Developr | nent | | | | | | | | | | |
| CO2 | Defining | the basic of | concepts o | of cell divisi | on, genes and Im | mune system | | | | | | |
| CO3 | Introduc | Introduction of basic Concept of ThermoGenetic Engg. & Biochemistry | | | | | | | | | | |
| CO4 | Introduc | tion of bas | ic Concep | t of Microbi | iology & Role of B | Biology in Differe | ent Fields | | | | | |

Unit – I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria,chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1470ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation.Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009. D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Note: The paper setter will set the paper as per the question paper templates provided

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

ES-101A		BASIC ELEC	FRICAL EN	IGINEERING								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time(Hrs)					
4	1	1 - 5 75 25 100 3										
		To familiarize the students with the basics of Electrical										
Purpose	ose Engineering											
			Cou	irse Outcomes								
CO1	Deals with st	eady state c	ircuit ana	lysis subject to DC.								
CO 2	Deals with A	C fundamen [®]	tals & stea	ady state circuit respo	nse subject to .	AC.						
	Deals with	introductor	y Baland	ed Three Phase Sy	stem analysis	and Sir	ngle Phase					
CO 3	Transformer	ansformer.										
CO 4	Explains the	Basics of Ele	ctrical Ma	achines & Electrical in	stallations							

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit.Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts.including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phaseemf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon.Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutateor action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena&Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC	ELECTRIC	AL ENGIN	IEERING LAB					
L	Т	Practic	Credit	Minor Test	(Practical)	Tota	Time (Hrs)		
-	-	ai 2	1	20	30	50	3		
Purpose	To familiarize the students with the Electrical Technology Practicals								
	Course Outcomes								
CO1	Understand basic concepts of Network theorems								
CO 2	Deals with ste techniques	eady state f	requenc	y response of	RLC circuit p	barame	eters solution		
CO 3	Deals with introductory Single Phase Transformer								
CO 4	Explains the co Machines	onstructior	nal featur	res and praction	cals of variou	s types	s of Electrical		

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Cluster –II: Common with B.Tech in (a) ComputerSci. & Engg. (b) Information Technology (c) Electronics & Communication Engg. (d) Electrical Engineering (e) Electrical & Electronics Engineering (f) Electronics Engg.

Bachelor of Technology inElectrical & Electronics Engineering(Credit Based)

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

Semester I (w.e.f. session 2018-2019)

	CourseNo /			Hours/			Examinati	onSchedule((Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-133A	Calculus&LinearAlgebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches. Cluster –II: Common with B.Tech in (a) ComputerSci. & Engg. (b) Information Technology (c) Electronics & Communication Engg. (d) Electrical Engineering (e) Electrical & Electronics Engineering (f) Electronics Engg.

Bachelor of Technology inElectrical & Electronics Engineering(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

	CourceNo /			Hours/			Examina	tionSchedule	(Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	of exam(Ho urs)
1A	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-134A	Probablity& Statistics	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

BS-115	Α		Sem	iconducto	r Physics			
L	Т	Р	Credit	Major Test	Minor Test	Total	Time	
3	1	-	4	75	25	100	3h	
Purpose	To introduce the fundamentals of solid state physics and its applications to the students.							
			Course Ou	itcomes				
C01	To make the stud	lents aware of b	oasic termin	ology of c	rystal structu	re.		
CO 2	Introduce the elementary quantum mechanics, which will be useful in understanding the concepts of solid state physics.							
CO 3	Discussion of classical free electron theory, quantum theory and Band theory of solids.							
CO 4	Basics and appli	cations of semi	conductors.					

Unit - I

Crystal Structure: Crystalline and Amorphous solids, Crystal Structure: lattice translation vector, symmetry operations, space lattice, basis; Unit cell and Primitive cell, Fundamental types of lattices: two-dimensional and three dimensional Bravais lattices; Characteristics of Unit cells: Simple Cubic (SC), Body Centred Cubic (BCC), Face Centred Cubic (FCC), Hexagonal Close Packed (HCP) structure; Simple crystal structures: Sodium Chloride, Cesium Chloride, Diamond, Cubic Zinc Sulfide; Miller Indices, Bonding in Solids, Point defects in crystals: Schottky and Frenkel defects.

Unit – II

Quantum Theory: Need and origin of Quantum concept, Wave-particle duality, Phase velocity and group velocity, Uncertainty Principle and Applications; Schrodinger's wave equation: time-dependent and time –independent; Physical Significance of wave function ψ .

Unit – III

Free Electron Theory: Classical free electron theory: electrical conductivity in metals, thermal conductivity in metals, Wiedemann-Franz law, success and drawbacks of free electron theory; Quantum free electron theory: wave function, eigen values; Fermi-Dirac distribution function, Density of states, Fermi energy and its importance, Thermionic Emission (qualitative).

Band theory of Solids: Bloch theorem, Kronig-Penney Model (qualitative), E versus k diagram, Brillouin Zones, Concept of effective mass of electron, Energy levels and energy bands, Distinction between metals, insulators and semiconductors, Hall effect and its Applications.

Unit –IV

Semiconductors: Conduction in Semiconductors, Intrinsic Semiconductors: Conductivity of charge carriers, Carrier concentration in intrinsic semiconductors; Extrinsic Semiconductors: n-type semiconductors, p-type semiconductors, charge carrier concentration in extrinsic semiconductors.

Semiconductor Devices: The p-n junction, Current-voltage characteristics of p-n junction; The Transistor: Bipolar Junction Transistor (BJT), Field Effect Transistor (FET), Metal-Semiconductor Junction (Ohmic and Schottky); Semiconductor Laser.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Introduction to Solid State Physics, John Wiley & Sons. .
- 3. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 4. Solid State Physics, New Age International (P) Limited.
- 5. A Textbook of Quantum Mechanics, McGraw Hill Education (India) Private Limited. Introduction to Nanotechnology, John Wiley & Sons.

BS-117LA			S	emiconductor P	hysics Lab						
L	Т	T P Credit Practical Minor Test Total Time									
-	-	- 3 1.5 30 20 50 3h									
Purpos	e To give t l	To give the practical knowledge of handling the sophisticated instruments.									
	Course Outcomes										
CO	To make the students familiar with the experiments related with Semiconductor Physics.										

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the V-I characteristics of a p-n diode.
- 2. To find the flashing and quenching potential of Argon and to find the capacitance of unknown capacitor.
- 3. To find the value of Planck's constant by using photoelectric cell.
- 4. To find the temperature coefficient of resistance by using Pt resistance thermometer by post office box.
- 5. To find the ionization potential of Argon/Mercury using a thyratron tube.
- 6. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 7. To study the characteristics of (Cu-Fe, Cu-Constantan) thermocouple.
- 8. To find the value of Hall Coefficient of semiconductor.
- 9. To find the value of e/m for electrons by Helical method.
- 10. To find the band gap of intrinsic semiconductor using four probe method.
- 11. To calculate the hysteresis loss by tracing a B-H curve.
- 12. To find the frequency of ultrasonic waves by piezoelectric methods.
- 13. To verify Richerdson thermionic equation.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry										
L	Т	P Credit Major Minor Total Time Test Test										
3	1	- 4 75 25 100 3h										
Purpose	To fam	iliarize the s	students wit	th basic an	d applied co	oncept in ch	nemistry					
CO1	An insi	ght into the	atomic and	molecular	structure							
CO2	Analyti	Analytical techniques used in identification of molecules										
CO3	To und	To understand Periodic properties										
CO4	To und	erstand the	spatial arra	ngement o	of molecules	6						

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine.Vibrational and rotational spectroscopy of diatomic molecules.Applications.Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂Cl₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

1) University chemistry, by B. M. Mahan, Pearson Education

- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab									
L	Т	Р	Credit	Practical	Minor Test	Total	Time				
-	-	3	1.5	30	20	50	3h				

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES-105A			Progra	amming for	Problem Sol	ving							
L	Т	Р	Credit	Major	Minor	Total	Time						
				Test	Test								
3	-	3 75 25 100 3h											
Purpose	To familiarize the students with the basics of Computer System and C Programming												
			Cou	irse Outcom	ies								
CO 1	Describe t	he overview	of Compute	er System ar	nd Levels of	Programmi	ng Languages.						
CO 2	Learn to tr	anslate the	algorithms	to programs	s (in C langu	age).							
CO 3	Learn description and applications of conditional branching, iteration and recursion.												
CO 4	To use arra	To use arrays, pointers and structures to formulate algorithms and programs.											

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators.

Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union.

Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India...
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications

10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA		Programming for Problem Solving Lab										
L	Т	TPCreditPracticaMinorTotalTimeITestI2020502b										
-	-	- 2 1 30 20 50 3h										
Purpose	To Intro	To Introduce students with problem solving using C Programming language										
			Cou	rse Outcome	s							
CO 1	To formula	te the algo	rithms for	simple pro	blems							
CO 2	Implement	ation of a	rrays and	functions.								
CO 3	Implement	Implementation of pointers and user defined data types.										
CO 4	Write indivand results	Write individual and group reports: present objectives, describe test procedures and results.										

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-101	A			Engli	sh					
L	L T P Credit Major Minor Total Test Test									
2	-	-	2	75	25	100	3h			
			Course	Outcomes	5					
CO 1	Building up	Building up the vocabulary								
CO 2	Students wi	ll acquire b	oasic profic	iency in Er	nglish includ	ing writing s	kills			
			U	INIT- 1						
Vocabula	ry Building									
1.1 The co	ncept of Word	Formation								
1.2 Root w	ords from for	eign languad	ges and thei	r use in End	llish					
1.3 Acquai	intance with p	refixes and s	, suffixes fror	n foreign la	nguages in Er	nglish to form	derivatives.			

1.4 Synonyms, antonyms, and standard abbreviations.

UNIT-2

Basic Writing Skills

- 2.1 Sentence Structures
- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT- 4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA		Language Lab							
L	Т	Р	Credit	Practical	Minor Test	Tota I	Time		
-	-	2	1	30	20	50	3h		

OBJECTIVES

- 1.
- 2.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm Common Everyday Situations: Conversations and Dialogues Communication at Workplace 3.
- 4.
- 5. Interviews
- **Formal Presentations** 6.

BS-133 A			C	alculus and	Linear Algel	bra				
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
3	1	-	4	75	25	100	3 h			
Purpose	To familia	To familiarize the prospective engineers with techniques in calculus, sequence & series,								
	multivariable calculus, and linear algebra.									
			Cou	irse Outcor	nes					
CO1	To introduce	e the idea o	of applying	differential	and integra	I calculus t	o notions of improper			
	integrals. Ap	oart from so	ome applica	tions it giv	ves a basic	introduction	on Beta and Gamma			
	functions.									
CO 2	To introduce	the fallouts	s of Rolle's	Theorem th	nat is fundan	nental to ap	plication of analysis to			
	Engineering	problems.								
CO 3	To develop the essential tool of matrices and linear algebra in a comprehensive manner.									
CO 4	To familiariz	e the stud	ent with ve	ector space	e as an ess	sential tool	in most branches of			
	engineering.									
UNIT-I					(12 h	rs)				

Calculus:

Evaluation of definite and improper integrals: Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

(8 hrs)

Rolle's Theorem, Mean value theorems, Indeterminate forms and L'Hospital's rule.

UNIT-II

Matrices

Matrices, vectors: addition and scalar multiplication, matrix multiplication; Linear systems of equations, linear Independence, rank of a matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan elimination. (10 hrs)

UNIT-III

Vector spaces

Vector Space, linear dependence of vectors, basis, dimension; Linear transformations (maps), range and kernel of a linear map, rank and nullity, Inverse of a linear transformation, rank nullity theorem, composition of linear maps. **UNIT-IV** (10 hrs)

Vector spaces

Eigenvalues, eigenvectors, symmetric, skew-symmetric, and orthogonal Matrices, eigenbases. Diagonalization; Inner product spaces.

Suggested Books:

1. ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

- 2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- 7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

9. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East–West press, Reprint 2005.

10. S. Lipschutz and M. Lipson, Schaum's outline of Linear Algebra, McGraw Hill Education; 3 edition (1 July 17).

Note: The paper setter will set the paper as per the question paper templates provided.

10(1484)

L		Т	Р	Credit	Major Test	Minor Test	Total	Time		
4		1	-	100	3 h					
Purpos	se	To familiarize the prospective students with techniques of probability and statistics.								
				Course Ou	itcomes					
CO1	Proba reality applic	Probability theory provides models of probability distributions(theoretical models of the observable reality involving chance effects) to be tested by statistical methods which has various engineering applications for instance in testing materials control of production processes robotics and								
	autom	natization in g	eneral, produc	tion planning a	and so on.	·		-		
CO 2	To develop the essential tool of statistics in a comprehensive manner.									
CO 3	To fai	a familiarize the student with the problem of discussing universe of which they in which complete								
	enum	eration is imp	ractical, tests	of significance	plays a vital role	in their hypothes	sis testing.			

Probability & Statistics

UNIT-I

BS-134 A

Basic Probability: Introduction, additive law of probability, Conditional Probability, Independent Events, Bayes' Theorem.

Random Variables: Discrete random variables, probability distribution. Probability mass function and distribution function, Expectation, Moments, Variance and standard deviation of discrete random variables. (10 Hrs)

UNIT-II

Continuous Probability distribution:

Continuous random variables, probability distribution, Probability density function and distribution function, Expectation, Moments, Variance and standard deviation of Continuous random variables.

Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions.

UNIT-III

Basic Statistics:

Measures of Central tendency: Mean, median, guartiles, mode, Geometric mean, Harmonic mean, Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, coefficient of variation, Moments, Skewness and Kurtosis, Correlation, Coefficient of correlation, methods of calculations, Lines of regression, Rank correlation.

UNIT-IV

Applied Statistics:

Curve fitting by the method of least squares: Introduction, Fitting of a straight line, fitting of second degree curve, fitting of a polynomial of degree m, fitting of a geometric or power curve of the form $y = ax^{b}$, fitting of an exponential curve of the form $y = ab^x$.

Test of significance: Basic terminology, Large sample test for single proportion, difference of proportions, single mean, difference of means, Small samples test for single mean, difference of means, Chi-square test for goodness of fit.

Suggested Books:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

2. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003 (Reprint).

3. S. Ross, A First Course in Probability, 6th Ed., Pearson Education India, 2002.

4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.

5. N.P. Bali and and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

6. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

7. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

8. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

(10 hrs)

(10 hrs)

(10 Hrs)

Course code	ES-1	ES-109A									
Coursetitle	Engi	EngineeringGraphics&Design									
Scheme and Credits	L	Т	Р	Credits	Major Test	Minor Test	Tota I	Time			
	1	2	0	3	75	25	100	3h			

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing , graphics and Projections.

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of Isometric views to Orthographic views and vice-versa.

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections ofPointsandlinesinclined tobothplanes; Projectionsofplanesinclined to one principalPlane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular soilds like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. CorrespondingsetofCADSoftwareTheoryandUserManuals.

	-								
Course code	ES-1	ES-113LA							
Coursetitle	Engi	EngineeringGraphics&Design Practice							
Scheme and Credits	L	L T P Credit Practical Minor Total Time						Time	
				S		Test			
	-	-	3	1.5	30	20	50	3h	
Pre-requisites(if any)	-								

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.
CO-2	To understand to customize settings of CAD software and produce CAD drawing.
CO-3	To practice performing various functions in CAD softwares.
CO-4	To Learn about solid modelling and demonstration of a simple team design project.

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingup ofunitsanddrawing limits;ISOand ANSIstandardsforcoordinatedimensioningandtolerancing; Orthographic constraints, Snap to objects manually and automatically; Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvari ouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduse of Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changingline lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids and project the true shape of the sectioned surface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory, includingsketching of perspective, isometric, multi-view, auxiliary, and section views. Spatial visualization dimensioningandscalemulti exercises.Dimensioning guidelines, tolerancingtechniques; viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM). Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof)CADSoftwareTheoryandUserManuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-1	ES-111LA						
Coursetitle	Manu	ufactur	ingPro	cessesWo	rkshop			
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time
	0	0	3	1.5	60	40	100	3h
Pre-requisites (if any)								

Aim: 1	o make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS-141A	Biology									
L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
2	1	-	3	75	25	100	3h			
Purpose	To familiarize the students with the basics of Biotechnology									
		Course	Outcomes	6						
CO1	Introduc	tion to ess	entials of	life and ma	cromolecules ess	ential for growt	h and			
	Developr	nent								
CO2	Defining	the basic of	concepts o	of cell divisi	on, genes and Im	mune system				
CO3	Introduction of basic Concept of ThermoGenetic Engg. & Biochemistry									
CO4	Introduc	tion of bas	ic Concep	t of Microbi	iology & Role of B	Biology in Differe	ent Fields			

Unit – I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria,chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1490ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation.Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009. D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Note: The paper setter will set the paper as per the question paper templates provided

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

ES-101A		BASIC ELECTRICAL ENGINEERING										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time(Hrs)					
4	1	-	5	75	25	100	3					
	To familiarize the students with the basics of Electrical											
Purpose		Engineering										
	Course Outcomes											
CO1	Deals with st	eady state c	ircuit ana	lysis subject to DC.								
CO 2	Deals with A	C fundamen [®]	tals & stea	ady state circuit respo	nse subject to .	AC.						
	Deals with	Deals with introductory Balanced Three Phase System analysis and Single Phase										
CO 3	Transformer	Fransformer.										
CO 4	Explains the	Basics of Ele	ctrical Ma	achines & Electrical in	stallations							

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit.Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts.including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phaseemf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon.Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutateor action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena&Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC	BASIC ELECTRICAL ENGINEERING LAB									
L	Т	Practic	Credit	Minor Test	(Practical)	Tota	Time (Hrs)				
-	-	ai 2	1	20	30	50	3				
Purpose	То	familiarize	the stude	ents with the El	ectrical Techn	ology F	Practicals				
Course Outcomes											
CO1	Understand basic concepts of Network theorems										
CO 2	Deals with ste techniques	eady state f	requenc	y response of	RLC circuit p	barame	eters solution				
CO 3	Deals with introductory Single Phase Transformer CO 3 practicals										
CO 4	Explains the co Machines	onstructior	nal featur	res and praction	cals of variou	s types	s of Electrical				

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Cluster –II: Common with B.Tech in (a) ComputerSci. & Engg. (b) Information Technology (c) Electronics & Communication Engg. (d) Electrical Engineering (e) Electrical & Electronics Engineering (f) Electronics Engg.

Bachelor of Technology in Electronics Engineering(Credit Based)

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

Semester I (w.e.f. session 2018-2019)

	CourseNo/			Hours/			Examinati	ionSchedule	(Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-133A	Calculus&LinearAlgebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches. Cluster –II: Common with B.Tech in (a) ComputerSci. & Engg. (b) Information Technology (c) Electronics & Communication Engg. (d) Electrical Engineering (e) Electrical & Electronics Engineering (f) Electronics Engg.

Bachelor of Technology inElectronics Engineering(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

	CoursoNo /			Hours/			Examina	tionSchedule((Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	or exam(Ho urs)
1A	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-134A	Probablity& Statistics	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

BS-115	Α		Sem	iconducto	r Physics			
L	Т	Р	Credit	Major Test	Minor Test	Total	Time	
3	1	-	4	75	25	100	3h	
Purpose	e To introduce the fundamentals of solid state physics and its applications to the students.							
			Course Ou	itcomes				
C01	To make the stud	lents aware of b	oasic termin	ology of c	rystal structu	re.		
CO 2	Introduce the elementary quantum mechanics, which will be useful in understanding the concepts of solid state physics.							
CO 3	Discussion of classical free electron theory, quantum theory and Band theory of solids.							
CO 4	Basics and applications of semiconductors.							

Unit - I

Crystal Structure: Crystalline and Amorphous solids, Crystal Structure: lattice translation vector, symmetry operations, space lattice, basis; Unit cell and Primitive cell, Fundamental types of lattices: two-dimensional and three dimensional Bravais lattices; Characteristics of Unit cells: Simple Cubic (SC), Body Centred Cubic (BCC), Face Centred Cubic (FCC), Hexagonal Close Packed (HCP) structure; Simple crystal structures: Sodium Chloride, Cesium Chloride, Diamond, Cubic Zinc Sulfide; Miller Indices, Bonding in Solids, Point defects in crystals: Schottky and Frenkel defects.

Unit – II

Quantum Theory: Need and origin of Quantum concept, Wave-particle duality, Phase velocity and group velocity, Uncertainty Principle and Applications; Schrodinger's wave equation: time-dependent and time –independent; Physical Significance of wave function ψ .

Unit – III

Free Electron Theory: Classical free electron theory: electrical conductivity in metals, thermal conductivity in metals, Wiedemann-Franz law, success and drawbacks of free electron theory; Quantum free electron theory: wave function, eigen values; Fermi-Dirac distribution function, Density of states, Fermi energy and its importance, Thermionic Emission (qualitative).

Band theory of Solids: Bloch theorem, Kronig-Penney Model (qualitative), E versus k diagram, Brillouin Zones, Concept of effective mass of electron, Energy levels and energy bands, Distinction between metals, insulators and semiconductors, Hall effect and its Applications.

Unit –IV

Semiconductors: Conduction in Semiconductors, Intrinsic Semiconductors: Conductivity of charge carriers, Carrier concentration in intrinsic semiconductors; Extrinsic Semiconductors: n-type semiconductors, p-type semiconductors, charge carrier concentration in extrinsic semiconductors.

Semiconductor Devices: The p-n junction, Current-voltage characteristics of p-n junction; The Transistor: Bipolar Junction Transistor (BJT), Field Effect Transistor (FET), Metal-Semiconductor Junction (Ohmic and Schottky); Semiconductor Laser.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Introduction to Solid State Physics, John Wiley & Sons. .
- 3. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 4. Solid State Physics, New Age International (P) Limited.
- 5. A Textbook of Quantum Mechanics, McGraw Hill Education (India) Private Limited. Introduction to Nanotechnology, John Wiley & Sons.

BS-117LA			S	emiconductor P	hysics Lab					
L	Т	Р	P Credit Practical Minor Test		Minor Test	Total	Time			
-	-	3	1.5	30	20	50	3h			
Purpose To give the practical knowledge of handling the sophisticated instrume						nstruments.				
	Course Outcomes									
CO	To make the students familiar with the experiments related with Semiconductor Physics.									

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the V-I characteristics of a p-n diode.
- 2. To find the flashing and quenching potential of Argon and to find the capacitance of unknown capacitor.
- 3. To find the value of Planck's constant by using photoelectric cell.
- 4. To find the temperature coefficient of resistance by using Pt resistance thermometer by post office box.
- 5. To find the ionization potential of Argon/Mercury using a thyratron tube.
- 6. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 7. To study the characteristics of (Cu-Fe, Cu-Constantan) thermocouple.
- 8. To find the value of Hall Coefficient of semiconductor.
- 9. To find the value of e/m for electrons by Helical method.
- 10. To find the band gap of intrinsic semiconductor using four probe method.
- 11. To calculate the hysteresis loss by tracing a B-H curve.
- 12. To find the frequency of ultrasonic waves by piezoelectric methods.
- 13. To verify Richerdson thermionic equation.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A				Chemist	ry							
L	Т	Р	Credit	Major Test	Minor Test	Total	Time					
3	1	1 - 4 75 25 100 3h										
Purpose	To fam	iliarize the s	students wit	th basic an	d applied co	oncept in ch	nemistry					
CO1	An insi	ght into the	atomic and	molecular	structure							
CO2	Analyti	Analytical techniques used in identification of molecules										
CO3	To und	To understand Periodic properties										
CO4	To und	erstand the	spatial arra	ngement o	of molecules	6						

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine.Vibrational and rotational spectroscopy of diatomic molecules.Applications.Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

1) University chemistry, by B. M. Mahan, Pearson Education

- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab									
L	Т	Р	Credit	Practical	Minor Test	Total	Time				
-	-	3	1.5	30	20	50	3h				

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES-105A			Progra	amming for	Problem Sol	ving				
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
3	-	-	3	75	25	100	3h			
Purpose	pose To familiarize the students with the basics of Computer System and C Programming									
			Cou	irse Outcom	ies					
CO 1	Describe t	he overview	of Compute	er System ar	nd Levels of	Programmi	ng Languages.			
CO 2	2 Learn to translate the algorithms to programs (in C language).									
CO 3	CO 3 Learn description and applications of conditional branching, iteration and recursion.									
CO 4	To use arrays, pointers and structures to formulate algorithms and programs.									

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators.

Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union.

Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India...
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications

10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES-			Programn	ning for Pro	blem Solv	ing Lab							
	–	D	Orrealit	Dreation	N/1:00 0.00	Tatal	T :						
L	I	Р	Credit	Practica	Test	Total	Time						
-	-	- 2 1 30 20 50 3h											
Purpose	rpose To Introduce students with problem solving using C Programming language												
			Cou	rse Outcome	es								
CO 1	To formula	te the algo	rithms for	simple pro	blems								
CO 2	Implement	ation of a	rrays and	functions.									
CO 3	Implement	Implementation of pointers and user defined data types.											
CO 4	Write individual and group reports: present objectives, describe test procedures and results.												

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-101	Α			English						
L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
2	-	-	2	75	25	100	3h			
	I		Course	Outcomes	S					
CO 1	Building up	the vocabu	ary							
CO 2	Students w	ill acquire b	asic profic	iency in Er	nglish includ	ing writing s	kills			
			l	INIT- 1						
Vocabula	ry Building									
1.1 The co	ncept of Word	Formation								
1.2 Root w	,ords from for	eign languag	es and thei	r use in Eng	glish					
1.3 Acqua	intance with p	refixes and s	uffixes fror	n foreign la	, nauaaes in Er	nalish to form	derivatives			

1.4 Synonyms, antonyms, and standard abbreviations.

UNIT- 2

Basic Writing Skills

- 2.1 Sentence Structures
- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT- 4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA				Language L	ab						
L	Т	Р	Credit	Practical	Minor Test	Tota I	Time				
-	-	- 2 1 30 20 50 3h									

OBJECTIVES

- 1.
- 2.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm Common Everyday Situations: Conversations and Dialogues Communication at Workplace 3.
- 4.
- 5. Interviews
- **Formal Presentations** 6.

BS-133 A			C	alculus and	Linear Alge	bra					
L	Т	Р	Credit	Major	Minor	Total	Time				
				Test	Test						
3	1	-	4	75	25	100	3 h				
Purpose	To familia multivarial	rize the pro ble calculus	spective er , and linear ;	ngineers wi algebra.	th technique	s in calculu	is, sequence & series,				
	Course Outcomes										
C01	To introduce the idea of applying differential and integral calculus to notions of improper										
	integrals. Apart from some applications it gives a basic introduction on Beta and Gamma										
	functions.										
CO 2	To introduce	the fallouts	s of Rolle's	Theorem th	nat is fundan	nental to ap	plication of analysis to				
	Engineering	problems.									
CO 3	To develop the	ne essential	tool of matr	ices and lir	ear algebra i	in a comprel	nensive manner.				
CO 4	To familiariz engineering.	e the stud	ent with ve	ector space	e as an ess	sential tool	in most branches of				
UNIT-I					(12 h	rs)					

Calculus:

Evaluation of definite and improper integrals: Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

(8 hrs)

Rolle's Theorem, Mean value theorems, Indeterminate forms and L'Hospital's rule.

UNIT-II

Matrices

Matrices, vectors: addition and scalar multiplication, matrix multiplication; Linear systems of equations, linear Independence, rank of a matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan elimination. (10 hrs)

UNIT-III

Vector spaces

Vector Space, linear dependence of vectors, basis, dimension; Linear transformations (maps), range and kernel of a linear map, rank and nullity, Inverse of a linear transformation, rank nullity theorem, composition of linear maps. **UNIT-IV** (10 hrs)

Vector spaces

Eigenvalues, eigenvectors, symmetric, skew-symmetric, and orthogonal Matrices, eigenbases. Diagonalization; Inner product spaces.

Suggested Books:

1. ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

- 2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- 7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

9. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East–West press, Reprint 2005.

10. S. Lipschutz and M. Lipson, Schaum's outline of Linear Algebra, McGraw Hill Education; 3 edition (1 July 17).

Note: The paper setter will set the paper as per the question paper templates provided.

10(1504)

L		Т	Р	Credit	Major Test	Minor Test	Total	Time		
4		1	-	4.5	75	25	100	3 h		
Purpos	se	To familiarize	e the prospect	ive students w	ith techniques of	probability and s	tatistics.			
				Course Ou	itcomes					
CO1	Proba	bility theory	provides mod	els of probabi	lity distributions(theoretical mod	els of the ob	oservable		
	reality involving chance effects) to be tested by statistical methods which has various engine							gineering		
	applica	ations, for i	nstance, in t	esting materia	als, control of p	production proc	esses, robot	tics, and		
	autom	atization in ge	eneral, produc	tion planning a	and so on.					
CO 2	To dev	To develop the essential tool of statistics in a comprehensive manner.								
CO 3	To fan	To familiarize the student with the problem of discussing universe of which they in which complete								
	enume	eration is imp	ractical, tests	of significance	plays a vital role	in their hypothes	sis testing.			

Probability & Statistics

UNIT-I

BS-134 A

Basic Probability: Introduction, additive law of probability, Conditional Probability, Independent Events, Bayes' Theorem.

Random Variables: Discrete random variables, probability distribution. Probability mass function and distribution function, Expectation, Moments, Variance and standard deviation of discrete random variables. (10 Hrs)

UNIT-II

Continuous Probability distribution:

Continuous random variables, probability distribution, Probability density function and distribution function, Expectation, Moments, Variance and standard deviation of Continuous random variables.

Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions.

UNIT-III

Basic Statistics:

Measures of Central tendency: Mean, median, guartiles, mode, Geometric mean, Harmonic mean, Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, coefficient of variation, Moments, Skewness and Kurtosis, Correlation, Coefficient of correlation, methods of calculations, Lines of regression, Rank correlation.

UNIT-IV

Applied Statistics:

Curve fitting by the method of least squares: Introduction, Fitting of a straight line, fitting of second degree curve, fitting of a polynomial of degree m, fitting of a geometric or power curve of the form $y = ax^{b}$, fitting of an exponential curve of the form $y = ab^x$.

Test of significance: Basic terminology, Large sample test for single proportion, difference of proportions, single mean, difference of means, Small samples test for single mean, difference of means, Chi-square test for goodness of fit.

Suggested Books:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

2. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003 (Reprint).

3. S. Ross, A First Course in Probability, 6th Ed., Pearson Education India, 2002.

4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.

5. N.P. Bali and and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

6. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

7. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

8. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

(10 hrs)

(10 hrs)

(10 Hrs)
Course code	ES-1	ES-109A								
Coursetitle	Engi	EngineeringGraphics&Design								
Scheme and Credits	L	L T P Credits Major Minor Tota Test Test I								
	1	2	0	3	75	25	100	3h		

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing , graphics and Projections.

CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of Isometric views to Orthographic views and vice-versa.

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections ofPointsandlinesinclined tobothplanes; Projectionsofplanesinclined to one principalPlane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular soilds like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. CorrespondingsetofCADSoftwareTheoryandUserManuals.

Course code	ES-1	ES-113LA							
Coursetitle	Engi	EngineeringGraphics&Design Practice							
Scheme and Credits	L	Т	Ρ	Credit	Practical	Minor	Total	Time	
				S		Test			
	-	-	3	1.5	30	20	50	3h	
Pre-requisites(if any)	-								

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.
CO-2	To understand to customize settings of CAD software and produce CAD drawing.
CO-3	To practice performing various functions in CAD softwares.
CO-4	To Learn about solid modelling and demonstration of a simple team design project.

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingup ofunitsanddrawing limits;ISOand ANSIstandardsforcoordinatedimensioningandtolerancing; Orthographic constraints, Snap to objects manually and automatically; Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvari ouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduse of Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changingline lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand;orthographicprojection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids and project the true shape of the sectioned surface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory, includingsketching of perspective, isometric, multi-view, auxiliary, and section views. Spatial visualization dimensioningandscalemulti exercises.Dimensioning guidelines, tolerancingtechniques; viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM). Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof)CADSoftwareTheoryandUserManuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-1	ES-111LA								
Coursetitle	Manu	anufacturingProcessesWorkshop								
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time		
	0	0	3	1.5	60	40	100	3h		
Pre-requisites (if any)										

Aim: 1	o make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS-141A			Biology									
L	Т	Р	Credit	Major Test	Minor Test	Total	Time					
2	1	-	3	75	25	100	3h					
Purpose	pose To familiarize the students with the basics of Biotechnology											
		Course	Outcomes	6								
CO1	Introduc	tion to ess	entials of	life and ma	cromolecules ess	ential for growt	h and					
	Developr	nent										
CO2	Defining	the basic of	concepts o	of cell divisi	on, genes and Im	mune system						
CO3	Introduction of basic Concept of ThermoGenetic Engg. & Biochemistry											
CO4	Introduc	tion of bas	ic Concep	Introduction of basic Concept of Microbiology & Role of Biology in Different Fields								

Unit – I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria,chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1510ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation.Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009. D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Note: The paper setter will set the paper as per the question paper templates provided

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

ES-101A		BASIC ELECTRICAL ENGINEERING										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time(Hrs)					
4	1	-	5	75	25	100	3					
	To familiarize the students with the basics of Electrical											
Purpose	Engineering											
	Course Outcomes											
CO1	Deals with st	eady state c	ircuit ana	lysis subject to DC.								
CO 2	Deals with A	C fundamen [®]	tals & stea	ady state circuit respo	nse subject to .	AC.						
	Deals with	introductor	y Baland	ed Three Phase Sy	stem analysis	and Sir	ngle Phase					
CO 3	Transformer.											
CO 4	Explains the	Basics of Ele	ctrical Ma	achines & Electrical in	stallations							

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit.Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts.including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phaseemf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon.Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutateor action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena&Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC	ELECTRIC	AL ENGIN	IEERING LAB					
L	Т	Practic	Credit	Minor Test	(Practical)	Tota	Time (Hrs)		
-	-	al 2	1	20	30	50	3		
Purpose	Purpose To familiarize the students with the Electrical Technology Practicals								
	Course Outcomes								
	Understand basic concepts of Network								
CO1	theorems		-						
<u> </u>	Deals with ste	ady state	frequenc	y response of	RLC circuit p	barame	ters solution		
CO 2	techniques		<u>C' D</u>						
CO 3	Deals with introductory Single Phase Transformer 3 practicals								
CO 4	Explains the constructional features and practicals of various types of Electrical Machines								

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Cluster –III: Common with B.Tech in (a) Biotechnology (b) Food Technology Bachelor of Technology in Biotechnology(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester I (w.e.f. session 2018-2019)

	CourseNo /			Hours/			Examinat	ionSchedule((Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	of exam (Hours)
1A	BS-111A	Applied Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-131A	Applied Mathematics-I	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-113LA	Applied Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches.

Cluster –III: Common with B.Tech in (a) Biotechnology (b) Food Technology Bachelor of Technology in Biotechnology(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

				Hours/			Examina	tionSchedule((Marks)	Duration
S.No.	Courseivo./	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	ofexam (Hours)
1A	BS-111A	Applied Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-132A	Applied Mathematics-II	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-113LA	Applied Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

BS-111A		Applied Physics								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
3	1	-	4	75	25	100	3h			
Purpose	Purpose To introduce the basics of physics to the students for applications in Engineering field.									
			Cours	e Outcome	s					
CO 1	Introduce the	fundamentals o	f interferei	nce and dif	fraction and the	eir applicati	ons.			
CO 2	To make the s	tudents aware o	of the impo	ortance of p	olarization and	Laser in te	chnology.			
CO 3	Applications of optical fiber and ultrasonics in various fields.									
CO 4	Introduce the nuclear radiations and its biological effects.									

Unit - I

Interference: Principle of Superposition, Conditions for interference, Division of wave-front: Fresnel's Biprism and Applications, Division of amplitude: Wedge-shaped film, Newton's rings, Michelson Interferometer and Applications. **Diffraction:** Types of diffraction, Fraunhofer diffraction at a single slit, Plane transmission diffraction grating: theory, secondary maxima and minima, width of principal maxima, absent spectra, overlapping of spectral lines, determination of wavelength; Dispersive power and resolving power of diffraction grating.

Unit – II

Polarization: Polarization of transverse waves, Plane of polarization, Polarization by reflection, Double refraction, Nicol Prism, Quarter and half wave plate, Specific Rotation, Laurent 's half shade polarimeter, Biquartzpolarimeter. **Laser:** Introduction, Stimulated Absorption, Spontaneous and Stimulated Emission; Einstein's Coefficients and its derivation, Population Inversion, Direct and Indirect pumping, Pumping schemes, Main components of Laser, He-Ne Laser, Semiconductor Laser, Characteristics of Laser, Applications of Laser.

Unit – III

Optical Fiber: Introduction, Principle of propagation of light waves in optical fibers: total internal reflection, acceptance angle, numerical aperture, V- number; Modes of propagation, Types of optical fibers: single mode fiber, multimode fibers; Fiber optics communication system, Advantages of optical fiber communication, Applications of optical fibers.

Ultrasonics: Ultrasonic waves, Properties of ultrasonic waves, Production of ultrasonic waves: Magnetostriction and Piezoelectric methods, Detection of ultrasonic waves, Measurement of velocity of ultrasonic waves, Applications of ultrasonic waves.

Unit – IV

Nuclear radiations and its Biological Effects: Classification of nuclear radiations, Interaction of charged particle (light and heavy) and gamma radiations with matter (basic concepts), Dosimetric units, Relative Biological Effectiveness (RBE), Typical doses from commons sources in the environment, Biological Effects, Maximum Permissible Dose, (MPD), Shielding, Radiation safety in the nuclear radiation laboratory.

Biomaterials: Introduction, Classification of biomaterials, Applications.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 3. A Textbook of Optics, S. Chand & Company Ltd.
- 4. Techniques for Nuclear and Particle Physics Experiments: A How-to Approach, Springer-Verlag.
- 5. Introduction to Nuclear and Particle Physics, PHI Learning Private Limited.
- 6. Biomaterials: The intersection of Biology and Materials Science, Pearson, New Delhi.

BS-113LA		Applied Physics Lab									
L	Т	Р	Credit	Practical	Minor Test	Total	Time				
-	3		1.5	30	20	50	3h				
Purpose	rpose Give the knowledge of basic practicals of Physics in Engineering.										
			Course Ou	tcomes							
CO1	To make the st	udents familia	r with the exper	iments related	with optics.						
CO2	CO2 To give the knowledge of handling of the experiments related with resistance using different										
	methods.	nethods.									

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To verify Newton's formula and hence to find the focal length of the given convex lens.
- 2. To find the frequency of A.C. mains by using Sonometer and horse shoe magnet.
- 3. To find the resistance of a galvanometer by post office box.
- 4. To find low resistance by Carrey-Foster bridge.
- 5. To find the value of high resistance by substitution method.
- 6. To compare the capacitances of two capacitors by De-Sauty's bridge and hence to find the dielectric constant of a medium.
- 7. To convert a galvanometer into an ammeter of desired range and verify the same.
- 8. To find the wavelength of monochromatic light by Newton's ring experiment.
- 9. To find the wavelength of sodium light by Michelson's interferometer.
- 10. To find the resolving power of telescope.
- 11. To find the wavelength of sodium light using Fresnel bi-prism.
- 12. To find the wavelength of various colours of white light with the help of plane transmission diffraction grating.
- 13. To find the specific rotation of sugar solution by using a Polarimeter.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- **3.** S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
3	1	-	4	75	25	100	3h			
Purpose	To fam	To familiarize the students with basic and applied concept in chemistry								
CO1	An insi	ght into the	atomic and	molecular	structure					
CO2	Analyti	cal techniqu	ues used in i	identificati	on of moled	ules				
CO3	To und	To understand Periodic properties								
CO4	To und	erstand the	spatial arra	ngement o	of molecules	5				

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine.Vibrational and rotational spectroscopy of diatomic molecules.Applications.Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

1) University chemistry, by B. M. Mahan, Pearson Education

- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab									
L	Т	Р	Credit	Practical	Minor Test	Total	Time				
-	-	3	1.5	30	20	50	3h				

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES-105A	Programming for Problem Solving									
L	T P Credit			Major	Minor	Total	Time			
				Test	Test					
3	-	-	3	75	25	100	3h			
Purpose	e To familiarize the students with the basics of Computer System and C Programming									
Course Outcomes										
CO 1	Describe the	he overview	of Compute	er System ar	nd Levels of	Programmi	ng Languages.			
CO 2	Learn to tr	anslate the	algorithms	to programs	s (in C langu	age).				
CO 3	Learn description and applications of conditional branching, iteration and recursion.									
CO 4	To use arrays, pointers and structures to formulate algorithms and programs.									

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators.

Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union.

Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India..
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications
- 10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA	Programming for Problem Solving Lab									
L	Т	Р	Credit	Practica	Minor	Total	Time			
				I	Test					
-	-	2	1	30	20	50	3h			
Purpose	To Introduce students with problem solving using C Programming language									
			Cour	rse Outcom	es					
CO 1	To formula	te the algo	rithms for	simple pro	blems					
CO 2	Implement	ation of a	rrays and	functions.						
CO 3	Implement	ation of p	ointers an	d user defii	ned data ty	pes.				
CO 4	Write indiv and results	vidual and	group rep	orts: prese	nt objectiv	es, describe	e test procedures			

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-101	A	English								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
2	-	-	2	75	25	100	3h			
			Course	e Outcomes	6	1				
CO 1	Building up	uilding up the vocabulary								
CO 2	Students w	ill acquire b	asic profic	iency in Er	nglish includ	ing writing s	kills			
			U	JNIT- 1						
Vocabula	ry Building									
1.1 The co	ncept of Word	Formation								
1.2 Root w	vords from for	eign languag	es and thei	r use in Eng	jlish	alich to form	dariyatiyaa			
1.3 Acqua	intance with p	refixes and s	uttixes from	n foreign la	nguages in Er	igiish to form	derivatives.			

1.4 Synonyms, antonyms, and standard abbreviations.

UNIT-2

Basic Writing Skills

- 2.1 Sentence Structures
- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT- 4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA		Language Lab										
L	Т	Р	Credit	Practical	Minor	Tota	Time					
					Test							
-	-	2	1	30	20	50	3h					

OBJECTIVES

- 1.
- 2.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm Common Everyday Situations: Conversations and Dialogues Communication at Workplace 3.
- 4.
- Interviews 5.
- **Formal Presentations** 6.

n, Continuity, Differentiability, Expo ions in parametric forms, second ord Increasing and decreasing functions
(12 hrs)
verse process of Differentiation, Me
Calculus, Evaluation of Definite Inte
and Analytic Geometry, Pearson Ec 12 th by NCERT. ation. lathematics, Wiley India. per the question paper templates
10(1524)

UNIT-IV Integral Calculus

Integrals: Introduction, Integration as an Inv ethod of Integration, Integration by Partial Fractions, Integration by Parts,

Definite Integrals: Fundamental theorem of egrals by Substitution, properties of Definite Integrals.

Suggested Books:

- 1. G. B. Thomas, R. L. Finney: Calculus a ducation.
- 2. Mathematics Textbook for Class 11th&
- 3. Howard Anton: Calculus, Wiley Publica
- 4. E. Kreyszig: Advanced Engineering M

Note: The paper setter will set the paper as provided.

quadratic equations, UNIT-III

Limits and Derivatives: Introduction, Limits, Limits of Trigonometric Functions, Derivatives (single variable).

Differential Calculus

Continuity and Differentiability: Introduction pnential and Logarithmic functions,

Logarithmic differentiation, Derivatives of function ler derivatives,

Application of Derivatives (single variable): , Maxima and Minima.

Course Outcomes C01 To introduce the idea of sets, relations, functions, trigonometric functions, inverse trigonometric functions, these concepts are prerequisite to learn the concepts of differentiation and integration. Limit is precondition to understand the concept of rate of change and derivative.

Major

Test

75

APPLIED MATHEMATICS-I

The objective of this course is to familiarize the prospective Biotechnology Engineers with

techniques in Limit, Continuity, Differential & Integral Calculus and Complex Numbers. It aims to equip the students with standard concepts and tools at a beginner to intermediate and then at advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. More precisely, the objectives are as

Minor

Test

25

Total

100

Time

3 h

- CO 2 To introduce the Complex numbers which is fundamental to solve any kind of quadratic equations. CO 3 To develop the essential tool of Continuity and Differentiability needed in evaluating higher order
- derivatives of functions.

CO 4 To introduce the tools of Indefinite and Definite integrals of functions in a comprehensive manner that

are used in various techniques dealing engineering problems. (12 hrs)

UNIT-I

BS-131A

L

3

Purpose

Т

1

under:

Ρ

Credit

4

Sets, Relations, Functions

Sets and its types: Operations on sets, complement of a set, Cartesian Product of sets, relations, functions, types of functions,

Trigonometric functions: Introduction, Angles, Trigonometric functions, Trigonometric functions of sum and

difference of two angles, Trigonometric equations,

Inverse Trigonometric functions: Introduction, basic concepts and its properties.

UNIT-II

Pre-Calculus

Complex Numbers: Introduction, Algebra of Complex Numbers, Modulus and the conjugate of a complex number,

(12 hrs)

(12 hrs)

L	Т	Р	Credit	Major Test	Minor Test	Total	Time		
4	1	-	4.5	75	25	100	3 h		
Purpose	² urpose The objective of this course is to familiarize the prospective Biotechnology Engineers with techniques i essential tool of linear algebra, how to solve a differential equation, utility of higher order derivatives i engineering domain, and fitting of a curve to given data. It aims to equip the students with standard concept and tools at a beginner to intermediate and then at advanced level that will serve them well towards tacklin more advanced level of mathematics and applications that they would find useful in their disciplines. Mor precisely, the objectives are as under:								
			Col	urse Outcomes					
CO1	To introduce the system of linear (e essential toc equations.	I of matrices	and linear algebr	a in a comprehensiv	e manner to solv	e the large		
CO 2	To introduce the given data set us	statistical pro	ecess used fo grees and typ	r estimating the p bes of curve fitting	parameters of a giver techniques.	n curve or function	n to fit to a		
CO 3	To introduce effective mathematical tools for the solutions of differential equations that model physical processes.								
CO 4	To extend some	concept of diff	erential calcul	us for more than	one variables.				
UNIT-I		•			(10 Hrs)				

APPLIED MATHEMATICS-II

Linear Algebra:

BS-132A

Introduction to matrices, its types, algebraic operations, transpose, determinant, minors and adjoint of a matrix. Elementary transformations, Inverse of a square matrix: Cramer's rule, Rank of a matrix, elementary matrices, Gauss Jordon method to find inverse using elementary transformations.

System of Linear equations: General representation, Homogeneous and Non-homogeneous system of linear equations, Consistency of linear system of equations, Gauss Elimination method to solve the system of linear equations.

UNIT-II

Theory of Equations:

Introduction, formation of equations, Relation between roots and coefficients, Reciprocal Equations, Transformation of equations.

Curve Fitting:

Introduction, Fitting of a straight line, fitting of second degree curve, fitting of a polynomial of degree m, fitting of a geometric or power curve of the form $y = ax^{b}$, fitting of an exponential curve of the form $y = ab^{x}$.

UNIT-III

Ordinary differential equations:

Introduction, order and degree of the differential equation, Formation of differential equation, Solution of the differential equation, Solution of the differential equation with variables separable and differential equations reducible to variable separable form, exact differential equation, and equations reducible to exact differential equations, linear and Bernoulli's equations, Euler's equations.

UNIT-IV

Multivariable Calculus:

Partial derivatives, Total differential, Chain rule for differentiation, Partial derivatives of higher orders, Homogeneous functions, Euler's theorem on homogeneous functions, differentiation of an implicit function, Jacobian, Maxima and minima of a function of two variables, Lagrange's method of undetermined multipliers.

Suggested Books:

- G. B. Thomas, R. L. Finney: Calculus and Analytic Geometry, Pearson Education. 1.
- H. Anton, Irl C Bivens, Stephen Davis: Calculus 10th Edition, John Wiley & Sons. 2.
- E. Kreyszig: Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006. 3.
- E. Kreyszig and S. Ahuja, Applied Mathematics-II, Wiley India Publication, Reprint 2015. 4.
- Srimanta Pal and Subodh C. Bhunia, Engineering Mathematics, Oxford University Press. 5.
- Mathematics Textbook for Class 11th& 12th by NCERT. 6.

Note: The paper setter will set the paper as per the question paper templates provided.

(12 Hrs)

(10 hrs)

(08 hrs)

Course code	ES-1	ES-109A								
Coursetitle	Engi	Engineering Graphics&Design								
Scheme and Credits	L	Т	Р	Credits	Major Test	Minor Test	Total	Time		
	1	2	0	3	75	25	100	3h		
		Cour		teomos						

Course Outcomes

Objective-	Objective- To expose students to the basics of Engineering Drawing, graphics and Projections.					
CO-1	To learn about construction of various types of curves and scales.					
CO-2	To learn about orthographic projections of points, lines and planes.					
CO-3	To Learn about the sectional views and development of Right regular solids					
CO-4	To Learn about the construction of Isometric Projections and conversion of Isometric					
	views to Orthographic views and vice-versa.					

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections ofPointsandlinesinclined tobothplanes; Projectionsofplanesinclined to one principalPlane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular soilds like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. CorrespondingsetofCADSoftwareTheoryandUserManuals.

Course code	ES-1	ES-113LA								
Coursetitle	Engi	EngineeringGraphics&Design Practice								
Scheme and Credits	L	Т	Ρ	Credit	Practical	Minor	Total	Time		
				S		Test				
	-	-	3	1.5	30	20	50	3h		
Pre-requisites(if any)	-									

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.
CO-2	To understand to customize settings of CAD software and produce CAD drawing.
CO-3	To practice performing various functions in CAD softwares.
CO-4	To Learn about solid modelling and demonstration of a simple team design project.

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingupofunitsanddrawinglimits;ISOandANSIstandardsforcoordinatedimensioningandtolerancing;Orthographicconstraints,Snaptoobjectsmanuallyandautomatically;Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvariouswaysofdrawingcircles;ouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduseof Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changingline lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand; orthographic projection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids and project the true shape of the sectioned surface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory, includingsketching of perspective, isometric, multi-view, auxiliary, and section views. Spatial visualization exercises.Dimensioning guidelines,tolerancingtechniques; dimensioningandscalemulti viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM).

Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof)CADSoftwareTheoryandUserManuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-1	ES-111LA							
Coursetitle	Manu	anufacturingProcessesWorkshop							
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time	
	0	0	3	1.5	60	40	100	3h	
Pre-requisites (if any)									

Aim: 1	o make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS-141A		Bi	ology							
L	Т	Р	Credit	Major	Minor Test	Total	Time			
				Test						
2	1	-	3	75	25	100	3h			
Purpose	To familiarize the students with the basics of Biotechnology									
	Course Outcomes									
CO1	Introduct	ion to esser	ntials of life	e and macron	nolecules essential	for growth and				
	Developm	nent								
CO2	Defining t	he basic co	ncepts of c	ell division, g	jenes and Immune	system				
CO3	Introduct	ion of basic	Concept o	f ThermoGen	etic Engg. & Bioch	emistry				
CO4	Introduct	ion of basic	Concept o	f Microbiolog	y & Role of Biolog	y in Different Field	ds			

Unit – I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria,chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1530ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation.Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.

D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Note: The paper setter will set the paper as per the question paper templates provided Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

ES-101A		BASIC ELEC	TRICAL ENG	INEERING							
L	Т	Р	Credit	Major Test	Minor Test	Total	Time(Hrs)				
4	1	-	5	75	25	100	3				
Purpose		To familiarize the students with the basics of Electrical Engineering									
	Course Outcomes										
CO1	Deals with s	teady state c	ircuit analy	sis subject to DC							
CO 2	Deals with A	AC fundamen	tals & stead	y state circuit re	sponse subject t	o AC.					
	Deals with	introductor	y Balanced	d Three Phase	System analys	is and Si	ngle Phase				
CO 3	Transforme	er.			-						
CO 4	Explains the	Basics of Ele	ectrical Mac	hines & Electrica	al installations						

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit.Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts.including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phaseemf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF &Reluctance.Hysteresis& Eddy current phenomenon.Principle, construction &emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation.OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutator action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena&Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	BASIC	ELECTRIC	AL ENGIN	IEERING LAB							
L	Т	Practic	Credit	Minor Test	(Practical)	Tota	Time (Hrs)				
		al				I					
-	-	2	1	20	30	50	3				
To familiarize the students with the Electrical Technology											
Purpose	Purpose Practicals										
Course Outcomes											
	Understand basic concepts of Network										
CO1	theorems		-								
	Deals with ste	ady state f	requenc	y response of	RLC circuit p	barame	ters solution				
CO 2	techniques										
	Deals with int	roductory	Single P	hase Transfor	mer						
CO 3	practicals										
	Explains the co	onstruction	nal featui	res and praction	cals of variou	is types	of Electrical				
CO 4	Machines			_		_					

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Cluster –III: Common with B.Tech in (a) Biotechnology (b) Food Technology Bachelor of Technology in Food Technology(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester I (w.e.f. session 2018-2019)

	CourceNe /			Houre			Examinat	ionSchedule(N	Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	of exam (Hours)
1A	BS-111A	Applied Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-131A	Applied Mathematics-I	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	EngineeringGraphics&Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	ManufacturingProcessesWorkshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	BasicElectricalEngineering	4:1:0	5	5	75	25	0	100	3
6A	BS-113LA	Applied Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	ChemistryLab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	ProgrammingforProblemSolvingLab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	BasicElectricalEngineeringLab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	EngineeringGraphics&DesignPractice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	LanguageLab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches.

Cluster –III: Common with B.Tech in (a) Biotechnology (b) Food Technology Bachelor of Technology in Food Technology(Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester II (w.e.f. session 2018-2019)

	CourseNo /			Hours/			Examina	tionSchedule((Marks)	Duration
S.No.	Code	Subject	L:T:P	Week	Credits	Major Test	MinorTest	Practical	Total	ofexam (Hours)
1A	BS-111A	Applied Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	ProgrammingforProblemSolving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-132A	Applied Mathematics-II	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-113LA	Applied Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

BS-111A		Applied Physics								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
3	1	-	4	75	25	100	3h			
Purpose	Purpose To introduce the basics of physics to the students for applications in Engineering field.									
			Cours	e Outcome	s					
CO 1	Introduce the	fundamentals o	f interferei	nce and dif	fraction and the	eir applicati	ons.			
CO 2	To make the s	tudents aware o	of the impo	ortance of p	olarization and	Laser in te	chnology.			
CO 3	Applications of optical fiber and ultrasonics in various fields.									
CO 4	Introduce the	nuclear radiatio	ns and its	biological	effects.					

Unit - I

Interference: Principle of Superposition, Conditions for interference, Division of wave-front: Fresnel's Biprism and Applications, Division of amplitude: Wedge-shaped film, Newton's rings, Michelson Interferometer and Applications. **Diffraction:** Types of diffraction, Fraunhofer diffraction at a single slit, Plane transmission diffraction grating: theory, secondary maxima and minima, width of principal maxima, absent spectra, overlapping of spectral lines, determination of wavelength; Dispersive power and resolving power of diffraction grating.

Unit – II

Polarization: Polarization of transverse waves, Plane of polarization, Polarization by reflection, Double refraction, Nicol Prism, Quarter and half wave plate, Specific Rotation, Laurent 's half shade polarimeter, Biquartzpolarimeter. **Laser:** Introduction, Stimulated Absorption, Spontaneous and Stimulated Emission; Einstein's Coefficients and its derivation, Population Inversion, Direct and Indirect pumping, Pumping schemes, Main components of Laser, He-Ne Laser, Semiconductor Laser, Characteristics of Laser, Applications of Laser.

Unit – III

Optical Fiber: Introduction, Principle of propagation of light waves in optical fibers: total internal reflection, acceptance angle, numerical aperture, V- number; Modes of propagation, Types of optical fibers: single mode fiber, multimode fibers; Fiber optics communication system, Advantages of optical fiber communication, Applications of optical fibers.

Ultrasonics: Ultrasonic waves, Properties of ultrasonic waves, Production of ultrasonic waves: Magnetostriction and Piezoelectric methods, Detection of ultrasonic waves, Measurement of velocity of ultrasonic waves, Applications of ultrasonic waves.

Unit – IV

Nuclear radiations and its Biological Effects: Classification of nuclear radiations, Interaction of charged particle (light and heavy) and gamma radiations with matter (basic concepts), Dosimetric units, Relative Biological Effectiveness (RBE), Typical doses from commons sources in the environment, Biological Effects, Maximum Permissible Dose, (MPD), Shielding, Radiation safety in the nuclear radiation laboratory.

Biomaterials: Introduction, Classification of biomaterials, Applications.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 3. A Textbook of Optics, S. Chand & Company Ltd.
- 4. Techniques for Nuclear and Particle Physics Experiments: A How-to Approach, Springer-Verlag.
- 5. Introduction to Nuclear and Particle Physics, PHI Learning Private Limited.
- 6. Biomaterials: The intersection of Biology and Materials Science, Pearson, New Delhi.

BS-113LA		Applied Physics Lab									
L	Т	T P Credit Practical Minor Test Total T									
-	-	3	1.5	30	20	50	3h				
Purpose	Purpose Give the knowledge of basic practicals of Physics in Engineering.										
			Course Ou	tcomes							
CO1	To make the st	udents familia	ar with the exper	iments related	with optics.						
CO2	CO2 To give the knowledge of handling of the experiments related with resistance using different										
	methods.	_	-	-			-				

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To verify Newton's formula and hence to find the focal length of the given convex lens.
- 2. To find the frequency of A.C. mains by using Sonometer and horse shoe magnet.
- 3. To find the resistance of a galvanometer by post office box.
- 4. To find low resistance by Carrey-Foster bridge.
- 5. To find the value of high resistance by substitution method.
- 6. To compare the capacitances of two capacitors by De-Sauty's bridge and hence to find the dielectric constant of a medium.
- 7. To convert a galvanometer into an ammeter of desired range and verify the same.
- 8. To find the wavelength of monochromatic light by Newton's ring experiment.
- 9. To find the wavelength of sodium light by Michelson's interferometer.
- 10. To find the resolving power of telescope.
- 11. To find the wavelength of sodium light using Fresnel bi-prism.
- 12. To find the wavelength of various colours of white light with the help of plane transmission diffraction grating.
- 13. To find the specific rotation of sugar solution by using a Polarimeter.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- **3.** S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101A		Chemistry									
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
3	1	-	4	75	25	100	3h				
Purpose	To fam	To familiarize the students with basic and applied concept in chemistry									
CO1	An insi	ght into the	atomic and	molecular	structure						
CO2	Analyti	cal techniqu	ues used in i	identificati	on of moled	ules					
CO3	To und	To understand Periodic properties									
CO4	To und	erstand the	spatial arra	ngement o	of molecules	5					

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N_2 , O_2 , CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine.Vibrational and rotational spectroscopy of diatomic molecules.Applications.Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCI₅, SF₆, CCI4, Pt(NH₃)₂CI₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

1) University chemistry, by B. M. Mahan, Pearson Education

- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab									
L	Т	Р	Credit	Practical	Minor Test	Total	Time				
-	-	3	1.5	30	20	50	3h				

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES-105A	Programming for Problem Solving									
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
3	-	-	3	75	25	100	3h			
Purpose	To familiarize the students with the basics of Computer System and C Programming									
Course Outcomes										
CO 1	Describe the overview of Computer System and Levels of Programming Languages.									
CO 2	Learn to translate the algorithms to programs (in C language).									
CO 3	Learn description and applications of conditional branching, iteration and recursion.									
CO 4	To use arrays, pointers and structures to formulate algorithms and programs.									

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators.

Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union.

Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. SubrataSaha,Subhodip Mukherjee:Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. PradipDey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India..
- 8. YashwantKanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications
- 10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES- 107LA	Programming for Problem Solving Lab										
L	Т	Р	Credit	Practica	Minor	Total	Time				
				I	Test						
-	-	2	1	30	20	50	3h				
Purpose	To Introduce students with problem solving using C Programming language										
			Cour	rse Outcom	es						
CO 1	To formulate the algorithms for simple problems										
CO 2	Implementation of arrays and functions.										
CO 3	Implementation of pointers and user defined data types.										
CO 4	Write indiv and results	vidual and	group rep	orts: prese	nt objectiv	es, describe	e test procedures				

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.
HM-101	Α	English								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
2	-	-	2	75	25	100	3h			
-			Course	Outcomes	5					
CO 1	Building up	the vocabu	lary							
CO 2	Students wi	ll acquire b	asic profic	iency in Er	nglish includ	ing writing s	kills			
			U	INIT- 1						
Vocabula	ry Building									
1.1 The co	ncept of Word	Formation								
1.2 Root w	vords from fore	eign languag	jes and thei	r use in Eng	llish					
1.3 Acqua	intance with p	refixes and s	Suffixes fron	n foreign la	nguages in Er	nglish to form	derivatives.			

1.4 Synonyms, antonyms, and standard abbreviations.

UNIT-2

Basic Writing Skills

- 2.1 Sentence Structures
- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT- 3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT- 4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

Note: The paper setter will set the paper as per the question paper templates provided.

HM- 103LA		Language Lab										
L	Т	Р	Credit	Practical	Minor	Tota	Time					
					Test							
-	-	2	1	30	20	50	3h					

OBJECTIVES

- 1.
- 2.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm Common Everyday Situations: Conversations and Dialogues Communication at Workplace 3.
- 4.
- Interviews 5.
- **Formal Presentations** 6.

n, Continuity, Differentiability, Expo ions in parametric forms, second ord Increasing and decreasing functions
(12 hrs)
verse process of Differentiation, Me
Calculus, Evaluation of Definite Inte
and Analytic Geometry, Pearson Ec 12 th by NCERT. ation. lathematics, Wiley India. per the question paper templates
10(1544)

UNIT-IV Integral Calculus

Integrals: Introduction, Integration as an Inv ethod of Integration, Integration by Partial Fractions, Integration by Parts,

Definite Integrals: Fundamental theorem of (egrals by Substitution, properties of Definite Integrals.

Suggested Books:

- 1. G. B. Thomas, R. L. Finney: Calculus a ducation.
- 2. Mathematics Textbook for Class 11th&
- 3. Howard Anton: Calculus, Wiley Publica
- 4. E. Kreyszig: Advanced Engineering M

Note: The paper setter will set the paper as provided.

Continuity and Differentiability: Introduction pnential and Logarithmic functions, Logarithmic differentiation, Derivatives of function ler derivatives,

Application of Derivatives (single variable): , Maxima and Minima.

UNIT-III

BS-131A

L

3

Purpose

C01

CO 2

CO 3

CO 4

UNIT-I

functions,

Т

1

under:

derivatives of functions.

difference of two angles, Trigonometric equations,

Ρ

Credit

4

Differential Calculus

Inverse Trigonometric functions: Introduction, basic concepts and its properties. **UNIT-II** (12 hrs)

Sets and its types: Operations on sets, complement of a set, Cartesian Product of sets, relations, functions, types of

Trigonometric functions: Introduction, Angles, Trigonometric functions, Trigonometric functions of sum and

Pre-Calculus

Complex Numbers: Introduction, Algebra of Complex Numbers, Modulus and the conjugate of a complex number, quadratic equations,

Limits and Derivatives: Introduction, Limits, Limits of Trigonometric Functions, Derivatives (single variable).

Sets, Relations, Functions

APPLIED MATHEMATICS-I

The objective of this course is to familiarize the prospective Biotechnology Engineers with

techniques in Limit, Continuity, Differential & Integral Calculus and Complex Numbers. It aims to equip the students with standard concepts and tools at a beginner to intermediate and then at advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. More precisely, the objectives are as

To introduce the idea of sets, relations, functions, trigonometric functions, inverse trigonometric

To introduce the Complex numbers which is fundamental to solve any kind of quadratic equations.

To develop the essential tool of Continuity and Differentiability needed in evaluating higher order

To introduce the tools of Indefinite and Definite integrals of functions in a comprehensive manner that

functions, these concepts are prerequisite to learn the concepts of differentiation and integration.

Minor

Test

25

Total

100

Time

3 h

Major

Test

75

Course Outcomes

Limit is precondition to understand the concept of rate of change and derivative.

are used in various techniques dealing engineering problems.

(12 hrs)

(12 hrs)

L	Т	Р	Credit	Major Test	Minor Test	Total	Time
4	1	-	4.5	75	25	100	3 h
Purpose	The objective essential tool engineering d and tools at a more advance precisely, the	of this cours of linear alg omain, and fit beginner to i ed level of ma objectives are	e is to familia ebra, how to ting of a curve ntermediate an athematics an e as under:	arize the prospect solve a differenti to given data. It and then at advance d applications that	tive Biotechnology E ial equation, utility o aims to equip the stud ed level that will serv t they would find use	ngineers with teo f higher order de dents with standar ve them well towar eful in their discip	hniques in rivatives in d concepts ds tackling lines. More
			Col	urse Outcomes			
CO1	To introduce the system of linear (e essential toc equations.	I of matrices	and linear algebr	a in a comprehensiv	e manner to solv	e the large
CO 2	To introduce the given data set us	statistical pro	ecess used fo grees and typ	r estimating the p bes of curve fitting	parameters of a giver techniques.	n curve or function	n to fit to a
CO 3	To introduce ef processes.	fective mathe	matical tools	for the solution	s of differential equ	ations that mod	el physical
CO 4	To extend some	concept of diff	erential calcul	us for more than	one variables.		
UNIT-I		•			(10 Hrs)		

APPLIED MATHEMATICS-II

Linear Algebra:

BS-132A

Introduction to matrices, its types, algebraic operations, transpose, determinant, minors and adjoint of a matrix. Elementary transformations, Inverse of a square matrix: Cramer's rule, Rank of a matrix, elementary matrices, Gauss Jordon method to find inverse using elementary transformations.

System of Linear equations: General representation, Homogeneous and Non-homogeneous system of linear equations, Consistency of linear system of equations, Gauss Elimination method to solve the system of linear equations.

UNIT-II

Theory of Equations:

Introduction, formation of equations, Relation between roots and coefficients, Reciprocal Equations, Transformation of equations.

Curve Fitting:

Introduction, Fitting of a straight line, fitting of second degree curve, fitting of a polynomial of degree m, fitting of a geometric or power curve of the form $y = ax^{b}$, fitting of an exponential curve of the form $y = ab^{x}$.

UNIT-III

Ordinary differential equations:

Introduction, order and degree of the differential equation, Formation of differential equation, Solution of the differential equation, Solution of the differential equation with variables separable and differential equations reducible to variable separable form, exact differential equation, and equations reducible to exact differential equations, linear and Bernoulli's equations, Euler's equations.

UNIT-IV

Multivariable Calculus:

Partial derivatives, Total differential, Chain rule for differentiation, Partial derivatives of higher orders, Homogeneous functions, Euler's theorem on homogeneous functions, differentiation of an implicit function, Jacobian, Maxima and minima of a function of two variables, Lagrange's method of undetermined multipliers.

Suggested Books:

- G. B. Thomas, R. L. Finney: Calculus and Analytic Geometry, Pearson Education. 1.
- H. Anton, Irl C Bivens, Stephen Davis: Calculus 10th Edition, John Wiley & Sons. 2.
- E. Kreyszig: Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006. 3.
- E. Kreyszig and S. Ahuja, Applied Mathematics-II, Wiley India Publication, Reprint 2015. 4.
- Srimanta Pal and Subodh C. Bhunia, Engineering Mathematics, Oxford University Press. 5.
- Mathematics Textbook for Class 11th& 12th by NCERT. 6.

Note: The paper setter will set the paper as per the question paper templates provided.

(10 hrs)

(08 hrs)

(12 Hrs)

Course code	ES-1	ES-109A								
Coursetitle	Engi	Engineering Graphics&Design								
Scheme and Credits	L	Т	Р	Credits	Major Test	Minor Test	Total	Time		
	1	2	0	3	75	25	100	3h		
		Cour		teomos						

Course Outcomes

Objective-	Objective- To expose students to the basics of Engineering Drawing, graphics and Projections.						
CO-1	To learn about construction of various types of curves and scales.						
CO-2	To learn about orthographic projections of points, lines and planes.						
CO-3	To Learn about the sectional views and development of Right regular solids						
CO-4	To Learn about the construction of Isometric Projections and conversion of Isometric						
	views to Orthographic views and vice-versa.						

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

PrinciplesofOrthographicProjections-Conventions-Projections ofPointsandlinesinclined tobothplanes; Projectionsofplanesinclined to one principalPlane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular soilds like prism, pyramid, Cylinder and Cone. Development of surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. CorrespondingsetofCADSoftwareTheoryandUserManuals.

Note: The paper setter will set the paper as per the question paper templates provided.

Course code	ES-1	ES-113LA								
Coursetitle	Engi	EngineeringGraphics&Design Practice								
Scheme and Credits	L	Т	Ρ	Credit	Practical	Minor	Total	Time		
				S		Test				
	-	-	3	1.5	30	20	50	3h		
Pre-requisites(if any)	-									

Aim: To make student practice on engineering graphics and designsoftwaresand provide exposuretothevisual aspects of engineering design.

CO-1	To give an overview of the user interface and toolboxes in a CAD software.
CO-2	To understand to customize settings of CAD software and produce CAD drawing.
CO-3	To practice performing various functions in CAD softwares.
CO-4	To Learn about solid modelling and demonstration of a simple team design project.

Module 1: Overview of Computer Graphics:

Listingthecomputertechnologiesthatimpactongraphicalcommunication,Demonstrating Knowledgeofthetheory ofCADsoftware[suchas:TheMenuSystem,Toolbars(Standard, ObjectProperties,Draw,Modify andDimension),DrawingArea(Background,Crosshairs, CoordinateSystem),Dialogboxes andwindows,Shortcutmenus(Button Bars),The CommandLine(whereapplicable),TheStatusBar,Differentmethodsofzoom asusedin CAD,Selectanderaseobjects.; IsometricViewsoflines,Planes, Simpleandcompound Solids];

Module2:Customization &CAD Drawing:

Setupofthedrawingpageandtheprinter,includingscalesettings,Settingupofunitsanddrawinglimits;ISOandANSIstandardsforcoordinatedimensioningandtolerancing;Orthographicconstraints,Snaptoobjectsmanuallyandautomatically;Producingdrawingsbyusingvariouscoordinateinputentrymethodstodrawstraightlines,Applyingvariouswaysofdrawingcircles;ouswaysofdrawingcircles;

Module3:Annotations, layering&other functions:

Applyingdimensionstoobjects, applyingannotationstodrawings; Settingupanduseof Layers, layerstocreatedrawings, Create, editandusecustomized layers; Changingline lengthsthroughmodifyingexisting lines(extend/lengthen);Printingdocumentstopaper usingtheprintcommand; orthographic projection techniques;Drawingsectionalviewsof compositerightregulargeometricsolids and project the true shape of the sectioned surface; Drawing annotation,Computer-aideddesign(CAD)softwaremodelingof partsand assemblies.Parametricandnon-parametricsolid,surface,and wireframemodels.Partediting andtwodimensionaldocumentationofmodels.Planarprojectiontheory, includingsketching of perspective, isometric, multi-view, auxiliary, and section views. Spatial visualization exercises.Dimensioning guidelines,tolerancingtechniques; dimensioningandscalemulti viewsofdwelling;

Module4:Demonstration of a simple team design project:

Geometryandtopologyofengineeredcomponents:creation ofengineeringmodelsandtheir presentationinstandard2Dblueprintform andas3Dwire-frameandshadedsolids;meshed topologies for engineering analysis and tool-path generationforcomponentmanufacture; geometricdimensioningandtolerancing;Useof solid-modelingsoftwareforcreating associativemodels atthecomponentand assemblylevels;floorplans thatinclude: windows,doors,andfixturessuchasWC,bath,sink,shower,etc.Applying colourcodingaccordingto buildingdrawingpractice;Drawingsectionalelevation showingfoundation toceiling; IntroductiontoBuildingInformationModeling (BIM).

Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Correspondingsetof) CADSoftware Theory and User Manuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-1	ES-111LA							
Coursetitle	Manu	ufactur	ingPro	cessesWo	rkshop				
Scheme and Credits	L	L T P Credits Practical Minor Total							
	0	0	3	1.5	60	40	100	3h	
Pre-requisites (if any)									

Aim: 1	o make student gain a hands on work experience in a typical manufacturing
i	ndustry environment.
CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machine.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

ManufacturingProcessesWorkshop Contents

1.ManufacturingMethods-casting,forming,machining,joining, advancedmanufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plasticmoulding, glasscutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. HajraChoudhury S.K., HajraChoudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS-141A	Biology											
L	Т	Р	Credit	Major Test	Minor Test	Total	Time					
2	1	-	3	75	25	100	3h					
Purpose	To far	hiliarize the	e students v	vith the basi	cs of Biotechnology	1						
		Course	e Outcomes	5								
CO1	Introduct	ion to essei	ntials of life	and macron	nolecules essential	for growth and						
	Developm	nent										
CO2	Defining the basic concepts of cell division, genes and Immune system											
CO3	Introduction of basic Concept of ThermoGenetic Engg. & Biochemistry											
CO4	Introduct	ion of basic	Concept o	f Microbiolog	y & Role of Biology	in Different Field	ds					

Unit – I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria,chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 1550ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation.Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal&Deswal, DhanpatRai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.

D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Note: The paper setter will set the paper as per the question paper templates provided Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press WashingtonDC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

ES-101A		BASIC ELECTRICAL ENGINEERING											
L	T P Credit Major Test Minor Test Total Tim												
4	1	-	5	75	25	100	3						
Purpose		To familiari	ze the stude	ents with the basi	ics of Electrical E	ngineering							
			Cours	e Outcomes									
CO1	Deals with s	teady state c	ircuit analy	sis subject to DC									
CO 2	Deals with A	AC fundamen	tals & stead	y state circuit re	sponse subject t	o AC.							
	Deals with	Deals with introductory Balanced Three Phase System analysis and Single Phase											
CO 3	Transforme	er.			-								
CO 4	Explains the	Basics of Ele	ectrical Mac	hines & Electrica	al installations								

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit.Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts.including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phaseemf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF &Reluctance.Hysteresis& Eddy current phenomenon.Principle, construction &emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation.OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutator action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg.by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals:byBobrow, Oxford Univ.Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena&Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

Note: The paper setter will set the paper as per the question paper templates provided.

ES-103LA	BASIC ELECTRICAL ENGINEERING LAB											
L	Т	Practic	Credit	Minor Test	(Practical)	Tota	Time (Hrs)					
		al				I						
-	-	2	1	20	30	50	3					
	То	familiariz	e the stu	dents with the	e Electrical T	echnolo	ogy					
Purpose	Pra	acticals										
Course Outcomes												
	Understand ba	asic conce	pts of Ne	twork								
CO1	theorems		-									
	Deals with ste	ady state f	requenc	y response of	RLC circuit p	barame	ters solution					
CO 2	techniques											
	Deals with int	roductory	Single P	hase Transfor	mer							
CO 3	practicals											
	Explains the constructional features and practicals of various types of Electrical											
CO 4	Machines			_		_						

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

KURUKSHETRA UNIVERSITY, KURUKSHETRA

('A⁺' Grade, NAAC Accredited)

SCHEME OF EXAMINATIONS FOR Master of Technology (Civil Engineering) Specialization: Geo-technical Engineering (w.e.f. SESSION: 2018-19)

SEMESTER- I

S. No.	Course Code	SUBJECT	L	Т	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	MCG-101 A	Advanced Soil Mechanics	3	-	-	3	40	60	3	3
2	MCG-103 A	Advanced Foundation Engineering		-	-	3	40	60	3	3
3	*	Program Elective –I		-	-	3	40	60	3	3
4	**	Program Elective-II		-	-	3	40	60	3	3
5	MCG-117 A	lab I – Soil mechanics-1	-	-	2	2	40	60	2	3
6	MCG-119 A	lab II-Soilmechanics-2	-	-	2	2	40	60	2	3
7	MTRM-111 A	Research Methodology and IPR		-	-	2	40	60	2	3
8	***	Audit Course-I	2	-	-	0	100	-	0	0
		TOTAL	16	0	4	18	280	420	18	
			•			•	70	0	1	

	*Program Elective - I	**Program Elective- II				
MCG-105 A	Soil Structure Interaction	MCG-111 A	FEM in Geomechanics			
MCG-107 A	Ground Improvement Techniques	MCG-113 A	Environmental Geotechnology			
MCG-109 A	Pavement Analysis and Design	MCG-115 A	Critical Soil Mechanics			

***Audit Course-I						
MTAD-101 A English for Research Paper Writing						
MTAD-103 A	Disaster Management					
MTAD-105 A	Sanskrit for Technical Knowledge					
MTAD-107 A	Value Education					

Note: 1. The course of program elective will be offered at 4 numbers of students (whichever is smaller) strength of the class.

Note:2.*** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

SEMESTER-II

S.	Course code	Subject	L	Τ	Р	Total	Minor	Major	Cr.	Duration of
No.							Test	Test		Exam (Hrs.)
1	MCG- 102 A	Dynamics of soils and foundations		-	-	3	40	60	3	3
2	MCG-104A	Subsurface investigations and instrumentation	3	-	-	3	40	60	3	3
3	*	Program Elective-III	3	-	-	3	40	60	3	3
4	**	Program Elective-IV	3	-	-	3	40	60	3	3
5	MCG-118 A	Lab III –Sub soil exploration		-	2	2	40	60	2	3
6	MCG- 120 A	Lab IV- Soil dynamics	-	-	2	2	40	60	2	3
7	MCG- 122 A	A Mini Project		-	4	2	40	60	2	3
8	***	Audit Course-II	2			0	100		0	3
		TOTAL	14		8	18	280	420	18	
							70	0	1	

*Prog	gram Elective - III	**Program Elective –IV					
MCG-106 A	Offshore Geotechnical	MCG-112A	Earth Retaining Structures				
	Engineering/marine Geotechniques	MCG-114A	Design of underground excavations				
MCG-108 A	Computational Geomechanics	MCG-116A	Physical and Constitutive Modelling on Geomechanics				
MCG-110 A	Engineering rock mechanics						

	***Audit Course - II							
MTAD-102 A	Constitution of India							
MTAD-104 A	MTAD-104 A Pedagogy Studies							
MTAD-106 A	Stress Management by Yoga							
MTAD-108 A	Personality Development through Life Enlightenment Skills.							

Note: 1. The course of program elective will be offered at 4 numbers of students (whichever is smaller) strength of the class.

Note: ***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be

mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

SEMESTER-III

S. No.	Course Code	Subject		Τ	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	*	Program Elective-V		-	-	3	40	60	3	3
2	**	Open Elective	3	-	-	3	40	60	3	3
3	MCG-207 A	Dissertation Phase-I		-	20	20	100	-	10	3
		TOTAL	6		20	26	180	120	16	
			•		•		30	0		

*Program Elective –V								
MCG-201 A	Stability analysis of slopes							
MCG-203 A	Foundation and Weak Rocks							
MCG-205 A	Geotechnical earthquake engineering							

	**Open Elective								
1.	MTOE-201A	Business Analytics							
2.	MTOE-203A	Industrial Safety							
3.	MTOE-205A	Operations Research							
4.	MTOE-207A	Cost Management of Engineering Projects							
5.	MTOE-209A	Composite Materials							
6.	MTOE-211A	Waste to Energy							

SEMESTER-IV

S. No.	Course Code		L	Т	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	MCG-202 A	Dissertation Phase-II	-	-	32	32	100	200	16	3
		TOTAL					30	0	16	

Total Credits – 68

Note: 1. The course of program elective/ open elective will be offered at 4 numbers of students (whichever is smaller) strength of the class.

MCG-101A ADVANCED SOIL MECHANICS

Teaching Scheme

Lectures: 3 hrs. /Week

COURSE OUTCOME

- The students obtain the complete knowledge on strength of soil mass
- The students are able to develop mathematical models for solving different problems in soil mechanics

Syllabus Contents:

Unit I

Compressibility of soils: consolidation theory (one, two, and three dimensional consolidation theories), consolidation in layered soil and consolidation for time dependent loading, determination of coefficient of consolidation (Casagrande method and Taylors method)

Unit II

Strength behavior of soils; Mohr Circle of Stress; UU, CU, CD tests, drained and undrained behavior of sand and clay, significance of pore pressure parameters; determination of shear strength of soil; Interpretation of triaxial test results.

Unit III

Stress path; Drained and undrained stress path; Stress path with respect to different initial state of the soil; Stress path for different practical situations.

Unit IV

Critical state soil mechanics ;Critical state parameters ;Critical state fornormally consolidated and over consolidated soil; Significance of Roscoe and Hvorslev state boundary surface; drained and undrained plane. critical void ratio; effect of dilation in sands; different dilation models.

Elastic and plastic deformations: elastic wall; introduction to yielding and hardening; yield curve and yield surface, associated and non-associated flow rule.

References:

Atkinson, J.H. and Bransby, P.L, The Mechanics of Soils: An introduction to Critical soil mechanics, McGraw Hill, 1978.

Atkinson J.H, An introduction to the Mechanics of soils and Foundation, McGraw-Hill Co., 1993. Das, B.M., Advanced Soil Mechanics, Taylor and Francis, 2nd Edition, 1997.

Wood, D.M., Soil Behavior and Critical State Soil Mechanics, Cambridge University Press, 1990. Craig, R.F., Soil Mechanics, Van No strand Reinhold Co. Ltd., 1987. Terzaghi, K., and Peck, R.B., Soil Mechanics in Engineering Practice, John Wiley & Sons, 1967. Lambe, T.W. and Whitman, R.V., Soil Mechanics, John Wiley & Sons, 1979.

MCG-103A ADVANCED FOUNDATION ENGINEERING

Teaching Scheme

Lectures: 3 hrs/ week

COURSE OUTCOME

- The students will be able to decide the type of foundations to be recommended for construction of different engineering structures
- The students will be able to design different types of foundations

Syllabus Contents:

Unit I

Planning of soil exploration for different projects, methods of subsurface exploration, methods of borings along with various penetration tests

Unit II

Shallow foundations, requirements for satisfactory performance of foundations, methods of estimating bearing capacity, settlements of footings and rafts, proportioning of foundations using field test data, IS codes.

Well foundation, IS and IRC codal provisions, elastic theory and ultimate resistance methods

Unit III

Pile foundations, methods of estimating load transfer of piles, settlements of pile foundations, pile group capacity and settlement, negative skin friction of piles, laterally loaded piles, pile load tests, analytical estimation of load- settlement behavior of piles, proportioning of pile foundations, lateral and uplift capacity of piles

Unit IV

Foundations on problematic soils: Foundations for collapsible and expansive soil **Coffer dams**, various types, analysis and design Foundations under uplifting loads

- Bowles. J.E., Foundation Analysis and Design, Tata McGraw-Hill International Edition, 5th Edn, 1997.
- Das B.M., Shallow Foundations: Bearing capacity and settlement, CRC Press, 1999.
- Tomlinson M.J., Pile design and construction Practice, Chapman and Hall Publication, 1994.
- Poulos, H.G. and Davis, F.H., "PileFoundationAnalysis and Design", WileyandSons. 1980

Program Elective –I MCG-105A Soil Structure Interaction

Teaching Scheme

Lectures: 3 hrs/week

Course Outcomes: At the end of the course, students will be able to

- 1. Understand soil structure interaction concept and complexities involved.
- 2. Evaluate soil structure interaction for different types of structure under various conditions of loading and subsoil characteristics.
- 3. Prepare comprehensive design oriented computer programs for interaction problems based on theory of sub grade reaction such as beams, footings, rafts etc.
- 4. Analyze different types of frame structure founded on stratified natural deposits with linear and nonlinear stress-strain characteristics.
- 5. Evaluate action of group of piles considering stress-strain characteristics of real soils.

Unit I

Critical Study of Conventional Methods of Foundation Design, Nature and Complexities of Soil Structure Interaction.

Application of Advanced Techniques of Analysis such as FEM and Finite Difference Method.

Unit II

Relaxation and Interaction for the Evaluation of Soil Structure Interaction for Different Types of Structure under various Conditions of Loading and Subsoil Characteristics.

Unit III

Preparation of Comprehensive Design Oriented Computer Programs for Specific Problems, Interaction Problems based on Theory of Sub Grade Reaction Such as Beams, Footings, Rafts Etc.

Unit IV

Analysis of Different Types of Frame Structures Founded on Stratified Natural Deposits with Linear and Non-Linear Stress-Strain Characteristics.

Determination of Pile Capacities and Negative Skin Friction, Action of Group of PilesConsidering Stress-Strain Characteristics of Real Soils, Anchor Piles and Determination of Pullout Resistance.

Reference Books:

- Analytical and Computer Methods in Foundation, Bowels J.E.,McGraw Hill Book Co., New York, 1974.
- Numerical Methods in Geotechnical Engineering, Desai C.S. and Christian J.T., McGraw Hill Book Co., New York.
- Soil Structure Interaction The real behaviour of structures, Institution of Structural Engineers.
- Elastic Analysis of Soil Foundation Interaction, Developments in Geotechnical Engg. Vol-17, Elsevier Scientific Publishing Company.
- Elastic Analysis of Soil-Foundation Interaction, Selvadurai A.P.S., Elsevier Scientific Publishing Company.
- Analysis & Design of substructures, Swami Saran, Oxford & IBH Publishing Co. Pvt. Ltd.
- Design of Foundation System- Principles & Practices, Kurian N. P., Narosa Publishing

MCG-107 A		Ground improvement technique												
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time												
3	0 0 3 60 40 100 3													

Syllabus Contents:

Unit I

Introduction: situations where ground improvement becomes necessary

Unit II

Mechanical modification: dynamic compaction, impact loading, compaction by blasting, vibrocompaction; pre-compression, stone columns; Hydraulic modification: dewatering systems, preloading and vertical drains, electro-kinetic dewatering

Unit III

Chemical modification; modification by admixtures, stabilization using industrial wastes, grouting **Thermal modification:** ground freezing and thawing.

Unit VI

Soil reinforcement: Reinforced earth, basic mechanism, type of reinforcements, selection of stabilization/improvement of ground using Geotextiles, Goegrid, geomembranes, geocells, geonets, and soil nails.

Application of soil reinforcement: shallow foundations on reinforced earth, design of reinforced earth retaining walls, reinforced earth embankments structures, wall with reinforced backfill, analysis and design of shallow foundations on reinforced earth, road designs with geosynthetics

- Hausmann, M.R., Engineering Principles of Ground Modification, McGraw-Hill International Editions, 1990.
- Yonekura, R., Terashi, M. and Shibazaki, M. (Eds.), Grouting and Deep Mixing, A.A. Balkema, 1966.
- Moseley, M.P., Ground Improvement, Blackie Academic & Professional, 1993.
- Xanthakos, P.P., Abramson, L.W. and Bruce, D.A., Ground Control and Improvement, John

Wiley & Sons, 1994.

- Koerner, R. M., Designing with Geosynthetics, Prentice Hall Inc. 1998.
- Shukla, S.K., Yin, Jian-Hua, "Fundamentals of Geosynthetic Engineering", Taylor & Francis.

Program Elective -I

MCG-109 A		PAVEMENT ANALYSIS AND DESIGN					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time
3	0	0	3	60	40	100	3 Hrs.

Syllabus Contents:

Unit I

Philosophy of design of flexible and rigid pavements, **Analysis** of pavements using different analytical methods,

Unit II

Selection of pavement design input parameters - traffic loading and volume

Unit III

Material characterization, drainage, failure criteria, reliability

Unit IV

Design of flexible and rigid pavements using different methods, Comparison of different pavement design approaches, design of overlays and drainage system.

- Yang and H. Huang, Pavement Analysis and Design, Pearson Prentice Hall, 2004.
- Yoder and Witzech, Pavement Design, McGraw-Hill, 1982.
- Sharma and Sharma, Principles and Practice of Highway Engg., Asia Publishing House, 1980.
- Teng, Functional Designing of Pavements, McGraw-Hill, 1980.

Program Elective -II MCG- 111A FEM IN GEOTECHNICAL ENGINEERING TEACHING

Teaching Scheme

Lectures: 3 hrs/week

COURSE OUTCOME

Students can understand basic stress-strain relationship for soil and develop Stress deformation analysis.

Unit I

Stress-deformation analysis: One dimensional, Two dimensional and Three-dimensional formulations.

Unit II

Discretization of a Continuum, Elements, Strains, Stresses, Constitutive, Relations, Hooke's Law, Formulation of Stiffness Matrix, Boundary Conditions, Solution Algorithms.

Principles of discretization, element stiffness and mass formulation based on direct, variational and weighted residual techniques and displacements approach, Shape functions and numerical integrations, convergence.

Unit III

Displacement formulation for rectangular, triangular and isoparametric elements for two dimensional and axisymmetric stress analysis.

Unit IV

Settlement Analysis, 2-D elastic solutions for homogeneous, isotropic medium, Steady Seepage Analysis: Finite element solutions of Laplace's equation, Consolidation Analysis: Terzaghi consolidation problem, Choice of Soil Properties for Finite Element Analysis

- O.C. Zienkiewicz and R.L. Taylor, Finite element methods Vol I & Vol II, McGraw Hill, 1989, 1992.
- K.J. Bathe, Finite element procedures, PHI Ltd., 1996.
- David M Potts and LidijaZdravkovic, "Finite Element Analysis in Geotechnical Engineering Theory and Apllication", Thomas Telford. 1999

MCG-113 A		ENVIRONMENTAL GEOTECHNOLOGY						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time	
3	0	0	3	60	40	100	3 Hrs.	

Syllabus Contents:

Unit I

Soil as a multiphase system; Soil-environment interaction; Properties of water in relation to the porous media; Water cycle with special reference to soil medium.

Soil mineralogy; significance of mineralogy in determining soil behavior; Mineralogical characterization.

Unit II

Mechanisms of soil-water interaction: Diffuse double layer models; Force of attraction and repulsion; Soil-water-contaminant interaction; Theories of ion exchange; Influence of organic and inorganic chemical interaction.

Unit III

Concepts of waste containment; Sources, production and classification of wastes, Environmental laws and regulations, physico-chemical properties of soil, ground water flow and contaminant transport, desirable properties of soil; contaminant transport and retention; contaminated site remediation.

Unit IV

Soil characterization techniques; volumetric water content; gas permeation in soil; electrical and thermal properties; pore-size distribution; contaminant analysis. contaminated site characterization, estimation of landfill quantities, landfill site location, design of various landfill components such as liners, covers, leachate collection and removal, gas generation and management, ground water monitoring, end uses of landfill sites, slurry walls and barrier systems, design and construction, stability, compatibility and performance, remediation technologies, stabilization of contaminated soils and risk assessment approaches.

- Mitchell, J. KandSoga, K., FundamentalsofSoilBehavior, JohnWileyandSonsInc., 2005.
- Fang, H-Y., Introduction to Environmental Geotechnology, CRCPress, 1997.
- Daniel, D.E, Geotechnical Practice for Waste Disposal, Chapman and Hall, 1993.
- Rowe, R.K., Quigley, R.M. and Booker, J.R., Clay Barrier Systems for Waste Disposal Facilities, E & FN Spon,1995.
- Rowe, R.K, Geotechnical and Geoenvironmental Engineering Handbook, Kluwer Academic Publishers, 2001.
- Reddi, L.N. and Inyang, H.F, Geoenvironmental Engineering Principles and Applications, Marcel Dekker Inc, 2000.
- Sharma, H.D. and Lewis, S.P, Waste Containment Systems, Waste Stabilization and Landfills:

Program Elective -II

MCG-115 A		CRITICAL SOIL MECHANICS					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time
3	0	0	3	60	40	100	3 Hrs.

Syllabus Contents:

Unit I

Soil Behavior: State of stress and strain in soils, Stress and strain paths and invariants, behavior of soils under different laboratory experiments

The Critical state line and the Roscoe surface: Families of undrained tests, Families of drained tests, the critical state line, drained and undrained surfaces, The Roscoe surface

Unit II

Behavior of Overconsolidated samples:

The Hvorslev surface: Behaviour of overconsolidated samples, drained and undrained tests, The Hvorslev surface, complete State Boundary Surface, Volume changes and pore water pressure changes

Unit III

Behaviour of Sands: The critical state line for sands, Normalized plots, the effect of dilation, Consequences of Taylor's model

Unit IV

Behaviour of Soils before Failure: Elastic and plastic deformations, Plasticity theory, Development of elastic-plastic model based on critical state soil mechanics, The Cam-clay model, The modified Cam-clay model

- J. H. Atkinson and P. L. Bransby, "The mechanics of soils: An introduction to critical state soil mechanics", McGraw Hill, 1978
- D. M. Wood, "Soil behaviour and critical state soil mechanics", Cambridge University Press, 1990
- B. M. Das, "Fundamental of geotechnical engineering", Cengage Learning, 2013

MCG-117 A	MCG-117 A Lab-I SOIL Mechanics-1							
Lecture	Tutorial	torial Practical Credit Major Test Minor Test Total Time						
0	0	0 2 2 60 40 100 3 H						
Course Outcomes (CO)								

Syllabus Content:

List of Experiments:

- 1. Determination of Moisture Content and Specific gravity of soil
- 2. Grain Size Distribution Analysis and Hydrometer Analysis
- 3. Atterberg Limits (Liquid Limit, Plastic limit, Shrinkage limit)
- 4. Visual Classification Tests
- 5. Vibration test for relative density of sand
- 6. Standard and modified proctor compaction test
- 7. Falling head permeability test and Constant head permeability test

Consolidation test

MCG-119A		Lab- II Soil Mechanics-II					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time
0	0	2	2	60	40	100	3 Hrs.

List of Experiments:

- 1. Unconfined compression test
- 2. Direct shear test
- 3. Tri-axial compression test UU, CU, CD tests
- 4. Laboratory vane shear test
- 5. Field Vane shear test

MTRM-111 A Research Methodology and IPR

Teaching Scheme

Lectures: 2 hrs/ week

Course Outcomes

- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.

Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about,

economic growth and social benefits.

Syllabus Contents:

Unit I

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem.

Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit II

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper

Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committeePatent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

Unit III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

References:

- Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- Mayall, "Industrial Design", McGraw Hill, 1992.
- Niebel, "Product Design", McGraw Hill, 1974.
- Asimov, "Introduction to Design", Prentice Hall, 1962.
- Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Au	dit-I	

MTAD-101 A			English F	or Research Pa	per Writing			
Lecture	Tutorial	Interview <t< th=""></t<>						
2	0	0	0	-	100	100	3 Hrs.	
Program	Student will able to understand the basic rules of research paper writing.							
Objective (PO)						-		
Course Outcomes (CO)								
C01	Unders	tand that h	ow to imp	prove your writ	ing skills and le	vel of readab	ility	
CO2	Learn a	ibout what	to write i	n each section				
CO3	Unders	tand the sk	ills neede	ed when writing	g a Title			
CO4	Ensure 1	the good qi	uality of p	aper at very fir	rst-time submissi	ion		

UnitI

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit III

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

Unit IV

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

References:

1) Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)

2) Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press

3) Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.

4) Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

muuit -1	Audit	-I
----------	-------	----

MTAD-103 A		Disaster Management						
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time						
2	0	0 0 0 - 100 100 3 Hrs						
Program	Develop d	Develop an understanding of disaster risk reduction and management						
Objective (PO)								
Course Outcomes (CO)								
C01	Learn to demonstrate a critical understanding of key concepts in disaster risk							
	reduction and humanitarian response.							
CO2	Critically	Critically evaluate disaster risk reduction and humanitarian response policy and						
	practice j	from multip	le persp	ectives.				
CO3	Develop	Develop an understanding of standards of humanitarian response and practical						
	relevance	e in specifie	types of	² disasters and	l conflict situatio	ns.		
CO4	critically	y underst	and the	strengths	and weaknesse	es of disaste	r	
	managem	ient appr	oaches,	planning a	nd programmin	g in differen	t	
	countries	, particula	rly their l	home country	or the countries	they work in		

Unit I

Introduction: Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit II

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

Unit III

Disasters Prone Areas in India: Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

Unit IV

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

References:

1) R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.

2) Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.

3) Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

MTAD-105 A	MTAD-105 A Sanskrit for Technical Knowledge								
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time							
2	0	0 0 0 - 100 100 3 Hrs.							
Program	Program Students will be able to Understanding basic Sanskrit language and Ancient								
Objective (PO) Sanskrit literature about science & technology can be understood and Being a									
logical language will help to develop logic in students									
Course Outcomes (CO)									
C01	To get a working knowledge in illustrious Sanskrit, the scientific language in the								
	world								
CO2	Learnin	g of Sanskr	it to impl	rove brain fur	actioning				
CO3	<i>Learning of Sanskrit to develop the logic in mathematics, science & other</i>								
	subjects enhancing the memory power								
CO4	The eng	ineering sc	holars eq	uipped with S	Sanskrit will be a	ble to explore th	ne 🗌		
	huge kno	owledge fra	om anciei	nt literature					

Unit I

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit II

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit III

Technical concepts of Engineering: Electrical, Mechanical

Unit IV

Technical concepts of Engineering: Architecture, Mathematics

References

1) "Abhyaspustakam" – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi

2) "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

3) "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

A	ud	it	Ι

MTAD-107 A			Value Ed							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	0	-	100	100	3 Hrs.			
Program	Understand value of education and self- development, Imbibe good values in									
Objective (PO)	Dbjective (PO) students and Let the should know about the importance of character									
Course Outcomes (CO)										
C01	Knowledge of self-development									
CO2	Learn the importance of Human values									
CO3	Developing the overall personality									
CO4	Know about the importance of character									

Unit I

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements.

Unit II

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism.Love for nature,Discipline

Unit III

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

Unit IV

Character and Competence –Holy books Vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

References

1) Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

M Tech Semester - II

MCG-102A DYNAMICS OF SOILS AND FOUNDATIONS

Teaching Scheme

Lectures: 3 hrs/ week

COURSE OUTCOME

- Students understand theory of vibration and resonance phenomen on, dynamic amplification.
- Students understand propagation of body waves and surface waves throughsoil.
- Student exposed to different methods for estimation of dynamic soil properties required for design purpose.
- Students can predict dynamic bearing capacity and assess liquefaction potential of anysite.
- Students apply theory of vibrations to design machine foundation based on dynamic soil properties and bearing capacity.

Syllabus Contents:

Unit I

Fundamentals of vibrations: single, two and multiple degree of freedom systems, vibration isolation, vibration absorbers, vibration measuring instruments

Wave propagation: elastic continuum medium, semi-infinite elastic continuum medium ,soil behaviour under dynamic loading.

Unit II

Liquefaction of soils: liquefaction mechanism, factors affecting liquefaction, studies by dynamic tri-axial testing, oscillatory shear box, shake table and blast tests, assessment of liquefaction potential.

Unit III

Dynamic elastic constants of soil: determination of dynamic elastic constants, various methods including block resonance tests, cyclic plate load tests, wave propagation tests, oscillatory shear box test.

Machine foundations: Design criteria for machine foundations; Elastic homogeneous half space and lumped parameter solutions, analysis and design of foundations for reciprocating and impact type machines, turbines, effect of machine foundation on adjoiningstructures.

Unit IV

Bearing capacity of foundations: Introduction to bearing capacity of dynamically loaded foundations, such as those of water towers, chimneys and high rise buildings, response of pile foundations.

- Das, B.M., "Fundamentals of Soil Dynamics", Elsevier, 1983.
- Steven Kramer, "Geotechnical Earthquake Engineering", Pearson, 2008.
- Prakash, S., Soil Dynamics, McGraw Hill, 1981.
- Kameswara Rao, N.S.V., Vibration analysis and foundation dynamics,

- Richart, F.E. Hall J.R and Woods R.D., Vibrations of Soils and Foundations, Prentice Hall Inc., 1970.
- Prakash, S. and Puri, V.K., Foundation for machines: Analysis and Design, John Wiley & Sons,1998

MCG 104 A SUBSURFACE INVESTIGATIONS AND INSTRUMENTATION

Teaching Scheme

Lectures: 3 hrs/ week

COURSE OUTCOME

- Students can plan subsurface investigation based on the requirement of civil engineering project and site condition. Can finalize depth and number of boreholes
- Students can execute different subsurface exploration tests, collect disturbed/undisturbed samples for laboratory tests and can suggest design parameters.
- Student exposed to different methods for estimation of dynamic soil properties required for design purpose.
- Students can develop instrumentation scheme for monitoring of critical sites

UNIT I

PLANNING OF EXPLORATION AND GEOPHYSICAL METHODS Scope and objectives, planning an exploration program, methods of exploration, exploration for preliminary and detailed design, spacing and depth of bores, data presentation. Geophysical exploration and interpretation, seismic and electrical methods, cross bore hole, single bore hole – up hole -down hole methods.

UNIT II

EXPLORATION TECHNIQUES Methods of boring and drilling, non-displacement and displacement methods, drilling in difficult subsoil conditions, limitations of various drilling techniques, stabilization of boreholes, bore logs.

UNIT III

SOIL SAMPLING Sampling Techniques – quality of samples – factors influencing sample quality - disturbed and undisturbed soil sampling advanced sampling techniques, offshore sampling, shallow penetration samplers, preservation and handling of samples.

FIELD TESTING IN SOIL EXPLORATION

Field tests, penetration tests, Field vane shear, Insitu shear and bore hole shear test, pressuremeter test, dilatometer test - plate load test-monotonic and cyclic; field permeability tests - block vibration test. Procedure, limitations, correction and data interpretation of all methods.

UNIT IV

INSTRUMENTA Instrumentation in soil engineering, strain gauges, resistance and inductance type, load cells, earth pressure cells, settlement and heave gauges, pore pressure measurements - slope indicators, sensing units, case studies.

Program Elective -III

MCG-106 A	MARINE GEOTECHNIQUES										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	60	40	100	3 Hrs.				

COURSE OUTCOME

Students can execute investigation program for marine soil deposits and select necessary design parameters. Design suitable marine foundation as per project requirement. Can develop numerical model for response of marine foundation for off shore conditions.

Syllabus Contents:

Unit I

Marine soil deposits: Offshore environment, Offshore structures and foundations, Specific problems related to marine soil deposits, Physical and engineering properties of marine soils

Unit II

Behavior of soils subjected to repeated loading: Effect of wave loading on offshore foundations, Behavior of sands and clays under cyclic loading, Laboratory experiments including repeated loading, Cyclic behavior of soils based on fundamental theory of mechanics, Approximate engineering methods which can be used for practical cases

Unit III

Site Investigation in the case of marine soil deposits: Challenges of site investigation in marine environment, Different site investigation techniques, sampling techniques, Geophysical methods, Recent advancements in site investigation and sampling used for marine soil deposits

Unit IV

Foundations in marine soil deposits: Different offshore and near shore foundations, Gravity platforms, Jack-up rigs, pile foundations. cassions, spudcans

Numerical modeling of marine foundations subjected to wave loading: Numerical

modeling of cyclic behavior of soils, empirical models, elastic-plastic models, FEM analysis of marine foundations subjected to wave loading

- H. G. Poulos. "Marine Geotechnics", Unwin Hyman Ltd, London, UK,1988
- D. V. Reddy and M. Arockiasamy, "Offshore Structures", *Volume: 1*, R.E. Kreiger Pub and Co.,1991
- D. Thomson and D. J. Beasley, "Handbook of Marine Geotechnical Engineering", US Navy,2012
Program Elective III MCG -108A COMPUTATIONAL GEOMECHANICS

Teaching Scheme

Lectures: 3 hrs/ week

COURSE OUTCOME

- Students can understand different numerical and statistical tools for analyzing various geotechnical engineering problems.
- Students can apply probabilistic approach for selection of design parameters and compute their impact on risk assessment

Unit I

Solution of Non-linear Equations: Bisection, False Position, Newton-Raphson,

Successive approximation method, Iterative methods

Solution of Linear Equations: Jacobi's method, Gauss Seidal method, Successive over relaxation method.

Unit II

Finite Difference Method: Two point Boundary value problems – Disichlet conditions,

Neumann conditions; ordinary and partial differential equations.

Finite Element Method: Fundamentals, Constitutive finite element models for soils.

Unit III

Correlation and Regression Analysis: Correlation - Scatter diagram, Karl Pearson coefficient of correlation, Limits of correlation coefficient; Regression –Lines of regression, Regression curves, Regression coefficient, Differences between correlation and regression analysis.

Unit IV

One-dimensional Consolidation - Theory of consolidation, Analytical procedures, Finite difference solution procedure for multilayered systems, Finite element formulation

Flow Through Porous Media - Geotechnical aspects, Numerical methods, Applications and Design analysis, Flow in jointed media.

- S. Chandrakant., Desai and John T. Christian, "Numerical Methods in Geotechnical Engineering", Mc. Graw Hill Book Company, 1977.
- M.K. Jain, S.R.K. Iyengar and R.K. Jain, "Numerical Methods for Scientific and Engineering computations", Third edition, New Age International (P) Ltd. Publishers, New Delhi.

Program Elective -III

MCG-110 A		ENGINEERING ROCK MECHANICS								
Lecture	Tutorial	Itorial Practical Credit Major Test Minor Test Total Time								
3	0	0 0 3 60 40 100 3								

COURSE OUTCOME

The students will be able to perform various laboratory tests on rock and classify rock mass. Be able to predict strength of rock mass with respect to various Civil Engineering applications

Syllabus Contents:

Unit I

Rock: Formation of rocks, Physical properties, Classification of rocks and rock masses, Elastic constants of rock; Insitu stresses in rock **Rock Testing:** Laboratory and Field tests

Unit II

Discontinuities in Rock Masses: Discontinuity orientation, Effect of discontinuities on strength of rock ;

Unit III

Strength Behaviour: Compression, Tension and Shear, Stress-Strain relationships, Rheological behavior;

Strength/ Failure Criterion: Mohr-Coulomb, Griffith theory, Hoek and Brown, strength and other strength criteria. Stresses in rock near underground openings.

Unit IV

Application of rock mechanics in Civil Engineering: Rock tunneling, rock slope stability, bolting, blasting, grouting and rock foundation design. Modern modelling techniques & analyses in rocks.

- Hudson J.A. and J.P. Harrison. Engineering Rock Mechanics: an Introduction to the Principles, 1997. Elsevier, Oxford
- Goodman, R.E. Introduction to Rock Mechanics, John Wiley & Sons.
- Ramamurthy, T., "Engineering in Rocks", PHI Learning Pvt.Ltd.
- Jaeger, J.C. and Cook, N.G.W, Fundamentals of Rock Mechanics, Chapman and Hall, 1976.
- Wyllie, D.C., Foundations on Rock, E & FN Spon. 2nd Edition, 199

MCG-112 A			EARTH	I RETAINING STRU	CTURES		
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time
3	0	0	3	60	40	100	3 Hrs.

COURSE OUTCOME

• The students will be able to do analysis and design of different types of retaining structures

Syllabus Contents:

Unit I

Earth Pressure: Rankine and Coulomb theories, active, passive and pressure at rest; concentrated surcharge above the back fill, earth pressure due to uniform surcharge, earth pressure of stratified backfills, saturated and partially saturated backfill.

Unit II

Retaining walls: Proportioning of retaining walls, stability of retaining walls, mechanically stabilized retaining walls/reinforced earth retaining walls **Sheet Pile wall:** free earth system, fixed earth system

Unit III

Bulkheads: bulkheads with free and fixed earth supports, equivalent beam method, Anchorage of bulkheads and resistance of anchor walls, spacing between bulkheads and anchor walls, resistance of anchor plates

Unit IV

Tunnel and Conduit: Stress distribution around tunnels, Types of conduits, Load on projecting conduits; Arching and Open Cuts: Arching in soils,

Braced excavations: Earth pressure against bracings in cuts, Heave of the bottom of cut in soft clays

- Das, Braja M., "Principles of Foundation Engineering", PWS Publishing.1998
- Bowles. J.E., Foundation Analysis and Design, Tata McGraw-Hill International Edition, 5th Edn, 1997

Program Elective -IV

MCG-114 A		DESIGN OF UNDERGROUND EXCAVATIONS								
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time								
3	0	0	3	60	40	100	3 Hrs.			

COURSE OUTCOME

- Students can understand the use of elastic and plastic analysis in the design of underground support system.
- Students will have idea about the field tests generally conducted during and after construction of under structures.

Syllabus Contents:

Unit I

Introduction, planning of and exploration for various underground construction projects, stereographic projection method, principle and its application in underground excavation design.

Elastic stress distribution around tunnels, stress distribution for different shapes and under different insitu stress conditions, Greenspan method, design principles, multiple openings, openings in laminated rocks, elasto-plastic analysis of tunnels, Daemen's theory

Unit II

Application of rock mass classification systems, ground conditions in tunneling, analysis of underground openings in squeezing and swelling ground, empirical methods, estimation of elastic modulus and modulus of deformation of rocks; uniaxial jacking / plate jacking tests, radial jacking and Goodman jacking tests, long term behaviour of tunnels and caverns,NewAustrianTunnelingMethod(NATM),NorwegianTunnelingMethod(NTM), construction dewatering.

Unit III

Rock mass-tunnel support interaction analysis, ground response and support reaction curves, Ladanyi'selasto-plastic analysis of tunnels, design of various support systems including concrete and shotcrete linings, steel sets, rock bolting and rock anchoring, combined support systems, estimation of load carrying capacity of rock bolts

Unit IV

In-situ stress, flat jack, hydraulic fracturing and over coring techniques and USBM type drill hole deformation gauge, single and multi-point bore hole extensometers, load cells, pressure cells, etc. Instrumentation and monitoring of underground excavations, during and after construction, various case studies

References:

Hoek, E and and Brown, E. T.," Underground Excavations in Rocks",Institute of Mining Engineering.Obert, L. and Duvall, W.I., "Rock Mechanics and Design of Structures in Rocks", John Wiley. Singh,B. and Goel, R.K., "Rock Mass Classification- A Practical Engineering Approach", Elsevier.

Singh, B. and Goel, R.K., "Tunnelling in Weak Rocks", Elsevie MCG-116 PHYSICAL AND CONSTITUTIVE MODELLING ON GEOMECHANICS

Teaching Scheme

Lectures:3 hrs/ week

COURSE OUTCOME

- Students can understand theory of plasticity and various yield criteria and flow rule.
- Students can apply critical state concept to consolidation and triaxial soil behavior.

Unit I

Role of constitutive modeling; importance of laboratory testing with relation to constitutive modeling; Elasticity: linear, quasi linear, anisotropic;

Unit II

Plasticity basics: yield criteria, flow rule, plastic potential, hardening/softening; rate Independent Plasticity: mohr-coulomb, nonlinear failure criteria, Drucker Prager, and cap models;

Unit III

Critical state soil mechanics: critical state concept, cam clay models, simulation of single element test using cam clay.

Unit IV

Consolidation, drained and undrained triaxial test; Stress dilatancy theory; Work hardening plasticity theory: formulation and implementation; Application of elasto-plastic models; Special Topics : hypoelasticity-plasticity, disturbed state concept.

References:

Hicher and Shao, "Constitutive Modeling of Soils and Rocks", John Wiley, 2008

C.S. Desai and H.J. Siriwardane, "Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials", Prentice-Hall, Inc., New Jersey, 1984.

David M Potts and Lidija Zdravkovic, "finite Element Analysis in Geotechnical Engineering Theory and Application", Thomas Telford. 1999.

C.S. Desai, "Mechanics of Materials and Interfaces: The Disturbed State Concept, CRC Press LLC. 2000.

A.P.S. Selvadurai, M.J. Boulon, "Mechanics of Geomaterial Interfaces, Elsevier.

MCG-118 A		Sub-soil exploration lab								
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time								
0	0	2	2	60	40	100	3 Hrs.			

Syllabus Content

List of Practical

1 Exploratory borings by different methods including auger boring, wash boring, percussion drilling rotary drilling.

- 2 Standard penetration test
- 3 Dynamic cone penetration test
- 4 Static cone penetration test
- 5 Plate load test
- 6 Pressure meter test
- 7 Geophysical exploration tests

MCG-120A		Soil Dynamic Lab								
Lecture	Tutorial	Itorial Practical Credit Major Test Minor Test Total Time								
0	0	2	2	60	40	100	3 Hrs.			

List of Practical

- 1. Spectral analysis of surface waves (SASW) Test / Multi-channel analysis of surface waves (MASW)test
- 2. Seismic cross-hole test
- 3. Seismic down-hole / up-hole test
- 4. Seismic dilatometer test
- 5. Resonant column test
- 6. Piezoelectric bender element test
- 7. Cyclic triaxialtest
- 8. Cyclic direct shear test

MCG-122 A		Mini Project								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
0	0	4	2	60	40	100	3 Hrs.			

Syllabus Content:

Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available.

End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals' contribution.

Continuous assessment of Mini Project at Mid Semester and End Semester will be monitored by the departmental committee.

A	udit	Π

MTAD-102 A			Constitut	tion of India					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
2	0	0	0	-	100	100	3 Hrs.		
Program	Understar	nd the prem	ises infor	ming the twin	themes of liberty a	nd freedom from	ı a civil		
Objective (PO)	tive (PO) rights perspective and to address the growth of Indian opinion regarding modern								
	Indian intellectuals' constitutional role and entitlement to civil and economic rights as								
well as the emergence of nationhood in the early years of Indian nationalism.									
Course Outcomes (CO)									
CO1	Discuss th	he growth of	^f the dema	und for civil rig	ghts in India for the	e bulk of Indians	before		
	the arriva	l of Gandhi	in Indian	politics.					
CO2	Discuss th	he intellectu	al origins	of the framew	ork of argument th	at informed the			
	conceptua	lization of .	social refe	orms leading to	o revolution in Indi	a.			
CO3	Discuss th	he circumsta	inces suri	ounding the fo	oundation of the Co	ngress Socialist	Party		
	[CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the								
	proposal d	of direct ele	ctions thr	ough adult su <u>f</u>	frage in the Indian	Constitution.			
CO4	Discuss th	he passage o	of the Hin	du Code Bill o	f 1956.				

Unit I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights , Right to Equality , Right to Freedom , Right against Exploitation , Right to Freedom of Religion, Cultural and Educational Rights , Right to Constitutional Remedies , Directive Principles of State Policy , Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1) The Constitution of India, 1950 (Bare Act), Government Publication.
- 2) Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3) M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4) D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

|--|

MTAD-104 A			Pedagogy	v Studies					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
2	0	0	0	-	100	100	3 Hrs.		
Program	Review existing evidence on the review topic to inform programme design and policy								
Objective (PO)	PO) making undertaken by the DFID, other agencies and researchers and Identify critical								
evidence gaps to guide the development.									
Course Outcomes (CO)									
CO1	What peo	lagogical p	oractices	are being used	by teachers i	n formal and	informal		
	classroom	ıs in develo _l	oing coun	tries?					
CO2	What is i	the evidenc	e on the	effectiveness of	these pedagog	gical practices,	in what		
	condition	s, and with	vhat popi	lation of learners	s?				
CO3	How can	teacher edu	cation (c	urriculum and pr	acticum) and th	e school curricu	lum and		
	guidance	materials b	est suppor	rt effective pedage	ogy?				
CO4	What is th	e importan	ce of iden	tifying research g	aps?				

Unit I

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

Unit II

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

Unit III

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

Unit IV

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

References

1) Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.

2) Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.

3) Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

4) Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

5) Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

Audit II

MTAD-106 A		Stress Management by Yoga									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	0	-	100	100	3 Hrs.				
Program	Program To achieve overall health of body and mind and to overcome stress										
Objective (PO)	Objective (PO)										
		C	ourse Ou	tcomes (CO)							
CO1	Develop	healthy min	d in a hec	althy body thus	improving social h	ealth.					
CO2	Improve	efficiency									
CO3	Learn th	e Yog asan									
CO4	Learn the	e pranayam	а								

Unit I

Definitions of Eight parts of yog (Ashtanga).

Unit II

Yam and Niyam, Do's and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

Unit III

Asan and Pranayam, Various yog poses and their benefits for mind & body,

Unit IV

Regularization of breathing techniques and its effects-Types of pranayam.

References

1) 'Yogic Asanas for Group Tarining-Part-I' :Janardan Swami Yogabhyasi Mandal, Nagpur

2) "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

Audit II

MTAD-108 A	I	Personality Development through Life Enlightenment Skills										
Lecture	Tutorial	torial Practical Credit Major Test Minor Test Total Time										
2	0	0 0 0 - 100 100 3 Hrs.										
Program	am To learn to achieve the highest goal happily											
Objective (PO)	To becom	o become a person with stable mind, pleasing personality and determination										
	To awaken wisdom in students											
		С	ourse Ou	tcomes (CO)								
CO1	Students	become aw	are about	leadership.								
CO2	Students	will learn h	ow to per	form his/her d	uties in day to day w	vork.						
CO3	Understa	Understand the team building and conflict										
CO4	Student v	vill learn ho	w to becc	ome role model	for the society.							

Unit I

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

Unit II

Approach to day to day work and duties; Shrimad Bhagwad Geeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

Unit III

Statements of basic knowledge; Shrimad Bhagwad Geeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

Unit IV

Personality of Role model; Shrimad Bhagwad Geeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1) Srimad Bhagavad Gita, Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
- 2) Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

M Tech Semester –III

Program Elective -V

MCG-201 A		STABILITY ANALYSIS OF SLOPES								
Lecture	Tutorial	torial Practical Credit Major Test Minor Test Total Time								
3	0	0	3	60	40	100	3 Hrs.			

COURSE OUTCOME

• Student will be able to check the stability of earthen dams, and the safety measures to be undertaken to prevent the instability of slopes, earthen dams and embankments

Syllabus Contents:

Unit I

Slopes: Types and causes of slope failures, mechanics of slope failure, failure modes.

Unit II

Stability analysis: infinite and finite slopes with or without water pressures; concept of factor of safety, pore pressure coefficients, Mass analysis, Wedge methods, friction circle method ; Method of slices, Bishop's method, Janbu's method, Morgenstern and Price, Spencer's method

Unit III

Stability analysis in the presence of seepage: two dimensional flow – Laplace equation and it's solution, graphical method, determination of phreatic line, flow nets in homogeneous and zoned earth dams under steady seepage and draw-down conditions, seepage control in earth dams, influence of seepage on slope stability stability analysis of dam body during steady seepage

Unit IV

Strengthening measures: stabilization of slopes by drainage methods, surface and subsurface drainage, use of synthetic filters, retaining walls, stabilization and strengthening of slopes, shotcreting, rock bolting and rock anchoring, instrumentation and monitoring of slopes, slope movements, warning devices, maintenance of slopes

- Chowdhary R and ChowdharyI, "Geotechnical Slope Analysis", CRCPress.
- Harr M.E.," Ground Water and Seepage", McGraw Hill.1962

	Program Elective – V										
MCC. 202 A FOUNDATIONS AND WEAK BOCKS											
WCG-203 A		FOUNDATIONS AND WEAR ROCKS									
Lecture	Tutorial	Practical	Credit	Maior Test	Minor Test	Total	Time				
LCCIUIC	Tutona	Tactical	orcuit	Major rest	WIIIOT TCSC	Total					
2	0	0 0 3 60 40 100 3 Hrs									
J	U	U	3	00	40	100	51115.				

COURSE OUTCOME

The students will be able to classify different types of rock mass and design different types of foundations placed over rock mass.

Unit I

Engineering properties of weak rocks, different rock mass classification systems, relative merits and demerits Failure criteria for weak rocks, bi-linear Mohr-Coulomb failure criterion, Hoek and Brown criterion and modified Hoek and Brown failure criterion etc.

Unit II

Effect of structural planes on rock foundations, possible modes of failure of foundations on rocks/ rock masses, determination of in-situ shear strength of rocks and rock masses

Unit III

Requirements for satisfactory performance of foundations, bearing capacity of foundations on rocks and rock masses, allowable bearing pressure of rock foundations using a nonlinear failure criterion, monotonic and cyclic plate load tests

Unit IV

Pressure-settlement characteristics, effect of layering, anisotropy, heterogeneity andinelasticity.

Shallow foundations, shallow foundations on sloping ground, raft foundations, stilt foundations, foundations for suspension bridges, transmission line towers, framed buildings etc, treatment of foundations - open joints, solution cavities, weak seams.

- Wyllie Duncan C.," Foundations on Rock: Engineering Practice", E&FN Spon, Taylor and Francis.
- Hudson J.A. and J.P. Harrison. Engineering Rock Mechanics: an Introduction to the Principles, 1997. Elsevier, Oxford
- Singh, B. and Goel, R.K.,"Rock Mass Classification- A Practical Engineering Approach", Elsevier .
- Ramamurthy, T., "Engineering in Rocks", PHI Learning Pvt. Ltd.

MCG-205A		GEOTECHNICAL EARTHQUAKE ENGINEERING								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	60	40	100	3 Hrs.			

COURSE OUTCOME

- Students will know the causes and quantification of earthquake.
- Student will be exposed to the effect of earthquake and the design criterions to be followed for the design different geotechnical structures

Syllabus Contents:

Unit I

Earthquake seismology – Causes of earthquake, Plate tectonics, Earthquake fault sources, Seismic waves, Elastic rebound theory, Quantification of earthquake, Intensity and magnitudes, Earthquake source models.

Unit II

Earthquake ground motion – Seismograph, Characteristics of ground motion, Effect of localsite conditions on ground motions, Design earthquake, Design spectra, Development of sitespecification and code-based design.

Unit III

Ground response analysis – One-dimensional ground response analysis: Linear approaches, Equivalent linear approximation of non-linear approaches, Computer code "SHAKE".

Liquefaction and lateral spreadingLiquefactionrelated phenomena, Liquefactionsusceptibility: Historical, Geological, Compositional and State criteria. Evaluation ofliquefaction by cyclic stress and cyclic strain approaches, Lateral deformation and spreading, Criteria for mapping liquefaction hazard zones.

Unit IV

Seismic design of foundations, Seismic slope stability analysis: Internal stability and weakening instability and Seismic design of retaining walls.

- Steven Kramer, "Geotechnical Earthquake Engineering", Pearson, 2008.
- Seco e Pinto, P., Seismic behaviour of ground and Geotechnical structure, A. A.
- Naeim, F., The Seismic Design Handbook, Kluwer Academic Publication, 2ndEdition, 2001. Ferrito, J.M, Seismic design criteria for soil liquefaction, Tech. Report of NavalFacilities service centre, Port Hueneme, 1997.

	Open Elective										
MTOE-201 A		Business Analytics									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	60	40	100	3 Hrs.				
Program	Program The main objective of this course is to give the student a comprehensive understanding of										
Objective (PO)	Objective (PO) business analytics methods.										
		(Course Ou	tcomes (CO)							
C01	Able to have	∕e knowledge	e of various	business analysis t	techniques.						
CO2	Learn the r	equirement s	specification	n and transforming t	the requirement into	different mode	els.				
CO3	Learn the r	equirement r	epresentat	ion and managing r	equirement assests.						
CO4	Learn the I	Recent Trenc	ls in Embeo	dded and collaborat	ive business						

Unit 1

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

Unit 2

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents. Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

Unit 3

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

Unit 4

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

- 1. Business Analysis by James Cadle et al.
- 2. Project Management: The Managerial Process by Erik Larson and, Clifford Gray

MTOE-203 A		Industrial Safety								
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Ti								
3	0	0	3	60	40	100		3 Hrs.		
Program	Program To enable students to aware about the industrial safety.									
Objective (PO)	Objective (PO)									
Course Outcomes (CO)										
C01	Understand	d the industri	ial safety.							
CO2	Analyze fu	ndamental o	f maintenar	nce engineerir	ng.					
CO3	CO3 Understand the wear and corrosion and fault tracing.									
CO4	Understand maintenan	ding that v ce.	when to a	do periodic	inceptions and	apply the p	preventing			

Unit-1

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-2

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit-3

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-4

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

MTOE-205 A		Operations Research									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0 0 3 60 40 10										
Program	Program To enable students to aware about the dynamic programming to solve problems of discreet and										
Objective (PO) continuous variables and model the real world problem and simulate it.											
Course Outcomes (CO)											
C01	Students :	should able t	o apply the	dynamic progra	amming to solve proble	ms of discreet a	and				
	continuou	s variables.									
CO2	Students :	should able t	o apply the	concept of non	-linear programming						
CO3	Students :	should able t	o carry out	sensitivity analy	ysis						
CO4	Student s	hould able to	model the	real world probl	lem and simulate it.						

Unit -1

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit -2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit- 3

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit -4

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

MTOE-207 A		Cost Management of Engineering Projects								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	3 0 0 3 60 40 100 3 Hrs									
Program To enable students to make aware about the cost management for the engineering project and										
Objective (PO) apply cost models the real world projects.										
	Course Outcomes (CO)									
C01	Students	should able t	o learn the	strategic cost man	agement process.					
CO2	Students	should able t	o types of	project and project	team types					
CO3	CO3 Students should able to carry out Cost Behavior and Profit Planning analysis.									
CO4	Student s	hould able to	learn the o	quantitative techniq	ues for cost mana	gement.				

Unit-1

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Unit-2

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Unit-3

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit-4

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

MTOE-209 A	Composite Materials								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0 0 3			60	40	100	3 Hrs.		
Program	ram To enable students to aware about the composite materials and their properties.								
Objective (PO)				-					

	Course Outcomes (CO)								
C01	Students should able to learn the Classification and characteristics of Composite materials.								
CO2	Students should able reinforcements Composite materials.								
CO3	Students should able to carry out the preparation of compounds.								
CO4	Student should able to do the analysis of the composite materials.								

UNIT-1:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Iso-strain and Iso-stress conditions.

UNIT – 2

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

UNIT-3

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT – 4

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.
- 3. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

MTOE-211 A		Waste to Energy								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0 0 3 60 40 100									
Program	To enable students to aware about the generation of energy from the waste.									
Objective (PO)	e (PO)									
	Course Outcomes (CO)									
C01	Students	should able t	o learn the	Classification o	f waste as a fuel.					
CO2	Students should able to learn the Manufacture of charcoal.									
CO3	CO3 Students should able to carry out the designing of gasifiers and biomass stoves.									
CO4	Student s	hould able to	learn the l	Biogas plant tecl	hnology.					

Unit-1

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

Unit-2

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

Unit-3

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-4

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

- 1) Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2) Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3) Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.
 5)

MCG-207 A Dissertation Phase – I

Teaching Scheme

Lab work : 20 hrs/week

Course Outcomes:

At the end of this course, students will be able to

- 1. Identify Geotechnical engineering problems reviewing available literature.
- 2. Identify appropriate techniques to analyze complex structural systems.
- 3. Apply engineering and management principles through efficient handling of project

Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following

- 1. Relevance to social needs of society
 - Relevance to value addition to existing facilities in the
 - Relevance to industry need
- 2. Problems of national importance
- 3. Research and development in various domain
- 4. The student should complete the following:
 - Literature survey Problem
 - Definition Motivation for study and Objectives
 - Preliminary design / feasibility / modular approaches
 - Implementation and Verification
- 5. Report and presentation

Guidelines for Dissertation Phase – I

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated. Phase – I: July to December

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives. The refer redliterature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing and Processing (Hardware and Software), Circuits-Devices and Systems, Communication-Networking and Security, Robotics and Control Systems, Signal Processing and Analysis and any other related domain. In case of Industry sponsored projects, the relevant application notes, while papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Phase – I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper and/or computer aided design, proof of concept/functionality, part results, A record of continuous progress.

Phase – I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Phase-I work.

M Tech Semester-IV

MCG202-ADissertation Phase - II

Teaching Scheme

Lab work : 32 hrs/week

Course Outcomes:

At the end of this course, students will be able to

- 4. Identify Geotechnical engineering problems reviewing available literature.
- 5. Identify appropriate techniques to analyze complex structural systems.
- 6. Apply engineering and management principles through efficient handling of project

Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following

- 5. Relevance to social needs of society
 - Relevance to value addition to existing facilities in the
 - Relevance to industry need
- 6. Problems of national importance
- 7. Research and development in various domain
- 8. The student should complete the following:
 - Literature survey Problem
 - Definition Motivation for study and Objectives
 - Preliminary design / feasibility / modular approaches
 - Implementation and Verification
- 5. Report and presentation

The dissertation phase- II is based on a report prepared by the students on dissertation allotted to them. It may be based on:

Experimental verification / Proof of concept.

Design, fabrication, testing of Communication System.

The viva-voce examination will be based on the above report and work.

Guidelines for Dissertation Phase-II

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in Phase – II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives. The refer red literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing and Processing (Hardware and Software), Circuits-Devices and Systems, Communication-Networking and Security, Robotics and Control Systems, Signal Processing and Analysis and any other related domain. In case of Industry sponsored projects, the relevant application notes, while papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

During phase – II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Phase – II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, A record of continuous progress.

Phase – II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the work

. . .

Dissertation Phase - I and Dissertation Phase - II

Teaching Scheme

Lab work : 20 hrs/week for Dissertation Phase- I

Course Outcomes:

At the end of this course, students will be able to

- 7. Identify structural engineering problems reviewing available literature.
- 8. Identify appropriate techniques to analyze complex structural systems.
- 9. Apply engineering and management principles through efficient handling of project

Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following

- 9. Relevance to social needs of society
 - Relevance to value addition to existing facilities in the
 - Relevance to industry need
- 10. Problems of national importance
- 11. Research and development in various domain
- 12. The student should complete the following:
 - Literature survey Problem
 - Definition Motivation for study and Objectives
 - Preliminary design / feasibility / modular approaches
 - Implementation and Verification
- 5. Report and presentation

The dissertation phase- II is based on a report prepared by the students on dissertation allotted to them. It may be based on:

Experimental verification / Proof of concept.

Design, fabrication, testing of Communication System.

The viva-voce examination will be based on the above report and work.

•••••

Guidelines for Dissertation Phase – I and Phase-II

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two phases i.e. Phase – I: July to December and Phase – II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives. The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing and Processing (Hardware and Software), Circuits-Devices and Systems, Communication-Networking and Security, Robotics and Control Systems, Signal Processing and Analysis and any other related domain. In case of Industry sponsored projects, the relevant application notes, while papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Phase – I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper and/or computer aided design, proof of concept/functionality, part results, A record of continuous progress.

Phase – I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Phase-I work.

During phase – II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Phase – II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, A record of continuous progress.

Phase – II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the work

•••••

KURUKSHETRA UNIVERSITY, KURUKSHETRA

("A⁺" Grade, NAAC Accredited)

SCHEME OF EXAMINATIONS FOR Master of Technology (Civil Engineering) Specialization: Transportation Engineering (w.e.f. SESSION: 2018-19)

SEMESTER-I

S.	Course Code	SUBJECT	L	Т	Р	Total	Evalu	ation	Cr.	Duration
No.							Mid Sem	End Sem		of Exam (Hrs.)
1	MTTE-101 A	Traffic Engineering	3	-	-	3	40	60	3	3
2	MTTE-103 A	Geometric Design of Highways	3	-	-	3	40	60	3	3
3	MTTE-105 A	Public Transportation	2	-	-	2	40	60	2	3
4	*	Program Elective –I	3	-	-	3	40	60	3	3
5	**	Program Elective-II	3	-	-	3	40	60	3	3
6	MTTE-115 A	Traffic Lab	-	-	2	2	40	60	2	3
7	MTRM-111 A	Research Methodology and IPR	2	-	-	2	40	60	2	3
8	***	Audit Course-I	2	-	-	2	100	-	0	0
		TOTAL	16	2	2	20	280	420	18	
		-	7	00	1					

	*Program Elective - I	**Program Elective- II		
MTTE-107 A	Concrete Technology	MTTE-111 A	Intelligent Transport Systems	
MTTE-109 A	Pavement Materials	MTTE-113 A	Environmental Impact Assessment	

*** Audit Course-I							
MTAD-101 A	English for Research Paper Writing						
MTAD-103 A	Disaster Management						
MTAD-105 A	Sanskrit for Technical Knowledge						
MTAD-107 A	Value Education						

Note: 1.The course of program elective will be offered at $1/3^{rd}$ or 6 numbers of students (whichever is smaller) strength of the class.

2. *** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

SEMESTER-II

S.	Course code	Subject	L	Т	Р	Total	Evalu	ation	Cr.	Duration of
No.		_					Mid	End		Exam
							Sem	Sem		(Hrs.)
1	MTTE-102 A	Pavement Analysis & Design	3	-	-	3	40	60	3	3
2	MTTE-104 A	Bridge Engineering	3	-	-	3	40	60	3	3
3	MTTE-106 A	Pavement Construction, Maintenance & Management	2	-	-	2	40	60	2	3
4	*	Program Elective-III	3	-	-	3	40	60	3	3
5	**	Program Elective-IV	3	-	-	3	40	60	3	3
6	MTTE-116 A	Computational Lab		-	2	2	40	60	2	3
7	MTTE- 118 A	Mini Project	-	-	4	2	40	60	2	3
8	***	Audit Course-II	2			0	100		0	3
	TOTAL		16		4	18	280	420	18	
							7	00]	

*Program	m Elective - III	**Program Elective – IV MTTE-112 A Transportation Safety & Environment MTTE-114 A Transportation Economics & Eigen action		
MTTE-108 A	Advanced Railway	$MTTE_{-112} \Delta$	Transportation Safety &	
WITTE-100 A	Engineering	MITIL-112 A	Environment	
MTTE 110 A	Transportation	MTTE 114 A	Transportation Economics &	
MITE-IIU A	Planning	MITIE-114 A	Finance	

*** Audit Course - II							
MTAD-102 A	Constitution of India						
MTAD-104 A	Pedagogy Studies						
MTAD-106 A	Stress Management by Yoga						
MTAD-108 A	Personality Development through Life Enlightenment Skills.						

Note: 1. The course of program elective will be offered at $1/3^{rd}$ or 6 numbers of students (whichever is smaller) strength of the class.

2. ***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

SEMESTER-III

S.	Course Code	Subject	L	Т	Р	Total	Evaluation		Cr.	Duration
NO.							Mid Sem	End Sem		of Exam (Hrs.)
1	*	Program Elective-V	3	-	-	3	40	60	3	3
2	**	Open Elective	3	-	-	3	40	60	3	3
3	MTTE-205 A	Dissertation Phase- I	-	-	20	20	100	-	10	3
		TOTAL	6		20	26	180	120	16	
		•	-	•	-	-	3	00		

*Program Elective –V						
MTTE-201 A	Planning & Design of Airport					
MTTE-203 A	Docks & Harbour Engineering					

	**Open Elective								
1.	MTOE-201 A	Business Analytics							
2.	MTOE-203 A	Industrial Safety							
3.	MTOE-205 A	Operations Research							
4.	MTOE-207 A	Cost Management of Engineering Projects							
5.	MTOE-209 A	Composite Materials							
6.	MTOE-211 A	Waste to Energy							

SEMESTER-IV

S.	Course Code		L	Т	Р	Total	Evaluation		Cr.	Duration of
No.							Mid	End	1	Exam
							Sem	Sem		(Hrs.)
1	MTTE-202 A	Dissertation	-	-	32	32	100	200	16	3
		Phase-II								
		TOTAL					3	00	16	

Total Credits of all four

Source: 1. The course of program elective/ open elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

MTTE-101 A		Т	raffic En	gineering					
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time		
3	0	0	3	60	40	100	3 Hrs.		
		(Course O	utcomes (CO)					
C01	Study Dif	Study Different type of Traffic Characteristics, Regulations & Parking.							
CO2	Use of IR aspects oj	C method to f Roads.	o design S	Signals & its recomm	nendations for the	design of vo	arious		

Traffic Characteristics: Importance of traffic characteristics, road user characteristics, vehicular characteristics. Max dimensions and weights of vehicles allowed in India. Effects of traffic characteristics on various design elements of the road.

Traffic Studies: Traffic volume study, speed study and origin and destination study. Speed and delay study. Use of photographic techniques in traffic surveys.

UNIT – II

Traffic Accidents: Accident surveys. Causes of road accidents and preventive measures. Capacity and level of Service, fundamental diagram of traffic flow. Relationship between speed, volume and density. PCU. Design service volume. Capacity of non-urban roads. IRC recommendations. Brief review of capacity of urban roads.

UNIT – III

Traffic Regulation and Control Devices: Traffic control devices: signs, signals, markings and islands. Types of signs. Types of signals. Design of signal by IRC method. Intersections at grade and grade separated intersections. Design of a rotary. Types of grade separated intersections.

Design of Parking Lighting and Terminal Facilities: Parking surveys. On street parking. Off street parking.

UNIT – IV

Traffic Regulation: Need and scope of traffic regulations. Regulation of speed, vehicles and drivers. General traffic regulations. Motor vehicle act. Scope of traffic management.

References:

- 1) Principles of Transportation Engineering by Chakroborty & Das, Prentice Hall, India.
- 2) Highway Engg by S.K.Khanna & C.E.G. Justo, New Chand Bros., Roorkee.
- 3) Principles and Practice of Highway Engg. By L.R.Kadiyali, Khanna Publishers, Delhi.
- 4) Principles of Transportation and Highway Engineering by G.V.Rao, Tata McGraw-

Hill Publishing Co. Ltd. N. Delhi.

5) MORTH Specifications for Road and Bridge Works, IRC Publication.

MTTE-103 A		G	eometric	Design of Highway	S			
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time	
3	0	0	3	60	40	100	3 Hrs.	
		(Course O	utcomes (CO)	-			
C01	CO1 Study Highway Alignment, cross-section Elements & their inter-related terms.							
CO2	Analyse S	Sight Distan	ices & de	sign of super-elevati	ion.			

UNIT -I

Highway Alignment: Requirements. Factors controlling alignment. Obligatory points. Engineering surveys for highway location. Route selection. Steps in new project. Highway classifications.

UNIT –II

Cross Sectional Element: Pavement surface characteristics. Factors affecting skid resistance. Pavement unevenness. Camber. Providing camber in the field. Width of carriageway. Design Vehicle, medians, kerbs, road margins, right of way and typical cross sections of roads.

UNIT -III

Sight Distances: Introduction. Stopping sight distance. Reaction time. Analysis of stopping distance. Overtaking sight distance. Analysis of overtaking sight distance. Effect of grade on sight distances. Overtaking zone. Intermediate sight distance. Sight distance at intersections. **Superelevation:** Requirement of superelevation. Limits and attainment of superelevation in the field.

UNIT –IV

Horizontal Alignment: General. Design speed. Horizontal curves. Superelevation. Analysis of superelevation. Superelevation design. Attainment of superelevation. Widening of pavement on horizontal curves. Methods of introducing extra widening. Horizontal Transition curves. Different types of transition curves. Length of transition curve. Setting out of transition curve. Set-back distance on horizontal curves. Curve resistance.

Vertical Alignment: General. Gradients. Compensation in gradient on horizontal curves. Vertical curves. Summit curve. Length of summit curve. Valley Curve. Length of valley curve and profile. Relevant IRC standards for urban and rural roads.

References:

- 1) Principles of Transportation Engineering by Chakroborty & Das, Prentice Hall, India.
- 2) Highway Engg.by S.K.Khanna & C.E.G. Justo, New Chand Bros., Roorkee.
- 3) Principles and Practice of Highway Engg.by. L.R.Kadiyali, Khanna Publishers, Delhi.
- 4) Principles of Transportation and Highway Engineering by G.V.Rao, Tata McGraw-Hill

Publishing Co. Ltd. N. Delhi.

- 5) MORTH Specifications for Road and Bridge Works, IRC Publication.
- 6) Principles of Highway Engineering and Traffic Analysis, by Mannering, F., W. Kilareski, and
- S. Washburn 3rd Edition, John Wiley and Sons, 2005.

MTTE-105 A		Р	ublic Tra	nsportation					
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time		
2	0	0	2	60	40	100	3 Hrs.		
		(Course O	utcomes (CO)					
C01	CO1 Understand Transit System & its Capacity.								
CO2	Understa	nd Public T	<i>ransporta</i>	ation & Intermediat	te Public Transport	•			

Public Transportation: Modes of public transportation and application of each to urban travel needs.

$\mathbf{UNIT} - \mathbf{II}$

Transit System: Transit system operations, para-transit systems, street transit systems, rapid transit systems, estimation of transit demand. Route development, properties of a good route set, determination of a good route set, stop location and stopping policy, schedule development, properties of a good schedule, determination of a good schedule.

UNIT – III

Capacity of Transit System: Capacity of rapid transit systems, line capacity of RTS, capacity of street transit systems. Transit corridor, identification and planning, mass transport management measures, integration of public transportation modes. Public transport infrastructure, case studies, multi mode transportation system.

UNIT – IV

Intermediate Public Transport: Planning for public transport, fares and subsidies. Intermediate public transport in Indian cities, types of IPT vehicles. Characteristics of IPT modes.

- 1) Traffic Engg. And Transport Planning by L.R.Kadiyali, Khanna Publishers, Delhi.
- 2) Introduction to Transport Planning by Bruton, M.J., Hutchinson Technical Education, London.
- 3) Principles of Transportation Engineering by Chakroborty & Das, Prentice Hall, India.

MTTE-107 A		C	Concrete 7	ſechnology				
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time	
3	0	0 0 3 60 40 100 3 Hrs.						
		(Course O	utcomes (CO)				
C01	Study Ing	redients, di	fferent pr	operties & Producti	ion process of Cond	crete.		
CO2	Design M	Design Mix to achieve the specified grade of concrete.						
CO3	Understa	Inderstand Non-destructive testing & Concrete deteriorations.						
CO4	Introducti	ion to advan	cement in	Concrete.				

Concrete as Pavement Material: Introduction. Preparation and grade of concrete.

Concrete Ingredients: Types of cement. Aggregates. Classification of aggregate. Properties of aggregate. Quality of mixing water. Admixtures.

UNIT – II

Properties of Concrete: Introduction, workability, stress strain characteristics of concrete, young's modulus of concrete, creep and shrinkage of concrete, permeability, durability of concrete, joints.

UNIT – III

Production of Concrete: Batching, mixing, transportation, compaction, vibration, curing, formwork removing. Ready mixed concrete.

Non-Destructive Testing of Concrete: Significance. Rebound hammer. Ultrasonic pulse velocity technique. Penetration technique. Pullout test. Cover meter. Core tests.

$\mathbf{UNIT} - \mathbf{IV}$

Deteriorations: Causes, deteriorations by water, surface weir, frost action, chemical Reaction, corrosion of reinforcement etc, preventive measures.

Advances in Concrete: Introduction to light weight concrete. High strength concrete. Prestressed concrete. Fibre reinforced concrete. Polymer concrete composites.

- 1) M.L.Gambhir, "Concrete Technology" TMH Pub. N Delhi.
- 2) Shetty M.S. "Concrete Technology" S. Chand & Co. N Delhi.

MTTE-109 A	Pavement Materials										
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time				
3	0	0	3	60	40	100	3 Hrs.				
Course Outcomes (CO)											
C01	Study the different types of materials; it's Properties for the construction of Roads.										
CO2	Use of IS & IRC codes for the construction of Bituminous & concrete pavement.										

Subgrade: Significance of subgrade soil. Characteristics of soil. Desirable properties. Index properties of Soil. Soil classification based on grain size. Soil classification system. Evaluation of soil strength. **Aggregates:** Introduction. Desirable properties of road aggregates. Tests for road aggregates.

UNIT – II

Bituminous Materials: Introduction. Types of bituminous materials. Tests on bitumen. Cutback and emulsions.

Bituminous Paving Mixes: Design of bituminous mix. Marshal method of bituminous mix design.

UNIT – III

Polymer and Rubber Modified Binders: Physical and chemical properties. Fly ash and its characterization. Performance based mix design Approaches. Visco elastic properties of bitumen and bituminous mixture.

$\mathbf{UNIT} - \mathbf{IV}$

Construction Methods: Bituminous and concrete pavements. Relevant IS and IRC codes.

Reference:

1) Principles of Transportation Engineering by Chakroborty & Das, Prentice Hall, India.

- 2) Highway Engg by S.K.Khanna & C.E.G. Justo, New Chand Bros., Roorkee.
- 3) Principles and Practice of Highway Engg. By L.R.Kadiyali, Khanna Publishers, Delhi.
- 4) Principles of Transportation and Highway Engineering by G.V.Rao, Tata McGraw-Hill Publishing Co. Ltd. N.Delhi.
- 5) MORTH Specifications for Road and Bridge Works, IRC Publication.

MTTE-111 A	Intelligent Transport System											
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time					
3	0	0	3	60	40	100	3 Hrs.					
Course Outcomes (CO)												
C01	Ability to collect data and analyse for ITS.											
CO2	Ability to develop ITS Model											
CO3	Ability to apply ITS for sustainable mobility.											

Fundamental of ITS: Definition of ITS, the historical context of ITS from both public policy and market economic perspective, Types of ITS, Historical background, Benefits of ITS.

UNIT – II

Sensor Technologies and data requirements of ITS: Importance of telecommunications in the ITS information management, Traffic management centers (TMC), Application of sensors to traffic management, Traffic flow sensors technologies, Transponders and communication systems, Data fusion at TMC, Sensor Plan and specification requirements, Elements of Vehicle location and Route navigation and guidance concepts.

ITS data collection techniques: Detectors, Automatic vehicle locations (AVL), Automatic vehicle identification (AVI), GIS, Video data collection.

UNIT – III

ITS User needs, services and functional areas: Introduction, Advanced traffic management systems (ATMS), Advanced traveller information systems (ATIS), Commercial vehicle operations (CVO), Advanced vehicle control systems (AVCS), Advanced public transportation systems (APTS), Advanced rural transportation systems (ARTS).

ITS Architecture: Regional and project ITS architecture, Concept of operations, ITS model and evaluation methods, Planning and human factors issues for ITS, Case studies on deployment planning and systems design and operation, ITS and safety, ITS and security, ITS as a technology deployment program, research, development and business model, ITS planning.

UNIT – IV

ITS Applications: Traffic and incident management systems, ITS and sustainable mobility, Travel demand management, Electronic Toll Collection (ETC), ITS and road-prizing, Transportation network operation, Commercial vehicle operation and intermodal freight, Public transportation applications, ITS and regional strategic transportation planning including regional architectures.

ITS and changing transportation institutions: Automated highway systems- Vehicles in platoons, Integration of Automated highway systems, ITS program in the world- Overview of ITS implementations in developed countries, ITS in developing countries.

References:

1) Fundamental of Intelligent transportation systems planning by Mashrur A. Chaudhary, Adel Wadid Sadek.

2) Sensor technologies and Data requirements of ITS, Lawrence A. Klein.

3) ITS Hand Book 2000: Recommendations for World Road Association (PIARC) by Kan Paul Chen, John Miles.

4) Perspective on ITS, Artech House Publishers, Sussman, J.M.
| MTTE-113 A | | Env | ironment | al Impact Assessme | ent | | |
|------------|---------------------|-----------------------|------------|------------------------|------------------------|------------|--------|
| Lecture | Tutorial | Practical | Credit | End Sem.
Evaluation | Mid Sem.
Evaluation | Total | Time |
| 3 | 0 | 0 | 3 | 60 | 40 | 100 | 3 Hrs. |
| | | (| Course O | utcomes (CO) | | | |
| C01 | Assessme | nt of Envir | onmental | impacts due to hun | nan activities. | | |
| CO2 | Managen
environm | ient of Air (
ent. | Quality, A | quatic Environment | t & waste to reduce | the impact | t on |

UNIT-I

Environment and Human Activity: Resources, pollution, reuse and environmental management. **Management of Aquatic Environment:** Water quality controls. Drainage basin activities and water pollution. The impact of human activity on aquatic resources. The control measures, regional planning.

UNIT-II

Air Quality Management: Atmosphere, effect of human activity on air quality, waste disposal alternative. Optimization, planning of waste disposal.

UNIT-III

Waste Management: Impact of waste disposal of human activity land use management, impact of land use on human life. Control of hazards in land use, management of land use.

UNIT-IV

Environmental Assessment: National environmental policy, implication of environment assessment in design process. Preparation of assessment, quantification. General requirements of environmental standards. Techniques of setting standards. Case studies of EIA of river valley projects and thermal power projects.

- 1) Environmental Impact Analysis by R.K.Jail and L.V.Urban
- 2) Environmental Impact Assessment by Canter
- 3) Environmental Impact Assessment by J.Glasson

MTTE-115 A		Tra	ffic Lab					
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time	
0	0	2	2	60	40	100	3 Hrs.	
		(Course O	utcomes (CO)	-			
C01	Study Tra	ffic Volume	e & speed	using Videography	technique.			
CO2	Speed stu	peed study by different methods						
CO3	Determine	e reaction ti	me & Bitı	imen content				
CO4	Study par	king, accide	nt investi	gation & accident pr	one location.			

- 1) Traffic volume study using videography technique.
- 2) Traffic speed study using videography technique.
- 3) Speed study by radar gun
- 4) Speed study by endoscope
- 5) Determination of reaction time of driver
- 6) Parking study
- 7) Accident investigation study
- 8) Study for improvement of an accident prone location
- 9) Bitumen content determination through centrifuge extrude
- 10) Proportioning of aggregate

MTRM -111 A			Re	search Methodolo	gy and IPR					
Lecture	Tutorial	FutorialPracticalCreditEnd Sem.Mid Sem.TotalTinEvaluationEvaluationEvaluationEvaluationEvaluationTin								
3	0	0	3	60	40	100	3 Hrs.			
Course Outcomes (CO)										
CO1	Understa	nd Researci	h problem f	ormulation						
CO2	Analyze r	nalyze research related information								
CO3	Follow re	follow research ethics								
CO4	Understa tomorrow	nd that toda [,] world will	ıy's world i be ruled by	s controlled by Co videas, concept, ar	mputer, Inforn nd creativity.	nation Techno	ology, but			
CO5	Understa nation, it to be prot	Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.								
CO6	Understa work and turn brins	nd that IPR investment 25 about. ec	protection in R & D, 1 onomic gro	provides an incent which leads to crea wth and social be	tive to inventor ation of new ar refits.	rs for further 1d better proc	research lucts, and in			

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit II

Effective literature studies approaches, analysis Plagiarism, Research ethics.

Effective technical writing, how to write report paper,

Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

Unit III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

References:

1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students".

- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.

- 6. Niebel, "Product Design", McGraw Hill, 1974
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
 - 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

MTTE-102 A		Р	avement	Analysis & Design			
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time
3	0	0	3	60	40	100	3 Hrs.
		(Course O	utcomes (CO)			
C01	Study the	stresses in	Flexible	& Rigid Pavement fo	or its design.		
CO2	Design fl	exible & Ri	gid Paver	nent by different met	thods.		
CO3	Evaluate .	Pavement &	: its maint	enance.			

UNIT - I

Pavement Types: Definition, highway and airport pavement comparison, wheel loads, tyre pressure, contact pressure, design factors. Type of distresses structural and functional, serviceability.

UNIT – II

Stresses in Flexible: Layered system concept, multilayered solutions. Burmister's method, fundamental design concepts.

Stresses in Rigid Pavements: Relative stiffness of slabs. Modulus of subgrade reaction. Stresses due to warping, stresses due to friction, effect of warping, contraction and expansion. Plain versus reinforced pavements, stresses in dowel bar, tie bar, combined stresses.

UNIT – III

Design of Flexible Pavements: Design factors. Design wheel load. Equivalent single wheel load. Difference between airport and highway design concept. Different design methods. Examples of comprehensive design process. AASHTO method. McLeod method. New IRC Code method.

Design of Rigid Pavement: General design considerations. Design of joints in cement concrete pavements, spacing of expansion joint, spacing of contraction joints. Design of dowel bar. Design of tie bar. IRC recommendations for design of concrete pavements.

UNIT – IV

Pavement Evaluation: Pavement distresses in flexible and rigid pavements, condition and evaluation survey. Present serviceability index. Methods of measuring condition, skid resistance. Principles of maintenance. Methods of structural evaluation.

References:

1) Principles of Transportation Engineering by Chakroborty & Das, Prentice Hall, India.

- 2) Highway Engg by S. K. Khanna & C.E.G. Justo, New Chand Bros., Roorkee.
- 3) Principles of Pavement Design, by Yoder E.J. and Witczak M.W. 2nd, John Wiley & Sons, INC.

4) Principles and Practice of Highway Engg. By L.R.Kadiyali, Khanna Publishers, Delhi.

5) Principles of Transportation and Highway Engineering by G.V.Rao, Tata McGraw-Hill Publishing Co. Ltd. N. Delhi.

6) MORTH Specifications for Road and Bridge Works, IRC Publication.

MTTE-104 A		В	sridge En	gineering			
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time
3	0	0	3	60	40	100	3 Hrs.
		(Course O	utcomes (CO)			
C01	Study diff	ferent types	of Bridge	e & loading as per I	RC & IRS specifica	itions	
CO2	Design R	C & steel b	ridges by	specifications & sta	andards		
CO3	Study diff	erent types o	of bearing	used in Bridges with	h their functions.		

UNIT - I

Types of Bridges: Consideration of loads and stresses in bridges, bridge loading as per IRC and IRS specifications, traffic lanes, footway, kerbs, railing and parapet loading, impact, wind load, longitudinal forces, temp effects, secondary stresses, erection stresses, earth pressure, effect of live load on back fill and on the abutment.

UNIT – II

Design of RC Bridges: Slab culvert, box culvert, pipe culvert, T-beam bridge, super structure, design examples, brief introduction to rigid frame, arch and bow string girder bridges. Design of pre-stressed concrete bridges, pre-tensioned and post tensioned concrete bridges, analysis and design of multi-lane prestressed concrete T-beam bridge super structure.

UNIT – III

Steel Bridges: Types, economical span, loads, permissible stresses, fluctuation of stresses, secondary stresses, plate girder bridges, general arrangement, bridge floors, plate girder railway bridges, deck type plate girder bridges, design example. Truss bridges, types, wind force on lattice girder bridge, bracings, truss bridge for railway – through type truss bridge. Pier, abutment and wing walls, types of piers, forces on piers, stability, abutments, bridge code provisions for abutments, wing walls, design examples.

UNIT – IV

Bearings: Functions, bearings for steel and concrete bridges, bearings for continuous span bridges, IRC provisions for bearings, fixed bearings, expansion bearings, materials and specifications, permissible stresses, design considerations for rocker and roller cum rocker bearings, sliding bearings. Foundations, types, general design criterion, design of well and pile foundations for piers and abutments.

- 1) Victor DJ, Essentials of Bridge Engineering, Oxford & IBH Pubb Co.
- 2) Rowe RE, Concrete ridge Design

MTTE-106 A	Pavement	t Construct	tion, Mair	ntenance & Manag	ement					
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time			
2	0	0 0 2 60 40 100 3 Hrs.								
			Course O	utcomes (CO)						
C01	Study the	constructio	on proced	ure of different type	es of Bituminous, No	on-Bitumine	ous &			
001	cement co	ment concrete Pavements								
CO2	Study the	Maintenan	ce technic	ques for different ty	pes of Pavements.					

Introduction: History of road construction, stages of construction, seasonal limitations of pavement construction.

Stabilization of Soil: Mechanical stabilization, cementing additives and chemicals, thermal stabilization.

UNIT – II

Construction of Non-bituminous Pavements: Brief introduction to earthwork machinery: shovel, hoe, clamshell, dragline, bulldozers, cleaning and grubbing, excavation for road and drain, principles of field compaction of embankment / subgrade. Compacting equipments. Granular roads. Construction steps of GSB, WBM and WMM.

Construction of Bituminous Pavements: Various types of bituminous constructions. Prime coat, tack coat, seal coat and surface dressing. Construction of busg, premix carpet, BM, DBM and AC. Brief coverage of machinery for construction of bituminous roads: bitumen boiler, sprayer, pressure distributer, hot-mix plant, cold-mix plant, tipper trucks, mechanical paver or finisher, rollers. Mastic asphalt. Introduction to various IRC and MORTH specifications.

UNIT – III

Construction of Cement Concrete Roads: Construction of cement concrete pavements, machinery involved in construction, slip-form pavers, joints in cement concrete pavements, IRC and MORTH specifications. Construction of other types of pavements: basic concepts of the following: soil stabilized roads, use of geo-synthetics, reinforced cement concrete pavements, prestress concrete pavements, roller compacted concrete pavements and fibre reinforced concrete pavements. Use of fly ash in cement concrete road construction.

UNIT – IV

Highway Maintenance: Pavement distresses, Maintenance operations, Maintenance of WBM, bituminous surfaces and cement concrete pavements. Functional and structural evaluation of pavements, pavement maintenance, maintenance management

Related Topics: Emulsified bituminous mix, precoating of aggregates, recycling of bituminous pavements, shoulder construction.

- 1) Principles of Transportation Engineering by Chakroborty & Das, Prentice Hall, India.
- 2) Highway Engg. By S.K.Khanna & C.E.G. Justo, New Chand Bros., Roorkee.

MTTE-108 A		Advanced	Railway 1	Engineering			
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time
3	0	0	3	60	40	100	3 Hrs.
		(Course O	utcomes (CO)			
CO1	Study Rai	lway Track	Compone	ents			
CO2	Understa	nd importar	nt terms r	elated to Railway C	Curves, Control Syst	em & Reha	bilitation.

UNIT - I

Railway Track: Track and track stresses. Train resistances and hauling power of locomotives. Railway track components.

UNIT - II

Point & Crossings: Important features. Railway curves. Superelevation, gradients and grade compensation. Points and crossing and their design approaches.

UNIT-III

Maintenance, Control System: Construction and maintenance of railway track. Control of train movements. Signals and interlocking,

UNIT-IV

Railway Rehabilitation: Modernization of railways and future trends. Track standards and track rehabilitation. Essential Reading.

References:

1) J.S. Mundrey, Railway Track Engineering, Tata McGraw Hill Co. Ltd., 3rd Edition, 2000.

2) M.M. Agarwal, Railway Track Engineering, Standard Publishers, 1st Ed 2005.

Supplementary Reading.

3) S. Chandra and Agarwal, Railway Engineering, Oxford University Press, 1st Ed. Feb 2008.

4) A.D. Kerr, Fundamentals of Railway Track Engineering, Simmons Boardman Pub Co (December 30, 2003)

MTTE-110 A	Transpo	ortation Pla	anning						
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time		
3	0	0	3	60	40	100	3 Hrs.		
		(Course O	utcomes (CO)					
C01	Study the	Transporta	tion Plan	ning Process & Surv	ey.				
CO2	Study Tri	tudy Trip Generation & Distribution for Transportation Planning.							
CO3	Study Mo	dal split, M	ass Rapid	Transit Systems & I	t's Type.				

Transport Planning Process : Status of transportation in India. Objectives and scope of transport planning. Urban, regional and national transport planning. Transport planning process, various stages. Land use and traffic.

UNIT – II

Transportation Survey: Definition of study area. Zoning. Types of surveys. O-D surveys. Inventories of existing transport facilities, land use and economic activities. TRIP.

Generation: Trip purpose. Factors affecting trip generation. Trip generation estimation by multiple linear regression analysis, brief review of category analysis, advantages and limitations of these methods.

UNIT – III

Trip Distribution: Methods of trip distribution. Basic concepts of uniform factor method, average factor method and opportunity model. Trip distribution by gravity model.

Traffic Assignment: Principles of assignment. Assignment techniques. All or nothing assignment. Brief review of multipath assignment, capacity restraint assignment and diversion curves.

UNIT – IV

Modal Split: General considerations for modal split. Factors affecting modal split. Brief introduction to various methods of modal split.

Evaluation: Need for evaluation. Several plans to be formulated. Testing. Considerations in evaluation. Economic evaluation, basic principles, brief introduction to various methods of economic evaluation, comparison.

Mass Rapid Transit Systems: Problems of Urban Transport. Introduction to MRTS. Requirements of MRTS. Types of MRTS. MRTS in India

- 1) Traffic Engg. And Transport Planning by L.R.Kadiyali, Khanna Publishers, Delhi.
- 2) Highway Engg by S.K. Khanna & C.E.G. Justo, New Chand Bros., Roorkee.
- 3) Introduction to Transport Planning by Bruton, M.J., Hutchinson Technical Education, London.
- 4) Principles of Transportation Engineering by Chakroborty & Das, Prentice Hall

MTTE-112 A	Transpor	tation Safe	ty & Env	ironment			
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.
		(Course O	outcomes (CO)			
CO1	Analyze ti	he Road Ac	cidents &	the safety measures	s to reduce acciden	ts	
CO2	Role of di	fferent orgo	anisation	for Road safety.			

Road Accidents & safety measures: Trends in roads and highways development. Problem of road accidents in India. Characteristics of road accidents. Causes of accidents. Global and Indian road safety scenario. Factors responsible for success stories in road safety. Role of highway professionals in highway safety.

$\mathbf{UNIT} - \mathbf{II}$

Various Aspects for traffic safety: Planning of roads for safety. Land use planning and zoning. Development control and encroachment. Network hierarchy. Route planning through communities. Access control. Traffic segregation. Traffic calming designing for safety: road link design, alignment design. Cross-sectional elements. Traffic control devices. Road side safety. Road side facilities. Some critical elements. Junction design Basic principles. Selection of junction type. Factors affecting safety at various junction types. Elements to improve road safety. Provisions for vulnerable road users.

UNIT – III

Road safety audit: Concepts of road safety audit, Road safety auditors & key personnel in RSA. Organizing and conducting a road safety audit. Example and commonly identified. Issues during RSA, Road safety audit report. Development of cost-effective of road safety audit accident investigation and prevention. Basic strategies for accident reduction. Significance of accident data. Accident investigation and identification of potential sites for treatment. Problem diagnosis. Selection of countermeasures. Example of selection of counter measures. Detailed design and implementation of countermeasures.

UNIT – IV

Road safety Evaluation: Monitoring and evaluation non-engineering measures for road safety, behavioral counter measures, education. Training and publicity. The goal of police traffic control activities. Strategy for road safety management by police. Role of NGOs in road safety. Legal framework for road safety transport related pollution, noise pollution, air pollution, effects of weather conditions, vehicular emission parameters, pollution standards. EIA requirements of highway projects, world bank guidelines, EIA practices in India. Fuel crisis and transportation, factors affecting fuel consumption, fuel economy in various modes of transportation, various types of alternative fuels.

- 1) Traffic Engg. And Transport Planning by L.R.Kadiyali, Khanna Publishers, Delhi.
- 2) Highway Engg. By S.K.Khanna& C.E.G. Justo, New Chand Bros., Roorkee.

MTTE-114 A		Transportation Economics & Finance								
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
2	0	0 0 3 60 40 100 3 Hrs.								
3	0	0	3	60	40	100	3 Hrs.			
3	0	0	3 Course O	60 Putcomes (CO)	40	100	3 Hrs.			
3 CO1	0 Evaluate d	0 conomy in	3 Course O highway	60 Putcomes (CO) Projects by differen	40 t methods.	100	3 Hrs.			
3 CO1 CO2	0 Evaluate o Find out o	0 economy in lifferent Co	3 Course O highway ost in vehi	60 Putcomes (CO) Projects by differen icle Operations, Mai	40 t methods. ntenance & acciden	nts.	3 Hrs.			

Economic Evaluation of Transport Plans: Need for economic evaluation. Cost and benefits of transport projects. Time horizon in economic assessment. Basic principles of economic evaluation, interest rate, method of economic evaluation, benefit cost ratio method, first year rate of return, net present value method, internal rate of return method. Comparison of various methods of economic evaluation.

UNIT – II

Vehicle Operating Costs: Introduction. Road used cost study in India. Components of VOC, factors affecting VOC. Fuel consumption relationship. Spare parts consumption. Maintenance and repairs labour cost, tyre life, lubricants, utilisation and fixed costs.

UNIT – III

Value of Travel Time Savings: Introduction. Classes of transport users enjoying travel time savings. Methodology for monetary evaluation of passengers, travel time. Review of work in India on passengers travel time.

Accidents Costs: Introduction. Relevance of accident costing for a developing country. Review of alternative methodologies for accident costing, Indian studies.

UNIT - IV

Traffic Congestion, Traffic Restraints and Road Pricing: Congestion as a factor in road traffic, Traffic restraint. Road pricing.

Highway Finance: Basic principles. Distribution of highway cost. Sources of revenue, Highway financing in India.

References:

1) Principles of Transportation Engineering by Chakroborty & Das, Prentice Hall, India.

- 2) Highway Engg by S.K.Khanna & C.E.G. Justo, New Chand Bros., Roorkee.
- 3) Principles and Practice of Highway Engg. By L.R.Kadiyali, Khanna Publishers, Delhi.
- 4) Principles of Transportation and Highway Engineering *by* G.V.Rao, Tata McGraw-Hill Publishing Co. Ltd. N.Delhi.
- 5) MORTH Specifications for Road and Bridge Works, IRC Publication.

MTTE-116 A		Com	putationa	al Lab			
		1	I			T	
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
		1	1	Evaluation	Evaluation		
0	0	2	2	60	40	100	3 Hrs.
		(Jourse O	utcomes (CO)			
C01	Use of M	ORTH softv	vare for F	Rate Analysis of High	hway Projects.		
CO2	Use of IR	C Software	for Paver	ment design & decis	ion modeling.		
CO3	Conduct 1	Experiment	s on geon	netric design of High	hway by different s	oftware.	

Exposure to various transportation related software's like:

- 1) Rate analysis by MORTH software.
- 2) IRC software's for pavement design.
- 3) IRC software's for decesion modeling.
- 4) Software for geometric design.

MTTE-118 A				Mini Project						
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time			
0	0	4	2	60	40	100	3 Hrs.			
			Course (Outcomes (CO)			-			
CO1	Identify	, Transporte	ation engi	ineering problems	reviewing available	literature				
C02	Study d	ifferent tecl	hniques u	sed to analyze com	plex Transportation	systems.				
CO3	Work of enginee	Work on the solutions given and present solution by using his/her technique applying								

Syllabus Content:

Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available.

End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals" contribution.

Continuous assessment of Mini Project at Mid Semester and End Semester will be monitored by the departmental committee.

MTTE-201 A				Planning & Design	of Airport		
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.
		(Course O	outcomes (CO)			
C01	Study the	Study the layout of Airport by ICAO standards.					
CO2	Study the	Study the Runway Orientation & geometric Design.					
CO3	Plan & de	esign Apror	ı & Airpo	ort landscaping.			

UNIT-I

Classification of Airports: ICAO standards. Planning for airport, airport components, zoning laws.

UNIT-II

Runways Orientation and Geometric Design: Runway patterns. Taxiways alignment geometry and turning radius exit taxiways.

UNIT-III

Aprons Planning And Design: Design principles of critical, semi-critical, non-critical airport pavements, FAA and PCA methods. Airport hangars, their planning and design criteria.

UNIT-IV

Airport landscaping: Grading and drainage general aspects. Airport terminal and amenities. Airport lighting and marking.

Recommended Books

 N.J. Ashford, P.H. Wright, Airport Engineering, 3rd Edition, 1992, John Wiley
R.M. Horonjeff, F.X. McKelvey, W.J Sproule, Seth Young, Planning and Design of Airports, TMH International Publishers, Fifth Edition, 2009
Khanna, Arora and Jain, Planning and Design of Airports, New Chand Bros., 2001
Wells, Alexander; Young, Seth, Airport Planning & Management, McGraw Hill, 5th Edition, July, 2009
De N. Richard, & Odoni, Airport Systems: Planning, Design, and Management, McGraw Hill Amedeo, 1st Edition, 2004

MTTE-203 A	Docks a	nd Harbou	r Engine	ering			
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time
3	0	0	3	60	40	100	3 Hrs.
Course Outcomes (CO)							
C01	Enhance t context of	he knowled regional an	ge of Doci d intercor	ks and Harbour Eng ntinental transportat	ineering for the wate ion.	er transport	ation in the
CO2	CO2 <i>Study the techniques of planning and designing of infrastructures required for Harbour and Port area.</i>						
CO3	Study cargo and passenger demand forecasting, cargo handling capacity of ports and economic evaluation of port project.						

UNIT - I

Water Transportation: Scope, Merits, Developments of Water Transportation in India, Inland waterways, River, Canal, Inland water transportation, Development of ports & Harbours, Harbour classification, Site selection, Harbour dimensioning.

Natural Phenomena: Wind, Tides, Water waves, Wave decay & port, wave diffraction, breaking, reflection, Littoral drift, sediment transport, Effects on Harbour and structure design.

UNIT - II

Harbour Infrastructures: Types of breakwaters, jetty, dock fenders, piers, wharves, dolphin, mooring accessories, Repair facilities, wet docks, lift docks, dry docks, gates for graving docks, floating docks, slipways, locks and gates.

UNIT - III

Port facility: Transit shed, warehouses, cargo handling, container handling, Inland port facility, Navigational aids, types, requirements of signals, lighthouses, beacon light, buoys. Dredging & coastal protection: Types of dredgers, choices, usage of dredged material, sea wall protection-sea wall revetment, bulkhead.

UNIT - IV

Planning of ports: for regional and intercontinental transportation development, forecasting cargo & passenger demand, regional connectivity, cargo handling capacity of port, economic evaluation of port project, impacts of port activities.

References:

1) Bindra S.P., Docks & Harbour Engineering, Dhanpat Rai Publications,

2) Srinivasan R., Harbours, Docks & Tunnel Engineering, Charotar Publishing House, Anand, 1999.

3) Alonzo Def. Quinn, Design and Construction of Ports and Marine Structure, McGraw - Hill Book Company, New York

			Ol	pen Elective				
MTOE-201 A				Business Anal	ytics			
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time	
				Evaluation	Evaluation			
3	0	0	3	60	40	100	3 Hrs.	
Program Objective (PO)								
PO1	Understan	d the role of	business	analytics within	1 an organization			
PO2	Analyze da	ita using sta	tistical an	d data mining t	echniques and unde	rstand relationsh	nips	
	between th	ne underlyin	g business	processes of a	n organization			
PO3	To gain an understanding of how managers use business analytics to formulate and solve							
	business problems and to support managerial decision making							
PO4	To become familiar with processes needed to develop, report, and analyze business data							
PO5	Use decisi	on-making t	ools/Oper	ations research	techniques			
PO6	Mange bus	siness proce.	ss using a	nalytical and m	anagement tools			
PO7	Analyze an	nd solve prot	blems fron	n different indu	stries such as manuj	facturing, service	e, retail,	
	software, l	banking and	finance, s	ports, pharmad	ceutical, aerospace e	etc		
			Course	e outcomes (C	0)			
CO1	Students w	vill demonstr	ate knowl	edge of data an	alytics			
CO2	Students w	vill demonstr	ate the ab	ility of think cr	itically in making de	ecisions based on	a data	
	and deep d	analytics						
CO3	Students w	vill demonstr	ate the ab	ility to use tech	nical skills in predio	cative and prescr	iptive	
	modeling i	to support b	usiness de	cision-making				
CO4	Students w	vill demonstr	ate the ab	ility to translat	e data into clear, ac	tionable insights		

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics.

Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modeling, sampling and estimation methods overview.

Unit II

Trendiness and Regression Analysis: Modeling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

Unit III

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes.

Descriptive Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization

Unit IV

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression orecasting with Casual Variables, Selecting Appropriate Forecasting Models.

Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model

Unit V

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without 8 Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.

Unit VI

Recent Trends in Embedded and collaborative business intelligence, Visual data 4 recovery, Data Storytelling and Data journalism.

- 1) Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press
- 2) Business Analytics by James Evans, persons Education

MTOE-203 A		Industrial Safety					
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.

Unit I

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and fire fighting, equipment and methods.

Unit II

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment

Unit III

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit IV

Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit V

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance.

- 1) Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2) Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3) Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication
- 4) Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London

MTOE-205 A		Operations Research						
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time	
				Evaluation	Evaluation			
3	0	0	3	60	40	100	3 Hrs.	
Course Outcomes (CO)								
C01	Students 3	should able	to apply	the dynamic p	programming t	o solve problems og	f	
	discreet a	nd continu	ous varia	bles				
CO2	Students 3	should able	to apply	the concept o	f non-linear pr	ogramming		
CO3	Students should able to carry out sensitivity analysis							
CO4	Student si	hould able	to model	the real world	l problem and	simulate it		

Unit I

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit II

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Unit III

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit IV

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit V

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1) H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2) H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982
- 3) J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4) Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5) Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6) Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

MTOE-207 A		Cost Management of Engineering Projects							
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time		
				Evaluation	Evaluation				
3	0	0	3	60	40	100	3 Hrs.		
	Course Outcomes (CO)								
C01	Students s	should able	e to learn	the cost conc	epts in decisio	n making			
CO2	Student si	hould be ab	le to do c	cost planning	and Marginal	Costing			
CO3	CO3 Students should be able to create a database for operational control and decision								
	making.								

Unit I

Introduction and Overview of the Strategic Cost Management Process

Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Unit II

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non-technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

Unit III

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.

Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints.

Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit IV

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1) Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2) Charles T. Horngren and George Foster, Advanced Management Accounting
- 3) Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting

MTOE-209 A		Composite Materials					
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.
Program	ogram To enable students to aware about the composite materials and their properties.						
Objective (PO)							
		Co	ourse Ou	tcomes (CO)			
C01	Students	should abl	e to learn	the Classific	ation and char	acteristics of Comp	osite
	material	<i>s</i> .					
CO2	Students	Students should able reinforcements Composite materials.					
CO3	Students	Students should able to carry out the preparation of compounds.					
CO4	Student s	should able	to do the	analysis of th	he composite m	aterials.	

UNIT I

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Iso-stress conditions.

UNIT II

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

UNIT III

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT IV

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.
- 3. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

MTOE-211 A				Waste to Ene	ergy		
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.
Program	To enable students to aware about the generation of energy from the waste.						
Objective (PO)							
		Co	urse Ou	tcomes (CO)			
C01	Students	should abl	e to learn	the Classifica	ation of waste as a	fuel.	
CO2	Students	should abl	e to learn	the Manufact	ture of charcoal.		
CO3	Students should able to carry out the designing of gasifiers and biomass stoves.						
CO4	Student s	should able	to learn	the Biogas pla	<i>int technology.</i>		

Unit I

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

Unit II

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

Unit III

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit IV

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status -Bio energy system - Design and constructional features - Biomass resources and their classification -Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants - Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

References:

1) Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.

2) Biogas Technology - A Practical Hand Book - Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.

3) Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.

4) Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

Audit-I

MTAD-101 A		English For Research Paper Writing					
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
2	0	0	0	-	100	100	3 Hrs.
Program	am Student will able to understand the basic rules of research paper writing.						
Objective (PO)							
		Co	urse Ou	tcomes (CO)			
CO1	Underst	tand that ho	w to imp	rove your writin	ng skills and level	of readability	
CO2	Learn a	bout what i	o write ir	1 each section			
CO3	Underst	Understand the skills needed when writing a Title					
CO4	Ensure t	he good qu	ality of po	iper at very firs	t-time submission	ı	

Unit I

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit III

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

Unit IV

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

References:

1) Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)

2) Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press

3) Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman"sbook.

4) Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

A	ud	lit	-I

MTAD-103 A		Disaster Management					
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
2	0	0	0	-	100	100	3 Hrs.
Program	Develop a	an understa	nding of	disaster risk r	eduction and man	agement	
Objective (PO)							
Course Outcomes (CO)							
CO1	Learn to c	earn to demonstrate a critical understanding of key concepts in disaster risk					
	reduction	reduction and humanitarian response.					
CO2	Critically	evaluate di	isaster ris	sk reduction a	nd humanitarian i	response polic	y and
	practice f	rom multip	le perspe	ctives.			
CO3	Develop a	ın understa	nding of	standards of h	umanitarian resp	onse and prac	tical
	relevance	in specific	types of	disasters and	conflict situations		
CO4	critically	critically understand the strengths and weaknesses of disaster management					
	approach	pproaches, planning and programming in different countries, particularly					
	their hom	e country o	r the cou	ntries they wo	rk in		

Introduction: Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit II

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

Unit IV

Disasters Prone Areas in India: Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

References:

1) R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies ""New Royal book Company.

2) Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.

3) Goel S. L., Disaster Administration And Management Text And Case Studies",Deep &Deep Publication Pvt. Ltd., New Delhi.

Au	dit	-I

MTAD-105 A		Sanskrit for Technical Knowledge								
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
2	0	0	0	-	100	100	3 Hrs.			
Program	Students v	vill be able	to Under	standing basi	c Sanskrit langua	ge and Ancient S	anskrit			
Objective (PO) literature about science & technology can be understood and Being a logical										
language will help to develop logic in students										
Course Outcomes (CO)										
CO1	To get a	working kn	owledge	in illustrious S	Sanskrit, the scier	ntific language in	ı the			
	world									
CO2	Learning	of Sanskri	t to impro	ove brain func	tioning					
CO3	Learning	of Sanskri	t to devel	op the logic ir	n mathematics, sc	ience & other su	bjects			
	enhancing the memory power									
CO4	The engi	neering sch	olars eqi	uipped with Sa	inskrit will be abl	e to explore the	huge			
	knowledg	ge from and	ient liter	ature						

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit II

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit III

Technical concepts of Engineering: Electrical, Mechanical

Unit IV

Technical concepts of Engineering: Architecture, Mathematics

References

1) "Abhyaspustakam" – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi

2) "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

3) "India"s Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

MTAD-107 A		Value Education								
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
2	0	0	0	-	100	100	3 Hrs.			
Program	Program Understand value of education and self- development, Imbibe good values in									
Objective (PO)	students c	and Let the	should kr	low about the ir	nportance of c	haracter				
Course Outcomes (CO)										
C01	Knowledg	ge of self-de	velopmen	ı <i>t</i>						
CO2	Learn the	Learn the importance of Human values								
CO3	Developir	Developing the overall personality								
CO4	Know abo	out the impo	ortance oj	f character						

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements.

Unit II

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

Unit III

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

Unit IV

Character and Competence –Holy books Vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

References

1) Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Audit II	Aι	ıdit	Π
----------	----	------	---

MTAD-102 A		Constitution of India								
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
2	0	0	0	-	100	100	3 Hrs.			
Program	Understa	nd the pren	ises info	rming the twir	themes of liberty	and freedom fre	om a			
Objective (PO)	civil right	ts perspe	ctive and	to address the	e growth of Indian	opinion re	garding			
	modern 1	modern Indian intellectuals' constitutional role and entitlement to civil and								
	economic rights as well as the emergence of nationhood in the early years of Indian									
	nationalism.									
		Co	ourse Ou	tcomes (CO)						
CO1	Discuss th	ne growth o	f the dem	and for civil 1	rights in India for i	the bulk of India	ins			
	before the	e arrival of	Gandhi i	n Indian polit	ics.					
CO2	Discuss th	ie intellecti	ual origin	s of the frame	work of argument	that informed th	he			
	conceptu	conceptualization of social reforms leading to revolution in India.								
CO3	Discuss th	e circumsta	nces surr	ounding the fo	undation of the Co	ngress Socialist				
	Party [CS	P] under th	e leadersl	hip of Jawahar	lal Nehru and the e	eventual failure o	of			
	the propos	sal of direct	elections	through adult	suffrage in the Ind	ian Constitution				
CO4	Discuss th	ne passage	of the Hir	ıdu Code Bill	of 1956.					

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights , Right to Equality , Right to Freedom , Right against Exploitation , Right to Freedom of Religion, Cultural and Educational Rights , Right to Constitutional Remedies , Directive Principles of State Policy , Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit 3

Local Administration: District''s Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1) The Constitution of India, 1950 (Bare Act), Government Publication.
- 2) Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3) M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4) D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

MTAD-104 A		Pedagogy Studies								
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
2	0	0	0	-	100	100	3 Hrs.			
Program	Review	<i>Review existing evidence on the review topic to inform programme design and</i>								
Objective (PO)	policy n	policy making undertaken by the DFID, other agencies and researchers and								
Identify critical evidence gaps to guide the development.										
Course Outcomes (CO)										
CO1	What ped	agogical pr	actices a	re being used by	teachers in for	mal and inform	al			
	classroon	classrooms in developing countries?								
CO2	What is th	What is the evidence on the effectiveness of these pedagogical practices, in what								
	conditions, and with what population of learners?									
CO3	How can teacher education (curriculum and practicum) and the school curriculum									
	and guidd	ınce materi	als best s	upport effective	pedagogy?					
CO4	What is th	ie importan	ce of ider	ntifying research	gaps?					

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

Unit II

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers" attitudes and beliefs and Pedagogic strategies.

Unit III

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

Unit IV

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

References

1) Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.

2) Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.

3) Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

4) Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

5) Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

6) Chavan M (2003) Read India: A mass scale, rapid, "learning to read" campaign.

Audit I	Ι
---------	---

MTAD-106 A		Stress Management by Yoga									
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time				
				Evaluation	Evaluation						
2	0	0	0	-	100	100	3 Hrs.				
Program	To achiev	To achieve overall health of body and mind and to overcome stress									
Objective (PO)											
Course Outcomes (CO)											
C01	Develop	healthy min	nd in a he	ealthy body th	us improving social	l health.					
CO2	Improve	Improve efficiency									
CO3	Learn th	Learn the Yog asan									
CO4	Learn th	Learn the pranayama									

Definitions of Eight parts of yog (Ashtanga).

Unit II

Yam and Niyam, Do`s and Don"t"s in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

Unit III

Asan and Pranayam, Various yog poses and their benefits for mind & body,

Unit IV

Regularization of breathing techniques and its effects-Types of pranayam.

References

 "Yogic Asanas for Group Tarining-Part-I" :Janardan Swami Yogabhyasi Mandal, Nagpur
"Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

MTAD-108 A	Pe	Personality Development through Life Enlightenment Skills								
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
2	0	0	0	-	100	100	3 Hrs.			
Program	To learn	To learn to achieve the highest goal happily								
Objective (PO)	To become a person with stable mind, pleasing personality and determination									
	To awaken wisdom in students									
Course Outcomes (CO)										
CO1	Students	become aw	are abou	t leadership.						
CO2	Students	Students will learn how to perform his/her duties in day to day work.								
CO3	Understa	and the team	n buildin _a	g and conflict						
CO4	Student v	vill learn h	ow to bec	ome role mod	el for the society.					

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don''s); Verses: 71, 73, 75, 78 (do''s).

Unit II

Approach to day to day work and duties; Shrimad Bhagwad Geeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

Unit III

Statements of basic knowledge; Shrimad Bhagwad Geeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

Unit IV

Personality of Role model; Shrimad Bhagwad Geeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1) Srimad Bhagavad Gita, Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
- 2) Bhartrihari"s Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

MTTE-209 A Dissertation Phase – I

(Credits 0 : 0 : 20 = 10)

Semester III

Teaching Scheme

Lab work : 20 hrs/week for Dissertation Phase- I Mid Semester Evaluation weightage- 30% and End Semester Evaluation weightage- 70%

Course Outcomes:

At the end of this course, students will be able to

- 1. Identify structural engineering problems reviewing available literature.
- 2. Identify appropriate techniques to analyze complex structural systems.
- 3. Apply engineering and management principles through efficient handling of project

Syllabus Contents:

The dissertation-I will have mid semester presentation and end semester presentation. The mid semester presentation will include identification of problem based on literature review on the topic referring to latest literature available.

End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions and must bring out individual contribution.

Continuous assessment of Dissertation-I and Dissertation-II at mid semester and end semester will be monitored by the departmental committee.

MTTE-202 A Dissertation Phase – II

(Credits 0:0:32 = 16)

Semester IV

Teaching Scheme

Contact Hours: 3 hrs/week for Dissertation Phase- II

Course Outcomes:

At the end of this course, students will be able to:

- 1. Solve complex structural problems by applying appropriate techniques and tools.
- 2. Exhibit good communication skill to engineering community and society.
- 3. Demonstrate professional ethics and work culture.

Syllabus Contents:

Dissertation-II will be extension of the work on the topic identified in Dissertation-I

Continuous assessment should be done of the work done adopting the methodology decided involving numerical analysis/ conduct experiments, collection and analysis of data, etc. There will be pre-submission seminar at the end of academic term. After the approval the student has to submit the detailed report and external examiner is called for the viva-voce to assess along with guide.

•••••

Guidelines for Dissertation Phase – I and Phase-II

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two phases i.e. Phase – I: July to December and Phase – II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives. The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Civil Engineering, Structural Engineering and Analysis and any other related domain. In case of Industry sponsored projects, the relevant application notes, while papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Phase – I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper and/or computer aided design, proof of concept/functionality, part results, A record of continuous progress.

Phase – I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Phase-I work.

During phase – II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Phase – II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, A record of continuous progress.

Phase – II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the work

•••••

KURUKSHETRA UNIVERSITY, KURUKSHETRA

('A⁺' Grade, NAAC Accredited)

SCHEME OF EXAMINATIONS FOR Master of Technology (Civil Engineering) Specialization: Structural Engineering (w.e.f. SESSION: 2018-19)

SEMESTER-I

S.	Course Code	SUBJECT		Т	Р	Total	Evalu	ation	Cr.	Duration
No.							Mid Sem	End Sem		of Exam (Hrs.)
1	MTSE-101 A	Advanced Structural analysis	3	-	-	3	40	60	3	3
2	MTSE-103 A	Advanced solid mechanics		-	-	3	40	60	3	3
3	*	Program Elective –I	3	-	-	3	40	60	3	3
4	**	Program Elective-II	3	-	-	3	40	60	3	3
5	MTSE-117 A	Structural Design Lab	-	-	2	2	40	60	2	3
6	MTSE-119 A	Advanced Concrete Lab	-	-	2	2	40	60	2	3
7	MTRM-111 A	Research Methodology and IPR	2	-	-	2	40	60	2	3
8	***	Audit Course-I		-	-	0	100	-	0	0
		TOTAL	16	0	4	18	280	420	18	
					70	0				

	*Program Elective - I	**Program Elective- II			
MTSE-105 A	Theory of Thin Plates and Shells	MTSE-111A	Analytical and Numerical Methods for Structural Engineering.		
MTSE-107 A	Theory and Applications of Cement Composites	MTSE-113 A	Structural Health Monitoring		
MTSE-109 A	Theory of Structural Stability	MTSE-115 A	Structural Optimization		

*** Audit Course-I						
MTAD-101 A English for Research Paper Writing						
MTAD-103 A Disaster Management						
MTAD-105 A	Sanskrit for Technical Knowledge					
MTAD-107 A	Value Education					

Note: 1. The course of program elective will be offered at $1/3^{rd}$ or 6 numbers of students (whichever is smaller) strength of the class.

2. *** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

SEMESTER-II

S.	Course code	Subject	L	Τ	P	Total	Evaluation		Cr.	Duration of
No.							Mid	End		Exam
							Sem	Sem		(Hrs.)
1	MTSE- 102	FEM in Structural	3	-	-	3	40	60	3	3
	А	Engineering								
2	MTSE-104 A	Structural Dynamics	3	-	-	3	40	60	3	3
3	*	Program Elective-III	3	-	-	3	40	60	3	3
4	**	Program Elective-IV	3	-	-	3	40	60	3	3
5	MTSE-122 A	Model Testing Lab		-	2	2	40	60	2	3
6	MTSE- 124	Numerical Analysis	-	-	2	2	40	60	2	3
	А	Lab								
7	MTSE- 126	Mini Project	-	-	4	2	40	60	2	3
	А									
8	*** Audit Course-II		2			0	100		0	3
	TOTAL		14		8	18	280	420	18	
							70	0		

*Progra	am Elective - III	**	[•] Program Elective – IV
MTSE-106 A	Advanced Steel	MTSE-114 A	Design of Advanced Concrete
Design			Structures
MTSE-108 A	Design of Formwork	MTSE-116 A	Advanced Design of Foundations
MTSE-110 A	ITSE-110 A Design of High Rise		Soil Structure Interaction
	Structures		
MTSE-112 A	Design of Masonry	MTSE-120 A	Design of Industrial Structure
	Structures		

*** Audit Course - II							
MTAD-102 A Constitution of India							
MTAD-104 A Pedagogy Studies							
MTAD-106 A	Stress Management by Yoga						
MTAD-108 A	Personality Development through Life Enlightenment Skills.						

Note: 1. The course of program elective will be offered at $1/3^{rd}$ or 6 numbers of students (whichever is smaller) strength of the class.

2.***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

SEMESTER-III

S.	Course Code	Subject	L	Т	Р	Total	Evalu	Evaluation		Duration
N0.							Mid Sem	End Sem		of Exam (Hrs.)
1	*	Program Elective-V	3	-	-	3	40	60	3	3
2	**	Open Elective	3	-	-	3	40	60	3	3
3	MTSE-209 A	Dissertation Phase- I	-	-	20	20	100	-	10	3
		TOTAL	6		20	26	180	120	16	
				30	0					

*Program Elective –V						
MTSE-201 A Design of Pre-stressed Concrete Structures						
MTSE-203 A	Analysis of Laminated Composite Plates					
MTSE-205 A	Fracture Mechanics of Concrete Structures					
MTSE-207 A	Design of Plates and Shells					

	**Open Elective							
1.	MTOE-201 A	Business Analytics						
2.	MTOE-203 A	Industrial Safety						
3.	MTOE-205 A	Operations Research						
4.	MTOE-207 A	Cost Management of Engineering Projects						
5.	MTOE-209 A	Composite Materials						
6.	MTOE-211 A	Waste to Energy						

SEMESTER-IV

S.	Course Code		L	Т	P	Total	Evalu	ation	Cr.	Duration of
No.							Mid Sem	End Sem		Exam (Hrs.)
1	MTSE-202 A	Dissertation	-	-	32	32	100	200	16	3
		Phase-II								
		30	0	16						

Total Credits of all four semesters: 68

Note: 1. The course of program elective/ open elective will be offered at $1/3^{rd}$ or 6 numbers of students (whichever is smaller) strength of the class.

Evaluation of Mid Sem.(40 Marks) for all the semesters:

(a)Mid semester examination(s): Two Nos each of 10 marks=20 Marks

(b)Attendance/ Regularity : 10 Marks

(c) Teacher's Assessment / Quizzes/ Assignments etc: 10 Marks

MTSE-101 A		Advanced Structural Analysis										
Lecture	Tutorial	FutorialPracticalCreditEnd Sem.Mid Sem.TotalTimeEvaluationEvaluationEvaluation										
3	0 0 3 60 40 100 3 Hr											
	Course Outcomes (CO)											
CO1	CO1 Analyze the skeleton structures using stiffness analysis code.											
CO2	Use direc	et stiffness n	nethod un	derstanding its limit	tations							

Influence Coefficients: Physical Significance, Effects of Settlements, Temperature Change andLack of Fit, Member Approach and Structure Approach

Unit II

Stiffness Method applied to Large Frames: Local Coordinates and Global Coordinates.

Stiffness Matrix Assembly of Structures: Stiffness Matrix in GlobalCoordinates, BoundaryConditions,Solution of Stiffness Matrix Equations, Calculation of Reactions and Member Forces

Unit III

Applications to Simple Problems: Beams, Plane Trusses, Plane Rigid Jointed Frames and Grids by Structure Approach and Member Approach.

Unit IV

Boundary Value Problems (BVP): Approximate Solution of Boundary Value Problems, Modified GalerkinMethod for One-Dimensional BVP, Matrix Formulation of the Modified GalerkinMethod.

Linear Element: Shape Functions, Solution for Poisson's Equation, General OneDimensionalEquilibrium Problem.

- 1) Matrix Analysis of Framed Structures, Weaver and Gere.
- 2) The Finite Element Method, Lewis P. E. and WardJ. P., Addison-Wesley Publication Co.
- 3) Computer Methods in Structural Analysis, MeekJ. L., E and FN, Span Publication.
- 4) The Finite Element Method, Desai and Able, CBS Publication.
- 5) Matrix Analysis of Structures, Pandit& Gupta, Tata McGraw Hill Publications
| MTSE-103 A | | Advanced Solid Mechanics | | | | | | | | |
|------------|-----------|--|------------|------------------------|------------------------|-------|------|--|--|--|
| Lecture | Tutorial | Practical | Credit | End Sem.
Evaluation | Mid Sem.
Evaluation | Total | Time | | | |
| 3 | 0 | 0 3 60 40 100 3 Hrs. | | | | | | | | |
| | | Co | ourse Ou | tcomes (CO) | | | | | | |
| CO1 | Solve sim | <i>lve simple problems of elasticity and plasticity understanding the basic concepts</i> | | | | | | | | |
| CO2 | Apply nur | nerical met | hods to se | olve continuum pro | blems | | | | | |

Introduction to Elasticity: Displacement, Strain and Stress Fields, Constitutive Relations, Cartesian Tensors and Equations of Elasticity.

Strain and Stress Field: Elementary Concept of Strain, Stain at a Point, Principal Strains and Principal Axes, Compatibility Conditions, Stress at a Point, Stress Components on an Arbitrary Plane, Differential Equations of Equilibrium, Hydrostatic and Deviatoric Components.

Unit II

Equations of Elasticity: Equations of Equilibrium, Stress- Strain relations, Strain Displacementand Compatibility Relations, Boundary Value Problems, Co-axialityof the Principal Directions.

Unit III

Two-Dimensional Problems of Elasticity: Plane Stress and Plane Strain Problems, Airy'sstress Function, Two-Dimensional Problems in Polar Coordinates.

Torsion of Prismatic Bars: Saint Venant's Method, Prandtl's Membrane Analogy, Torsion of Rectangular Bar, Torsion of Thin Tubes

Unit IV

Plastic Deformation: Strain Hardening, Idealized Stress- Strain curve, Yield Criteria, vonMises Yield Criterion, Tresca Yield Criterion, Plastic Stress-Strain Relations, Principle of Normality and Plastic Potential, Isotropic Hardening.

- 1) Theory of Elasticity, Timoshenko S. and Goodier J. N., McGraw Hill, 1961.
- 2) Elasticity, Sadd M.H., Elsevier, 2005.
- 3) Engineering Solid Mechanics, Ragab A.R., Bayoumi S.E., CRC Press, 1999.
- 4) Computational Elasticity, Ameen M., Narosa, 2005.
- 5) Solid Mechanics, Kazimi S. M. A., Tata McGraw Hill, 1994.
- 6) Advanced Mechanics of Solids, Srinath L.S., Tata McGraw Hill, 2000.

MTSE-117 A		Structural Design Lab								
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time			
0	0	2 2 60 40 100 3 Hrs.								
		Co	ourse Ou	tcomes (CO)						
CO1	Design ar	ign and Detail all the Structural Components of Frame Buildings.								
CO2	Design ar	nd Detail co	mplete M	lulti-Storey Frame I	Buildings					

Syllabus Content:

Design and detailed drawing of complete G+ 3 structures by individual student using latest relevant IS codes.

MTSE-119 A		Advanced Concrete Lab									
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time				
				Evaluation	Evaluation						
0	0	2 2 60 40 100 3 Hrs.									
	Course Outcomes (CO)										
CO1	Design hi	gh grade c	oncrete a	nd study the paran	neters affecting its pe	erformance					
CO2	Conduct Non Destructive Tests on existing concrete structures										
CO3	Apply eng	gineering p	rinciples i	to understand beha	avior of structural/ e	lements					

List of Experiments:

- 1. Study of stress-strain curve of high strength concrete, Correlation between cube strength, cylinder strength, split tensile strength and modulus of rupture.
- 2. Effect of cyclic loading on steel.
- 3. Non-Destructive testing of existing concrete members.
- 4. Behavior of Beams under flexure, Shear and Torsion.

- 1. Properties of Concrete, Neville A. M., 5th Edition, Prentice Hall, 2012.
- 2. Concrete Technology, Shetty M. S., S. Chand and Co., 2006.

MTRM -111 A			Resear	rch Methodology a	and IPR					
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time			
3	0	0	3	60	40	100	3 Hrs.			
		Course Outcomes (CO)								
CO1	Understa	nd Researc	h problen	n formulation						
CO2	Analyze r	esearch rel	ated info	rmation						
CO3	Follow re	search ethi	ics							
CO4	Understa tomorrow	nd that tode [,] world will	ay's world be ruled	d is controlled by C by ideas, concept, a	'omputer, Informati and creativity.	on Technolo	ogy, but			
CO5	Understa & nation	nding that	when IPR	would take such in the need of i	nportant place in g	rowth of ind Intellectual	dividuals Property			
	Right to b	e promoted	l among s	students in general	& engineering in pa	articular.	Порену			
CO6	Understa	nd that IPR	protectio	on provides an incer	ntive to inventors fo	or further re	esearch			
	work and and in tur	investment n brings al	in R & D), which leads to cre nomic growth and so	eation of new and b ocial benefits.	etter produ	cts,			

Meaning of research problem, Sources of research problem, Criteria Characteristicsof a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit II

Effective literature studies approaches, analysisPlagiarism,Research ethics.

Effective technical writing, how to write report paper,

Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

Unit III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology.Patentinformation and databases. Geographical Indications

New Developments in IPR: Administration of Patent System. New developments inIPR; IPR of Biological Systems, Computer Software etc.Traditional knowledge Case Studies, IPR and IITs.

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students".
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

MTSE-102 A		Finite Element Method in Structural Engineering										
Lecture	Tutorial	Tutorial Practical Credit End Sem. Mid Sem. Total Ti										
				Evaluation	Evaluation							
3	0	0 0 3 60 40 100 3 Hrs.										
	Course Outcomes (CO)											
CO1	Use Finit	e Element l	Method fo	or structural analysis	<i>S</i> .							
CO2	Execute t	xecute the Finite Element Program/ Software										
CO3	Solve con	tinuum pro	blems us	ing finite element an	alysis							

Introduction: History and Applications. Spring and Bar Elements, Minimum Potential EnergyPrinciple, Direct Stiffness Method, Nodal Equilibrium equations, Assembly of Global Stiffness Matrix, Element Strain and Stress

Unit II

Beam Elements: Flexure Element, Element Stiffness Matrix, Element Load Vector.

Method of Weighted Residuals: Galerkin Finite Element Method, Application to StructuralElements, Interpolation Functions, Compatibility and Completeness Requirements, Polynomial Forms, Applications

Unit III

Types: Triangular Elements, Rectangular Elements, Three-Dimensional Elements, IsoparametricFormulation, Axi-Symmetric Elements, Numerical Integration, Gaussian Quadrature

Unit IV

Application to Solid Mechanics: Plane Stress, CST Element, Plane Strain Rectangular Element, Isoparametric Formulation of the Plane Quadrilateral Element, Axi- Symmetric Stress Analysis, Strain and Stress Computations.

Computer Implementation of FEM procedure, Pre-Processing, Solution, Post-Processing, Useof Commercial FEA Software.

- 1) Finite Element Analysis, Seshu P., Prentice-Hall of India, 2005.
- 2) Concepts and Applications of Finite Element Analysis, Cook R. D., Wiley J., New York, 1995.
- 3) Fundamentals of Finite Element Analysis, Hutton David, Mc-Graw Hill, 2004
- 4) Finite Element Analysis, Buchanan G.R., McGraw Hill Publications, New York, 1995
- 5) Finite Element Method, Zienkiewicz O.C. & Taylor R.L. Vol. I, II & III, Elsevier, 2000
- 6) Finite Element Methods in Engineering, Belegundu A.D., Chandrupatla, T.R., Prentice Hall India, 1991

MTSE-104 A			S	tructural Dynam	ics			
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time	
				Evaluation	Evaluation			
3	0	0	3	60	40	100	3 Hrs.	
Course Outcomes (CO)								
CO1	Analyze	and study	dynami	cs response of s	single degree free	dom syster	n using	
	fundamer	ntal theory d	and equat	ion of motion.				
CO2	Analyze	and study	dynami	cs response of	Multi degree free	dom syster	n using	
	fundamer	tal theory d	and equat	ion of motion				
CO3	Use the a	vailable soj	ftware for	dynamic analysis				

Introduction: Objectives, Importance of Vibration Analysis, Nature of ExcitingForces, Mathematical Modeling of Dynamic Systems.

Unit II

Single Degree of Freedom System: Free and Forced Vibration with and without Damping, Response to Harmonic Loading, Response to General Dynamic Loading using Duhamel's Integral, Fourier Analysis for Periodic Loading, State Space Solution for Response.

Numerical Solution to Response using Newmark Method and Wilson Method, NumericalSolution for State Space Response using Direct Integration.

Unit III

Multiple Degree of Freedom System (Lumped parameter): Two Degree of Freedom System, Multiple Degree of Freedom System, Inverse Iteration Method for Determination of Natural Frequencies and Mode Shapes, Dynamic Response by Modal Superposition Method, Direct Integration of Equation of Motion.

Unit IV

Multiple Degree of Freedom System (Distributed Mass and Load): Single Span Beams, FreeandForced Vibration, Generalized Single Degree of Freedom System

Special Topics in Structural Dynamics(Concepts only): Dynamic Effects ofWind Loading,Moving Loads, Vibrations caused by Traffic, Blasting andPile Driving, Foundations for Industrial Machinery, Base Isolation.

- 1) Dynamics of Structures, Clough R. W. and Penzien J., McGraw Hill.
- 2) Structural Dynamics and Introduction to Earthquake Engineering, Chopra A. K.
- 3) Vibration of Structures Application in Civil Engineering Design, Smith J. W., Chapman and Hall
- 4) Dynamics of Structures, Humar J. L., Prentice Hall.
- 5) Structural Dynamics Theory and Computation, Paz Mario, CBS Publishers
- 6) Dynamics of Structures, Hart and Wong

MTSE-122 A				Model Testing La	ab					
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
0	0	2	2	60	40	100	3 Hrs.			
	Course Outcomes (CO)									
CO1	Understa	nd the resp	onse of st	tructures.						
CO2	Prepare t	the models								
CO3	3 Conduct model testing for static loading.									
CO4	Conduct :	model testi	ng for fre	e and forced vibra	tions					

Syllabus Content:

- 1. Response of structures and its elements against extreme loading events.
- 2. Model Testing: Static testing of plates, shells, and frames models.
- 3. Model Testing: Free and forced vibrations, Evaluation of dynamic modulus.
- 4. Beam vibrations, Vibration isolation, Shear wall building model, Time and frequencydomain study, Vibration Characteristics of RC Beams using Piezoelectric Sensors etc.

MTSE-124 A			Nu	merical Analysis	Lab					
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
0	0	2	2	60	40	100	3 Hrs.			
	Course Outcomes (CO)									
CO1	Find Roo	id Roots of non-linear equations by Bisection method and Newton's method.								
CO2	Do curve	curve fitting by least square approximations.								
CO3	Solve the	system of L	inear Equ	uations using Gau	ss - Elimination/ Ga	uss - Seidal	Iteration/			
	Gauss - J	orden Meth	nod							
CO4	To Integr	ate Numeri	cally Usir	ng Trapezoidal an	d Simpson's Rules					
C05	To Find	Numerical	Solution	of Ordinary Diff	ferential Equations	by Euler's	Method,			
	Runge- K	utta Metho	d							

List of Experiments:

- 1. Find the Roots of Non-Linear Equation Using Bisection Method.
- 2. Find the Roots of Non-Linear Equation Using Newton's Method.
- 3. Curve Fitting by Least Square Approximations.
- 4. Solve the System of Linear Equations Using Gauss Elimination Method.
- 5. Solve the System of Linear Equations Using Gauss Seidal Iteration Method.
- 6. Solve the System of Linear Equations Using Gauss Jorden Method.
- 7. Integrate numerically using Trapezoidal Rule.
- 8. Integrate numerically using Simpson's Rules.
- 9. Numerical Solution of Ordinary Differential Equations By Euler's Method.
- 10. Numerical Solution of Ordinary Differential Equations ByRunge- Kutta Method.

MTSE-126 A				Mini Project					
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time		
0	0	4	2	60	40	100	3 Hrs.		
			Course (Dutcomes (CO)					
CO1	Identify	, structural	engineeri	ing problems revie	ewing available litera	ıture			
CO2	Study d	Study different techniques used to analyze complex structural systems.							
CO3	Work o applyin	n the soluti g engineeri	ons given ng princi	and present solut ples.	ion by using his/her t	echnique			

Syllabus Content:

Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available.

End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals' contribution.

Continuous assessment of Mini Project at Mid Semester and End Semester will be monitored by the departmental committee.

10(1657)

Program Elective -I

MTSE-105 A		Theory of Thin Plates and Shells										
Lecture	Tutorial	rial Practical Credit End Sem. Mid Sem. Total Time										
				Evaluation	Evaluation							
3	0	0 0 3 60 40 100 3 Hrs.										
	Course Outcomes (CO)											
CO1	Use analy	vtical metho	ods for the	e solution of th	in plates and shells							
CO2	Use analy	vtical metho	ods for the	e solution of sl	nells.							
CO3	CO3 Apply the numerical techniques and tools for the complex problems in thin plates											
CO4	Apply the	numerical	technique	es and tools fo	r the complex proble	ms in shells.						

Unit 1

Introduction: Space Curves, Surfaces, Shell Co-ordinates, Strain Displacement Relations, Assumptions in Shell Theory, Displacement Field Approximations, Stress Resultants, Equation of Equilibrium using Principle of Virtual Work, Boundary Conditions.

Unit 2

Static Analysis of Plates: Governing Equation for a Rectangular Plate, NavierSolution forSimply-Supported Rectangular Plate under Various Loadings, Levy solution for Rectangular Plate with other Boundary Conditions

Unit 3

Circular Plates: Analysis under Axi- Symmetric Loading, Governing Differential Equation inPolar Co-ordinates. Approximate Methods of Analysis- Rayleigh-Ritz approach for Simple Cases in Rectangular Plates.

Unit 4

Static Analysis of Shells: Membrane Theory of Shells - Cylindrical, Conical and Spherical Shells,

Unit 5

Shells of Revolution: with Bending Resistance - Cylindrical and Conical Shells, Application to Pipes and Pressure Vessels.

Unit 6

Thermal Stresses in Plate/ Shell

- 1. Theory of Plates and Shells, Timoshenko S. and Krieger W., McGraw Hill.
- 2. Stresses in Plates and Shells, UguralAnsel C., McGraw Hill.
- 3. Thin Elastic Shells, Kraus H" John Wiley and Sons
- 4. Theory of Plates, Chandra shekhara K., Universities Press
- 5. Design and Construction of Concrete Shells, RamaswamyG.S

MTSE-107 A		Theor	y and A	oplications of Cem	ent Composites				
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time		
				Evaluation	Evaluation				
3	0	0	3	60	40	100	3 Hrs.		
Course Outcomes (CO)									
CO1	Formulat	e constituti	ve behav	iour of composite n	aterials – Ferroce	ment, SIFC	CON and		
	Fibre Rei	inforced Co	ncrete - b	y understanding the	eir strain- stress bei	haviour.			
CO2	Classify t	he materia	ls as per c	orthotropic and anis	otropic behaviour.				
CO3	Estimate	strain cons	tants usin	g theories applicabl	le to composite mat	erials.			
CO4	Analyse a	nd design s	structural	elements made of c	ement composites.				

Unit 1

Introduction: Classification and Characteristics of Composite Materials- Basic Terminology, Advantages. Stress-Strain Relations- Orthotropic and Anisotropic Materials, Engineering Constants for Orthotropic Materials, Restrictions on Elastic Constants, Plane Stress Problem, Biaxial Strength, Theories for an Orthotropic Lamina.

Unit 2

Mechanical Behaviour: Mechanics of Materials Approach to Stiffness- Determination of Relations between Elastic Constants, Elasticity Approach to Stiffness- Bounding Techniques of Elasticity, Exact Solutions - Elasticity Solutions with Continuity, Halpin, Tsai Equations, Comparison of approaches to Stiffness

Cement Composites: Types of Cement Composites, Terminology, Constituent Materialsand their Properties, Construction Techniques for Fibre Reinforced Concrete - Ferrocement, SIFCON, Polymer Concretes, Preparation of Reinforcement, Casting and Curing

Unit 3

Unit 4

Mechanical Properties of Cement Composites :Behavior of Ferrocement, Fiber ReinforcedConcrete in Tension, Compression, Flexure, Shear, Fatigue and Impact, Durability and Corrosion

Unit 5

Application of Cement Composites: FRC and Ferrocement- Housing, Water Storage, Boats and Miscellaneous Structures. Composite Materials- Orthotropic and Anisotropic behaviour, Constitutive relationship, Elastic Constants

Unit 6

Analysis and Design of Cement Composite Structural Elements - Ferrocement, SIFCON and Fibre Reinforced Concrete.

- 1) Mechanics of Composite Materials, Jones R. M., 2nd Ed., Taylor and Francis ,BSP Books, 1998. Ferrocement Theory and Applications, Pama R. P., IFIC, 1980
- New Concrete Materials, Swamy R.N., 1stEd., Blackie, Academic and Professional, Chapman & Hall, 1983

MTSE-109 A		Theory of Structural Stability									
Lecture	Tutorial	torial Practical Credit End Sem. Mid Sem. Total Time									
				Evaluation	Evaluation						
3	0	0 0 3 60 40 100 3 Hrs.									
		(Course O	utcomes (CO)							
CO1	Determin	e stability o	of column	s and frames							
CO2	Determin	Determine stability of beams and plates									
CO3	Use stabi	lity criteria	and cond	cepts for analyzing	discrete and continu	uous system	S				

Unit-1

Criteria for Design of Structures: Stability, Strength, and Stiffness, Classical Concept of Stability of Discrete and Continuous Systems, Linear and nonlinear behavior.

Unit-2

Stability of Columns: Axial and Flexural Buckling, Lateral Bracing of Columns, CombinedAxial, Flexural and Torsion Buckling.

Unit-3

Stability of Frames: Member Buckling versus Global Buckling, Slenderness Ratio of FrameMembers.

Unit-4

Stability of Beams: lateral torsion buckling

Unit-5

Stability of Plates: axial flexural buckling, shear flexural buckling, buckling under combinedloads

Unit-6

Stability of Plates: axial flexural buckling, shear flexural buckling, buckling under combinedloads

Reference Books:

- 1) Theory of elastic stability, Timoshenko and Gere, Tata McGraw Hill, 1981
- 2) Principles of Structural Stability Theory, Alexander Chajes, Prentice Hall, New Jersey
- 3) Structural Stability of columns and plates, Iyengar, N. G. R., Eastern west press Pvt. Ltd.
- 4) Strength of Metal Structures, Bleich F. Bucking, Tata McGraw Hill, New York.

MTSE-111 A	Ar	Analytical and Numerical Methods for Structural Engineering										
Lecture	Tutorial	orial Practical Credit End Sem. Mid Sem. Total Time										
				Evaluation	Evaluation							
3	0	0	3	60	40	100	3 Hrs.					
		(Course O	utcomes (CO)			-					
CO1	Solve ord	linary and p	partial di	fferential equation	ns in structural me	chanics using	g numerical					
	methods	. –	•			-						
CO2	Write a p	rogram to s	solve a m	athematical proble	гт.							

Unit 1

Fundamentals of Numerical Methods: Error Analysis, Polynomial Approximations andInterpolations
Unit 2

Curve Fitting; Interpolation and extrapolation

Unit 3 Solution of Nonlinear Algebraic and Transcendental Equations

Unit 4

Elements of Matrix Algebra: Solution of Systems of Linear Equations, Eigen Value Problems

Unit 5

Numerical Differentiation & Integration: Solution of Ordinary and Partial DifferentialEquations.

Unit 6

Finite Difference scheme: Implicit & Explicit scheme

Unit 7

Computer Algorithms: Numerical Solutions for Different Structural Problems, Fuzzy Logic andNeural Network

- 1) An Introduction to Numerical Analysis, AtkinsonK.E., J. Wiley and Sons, 1989.
- 2) Theory and Problems of Numerical Analysis, Scheid F, McGraw Hill Book Company, (Shaum Series), 1988.
- 3) Introductory Methods of Numerical Analysis, Sastry S. S, Prentice Hall of India, 1998

MTSE-113 A			Struct	ural Health Mon	itoring					
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
3	0	0	3	60	40	100	3 Hrs.			
	Course Outcomes (CO)									
CO1	Diagnosi	s the distres	ss in the str	ructure understand	ding the causes and	factors.				
CO2	Assess the	e health of s	structure u	sing static field m	ethods.					
CO3	CO3 Assess the health of structure using dynamic field tests									
CO4	Suggest r	epairs and	rehabilitat	ion measures of th	ne structure					

Unit 1

Structural Health: Factors affecting Health of Structures, Causes of Distress, Regular Maintenance.

Unit 2

Structural Health Monitoring: Concepts, Various Measures, Structural Safety in Alteration.

Unit 3

Structural Audit: Assessment of Health of Structure, Collapse and Investigation, InvestigationManagement, SHM Procedures.

Unit 4

Static Field Testing: Types of Static Tests, Simulation and Loading Methods, sensor systems andhardware requirements, Static Response Measurement.

Unit 5

Dynamic Field Testing: Types of Dynamic Field Test, Stress History Data, Dynamic ResponseMethods, Hardware for Remote Data Acquisition Systems, Remote Structural Health Monitoring.

Unit 6

Introduction to Repairs and Rehabilitations of Structures: Case Studies (Site Visits), piezoelectric materials and other smart materials, electro-mechanical impedance (EMI) technique, adaptations of EMI technique.

- 1) Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006
- 2) Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007
- 3) Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK, 2006
- 4) Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007

MTSE-115 A			Str	uctural Optimization	on					
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
3	0	0 0 3 60 40 100 31								
		С	ourse Ou	tcomes (CO)						
CO1	Use Varia	ational prin	ciple for	optimization						
CO2	Apply opt	ply optimization techniques to structural steel and concrete members								
CO3	Design us	sing freque	ncv const	raint						

Unit 1

Introduction: Simultaneous Failure Mode and Design, Classical External Problems.

Unit 2

Calculus of Variation: Variational Principles with Constraints.

Unit 3

Linear Programming Integer Programming, Nonlinear Programming, Dynamic Programming, Geometric Programming and Stochastic Programming.

Unit 4

Applications: Structural Steel and Concrete Members, Trusses and Frames

Unit 5

Design: Frequency Constraint, Design of Layouts

- 1) Elements of Structural Optimization, Haftka, Raphael T., Gürdal, Zafer, Springer.
- 2) Variational methods for Structural optimization, Cherkaev Andrej, Springer

MTSE-106 A		Advanced Steel Design									
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time				
3	0	0 3 60 40 100 3 Hrs.									
		0	Course O	utcomes (CO)							
CO1	Design st	esign steel structures/ components by different design processes									
CO2	Analyze c	alyze and design beams and columns for stability and strength, and drift									
CO3	Design w	elded and b	bolted con	inections							

Unit 1

Properties of Steel: Mechanical Properties, Hysteresis, Ductility.

Unit 2

Hot Rolled Sections: compactness and non-compactness, slenderness, residual stresses.

Unit 3 Design of Steel Structures: Inelastic Bending Curvature, Plastic Moments, Design CriteriaStability, Strength, Drift.

Unit 4

Stability of Beams: Local Buckling of Compression Flange & Web, Lateral Torsional Buckling.

Unit 5

Stability of Columns: Slenderness Ratio, Local Buckling of Flanges and Web, Bracing of Columnabout Weak Axis.

Unit 6 Method of Designs: Allowable Stress Design, Plastic Design, Load and Resistance Factor Design;

Unit 7

Strength Criteria: Beams - Flexure, Shear, Torsion, Columns - Moment Magnification Factor, Effective Length PM Interaction, Biaxial Bending, Joint Panel Zones.

Unit 8

Drift Criteria: P Effect, Deformation Based Design

Unit 9

Connections: Welded, Bolted, Location Beam Column, Column Foundation, Splices.

- 1) Design of Steel Structures Vol. II, Ramchandra. Standard Book House, Delhi
- 2) Design of Steel Structures Arya A. S., Ajmani J. L., Nemchand and Bros., Roorkee
- 3) The Steel Skeleton- Vol. II, Plastic Behaviour and Design Baker J. F., Horne M. R., Heyman J., ELBS
- 4) Plastic Methods of Structural Analysis, Neal B. G., Chapman and Hall London
- 5) IS 800: 2007 General Construction in Steel Code of Practice, BIS, 2007
- 6) SP 6 Handbook of Structural Steel Detailing, BIS, 1987

MTSE-108 A			Ι	Design of Formwo	rk				
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time		
				Evaluation	Evaluation				
3	0	0	3	60	40	100	3 Hrs.		
Course Outcomes (CO)									
CO1	Select pro	oper formw	ork, acce	ssories and materia	al				
CO2	Design th	ne form wor	k for Bea	ums, Slabs, columns	s, Walls and Found	ations			
CO3	Design th	ne form wor	k for Spe	cial Structures					
CO4	Understa	nd the work	king of fly	ving formwork					
CO5	Judge the	e formwork	failures t	hrough case studie	rs				

Unit 1

Introduction: Requirements and Selection of Formwork

Unit 2

Formwork Materials- Timber, Plywood, Steel, Aluminum, Plastic, and Accessories. Horizontaland Vertical Formwork Supports

Unit 3

Formwork Design: Concepts, Formwork Systems and Design for Foundations, Walls, Columns, Slab and Beams

Unit 4

Formwork Design for Special Structures: Shells, Domes, Folded Plates, OverheadWater Tanks, Natural Draft Cooling Tower, Bridges

Unit 5

Flying Formwork: Table Form, Tunnel Form, Slip Form, Formwork for Precast Concrete, Formwork Management Issues –Pre- and Post-Award.

Unit 6

Formwork Failures: Causes and Case studies in Formwork Failure, Formwork Issues in Multi-Story Building Construction

- 1) Formwork for Concrete Structures, Peurify, McGraw Hill India, 2015
- 2) Formwork for Concrete Structures, Kumar NeerajJha, Tata McGraw Hill Education, 2012
- 3) IS 14687: 1999, False workfor Concrete Structures Guidelines, BIS

MTSE-110 A			Desig	n of High Rise S	Structures			
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time	
				Evaluation	Evaluation			
3	0	0	3	60	40	100	3 Hrs.	
Course Outcomes (CO)								
C01	Analyze, loading c	design and onditions	d detail 1	Transmission/ T	W tower, Mast and	d Trestles with	h different	
CO2	Analyze,	design and	detail the	e RC and Steel C	Chimney			
CO3	Analyze. using rele	design and evant codes	l detail t	he tall building	s subjected to diffe	erent loading	conditions	

Unit 1

Design of transmission/ TV tower, Mast and trestles: Configuration, bracing system, analysisand design for vertical transverse and longitudinal loads.

Unit 2

Analysis and Design of RC and Steel Chimney, Foundation design for varied soil strata.

Unit 3

Tall Buildings: Structural Concept, Configurations, various systems, Wind and Seismic loads, Dynamic approach, structural design considerations and IS code provisions. Firefighting design provisions

Unit 4

Application of software in analysis and design.

- 1) Structural Design of Multi-storeyed Buildings, Varyani U. H., 2nd Ed., SouthAsian Publishers, New Delhi, 2002
- 2) Structural Analysis and Design of Tall Buildings, Taranath B. S., McGraw Hill, 1988
- Illustrated Design of Reinforced Concrete Buildings (GF+3storeyed), Shah V. L. &Karve S. R., Structures Publications, Pune, 2013
- 4) Design of Multi Storeyed Buildings, Vol. 1 & 2, CPWD Publications, 1976
- 5) Tall Building Structures, Smith Byran S. and Coull Alex, Wiley India. 1991
- 6) High Rise Building Structures, Wolfgang Schueller, Wiley., 1971
- 7) Tall Chimneys, Manohar S. N., Tata McGraw Hill Publishing Company, New Delhi

MTSE-112 A		Design of Masonry Structures										
Lecture	Tutorial	torialPracticalCreditEnd Sem.Mid Sem.TotalTimeEvaluationEvaluationEvaluation										
3	0	0 3 60 40 100 3 Hrs.										
	Course Outcomes (CO)											
CO1	Understa	nd the mas	onry desi	gn approaches.								
CO2	Analyze H	Reinforced	Masonry	Members								
CO3	Determin	e interactio	ons betwe	en members								
CO4	Determin	e shear str	ength and	l ductility of Reinfe	orced Masonry mem	ibers						
CO5	Check the	e stability o	f walls									
CO6	Perform a	elastic and	Inelastic	analysis of mason	ry walls							

Unit-I

Introduction: Historical Perspective, Masonry Materials, Masonry Design Approaches, Overviewof Load Conditions, Compression Behavior of Masonry, Masonry Wall Configurations, Distribution of Lateral Forces

Unit-II

Flexural Strength of Reinforced Masonry Members: In plane and Out-of-plane Loading

Unit-III

Interactions: Structural Wall, Columns and Pilasters, Retaining Wall, Pier and Foundation

Unit-IV

Shear Strength and Ductility of Reinforced Masonry Members

Unit-V

Prestressed Masonry - Stability of Walls, Coupling of Masonry Walls, Openings, Columns, Beams

Unit-VI

Elastic and Inelastic Analysis, Modeling Techniques, Static Push-Over Analysis and use of Capacity Design Spectra

References Books:

- 1) Design of Reinforced Masonry Structures, NarendraTaly, ICC, 2nd Edn
- 2) Masonry Structures: Behavior and Design, Hamid Ahmad A. and Drysdale Robert G., 1994
- 3) Mechanics of Masonry Structures, Editor: Maurizio Angelillo, 2014
- Earthquake-resistant Design of Masonry Buildings, <u>Tomaevi</u>Miha, Imperial College Press, 1999

MTSE-114 A		Design of Advanced Concrete Structures									
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time				
3	0	0	3	60	40	100	3 Hrs.				
		C	Course Ou	itcomes (CO)							
CO1	Analyze t	nalyze the special structures by understanding their behaviour									
CO2	Design a	nd prepare	detail stri	uctural drawings f	for execution citing	relevant IS	codes				

Unit-I

Design philosophy, Modeling of Loads, Material Characteristics

Unit-II

Reinforced Concrete - P-M, M-phi Relationships, Strut-and- Tie Method, Design of Deep Beamand Corbel, Design of Shear Walls, Compression Field Theory for Shear Design, Design against Torsion; IS, ACI and Eurocode

Unit-III

Steel Structures -- Stability Design, Torsional Buckling - Pure, Flexural and Lateral, Designof Beam-Columns, Fatigue Resistant Design, IS code, AISC Standards and Eurocode

References Books:

- 1) Reinforced Concrete Design, Pillai S. U. and MenonD., Tata McGraw-Hill, 3rd Ed, 1999
- 2) Design of Steel Structures, Subramaniam N., Oxford University Press, 2008
- 3) Reinforced Concrete Structures, Park R.andPaulayT., John Wiley & Sons, 1995
- 4) Advanced Reinforced Concrete Design, Varghese P. C., Prentice Hall of India, New Delhi
- 5) Unified Theory of Concrete Structures, Hsu T. T. C. and Mo Y. L., John Wiley & Sons, 2010
- 6) Steel Structures Design and Behavior Emphasizing Load and Resistance Factor Design, Salmon C. G., Johnson J. E. and Malhas F. A., Pearson Education, 5th Ed, 2009
- 7) Design of Steel Structures Vol. II, Ramchandra. Standard Book House, Delhi
- 8) Plastic Methods of Structural Analysis, Neal B.G., Chapman and Hall London

MTSE-116 A			Advan	ced Design of Four	ndation						
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time				
				Evaluation	Evaluation						
3	0	0	3	60	40	100	3 Hrs.				
	Course Outcomes (CO)										
CO1	Decide th	e suitabilit	y of soil s	strata for different p	rojects						
CO2	Design sł	nallow four	dations d	leciding the bearing	capacity of soil						
CO3	Analyze a	and design	the pile for	oundation							
CO4	Understa	nd analysis	methods	for well foundation	1						

Unit-I

Planning of Soil Exploration for Different Projects, Methods of Subsurface Exploration, Methods of Borings along with Various Penetration Tests

Unit-II

Shallow Foundations, Requirements for Satisfactory Performance of Foundations, Methods of Estimating Bearing Capacity, Settlements of Footings and Rafts, Proportioning of Foundations using Field Test Data, Pressure - Settlement Characteristics from Constitutive Laws

Unit-III

Pile Foundations, Methods of Estimating Load Transfer of Piles, Settlements of Pile Foundations, Pile Group Capacity and Settlement, Laterally Loaded Piles, Pile Load Tests, Analytical Estimation of Load- Settlement Behavior of Piles, Proportioning of Pile Foundations, Lateral and Uplift Capacity of Piles

Unit-IV

Well Foundation, IS and IRC Code Provisions, Elastic Theory and Ultimate Resistance Methods

Unit-V

Tunnels and Arching in Soils, Pressure Computations around Tunnels

Unit-VI

Open Cuts, Sheeting and Bracing Systems in Shallow and Deep Open Cuts in Different Soil Types

Unit-VII

Coffer Dams, Various Types, Analysis and Design, Foundations under uplifting loads, Soilstructure interaction

Reference Books

- 1) Design of foundation system, N.P. Kurian, Narosa Publishing House
- 2) Foundation Analysis and Design, J. E. Bowles, Tata McGraw Hill New York
- 3) Analysis and Design of Substructures, Sawmi Saran, Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi

MTSE-118 A			Soi	Structure Intera	ction					
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
3	0	0	3	60	40	100	3 Hrs.			
Course Outcomes (CO)										
CO1	Understa	nderstand soil structure interaction concept and complexities involved								
CO2	Evaluate	valuate soil structure interaction for different types of structure under various								
CO3	Prepare of based on	comprehent theory of st	<u>s una sub</u> sive desis ub grade	gn oriented compu reaction such as be	, ter programs for ii eams, footings, raft	nteraction _I	problems			
CO4	Analyze deposits v	valyze different types of frame structure founded on stratified natural posits with linear and non-linear stress-strain characteristics								
C05	Evaluate real soils	action of g	roup of p	iles considering st	ress-strain charact	eristics of				

Unit- I

Critical Study of Conventional Methods of Foundation Design, Nature and Complexities of Soil Structure Interaction

Unit-II

Application of Advanced Techniques of Analysis such as FEM and Finite Difference Method.

Relaxation and Interaction for the Evaluation of Soil Structure Interaction for Different Types of Structure under various Conditions of Loading and Subsoil Characteristics

Unit -III

Preparation of Comprehensive Design Oriented Computer Programs for Specific Problems, Interaction Problems based on Theory of Sub Grade Reaction Such as Beams, Footings, Rafts Etc.

Unit-IV

Analysis of Different Types of Frame Structures Founded on Stratified Natural Deposits with Linear and Non-Linear Stress-Strain Characteristics.

Unit- V

Determination of Pile Capacities and Negative Skin Friction, Action of Group of Piles Considering Stress-Strain Characteristics of Real Soils, Anchor Piles and Determination of Pullout Resistance

- 1) Analytical and Computer Methods in Foundation, Bowels J.E.,McGraw Hill Book Co., New York, 1974
- 2) Numerical Methods in Geotechnical Engineering, Desai C.S. and Christian J.T., McGraw Hill Book Co., New York
- 3) Soil Structure Interaction The real behaviour of structures, Institution of Structural Engineers
- 4) Elastic Analysis of Soil Foundation Interaction, Developments in Geotechnical Engg. Vol-17, Elsevier Scientific Publishing Company
- 5) Elastic Analysis of Soil-Foundation Interaction, Selvadurai A.P.S., Elsevier Scientific Publishing Company
- 6) Analysis & Design of substructures, Swami Saran, Oxford & IBH Publishing Co. Pvt. Ltd.
- 7) Design of Foundation System- Principles & Practices, Kurian N. P., Narosa Publishing

MTSE-120 A		Design of Industrial Structure									
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time				
3	0	0 0 3 60 40 100 3 Hrs.									
		(Course O	utcomes (CO)						
CO1	Design S	teel Gantry	Girders								
CO2	Design S	sign Steel Portal, Gable Frames									
CO3	Design S	teel Bunker	s and Sil	os							
CO4	Design C	Chimnevs an	d Water	Tanks							

Unit I

Steel Gantry Girders – Introduction, loads acting on gantry girder, permissible stress, types ofgantry girders and crane rails, crane data, maximum moments and shears, construction detail, design procedure

Unit II

Portal Frames – Design of portal frame with hinge base, design of portal frame with fixed base - Gable Structures – Lightweight Structures

Unit III

Steel Bunkers and Silos – Design of square bunker – Jansen's and Airy's theories – IS Codeprovisions – Design of side plates – Stiffeners – Hooper – Longitudinal beams Design of cylindrical silo – Side plates – Ring girder – stiffeners

Unit IV

Chimneys – Introduction, dimensions of steel stacks, chimney lining, breech openings and access ladder, loading and load combinations, design considerations, stability consideration, design of base plate, design of foundation bolts, design of foundation

Unit V

Water Tanks – Design of rectangular riveted steel water tank – Tee covers – Plates – Stays – Longitudinal and transverse beams –Design of staging – Base plates – Foundation and anchor bolts

Unit VI

Design of pressed steel water tank – Design of stays – Joints – Design of hemispherical bottomwater tank – side plates – Bottom plates – joints – Ring girder –Design of staging and foundation

- 1) Design of Steel Structure, Punmia B. C., Jain Ashok Kr., Jain Arun Kr., 2nd Ed., Lakshmi Publishers, 1998
- 2) Design of Steel Structures, Ram Chandra, 12th Ed., Standard Publishers, 2009.
- 3) Design of Steel Structures, Subramaniyam

MTSE-201 A		Desig	gn of Pre	-stresssed Concr	ete Structures						
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time				
				Evaluation	Evaluation						
3	0	0	3	60	40	100	3 Hrs.				
Course Outcomes (CO)											
CO1	Find out	losses in th ed concrete	e prestres fundame	sed concrete. Un ntals_including_r	derstand the basic	c aspects of					
CO2	Analyze r	restressed	concrete	deck slab and be	me unu posi-iensit m/ girders	ming proce	5565				
CO3 Design prestressed concrete deck slab and beam/ girders											
CO4	Design of	f end block	s for presi	tressed members	0						

Unit I

Introduction to prestressed concrete: types of prestressing, systems and devices, materials, losses in prestress. Analysis of PSC flexural members: basic concepts, stresses at transfer and service loads, ultimate strength in flexure, code provisions

Unit II

Statically determinate PSC beams: design for ultimate and serviceability limit states forflexure, analysis and design for shear and torsion, code provisions

Unit III

Transmission of prestressin pretensioned members; Anchorage zone stresses for posttensionedmembers

Unit IV

Statically indeterminate structures - Analysis and design - continuous beams and frames, choice of cable profile, linear transformation and concordancy

Unit V

Composite construction with precast PSC beams and cast in-situ RC slab - Analysis and design, creep and shrinkage effects. Partial prestressing - principles, analysis and design concepts, crack-width calculations

Unit VI

Analysis and design of prestressed concrete pipes, columns with moments

References Books:

- 1) Design of Prestressed Concrete Structures, Lin T.Y., Asia Publishing House, 1955
- 2) Prestressed Concrete, Krishnaraju N., Tata McGraw Hill, New Delhi, 1981
- 3) Limited State Design of PrestressedCONcrete,GuyanY., Applied Science Publishers, 1972
- 4) IS: 1343- Code of Practice for Prestressed Concrete

MTSE-203 A		An	alysis of	Laminated C	omposite Plat	tes	
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.
		Co	ourse Ou	tcomes (CO)			
CO1	Analyze t	he rectangı	ılar comp	oosite plates u	sing the analy	ical methods	
CO2	Analyze t	he composi	te plates	using advance	ed finite eleme	nt method	
CO3	Develop i	the compute	er progra	ms for the and	alysis of compo	osite plates	

Unit I

Introduction: Displacement Field Approximations for Classical Laminated Plate Theory (CLPT) and First Order Shear Deformation Theory (FSDT), Analytical Solutions for Bending of Rectangular Laminated Plates using CLPT

Unit II

Governing Equations.Navier Solutions of Cross-Ply and Angle-Ply Laminated Simply-Supported Plates, Determination of Stresses. Levy Solutions for Plates with Other Boundary Conditions, Analytical Solutions for Bending of Rectangular Laminated Plates Using FSDT

Unit III

Finite Element Solutions for Bending of Rectangular Laminated Plates using CLPT

Unit IV

Introduction to Finite Element Method, Rectangular Elements, Formation of Stiffness Matrix, Formation of Load Vector, Numerical Integration, Post Computation of Stresses

Unit V

Finite Element Solutions for Bending of Rectangular Laminated Plates using FSDT

Unit VI

Finite Element Model, C⁰Element Formulation, Post Computation of Stresses. Analysis of Rectangular Composite Plates using Analytical Methods

Reference:

1) Mechanics of Laminated Composites Plates and Shells, Reddy J. N., CRC Press

MTSE-205 A		Frac	ture Mee	chanics of Co	ncrete Structures		
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.
		Co	ourse Ou	tcomes (CO)			
CO1	Identify a	nd classify	cracking	of concrete st	ructures based on fr	racture mech	anics
CO2	Implemen	t stress int	ensity fac	tor for notche	d members		
CO3	Apply fra	cture mech	anics mo	dels to high st	rength concrete and	FRC structu	res
CO4	Compute	J-integral	for varioi	is sections un	derstanding the cond	cepts of EFM	

Unit I

Introduction: Basic Fracture Mechanics, Crack in a Structure, Mechanisms of Fracture and CrackGrowth, Cleavage Fracture, Ductile Fracture, Fatigue Cracking, Environment assisted Cracking, Service Failure Analysis

Unit II

Stress at Crack Tip: Stress at Crack Tip, Linear Elastic Fracture Mechanics, Griffith's Criteria, Stress Intensity Factors, Crack Tip Plastic Zone, Erwin's Plastic Zone Correction, R curves, Compliance, J Integral, Concept of CTOD and CMD

Unit III

Material Models: General Concepts, Crack Models, Band Models, Models based on ContinuumDamage Mechanics, Applications to High Strength Concrete, Fibre Reinforced Concrete, Crack Concepts and Numerical Modeling.

- 1) Fracture Mechanics, Suri C. T. and Jin Z.H., 1st Edition, Elsevier Academic Press, 2012
- 2) Elementary Engineering Fracture Mechanics, BroekDavid, 3rd Rev. Ed. Springer, 1982.
- 3) Fracture Mechanics of Concrete Structures Theory and Applications, Elfgreen L., RILEM Report, Chapman and Hall, 1989
- Fracture Mechanics Applications to Concrete, Victor, Li C., Bazant Z. P., ACI SP 118, ACI Detroit, 1989

MTSE-207 A			Desig	n of Plates and	Shells		
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.
		Co	ourse Ou	tcomes (CO)			
CO1	Analyze a	nd design p	orismatic	folded plate sys	tems		
CO2	Analyze a	nd design s	shells usir	ng approximate .	solutions		
CO3	Analyze a	nd Design	Cylindric	al Shells			
CO4	Design D	oubly Curv	ed Shells	using Approxim	ate Solutions		

Unit I

Prismatic folded Plate Systems	
Shall Equations	Unit II
Shell Equations	Unit III
Approximate Solutions	UnitIV
Analysis and Design of Cylindrical Shells	Omtr v
	Unit V

Approximate Design methods for Doubly Curved Shells

- 1) Theory of Plates and Shells, Timoshenko and Woinowsky-Krieger S., Tata McGraw Hill Edition, 2010
- 2) Design and Construction of Concrete Shell Roofs, Ramaswamy G. S., 1st Edition, 2005
- 3) Design of Reinforced Concrete Shells & Folded Plate, Varghese P. C., 1st Edition, PHI
- 4) Design of Plate and Shell Structures, JawadMaan H., Springer Science

			Ol	pen Elective			
MTOE-201 A				Business Anal	ytics		
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.
		Pı	ogram O	bjective (PO)			
PO1	Understan	d the role of	f business	analytics withi	n an organization		
PO2	Analyze de	ata using sta	tistical an	d data mining i	techniques and unde	erstand relationsl	hips
	between th	ne underlyin	g business	processes of a	n organization		
PO3	To gain ar	ı understana	ling of hov	v managers use	e business analytics	to formulate and	solve
	business p	roblems and	l to suppor	rt managerial a	lecision making		
PO4	To become	e familiar wi	th process	ses needed to d	evelop, report, and a	analyze business	data
PO5	Use decisi	on-making t	ools/Oper	ations research	ı techniques		
PO6	Mange bu	siness proce	ss using a	nalytical and m	anagement tools		
PO7	Analyze ar	nd solve pro	blems from	n different indu	stries such as manu	facturing, service	e, retail,
	software, l	banking and	finance, s	ports, pharmae	ceutical, aerospace e	etc	
			Course	e outcomes (C	0)		
CO1	Students w	vill demonst	rate knowl	edge of data ar	<i>alytics</i>		
CO2	Students w	vill demonstr	rate the ab	oility of think cr	itically in making d	ecisions based on	ı data
	and deep a	analytics					
CO3	Students w	vill demonst	rate the ab	vility to use tech	nical skills in predi	cative and presci	riptive
	modeling i	to support b	usiness de	cision-making	-	-	
CO4	Students w	vill demonst	rate the ab	oility to translat	e data into clear, ac	ctionable insights	

Unit I

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics.

Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modeling, sampling and estimation methods overview.

Unit II

Trendiness and Regression Analysis: Modeling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

Unit III

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes.

Descriptive Analytics, predictive analytics, predictive Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization

Unit IV

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression orecasting with Casual Variables, Selecting Appropriate Forecasting Models.

Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model

Unit V

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without 8 Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.

Unit VI

Recent Trends in Embedded and collaborative business intelligence, Visual data 4 recovery, Data Storytelling and Data journalism.

References

1) Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press

2) Business Analytics by James Evans, persons Education Open Elective

MTOE-203 A				Industrial Sa	fety		
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.

Unit I

Industrial safety: Accident, causes, types, results and control, mechanical and electricalhazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Unit II

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering,Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment

Unit III

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reductionmethods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit IV

Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit V

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance.

- 1) Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2) Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3) Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication
- 4) Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London

MTOE-205 A			0	perations Res	search		
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.
		Co	ourse Ou	tcomes (CO)			
CO1	Students	should abl	le to app	oly the dynan	iic programm	ing to solve probl	ems of
	discreet a	nd continu	ous varia	bles			
CO2	Students .	should able	to apply	the concept o	f non-linear pi	rogramming	
CO3	Students .	should able	to carry	out sensitivity	, analysis		
CO4	Student si	hould able	to model	the real world	l problem and	simulate it	

Unit I

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit II

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Unit III

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit IV

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit V

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1) H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2) H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982
- 3) J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4) Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5) Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6) Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

MTOE-207 A		Cost	Manage	ement of Engi	ineering Proje	ects	
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.
		Co	ourse Ou	tcomes (CO)			
CO1	Students S	should able	e to learn	the cost conc	epts in decisio	n making	
CO2	Student si	hould be ab	ele to do c	cost planning of	and Marginal	Costing	
CO3	Students	should be	able to c	reate a datab	ase for operat	ional control and	decision
	making.						

Unit I

Introduction and Overview of the Strategic Cost Management Process

Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Unit II

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non-technical activities.Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts.Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

Unit III

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems.Standard Costing and Variance Analysis.

Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector.Justin-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints.

Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis.Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets.Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit IV

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1) Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2) Charles T. Horngren and George Foster, Advanced Management Accounting
- 3) Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting

MTOE-209 A			Co	omposite Mat	terials		
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.
Program	To enable	e students to	o aware a	bout the com	posite material	s and their propert	ies.
Objective (PO)				_			
		Co	urse Ou	tcomes (CO)			
CO1	Students	should ab	le to lear	n the Classif	ication and ch	aracteristics of Co	omposite
	material	<i>s</i> .					
CO2	Students	should abl	e reinford	cements Comp	osite material	S.	
CO3	Students	should abl	e to carry	out the prepa	aration of com	pounds.	
CO4	Student s	should able	to do the	analysis of th	he composite m	aterials.	

UNIT I

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites.Functional requirements of reinforcement and matrix.Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Iso-stress conditions.

UNIT II

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostaticpressing.Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

UNIT III

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT IV

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.
- 3. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

MTOE-211 A				Waste to Ene	ergy		
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
3	0	0	3	60	40	100	3 Hrs.
Program	To enable	e students to	o aware a	bout the gene	ration of energy fi	rom the waste.	
Objective (PO)							
		Co	ourse Ou	tcomes (CO)			
CO1	Students	should abl	e to learn	the Classifica	ation of waste as a	ı fuel.	
CO2	Students	should abl	e to learn	the Manufac	ture of charcoal.		
CO3	Students	should abl	e to carry	y out the desig	ning of gasifiers a	and biomass sto	ves.
CO4	Student .	should able	to learn	the Biogas pla	ant technology.		

Unit I

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

Unit II

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

Unit III

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit IV

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status -Bio energy system - Design and constructional features - Biomass resources and their classification -Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants - Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

References:

1) Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.

2) Biogas Technology - A Practical Hand Book - Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.

3) Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.

4) Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

Audit-I

MTAD-101 A		Ε	nglish Fo	or Research Pa	per Writing		
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
2	0	0	0	-	100	100	3 Hrs.
Program	Student w	vill able to ı	understan	d the basic rule	s of research pa	per writing.	
Objective (PO)							
		Co	ourse Ou	tcomes (CO)			
CO1	Unders	tand that he	ow to imp	rove your writii	ng skills and leve	el of readabilit	у
CO2	Learn a	bout what i	to write ir	1 each section			
CO3	Unders	tand the ski	lls neede	d when writing	a Title		
CO4	Ensure t	he good qu	ality of po	aper at very firs	t-time submissio	n	

UnitI

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit III

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UnitIV

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

References:

1) Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)

2) Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press

3) Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.

4) Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

|--|

MTAD-103 A		Disaster Management						
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time	
				Evaluation	Evaluation			
2	0	0	0	-	100	100	3 Hrs.	
Program	Develop a	an understa	nding of	disaster risk r	eduction and mai	nagement		
Objective (PO)								
Course Outcomes (CO)								
CO1	Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.							
CO2	Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.							
CO3	Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.							
CO4	critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in							

Introduction: Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

UnitII

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

Unit IV

Disasters Prone Areas in India: Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment.Strategies for Survival.Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation.Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

References:

1) R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.

2) Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.

3) Goel S. L., Disaster Administration And Management Text And Case Studies", Deep&Deep Publication Pvt. Ltd., New Delhi.

Audit -I

MTAD-105 A	Sanskrit for Technical Knowledge						
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
2	0	0	0	-	100	100	3 Hrs.
Program	Program Students will be able to Understanding basic Sanskrit language and Ancient Sanskrit						
Objective (PO) <i>literature about science & technology can be understood and Being a logical</i>							
language will help to develop logic in students							
Course Outcomes (CO)							
CO1	CO1 To get a working knowledge in illustrious Sanskrit, the scientific language in the						
	world						
CO2	Learning	Learning of Sanskrit to improve brain functioning					
CO3	Learning of Sanskrit to develop the logic in mathematics, science & other subjects						
	enhancing the memory power						
CO4	The engi	neering sch	nolars equ	uipped with So	anskrit will be ab	le to explore the	e huge
	knowled	ge from and	cient liter	ature			-

Unit I

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit II

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit III

Technical concepts of Engineering: Electrical, Mechanical

Unit IV

Technical concepts of Engineering: Architecture, Mathematics

References

1) "Abhyaspustakam" – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi

2) "Teach Yourself Sanskrit" PrathamaDeeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

3) "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

Audit I

MTAD-107 A			Value E	ducation			
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
2	0	0	0	-	100	100	3 Hrs.
Program	Understand value of education and self- development, Imbibe good values in						
Objective (PO) students and Let the should know about the importance of character							
Course Outcomes (CO)							
CO1	Knowledge of self-development						
CO2	Learn the importance of Human values						
CO3	Developing the overall personality						
CO4	Know about the importance of character						

Unit I

Values and self-development –Social values and individual attitudes.Work ethics, Indian vision of humanism.Moral and non- moral valuation.Standards and principles.Value judgments.

Unit II

Importance of cultivation of values.Sense of duty.Devotion, Self-reliance.Confidence, Concentration.Truthfulness, Cleanliness.Honesty, Humanity.Power of faith, National Unity.Patriotism.Love for nature,Discipline

Unit III

Personality and Behavior Development - Soul and Scientific attitude.Positive Thinking.Integrity and discipline.Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance.True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits.Association and Cooperation. Doing best for saving nature

Unit IV

Character and Competence –Holy books Vs Blind faith.Self-management and Good health.Science of reincarnation.Equality, Nonviolence,Humility, Role of Women.All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

References

1) Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Au	dit	Π

MTAD-102 A			Constitu	ution of India	l		
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time
				Evaluation	Evaluation		
2	0	0	0	-	100	100	3 Hrs.
Program	Understa	nd the prei	nises info	orming the two	in themes of liber	ty and freedom	from a
Objective (PO)	civil righ	ts perspec	tive and	to address th	he growth of Indi	ian opinion reg	garding
	modern Indian intellectuals' constitutional role and entitlement to civil and						
	economic rights as well as the emergence of nationhood in the early years of Indian						
	nationalism.						
Course Outcomes (CO)							
CO1	Discuss the growth of the demand for civil rights in India for the bulk of Indians						
	before the arrival of Gandhi in Indian politics.						
CO2	Discuss the intellectual origins of the framework of argument that informed the						
	conceptualization of social reforms leading to revolution in India.						
CO3	Discuss ti	he circumst	ances su	rrounding the	foundation of the	Congress Socia	list
	Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of						
	the proposal of direct elections through adult suffrage in the Indian Constitution.						
CO4	Discuss t	he passage	of the Hi	ndu Code Bill	of 1956.		

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1) The Constitution of India, 1950 (Bare Act), Government Publication.
- 2) Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3) M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4) D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.
| MTAD-104 A | | | Pedagog | gy Studies | | | | | |
|---|---|------------------------|------------|--------------------|----------------|------------------|----------|--|--|
| Lecture | Tutorial Practical Credit End Sem. Mid Sem. Total | | | | | | Time | | |
| | | | | Evaluation | Evaluation | | | | |
| 2 | 0 | 0 | 0 | - | 100 | 100 | 3 Hrs. | | |
| Program | Review | existing ev | vidence o | n the review to | pic to inform | programme de | sign and | | |
| Objective (PO) | policy r | naking un | dertaken | by the DFID, | other agencies | s and research | iers and | | |
| | Identify critical evidence gaps to guide the development. | | | | | | | | |
| | | Co | ourse Ou | tcomes (CO) | | | | | |
| CO1 | What peo | lagogical _I | oractices | are being used | by teachers i | n formal and | informal | | |
| | classroon | ns in develo | ping cou | ntries? | | | | | |
| CO2 | What is t | he evidenc | e on the | effectiveness of | these pedagog | gical practices, | in what | | |
| | condition | s, and with | what pop | oulation of learne | ers? | | | | |
| CO3 How can teacher education (curriculum and practicum) and the school curriculum | | | | | | | | | |
| | and guidd | ince materi | als best s | support effective | pedagogy? | | | | |
| CO4 | What is th | ne importar | ice of ide | ntifying research | gaps? | | | | |

Unit I

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

UnitII

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change.Strength and nature of the body of evidence for effective pedagogical practices.Pedagogic theory and pedagogical approaches.Teachers' attitudes and beliefs and Pedagogic strategies.

UnitIII

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

Unit IV

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

References

1) Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.

2) Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.

3) Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

4) Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

5) Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

6) Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

Audit II

MTAD-106 A		Stress Management by Yoga							
Lecture	Tutorial	Practical	Credit	edit End Sem. Mid Sem.		Total	Time		
				Evaluation	Evaluation				
2	0	0	0	-	100	100	3 Hrs.		
Program	Program To achieve overall health of body and mind and to overcome stress								
Objective (PO)				-					
		Co	ourse Ou	tcomes (CO)					
CO1	Develop	healthy mi	nd in a he	ealthy body th	us improving socia	l health.			
CO2	Improve efficiency								
CO3	3 Learn the Yogasan								
CO4	Learn the pranavama								

Unit I

Definitions of Eight parts of yog (Ashtanga).

Unit II

Yam and Niyam, Do`s and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

Unit III

Asan and Pranayam, Various yog poses and their benefits for mind & body,

Unit IV

Regularization of breathing techniques and its effects-Types of pranayam.

References

1) 'Yogic Asanas for Group Tarining-Part-I'' :Janardan Swami YogabhyasiMandal, Nagpur

2) "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

Audit II

MTAD-108 A	Pe	Personality Development through Life Enlightenment Skills								
Lecture	Tutorial Practical C		Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
2	0	0	0	-	100	100	3 Hrs.			
Program	To learn to achieve the highest goal happily									
Objective (PO)	To become a person with stable mind, pleasing personality and determination									
	To awak	en wisdom	in studer	nts						
		Co	ourse Ou	tcomes (CO)						
CO1	Students	become av	vare aboi	ıt leadership.						
CO2	Students	will learn	how to pe	erform his/her	duties in day to da	ıy work.				
CO3	Underst	Understand the team building and conflict								
CO4	Student	will learn h	ow to bed	come role mod	lel for the society.					

Unit I

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

Unit II

Approach to day to day work and duties; ShrimadBhagwadGeeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

Unit III

Statements of basic knowledge; ShrimadBhagwadGeeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

Unit IV

Personality of Role model; ShrimadBhagwadGeeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1) Srimad Bhagavad Gita, Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata.
- 2) Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

MTSE-209 A Dissertation Phase – I

(Credits 0 : 0 : 20 = 10)

Teaching Scheme

Lab work : 20 hrs/week for DissertationPhase- I Mid Semester Evaluation weightage- 30% and End Semester Evaluation weightage- 70%

Course Outcomes:

At the end of this course, students will be able to

- 1. Identify structural engineering problems reviewing available literature.
- 2. Identify appropriate techniques to analyze complex structural systems.
- 3. Apply engineering and management principles through efficient handling of project

Syllabus Contents:

The dissertation-I will have mid semester presentation and end semester presentation. The mid semester presentation will include identification of problem based on literature review on the topic referring to latest literature available.

End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions and must bring out individual contribution.

Continuous assessment of Dissertation-I and Dissertation-II at mid semester and end semester will be monitored by the departmental committee.

MTSE-202 A Dissertation Phase – II

(Credits 0 : 0 : 32 = 16)

Teaching Scheme

Contact Hours : 3hrs/week for Dissertation Phase- II

Course Outcomes:

At the end of this course, students will be able to:

- 1. Solve complex structural problems by applying appropriate techniques and tools.
- 2. Exhibit good communication skill to engineering community and society.
- 3. Demonstrate professional ethics and work culture.

Syllabus Contents:

Dissertation-II will be extension of the work on the topic identified in Dissertation-I

Continuous assessment should be done of the work done adopting the methodology decided involving numerical analysis/ conduct experiments, collection and analysis of data, etc. There will be pre-submission seminar at the end of academic term. After the approval the student has to submit the detailed report and external examiner is called for the viva-voce to assess along with guide.

•••••

Guidelines for Dissertation Phase – I and Phase-II

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two phases i.e. Phase – I: July to December and Phase – II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives. The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Civil Engineering, Structural Engineering and Analysis and any other related domain. In case of Industry sponsored projects, the relevant application notes, while papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Phase – I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper and/or computer aided design, proof of concept/functionality, part results, A record of continuous progress.

Phase – I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Phase-I work.

During phase – II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Phase – II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, A record of continuous progress.

Phase – II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the work

• • • • • •

KURUKSHETRA UNIVERSITY, KURUKSHETRA

('A+' Grade, NAAC Accredited)

SCHEME OF EXAMINATIONS FOR MASTER OF TECHNOLOGY IN Civil HIGHWAY ENGINEERING

(W. E. F. SESSION: 2018-19)

SEMESTER- I

S. No.	Course Code	SUBJECT	L	T	Ρ	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	MCH-101A	Traffic Engineering	3	-	-	3	40	60	3	3
2	MCH-103A	Geometric Design of Highways		-	-	3	40	60	3	3
3	MCH-105A	Pavement Materials		-	-	3	40	60	3	3
4	*	Program Elective-I		-	-	3	40	60	3	3
5	**	Program Elective-II	2	-	-	2	40	60	2	3
6	MCH-119A	Traffic Lab	-	-	4	4	40	60	2	3
7	MTRM-111A	Research Methodology and IPR	2	-	-	2	40	60	2	3
8	***	Audit Course-I	2	-	-	2	100	-	0	3
		TOTAL	18	0	4	22	280	420	18	
			•	-			7(00		

	*Program Elective – I	**	**Program Elective- II			
MCH-107A	Concrete Technology	MCH-113A	Transport Safety and Environment			
MCH-109A	Mass Transportation System	MCH-115A	Low Volume Roads			
MCH-111A	Transportation Data Analysis	MCH-117A	Highway Subgrade and Foundation Analysis			

***Audit Course-I						
MTAD-101A English for Research Paper Writing						
MTAD-103A	Disaster Management					
MTAD-105A	Sanskrit for Technical Knowledge					
MTAD-107A	Value Education					

Note1: The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

*** **Note2:** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

S. No.	Course code	Subject	L	T	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	MCH-102A	Pavement Analysis and Design	3	-	-	3	40	60	3	3
2	MCH-104A	Pavement Construction, Maintenance and Management		-	-	3	40	60	3	3
3	MCH-106A	Public Transportation	3	-	-	3	40	60	3	3
4	*	Program Elective-III	3	-	-	3	40	60	3	3
5	MCH-114A	Accidental Analysis	3	-	0	3	40	60	3	3
6	MCH-116A	Road Safety and Audit Lab	-	-	2	2	40	60	2	3
8	** Audit Course		2			2	100	-	0	3
	TOTAL				2	19	240	360	17	
							6	00		

M.Tech. in Civil (Highway Engg.) : SEMESTER-II

*Program Elective – III							
MCH-108A Highway Drainage System							
MCH-110A	Advanced Methods in Road and Airfield Infrastructure Design						
MCH-112A	Traffic Management and Intelligent Transport System						

**Audit Course – II							
MTAD-102A	Constitution of India						
MTAD-104A	Pedagogy Studies						
MTAD-106A	Stress Management by Yoga						
MTAD-108A	Personality Development through Life Enlightenment Skills.						

Note1: The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

**Note2: Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

S. No.	Course Code	Subject	L	Т	Ρ	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	*	Program Elective-IV	3	-	-	3	40	60	3	3
2	**	Open Elective	3	-	-	3	40	60	3	3
3	MCH-207A	Dissertation Phase-I	-	-	18	18	100	-	11	3
		TOTAL	6		18	24	180	120	17	
		•					30	0		

M.Tech.	in Civil	(Highway	Enaa.) :	SEMESTER-III
		······································		

*Program Elective – IV		
MCH-201A	Highway Planning	
MCH-203A	Road Transport Regulation and Administration	
MCH-205A Design and construction of Bridges and Flyovers		

	**Open Elective			
1.	MTOE-201A	Business Analytics		
2.	MTOE-203A	Industrial Safety		
3.	MTOE-205A	Operations Research		
4.	MTOE-207A	Cost Management of Engineering Projects		
5.	MTOE-209A	Composite Materials		
6.	MTOE-211A	Waste to Energy		

M.Tech. in Civil (Highway Engg.): SEMESTER-IV

S. No.	Course Code		L	Т	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	MCH-202A	Dissertation Phase-II	-	-	32	32	100	200	16	3
	TOTAL						30	0	16	

Total credits of all four semesters - 68

- **Note 1**: At the end of the second semester each student is required to do his/her Dissertation work in the identified area in consent of the Guide/Supervisor. Synopsis for the Dissertation Part-I is to be submitted within three weeks of the beginning of the Third Semester.
- **Note 2**: Each admitted student is required to submit the report of his/her Dissertation Part-I as per the schedule mentioned in Academic calendar for the corresponding academic session otherwise the Dissertation Part-II cannot be continued at any level.
- **Note 3**: Each admitted student is required to submit his/her final Dissertation Part-II as per the schedule mentioned in Academic calendar for the corresponding academic session only after the publication of two papers in a journal/International/National conference of repute like IEEE, Springer, Elsevier, ACM etc.
- **Note 4:** The course of program/open elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

L T P/D Credits

3

3

Max. Marks: 100	
Major Test	: 60 Marks
Minor Test	: 40 Marks
Duration	: 3Hours

UNIT-I

Traffic Characteristics: Importance of traffic characteristics , road user characteristics , vehicular characteristics. Max dimensions and weights of vehicles allowed in India. Effects of traffic characteristics on various design elements of the road.

Traffic Studies: Traffic volume study, speed study and origin and destination study. Speed and delay study. Use of photographic techniques in traffic surveys.

UNIT-II

Traffic Accidents: Accident surveys. Causes of road accidents and preventive measures . Capacity and level of Service, fundamental diagram of traffic flow. Relationship between speed, volume and ciensity. PCU. Design service volume. Capacity of non-urban roads. IRC recommendations. Brief review of capacity of urban roads.

UNIT- III

Traffic Regulation and Control Devices: Traffic control devices: signs , signals, markings and islands. Types of signs. Types of signals. Design of signal by IRC method. Intersections at grade and grade separated intersections. Design of a rotary. Types of grade separated intersections.

Design of Parking Lighting and Terminal Facilities: Parking surveys. On street parking. Off street parking.

UNIT-IV

Traffic Regulation: Need and scope of traffic regulations. Regulation of speed, vehicles and drivers. General traffic regulations. Motor vehicle act. Scope of traffic management.

- (i) Principles of Transportation Engineering by Chakraborty & Das, Prentice Hall, India.
- (ii) Highway Engg by S.K.Khanna & C.E.G. Justo, New Chand Bros., Roorkee.
- (iii) Principles and Practice of Highway Engg. By L.R.Kadiyali , Khanna Publishers , Delhi.
- (iv) Principles of Transportation and Highway Engineering by G.V.Rao, Tata McGraw-Hill Publishing Co. Ltd. N. Delhi.
- (v) MORTH Specifications for Road and Bridge Works, IRC Publication.

MCH-103A : Geometric Design of Highways

L	T P/D	Credits	Max. Marks	: 100
3		3	Major Test	: 60 Marks
			Minor Test	: 40 Marks
			Duration	:3Hours

UNIT -I

Highway Alignment: Requirements. Factors controlling alignment. Obligatory points. Engineering surveys for highway location. Route selection. Steps in new project. Highway classifications.

Cross Sectional Element: Pavement surface characteristics. Factors affecting skid resistance. Pavement unevenness. Camber. Providing camber in the field. Width of carriageway. Design Vehicle , medians, kerbs, road margins, right of way and typical cross sections of roads.

UNIT -II

Sight Distances: Introduction. Stopping sight distance. Reaction time. Analysis of stopping distance .

Overtaking sight distance. Analysis of overtaking sight distance. Effect of grade on sight distances.

Overtaking zone. Intermediate sight distance. Sight distance at intersections.

Superelevation: Requirement of superelevation. Limits and attainment of superelevation in the field.

UNIT-III

Highway Alignment: General. Design speed. Horizontal curves. Superelevation. Analysis of superelevation. Superelevation design. Attainment of superelevation. Widening of pavement on horizontal curves. Methods of introducing extra widening. Horizontal Transition curves. Different types of transition curves. Length of transition curve. Setting out of transition curve. Set-back distance on horizontal curves. Curve resistance.

UNIT-IV

Vertical Alignment: General. Gradients. Compensation in gradient on horizontal curves. Vertical curves. Summit curve. Length of summit curve. Valley Curve. Length of valley curve and profile. Relevant IRC standards for urban and rural roads.

- (i) Principles of Transportation Engineering by Chakraborty & Das, Prentice Hall, India.
- (ii) Highway Engg.by S.K.Khanna & C.E.G. Justo, New Chand Bros., Roorkee.
- (iii) Principles and Practice of Highway Engg.by. L.R.Kadiyali, Khanna Publishers, Delhi.
- (iv) Principles of Transportation and Highway Engineering by G.V.Rao, Tata McGraw-Hill Publishing Co. Ltd. N. Delhi.
- (v) MORTH Specifications for Road and Bridge Works, IRC Publication.
- (vi) Principles of Highway Engineering and Traffic Analysis, by Mannering, F., W. Kilareski, and S. Washburn 3rd Edition, John Wiley and Sons, 2005.

L T P/D	Credits		Max. Marks	: 100
3	3		Major Test	: 60 Marks
			Minor Test	: 40 Marks
		UNIT-I	Duration	:3Hours

Subgrade: Significance of subgrade soil. Characteristics of soil. Desirable properties. Index properties of Soil. Soil classification based on grain size. Soil classification system. Evaluation of soil strength. Aggregates: Introduction . Desirable properties of road aggregates. Tests for road aggregates.

UNIT-II

Bituminous Materials: Introduction. Types of bituminous materials. Tests on bitumen . Cutback and

emulsions .Bituminous Paving Mixes: Design of bituminous mix. Marshal method of bituminous mix design. UNIT-III

Polymer and Rubber Modified Binders: Physical and chemical properties. Fly ash and its mix design characterization. Performance Approaches. Visco elastic properties of bitumen and based bituminous mixture.

UNIT-IV

Construction Methods: Bituminous and concrete pavements . Relevant IS and IRC codes.

- (i) Principles of Transportation Engineering by Chakraborty & Das, Prentice Hall, India.
- (ii) Highway Engg by S.K.Khanna & C.E.G. Justo, New Chand Bros., Roorkee.
- (iii) Principles and Practice of Highway Engg. By L.R.Kadiyali, Khanna Publishers , Delhi .
- (iv) Principles of Transportation and Highway Engineering by G.V.Rao, Tata McGraw-Hill Publishing Co. Ltd. N.Delhi .
- (v) MORTH Specifications for Road and Bridge Works, IRC Publication.

L T P/D Credits 3 3 Max. Marks: 100 Major Test : 60 Marks Minor Test : 40 Marks Duration :3 Hours

UNIT-I

Concrete as Pavement Material: Introduction. Preparation and grade of concrete.

Concrete Ingredients: Types of cement. Aggregates. Classification of aggregate. Properties of aggregate. Quality of mixing water. Admixtures.

UNIT-II

Properties of Concrete: Introduction, workability, stress strain characteristics of concrete, yo ung's modulus of concrete, creep and shrinkage of concrete, permeability, durability of concrete, joints.

UNIT-III

Production of Concrete: Batching, mixing, transportation, compaction, vibration, curing, formwork removing. Ready mixed concrete.

Non-Destructive Testing of Concrete: Significance. Rebound hammer. Ultrasonic pulse velocity technique. Penetration technique. Pullout test. Cover meter. Core tests.

UNIT-IV

Deteriorations: Causes, deteriorations b y water, surface we1r, frost action, chemical Reaction, corrosion of reinforcement etc, preventive measures.

Advances in Concrete: Introduction to light weight concrete. High strength concrete. Prestressed concrete. Fibre reinforced concrete. Polymer concrete composites.

- (i) M.L.Gambhir, "Concrete Technology" TMH Pub. N Delhi.
- (ii) Shetty M.S. "Concrete Technology" S. Chand & Co. N Delhi.

MCH- 109A: MASS TRANSPORTATION SYSTEMS

L	Т	P/D	Credits	Max.Marks	:100
3	0		3	Major Test	:60 Marks
				Minor Test	:40 Marks
				Duration	:3Hours

UNIT I

Role of Transportation: History of transit, Recent Trends in transit, Mass transportation characteristics, Demand Characteristics: Spatial, temporal and behavioral characteristics.

Mass Transportation Planning: Transportation demand surveys, Mass transportation demand estimation, Demand projection, Trip generation, Trip distribution, Model split and route assignment. Bus scheduling, Transit corridor identification.

UNIT II

Transport system Performance: Performance evaluation and analysis, Structure of decision making, Evaluation and selection methods, and selection procedure.

Generation of alternative schemes, Economic evaluation methods.

UNIT III

Terminals: Public transport infrastructures, Functions of terminals, Design, Typical Terminal characteristics. Scheduling and Routes: Service analysis, Vehicle dispatch policy, Vehicle Requirements, Spacing of bus stops, Route spacing and performance.

UNIT IV

Management: Operational and management issues in transport planning, integration of public transport modes, Reserved bus lanes and signals, Vehicle monitoring and control system, Nodal coordination. BRT corridors. Special Systems: Multimodal transport systems, People mover systems, Underground transportation, para transit, Rail transit system, case studies.

REFERENCE BOOKS:

- 1. Khisthy, Lal, Transporation Engineering, PHI, Delhi, 2008 Hay, W.W., An Introduction to Transportation Engineering, 2nd Ed., John Wiley & Sons, 2001
- 2. Kadiyali, L. R, "Traffic Engineering and Transport Planning", Khanna Publishers New Delhi 110006, 2006
- 3. Hutchinson, Urban Transport Planning, John Wiley, 2006
- 4. Dickey, J.W., et. al., Metropolitan Transportation Planning, TMH edition, 2002.
- 5. Paguette, R.J., et.al, Transportation Engineering Planning and design, 2nd Ed., John Wiley & Sons.
- 6. Railis, V.R, Intercity Transport, Engineering and Planning, The Macmillan Press, 2003.

MCH-111A: Transportaion Data Analysis

L T P/D Credits

3 0 3

Max Marks :100 Major Test :60 Marks Minor Test :40 Marks Duration :3Hours

UNIT I

Multivariate Data Analysis Techniques: Types of Data, Basic Vectors and Matrices, Sample Estimate of Centroid, Standard Deviation, Dispersion, Variance and Covariance, Correlation Matrices, Principle Component, Factor Analysis, ANOVA and Cross Classification Procedure in Multivariate Data Analysis and Application to Problems in Traffic and Transportation Planning.

UNIT II

Analysis and Modeling of Travel Choices: Fundamentals of Micro-Economic Demand Theory – Choice Function – Direct and Cross Elasticity of Demand – Properties of some Empirically Derived Demand Functions – Market Demand; Theory of Behavioral Models, Deterministic and Stochastic Models, Random Utility Model, Probit, Logit and Descriminant Model Formulations for Mode and Route Choices, Implications; Value of Travel Time Studies.

UNIT III

Concept of Entropy and its Application in Travel Demand Modeling: Definition of Entropy, its relations to Probability and Uncertainty, Entropy of Probability Distribution, Entropy and Bayesian Statistics, Application of Entropy Concepts in Transport Models: Theory of Trip Distribution, Mode Split and Route Split, Production, Attraction, Doubly Constrained Gravity Models and Derivation of Intervening Opportunity Model, Missing Information and Use of Entropy in Travel Demand Modeling: Entropy and Information Theory Approaches for Estimating the Travel Demand using Indirect Methods such as Use of Link Volume Counts, Turning Counts,

UNIT IV

Forecasting using Time Series Analysis: Basic Components of Time Series – Stationery and Non-Stationery Processes- - Smoothing and Decomposition Methods – Correlation and Line Spectral Diagrams – Auto Correlations and Moving Averages; Introduction to Box-Jenkins Forecasting

REFERENCE BOOKS:

- 1. Cooley, WW and Lohnes, RR, Multi-variate Data Analysis, John Wiley.
- 2. Richard A. Johnson, Dean W. Wichern, Applied Multivariate Statistical Analysis, Prentice Hall.
- 3. Simon P. Washington, Matthew G. Karlaftis & Fred L. Mannering, Statistical and Econometric Methods for Transportation Data Analysis, Chapman & Hall/CRC.
- 4. Kanafani, A., Transportation Demand Analysis, McGraw-Hill.
- 5. Michael Meyer, Eric J Miller, Urban Transportation Planning, McGraw-Hill
- 6. Spyros G. Makridakis, Steven C. Wheelwright, Rob J Hyndman, Forecasting : Methods and Applications, Wiley.

L T P/D Credits 2 2 MCH-113A: Transportation Safety and Environment

Max. Marks :100 Major Test :60 Marks Minor Test :40 Marks Duration :3 Hours

UNIT-I

Trends in roads and highways development. Problem of road accidents in India. Characteristics of road accidents. Causes of accidents. Global and Indian road safety scenario. Factors responsible for success stories in road safety. Role of highway professionals in highway safety.

UNIT-II

Planning of roads for safety. Land use planning and zoning. Development control and encroachment. Network hierarchy. Route planning through communities. Access control. Traffic segregation. Traffic calming designing for safety: road link design, alignment design. Cross-sectional elements.

Traffic control devices. Road side safety. Road side facilities. Some critical elements. Junction design. Basic principles. Selection of junction type. Factors affecting safety at various junction types. Elements to improve road safety. Provisions for vulnerable road users.

UNIT-III

Road safety audit. Concepts of road safety audit, Road safety auditors & key personnel in RSA. Organizing and conducting a road safety audit. Example and commonly identified. Issues during RSA, Road safety audit report. Development of costeffective of road safety audit accident investigation and prevention. Basic strategies for accident reduction. Significance of accident data. Accident investigation and identification of potential sites for treatment. Problem diagnosis. Selection of countermeasures. Example of selection of counter measures. Detailed design and implementation of countermeasures.

UNIT-IV

Monitoring and evaluation non-engineering measures for road safety, behavioral counter measures, education. Training and publicity. The goal of police traffic control activities. Strategy for road safety management by police. Role of NGOs in road safety. Legal framework for road safety transport related pollution, noise pollution, air pollution, effects of weather conditions, vehicular emission parameters, pollution standards. EIA requirements of highway projects, world bank guidelines, EIA practices in India. Fuel crisis and transportation, factors affecting fuel consumption, fuel economy in various modes of transportation, various types of alternative fuels.

- (i) Traffic Engg. And Transport Planning by L.R.Kadiyali, Khanna Publishers, Delhi.
- (ii) Highway Engg. By S.K.Khanna& C.E.G. Justo, New Chand Bros., Roorkee.

MCH- 115A: Low Volume Roads

L	Т	P/D	Credits	Max Marks	:100
2	0		2	Major Test Minor Test Duration	:60 Marks :40 Marks :3Hours

UNIT I

Planning of rural road net work – Concept of core and non-core roads, general principle, guidelines laid down in recent 20-year plans and in PMGSY

Guidelines for alignment and geometric design of rural/low volume roads and safety aspects.

UNIT II

Investigations and surveys, soil and material surveys, Promoting use of alternate margina/ low cost waste / stabilized local materials in rural road works, fly ash in fill and other layers, use of other waste materials. Soil stabilization methods – mechanical, soil cement, soil lime, soil-lime-pozzolana, soil-lime-cement stabilization

UNIT III

Design of different types of pavements for rural roads, choice of pavement type / pavement materials. Guidelines and specifications by IRC, NRRDA and MORD

Road drainage – study of requirements of surface and subsurface drainage, and cross drains, standard design of culverts and small bridges

UNIT IV

Specifications and steps for the construction of different components of rural / low volume roads including pavement layers, quality control during construction

Maintenance of rural roads – shoulders, side and cross drains. Pavement distress, different types of failures and maintenance measures. Preventive maintenance works.

REFERENCE BOOKS:

- 1. CRRI "Low Volume Roads' Central Road Research Institute"-New Delhi
- 2. IRC "Rural Roads Manual"-Special Publication 20 2002, Indian Roads Congress.
- IRC SP- 26 "Report Containing Recommendations of IRC Regional Workshops on Rural Road Development"-1984, Indian Roads Congress
- 4. IRC SP:42 1994, "Guidelines on Road Drainage"- Indian Roads Congress
- 5. IRC SP: 58-2001, "Guidelines for Use of Fly Ash in Road Embankments"- Indian Roads Congress
- 6. MoRTH "Specifications for Road and Bridge Works"- 2001, fourth revision, Indian Roads Congress
- 7. MORD "Specification for Rural roads"

MCH- 117A: Highway Subgrade and Foundation Analysis

 L
 T
 P/D
 Credits
 Max Marks :100

 2
 0
 2
 Major Test :60Marks

 Minor Test :40Marks
 Duration :3 Hrs

UNIT I

Introduction: Soil Mechanics applications to Highway Engg. Soil formations, Types, Regional Soil deposits of India, Index properties, their determination, importance, various soil classification systems, HRB classification, problems. Soil Compaction: Introduction, Lab Tests, Factors affecting, Structure & Engg behavior of compacted cohesive soil, Field compaction specifications Filed compaction control, Different types of Equipments used for compaction, their choice.

UNIT II

Shear strength of soil: Introduction, Importance, Measurements, shear strength of clay, Sand, Elastic properties of soil – Tangent, Secant modulus, Stress – Strain curves, Poisson's ratio, Shear Modulus. Stability of slopes: Introduction, Types, Different methods of analysis of slopes for Øu+0 & C-Ø soil, Location of most critical circle, Earth dam slopes stability, Taylor's stability number. Effect of Earthquake Force, problems on above.

UNIT III

Permeability of soil: Darcy's Law, Validity, Soil-water system, Types, Determination of permeability, problems. Site Investigation: Introduction, Planning exploration programmes, Methods, Samplers, SPT, Subsoil investigation Report, Geophysical methods.

UNIT IV

Highway Drainage: Introduction, Importance, Surface drainage, Sub-surface drainage, methods, Design of subsurface drainage system, Road construction in water logged areas, Land slides – definition, classifies, factors producing. Reinforced Earth structures: Introduction, Components, Advantages, Types of stability – external, Internal, (No problems), Geo textiles – types, Functions, their uses in road embankments and railway works, other uses.

REFERENCE BOOKS:

1. "Basic and Applied soil Mechanics", Gopal Ranjan, ASR Rao, New Age International Publishers 2. "Soil Mechanics & Foundation Engg", Dr.B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, Laxmi Publications (P) Ltd, 16th edition. 3. "Highway Engg", S.K. Khanna, C.E.G. Justo, 5th edition. 4. "Soil Mechanics & Foundation Engg" – K.R. Arora Standard Publishers Distributors. 5. "Soil Mechanics for road Engineers" – HMSO, London.

MCH-119A: Traffic lab

LTP/D Credits 4 2 Max. Marks: 100Major Test: 60 MarksMinor Test: 40 MarksDuration: 3 Hours

LIST OF PRACTICALS:

- 1. Traffic volume study using videography technique .
- 2. Traffic speed study using videography technique.
- 3. Speed study by radar gun
- 4. Speed study by endoscope
- 5. Determination of reaction time of driver
- 6. Parking study
- 7. Accident investigation study
- 8. Study for improvement of an accident prone location
- 9. Bitumen content determination through centrifuge extrude.
- 10. Proportioning of aggregate

L T P/R Credits 2 2

Max. marks: 100Major Test: 60 MarksMinor Test: 40 MarksDuration: 3 Hours

Unit 1

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit 2

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

Unit 3

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit 4

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology.Patent information and databases.Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'.
- 2. C.R. Kothari, "Research Methodology: Methods & Techniques, 2nd edition or above, New Age Publishers.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 ndEdition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel , "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

MCH-102A : Pavement Analysis & Design

L T P/D Credits 3 3 Max. Marks:100Major Test:60MarksMinor Test:40MarksDuration:3Hours

UNIT-I

Pavement Types: Definition, highway and airport pavement comparison, wheel loads, tyre pressure, contact pressure, design factors. Type of distresses structural and functional, serviceability.

UNIT-II

Stresses in Flexible: Layered system concept, multilayered solutions. Burmister 's method, fundamental design concepts. Stresses in Rigid Pavements: Relative stiffness of slabs. Modulus of subgrade reaction. Stresses due to warping, stresses due to friction, effect of warping, contraction and expansion. Plain versus reinforced pavements, stresses in dowel bar, tie bar, combined stresses.

UNIT-III

Design of Flexible Pavements: Design factors. Design wheel load. Equivalent single wheel load. Difference between airport and highway design concept. Different design methods . Examples of comprehensive design process . AASHTO method. McLeod method. New IRC Code method.

UNIT-IV

Design of Rigid Pavement: General design considerations. Design of join ts in cement concrete pavements, spacing of expansion joint, spacing of contraction joints. Design of dowel bar. Design of tie bar. IRC recommendations for design of concrete pavements.

Pavement Evaluation and Rehabilitation: Pavement distresses in flexible and rigid pavements, condition and evaluation survey. Present serviceability index. Methods of measuring condition, skid resistance. Principles of maintenance. Methods of structural evaluation.

- (i) Principles of Transportation Engineering by Chakraborty & Das, Prentice Hall, India.
- (ii) Principles of Pavement Design, by Yoder E.J. and Witczak M.W. 2nd, John Wiley & Sons, INC.
- (iii) Principles and Practice of Highway Engg. By L.R.Kadiyali , Khanna Publishers, Delhi.
- (iv) Principles of Transportation and Highway Engineering by G.V.Rao, Tata McGraw-Hill Publishing Co. Ltd. N. Delhi.
- (v) MORTH Specifications for Road and Bridge Works, IRC Publication.

L T P/D Credits

3 3

Max. Marks	: 100
Major Test	: 60 Marks
Minor Test	: 40 Marks
Duration	:3Hours

UNIT-I

Introduction: History of road construction, stages of construction, seasonal limitations of pavement construction. Stabilization of Soil: Mechanical stabilization, cementing additives and chemicals , thermal stabilization

UNIT-II

Construction of Non-bituminous Pavements: Brief introduction to earthwork machinery: shovel, hoe, clamshell, dragline, bulldozers, cleaning and grubbing, excavation for road and drain, principles of field compaction of embankment I subgrade. Compacting equipments. Granular roads . Construction steps of GSB, WBM and WMM.

Construction of Bituminous Pavements: Various types of bituminous constructions. Prime coat, tack coat, seal coat and surface dressing. Construction of busg, premix carpet, BM, DBM and AC. Brief coverage of machinery for construction of bituminous roads: bitumen boiler, sprayer, pressure distributer, hot-mix plant, cold-mix plant, tipper trucks, mechanical paver or finisher, rollers. Mastic asphalt. Introduction to various IRC and MORTH specifications.

UNIT -III

Construction of Cement Concrete Roads: Construction of cement concrete pavements , machinery involved in construction, slip-form pavers, joints in cement concrete pavements, IRC and MORTH specifications. Construction of other types of pavements: basic concepts of the following: soil stabilized roads, use of gee-synthetics, reinforced cement concrete pavements, prestress concrete pavements, roller compacted concrete pavements and fibre reinforced concrete pavements. Use of fly ash in cement concrete road construction.

UNIT-IV

Highway Maintenance: Pavement distresses, Maintenance operations, Maintenance of WBM, bituminous surfaces and cement concrete pavements. Functional and structural . evaluation of pavements, pavement maintenance, maintenance management

Related Topics: Emulsified bituminous mix, precoating of aggregates, recycling of bituminous pavements, shoulder construction.

- (i) Principles of Transportation Engineering by Chakroborty & Das, Prentice Hall, India.
- (ii) Highway Engg. By S.K.Khanna & C.E.G. Justo, New Chand Bros., Roorkee .

L	Т	P/D	Credits
3			
			3

Max. Marks	: 100
Major Test	: 60 Marks
Minor Test	: 40 Marks

Duration :3Hours

UNIT-I

Modes of public transportation and application of each to urban travel needs.

UNIT-II

Transit system operations, para-transit systems, street transit systems, rapid transit systems, estimation of transit demand. Route development, properties of a good route set, determination of a good route set, stop location and stopping policy, schedule development, properties of a good schedule, determination of a good schedule.

UNIT-III

Capacity of rapid transit systems, line capacity of RTS, capacity of street transit systems. Transit corridor, identification and planning, mass transport management measures, integration of public transportation modes. Public transport infrastructure, case studies, multi mode transportation system.

UNIT-IV

Planning for public transport, fares and subsidies. Intermediate public transport in Indian cities, types of IPT vehicles. Characteristics of IPT modes.

- (i) Traffic Engg. And Transport Planning by L.R.Kadiyali, Khanna Publishers, Delhi.
- (ii) Introduction to Transport Planning by Bruton, M.J., Hutchinson Technical Education, London.
- (iii) Principles of Transportation Engineering by Chakroborty & Das, Prentice Hall, India.

L T P/D Credits 3 3

Max marks :100 Major Test : 60 Marks Minor Test : 40Marks Duration : 3 hours

UNIT-I

Introduction, Importance of drainage, Type of Road Drainage, General Criterion for Road Drainage. Systems of Drainage: Surface and sub-surface drainage systems.

UNIT-II

Internal drainage of pavement structure, components of surface drainage system, surface drains, road side drains, catch water drains, geometric drainage with transverse drains, horizontal drains, sub surface drain in heavy clayey soil, sub surface drain at valley curve I change of grade, capillary cut-off.

UNIT-III

Design of surface drainage and subsurface drainage system: Hydrologic analysis, hydraulic analysis, data for drainage design, design steps.

UNIT-IV

Cross Drainage, Sub surface drainage, lowering of water table, control of seepage flow, control of capillary rise, design of filter material, drainage of slopes and erosion control, road construction in water logged areas. Drainage in hill road. Drainage systems for Airport and Railways.

- (i) Highway Engg by S.K. Khanna & C.E.G Justo, Nem Chand Bros., Roorkee.
- (ii) Principles and Practive of Highway Engg by L.R. Kadiyali , Khanna Publishers , Delhi.
- (iii) Rural Road Mannual, IRC SP-20

L T P/D Credits 3 0 3 Max Marks :100 Major Test :60Marks Minor Test :40Marks Duration :3 Hours

UNIT I

Introduction: Growth of air transport, airport organization and associations, Classifications of airports airfield components, airport traffic zones and approach areas. Aircraft Characteristics Related to Airport Design: Components, size turning radius, speed, airport characteristics

UNIT II

Capacity and Delay: Factors affecting capacity, Determination of runway capacity related to delay, gate capacity, taxiway capacity Airport planning and surveys: Runway length and width, sight distances, longitudinal and transverse grades, runway intersections, taxiways, clearances, aprons, numbering, holding apron.

UNIT III

Design of the Terminal area: Operational concepts, space relationships and area requirements, noise control, vehicular traffic and parking at airports. Airport Grading and Drainage: Grading of airport area, hydrology, design of drainage systems, construction methods, layout of surface drainage and subsurface drainage system.

UNIT IV

Air Traffic Control and Aids: Runways and taxiways markings, dayand night landing aids, airport lighting and other associated aids.

REFERENCE BOOKS:

1. "Planning and Design of Airports" - Robert Horenjeff, 2nd edition, McGraw Hill Book Co.

2. "Airport Engineering"- G. Glushkov, V.Babkov, Mir Publuishers, Moscow.

3. "Airport Planning and Design"- Khanna, Arora and Jain, Nem Chand and Bros., Roorkee

4. Harry.R.Cedergern. "Drainage of Airfield pavements"- John Wiley and Sons.

5. Virender Kumar and Satish Chandra, "Airport Planning and Design"- Galotia Publication press.

MCH- 112A: Traffic Management and Intelligent Transportation Systems

L	P/D	Credits	Max Marks	:100
3		3	Major Test Minor Test Duration	:60Marks :40Marks :3Hours

UNIT I

Introduction to Intelligent Transportation Systems (ITS) –Definition of ITS and Identification of ITS Objectives, Historical Background, Benefits of ITS - ITS Data collection techniques – Detectors, Automatic Vehicle Location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), video data collection.

UNIT II

Telecommunications in ITS – Importance of telecommunications in the ITS system, Information Management, Traffic Management Centres (TMC). Vehicle – Road side communication – Vehicle Positioning System ITS functional areas – Advanced Traffic Management Systems (ATMS), Advanced Traveler Information Systems (ATIS), Commercial Vehicle Operations (CVO), Advanced Vehicle Control Systems (AVCS), Advanced Public Transportation Systems (APTS), Advanced Rural Transportation Systems (ARTS).

UNIT III

ITS User Needs and Services – Travel and Traffic management, Public Transportation Management, Electronic Payment, Commercial Vehicle Operations, Emergency and incident Management, Advanced Vehicle safety systems, Information Management.

UNIT IV

Automated Highway Systems - Vehicles in Platoons – Integration of Automated Highway Systems. ITS Programs in the World – Overview of ITS implementations in developed countries, ITS in developing countries.

REFERENCE BOOKS:

- 1 ITS Hand Book 2000: Recommendations for World Road Association (PIARC) by Kan Paul Chen, John Miles.
- 2 Sussman, J. M., Perspective on ITS, Artech House Publishers, 2005.
- 3 National ITS Architecture Documentation, US Department of Transportation, 2007 (CD-ROM).

L T P/D Credits 3 3 Max Marks :100 Major Test :60Marks Minor Test :40Marks Duration :3 Hours

UNIT I

Introduction to Road Safety Engineering and Accident Investigation, Factors Relating to Accidents, various forms of recording of accident data, study of IRC recommended recording proforma.

UNIT II

Accident Investigation & Crash Problem Diagnosing: investigation at site, various driver related tests, calculation of post crash speed from skid marks, collision and condition diagrams, and traffic and speed studies.

UNIT III

Accident Costing, Economic Appraisal: various methods of calculation of accident costs, their advantages and disadvantages, case studies.

UNIT VI

Crash Problems into Solutions: research and development in accident analysis, issues and challenges in modeling of road accidents, Smeed's model, Base line models, General ADT models, Models with covariates, AMFs, various measures to improve road safety, before and after studies.

REFERENCE BOOKS:

- 1. Highway Engineering by Khanna and Justo, Nem Chand & Brothers, Roorkee
- 2. Kadiyali, L.R., `Traffic Engineering and Transport Planning', Khanna Publications.
- 3. Pignataro, Louis, 'Traffic Engineering Theory and Practice', John Wiley.
- 4. RRL, DSIR, `Research on Road Safety', HMSO, London.
- 5. Papacoastas 'Introduction to Transportation Engineering' Prentice

MCH-116A: ROAD SAFETY AND AUDIT LAB

L P/D Credits 2 2

Max. Marks :100 Major Test :60 Marks Minor Test :40 Marks Duration of Exam : 3 Hrs

List of experiments:

- 1. Design stage audit: Study of project Drawings to identify safety concerns
- 2. Site Visits for Construction stage audit
- Site Visits for existing road audit
 Site Visits and Preparation of the Audit Reports
- 5. Visit to accident site
- 6. Compilation of FIR data and study of its limitations
- 7. Identification of black spots from FIR data
 8. Study of accident recording forms

L T P/D Credits

3

Max. Marks : 100 Major Test : 60 Marks Minor Test : 40 Marks Duration : 3 Hours

UNIT-I

Transport Planning Process : Status of transportation in India. Objectives and scope of transport planning. Urban, regional and national transport planning. Transport planning process, various stages. Land use and traffic.

UNIT-II

Transportation Survey: Definition of study area. Zoning. Types of surveys. 0-D surveys. Inventories of existing transport facilities, land use and economic activities. TRIP.

Generation: Trip purpose. Factors affecting trip generation. Trip generation estimation by multiple linear regression analysis, brief review of category analysis, advantages and limitations of these methods.

UNIT-III

Trip Distribution: Methods of trip distribution. Basic concepts of uniform factor method, average factor method and opportunity model. Trip distribution by gravity model.

Traffic Assignment: Principles of assignment. Assignment techniques. All or nothing assignment. Brief review of multipath assignment, capacity restraint assignment and diversion curves.

UNIT-IV

Modal Split: General considerations for modal split. Factors affecting modal split. Brief introduction to various methods of modal split.

Evaluation: Need for evaluation. Several plans to be formulated. Testing. Considerations in evaluation. Economic evaluation, basic principles, brief introduction to various methods of economic evaluation, comparison.

Mass Rapid Transit Systems: Problems of Urban Transport. Introduction to MRTS. Requirements of MRTS. Types of MRTS. MRTS in India

Recommended Books:

(i) Traffic Engg. And Transport Planning by L.R.Kadiyali, Khanna Publishers, Delhi.

- (ii) Highway Engg by S.K. Khanna & C.E.G. Justo, New Chand Bros., Roorkee.
- (iii) Introduction to Transport Planning by Bruton, M.J., Hutchinson Technical Education, London.
- (iv) Principles of Transportation Engineering by Chakroborty & Das, Prentice Hall

MCH- 203A: Road Transport Regulations & Administration

LΤ	P/D	Credits	Max Marks	:100
3	0	3	Major Test	:60 Marks
			Minor Test	:40Marks
			Duration	:3Hours

UNIT I

Introduction to Traffic regulations and control - Regulation on vehicles, drivers and traffic flow, Traffic control devices – Types & objectives of markings, signals and islands, delineators.

Role of M.V. Department in existing road transport scenario in India

UNIT II

Transportation systems – sustainable transport - mobility, accessibility – safety, environment - revenue generation.

M.V. Act and CMV Rules – Implementation issues thereof, Issues in road enforcement, control of traffic, signage.

UNIT III

Transportation planning process and demand forecasting, road safety issues, coordination with other agencies, claims & compensation under MV Act.

Issues in insurance of vehicles, licensing of drivers, taxation of vehicles and passengers, permits under MV Act.

UNIT IV

Inspection/ testing and certification of vehicles. Bus body code & Bus body accreditation system. Developing customer orientation in M.V. Department functions, RFID based Driving Skill Evaluation system (IDTS)

REFERENCE BOOKS:

- 1. Principles of Transportation Engineering by Chakraborty & Das, Prentice Hall, India.
- 2. Highway Engg by S.K.Khanna & C.E.G. Justo, New Chand Bros., Roorkee.
- 3. Principles and Practice of Highway Engg. By L.R.Kadiyali , Khanna Publishers , Delhi.
- 4. MORTH Specifications for Road and Bridge Works, IRC Publication

L	T	P/D	Credits	Max Marks	:100 :60 Marks
ა	0		3	Minor Test	:40Marks
				Duration	: 3Hours

UNIT I

Introduction–classification and components of bridges– layout and planning– Structural forms of bridge decks – grillage analysis of slab decks, beam and slab decks, and cellular decks. Standard specifications for bridges – IRC loadings for road bridges – standards for railway bridges.

Loads on Bridge: Dead loads, live loads, dynamic effects of vehicles, longitudinal forces, centrifugal forces, wind loads, earth quake forces, stream flow pressure, load combinations, design examples

UNIT II

Design of T beam bridges – balanced cantilever bridges – rigid frame bridges – Arch bridges – bow string girder bridges.

Design of Bridge Slabs: Longitudinally reinforced deck slabs, transversely reinforced bridge slabs

UNIT III

Design of plate girder bridges – steel trussed bridges – Introduction to long span bridges: cable stayed bridges and suspension bridges –instability.

Principles of Planning of Elevated Rail Transit System, grade separation structures, pedestrian crossing and sub- ways.

Forces on piers and abutments – Design of piers and abutments – types of wing walls – types of bearings – design of bearings.

UNIT IV

Design of Prestressed Concrete Bridges: Design code, design examples. Segmental Box bridges - precast sections, criteria, design examples

Sub-Structure Design: Foundation investigation, bearings, bridge pier design, and abutment design.

Examples.

REFERENCE BOOKS:

- 1. Raina, R.K, 'Principles of Design of RCC Bridges, Tata McGraw Hill, 1999.
- 2. N. Krishna Raju, Design of bridges, Oxford & IBH publishing Co. Ltd., New Delhi.
- 3. D.Johnson Victor, Essentials of bridge engineering, Oxford & IBH publishing Co. Ltd., New Delhi.
- 4. Jaikrishna and O.P Jain, Plain and reinforced concrete-vol.II, Nem Chnand & Bros, Roorkee.
- 5. IRC: 5 -1970, Standard specifications and code of practice for road bridges, Sections I to V.
- 6. Indian railway standard code of practice for the design of steel or wrought iron bridge carrying Rail, road or pedestrian traffic, Govt. of India, Ministry of Railways, 1962.
- 7. Conrad P. Heins and Richard A. Lawrie, `Design of Modern Concrete Highway Bridges,

MTOE-201A		Business Analytics									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	60	40	100	3 Hrs.				
Program Objective (PO)	The main of analytics m	The main objective of this course is to give the student a comprehensive understanding of business analytics methods.									
Course Outcomes (CO)											
C01	Able to hav	Able to have knowledge of various business analysis techniques.									
CO2	Learn the re	Learn the requirement specification and transforming the requirement into different models.									
CO3	Learn the re	Learn the requirement representation and managing requirement assests.									
CO4	Learn the R	Recent Trends	; in Embeda	led and collaborative	business						

Unit 1

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst.

Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts.

Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

Unit 2

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents.

Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

Unit 3

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

Unit 4

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

- 1. Business Analysis by James Cadle et al.
- 2. Project Management: The Managerial Process by Erik Larson and, Clifford Gray

MTOE-203A		Industrial Safety									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0 0 3 60 40 100 3 Hrs.										
Program Objective (PO)	To enable students to aware about the industrial safety.										
	Course Outcomes (CO)										
C01	Understand	Understand the industrial safety.									
CO2	Analyze fur	Analyze fundamental of maintenance engineering.									
CO3	Understand	Understand the wear and corrosion and fault tracing.									
CO4	Understand	ling that wher	n to do perio	odic inceptions a	nd apply the prevent	ing maintenance.					

Unit-1

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-2

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit-3

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-4

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.
- 5.

MTOE-205A		Operations Research									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	60	40	100	3 Hrs.				
Program Objective (PO)	To enable students to aware about the dynamic programming to solve problems of discreet and continuous variables and model the real world problem and simulate it.										
Course Outcomes (CO)											
C01	Students s variables.	Students should able to apply the dynamic programming to solve problems of discreet and continuous variables.									
CO2	Students s	Students should able to apply the concept of non-linear programming									
CO3	Students s	Students should able to carry out sensitivity analysis									
CO4	Student st	hould able to i	model the r	eal world problem	n and simulate it.						

Unit -1

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit -2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit-3

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit -4

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

MTOE-207A		Cost Management of Engineering Projects									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	60	40	100	3 Hrs.				
Program Objective (PO)	To enable students to make aware about the cost management for the engineering project and apply cost models the real world projects.										
Course Outcomes (CO)											
C01	Students s	Students should able to learn the strategic cost management process.									
CO2	Students s	Students should able to types of project and project team types									
CO3	Students s	Students should able to carry out Cost Behavior and Profit Planning analysis.									
CO4	Student sh	nould able to l	earn the qu	antitative technique	es for cost manager	nent.					

Unit-1

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost.Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Unit-2

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities.Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts.Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Unit-3

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Breakeven Analysis, Cost-Volume-Profit Analysis. Various decision-making problems.Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector.Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints.Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis.Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets.Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit-4

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

MTOE-209A		Composite Materials										
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time										
3	0	0	3	60	40	100	3 Hrs.					
Program Objective (PO)	To enable students to aware about the composite materials and their properties.											
Course Outcomes (CO)												
C01	Students should able to learn the Classification and characteristics of Composite materials.											
CO2	Students should able reinforcements Composite materials.											
CO3	Students should able to carry out the preparation of compounds.											
CO4	Student s	hould able to	o do the ar	nalysis of the co	omposite materials							

UNIT-1:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Iso-strain and Iso-stress conditions.

UNIT – 2

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostaticpressing.Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

UNIT-3

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT – 4

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.
- 3. Balasubramaniam, John Wiley & Šons, NY, Indian edition, 2007.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.
| MTOE-211A | | Waste to Energy | | | | | | | | |
|---------------------------|-------------|--|-------------|---------------------|-----------------|-----|--------|--|--|--|
| Lecture | Tutorial | torial Practical Credit Major Test Minor Test Total Ti | | | | | | | | |
| 3 | 0 | 0 | 3 | 60 | 40 | 100 | 3 Hrs. | | | |
| Program
Objective (PO) | To enable s | o enable students to aware about the generation of energy from the waste. | | | | | | | | |
| | | | Course Ou | tcomes (CO) | | | | | | |
| C01 | Students s | should able to | learn the C | Classification of w | aste as a fuel. | | | | | |
| CO2 | Students s | Students should able to learn the Manufacture of charcoal. | | | | | | | | |
| CO3 | Students s | Students should able to carry out the designing of gasifiers and biomass stoves. | | | | | | | | |
| CO4 | Student sl | nould able to l | earn the Bi | ogas plant techno | ology. | | | | | |

Unit-1

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

Unit-2

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

Unit-3

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-4

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system -Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production -Urban waste to energy conversion - Biomass energy programme in India.

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

MTAD-101A		English For Research Paper Writing								
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total 1								
2	0	0	0	-	100	100	3 Hrs.			
Program Objective (PO)	Student will	itudent will able to understand the basic rules of research paper writing.								
	Course Outcomes (CO)									
C01	Understa	nd that how to	o improve y	our writing skills ar	nd level of readability					
CO2	Learn ab	Learn about what to write in each section								
CO3	Understa	Understand the skills needed when writing a Title								
CO4	Ensure the	e good quality	of paper a	t very first-time sub	omission					

Unit 1

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit 3

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

Unit4

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

MTAD-103A			[Disaster Manage	ement					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	0	-	100	100	3 Hrs.			
Program Objective (PO)	Develop an	Develop an understanding of disaster risk reduction and management								
	1		Course Ou	tcomes (CO)						
C01	Learn to c humanitaria	earn to demonstrate a critical understanding of key concepts in disaster risk reduction and umanitarian response.								
CO2	Critically ev perspective	/aluate disast es.	er risk redu	iction and humai	nitarian response pol	icy and practice f	rom multiple			
CO3	Develop an types of dis	Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.								
CO4	critically u planning a countries th	critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in								

Unit 1

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit 2

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

Unit 3

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment.Strategies for Survival.Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation.Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
 Goel S. L., Disaster Administration And Management Text And Case Studies", Deep&Deep Publication Pvt. Ltd., New Delhi.

MTAD-105A		Sanskrit for Technical Knowledge								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	0	-	100	100	3 Hrs.			
Program Objective (PO)	Students will be able to Understanding basic Sanskrit language and Ancient Sanskrit literature about science & technology can be understood and Being a logical language will help to develop logic in students									
	Course Outcomes (CO)									
C01	To get a w	orking knowle	edge in illus	trious Sanskrit, t	he scientific language	e in the world				
CO2	Learning o	of Sanskrit to i	improve bra	ain functioning						
CO3	Learning of memory p	Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power								
CO4	The engine knowledge	eering schola from ancient	rs equipped t literature	l with Sanskrit w	ill be able to explore i	he huge				

Unit –1

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit – 2

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit –3

Technical concepts of Engineering: Electrical, Mechanical

Unit -4

Technical concepts of Engineering: Architecture, Mathematics

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" PrathamaDeeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

MTAD-107A		Value Education								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	0	-	100	100	3 Hrs.			
Program Objective (PO)	Understand should know	nderstand value of education and self- development, Imbibe good values in students and Let the nould know about the importance of character								
			Course Ou	tcomes (CO)						
C01	Knowledge	of self-develo	pment							
CO2	Learn the in	mportance of	Human valu	ies						
CO3	Developing	the overall p	ersonality							
CO4	Know abo	ut the importa	nce of char	racter						

Unit 1

Values and self-development –Social values and individual attitudes.Work ethics, Indian vision of humanism.Moral and non- moral valuation.Standards and principles.Value judgements.

Unit 2

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

Unit 3

Personality and Behavior Development - Soul and Scientific attitude.Positive Thinking.Integrity and discipline.Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance.True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits.Association and Cooperation. Doing best for saving nature

Unit 4

Character and Competence –Holy books vs Blind faith.Self-management and Good health.Science of reincarnation. Equality, Nonviolence,Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

References

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

MTAD-102A		Constitution of India								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	0	-	100	100	3 Hrs.			
Program Objective (PO)	Understand perspective constitution in the early	Inderstand the premises informing the twin themes of liberty and freedom from a civil rights perspective and to address the growth of Indian opinion regarding modern Indian intellectuals constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood n the early years of Indian nationalism.								
Course Outcomes (CO)										
C01	Discuss the Gandhi in Iı	iscuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of andhi in Indian politics.								
CO2	Discuss the social reform	intellectual o ms leading to	rigins of the revolution i	e framework of a in India.	rgument that informed	the conceptualizati	ion of			
CO3	Discuss the leadership o suffrage in t	Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the eadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.								
CO4	Discuss the	passage of t	he Hindu C	ode Bill of 1956.						

Unit I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

MTAD-104A		Pedagogy Studies									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	0	-	100	100	3 Hrs.				
Program Objective (PO)	Review e undertake the develo	Review existing evidence on the review topic to inform programme design and policy making undertaken by the DFID, other agencies and researchers and Identify critical evidence gaps to guide the development.									
Course Outcomes (CO)											
CO1	What peda developing	gogical prac countries?	tices are l	being used by tea	chers in formal a	and informal class	rooms in				
CO2	What is the what popula	What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with vhat population of learners?									
CO3	How can t materials be	eacher educa est support ef	ation (curri fective peda	culum and practicu agogy?	m) and the scho	ol curriculum and	guidance				
CO4	What is the	importance o	f identifying	research gaps?							

Unit 1

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

Unit 2

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change.Strength and nature of the body of evidence for effective pedagogical practices.Pedagogic theory and pedagogical approaches.Teachers' attitudes and beliefs and Pedagogic strategies.

Unit 3

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

Unit 4

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

MTAD-106A		Stress Management by Yoga								
Lecture	Tutorial	Futorial Practical Credit Major Test Minor Test Total								
2	0	0	0	-	100	100	3 Hrs.			
Program Objective (PO)	To achieve	achieve overall health of body and mind and to overcome stress								
	Course Outcomes (CO)									
C01	Develop h	ealthy mind ir	n a healthy	body thus improv	ving social health.					
CO2	Improve e	Improve efficiency								
CO3	Learn the	Learn the Yogasan								
CO4	Learn the	pranayama								

Unit – 1

Definitions of Eight parts of yog (Ashtanga).

Unit-2

Yam and Niyam, Do's and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

Unit-3

Asan and Pranayam, Various yog poses and their benefits for mind & body,

Unit-4

Regularization of breathing techniques and its effects-Types of pranayam.

- 'Yogic Asanas for Group Tarining-Part-I" :Janardan Swami YogabhyasiMandal, Nagpur
 "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

MTAD-108A		Personality Development through Life Enlightenment Skills									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	0	-	100	100	3 Hrs.				
Program	To learn to	learn to achieve the highest goal happily									
Objective (PO)	To becom	b become a person with stable mind, pleasing personality and determination									
	To awaker	o awaken wisdom in students									
			Course Ou	tcomes (CO)							
C01	Students I	become awar	e about lead	dership.							
CO2	Students v	Students will learn how to perform his/her duties in day to day work.									
CO3	Understan	Understand the team building and conflict									
CO4	Student w	ill learn how t	o become r	ole model for the	society.						

Unit – 1

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

Unit – 2

Approach to day to day work and duties; ShrimadBhagwadGeeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

Unit - 3

Statements of basic knowledge; ShrimadBhagwadGeeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

Unit – 4

Personality of Role model; ShrimadBhagwadGeeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1. Srimad Bhagavad Gita, Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

Teaching Scheme

Lab work : 18 and 32 hrs/week for Dissertation Phase- I (MCH-207A) and Phase- II (MCH-202A) respectively

Course Outcomes:

At the end of this course, students will be able to

- a. Ability to synthesize knowledge and skills previously gained and applied to an in-depth study and execution of new technical problem.
- b. Capable to select from different methodologies, methods and forms of analysis to produce a suitable research design, and justify their design.
- c. Ability to present the findings of their technical solution in a written report. Presenting the work in International/ National conference or reputed journals.

Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following

- 1. Relevance to social needs of society
 - Relevance to value addition to existing facilities in the
 - Relevance to industry need
- 2. Problems of national importance
- 3. Research and development in various domain
- 4. The student should complete the following:
 - Literature survey Problem Definition Motivation for study and Objectives
 - Preliminary design / feasibility / modular approaches
 - Implementation and Verification
- 5. Report and presentation

The dissertation phase- II is based on a report prepared by the students on dissertation allotted to them. It may be based on:

Experimental verification / Proof of concept.

Design, fabrication, testing of Communication System.

The viva-voce examination will be based on the above report and work.

•••••

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two phases i.e. Phase – I: July to December and Phase – II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives. The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing and Processing (Hardware and Software), Circuits-Devices and Systems, Communication-Networking and Security, Robotics and Control Systems, Signal Processing and Analysis and any other related domain. In case of Industry sponsored projects, the relevant application notes, while papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Phase – I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper and/or computer aided design, proof of concept/functionality, part results, A record of continuous progress.

Phase – I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Phase-I work.

During phase – II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Phase – II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, a record of continuous progress.

Phase – II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the work

•••••

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Established by the state Legislature Act XII of 1956 ('A+' Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING SEMESTER-1

Sr. No.	Course Code	Course Name	L	Т	Ρ	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTIP-101A	Advanced Metal Casting	3	0	0	3	3	60	40	-	100	3
2	MTSE-101	Intelligent Manufacturing Systems	3	0	0	3	3	60	40	-	100	3
3		*Programme Elective-I	3	0	0	3	3	60	40	-	100	3
4		**Programme Elective-II	3	0	0	3	3	60	40	-	100	3
5	MTRM-111A	Research Methodology and IPR	2	0	0	2	2	60	40	-	100	3
6	MTSE-103	Metal Cutting and Tool Design Lab	0	0	4	4	2	-	40	60	100	3
7	MTSE-105	Advanced Manufacturing Lab	0	0	4	4	2	-	40	60	100	3
8		***Audit Course-I	2	0	0	2	-	-	100	-	100	3
Total						24	18	300	280	120	700	

	*PROGRAMME ELECTIVE- I (MTSE) for 1st Semester						
1.	MTIP-105A	Tool Engineering					
2.	MTIP-107A	Advanced Engineering Materials					
3.	MTIP-109A	Non-Conventional Machining					

	**PROGRAMME ELECTIVE- II (MTSE) for 1st Semester						
1.	MTIP-111A	Product Design and Development					
2.	MTIP-113A	Simulation of Industrial Systems					
3.	MTIP-115A	Supply Chain Management					

	***AUDIT COURSE – I for 1 st Semester (MTSE)								
1. MTAD-101A English for Research Paper Writing									
2.	2. MTAD-103A Disaster Management								
3.	MTAD-105A	Sanskrit for Technical Knowledge							
4.	MTAD-107A	Value Education							

Note: 1. The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class. 2.*** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

3. The programme Elective I & II and Audit Course-I are common with M.TECH. (I&P). The course starts with MTIP code is common with M.TECH (I&P).

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by the state Legislature Act XII of 1956 ('A+' Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED)(w. e. f. 2018-19) **SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING SEMESTER-II**

Sr. No.	Course Code	Course Name	L	Т	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTSE-102	Mechanical Forming of Materials	3	0	0	3	3	60	40	-	100	3
2	MTSE-104	Computer Integrated Manufacturing and Automation	3	0	0	3	3	60	40	-	100	3
3		*Programme Elective-III	3	0	0	3	3	60	40	-	100	3
4		**Programme Elective-IV	3	0	0	3	3	60	40	-	100	3
5	MTSE-106	Computer Integrated Manufacturing Lab	0	0	4	4	2	-	40	60	100	3
6	MTSE-108	Advance Welding Lab	0	0	4	4	2	-	40	60	100	3
7	MTSE-110	Mini Project	0	0	4	4	2	-	-	100	100	3
8		***Audit Course-II	2	0	0	2	-	-	100	-	100	3
					Total	26	18	240	240	220	700	

	*PROGRAMME ELECTIVE-III (MTSE) for 2 nd Semester								
1.	1. MTIP-106A Advanced Welding Processes								
2.	MTIP-108A	Advanced Metal Cutting							
3.	MTIP-110A	Metrology							

	**PROGRAMME ELECTIVE - IV (MTSE) for 2 nd Semester								
1.	MTIP-112A	Sequencing and Scheduling							
2.	MTIP-114A	Quality Engineering and Management							
3.	MTIP-116A	Reliability Engineering							

	***AUDIT COURSE-II for 2 nd Semester (MTSE)								
1.	1. MTAD-102A Constitution of India								
2.	MTAD-104A	Pedagogy Studies							
3.	MTAD-106A	Stress Management by Yoga							
4.	MTAD-108A	Personality Development through Life Enlightenment Skills							

Note: 1. ***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

2. The programme Elective III& IV and Audit Course-II are common with M.TECH. (I&P).The course starts with MTIP code is common with M.TECH. (I&P).

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by the state Legislature Act XII of 1956 ('A+' Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING **SEMESTER-III**

Sr. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1		*Programme Elective-V	3	0	0	3	3	60	40	-	100	3
2		**Open Elective	3	0	0	3	3	60	40	-	100	3
3	MTSE- 201	Dissertation Phase-I	0	0	20	20	10	-	100	-	100	
			•	T	otal	26	16	120	180		300	

	*PROGRAMME ELECTIVE-V (MTSE) for 3rd Semester									
1.	MTIP-201A Enterprise Resource Planning									
2.	MTIP-203A	Design of Experiments								
3.	MTIP-205A	Strategic Entrepreneurship								

	**OPEN ELECTIVE(MTSE) for 3rd Semester							
1.	1. MTOE-201A Business Analytics							
2.	MTOE-203A	Industrial Safety						
3.	MTOE-205A Operations Research							
4.	MTOE-207A	Cost Management of Engineering Projects						
5.	5. MTOE-209A Composite Materials							
6.	MTOE-211A	Waste to Energy						

Note: 1. The programme Elective-V and Open Elective are common with M.TECH. (I&P).

SEMESTER-IV

Sr. No.	Course Code	Course Name	L	Т	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTSE-202	Dissertation Phase-II	0	0	32	32	16	-	100	200	300	-
					Total	32	16		100	200	300	

Total credits = 68

INSTRUCTIONS FOR PAPER SETTER

- **1.** The question paper is to be attempted in **THREE Hours**.
- 2. Maximum Marks for the paper are 60.
- 3. The syllabus for the course is divided into FOUR units.
- 4. The paper will have a total of **NINE questions**.
- 5. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have content from the entire syllabus (all Four Units).

Q. No. 2 & 3	from	Unit I
Q. No. 4 & 5	from	Unit II
Q. No. 6 & 7	from	Unit III
Q. No. 8 & 9	from	Unit IV

- 6. All questions will have equal weightage of 12 marks.
- 7. The candidate will attempt a total of **FIVE questions**, each of 12 marks. Q. No. 1 is compulsory. The candidate shall attempt remaining **four** questions by selecting **only one question from each unit**.
- 8. A question may have any number of sections labeled as 1(a), 1(b), 1(c), 1(d), ---- 2(a), 2(b), --.A section may further have any number of subsections labeled as (i), (ii), (iii),.

9. SPECIAL INSRUCTIONS FOR Q. No. 1 ONLY

Question No. 1, which is compulsory, shall be OBJECTIVE/ short answer type **and have content from the entire syllabus (all Four Units)**.

Emphasis is to be given on the basic concepts, analytical reasoning and understanding of the various topics in the subject. This question may have a number of parts and/or subparts. The short questions could be combination of following types:

- i. Multiple Choice
- ii. Yes/ No choice
- iii. Fill in Blanks type
- iv. Short numerical computations
- v. Short Definitions
- vi. Matching of Tables

The above mentioned question types is only a Guideline. Examiner could set the question as per the nature

of the subject.

First Semester

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-101A		ADVANCED METAL CASTING											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
3	0	0	3	60	40	100	3 hrs						
Objective	The main objectiv	ve of the course	is to impart	the students w	ith the knowled	lge of moulding	and casting.						
		Co	urse Outco	omes									
C01	To impart knowle and testing of mo	edge about vari ulding sand pro	ous function perties.	nal requirement	s of moulding	materials and s	pecifications						
CO2	To acquaint stud Molten metal in v	ents with the p arious types of	henomenor mould meta	n of solidificatio I combintions.	n and analytics	s involved in so	lidification of						
CO3	To impart knowledge to students about Gating system design and Riser design for getting an accurately designed defect free casting												
CO4	To let student un	derstand some	special cast	ing processes a	and testing of c	asting.							

UNIT-I

Functional Requirement of Moulding Materials: Principal ingredients of moulding Sands; Different Types of Sands; Clays, Different types of Clay structures, Moisture; Theories of Clay sand bonding, Sand system equipment, Flow of sand in a mechanized foundry, The Requirement of core sands,.

Specification and testing of Moulding Sands

Grain Size, Grain Shape, Clay content, Moisture Content, Bulk Density and Specific Surface Area, Acid Demand Value (ADV), Fines Content, Sintering Temperature, Mould hardness, Permeability, Strength, Deformation & toughness, Compactability, Mouldability, High Temperature Characteristics.

UNIT-II

Solidifications of Metals, Nucleation, free energy concept, critical radius of nucleus, Distribution coefficient and Constitutional Undercooling, Solidification in Pure Metals and Alloys, Directional Solidification, Casting Characteristics related to Solidification; Fluidity, Dendritic Growth, Dendrite coherency, Segregation, Inverse Segregation, Hot tearing, Hipping, Solidification under pressure.

Heat Transfer during casting process: Resistance to Heat Transfer, Centerline Feeding Resistance, Rate of solidification, Solidification of Large casting in an insulating mould, Solidification with predominant interface resistance, Solidification with constant casting surface temperature, Solidification with predominant resistance in mould and solidified Metal, Solidification Time and Chvorinov rule, Numerical Exercises.

UNIT-III

Gating System Design: Gating system defined, Types of Gating Systems, Types of Gates, Elements of Gating System, Gating System design, Factors involved in Gating design, Pouring time, Choke Area, Sprue design, Gating Ratio, Sprue runner gate ratio, Elimination of Slag and Dross, Filtration, Numerical exercises.

Riser Design: Need for riser, Basic requirements of an effective feeding system for a casting, Feeding Efficiency, Types of Risers, Effective feeding distances for simple and complex shapes. Use of chills, Directional solidification, Stresses in castings, Metal Mould reactions, Claine's Method, Modulus Method, Naval Research Laboratory (NRL) Method, Pouring rate and Temperature, Padding, Use of exothermic materials, Chills, Feeding Aids, Numerical exercises.

UNIT-IV

Special casting Processes: Shell Moulding, Investment Casting, Permanent Mould Casting, Diecasting, Centrifugal casting. **Inspection and testing of casting:** Visual, Optical, Dimensional inspection, Laser Scanning, White light scanning, Radiographic Inspection, ultrasonic testing, Magnetic Particle Testing, dye penetration, Casting Defects; Classification, Causes and remedies.

RECOMMENDED BOOKS:

1 H.F. Taylor, "Foundry Engineering", John Wiley and Sons.

2 P.L. Jain, "Principles of Foundry Technology", Mc-Graw Hill.

3 Mahi Sahoo and Sudhari Sahu, "Principles of Metal Casting.

4 Amitabha Ghosh, " Manufacuring Science", Affliated East West Press.

5 P.N Rao, "Manufacturing Technology: Foundry, Forming and Welding" TMH.

6 K.P. Sinha, "Foundry Technology", Standard Publishers, Delhi.

10(1738)

7 Flinn, "Fundamentals of Metals Casting", Addison Wesley.

8 Heine Loper and Resenthal, "Principles of Metal Casting", Mc-Graw Hill.

9 Hielel and Draper, "Product Design & Process Engineering", Mc-Graw Hill.

10 Salman & Simans, "Foundry Practice", Issac Pitman.

11 ASME, "Metals Handbook- Metal Casting."

12 P.C. Mukharjee, Fundamentals of Metal casting Technology, Oxford, IBH.

13 P.R.Beeley, Foundry Technology, Butterworth Heinmann.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal weight of 12 marks. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st semester) (CREDIT BASED) (w. e. f. 2018-19)

SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTSE-101		INTELLIGENT MANUFACTURING SYSTEMS										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)					
				Test	Test							
3	0	0	3	60	40	100	3					
Objective	The main o	bjective of the	e course is t	o impart the	students with	n the know	wledge about the					
-	detailed stud	ly of the intellig	gent manufact	uring systems	5.		-					
			Course Outc	omes								
C01	To understa	nd the concept	and scope of	f machine inte	lligence.							
CO2	To acquaint	To acquaint students importance of sensors in intelligent manufacturing systems.										
CO3	To impart kn	To impart knowledge to students about Principles and application of sensors.										
CO4	To let studer	nt understand I	the Design, Ar	nalysis & othe	r issues of sm	nart structu	ire.					

UNIT-I

Scope of Machine Intelligence: Modeling and control of processes and machines, Machine learning for system modeling from incomplete, Ambiguous information, Neuro fuzzy expert systems for uncertain reasoning, Concept learning, Associative memory, Connectionist learning systems, Data abstraction in parallel distributed architectures, Model based optimizations using evolutionary algorithms, Genetic algorithms.

UNIT-II

Sensors in Intelligent Manufacturing Systems: Sensor-based Robotic systems for assembly, welding, Machining, mobile robots, Task level planning, Path planning, Multi-sensor integration for environmental interaction and Error recovery.

UNIT-III

Principles and Applications of Sensors: Displacement, Force, Tactile, Temperature, Acoustic, Vision, Range sensors, Visuomotor coordination, Navigation problems, Intelligent structures, Behavioural approach and subsumption architecture for learning from environment.

UNIT-IV

Design, Analysis and Manufacturing issues of Smart Structures: Analysis, Manufacturing, Application issues involved in integrating smart materials and devices with signal processing, Control capabilities to engineering smart structures and products, Emphasis on structures, Automation and precision manufacturing equipment, Automotives, Consumer products, Sporting products, Computer and telecommunications products.

RECOMMENDED BOOKS:

1. The Assurances Sciences - Halpern, Seigmund - Prentice Hall International, New Jersey, U.S.A - 1978.

- 2. Robots manufacturing and application -Paul Afonh, John Wiley.
- 3. Logistics Engineering and Management Blanchard, Bejamin S. Prentice Hall International, New Jersey, U.S.A 1986.
- 4. Smart Materials and Structures- M. V. Gandhi and B. So Thompson Chapman & Hall, London; New York 1992.
- 5. Robotic technology and flexible automation -S.R Deb, TMH
- 6. Smart Structures and Materials-B. Cui shaw-ArtechHouse, Boston, 1996.
- 7. Smart Structures: Analysis and Design-V. Srinivasan -Cambridge University Press, Cambridge; New York 2001.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal weight of 12 marks. The student will attempt a total of FIVE questions, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

Programme Elective-I

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st semester) (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-105A		TOOL ENGINEERING											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time											
3	0	0	3	60	40	100	3 hrs						
Objective	The objective of	The objective of the course is to impart the students with the knowledge of various aspects of design of											
	different types of	different types of Tools and fixtures used in Industries.											
		Co	urse Outcor	nes									
C01	To impart knowl	edge of material	Is for cutting I	ool and design of	cutting tools.								
CO2	To acquaint stu	dents with variou	us kinds of Ga	ages and Work ho	olding devices.								
CO3	To impart knowl	edge to students	s about Drill ji	igs and Fixtures.									
CO4	To let student understand the tool design process for NC Machine tools												
CO4	To let student u	nderstand the to	ol design pro	cess for NC Mach	nine tools								

UNIT-I

Cutting Tool Materials: Introduction and desirable properties, Carbon and Medium-Alloy Steels, High-Speed Steels, Cast-Cobalt Alloys, Carbides, Coated Tools, Alumina-Based Ceramics, Cubic Boron Nitride, Silicon-Nitride Based Ceramics, Diamond, Reinforced Tool Materials, Cutting-Tool Reconditioning.

Design of Cutting Tools Basic Requirements, Mechanics and Geometry of Chip Formation, General Considerations for Metal Cutting, Design of single point Cutting Tools, Design of Milling Cutters, Design of Drills and Drilling, Design of Reamers, Design of Taps, Chip Breakers.

UNIT-II

Gages and Gage Design: Limits fits and tolerances, Geometrical tolerances-specification and measurement, Types of gages, Gage design, gage tolerances, Material for Gages.

Work Holding Devices: Basic requirements of work holding devices, Location: Principles, methods and devices, Clamping: Principles, methods and devices.

UNIT-III

Drill Jigs: Definition and types of Drill Jigs, Chip Formation in Drilling, General Considerations in the Design of Drill Jigs, Drill Bushings, Drill Jigs, and Modern Manufacturing

Design of Fixtures: Fixtures and Economics, Types of Fixtures, Milling Fixtures, Boring Fixtures, Broaching Fixtures, Lathe Fixtures, Grinding

UNIT-IV

Tool Design for Numerically Controlled Machine Tools: Fixture Design for Numerically Controlled Machine Tools, Cutting Tools for Numerical Control, Tool-holding Methods for Numerical Control.

RECOMMENDED BOOKS:

1. ASTME, "Fundamentals of Tool Design", Prentice Hall of India, 1983.

2. Donaldson, "Tool Design", Tata-McGraw Hill, 3rd Edition, 2000.

3. Joshi P.H., "Jigs and Fixtures", Tata-McGraw Hill, 2010.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st semester) (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-107A	ADVANCED ENGINEERING MATERIALS											
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTimeTestTestTest										
3	0	0	3	60	40	100	3 hrs					
Objective	The objective of the course is to impart the students with the knowledge of various advanced and smart materials.											
			Course Ou	utcomes								
CO1	To impart know	ledge of Piezoe	electric and s	hape memory	y alloys.							
CO2	To acquaint stu	idents with deep	o know how a	about Electro	-rheological ar	id composite m	naterials.					
CO3	To impart knowledge to students about MEM systems and High temperature application materials.											
CO4	To let student understand the processing and characteristics of powder metallurgy processes and structural materials.											

UNIT-I

Introduction to advanced Engineering materials: Classes of Materials and their usage, Historical Perspective, Intelligent Materials, Structural Materials, Functional Materials, Primitive Functions of Intelligent Materials, Intelligence inherent in Materials, Materials Intelligently Harmonizing with humanity, Biometric.

Smart Materials and Structural Systems: Introduction, Actuator Materials, Sensing Technologies, Micro-sensors, Intelligent systems, Hybrid Smart Materials, Passive Sensory Smart Structures, Reactive Actuator based smart structures, Active Sensing and Reactive smart structures, smart skins, Aero-elastic tailoring of airfoils, Synthesis of future smart systems.

UNIT-II

Electro caloric Effect: An Introduction, History of Electrocaloric Cooling, Mechanism of working of Electrocaloric Cooling, Electro caloric Materials, Performance of Electrocaloric Materials.

Heat Resistant Steels: Conventional Heat-Resistant Steels, Silicon-Bearing High Chromium Heat-Resistant Steels, Nitride-Strengthened Reduced Activation Heat-Resistant Steels, China Low Activation Martensite Steel Nitride-Strengthened Steels, Microstructural Stability

UNIT-III

Smart Micro-systems: Silicon Capacitive Accelerometer, Piezo-resistive Pressure sensor, Conductometric Gas sensor, An Electrostatic Comb-drive, Magnetic Microrelay, Portable Blood Analyzer, Piezoelectric Inkjet Print Head.

Buckyballs to robotics: Bucky ball, Nano Structure of Fullerene, Carbon Nanotubes, Nano Diamond, Boron nitride nanotubes, Single electron transistors, Molecular machine, Nano Biometrics, Nano Robots,

UNIT-IV

Nano-Alloys: Introduction, Chemical Synthesis: General Concepts, Reduction of Metallic Salts, The Organicmetallic Route: Thermal Decomposition Method, Other Chemical Methods for synthesis of Nano-alloys, Physical Routes for synthesis of Nano-Alloys; Experimental Techniques and Examples.

Shape memory alloys (SMA): Shape memory effect and the metallurgical phenomenon of SMA, Types of SMA, One way and Two way Shape memory effect. Temperature assisted shape memory effect, Applications.

RECOMMENDED BOOKS:

- 1. Gandhi, M.V. and Thompson, B.S., Smart materials and Structures, Chapman & Hall, 1992.
- 2. AnanthaSuresh G.K., Vinoy K.J., Micro and Smart Systems, Wiley India.
- 3. Wei Yan, Wei Wang, 9-12 Cr Heat Resistant Steels, Engineering Material series, Springer International.
- 4. Damien Alloyeau, Christine Mottet, Nanoalloys Synthesis, Structure and Properties, Springer International.
- 5. Tatiana Correia, Qi Zhang, Electro caloric Materials: New Generation of Coolers
- 6. Otsuka, K. and Wayman, C. M., Shape memory materials, C.U.P, 1998
- 7. Taylor, W., Piezoelectricity, George jorden and Breach Sc. Pub., 1985
- 8. Mallick, P.K., Fiber Reinforced Composites Materials, Manufacturing and Design. Marcel Dekker Inc, New York, 1993.
- 9. Rama Rao, P. (ed.), Advances in Materials and their applications, Wiley EasternLtd.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st semester)

(CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-109A			NON-CONVI	ENTIONAL M	MACHINING					
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTimeTestTestTestTestTestTest								
3	0	0	3	60	40	100	3 hrs			
Objective	To acquaint the students with the advanced technologies and processes in various streams of Non-conventional machining.									
Course Outcomes										
C01	To impart kno process parar	To impart knowledge of Various Non-conventional Mechanical Working Processes, technology, process parameters and analysis for metal removal for these processes.								
C02	To acquaint processes,	students with o	deep knowh	ow about c	hemical and	electrochen	nical machining			
CO3	To impart knowledge to students about various kinds of Electric discharge machining processes, process parameters associated with these processes and various process characteristics.									
CO4	To let student and Electron b	understand the beam machining	e working an processes.	d technology	y associated	with Laser B	Beam machining			

UNIT-I

Introduction, Need of Non-conventional machining processes, Characteristics of conventional and Non-conventional Machining processes.

Mechanical Working Processes: Abrasive Jet Machining: Machining setup, Abrasives, Process Parameters, Machining Characteristics, Material removal models in AJM, Process capability, Advantages, limitations, Applications

Water Jet Machining: Basic mechanism of Water jet machining setup, Process parameters, Catcher, Process capabilities, Advantages, limitations, Applications

Abrasive Water Jet Machining process: Working Principle, AWJM Machine, Process Variables, Mechanism of Metal Removal, Cutting Parameters, Process capabilities, Applications, Environmental issues.

Ultrasonic Machining: Fundamental principles, Equipment, Magnetostriation, Elements of process, Mechanics of cutting, Analysis of Process Parameters, Process capabilities, Economic considerations. Applications, Limitations

UNIT-II

Chemical Machining: Introduction, Fundamental Principles, Process Parameters; Maskants and Etchants, Advantages, Limitations, Applications.

Electrochemical Machining Processes: Introduction, Classification of ECM Processes, Fundamentals Principles of ECM, Elements of ECM, ECM Machine Tool Process, Determination of Metal Removal Rate, Evaluation of Metal Removal of an alloy, Electrochemistry of ECM, Cathode and Anode reaction, Dynamics of ECM, Self-Regulating feature of ECM, Process Parameters, Process capabilities, Electrochemical Debarring.

Electrochemical Grinding: Schematics, Electrochemistry, Process Parameters, Process capabilities, Applications, Advantages, Limitations.

UNIT-III

EDM: Introduction, Basic Principles & Schematics, Process Parameters, Characteristics of EDM, Dielectric, Electrode Material, Modeling of Material Removal, Spark Erosion Generators, Analysis and Metal Removal Rate in RC circuit, Selection of Tool Material and Tool Design, Di-Electric system, Process Variables, Dielectric Pollution and its effects, Process Characteristics, Applications, Electric Discharge Grinding and Electric Discharge Diamond Grinding;

Wire EDM: Working Principle, Wire EDM Machine, Advances in Wire-cut EDM Process Variables, Process Characteristics, Applications.

UNIT-IV

Laser Beam Machining Back Ground, Production of Laser, Working Principle of LBM, Types of LASERS, Process Characteristics, Metallurgical effects, Advantages and Limitations, Applications.

Electron Beam Machining:

Electron Beam Action, Generation and control of Electron beam, Theory of Electron Beam Machining, Process Parameters, Process capabilities, Applications.

High Energy Rate Forming, Electro-Hydraulic Forming, Explosive Forming, Hot Machining Analysis of the Process.

RECOMMENDED BOOKS:

1 V.K. Jain, Advanced Machining Processes, Allied Publishers Pvt Ltd

2 P.C. Pandey and H.S. Shan, Modern Machining Processes, Tata McGraw- Hill

3 M. K. Singh, Unconventional Manufacturing Process, New Age Publishers

4 J. A. Mcgeough, Advanced Methods of Machining, Springer.

5 Benedict, Non-Traditional Manufacturing Process, CRC pub.

6 P. K. Mishra, Non-conventional manufacturing, Narosa Publishers

Note: The paper will have a total of NINE questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal weight of 12 marks. The student will attempt a total of *FIVE* questions, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

Programme Elective-II

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Semester) (CREDIT BASED)(w. e. f. 2018-19)

SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-111A	PRODUCT DESIGN AND DEVELOPMENT									
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTimeTestTestTestTestTestTestTest								
3	0	0	3	60	40	100	3 hrs			
Objective	The objective of the course is to understand about the product design and developments with inputs from aesthetics, ergonomics, design for manufacturing ease and cost effectiveness apart from reliability and durability and other considerations.									
		Co	urse Outcon	nes						
C01	To understand the production and mark	concept of proc keting, and aest	duct design, hetics.	design cons	iderations, d	esign practiced	by the industry,			
C02	To provide a detailed fundamental approach to several primary processes and design guidelines for manufacturing, assembly and environment.									
CO3	To discuss the hum	an factor engine	ering and the	e concept of v	alue enginee	ering.				
CO4	To study the more manufacturing and e	dern approach economic aspec	es to produ ts.	ıct design,	concept of	product devel	opment and its			

UNIT-I

INTRODUCTION: Introduction to product design, Design by evolution and innovation, Essential factors of product design, Production consumption cycle, Flow and value addition in production consumption cycle, Morphology of design.

PRODUCT DESIGN PRACTICE AND INDUSTRY: Product strategies, Time to market, Analysis of the product, Basic design considerations, Role of aesthetics in product design.

UNIT-II

DESIGN FOR MANUFACTURE AND ASSEMBLY: Overview and motivation, Basic method: Design guidelines: Design for assembly, Design for piece part production, Advanced method: Manufacturing cost analysis, cost driver modeling, Critique for design for assembly method.

DESIGN FOR THE ENVIRONMENT: Environmental objectives, Basic DFE methods, Design guidelines, Life cycle assessment, Techniques to reduce environmental impact.

UNIT-III

HUMAN ENGINEERING CONSIDERATIONS IN PRODUCT DESIGN: Human being as applicator of forces, Anthropometry, the design of controls, the design of displays, Man/Machine information exchange, Workplace layout from ergonomic considerations.

VALUE ENGINEERING: Value, Nature and measurement of value, Maximum value, Normal degree of value, Importance of value, value analysis job plan, creativity, steps to problem solving and value analysis, value analysis tests, value engineering idea generation check list, Cost reduction through value engineering-case study, materials and process selection in value engineering.

UNIT-IV

MODERN APPROACHES TO PRODUCT DESIGN: Concurrent design, Quality function deployment (QFD), Rapid prototyping, 3D printing, Introduction to 4D printing.

PRODUCT DEVELOPMENT: A modern product development process, reverse engineering and redesign product development process, product life cycle, product development teams, Product development planning, Manufacturing & economic aspects of product development.

RECOMMENDED BOOKS:

- 1. Kail T Ulrich and Steven D Eppinger, "Product Design and Development, TMH.
- 2. AK Chitale and Gupta, "Product Design and Engineering, PHI.
- 3. Niebel& Draper, "Product Design and Process Engineering", McGraw-Hill.
- 4. Kevin Otto & Kristin Wood, "Product Design-Techniques in reverse engineering and new product development" Pearson.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal weight of 12 marks. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Semester) (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

PECIALIZATION: MANUFACTURING SCIENCE & ENGINEER	ING
	1 0

MTIP-113A	SIMULATION OF INDUSTRIAL SYSTEMS											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time										
3	0	0	3	60	40	100	3 hrs					
Objective	The main o	bjective of the c	ourse is to in	part the students	with the knowle	dge of industria	al systems and					
	its simulation	its simulation.										
Course Outcomes												
C01	To explain	the concept of ir	ndustrial simu	lation systems an	d its models of s	imulation.						
CO2	To underst	and the simulation	on of discrete	and queuing syst	ems.							
CO3	To understa	and the simulation	on if inventory	systems and des	sign of simulatior	n experiments.						
CO4	To simulate	To simulate the industrial problems like reliability problems, computer time sharing problem and										
	understand	the simulation I	anguages.									

UNIT-I

Introduction and overview: concept of system, system environment, elements of system, system modeling, types of models, Monte Carlo method, system simulation, simulation - a management laboratory, advantages & limitations of system simulation, continuous and discrete systems.

Simulation of continuous systems: characteristics of a continuous system, comparison of numerical integration with continuous simulation system. Simulation of an integration formula.

UNIT-II

Simulation of discrete system: Time flow mechanisms, Discrete and continuous probability density functions. Generation of random numbers, testing of random numbers for randomness and for auto correlation, generation of random variants for discrete distribution, generation of random variants for continuous probability distributions-binomial, normal, exponential and beta distributions; combination of discrete event and continuous models.

Simulation of queuing systems: Concept of queuing theory, characteristic of queues, stationary and time dependent queues, queue discipline, time series analysis, measure of system performance.

Kendall's notation, auto covariance and auto correlation function, auto correlation effects in queuing systems, simulation of single server queues, multi-server queues, queues involving complex arrivals and service times with blanking and reneging.

UNIT-III

Simulation of inventory systems: Rudiments of inventory theory, MRP, in-process inventory, Necessity of simulation in inventory problems, forecasting and regression analysis, forecasting through simulation, generation of Poisson and Erlang variants, simulation of complex inventory situations.

Design of Simulation experiments: Length of run, elimination of initial bias, Variance, Variance reduction techniques, stratified sampling, antipathetic sampling, common random numbers, time series analysis, spectral analysis, model validation, optimization procedures, search methods, single variable deterministic case search, single variable non-deterministic case search, and regenerative technique.

UNIT-IV

Simulation of PERT: Simulation of - maintenance and replacement problems, capacity planning, production systems, reliability problems, computer time sharing problem, the elevator system.

Simulation Languages: Continuous and discrete simulation languages block structured continuous languages, special purpose simulation languages, SIMSCRIPT, GPSS SIMULA importance and limitations of special purpose languages.

RECOMMENDED BOOKS:

- 1. Loffick, Simulation and Modeling Tata McGraw Hill
- 2. Deo Narsingh, System Simulation with Digital Computer Prentice Hall
- 3. Hira, D.S., System Simulation-S. Chand & Co.
- 4. Meelamkavil, Computer Simulation and Modeling John Willey
- 5. Jorden, System Simulation Prentice hall
- 6. Jerry Banks and John, S. Carson II, 'Discrete Event System Simulation', Prentice Hall Inc., New Jersey, 1984.
- 7. Geoffrey Gordon, 'System simulation', Prentice Hall, NJ, 1978.
- 8. Law, A.M. and W.D. Keltor, 'Simulation modeling analysis', McGraw Hill, 1982.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal weight of 12 marks. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Semester) (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-115A	SUPPLY CHAIN MANAGEMENT									
Lecture	Tutori al	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	60	40	100	3 hrs			
Objective	The main objective of the course is to impart the students with the knowledge of Supply chain and different aspects of supply chain management.									
	Course Outcomes									
C01	To impa	rt knowledge ab	out basics of S	Supply chain	management ar	nd Supply cha	in dynamics.			
CO2	To acqu supply c	uaint students whain manageme	with the differe ent.	ent aspects	involved in sou	urcing and pr	rocurement in			
CO3	To impart knowledge to students about Evaluating performance of Supply chain and decision making about Transportation, Storage and warehousing.									
CO4	To let s Chain:	tudent understa	and Quantitativ	e tools for S	SCM, Informatio	on Technolog	y in a Supply			

UNIT-I

Overview of supply chain management: Introduction, Definition, The Objective of a Supply Chain, The Importance of Supply Chain Decisions, Decision Phases in a Supply Chain, Process Views of a Supply Chain, Examples of Supply Chains. **Supply chain dynamics**: Introduction, Coping with Dynamics in Supply chain. Bullwhip effect, Analysis of Bullwhip Effect, Impact of Lead time, Inventory management and Supply chain dynamics, off shoring and outsourcing Effect on SC dynamics and cost.

UNIT-II

Outsourcing and Make or Buy Decisions: Strategic Decisions and Core competencies, Tactical Decisions, Factors influencing make or buy decisions, Control of Production or Quality, Unreliable Suppliers, Suppliers Specialized knowledge and research, Small Volume Requirements, Limited Facilities, Workforce Stability, Multiple Sourcing Policy, Managerial and Procurement considerations, the Volatile nature of Make/Buy situation, Administration: Procedures and Personal.

Sourcing of Supply: Importance of Source Selection, Responsibilities for Source Selection, Evaluating a potential supplier, The criticality of Qualifying Sources, Competitive Bidding and Negotiation, Prerequisite for competitive bidding, Two step Bidding/Negotiation, Benefits and Risks of International Sourcing, Identifying and Qualifying an International Source.

UNIT-III

Supply Chain Performance: Achieving Strategic fit And Scope: Competitive and Supply Chain Strategies, Achieving Strategic Fit, Expanding Strategic Scope, Challenges to Achieving and Maintaining, Strategic Fit, Supply chain drivers and metrics, Financial Measures of Performance, Drivers of Supply Chain Performance, Framework for Structuring Drivers, Facilities, Inventory, Transportation, Information, Sourcing, Pricing.

Transportation, storage and warehousing: Introduction, Transportation mode choice, Transport operator decisions, Trucking sectors in India, Rail transport, Air Transport, Water transport, Transport network, Storage and warehousing, types of warehousing, risk pooling, IT Integration: Supply chain information system, Role of IT in SCM process, Business process Re-engineering, Internet and its applications in SCM.

UNIT-IV

Quantitative tools for SCM: Introduction, Forecasting, Demand forecast, Forecasting strategy & technique, Management of Inventories in SC, Linear programming, Routing models, pricing decisions, Introduction to MCDM approach.

Information Technology in a Supply Chain: The Role of IT in a Supply Chain, The Supply Chain IT Framework Customer Relationship Management, Internal Supply Chain Management, Supplier Relationship Management, The Transaction Management Foundation, The Future of IT in the Supply Chain, Risk Management in IT, Supply Chain IT in practice.

RECOMMENDED BOOKS:

1. Chopra, S., and Meindl, P., Supply chain Management: Strategy, Planning and Operations. Second Edition, Pearson Education (Singapore) Pte. Ltd, 2004.

2 Rangaraj, Supply Chain Management for Competitive Advantage, TMH.

- 3. Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E., Designing & Managing the Supply Chain: Concepts, Strategies & Case studies. Second Edition, Tata McGraw-Hill Edition, 2003.
- 4. Doebler, D.W. and Burt, D.N., Purchasing and Supply Chain Management: Text and Cases, McGraw-Hill Publishing Company Limited, New Delhi, 1996.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unitfrom each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Semester) (CREDIT BASED)(w. e. f. 2018-19)

SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTRM-111A		RESEARCH METHODOLOGY AND IPR										
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total										
				Test	Test							
2	0	0	2	60	40	100	3					
Objective	The objecti	The objective of this course is to make the students capable of formulating the research problems/										
	proposals a	proposals and get aware about the intellectual property and patent laws.										
			Course Out	comes								
CO 1	Student wil	l be able to un	derstand rese	arch problem	n formulation.							
CO 2	Student wil	l be able to an	alyze researc	h related info	rmation and fo	ollow researc	h ethics.					
CO 3	Student wil	I be able to u	nderstand the	Patents, De	signs, Trade	and Copyrig	ht and able to apply					
	the knowle	the knowledge for patent.										
CO 4	Student wi	Il be able to	understand	the concept	of Patent Ri	ghts, Licens	ing and transfer of					
	technology	and able to ap	oply the knowl	edge in new	developments	in IPR.						

Unit-I

Meaning of research problem, Sources of research problem, Criteria, characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, Data collection, Analysis, Interpretation, Necessary instrumentations.

Unit-II

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, How to write report, Paper. Developing a research proposal, Format of research proposal, a presentation and assessment by a review committee.

Unit-III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit-IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology, Patent information and databases, Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR, IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and Institutions.

RECOMMENDED BOOKS:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: An introduction for science & engineering students" Kenwyn, South Africa : Juta & Co. Ltd., 1996
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction" Juta Academic; 2nd edition (April 28, 2004)
- 3. Ranjit Kumar, "Research Methodology: A Step by Step Guide for beginners" SAGE Publications Ltd; Fourth edition (14 January 2014)
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", Aspen Publishers; Revised edition (July 25, 2007)
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTSE-103		Metal Cutting and Tool Design Lab										
Lecture	Tutorial Practical Credit Major Minor Practical Total Test											
0	0	0 4 2 - 40 60 100 3 h										
Objective	The main objective of the course is to impart the students with the knowledge of Tool Nomenclature and Importance of Tool Design in industry.											
			Col	urse Outco	mes							
C01	To impart	knowledge of p	practical eva	luation of ty	/pe of cutting	forces in orthogo	nal and obliqu	ue cutting.				
CO2	To acquai	nt students with	n the study o	of changes	in tool life du	ring various proce	esses.					
CO3	To impart point cutti	To impart knowledge to students about the tool chip interface temperature and fabrication of single point cutting tool according to tool signature.										
CO4	To let stude	ent understand	the effect of	f tool wear o	on cutting too	ls and design of s	stamping dies.					

List of Experiments:

- 1. Measurement of shear plane angle
- 2. Measurement of cutting forces in orthogonal cutting
- 3. Measurement of cutting forces in oblique cutting
- 4. Study of surface conditions during grinding process
- 5. Calculation of tool life during machining process
- 6. Measurement of tool chip interface temperature
- 7. Fabrication of single point cutting tool as per given tool signature
- 8. Study of tool wear on different cutting tools.
- 9. Design of stamping dies.

Note: At least eight experiments must be performed from the above mentioned list.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTSE-105	ADVANCED MANUFACTURING LAB											
Lecture	Tutorial	Practical	Credit	Practical	Total	Time						
0	0	4	2	-	40	60	100	3 hrs				
Objective	The main objective of the course is to impart the students with the knowledge of advanced Manufacturing techniques useful in industries.											
Course Outcomes												
C01	To impart I Working of	knowledge of p f various advar	ractical exer	rcises abour ents.	t grinding with	n surface measu	rement and kn	owledge of				
CO2	To acquair	nt students with	the use of <i>I</i>	Autocollima	tor and Metal	llurgical Microsco	ope.					
CO3	To impart knowledge to students about CNC machines and Non Destructive Testing.											
CO4	To let stude	nt Exercises o	n virtual instr	umentation	and Testing	on UTM.						

List of Experiments:

1. Exercises on grinding and surface measurement.

- 2. Measurements in Universal Measuring Microscope, Profile Projector, and with various advanced instruments.
- 3. Flatness measurement using autocollimator,
- 4. Metallographic studies using Metallurgical Microscope,
- 5. Programming and measurements with CNC Coordinate Measuring Machine, surface texture analysis.
- 6. Experiments on non-destructive evaluation using ultrasonic testers,
- 7. Exercises on virtual instrumentation.
- 8. Preparation of standard specimen and testing on UTM.
- 9. Measurement of surface roughness using roughness measurement tester.

Note: At least eight experiments must be performed from the above mentioned list.

Audit Course-I

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTAD-101A	ENGLISH FOR RESEARCH PAPER WRITING										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
2	0	0	-	-	100	100	3				
Objective	The objective of this course is to impart the knowledge of English for research paper writing.										
Course Outcomes											
C01	To understa	nd that how to	improve writir	ng skills and le	evel of readab	ility.					
CO2	To Learn about what to write in each section.										
CO3	To understand the skills needed when writing a title.										
CO4	To learn the	skills required	in writing the	results, discu	ssion and cor	clusions.					

Unit-I

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit-II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit-III

Review of the Literature, Methods, Results, Discussion, Conclusions, and The final Check. Key skills needed when writing a Title, key skills needed when writing abstract, key skills needed when writing an Introduction, skills needed when writing a Review of the Literature.

Unit-IV

Skills needed when writing the Methods, skills needed when writing the Results, skills needed when writing the Discussion, skills needed when writing the Conclusions, Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

RECOMMENDED BOOKS:

- 1. Goldbort R, "Writing for Science", Yale University Press (available on Google Books)
- 2. Day R, "How to Write and Publish a Scientific Paper", Cambridge University Press
- 3. Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book.
- 4. Adrian Wallwork, "English for Writing Research Papers", Springer New York Dordrecht Heidelberg London, 2011
MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTAD-103A			DISAS	TER MANAG	EMENT							
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)					
				Test	Test							
2	0	0	-	-	100	100	3					
Objective	The objectiv	he objective of this course is to impart the knowledge of disasters management.										
		Course Outcomes										
CO1	To demons	To demonstrate a critical understanding of key concepts in disaster risk reduction and										
	humanitaria	humanitarian response.										
CO2	To critically	evaluate disa	ster risk redu	ction and hur	manitarian res	ponse polic	cy and practice					
	from multiple	e perspectives										
CO3	To develop	an understand	ling of standa	rds of human	itarian respon	se and prac	ctical relevance					
	in specific ty	in specific types of disasters and conflict situations.										
CO4	To critically	understand th	e strengths ar	nd weaknesse	es of disaster	manageme	nt approaches,					
	planning an	id programmir	ng in differen	t countries,	particularly th	neir home	country or the					
	countries the	ey work in.										

Unit-I

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit-II

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.

Unit-III

Study of Seismic Zones, Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics.

Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data From Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.

Unit-IV

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation, Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment, Strategies for Survival.

Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation, Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, Pardeep (Eds.)," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, New Delhi.
- 3. Goel S. L., "Disaster Administration and Management Text and Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st semester) (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTAD- 105A	SANSKRIT FOR TECHNICAL KNOWLEDGE												
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time (Hrs.)											
		Test Test											
2	0	0	-	-	100	100	3						
Objective The objective of this course is to understand basic Sanskrit Language and Ancient Sanskrit													
literature related to science & technology.													
			Course Outc	omes									
CO1	Students wi	ll get a workir	ng knowledge	in illustrious	Sanskrit, the	scientific	language of the						
	world.												
CO2	Learning of	Sanskrit to imp	prove brain fur	ctioning.									
CO3	Learning of	Sanskrit to dev	velop the logic	in mathemat	ics, science &	& other sub	pjects enhancing						
	the memory	power.											
CO4	The enginee	ring scholars	equipped with	Sanskrit will	be able to ex	plore the	huge knowledge						
	from ancient	literature.											

Unit-I

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences

Unit-II

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit-III

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

- 1. Dr.Vishwas, "Abhyaspustakam" Samskrita-Bharti Publication, New Delhi
- 2. Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam "Teach Yourself Sanskrit" Prathama Deeksha-, New Delhi Publication
- 3. Suresh Soni, "India's Glorious Scientific Tradition" Ocean books (P) Ltd., New Delhi.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st semester) (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTAD-107A			VAI	UE EDUCA	TION						
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)				
2	0	0	-	-	100	100	3				
Objective	The objectiv	The objective of this course is to understand value education, self-development, and Imbibe									
	good values	in students an	d Let them kn	ow about the	importance of	of character	building.				
			Course Outc	omes							
C01	To get know	ledge of self-d	evelopment.								
CO2	To learn the	To learn the importance of Human values.									
CO3	To develop	the overall pers	sonality.								
CO4	To know abo	out the importa	nce of charac	ter.							

Unit-I

Values and self-development –Social values and individual attitudes, Work ethics, Indian vision of humanism, Moral and non-moral valuation, Standards and principles, Value judgments.

Unit-II

Importance of cultivation of values, Sense of duty, Devotion, Self-reliance, Confidence, Concentration, Truthfulness, Cleanliness, Honesty, Humanity, Power of faith, National Unity, Patriotism, Love for nature, Discipline.

Unit-III

Personality and Behavior Development - Soul and Scientific attitude, Positive Thinking, Integrity and discipline, Punctuality, Love and Kindness, Avoid fault Thinking, Free from anger, Dignity of labour, Universal brotherhood and religious tolerance, True friendship, Happiness Vs suffering, love for truth, Aware of self-destructive habits, Association and Cooperation, Doing best for saving nature.

Unit-IV

Character and Competence –Holy books vs Blind faith,Self-management and Good health, Science of reincarnation, Equality, Nonviolence, Humility, Role of Women, All religions and same message, Mind your Mind, Self-control, Honesty, studying effectively.

RECOMMENDED BOOKS:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Second Semester

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTSE-102		MECHANICAL FORMING OF MATERIALS											
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time (Hrs											
				Test	Test								
3	0	0	3	60	40	100	3						
Objective	The main o	The main objective of the course is to impart the students with the knowledge of mechanical											
	working of n	working of materials i.e. Metal forming processes, forging processes, drawing, sheet metal forming,											
	Extrusion et	С.											
			Course Ou	utcomes									
CO 1	The student	ts will be able	to know abo	ut metal form	ing processe	s, stress stra	ain relation, hot and						
	cold working	g processes.											
CO 2	The student	The students will be able to understand various forging processes and forging defects.											
CO 3	The student	s will be able t	o study about	drawing and	sheet metal f	orming proce	esses.						
CO 4	The student	s will be able t	o know about	extrusion and	d rolling proce	esses.							

UNIT-I

Metal Forming Technology: Metallurgical aspects of metal forming, slip, twinning mechanics of plastic deformation, effects of temperature, strain rate, microstructure and friction in metal forming-yield criteria and their significance, Classification of Metal Forming Processes, Advantages and Limitations, Stress strain relations in elastic and plastic deformation, concept of flow stresses, deformation mechanisms, Hot and Cold Working Processes and Its Effect on Mechanical Properties.

UNIT-II

Forging Processes:- Introduction and Classification, Operation and principle of Forging Processes and Equipment, Methods of forging, Open and Close Die Forging Processes, Defects, Structure and Properties of Forged Products. Force Analysis in forging. Other Related Processes like Cold Heading, Rotary Swaging, Sizing, Coining, Embossing and Roll Forging, Homogeneous upsetting, Analysis of plane strain, Upset forging of rectangular billet, Upsetting of rectangular plate-analysis, Analysis of Axisymmetric forging of a disk, Axi-symmetric forging of a disc-analysis, Forging die design, Forging defects, Forging die-design aspects, Forging defects, Introduction to powder forging.

UNIT-III

Drawing: Principles of Rod and wire drawing, Variables in wire drawing, Residual stresses in rod, Wire and tube drawing, Defects in Rod and wire drawing, Analysis of Wire Drawing Process and Load Calculations.

Sheet Metal Forming: Principle, process parameters, equipment and application of the following processes: spinning, stretch forming, plate, V and edge bending, Curling, Ironing, Roll Bending, Metal Spinning. Press brake forming, explosive forming, Hydro forming, electro hydraulic forming, and magnetic pulse forming, High Velocity forming of metals and High energy Rate forming.

UNIT-IV

Extrusion: Introduction and Classification, Extrusion Equipment, Forces in extrusion, Analysis of Extrusion Process, Extrusion of components including Seamless Pipes and Tubes, Extrusion of pipes by cold working, Other Related Processes like Impact Extrusion, Hydrostatic Extrusion, Piercing, Drawing, cupping and bending.

Rolling: Introduction and Classification, Types of Rolling Mills, Forces and Geometrical Relationships in Rolling, Calculation of Rolling Load, Roll Pass Design, Defects in Rolled Products, Residual stresses in rolled products, Other Related Processes like Roll Piercing, Ring Rolling, Pipe and tube production by rolling processes.

- 1. Mechanical Working of Metals- Theory and Practice Harris J.N
- 2. Engineering Metallurgy and Higgens ELBS/EA
- 3. Mechanical Metallurgy- Dieter G.E. Mc Graw Hill Publications.
- 5. Principles of Metal Working R.Rowe Amold London 1965.
- 6. Metals Handbook ASM Volume II ASM
- 7. Fundamentals of working of Metals Sach G. Pergamon Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTSE-104		COMPUTER INTEGRATED MANUFACTURING AND AUTOMATION											
Lecture	Tutorial	Practical	Credits	Maior	Minor	Total	Time (Hrs.)						
				Test	Test								
3	0	0	3	60	40	100	3						
Objective	The main o	The main objective of the course is to impart the students with the knowledge of computer											
	integrated m	integrated manufacturing, automation and automated material handling storage.											
			Course Outc	omes									
CO1	To understa	nd the concept	t of CAD/CAM	, CIM, compu	ter process m	nonitoring a	and control.						
CO2	To study the	e computer ai	ded quality co	ontrol method	ls, computeriz	zed manuf	facturing planning						
	and shop flo	and shop floor control.											
CO3	To understa	nd the concept	t of automated	I flow lines an	d design for a	utomated	assembly.						
CO4	To study the	concept of au	tomated mate	rial handling s	storage syster	m.							

UNIT-I

Production Development Through CIM: Computers in Industrial manufacturing, Product cycle & Production development cycle, Introduction of CAD/CAM & CIM, sequential and concurrent engineering, soft and hard prototyping.

Computer Process Monitoring: Process control methods, direct digital control, supervisory computer control, steady state optimal control, on line search strategies, adaptive control.

UNIT-II

Computer Aided Quality Control: The computer in Q.C, automated inspection principles and methods, Contact inspection methods, non-contact inspection methods, machine vision system, optical inspection method, sensors, coordinate, measuring machine, Computer-Aided testing, Integration of CAQL with CAD/CAM.

Computer Integrated Manufacturing: Fundamentals of CAD/CAM, Computerized Manufacturing planning systems, shop floor control & automatic identification techniques. Computer Network for manufacturing and the future automated factor.

UNIT-III

Detroit Type of Automation: Flow lines, Transfer Mechanisms, work pattern transfer, Different methods, & Problems. **Analysis of Automated Flow Lines:** Analysis of transfer lines without storage with storage buffer single stage, Double stage, Multistage with problems, Automated assembly systems, Design for automated assembly, parts feeding devices, analysis of Multi station assembly machine, Analysis of Single stage assembly machine.

UNIT-IV

Automated Material Handling Storage: Material functions, types of material handling equipment, analysis of material handling systems, design of system, conveyor system, automated guided vehicle systems, automated storage/retrieval systems, caroused storage systems ,work in process storage, interfacing handling & storage with manufacturing.

RECOMMENDED BOOKS:

- 1. CAD/CAM Zimmers & Grover PHI.
- 2. CAD/CAM/CIM P.Radhakrishna New Age International 2nd edition.
- 3. Automation, Production systems & Computer Aided Manufacturing M.P. Grover Prentice Hall 1984.
- 4. CAD/CAM Zeid Mc-Graw Hill 2005.
- 5. CAD/CAM P.N.Rao TMH.- 2nd edition, 2004.
- 6. Robotics for Engineering Koren.Y, Mc-Graw Hill 1985.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-III

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester) (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-106A			ADVANCED	WELDING PI	ROCESSES							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 hrs					
Objective	The main obj	he main objective of the course is to impart the students with the knowledge of Welding										
-	metallurgy and welding processes.											
Course Outcomes												
C01	To impart know	wledge about v	arious Weld ı	netallurgy and	d Weld arc cha	racteristics.						
CO2	To acquaint st	udents with the	e various weld	ling power sou	urces and their	r applications.						
CO3	To impart kno	wledge to stud	dents about E	lectrode coati	ings and Meta	I transfer phe	enomenon in					
	weld metal transfer.											
CO4	To let student	understand th	ne basics of S	Solid state we	Iding processe	es and some	of the latest					
	welding techni	ques.										

UNIT-I

WELDING METALLURGY: Introduction, Weld Metal Zone, Theory of solidification of metals and alloys, Homogeneous Nucleation, Heterogeneous Nucleation, Freezing of alloys, Epitaxial Solidification; Effect of Welding speed on Grain structure, Fusion boundary zone, Heat affected zone, Under bead zone, Grain Refined Zone, Partial transformed zone, Properties of HAZ

WELDING ARC: Definition of Arc, Structure and characteristics, Arc efficiency, arc blow, Electrical Characteristics of arc, Types of Welding Arcs, mechanism of arc initiation and maintenance, role of electrode polarity on arc behavior and arc stability, analysis of the arc, Arc length regulation in mechanized welding processes.

UNIT-II

WELDING POWER SOURCES: Requirement of an Arc welding power sources, basic characteristics of power sources for various arc welding processes, duty cycles, Selection of a static Volt-Ampere characteristic for a welding process, AC/DC welding power source, DC rectifiers, thyristor controlled rectifiers, transistorized units, inverter systems, Mathematical Problems on Static volt ampere characteristics

UNIT-III

COATED ELECTRODES: Electrode coatings, classification of coatings of electrodes for SMAW, SAW fluxes, role of flux ingredients and shielding gases, classification of solid and flux code wires.

METAL TRANSFER & MELTING RATE: Mechanism and types of metal transfer, forces affecting metal transfer, modes of metal transfer, metal transfer in various welding processes, effective of polarity on metal transfer and melting rate.

UNIT-IV

SOLID STATE WELDING: Theory and mechanism of solid state welding, techniques and scope of friction welding, diffusion welding, cold pressure welding and ultrasonic welding, high energy rate welding, analysis of the Process.

WELDING TECHNIQUES: Technique, scope and application of the electron beam and laser welding processes, under water welding - process & problem.

RECOMMENDED BOOKS:

1 Raymond Sacks, -Welding: Principles & Practices II McGraw-Hill

2 R.S.Parmar, -Welding processes & Technology, Khanna Publishers

3 R.S.Parmar, -Welding Engineering & Technology, Khanna Publishers

4 S.V. Nandkarni, -- Modern Arc Welding Technology, Oxford & IBH publishing Co.

5 L.M.Gourd, — Principles of Welding Technology, ELBS/ Edward Arnold.

6 Richard L. Little - Welding & Welding Technology, Mc-Graw Hill.

7 Cary, Howard – Modern Welding Technology', prentice Hall, 1998.

8 Rossi – Welding Technologyll, Mc-Graw Hill.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester) (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-108A		ADVANCED METAL CUTTING											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
3	0	0 0 3 60 40 100 3 hrs											
Objective	The main object	he main objective of the course is to impart the students with the knowledge of advanced cutting											
	tools, tools geo	tools, tools geometry, mechanisms and analysis.											
		C	ourse Outco	mes									
C01	To impart know	ledge about va	arious functior	nal related to tools of	jeometry.								
CO2	To acquaint wit	h the analysis	of fundament	al factors affecting I	ool forces								
CO3	To impart know	To impart knowledge about cutting tool life and mathematical modeling for wear.											
CO4	To let student u	nderstand abr	asive machini	ng and its process	simulation.								

UNIT-I

Introduction: Tool nomenclature, Tool Geometry, Mechanism of Chip formation and forces in orthogonal cutting, Merchant's force diagram.

Oblique Cutting: Normal chip reduction coefficient under oblique cutting, true shear angle, effective rake, influx region consideration for deformation, direction of maximum elongation, effect of cutting variables on chip reduction co-efficient, forces system in oblique cutting, effect of wear land on force system, force system in milling, effect of helix angle.

UNIT-II

Fundamentals of Dynamometry: Theoretical determination of forces, angle relations, heat and temperature during metal cutting; distribution, measurement, analysis, theoretical estimation of work piece temperature, hot machining

Fundamental factors, which effect tool forces: Correlation of standard mechanized test. (Abuladze –relation), nature of contact and stagnant phenomenon, rates of strains, shear strain and normal strain distributions, cutting variables on cutting forces.

UNIT-III

Cutting Tools: Tools materials analysis of plastic failure (from stability criterion), Analysis failure by brittle fracture, wear of cutting tools, criterion, flank and crater wear analysis, optimum tool life, tool life equations, (Taylor's woxen etc) Tool life test, machining optimization, predominant types of wear; abrasive, adhesive, diffusion wear models, wear measurements and techniques, Major Test of tool wear oxidative mathematical modeling for wear, test of machinability and influence of metallurgy on machinability. Economics of metal machining

UNIT-IV

Abrasive Machining: Mechanics of grinding, cutting action of grit, maximum grit chip thickness, energy and grit force temperature during grinding, wheel wear, grinding, process simulation, testing of grinding wheels, mechanics of lapping and honing, free body abrasion.

RECOMMENDED BOOKS:

- 1. Sen.& Bhattacharya, Principles of Machine tools, New Central Book Agency.
- 2. Brown, Machining of Metals, Prentice Hall.
- 3. Shaw, Principles of Metal cutting, Oxford I.B.H.
- 4. Arshimov & Alekree, Metal cutting theory & Cutting tool design, MIR Publications.
- 5. Machining Science & Application by Knowenberg Longman Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester) (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-110A		Metrology										
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total										
3	0	0	3	60	40	100	3 hrs.					
Objective	The main objective of the course is to deal with the basic principles of dimensional measuring											
	instruments and precision measurement techniques in achieving quality and reliability in the service											
	of any product in dimensional control.											
			Cours	se Outcomes								
C01	To understar	nd the studen	ts about the	e requirement	of metrology and the	concepts of lin	nit, fits and					
	gauges.			-		-						
CO2	To study the	linear and and	gular measui	rements and th	e optical measureme	nt tools and tech	nniques.					
CO3	To understan	id how to use	surface roug	hness and thr	ead measuring instrur	ments.						
CO4	To study the	comparators,	measureme	nt through con	parators and the adv	anced metrology	/ concepts.					

UNIT-I

Introduction to metrology: Definition, types, need of inspection, terminologies, methods of measurement, selection of instruments, measurement errors, units, Measurement standards, calibration, statistical concepts in metrology.

Systems of Limits and Fits: Introduction, nominal size, tolerance limits, deviations, allowance, fits and their types – unilateral and bilateral tolerance system, hole and shaft basis systems – interchangeability and selective assembly. Indian standard Institution system – British standard system, International standard system for plain and screwed work.

Limit Gauges: Taylor's principle – Design of limit gauges, computer aided tolerance.

UNIT-II

Linear Measurement: Length standard, line and end standards, slip gauges – calibration of the slip gauges, dial indicator, micrometers. Measurement of angles and tapers: Different methods – bevel protractor – angle slip gauges – spirit levels– sine bar – sine plate, rollers and spheres.

Flat Surface Measurement: Measurement of flat surfaces – instruments used – straight edges– surface plates – optical flat and auto collimator.

Optical Measuring Instruments: Tool maker's microscope and its uses, collimators, optical projector, optical flats and their uses, interferometer.

UNIT-III

Surface Roughness Measurement: Introduction, terminology, specifying roughness on drawings, surface roughness parameters, factors affecting surface roughness, ideal surface roughness, roughness measurement methods, precautions in measurement, surface microscopy, surface finish software.

Screw Thread Measurement: Elements of measurement, errors in screw threads, measurement of effective diameter, angle of thread and thread pitch, profile thread gauges.

Measurement through Comparators: Comparator, Features of comparators, classification of comparators, different comparators, advanced comparators, thread comparators.

UNIT-IV

Metrology of machine tools: Alignment and practical tests.

Gear Measurement: Gear measuring instruments, gear tooth profile measurement, measurement of diameter, pitch, pressure angle and tooth thickness.

Advanced Metrology: Advanced measuring machines, CNC systems, Laser vision, In-process gauging, 3D metrology, metrology software, Nano technology instrumentation, stage position metrology, testing and certification services, optical system design, lens design, coating design, precision lens assembly techniques, complex mechanical assemblies, contact bonding and other joining technologies.

RECOMMENDED BOOKS:

- 1. K.J. Hume, Engineering Metrology, Macdonald and Co. (publisher) London.
- 2. Czichos, the Springer handbook of metrology and Testing, 2011.
- 3. Jay. L. Bucher, the Metrology Hand book, American Society for Quality, 2004.
- 4. Smith GT, Industrial Metrology, Springer.
- 5. John W. Greve, Frank W. Wilson, Hand book of industrial metrology, PHI New Delhi.
- 6. D.M. Anthony, Engineering Metrology, Pergamon Press.
- 7. Khare MK, Dimensional Metrology, OXFORD-IBH Publishers.
- 8. I C Gupta, "Engineering Metrology", 5th Edition, Dhanapat Rai & Co, 2008.
- 9. R.K. Jain, "Engineering Metrology". 20th Edition, Khanna Publishers, 2007.
- 10. M. Mahajan, "Engineering Metrology", Dhanapati Rai publications, 2007.
- 11. BIS standards on Limits & Fits (IS 919), Surface Finish (IS 2073), Machine Tool Alignment, 1993.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-IV

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester) (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-112A		SEQUENCING AND SCHEDULING												
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time							
3	0	0	3	60	40	100	3 hrs							
Objective	The main obje	ne main objective of the course is to impart the students with the knowledge of different production and												
	machine mode	nachine models of sequencing and scheduling.												
			Course Ou	utcomes										
C01	To understand	the concept of	sequencing a	nd scheduling.										
CO2	To study and p	practice for the e	extension of ba	asic models and para	allel machine models.									
CO3	To understand	o understand the concepts of the flow shop scheduling and practice for the flow shop scheduling models.												
CO4	To understand	the job shop pr	oblems and si	mulation models for	dynamic job shop pro	oblem.								

UNIT-I

Single-Machine Sequencing: Introduction, Preliminaries, Problems without Due Dates, Problems with Due Dates

Optimization Methods for the Single-Machine Problem: Introduction, Adjacent Pair wise Interchange Methods, A Dynamic Programming Approach, Dominance Properties, A Branch and Bound Approach.

Earliness and Tardiness Costs: Introduction, Minimizing Deviations from a Common Due Date, The Restricted Version, Asymmetric Earliness and Tardiness Costs, Quadratic Costs, Job-Dependent Costs, Distinct Due Dates, Sequencing for Stochastic Scheduling.

UNIT-II

Extensions of the Basic Model: Introduction, Non-simultaneous Arrivals, Related Jobs, Sequence-Dependent Setup Times, Stochastic Models with Sequence-Dependent Setup Times.

Parallel machine models: Introduction, Minimizing the Makespan, Minimizing Total Flow time, Stochastic Models.

UNIT-III

Flow Shop Scheduling: Introduction, Permutation Schedules, The Two-Machine Problem, Special Cases of The Three-Machine Problem, Minimizing the Makespan, Variations of the *m*-Machine Model, Stochastic flow shop scheduling.

UNIT-IV

The Job Shop Problem: Introduction, Types of Schedules, Schedule Generation, The Shifting Bottleneck Procedure, Neighborhood Search Heuristics.

Simulation Models for the Dynamic Job Shop: Introduction, Model Elements, Types of Dispatching Rules, Reducing Mean Flowtime, Meeting Due Dates.

RECOMMENDED BOOKS:

1. Michael Pinedoo, Scheduling: theory, algorithms and systems, Prentice Hall, New Delhi, 1995.

2. King, J.R. Production planning and control, Pergamon International Library, 1975.

3. Kenneth R. Baker, Introduction to sequencing and scheduling, John Wiley and Sons, 1974.

4. Kenneth R. Baker and Dan Trietsch, Principles of sequencing and scheduling, John Wiley and Sons, 2009.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester) (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-114A		QUALITY ENGINEERING AND MANAGEMENT											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
3	0	0	3	60	40	100	3 hrs						
Objective	The main obje	he main objective of the course is to impart the students with the knowledge of quality tools and engineering for											
	the improveme	the improvement of product quality.											
			Course	Outcomes									
C01	To understand	l the statistical c	oncepts of quali	ty and quality statis	tics.								
CO2	To study the q	uality control ch	arts in productio	on process and prac	tice for its use in pro	blem solving.							
CO3	To understand	To understand the quality improvement tools.											
CO4	To study the IS	SO systems, fail	ure analysis and	d testing.									

Unit-I

Introduction to Quality: An Historical Overview: Defining Quality, Total Quality System, Total Quality Management, Economics of Quality, Quality, Productivity, and Competitive Position, Quality Costs, Success Stories.

Statistics for Quality: Variability in Populations, Some Definitions, Quality vs. Variability, Section I: Empirical Methods for Describing Populations, Section II: Mathematical Models for Describing Populations, Section III: Inference of Population Quality from a Sample.

Unit-II

Quality in Design: Planning for Quality, Product Planning, Product Design, Process Design.

Quality in Production-Process Control I: Process Control, Control Charts, Measurement Control Charts, Attribute Control Charts, Summary on Control Charts, Process Capability, Measurement System Analysis,

Quality in Production-Process Control II: Derivation of Limits, Operating Characteristics of Control Charts, Measurement Control Charts for Special Situations.

Unit-III

Quality in Procurement: Importance of Quality in Supplies, Establishing a Good Supplier Relationship, Choosing and Certifying Suppliers, Specifying the Supplies Completely, Auditing the Supplier, Supply Chain Optimization Using Statistical Sampling for Acceptance,

Continuous Improvement of Quality: The Need for Continuous Improvement, The Problem-Solving Methodology, Quality Improvement Tools, Lean Manufacturing.

Unit-IV

A System for Quality: The Systems Approach, Dr. Deming's System, Dr. Juran's System, Dr. Feigenbaum's System, Baldrige Award Criteria, ISO 9000 Quality Management Systems, ISO 9001:2008 Requirements, The Six Sigma System.

RECOMMENDED BOOKS:

- 1. Grant & Leave worth, Statistical Quality Control, McGraw Hill
- 2. Duncan, Quality Control & Industrial Statistics, Irwin Press
- 3. Juran, Quality Control Handbook, McGraw Hill.
- 4. Hansen, Quality Control, Prentice Hall
- 5. Thomason, An Introduction to reliability & control, Machinery Publishing.
- 6. A.V. Taylor, Total Quality Control, McGraw-Hill
- 7. K.S. Krishnamoorthi, V. Ram Krishnamoorthi, A First Course in Quality Engineering: Integrating Statistical and Management Methods of Quality, Second Edition, CRC Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units). All questions will have equal *weight of 12 marks*.

The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester) (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-116A			R	ELIABILITY ENGIN	EERING							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3 hrs										
Objective	The main ob	he main objective of the course is to impart the students with the knowledge of reliability analysis in industrial										
	system. Stud	system. Students can get acquainted with different reliability calculation models.										
			Course	Outcomes								
C01	To understar	nd the concepts	of reliability in ir	ndustrial systems.								
CO2	To study the	reliability deterr	nination method	s and advanced eva	luation techniques.							
CO3	To understar	nd various reliab	ility prediction a	nd evolution method	ls.							
CO4	To acquaint t	the fundamental	s of reliability m	anagement and risk	assessment.							

UNIT-I

Reliability Engineering: Reliability function, failure rate, Mean time between failures (MTBF), Mean time to failure (MTTF), mortality curve, useful life availability, maintainability, system effectiveness, Introduction to probability distributions.

Time to failure distributions: Exponential, normal, Gamma, ranking of data, probability plotting techniques, Hazard plotting Concept of Bathtub Hazard Rate curve, Reliability evaluation of two-state device networks-series, parallel, k-out-of-m systems; Standby redundant systems, Reliability evaluation of three-state device networks-series and parallel.

UNIT-II

Reliability Determination and Prediction: Reliability Determination Methods: Network reduction technique, Path tracing technique, Decomposition technique, Delta-Star method.

Advanced Reliability Evaluation Concepts: Supplementary variables technique, Interference theory, Human reliability, Common cause failures, Fault trees, Failure mode and effect analysis

UNIT-III

Reliability Prediction Models: Series and parallel systems - RBD approach - Standby systems - m/n configuration - Application of Baye's theorem - cut and tie set method - Markov analysis - FTA - Limitations.

UNIT-IV

Reliability testing: Time acceleration factor, influence of acceleration factor in test planning, application to acceleration test, high temperature operating life acceleration model, temperature humidity bias acceleration model, temperature cycle acceleration model, vibration accelerator model, failure free accelerated test planning, Accelerated reliability growth.

Risk Assessment: Definition and measurement of risk, risk analysis techniques, risk reduction resources, industrial safety and risk assessment.

RECOMMENDED BOOKS:

1. Charles E. Ebeling, "An introduction to Reliability and Maintainability engineering", TMH, 2000.

- 2. Roy Billington and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Springer, 2007.
- 3. Sharma S C, Inspection Quality Control and Reliability, Khanna Publishers.
- 4. Connor P.D.T.O. Practical Reliability Engineering", John Wiley.
- 5. Naikan V N A Reliability Engineering and Life Testing", PHI Learning Private Limited.
- 6. Prabhakar Murthy D N and Marvin R, "Product Reliability", Springer-Verlag.
- 7. Dana Crowe and Alec Feinberg, Design for Reliability, CRC Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units). All questions will have equal *weight of 12 marks*.

The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester)

(CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTSE-106		Computer Integrated Manufacturing Lab											
Lecture	Tutorial	Practical	Credit	Major	Minor	Practical	Total	Time					
				Test	Test								
0	0	4	2	-	40	60	100	3 hrs					
Objective	The main obj	ective of the	course is to i	impart the st	udents with th	he knowledge of	hardware ar	nd software					
	of CAD syste	of CAD system, creating 2-D and 3-D models using pro-E software, converting 3-D model into 2-D model											
	using pro-E a	using pro-E and case study of automotive component industry in FMS system.											
			Cou	Irse Outcom	nes								
C01	To impart kno	owledge of pr	actical evalu	ation of the	hardware and	d software of cad	system, diff	erent robot					
	configuration	and creating	2-D model ir	n pro-E softw	are.		-						
CO2	To acquaint s	students with	he study of o	different com	mands in the	part model.							
CO3	To impart kno	To impart knowledge to students about creating the 3-D model using pro-E software and converting the											
	3-D model int	o 2-D model.		-				_					
CO4	To let student	understand of	generating	NC program	for machining	g a 3-D model us	ing pro-E.						

LIST OF EXPERIMENTS

- 1. To study the hardware and software of cad system.
- 2. To study the different configuration of robots and their application.
- 3. To create the 2-D models in the sketch mode by using Pro-E software.
- 4. To study the different commands in the part mode
- 5. To create the 3-D model in part mode by using pro-E software.
- 6. To assemble the 3-D model in assemble mode by using Pro-E software.
- 7. To create the surface model in the part mode by using Pro-E software.
- 8. To convert the 3-D model in 2-D model by using Pro-E software.
- 9. To generate a NC program for machining a 3 D model generated by Pro E.
- 10. To study the different elements of FMS system take a case study of automotive component industry.

Note: At Least eight experiments need to be performed by the students from the above mentioned list.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTSE-108		ADVANCE WELDING LAB											
Lecture	Tutorial	TutorialPracticalCreditMajorMinorPracticalTotalTestTestTestTestTestTest											
0	0	4	2	-	40	60	100	3 hrs					
Objective	The main object modern industr	The main objective of the course is to impart the students with the knowledge of advance welding methods used in nodern industries.											
			Co	urse Outcon	nes								
C01	To understand	the working of A	Arc welding s	setup and spo	t welding setup).							
CO2	To understand	the working of	FIG welding,	plasma weldi	ing, cutting & B	razing.							
CO3	To understand	o understand the working of SMAW, GMAW, FCAW welding methods.											
CO4	To understand	the working of (GTAW weldir	ng, Inspectior	and testing of	weld joints.							

LIST OF EXPERIMENTS

- 1. To perform Exercise on Arc welding setup for V Butt joint arrangement.
- 2. To perform Exercise on Arc welding setup for V Lap joint arrangement.
- 3. To perform Exercise on spot welding in Lap joint arrangement.
- 4. To perform Experimental study on TIG welding.
- 5. To perform Exercise on plasma welding, cutting & brazing.
- 6. To study and perform exercise on Shielded metal arc welding (SMAW).
- 7. To study and perform exercise on Gas metal arc welding (GMAW).
- 8. To study and perform exercise on flux cored arc welding (FCAW).
- 9. To study and perform exercise on gas tungsten arc welding (GTAW).
- 10. To study the welding inspection and testing of weld joint.

Note: Atleast eight experiments need to be performed by the students from the above mentioned list.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTSE-110		MINI PROJECT										
Lecture	Tutorial	TutorialPracticalCreditsMajorMinorTotalPracticalTimeTestTestTestTest(Hrs.)										
0	0	4	2	-	100	100		3				
Objective	In case of r	nini project, th	ey will solve	a live proble	em using so	ftware/ana	lytical/computa	ational tools				
	or fabricate	an experiment	tal setup.									
			Course	Outcomes								
CO 1	Students wi	Students will learn to write technical reports.										
CO 2	Students w	Students will develop skills to present and defend their work in front of technically qualified										
	audience.	-										

Students can take up small problems in the field of manufacturing science & engineering as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

Students will be required to submit a brief synopsis of 3-4 pages related to the topic by the first week of September.

Audit Course-II

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTAD- 102A			CONS	TITUTION O	F INDIA		
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)
				Test	Test		
2	0	0	-	-	100	100	3
Objective	The main ob	jective of the c	ourse is to ir	npart the stud	dents with the	knowledge o	f informing the
	twin themes	of liberty and f	reedom from	a civil rights	perspective a	nd to address	s the growth of
	Indian opinio	on regarding m	odern Indian	intellectuals'	constitutional	role and enti	tlement to civil
	and econom	nic rights as w	ell as the ei	mergence of	nationhood i	n the early y	ears of Indian
	nationalism.						
		(Course Outc	omes			
C01	To discuss t	he growth of th	ne demand fo	or civil rights i	in India for th	e bulk of Indi	ans before the
	arrival of Ga	ndhi in Indian p	olitics.				
CO2	To discuss	the intellectu	al origins o	of the frame	ework of arg	gument that	informed the
	conceptualiz	ation of social r	eforms leadi	ng to revolutio	on in India.		
CO3	To discuss t	he circumstance	es surroundir	ng the founda	tion of the Co	ngress Social	ist Party [CSP]
	under the le	eadership of Ja	waharlal Ne	hru and the o	eventual failu	re of the pro	posal of direct
	elections thr	ough adult suffr	age in the In	dian Constitut	tion.		
CO4	To discuss t	he passage of t	he Hindu Co	de Bill of 1956	ó.		

Unit-I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit-II

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit-III

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Pachayati raj: Introduction, PRI: Zila Pachayat, Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit-IV

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners, State Election Commission, Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar, "framing of Indian Constitution", 1st Edition, 2015.
- 3. M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester) (CREDIT BASED) (w. e. f. 2018-19)

SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTAD-104A		PEDAGOGY STUDIES										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)					
				Test	Test							
2	0	0	-	-	100	100	3					
Objective	The main of	The main objective of the course is to review existing evidence on the review topic to inform										
	Programme o	lesign and pol	icy making un	dertaken by t	he DFID, othe	er agencies	s and researchers					
	and Identify	and Identify critical evidence gaps to guide the development.										
	Course Outcomes											
C01	Understand	the pedagoo	jical practices	s being used	d by teache	rs in forr	nal and informal					
	classrooms	in developing (countries.									
CO2	Become awa	are of the evid	ence on the e	ffectiveness o	f these pedag	jogical pra	ctices, in different					
	conditions a	nd with differe	nt population of	of learners.								
CO3	Understand	the significan	ce of teacher	education (c	urriculum and	practicun	n) and the school					
	curriculum a	nd guidance n	naterials for ef	fective pedag	ogy.							

Unit-I

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education, Conceptual framework, Research questions, Overview of methodology and Searching.

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries, Curriculum, Teacher education.

Unit-II

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage, quality assessment of included studies, How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy, Theory of change, Strength and nature of the body of evidence for effective pedagogical practices, Pedagogic theory and pedagogical approaches, Teachers' attitudes and beliefs and Pedagogic strategies.

Unit-III

Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community, Curriculum and assessment, Barriers to learning, limited resources and large class sizes.

Unit-IV

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

- 1. Ackers J, Hardman F, "Classroom interaction in Kenyan primary schools", Compare, 31 (2): 245-261.
- 2. Agrawal M, "Curricular reform in schools: The importance of evaluation", Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K, "Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J, "Improving teaching and learning of basic math and reading in Africa: Does teacher preparation count?" International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ, "Culture and pedagogy: International comparisons in primary education". Oxford and Boston: Blackwell.
- 6. Chavan M, "Read India: A mass scale, rapid, 'learning to read' campaign"

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTAD-106A		STRESS MANAGEMENT BY YOGA											
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)						
2	0	0	-	-	100	100	3						
Objective	The main ob	The main objective of the course is to achieve overall health of body and mind and to											
-	overcome st	ress				-							
		Cour	rse Outcome	es									
CO1	Develop he	althy mind in a	healthy body	thus improvi	ng social hea	lth.							
CO2	Improve efficiency												
CO3	Learn the Yogasan												
CO4	Learn the F	ranayam											

Unit-I

Definitions of Eight parts of yog. (Ashtanga)

Unit-II

Yam and Niyam. Do's and Don't's in life.

i) Ahinsa, satya, astheya, bramhacharya and aparigraha

ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

Unit-III

Asan and Pranayam

i) Various yog poses and their benefits for mind & body ii) Regularization of breathing techniques and its effects-Types of pranayam

- 1. Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Tarining-Part-I" : Nagpur
- 2. Swami Vivekananda, "Rajayoga or conquering the Internal Nature" Advaita Ashrama (Publication Department), Kolkata

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTAD-108A		PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS										
Lecture	Tutorial	TutorialPracticalCreditsMajorMinorTotalTimeTestTestTest(Hrs.)										
2	0	0 0 - 100 100 3										
Objective	To learn to	To learn to achieve the highest goal happily.										
	To become	To become a person with stable mind, pleasing personality and determination.										
	To awaken	wisdom in stud	dents.									
		Cou	Irse Outcom	es								
CO1	Students b	ecome aware a	about leaders	hip.								
CO2	Students will learn how to improve communication skills											
CO3	Understand the team building and conflict											
CO4	Student wil	l learn how to	manage the ti	me.								

Neetisatakam-Holistic development of personality

- i) Verses- 19,20,21,22 (wisdom)
- ii) Verses- 29,31,32 (pride & heroism)
- iii) Verses- 26,28,63,65 (virtue)
- iv) Verses- 52,53,59 (dont's)
- v) Verses- 71,73,75,78 (do's)

Approach to day to day work and duties.

Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47, 48, Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5, 13, 17, 23, 35, Chapter 18-Verses 45, 46, 48.

Statements of basic knowledge.

Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68

Chapter 12 - Verses 13, 14, 15, 16, 17, 18

Personality of Role model. Shrimad Bhagwad Geeta:

Chapter 2-Verses 17,

Chapter 3-Verses 36, 37, 42,

Chapter 4-Verses 18, 38, 39

Chapter18 - Verses 37, 38, 63

- 1. Swami Swarupananda, "Srimad Bhagavad Gita" Advaita Ashram (PublicationDepartment), Kolkata
- 2. P.Gopinath, "Bhartrihari's Three Satakam (Niti-sringar-vairagya) by, Rashtriya Sanskrit Sansthanam, New Delhi.

Third Semester (Programme Elective-V)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-201A		ENTERF	PRISE RESO	URCE PLANNI	VG				
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0	0	3	60	40	100	3		
Objective	The main objective of the course is to impart the students with the knowledge of integrated applications to manage the business and automate many back office functions related to technology, services and human resources.								
	·		Course Ou	utcomes					
C01	To study the b	asic principles	and models	of an enterprise.					
CO2	To understand	To understand the concepts of technology and architecture in ERP.							
CO3	To study ERP system packages.								
CO4	To study the E	RP procureme	nt issues.						

UNIT I

ENTERPRISE RESOURCE PLANNING:

Introduction, Evolution of ERP, Principle of ERP, Enabling Technologies, ERP Characteristics, Features of ERP, The advantages of ERP, Reasons for the Failure of ERP Implementation, Risk and governance issues in an ERP, ERP Framework, Business Blueprint, Business Engineering Vs. Business Process Re-Engineering, ERP Tools and Software, Demand Chain, Value Chain, and Supply Chain.

UNIT-II

ERP ARCHITECTURE: Need to Study ERP Architecture, Layered Architecture, Types of ERP Architecture, Two-tier Implementations, Three-tier Client/Server Implementations, Web-based architecture, Service-Oriented Architectures, Logical Architecture of an ERP System, Physical Architecture of an ERP System, and Evaluation Framework for ERP Acquisition.

UNIT III

ERP PACKAGE INTEGRATION AND IMPLEMENTATION: ERP market, SAP, People soft, BAAN company, ORACLE corporation, A comparative assessment and selection of ERP packages and modules, Sales Force Automation, Integration of ERP, Integration of ERP and the Internet, ERP implementation strategies, Comparison of Big Bang vs. Phased Approach, Implementation Strategy in Small and Medium Enterprise, Post Implementation Issues.

UNIT IV

OVERVIEW OF ARCHITECTURE OF DIFFERENT ERP SOFTWARES: Oracle overview, Architecture, A.I.M. and applications, SAP Software architecture overview, ERP before and after Y2K, Impact of Y2K on ERP Development, Risk and Governance Issues in an ERP

ERP MODULES: Finance module, Sales & Distribution module, Human Resources module, Plant Maintenance module, Quality Management module, Material management module, manufacturing management module.

RECOMMENDED BOOKS:

- 1. Sadagopan. S, ERP-A Managerial Perspective, Tata Mcgraw Hill, 1999.
- 2. Jose Antonio Fernandez, the SAP R/3 Handbook, Tata Mcgraw Hill, 1998.
- 3. Vinod Kumar Crag and N.K. Venkitakrishnan, Enterprise Resource Planning- Concepts and Practice, Prentice Hall of India, 1998.

4. Garg & Venkitakrishnan, ERPWARE, ERP Implementation Framework, Prentice Hall, 1999.

5. Thomas E Vollmann and Bery Whybark, Manufacturing and Control Systems, Galgothia Publications, 1998.

6.Alexis Leon, Enterprise resource planning, Tata Mcgraw-Hill

Note: The paper will have a total of *NINE questions*. QuestionNo.1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all FourUnits).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-203A	DESIGN OF EXPERIMENTS											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3 hrs										
Objective	To understand	To understand the various design of experiments techniques for optimization of problems.										
		(Course Outo	comes								
C01	To understand the	he concepts of	Design of E	xperiment an	d statistical N	lethods.						
CO2	To understand the second the second the second se	To understand the ANOVA and factorial design and fitting response curves and surfaces.										
CO3	o study the application of Taguchi Method and testing of hypothesis											
CO4	To study and im	plement the R	esponse Sur	face Methodo	ology.							

UNIT-I

Introduction to Designed Experiments: Introduction, Strategyofexperimentation, Sometypicalapplicationsofexperimentaldesign, Basic principles, Guidelines for designing experiments, Using statistical design in experimentation, A Checklist for Planning experiments, *Introduction to Minitab, Interface of Minitab, Customizing Minitab, Entering Data, Graphing Data, Printing Data and Graphs, Saving and Retrieving information.*

Basic Statistical Methods: Introduction, Basic statistical concepts, Types of Data, Graphical Presentation of Data.

Descriptive Statistics: Measure of Location, Measure of Variation, The Normal Distribution, Counting, Minitab Commands to Calculate Descriptive Statistics.

Inferential Statistics: The Distribution of Sample Means (R Known), Confidence Interval for the Population Mean (σ Known), Hypothesis testing for one sample mean (σ Known), Hypothesis test for two sample means, Testing for Normality, Hypothesis test and Confidence Intervals with Minitab.

UNIT-II

Analysis of Variance: Introduction to Analysis of Variance, ANOVA assumptions and Validation, ANOVA Table, The sum of square approach to ANOVA calculations, Analysis of the fixed Effect model, Decomposition of the Total sum of squares. Statistical analysis, Estimation of the Model Parameters, Unbalanced Data, Model Accuracy Check, Practical interpretation of results. *ANOVA with Minitab*

Factorial Experiments: Basic definition and principles, Advantages of factorials, Two level factorial design, The 2¹ Factorial Experiment, The 2² Factorial Experiment, The 2³ Factorial Design, Addition of Centre Cells to 2^k Designs. General Procedure for Analysis of 2^k designs. 2^k Factorial Designs in Minitab.

UNIT-III

Introduction to Taguchi Method: Introduction, Taguchi Quality loss function, Orthogonal Array, Properties of Orthogonal Array, Minimum number of experiments to be conducted, Static Problems, Dynamic Problems, Assumptions of the Taguchi method, Steps in Taguchi Method, Assessment of Factors and Interactions, Selection and Application of Orthogonal arrays, Data Analysis from Taguchi Experiments, Variable Data with main factors only, Variable Data with Interactions, Attribute Data Analysis, Confirmation Experiment, Confidence Intervals, Robust Design Approach. *Applications of Taguchi Method using Minitab.*

UNIT-IV

Introduction to Response Surface Methodology: Introduction, Terms in Quadratic Models, The method of steepest ascent, Analysis of Second order response surfaces, Experimental design for fitting response surfaces, 2k Designs with Centers, 3^k Factorial Designs, Box- Behnken Designs, Central Composite Designs, Analysis of Data from RSM Designs, Design Considerations for Response Surface Experiments. *Response Surface Designs in Minitab.*

- 1. Douglas C Montgomery, Design and Analysis of Experiments, John Wiley
- 2. Paul G. Mathews, Design of Experiments with MINITAB, New Age International Publishers.
- 3. K. Krishnaiah, P. Shahabudeen, Applied Design of Experiments and Taguchi Methods, PHI.
- 4. Angela Dean and Daniel Voss, Design and Analysis of Experiments, Springer.
- 5. John P.W.M., Statistical Design and Analysis of Experiments, John Wiley
- 6. Montgomery D.C., Runger G. C., Introduction to Linear Regression Analysis, John Wiley

- 7. Myres R.H. and Montgomery D.C., Response Surface Methodology Process and Product Optimization Using Designed Experiments, Wiley
- 8. G UNIPUB, White Plains, Introduction to Quality Engineering Taguchi, New York.
- 9. https://www.ee.iitb.ac.in/~apte/CV_PRA_TAGUCHI_INTRO.htm
- 10. www.ecs.umass.edu/mie/labs/mda/fea/sankar/chap2.html

Note: The paper will have a total of *NINE questions*.QuestionNo.1, which is compulsory, shall be Objective Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTIP-205A	STRATEGIC ENTREPRENEURSHIP												
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time											
3	0	0	3	60	40	100	3 hrs						
Objective	To provide programme a	To provide knowledge to the students about entrepreneurship concepts and various development programme and policies.											
			Cours	e Outcomes									
C01	To know ab	out the small	scale industrie	es, scopes and the c	auses of their sickn	ess.							
CO2	To know ab	To know about the EDP and different government policies.											
CO3	To learn ab	To learn about business incubations and its future perspectives.											
CO4	To learn E-b	ousiness mark	ceting and dev	elopments.									

UNIT-I

Small Scale Industries: Definition and types of SSI's; Role, scope and performance in national economy; Problems of small scale industries.

Industrial Sickness: Definition; Causes of sickness; Indian scenario, Government help; Management strategies; Need for trained entrepreneurs

UNIT-II

Entrepreneurship Development Programme: Introduction, Origin of EDP's, Organizations involved in EDP's, Objectives of EDPs, Implementation of EDP's, Short comings of EDP's, Role in entrepreneurship development.

Step: Introduction, Origin, Status in India, Success and failure factors, Govt. polices and incentives, future prospects in India.

UNIT-III

Business Incubation: Introduction, Origin and development of business incubators in India and other countries, types of incubators, success parameters for a business incubator, Benefits to industries, institutes, government and society, future prospects, A few case studies (at least 2).

Project Management: Concept, Characteristics and Significance of Project Management, Components of Project Management, Project Life Cycle, Project Identification and Selection, Project Formulation and Appraisal.

UNIT-IV

Special Aspects of Entrepreneurship: Entrepreneurship, Social entrepreneurship, International entrepreneurship, Rural entrepreneurship, Community Development, Women entrepreneurship.

Network Marketing: Introduction, E-business, E-commerce, E-auction, A basic internet e-business architecture, A multi-tier e-business architecture.

RECOMMENDED BOOKS:

- 1. P.K. Gupta, Strategic Entrepreneurship, Everest Publishing House.
- 2. David Cleland, Project Management Strategic Design and Implementation, McGraw Hill.
- 3. David H Holl, Entrepreneurship-New Venture Creation, Prentice Hall of India.
- 4. Steed & Steed, Sustainable Strategic Management, Prentice Hall of India.
- 5. Kotler, Marketing Management by Prentice Hall of India.
- 6. Tarek Khalil, Management of Technology, McGraw Hill.
- 7. Henry Steiner, Engineering Economic Principles, McGraw Hill.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal weight of 12 marks. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

10(1786)

Open Elective

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTOE-201A	BUSINESS ANALYTICS										
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time (H Test </th									
3	0	0	3	60	40	100	3				
Objective	The main ob	jective of this c	ourse is to giv	e the studen	t a comprehe	nsive unde	rstanding of				
	business and	alytics methods									
		0	Course Outco	omes							
CO1	Able to have	knowledge of v	various busin	ess analysis	techniques.						
CO2	Learn the requirement specification and transforming the requirement into different models.										
CO3	Learn the requirement representation and managing requirement assets.										
CO4	Learn the Re	ecent Trends in	Embedded a	nd collaborat	ive business						

Unit-I

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

Unit-II

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents. Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

Unit-III

Finalizing Requirements, Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements, Managing Requirements Assets: Change Control, Requirements Tools

Unit-IV

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

RECOMMENDED BOOKS:

- 1. James Cadle, "Business Analysis", BCS, The Chartered Institute for IT.
- 2. Erik Larson and, Clifford Gray, "Project Management: The Managerial Process", McGraw-Hill Education.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTOE-203A	INDUSTRIAL SAFETY										
Lecture	Tutorial	Time (Hrs.)									
				Test	Test						
3	0	0	3	60	40	100	3				
Objective	The main of and fault find	The main objective of this course is to aware students about the industrial safety maintenance and fault findings.									
		0	Course Outo	comes							
CO1	Understand	the industrial sa	afety.								
CO2	Analyze fundamentals of maintenance engineering.										
CO3	Understand the wear and corrosion and fault tracing.										
CO4	Understand	ing when to do p	periodic ince	ptions and ap	ply the preven	iting maint	enance.				

Unit-I

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-II

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion, Types of corrosion, Corrosion prevention methods.

Unit-III

Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-IV

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

RECOMMENDED BOOKS:

- 1. Higgins & Morrow, "Maintenance Engineering Handbook", Da Information Services.
- 2. H. P. Garg, "Maintenance Engineering", S. Chand and Company.
- 3. Audels, "Pump-hydraulic Compressors", Mcgraw Hill Publication.
- 4. Winterkorn, Hans, "Foundation Engineering Handbook", Chapman & Hall London.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTOE-205A			OPER	ATIONS RES	SEARCH				
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)		
				Test	Test				
3	0	0	3	60	40	100	3		
Objective	The main objective of this course is to aware students about the dynamic programming to solve problems of discrete and continuous variables and model the real world problem and simulate it.								
		C	Course Outo	omes					
C01	Students sh continuous	ould be able to variables.	apply the dy	ynamic progr	amming to so	lve probler	ms of discreet and		
CO2	Students sh	ould be able to a	apply the cor	ncept of non-	linear program	nming			
CO3	Students sh	ould be able to	carry out ser	nsitivity analys	sis				
CO4	Student sho	uld be able to m	nodel the rea	I world proble	em and simula	te it.			

Unit-I

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit-II

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit-III

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit-IV

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

RECOMMENDED BOOKS:

- 1. H.A. Taha, "Operations Research, An Introduction", PHI, 2008
- 2. H.M. Wagner, "Principles of Operations Research", PHI, Delhi, 1982.
- 3. J.C. Pant, "Introduction to Optimisation: Operations Research", Jain Brothers, Delhi, 2008
- 4. Hitler Libermann, "Operations Research", McGraw Hill Pub. 2009
- 5. Pannerselvam, "Operations Research", Prentice Hall of India 2010
- 6. Harvey M Wagner, "Principles of Operations Research", Prentice Hall of India 2010

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTOE-207A	COST MANAGEMENT OF ENGINEERING PROJECTS						
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)
3	0	0	3	60	40	100	3
			•				
Objective	The main objective of this course is to impart the students with the knowledge of cost						
	management for the engineering project and apply cost models to the real world projects.						
Course Outcomes							
CO1	Students should be able to learn the strategic cost management process.						
CO2	Students should be able to understand types of project and project team types						
CO3	Students should be able to carry out Cost Behavior and Profit Planning analysis.						
CO4	Student should be able to learn the quantitative techniques for cost management.						

Unit-I

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making, relevant cost, Differential cost, Incremental cost and Opportunity cost, Objectives of a Costing System, Inventory valuation, Creation of a Database for operational control, Provision of data for Decision-Making.

Unit-II

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning, Project execution as conglomeration of technical and nontechnical activities, Detailed Engineering activities, Pre project execution main clearances and documents Project team, Role of each member, Importance Project site, Data required with significance, Project contracts, Types and contents, Project execution Project cost control, Bar charts and Network diagram, Project commissioning, mechanical and process.

Unit-III

Cost Behavior and Profit Planning Marginal Costing, Distinction between Marginal Costing and Absorption Costing, Break-even Analysis, Cost-Volume-Profit Analysis, Various decision-making problems, Standard Costing and Variance Analysis, Pricing strategies, Pareto Analysis, Target costing, Life Cycle Costing, Costing of service sector, Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints, Activity Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis, Budgetary Control, Flexible Budgets, Performance budgets, Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit-IV

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

RECOMMENDED BOOKS:

- 1. Charles Thomas Horngren, "Cost Accounting a Managerial Emphasis", Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, "Advanced Management Accounting"
- 3. Robert S Kaplan Anthony A. Alkinson, "Management & Cost Accounting"
- 4. Ashish K. Bhattacharya, "Principles & Practices of Cost Accounting", A. H. Wheeler publisher
- 5. N.D. Vohra, "Quantitative Techniques in Management", Tata McGraw Hill Book Co. Ltd.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

	1		00145					
MTOE-209A	COMPOSITE MATERIALS							
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)	
				Test	Test			
3	0	0	3	60	40	100	3	
Objective	The main objective of this course is to impart the students with the knowledge of composites,							
	its materials, analysis, fabrication, and performance analysis.							
Course Outcomes								
CO1	Students should be able to learn the classification and characteristics of composite materials.							
CO2	Students should be able to understand about different fabrication techniques related to metal							
	matrix composites.							
CO3	Students should be able to understand about different fabrication techniques related to polymer							
	matrix comp	osites.				•	. ,	
CO4	Student should be able to do the analyses of the composite materials under different loading							
	conditions.		-				-	

UNIT-I

INTRODUCTION: Definition – Classification and characteristics of Composite materials, Advantages and application of composites, Functional requirements of reinforcement and matrix, Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures, Iso-strain and Iso-stress conditions.

unit – II

Manufacturing of Metal Matrix Composites: Casting, Solid State diffusion technique, Cladding, Hot iso static pressing, Properties and applications.

Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration, Liquid phase sintering, Manufacturing of Carbon, Carbon composites, Knitting, Braiding, Weaving. Properties and applications.

UNIT-III

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs, hand layup method, Autoclave method, Filament winding method, Compression moulding, Reaction injection moulding, Properties and applications.

UNIT – IV

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hydrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

RECOMMENDED BOOKS:

- 1. R.W.Cahn, "Material Science and Technology" VCH, West Germany.
- 2. WD Callister, Jr, "Materials Science and Engineering, An introduction"
- 3. Balasubramaniam, "John Wiley & Sons", NY, Indian edition, 2007.
- 4. Lubin, "Hand Book of Composite Materials"
- 5. K.K.Chawla, "Composite Materials"
- 6. Deborah D.L. Chung, "Composite Materials Science and Applications"
- 7. Danial Gay, Suong V. Hoa, and Stephen W. Tasi, "Composite Materials Design and Applications"

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTOE-211A	WASTE TO ENERGY							
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)	
				Test	Test			
3	0	0	3	60	40	100	3	
Objective	The main objective of this course is to impart the students with the knowledge of generation of							
-	energy from the waste.							
Course Outcomes								
CO1	Students should be able to learn the classification of waste as a fuel and biomass pyrolysis.							
CO2	Students should be able to learn gasification process and different types of gasifiers.							
CO3	Students should be able to learn different combustors for biomass.							
CO4	Student should be able to learn the Biogas plant technology different biomass conversions							
	processes for different applications.							

Unit-I

Introduction to Energy from Waste: Classification of waste as fuel, Agro based, Forest residue, Industrial waste, MSW, Conversion devices, Incinerators, gasifiers, digestors.

Biomass Pyrolysis: Pyrolysis, Types, slow fast, Manufacture of charcoal, Methods, Yields and application, Manufacture of pyrolytic oils and gases, yields and applications.

Unit-II

Biomass Gasification: Gasifiers, Fixed bed system, Downdraft and updraft gasifies, Fluidized bed gasifiers, Design, construction and operation, Gasifier burner arrangement for thermal heating, Gasifier engine arrangement and electrical power, Equilibrium and kinetic consideration in gasifier operation.

Unit-III

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-IV

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion -Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

RECOMMENDED BOOKS:

- 1. Desai, Ashok V, "Non-Conventional Energy", Wiley Eastern Ltd., 1990.
- 2. Khandelwal, K. C. and Mahdi, S. S., "Biogas Technology A Practical Hand Book Vol. I & II", Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Challal, D. S, "Food, Feed and Fuel from Biomass", IBH Publishing Co. Pvt. Ltd., 1991.
- 4. C. Y. WereKo-Brobby and E. B. Hagan, "Biomass Conversion and Technology", John Wiley & Sons, 1996.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).
MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTSE-201			DIS	SERTATIC	ON PHASE	-1				
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time (Hrs.)		
				Test	Test	Marks				
0	0	20	10	-	100	-	100	-		
Objective	The main	objective of th	is course is	s to plan	a research	n work (which	n includes	the problem		
	formulation/l	literature reviev	v, proposed	objectives,	proposed	methodologies	and refe	rences) in the		
	field of Indus	field of Industrial and Manufacturing Engineering or interrelated fields of applications.								
			Cours	e Outcome	S					
CO 1	Students wil	Students will be exposed to various self-learning topics.								
CO 2	Students v	vill be expos	ed to an	exhaustive	e survey	of the litera	iture suc	h as books,		
	national/inte	rnational refere	ed journals,	resource	persons an	industrial su	urveys for	the selection/		
	identification	of engineering	/research pro	oblem.						
CO 3	Students wil	I be able to set	the research	objectives	of the ident	ified engineerir	ng/researc	h problem.		
CO 4	Students wil	l learn modern	tools/techniq	ues related	l to the ider	ntified engineer	ing/resear	ch problem for		
	the solution	and able to lear	n technical r	eport writing	g skills.					
CO 5	Students wil	l develop oral a	nd written co	mmunicatio	on skills to p	present and de	fend their	work in front of		
	technically q	ualified audiend	ce.							

The students will start their research work in third semester with a research problem having research potential involving scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution.

The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his/her supervisor and the topic of dissertation must be mutually decided by the supervisor and student.

The students will be required to submit a progress report related to their dissertation work by the end of September. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.

The progress report must be at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The students will be required to appear for comprehensive Seminar & Viva-voce and submit a synopsis report based on their progress related to the dissertation as per the presentation date mentioned in the academic calendar for the session. The synopsis report will be submitted in the same format as that of the thesis and will contain the following:

- 1. Introduction
- 2. Literature Survey
- 3. Gaps in Literature
- 4. Objectives of the Proposed Work
- 5. Methodology
- 6. References

* Student will choose his/her guide in the end of second semester.

10(1794)

Fourth Semester

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (4th semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SCIENCE & ENGINEERING

MTSE-202		DISSERTATION PHASE -II										
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time (Hrs.)				
				Test	Test							
0	0	32	16	-	100	200	300	-				
Objective	The main	objective of t	ne course is	s to make t	he studen	ts able to do	some goo	od research in				
2	the field of	their interes	is related to	Industrial	and Manu	facturing Eng	ineering (or interrelated				
	fields of ap	oplications.				0 0	Ū					
	Course Outcomes											
CO 1	Students v	will be able to	o design so	lutions for	engineerir	ng problems t	hat meet	the specified				
	needs with	n appropriate	consideratio	ons.								
CO 2	Students	will be able t	o conduct	investigati	ons of eng	gineering pro	blems us	ing research-				
	based know	owledge and	experimen	tal/researc	h method	s including d	lesign of	experiments,				
	analysis a	and interpreta	ation of da	ta, and s	ynthesis c	of the inform	ation to	provide valid				
	conclusion	IS.										
CO 3	Students v	vill be able to	apply reso	urces and	modern er	ngineering too	ols and te	chniques with				
	an unders	tanding of the	limitations.									
CO 4	Students	will be able	to either	work in a	a researc	h environmei	nt or in	an industrial				
	environme	ent.										
CO 5	Students v	vill be conver	sant with te	chnical rep	ort writing	, professional	ethics, re	esponsibilities				
	and norms	s of the engin	eering pract	ice.	5	-		-				
CO 6	Students	will be able	to present	and conv	ince their	topic of stu	dy to the	e engineering				
	community	<i>.</i>	-					- •				

The students are required to continue Analytical/Experimental/Computational/Industrial Problems or Case studies investigations in the field of Industrial and Production Engineering or other related fields which have been finalized in the third semester. They would be working under the supervision of a faculty member.

The students will be required to submit a progress report duly signed by their respective supervisors to the department, related to their dissertation work in the last week of March. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.
- References

The progress report must be of at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The candidate has to prepare a detailed dissertation report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up/numerical details/industrial case study etc. as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study.

The final dissertation will be submitted in the end of semester as per academic calendar for the session, which will be evaluated by internal as well as external examiners based upon his/her research work. At least one publication is

expected before final submission of the dissertation from every student in peer reviewed referred journals or reputed conference from the work done by them in their dissertation. The dissertation should be presented in standard format as provided by the department.

The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a supervisor, co-supervisor etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his supervisor.

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by the State Legislature Act XII of 1956 ('A+' Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM <u>SEMESTER-I</u>

Sr. No.	Course Code	Course Name	L	T	Р	Hrs/ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTCM-101	Design of Hydraulic and Pneumatic System	3	0	0	3	3	60	40	-	100	3
2	MTIP-103A	Computer Aided Design and Manufacturing	3	0	0	3	3	60	40	-	100	3
3		*Programme Elective-I	3	0	0	3	3	60	40	-	100	3
4		**Programme Elective-II	3	0	0	3	3	60	40	-	100	3
5	MTRM-111A	Research Methodology and IPR	2	0	0	2	2	60	40	-	100	3
6	MTCM-103	Modern Machining Technology Lab	0	0	4	4	2	-	40	60	100	3
7	MTIP-119A	Computer Aided Design and Manufacturing Lab	0	0	4	4	2	-	40	60	100	3
8		***Audit Course-I	2	0	0	2	-	-	100	-	100	3
				Т	otal	24	18	300	280	120	700	

	*PROGRAMME ELECTIVE- I for 1st Semester (CAD/CAM)							
1.	MTIP-105A Tool Engineering							
2.	MTIP-107A	Advanced Engineering Materials						
3.	MTIP-109A	Non-Conventional Machining						

	**PROGRAMME ELECTIVE- II for 1st Semester (CAD/CAM)							
1.	MTIP-111A	Product Design and Development						
2.	MTIP-113A	Simulation of Industrial Systems						
3.	MTIP-115A	Supply Chain Management						

	***AUDIT COURSE – I for 1st Semester (CAD/CAM)							
1.	MTAD-101A	English for Research Paper Writing						
2.	MTAD-103A	Disaster Management						
3.	MTAD-105A	Sanskrit for Technical Knowledge						
4.	MTAD-107A	Value Education						

Note: 1. The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

2.*** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

3. The programme Elective I & II and Audit Course-I are common with M.TECH. (I&P). The course starts with MTIP code is common with M.TECH (I&P).

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by the State Legislature Act XII of 1956 ('A+' Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM SEMESTER-II

Sr. No.	Course Code	Course Name	L	T	Ρ	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTIP-102A	Mechatronics	3	0	0	3	3	60	40	-	100	3
2	MTCM-102	Design, Optimization and Simulation of Engineering Systems	3	0	0	3	3	60	40	-	100	3
3		*Programme Elective-III	3	0	0	3	3	60	40	-	100	3
4		**Programme Elective-IV	3	0	0	3	3	60	40	-	100	3
5	MTIP-118A	Mechatronics Lab	0	0	4	4	2	-	40	60	100	3
6	MTCM- 104	Simulation Lab	0	0	4	4	2	-	40	60	100	3
7	MTCM-106	Mini Project	0	0	4	4	2		-	100	100	3
8		***Audit Course-II	2	0	0	2	-	-	100	-	100	3
	Total						18	240	240	220	700	

	*PROGRAMME ELECTIVE-III for 2 nd Semester (CAD/CAM)								
1.	1. MTIP-106A Advanced Welding Processes								
2.	MTIP-108A	Advanced Metal Cutting							
3.	MTIP-110A	Metrology							

	**PROGRAMME ELECTIVE - IV for 2 nd Semester (CAD/CAM)							
1.	MTIP-112A	Sequencing and Scheduling						
2.	MTIP-114A	Quality Engineering and Management						
3.	MTIP-116A	Reliability Engineering						
	***AUDIT COURSE-II for 2 nd Semester (CAD/CAM)							
1.	MTAD-102A	Constitution of India						
2.	MTAD-104A	Pedagogy Studies						
3.	MTAD-106A	Stress Management by Yoga						
4.	MTAD-108A	Personality Development through Life Enlightenment Skills						

Note: 1. ***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

2. The programme Elective III& IV and Audit Course-II are common with M.TECH. (I&P).The course starts with MTIP code is common with M.TECH. (I&P).

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by the State Legislature Act XII of 1956 ('A+' Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM <u>SEMESTER-III</u>

Sr. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1		*Programme Elective-V	3	0	0	3	3	60	40	-	100	3
2		**Open Elective	3	0	0	3	3	60	40	-	100	3
3	MTCM-201	Dissertation Phase-I	0	0	20	20	10	-	100	-	100	
Total					26	16	120	180		300		

	*PROGRAMME ELECTIVE-V for 3rd Semester (CAD/CAM)							
1.	MTIP-201A Enterprise Resource Planning							
2.	MTIP-203A	Design of Experiments						
3.	MTIP-205A	Strategic Entrepreneurship						

	**OPEN ELECTIVE for 3rd Semester (CAD/CAM)							
1.	MTOE-201A	Business Analytics						
2.	MTOE-203A	Industrial Safety						
3.	MTOE-205A	Operations Research						
4.	MTOE-207A	Cost Management of Engineering Projects						
5.	MTOE-209A	Composite Materials						
6.	MTOE-211A	Waste to Energy						

Note: 1. The programme Elective-V and Open Elective are common with M.TECH. (I&P).

SEMESTER-IV

Sr. No.	Course Code	Course Name	L	Т	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTCM-202	Dissertation Phase-II	0	0	32	32	16	-	100	200	300	
				Т	otal	32	16		100	200	300	

Total credits = 68

10(1800)

INSTRUCTIONS FOR PAPER SETTER

- 1. The question paper is to be attempted in **THREE Hours**.
- 2. Maximum Marks for the paper are 60.
- 3. The syllabus for the course is divided into FOUR units.
- 4. The paper will have a total of NINE questions.
- 5. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have content from the entire syllabus (all Four Units).

Q. No. 2 & 3	from	Unit I
Q. No. 4 & 5	from	Unit II
Q. No. 6 & 7	from	Unit III
Q. No. 8 & 9	from	Unit IV

- 6. All questions will have equal weightage of 12 marks.
- 7. The candidate will attempt a total of **FIVE questions**, each of 12 marks. Q. No. 1 is compulsory. The candidate shall attempt remaining **four** questions by selecting **only one question from each unit**.
- 8. A question may have any number of sections labeled as 1(a), 1(b), 1(c), 1(d), ---- 2(a), 2(b), --.A section may further have any number of subsections labeled as (i), (ii), (iii), (iii),

9. SPECIAL INSRUCTIONS FOR Q. No. 1 ONLY

Question No. 1, which is compulsory, shall be OBJECTIVE/ short answer type **and have content** from the entire syllabus (all Four Units).

Emphasis is to be given on the basic concepts, analytical reasoning and understanding of the various topics in the subject. This question may have a number of parts and/or subparts. The short questions could be combination of following types:

- i. Multiple Choice
- ii. Yes/ No choice
- iii. Fill in Blanks type
- iv. Short numerical computations
- v. Short Definitions
- vi. Matching of Tables

The above mentioned question types is **only a Guideline**. Examiner could set the question as per the nature of the subject.

First Semester

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1stSem.) (CAD/CAM)

MTCM-101		Design of Hydraulic and Pneumatic System										
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total										
3	0	0 0 3 60 40 100 3										
Objective	The main objective of the course is to impart the students with the design of hydraulic and pneumatic systems.											
		Course	Outcome	5								
C01	To understand ba	sic components	s of hydauli	c systems.								
CO2	To demontrate co	ntrol regulation	elements a	and design o	f hydaulic circ	cuits.						
CO3	To understand design of pneumatic systems.											
CO4	To aware of the a	ssociated desig	yn of installa	ation, mainte	enance and sp	pecial circuit	i.					

UNIT I

Hydraulic systems: Hydraulic power generations-selection and specification of pumps, pump characteristics.

Hydraulic actuators: Linear and Rotary Actuators-Selection, Specification and Characteristics.

UNIT II

Control and regulation elements: Pressure-direction and flow control valves-relief valves, non return and safety valves-actuation systems.

Hydraulic circuits: Reciprocation, quick return, Sequencing synchronizing circuits-accumulator circuits-industrial circuits-press circuits-hydraulic milling machine-grinding, planning, copying, fork lift, earth mover circuits-design and selection of components-safety and emergency mandrels.

UNIT III

Pneumatic systems and circuits: Pneumatic fundamentals-control elements, position and pressure sensing-logic circuits-switching circuits-fringe condition modules and their integration-sequential circuits-cascade methods-mapping methods-step counter method-compound circuit design-combination circuit design.

UNIT IV

Installation, maintenance and special circuits: Pneumatic equipments-selection of components-design calculationsapplication-fault finding-hydro pneumatic circuits-use of micro-processors for sequencing – PLC – Low cost automation-Robotic circuits.

Recommended Books:

- 1. Antony Espossito, "Fluid power with Applications", Prentice Hall, 1980.
- 2. Dudleyt, A.Pease and John J. Pippenger, "Basic Fluid Power", Prentice Hall, 1987.
- 3. Andrew Parr, "Hydraulics and Pneumatics", (HB), Jaico Publishing House, 1999.
- 4. Bolton, W. "Pneumatic and Hydraulic systems", Butterworth-Heinneman, 1997.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (CAD/CAM)

MTIP-103A		COMPUTER AIDED DESIGN AND MANUFACTURING											
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTimeTestTestTestTestTestTestTest											
3	0	0 0 3 60 40 100 3 hrs											
Objective	The objective	The objective of the course is to understand about the technology of computers for the design,											
	process plan	ning and manu	afacturing the	products.									
			Course Out	comes									
C01	To understar	nd the fundam	entals and ap	oplications of	computers in	the field of o	designing and						
	manufacturin	g and the trans	sformation of	geometric mo	dels.								
CO2	To understan	d the concepts	s of G.T. and	FMS.									
CO3	To know the	use of compute	ers in process	s planning and	d shop floor co	ontrol.							
CO4	To learn the	basics of AGV	and coding s	ystems for CN	IC.								

UNIT I

Fundamentals of CAD: Introduction to CAD/CAM, Historical Development, Industrial Look at CAD/CAM, Application of computers in design, Creating manufacturing database, Benefits of CAD. Computer Hardware, Graphic input devices, display devices, Graphics output devices, Central processing unit (CPU).

Geometric transformations: 2D and 3D; transformations of geometric models like translation, scaling, rotation, reflection, shear; homogeneous representations, concatenated representation; Orthographic projections, Numerical Problems

UNIT II

Group Technology and Cellular Manufacturing

Part families, parts classifications and coding, Production flow Analysis, cellular Manufacturing- composite part concept, machine cell design, applications of group technology, Grouping parts and machines by Rank order clustering technique, Arranging machines in a G.T. cell.

Flexible Manufacturing

Introduction, FMS components, Flexibility in Manufacturing – machine, Product, Routing, Operation, types of FMS, FMS layouts, FMS planning and control issues, deadlock in FMS, FMS benefits and applications. **UNIT III**

Process Planning

Introduction, Manual process planning, Computer aided process planning – variant, generative, Decision logicdecision tables, decision trees, Introduction to Artificial intelligence.

Shop Floor Control

Introduction, Shop floor control features, Major displays, Major reports, Phases of SFC Order Release, Order Scheduling, Order Progress, Manufacturing control, Methodology, Applications, Shop floor data collections, Types of data collection system, Data input techniques, Automatic data, Collection system.

UNIT IV

CNC Basics and Part Programming

Introduction, Historical Background, Basic Components of an NC, Steps in NC, Verifications of Numerical control machine tool programs, Classification of NC Machine tool, Basics of motion control and feedback for NC M/C, NC part programming, Part programming methods, Modern Machining system, Automatically programmed tools, DNC, Adaptive control

Automated Guided Vehicle

Introduction, History, Features, Functions of AGV, Types of AGV, Safety consideration for AGV, Design of AGV.

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 3. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.

- 6. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 7. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 8. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall
- 9. Chang, Wang & Wysk Computer Aided Manufacturing. Prentice Hall
- 10. Kundra & Rao, Numerical Control and Computer Aided Manufacturing by, Rao and Tiwari, Tata Mc-Graw Hill.
- 11. Mattson, CNC programming Principles and applications, Cengage Learning India Pvt. Ltd. Delhi

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-I

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1stSem.) (CAD/CAM)

MTIP-105A			TO	ol engineeri	NG								
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total T											
3	0	0 0 3 60 40 100 3											
Objective	The objective	The objective of the course is to impart the students with the knowledge of various aspects of											
	design of differ	design of different types of Tools and fixtures used in Industries.											
		Co	urse Outco	mes									
C01	To impart know	wledge of mate	rials for cutti	ng tool and desi	gn of cutting to	ols.							
CO2	To acquaint st	udents with var	ious kinds o	f Gages and Wo	rk holding devi	ces.							
CO3	To impart know	wledge to stude	ents about D	rill jigs and Fixtu	res.								
CO4	To let student	understand the	tool design	process for NC	Machine tools								

UNIT-I

Cutting Tool Materials: Introduction and desirable properties, Carbon and Medium-Alloy Steels, High-Speed Steels, Cast-Cobalt Alloys, Carbides, Coated Tools, Alumina-Based Ceramics, Cubic Boron Nitride, Silicon-Nitride Based Ceramics, Diamond, Reinforced Tool Materials, Cutting-Tool Reconditioning.

Design of Cutting Tools Basic Requirements, Mechanics and Geometry of Chip Formation, General Considerations for Metal Cutting, Design of single point Cutting Tools, Design of Milling Cutters, Design of Drills and Drilling, Design of Reamers, Design of Taps, Chip Breakers.

UNIT-II

Gages and Gage Design: Limits fits and tolerances, Geometrical tolerances-specification and measurement, Types of gages, Gage design, gage tolerances, Material for Gages.

Work Holding Devices: Basic requirements of work holding devices, Location: Principles, methods and devices, Clamping: Principles, methods and devices.

UNIT-III

Drill Jigs: Definition and types of Drill Jigs, Chip Formation in Drilling, General Considerations in the Design of Drill Jigs, Drill Bushings, Drill Jigs, and Modern Manufacturing

Design of Fixtures: Fixtures and Economics , Types of Fixtures , Milling Fixtures , Boring Fixtures, Broaching Fixtures, Lathe Fixtures, Grinding

UNIT-IV

Tool Design for Numerically Controlled Machine Tools: Fixture Design for Numerically Controlled Machine Tools, Cutting Tools for Numerical Control, Tool-holding Methods for Numerical Control.

RECOMMENDED BOOKS:

1. ASTME, "Fundamentals of Tool Design", Prentice Hall of India, 1983.

2. Donaldson, "Tool Design", Tata-McGraw Hill, 3rd Edition, 2000.

3. Joshi P.H., "Jigs and Fixtures", Tata-McGraw Hill, 2010.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (CAD/CAM)

MTIP-107A	A	ADVANCED ENGINEERING MATERIALS											
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTimeTestTestTest											
3	0	0 0 3 60 40 100 3 hrs											
Objective	The objective of the course is to impart the students with the knowledge of various advanced and												
	smart materials.												
		C	Course Outco	omes									
C01	To impart knowledge	e of Piezoelec	tric and shape	e memory allo	ys.								
CO2	To acquaint student	s with deep kn	ow how abou	t Electro-rheo	logical and co	mposite mate	rials						
CO3	To impart knowledge	To impart knowledge to students about MEMS systems and High temperature application materials.											
CO4	To let student unde	rstand the pro	cessing and	characteristic	s of powder r	netallurgy pro	ocesses and						
	structural materials.	•	0		-								

UNIT-I

Introduction to advanced Engineering materials: Classes of Materials and their usage, Historical Perspective, Intelligent Materials, Structural Materials, Functional Materials, Primitive Functions of Intelligent Materials, Intelligence inherent in Materials, Materials Intelligently Harmonizing with humanity, Biomimetic.

Smart Materials and Structural Systems: Introduction, Actuator Materials, Sensing Technologies, Micro-sensors, Intelligent systems, Hybrid Smart Materials, Passive Sensory Smart Structures, Reactive Actuator based smart structures, Active Sensing and Reactive smart structures, smart skins, Aero-elastic tailoring of airfoils, Synthesis of future smart systems.

UNIT-II

Electrocaloric Effect: An Introduction, History of Electrocaloric Cooling, Mechanism of working of Electrocaloric Cooling, Electrocaloric Materials, Performance of Electrocaloric Materials.

Heat Resistant Steels: Conventional Heat-Resistant Steels, Silicon-Bearing High Chromium Heat-Resistant Steels, Nitride-Strengthened Reduced Activation Heat-Resistant Steels, China Low Activation Martensitic SteelNitride-Strengthened Steels, Microstructural Stability

UNIT-III

Smart Micro-systems: Silicon Capacitive Accelerometer, Piezo-resistive Pressure sensor, Conductometric Gas sensor, An Electrostatic Comb-drive, Magnetic Microrelay, Portable Blood Analyser, Piezoelectric Inkjet Print Head. **Buckyballs to robotics**: Bucky ball, Nano Structure of Fullerene, Carbon Nanotubes, Nano Diamond, Boron nitride nanotubes, Single electron transistors, Molecular machine, Nano Biometrics, Nano Robots,

UNIT-IV

Nano-Alloys: Introduction, Chemical Synthesis: General Concepts, Reduction of Metallic Salts, The Organometallic Route: Thermal Decomposition Method, Other Chemical Methods for synthesis of Nano-alloys, Physical Routes for synthesis of Nano-Alloys; Experimental Techniques and Examples.

Shape memory alloys (SMA): Shape memory effect and the metallurgical phenomenon of SMA, Types of SMA, One way and Two way Shape memory effect. Temperature assisted shape memory effect, Applications.

RECOMMENDED BOOKS:

- 1. Gandhi, M.V. and Thompson, B.S., Smart materials and Structures, Chapman & Hall, 1992.
- 2. Ananthasuresh G.K., Vinoy K.J., Micro and Smart Systems, Wiley India.
- 3. Wei Yan, Wei Wang, 9-12 Cr Heat Resistant Steels, Engineering Material series, Springer International.
- 4. Damien Alloyeau, Christine Mottet, Nanoalloys Synthesis, Structure and Properties, Springer International.
- 5. Tatiana Correia, Qi Zhang, Electrocaloric Materials: New Generation of Coolers
- 6. Otsuka, K. and Wayman, C. M., Shape memory materials, C.U.P, 1998
- 7. Taylor, W., Pizoelectricity, George Gorden and Breach Sc. Pub., 1985
- 8. Mallick, P.K., Fiber Reinforced Composites Materials, Manufacturing and Design. Marcel Dekker Inc, New York, 1993.
- 9. Rama Rao, P. (ed.), Advances in Materials and their applications, Wiley EasternLtd.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (CAD/CAM)

MTIP-109A		NON-CONVENTIONAL MACHINING										
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time					
				Test	Test							
3	0	0	3	60	40	100	3 hrs					
Objective	To acquaint of Non-conve	To acquaint the students with the advanced technologies and processes in various streams of Non-conventional machining.										
	•	Cours	se Outcome	es								
C01	To impart	knowledge of	Various N	lon-convent	ional Mech	anical Wor	rking Processes,					
	technology,	process param	eters and ar	nalysis for n	netal remova	I for these p	processes.					
CO2	To acquaint processes,	students with	deep knowł	now about (chemical an	d electroch	emical machining					
CO3	To impart k	nowledge to s	students ab	out various	kinds of E	lectric disc	harge machining					
	processes,	process param	neters asso	ciated with	these proc	esses and	various process					
	characteristic	CS.										
CO4	To let stude	ent understand	d the worki	ing and te	chnology as	ssociated v	vith Laser Beam					
	machining ar	nd Electron bea	am machinir	ng processe	S.							

UNIT-I

Introduction, Need of Non-conventional machining processes, Characteristics of conventional and Non-conventional Machining processes. **Mechanical Working Processes: Abrasive Jet Machining:** Machining setup, Abrasives, Process Parameters, Machining Characteristics, Material removal models in AJM, Process capability, Advantages, limitations, Applications

Water Jet Machining: Basic mechanism of Water jet machining setup, Process parameters, Catcher, Process capabilities, Advantages, limitations, Applications **Abrasive Water Jet Machining process:** Working Principle, AWJM Machine, Process Variables, Mechanism of Metal Removal, Cutting Parameters, Process capabilities, Applications, Environmental issues.

Ultrasonic Machining: Fundamental principles, Equipment, Magnetostriction, Elements of process, Mechanics of cutting, Analysis of Process Parameters, Process capabilities, Economic considerations. Applications, Limitations

UNIT-II

Chemical Machining: Introduction, Fundamental Principles, Process Parameters; Maskants and Etchants, Advantages, Limitations, Applications.

Electrochemical Machining Processes: Introduction, Classification of ECM Processes, Fundamentals Principles of ECM, Elements of ECM, ECM Machine Tool Process, Determination of Metal Removal Rate, Evaluation of Metal Removal of an alloy, Electrochemistry of ECM, Cathode and Anode reaction, Dynamics of ECM, Self-Regulating feature of ECM, Process Parameters, Process capabilities, Electrochemical Deburring. **Electrochemical Grinding:** Schematics, Electrochemistry, Process Parameters, Process capabilities, Applications, Advantages, Limitations.

UNIT-III

EDM: Introduction, Basic Principles & Schematics, Process Parameters, Characteristics of EDM, Dielectric, Electrode Material, Modelling of Material Removal, Spark Erosion Generators, Analysis and Metal Removal Rate in RC circuit, Selection of Tool Material and Tool Design, Di-Electric system, Process Variables, Dielectric Pollution and its effects, Process Characteristics, Applications, Electric Discharge Grinding and Electric Discharge Diamond Grinding; **Wire EDM:** Working Principle, Wire EDM Machine, Advances in Wire-cut EDM Process Variables, Process Characteristics, Applications.

UNIT-IV

Laser Beam Machining Back Ground, Production of Laser, Working Principle of LBM, Types of LASERS, Process Characteristics, Metallurgical effects, Advantages and Limitations, Applications.

Electron Beam Machining:

Electron Beam Action, Generation and control of Electron beam, Theory of Electron Beam Machining, Process Parameters, Process capabilities, Applications.

High Energy Rate Forming, Elctro-Hydraulic Forming, Explosive Forming, Hot Machining Analysis of the Process.

RECOMMENDED BOOKS:

1 V.K. Jain, Advanced Machining Processes, Allied Publishers Pvt Ltd

2 P.C. Pandey and H.S. Shan, Modern Machining Processes, Tata McGraw-Hill

3 M. K. Singh, Unconventional Manufacturing Process, New Age Publishers

10(1809)

4 J. A. Mcgeough, Advanced Methods of Machining, Springer.

5 Benedict, Non-Traditional Manufacturing Process, CRC pub.

6 P. K. Mishra, Nonconventional manufacturing, Narosa Publishers

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-II

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (CAD/CAM)

MTIP-111A		PRO	DUCT DESI	gn and d	EVELOPME	NT				
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	60	40	100	3 hrs			
Objective	The objective of the course is to understand about the product design and developments with inputs from aesthetics, ergonomics, design for manufacturing ease and cost effectiveness apart from reliability and durability and other considerations.									
	L	Cou	rse Outcor	nes						
C01	To understand th industry, productio	e concept of n and marketir	product des ng, and aest	sign, desigr hetics.	n considerat	ions, design p	practiced by the			
CO2	To provide a deta for manufacturing,	iled fundament assembly and	tal approacl environmer	n to several nt.	primary pro	cesses and d	esign guidelines			
CO3	To discuss the hur	nan factor eng	ineering and	the conce	ot of value e	ngineering.				
CO4	To study the mode manufacturing and	lern approach Leconomic asp	es to produ pects.	uct design,	concept of	product deve	lopment and its			

UNIT-I

INTRODUCTION: Introduction to product design, Design by evolution and innovation, Essential factors of product design, Production consumption cycle, Flow and value addition in production consumption cycle, Morphology of design. **PRODUCT DESIGN PRACTICE AND INDUSTRY:** Product strategies, Time to market, Analysis of the product, Basic design considerations, Role of aesthetics in product design.

UNIT-II

DESIGN FOR MANUFACTURE AND ASSEMBLY: Overview and motivation, Basic method: Design guidelines: Design for assembly, Design for piece part production, Advanced method: Manufacturing cost analysis, cost driver modeling, Critique for design for assembly method.

DESIGN FOR THE ENVIRONMENT: Environmental objectives, Basic DFE methods, Design guidelines, Life cycle assessment, Techniques to reduce environmental impact.

UNIT-III

HUMAN ENGINEERING CONSIDERATIONS IN PRODUCT DESIGN: Human being as applicator of forces, Anthropometry, the design of controls, the design of displays, Man/Machine information exchange, Workplace layout from ergonomic considerations.

VALUE ENGINEERING: Value, Nature and measurement of value, Maximum value, Normal degree of value, Importance of value, value analysis job plan, creativity, steps to problem solving and value analysis, value analysis tests, value engineering idea generation check list, Cost reduction through value engineering-case study, materials and process selection in value engineering.

UNIT-IV

MODERN APPROACHES TO PRODUCT DESIGN: Concurrent design, Quality function deployment (QFD), Rapid prototyping, 3D printing, Introduction to 4D printing.

PRODUCT DEVELOPMENT: A modern product development process, reverse engineering and redesign product development process, product life cycle, product development teams, Product development planning, Manufacturing & economic aspects of product development.

RECOMMENDED BOOKS:

- 1. Kail T Ulrich and Steven D Eppinger, "Product Design and Development, TMH.
- 2. AK Chitale and Gupta, "Product Design and Engineering, PHI.
- 3. Niebel & Draper, "Product Design and Process Engineering", McGraw-Hill.
- 4. Kevin Otto & Kristin Wood, "Product Design-Techniques in reverse engineering and new product development" Pearson.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1stSem.) (CAD/CAM)

MTIP-113A		SIMULATION OF INDUSTRIAL SYSTEMS											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time											
3	0	0 0 3 60 40 100 3 hrs											
Objective	The main	The main objective of the course is to impart the students with the knowledge of industrial											
	systems a	systems and its simulation.											
			Course	Outcomes									
C01	To explair	n the concept o	f industrial s	imulation syster	ns and its mode	els of simulation	on.						
CO2	To unders	stand the simul	ation of disc	rete and queueir	ng systems.								
CO3	To unde experime	rstand the si nts.	mulation if	inventory syst	tems and det	sign of simu	ulation						
CO4	To simula problem a	ate the industr and understand	ial problems the simulati	s like reliability on languages.	problems, com	nputer time sl	haring						

UNIT-I

Introduction and overview: concept of system, system environment, elements of system, system modeling, types of models, Monte Carlo method, system simulation, simulation - a management laboratory, advantages & limitations of system simulation, continuous and discrete systems.

Simulation of continuous systems: characteristics of a continuous system, comparison of numerical integration with continuous simulation system. Simulation of an integration formula.

UNIT-II

Simulation of discrete system: Time flow mechanisms, Discrete and continuous probability density functions. Generation of random numbers, testing of random numbers for randomness and for auto correlation, generation of random variates for discrete distribution, generation of random variates for continuous probability distributionsbinomial, normal, exponential and beta distributions; combination of discrete event and continuous models.

Simulation of queuing systems: Concept of queuing theory, characteristic of queues, stationary and time dependent queues, queue discipline, time series analysis, measure of system performance.

Kendall's notation, auto covariance and auto correlation function, auto correlation effects in queuing systems, simulation of single server queues, multi-server queues, queues involving complex arrivals and service times with blanking and reneging.

UNIT-III

Simulation of inventory systems: Rudiments of inventory theory, MRP, in-process inventory. Necessity of simulation in inventory problems, forecasting and regression analysis, forecasting through simulation, generation of Poisson and Erlang variates, simulation of complex inventory situations.

Design of Simulation experiments: Length of run, elimination of initial bias, Variance, Variance reduction techniques, stratified sampling, antipathetic sampling, common random numbers, time series analysis, spectral analysis, model validation, optimization procedures, search methods, single variable deterministic case search, single variable non-deterministic case search, and regenerative technique.

UNIT-IV

Simulation of PERT: Simulation of - maintenance and replacement problems, capacity planning, production systems, reliability problems, computer time sharing problem, the elevator system.

Simulation Languages: Continuous and discrete simulation languages, block structured continuous languages, special purpose simulation languages, SIMSCRIPT, GPSS SIMULA importance and limitations of special purpose languages.

- 1. Loffick, Simulation and Modelling Tata McGraw Hill
- 2. Deo Narsingh, System Simulation with Digital Computer Prentice Hall
- 3. Hira, D.S., System Simulation-S. Chand & Co.
- 4. Meelamkavil, Computer Simulation and Modelling John Willey
- 5. Gorden, System Simulation Prentice hall
- 6. Jerry Banks and John, S. Carson II, 'Discrete Event System Simulation', Prentice Hall Inc., NewJersey, 1984.

- 7. Geoffrey Gordon, 'System simulation', Prentice Hall, NJ, 1978.
- 8. Law, A.M. and W.D. Keltor, 'Simulation modelling analysis', McGraw Hill, 1982.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (CAD/CAM)

MTIP-115A		SUPPLY CHAIN MANAGEMENT										
Lecture	Tutoria I	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3 hrs										
Objective	The main chain and	The main objective of the course is to impart the students with the knowledge of Supply chain and different aspects of supply chain management.										
			Course Outco	omes								
C01	To impart	knowledge at	out basics o	f Supply ch	ain manageme	ent and Sup	ply chain					
CO2	To acquaii supply cha	nt students with in management	the different	aspects invo	olved in sourcir	ng and procu	rement in					
CO3	To impart decision m	knowledge to haking about Tra	students abo insportation, S	ut Evaluating torage and w	g performance arehousing.	of Supply of	chain and					
CO4	To let stud Chain:	lent understand	Quantitative t	ools for SCN	1, Information T	echnology in	a Supply					

UNIT-I

Overview of supply chain management: Introduction, Definition, The Objective of a Supply Chain, The Importance of Supply Chain Decisions, Decision Phases in a Supply Chain, Process Views of a Supply Chain, Examples of Supply Chains.

Supply chain dynamics: Introduction, Coping with Dynamics in Supply chain. Bullwhip effect, Analysis of Bullwhip Effect, Impact of Lead time, Inventory management and Supply chain dynamics, offshoring and outsourcing Effect on SC dynamics and cost.

UNIT-II

Outsourcing and Make or Buy Decisions: Strategic Decisions and Core competencies, Tactical Decisions, Factors influencing make or buy decisions, Control of Production or Quality, Unreliable Suppliers, Suppliers Specialized knowledge and research, Small Volume Requirements, Limited Facilities, Workforce Stability, Multiple Sourcing Policy, Managerial and Procurement considerations, the Volatile nature of Make/Buy situation, Administration: Procedures and Personal.

Sourcing of Supply: Importance of Source Selection, Responsibilities for Source Selection, Evaluating a potential supplier, The criticality of Qualifying Sources, Competitive Bidding and Negotiation, Prerequisite for competitive bidding, Two step Bidding/Negotiation, Benefits and Risks of International Sourcing, Identifying and Qualifying an International Source.

UNIT-III

Supply Chain Performance: Achieving Strategic fit And Scope: Competitive and Supply Chain Strategies, Achieving Strategic Fit, Expanding Strategic Scope, Challenges to Achieving and Maintaining, Strategic Fit, Supply chain drivers and metrics, Financial Measures of Performance, Drivers of Supply Chain Performance, Framework for Structuring Drivers, Facilities, Inventory, Transportation, Information, Sourcing, Pricing.

Transportation, storage and warehousing: Introduction, Transportation mode choice, Transport operator decisions, Trucking sectors in India, Rail transport, Air Transport, Water transport, Transport network, Storage and warehousing, types of warehousing, risk pooling, IT Integration: Supply chain information system, Role of IT in SCM process, Business process Re-engineering, Internet and its applications in SCM.

UNIT-IV

Quantitative tools for SCM: Introduction, Forecasting, Demand forecast, Forecasting strategy & technique, Management of Inventories in SC, Linear programming, Routing models, pricing decisions, Introduction to MCDM approach.

Information Technology in a Supply Chain: The Role of IT in a Supply Chain, The Supply Chain IT Framework Customer Relationship Management, Internal Supply Chain Management, Supplier Relationship Management, The Transaction Management Foundation, The Future of IT in the Supply Chain, Risk Management in IT, Supply Chain IT in practice.

RECOMMENDED BOOKS:

1.Chopra, S., and Meindl, P., Supply chain Management: Strategy, Planning and Operations. Second Edition, Pearson Education (Singapore) Pte. Ltd, 2004.

2Rangaraj, Supply Chain Management for Competitive Advantage, TMH.

3Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E., Designing & Managing the Supply Chain: Concepts, Strategies & Case studies. Second Edition, Tata McGraw-Hill Edition, 2003.

4.Doebler, D.W. and Burt, D.N., Purchasing and Supply Chain Management: Text and Cases, McGraw-Hill Publishing Company Limited, New Delhi, 1996.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

w.e.f. 2018-19

RECOMMENDED BOOKS:

1.Chopra, S., and Meindl, P., Supply chain Management. Strategy, Planning and Operations. Second Edition, Pearson Education (Singapore) Pte. Ltd, 2004.

2Rangaraj, Supply Chain Management for Competitive Advantage, TMH.

3Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E., Designing & Managing the Supply Chain: Concepts, Strategies & Case studies. Second Edition, Tata McGraw-Hill Edition, 2003.

4Doebler, D.W. and Burt, D.N., Purchasing and Supply Chain Management: Text and Cases, McGraw-Hill Publishing Company Limited, New Delhi, 1996.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

1010-

w.e.f. 2018-19

References:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'.
- C.R. Kothari, "Research Methodology: Methods & Techniques, 2nd edition or above, New Age Publishers.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel , "Product Design", McGraw Hill, 1974.
- 7. Asimov , "Introduction to Design", Prentice Hall, 1962.

8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, " Intellectual Property in New Technological Age", 2016.

MTRM-111	Δ					w.e.	1. 2018-
	A.		Resea	rch Methodala			
Lecture	Tutorial	Prostinul		en metrodology	and IPR		
0		Flactical	Credit	Major Test	Minor Test		
2	0	0	2		minor rest	Total	Time
Program	Toonahl		-	60	40	400	-
Diective (D	on line in able .	students to I	Research	Methodology	100.4	100	3 Hrs.
C01	Understand	research pr	oblem form	omes (CO)			
C01	Understand	research pr	ablam fa	omes (CO)			
000	Anali			iuialion.			
002	Analyze rese	tarch relator	The second se				
CO2	Analyze rese	earch related	Informatio	n		1	
C02	Understand t	hat today's v	world is co	on Introlled by Compu	uter, Information Tech	nology but	

Unit 1

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit 2

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.Developing a Research Proposal, Format of research proposal, a presentation and

Unit 3

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit 4

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

1. (1015)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (CAD/CAM)

MTIP-111A		RESEARCH METHODOLOGY AND IPR											
Lecture	Tutorial	Time (Hrs.)											
				Test	Test								
2	0	0	2	60	40	100	3						
Objective	The objectiv	The objective of this course is to make the students capable of formulating the research problems/											
-	proposals a	nd get aware a	about the intel	lectual proper	ty and patent	laws.							
			Course (Outcomes									
CO 1	Student will	be able to unc	lerstand resea	arch problem f	formulation.								
CO 2	Student will	be able to ana	lyze research	related inforr	mation and fo	llow research	n ethics.						
CO 3	Student will	be able to unc	lerstand the P	atents, Desig	ns, Trade and	d Copyright a	and able to apply the						
	knowledge f	for patent.											
CO 4	Student wil	I be able to	understand t	he concept	of Patent Ri	ghts, Licens	ing and transfer of						
	technology	and able to ap	ply the knowle	edge in new d	evelopments	in IPR.	-						

Unit-I

Meaning of research problem, Sources of research problem, Criteria, characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.

Unit-II

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, paper. Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

Unit-III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit-IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and Institutions.

RECOMMENDED BOOKS:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: An introduction for science & engineering students" Kenwyn, South Africa : Juta & Co. Ltd., 1996
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction" Juta Academic; 2nd edition (April 28, 2004)
- 3. Ranjit Kumar, "Research Methodology: A Step by Step Guide for beginners" SAGE Publications Ltd; Fourth edition (14 January 2014)
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", Aspen Publishers; Revised edition (July 25, 2007)
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (CAD/CAM)

MTCM-103	MODERN MACHINING TECHNOLOGY LAB										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Practical	Total	Time			
0	0	4	2	-	40	60	100	3 hrs			
Objective	The main objective of the course is to impart the students with the knowledge of advanced machining technology and processes.										
	Course Outcomes										
C01	To impart b	To impart basic knowledge about CNC components and coding.									
CO2	Use of CN	Use of CNC coding to manufacture various parts.									
CO3	To study th	To study the mechanism of electric discharge machining.									
CO4	To find out	the material re	emoval rate f	or various m	aterials using	g EDM.					

List of Experiments:

- 1. To study different codes on CNC machine (G and M codes).
- 2. To prepare a program on CNC Lathe for simple turning.
- 3. To prepare a program on CNC Lathe for multiple operation.
- 4. To prepare a program for threading operation.
- 5. To find out surface finish of Mild steel specimen using EDM machine.
- 6. To find out Surface roughness on Aluminum alloy specimen on EDM.
- 7. To find Material Removal Rate on Mild steel specimen using Copper and Graphite electrodes.
- 8. To find out surface roughness on Aluminum alloy specimen using different types of dielectric fluids.
- 9. To find material removal rate on Aluminum alloy specimen using Brass and Tungsten electrodes.

Note: At Least eight experiments need to be performed by the students according to the course outcomes.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (CAD/CAM)

MTIP-119A	COMPUTER AIDED DESIGN AND MANUFACTURING LAB										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Practical	Total	Time			
0	0	0 4 2 - 40 60 100 3 hrs									
Objective	To acquaint	To acquaint the students with 2-D and 3-D modeling using design softwares.									
Course Outcomes											
C01	To understa	Fo understand the basic solid modeling and applied features of the softwares.									
CO2	To learn and	To learn and practice of surface techniques and surface creations using software.									
CO3	To learn and	I practice of as	sembly and	detailed drai	ting.						
CO4	To let studer	nt understand	how to prepa	are MMCs us	ing Stir Cast	ting process.					

List of Experiments:

The students will be required to carry out the following exercises or their equivalent tasks using a 3-D modeling software package (e.g. Solid-works/ Creo/ Ideas/ Solid Edge/UG/CATIA/ etc.). Practical must be performed on licensed version (Preferably the latest version) of any one of above mentioned software.

1 BASIC SOLID MODELING

Introduction & sketcher tools

a) CAD Tools and Applications: CAD - CAM - CAE

b) Parametric Feature Based Modelling and Parent-Child Relation

c) Design Intent and Associativity between 3 Modes

d) Modelling Software - Getting Started & Graphical User Interface

e) Sketch Entities and Tools

f) Dimensioning and Adding Relations to define the Sketch

Sketched Features (Boss / Base and Cut)

a) Base Features

b) Extrude & Revolve

c) Reference Geometry, Curves & 3D Sketch

d) Sweep & Loft

Editing & Refining Model

a) Editing Sketch, Sketch Plane and Editing Feature

b) Suppress / Un-Suppress Feature and Reordering Feature

2 ADVANCE FEATURES APPLIED FEATURES

a) Patterns & Mirror

b) Fillet/Round & Chamfer

c) Hole & Hole Wizard

d) Draft, Shell, Rib and Scale

e) Dome, Flex and Wrap

Multi Body

a) Indent Tool

b) Combine Bodies - Boolean Operations

c) Split, Move/Copy and Delete Bodies

Other Tools & Options

a) Design Table and Configurations

b) Adding Equations and Link Values

c) Tools - Measure and Mass Properties

d) Appearance - Edit Material, Colour and Texture

e) Options - System and Document Properties

3 SURFACING TECHNIQUES BASIC SURFACE CREATIONS

a) Extrude & Revolve

b) Sweep & Loft

c) Boundary Surface

d) Planar Surface

Other Derived Techniques

a) Offset Surface b) Radiate Surface c) Ruled Surface d) Fill Surface e) Mid Surface Modify / Edit Surfaces a) Fillet/Round b) Extend c) Trim & Untrim d) Knit Surfaces e) Delete and Patch Surfaces for Hybrid Modelling a) Thicken - Boss / Base and Cut b) Replace face c) End condition for Sketched feature - Up to Surface or Offset from Surface. d) Solid body from closed surfaces **4 ASSEMBLY & MECHANISMS BOTTOM UP ASSEMBLY APPROACH** a) Inserting Components/Sub-Assemblies b) Adding Mates - Standard & Advance c) Editing Mates, Part and Replacing Components **Top down Approach & Mechanisms** a) Inserting New Part to Existing Assembly b) Use of Layout Sketching c) External References - In-context and Out-of-context, Locked and Broken **Assembly Features** a) Component Patterns & Mirrors b) Cuts & Holes c) Belt/Chain and Weld Bead **Representations of Assembly Components** a) Light Weight, Suppressed and Resolved b) Hide, Transparency and Isolate c) Exploded View **Assembly Check** a) Interference Detection, b) Collision Detection and Physical Dynamics Motion Study c) Assembly Motion & Physical Simulation d) Animation Wizard & Save as AVI file e) Mechanism Analysis - Plot Displacement, Velocity and Acceleration Diagram **5 DETAILED DRAFTING** Introduction to Engineering Drawings a) General Procedure for Drafting & Detailing b) Inserting Drawing Views, Dimensioning and Adding Annotations c) Drawing Templates & Sheet Format d) Setting Options Drawing Views a) Model View & Standard 3 View b) Projected View & Auxiliary View c) Section & Aligned Section View d) Detail View, Broken-out Section and Crop View. Dimensioning a) Standards, Rules and Guidelines b) Dimension Insertion/Creation - Insert Model Items & Dimension tool Annotations a) Notes & Holes Callout b) Datum & Geometric Tolerances c) Surface Finish & Weld Symbols, Centre Mark & Centre line, BOM Balloon & Bill of Material

Audit Course-I

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (CAD/CAM)

MTAD-101A	ENGLISH FOR RESEARCH PAPER WRITING									
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)			
				Test	Test					
2	0	0	-	-	100	100	3			
Objective	The objective of this course is to impart the knowledge of English for research paper writing.									
Course Outcomes										
C01	To understand that how to improve writing skills and level of readability.									
CO2	To Learn about what to write in each section.									
C03	To understa	To understand the skills needed when writing a title.								
CO4	To learn the	skills required	in writing the	results, discu	ssion and con	clusions.				

Unit-I

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit-II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit-III

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. Key skills needed when writing a Title, key skills needed when writing an abstract, key skills needed when writing an Introduction, skills needed when writing a Review of the Literature.

Unit-IV

Skills needed when writing the Methods, skills needed when writing the Results, skills needed when writing the Discussion, skills needed when writing the Conclusions, Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

- 1. Goldbort R, "Writing for Science", Yale University Press (available on Google Books)
- 2. Day R, "How to Write and Publish a Scientific Paper", Cambridge University Press
- 3. Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book.
- 4. Adrian Wallwork, "English for Writing Research Papers", Springer New York Dordrecht Heidelberg London, 2011

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (CAD/CAM)

MTAD-103A			DISAS	TER MANAG	EMENT				
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)		
				Test	Test				
2	0	0	-	-	100	100	3		
Objective	The objectiv	e of this course	e is to impart t	the knowledge	e of disasters	managemei	nt.		
	Course Outcomes								
C01	To demonstrate a critical understanding of key concepts in disaster risk reduction and								
	humanitaria	n response.							
CO2	To critically	evaluate disas	ster risk redu	ction and hur	nanitarian res	sponse polic	cy and practice		
	from multiple perspectives.								
CO3	To develop an understanding of standards of humanitarian response and practical relevance								
	in specific types of disasters and conflict situations.								
CO4	To critically understand the strengths and weaknesses of disaster management approaches,								
	planning ar	nd programmir	ng in differer	t countries,	particularly th	neir home	country or the		
	countries th	ey work in.	-		. ,		-		

Unit-I

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit-II

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.

Unit-III

Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics.

Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data From Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.

Unit-IV

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'New Royal book Company.
- 2. Sahni, Pardeep (Eds.)," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, New Delhi.
- 3. Goel S. L., "Disaster Administration and Management Text and Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (CAD/CAM)

MTAD- 105A	SANSKRIT FOR TECHNICAL KNOWLEDGE										
Lecture	Tutorial	TutorialPracticalCreditsMajorMinorTotalTime (Hrs.TestTestTest									
2	0	0	-	-	100	100	3				
Objective	The objective of this course is to understand basic Sanskrit Language and Ancient Sanskrit literature related to science & technology.										
	Course Outcomes										
C01	Students will get a working knowledge in illustrious Sanskrit, the scientific language of the world.										
CO2	Learning of Sanskrit to improve brain functioning.										
CO3	Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power										
CO4	The engined from ancien	ering scholars t literature.	equipped with	n Sanskrit will	be able to e	xplore the	huge knowledge				

Unit-I

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences

Unit-II

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit-III

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

- 1. Dr.Vishwas, "Abhyaspustakam" Samskrita-Bharti Publication, New Delhi
- 2. Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam "Teach Yourself Sanskrit" Prathama Deeksha-, New Delhi Publication
- 3. Suresh Soni, "India's Glorious Scientific Tradition" Ocean books (P) Ltd., New Delhi.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (CAD/CAM)

MTAD-107A	VALUE EDUCATION										
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)				
2	0	0	-	-	100	100	3				
Objective	The objective of this course is to understand value education, self-development, Imbibe good										
	values in students and Let them know about the importance of character building.										
			Course Outc	omes							
C01	To get knowledge of self-development.										
CO2	To learn the importance of Human values.										
CO3	To develop the overall personality.										
CO4	To know ab	out the importa	ince of charac	ter.							

Unit-I

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements

Unit-II

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

Unit-III

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

Unit-IV

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, studying effectively

RECOMMENDED BOOKS:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Second Semester
MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (CAD/CAM)

MTIP-102A		MECHATRONICS											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time											
3	0	0	3	60	40	100	3 hrs						
Objective	The objectiv	e of the co	urse is to a	acquaint the	knowledge of	electronic	devices and						
	electromecha	nical systems,	hydraulic and	pneumatic sys	stems, CNC, R	obotics and PI	_C's.						
		Course Outcomes											
C01	To understar circuits and e	nd the concep lectrical actuati	ts of Mechati ing circuits.	ronics, fundan	nental of elect	ronics and d	igital						
CO2	To acquaint the	he knowledge (of hydraulic sy	stem with its p	ractical applica	tions.							
CO3	To acquaint the	To acquaint the knowledge of pneumatic system with its practical applications.											
CO4	To study the and their use.	fundamentals o	of CNC, Robot	tics and progra	immable logic	controllers (PL	_C′s)						

UNIT-I

Introduction: The Mechatronics approach: A methodology for integrated design of Mechanical, Electronics and Electrical Control, Computer and Instrumentation.

Fundamentals of Electronics and digital circuits: Number systems: Binary, Octal, Hexadecimal, Conversion from Binary to Decimal, Octal and Hexadecimal and vice-versa, Binary arithmetic: Addition, subtraction, Multiplication and division, Boolean Algebra: Laws, De-Morgan's laws, Logic Gates, Truth tables, Karnaugh maps and logic circuits. Generation of Boolean function from truth tables and simplification, **Electrical actuating system:** Basic principle of electrical switching, Solenoids, Electrical relays, Representation of output devices, Electrical motors: A.C. motors, Stepper motors, Induction motor speed control.

UNIT-II

HYDRAULIC SYSTEMS:

Direction Control Valves: Poppet Valve, Spool Valve, Sliding Spool type DCV, Check Valve, Pilot operated check valve, Restriction check valve, 2 Way vale, 3 way valve, 4 way valve, Manually actuated valve, Mechanically actuated valve, Pilot operated DCV, Solenoid Actuated valve, Rotary Valve, Centre flow path configurations for three position four way valve, Shuttle valve

Pressure Control Valve: Simple and compound pressure Relief Valve, Pressure Reducing Valve, Unloading valve, sequence valve, counterbalance valve, Brake Valve

Flow Control Valves: Fixed and non-adjustable valve, adjustable, throttling, non-pressure compensated pressure control valve, Pressure/temperature compensated flow control valve, Shuttle and Fast exhaust valve, Time delay valve, Flow Control Valves, Fluid Conditioners, Hydraulic Symbols (ANSI), Hydraulic Circuit design: Control of Single and double acting cylinders, double pump Hydraulic System

UNIT-III

PNEUMATIC SYSTEM:

Air Generation and distribution: Air compressors, Air Receiver, Filters, intercoolers, After-coolers, Relief Valve, Air dryers, Primary and secondary lines, Piping Iayouts, Air Filters, Air Regulators, Air Lubricator, Actuators and output devices, Direction control valves, Flow control valves, junction elements, Pneumatic circuits, Control of Single and double acting cylinders.

UNIT-IV

INTRODUCTION TO CNC MACHINES AND ROBOTICS:

CNC Machines: NC machines, CNC machines, DNC machines, Machine structure, Slidways, Guideways, Slide Drives, Spindle, Robotics:Components of robots, Classification of robots, Robots application

PROGRAMMABLE LOGIC CONTROLLERS

Introduction - Principles of operation - PLC Architecture and specifications - PLC hardware Components, Analog & digital I/O modules, CPU & memory module - Programming devices - PLC ladder diagram, Converting simple relay ladder diagram in to PLC relay ladder diagram. PLC programming Simple instructions - Manually operated switches - Mechanically operated Proximity switches - Latching relays, Applications of PLC.

RECOMMENDED BOOKS:

1. W. Bolton, Mechatronics, Pearson Education.

- 2. Majumdar, Pneumatic system, TMH.
- 3. Andrew Parr, Hydraulic and Pneumatic systems, TMH.
- 4. M.P. Groover, Automation, Production systems and computer integrated manufacturing, TMH.
- 5. Shetty and Kolk, Mechatronics system design, Thomson learning.
- 6. Mahalik, Mechatronics, TMH.
- 7. Anthony Esposito, Fluid power with application, Pearson Education.
- 8. K.P Ramachandran, M.S Balasundaram, Mechatronics, Wiley India.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (CAD/CAM)

MTCM-102		Design Optimization & Simulation of Engineering Systems											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time (Hrs.)						
3	0	0	3	60	40	100	3						
Objective	Dbjective To study about the optimization and simulation of various engineering system.												
			Course O	utcomes									
CO 1	Students wi	II be able to un	derstand the	optimization	Techniques.								
CO 2	Students wi	ll be able to un	derstand the	optimization	of thermal sy	stem.							
CO 3	Students wi	ll be able to stu	udy design sy	nthesis and a	application in	different area	as.						
CO 4 Students will be able to learn different optimization methods and how to formulate a problem for optimization .													
			L	INIT I									

Introduction

Engineering Design, Design vs Analysis, Synthesis for Design, Selection vs design, Design as part of Engg, enterprise- Need, evolution & market analysis, feasibility & change of success, Engineering Design, R & D, Need for optimization, Fabrication, Testing & production; Thermal systems-Basic characteristics, Analysis, Types.

Basic Considerations in Design

Formulation of design problem; Conceptual design; Steps in design - Physical systems, modeling & simulation; Evaluation - Acceptable Design; Optimal design; Safety Features, Automation & control; Communicating the Design, Patents in Copy Rights; CAD; Material Selection.

UNIT II

Modeling of Thermal Systems

Introduction; Types of models; Mathematical Modeling; Physical modeling & dimensional analysis; Curve fitting. Numerical Modeling & Simulation: Numerical modeling; Solution procedures; Numerical model for a system; System simulation; Methods for numerical simulation.

UNIT III

Synthesis of Different Design steps

Introduction; Initial Design; Design Strategies; Design of systems from different application areas; Additional considerations for large practical systems.

Economic Considerations:

Introduction; Calculation of interest; Time value of money; Raising capital; Taxes; Economic factor in design; Application of thermal systems.

UNIT IV

Problem Formulation for optimization

Introduction; Basic concepts; Optimization methods; Optimization of thermal systems; Practical aspects in optimal design.

Optimization methods

Review of various methods; Lagrange multiplier methods for optimization of un-constrained & constrained problems; Search methods for multi- variable un-constrained & constrained optimization; Geometric, linear, dynamic & other methods.

Recommended Books:

- 1. Design & Optimization of Thermal Systems-Yogesh Jaluria, MH, New York.
- 2. Design of Thermal Systems- W. F. Stockers, MH, New York.
- 3. Principles of Design- N.P. Suh, Oxford Uni., New York.
- 4. Analysis & Design of Energy Systems- PH, Anglewood, New York.
- 5. Applied Numerical Methods- Carnahan, B.H, Luther, H.A. and Wilkes, J.O, Wiley, N.Y.
- 6. Numerical Methods Hornbeck, R.W., PH, Anglewood, New York.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-III

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (CAD/CAM)

MTIP-106A	ADVANCED WELDING PROCESSES												
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
3	0	0 0 3 60 40 100 3 hrs											
Objective	The main objective of the course is to impart the students with the knowledge of Welding metallurgy and welding processes.												
	Course Outcomes												
C01	To impart kno	wledge about v	various Weld	metallurgy and	d Weld arc cha	aracteristics.							
CO2	To acquaint st	udents with th	e various weld	ding power so	urces and their	r applications							
CO3	To impart kno weld metal tra	wledge to stu nsfer.	dents about E	lectrode coat	ings and Meta	Il transfer phe	enomenon in						
CO4	To let student welding techn	understand tliques.	ne basics of S	Solid state we	Iding processe	es and some	of the latest						

UNIT-I

WELDING METALLURGY: Introduction, Weld Metal Zone, Theory of solidification of metals and alloys, Homogeneous Nucleation, Heterogeneous Nucleation, Freezing of alloys, Epitaxial Solidification; Effect of Welding speed on Grain structure, Fusion boundary zone, Heat affected zone, Under bead zone, Grain Refined Zone, Partial transformed zone, Properties of HAZ

WELDING ARC: Definition of Arc, Structure and characteristics, Arc efficiency, arc blow, Electrical Characteristics of arc, Types of Welding Arcs, mechanism of arc initiation and maintenance, role of electrode polarity on arc behaviour and arc stability, analysis of the arc. Arc length regulation in mechanized welding processes.

UNIT-II

WELDING POWER SOURCES: Requirement of an Arc welding power sources, basic characteristics of power sources for various arc welding processes, duty cycles, Selection of a static Volt-Ampere characteristic for a welding process, AC/DC welding power source, DC rectifiers, thyristor controlled rectifiers, transistorized units, inverter systems, Mathematical Problems on Static volt ampere characteristics

UNIT-III

COATED ELECTRODES: Electrode coatings, classification of coatings of electrodes for SMAW, SAW fluxes, role of flux ingredients and shielding gases, classification of solid and flux code wires.

METAL TRANSFER & MELTING RATE: Mechanism and types of metal transfer, forces affecting metal transfer, modes of metal transfer, metal transfer in various welding processes, effective of polarity on metal transfer and melting rate.

UNIT-IV

SOLID STATE WELDING: Theory and mechanism of solid state welding,techniques and scope of friction welding, diffusion welding, cold pressure welding and ultrasonic welding, high energy rate welding, analysis of the Process. **WELDING TECHNIQUES:** Technique, scope and application of the electron beam and laser welding processes,under water welding - process & problem.

RECOMMENDED BOOKS:

1Raymond Sacks, -Welding: Principles & Practices II McGraw-Hill

2 R.S.Parmar, –Welding processes & Technologyll, Khanna Publishers

3 S.V. Nandkarni, -- Modern Arc Welding Technology, Oxford & IBH publishing Co.

4 L.M.Gourd, - Principles of Welding TechnologyII, ELBS/ Edward Arnold.

5 Richard L. Little – Welding & Welding Technologyll, Mc-Graw Hill.

6 Cary, Howard – Modern Welding Technology', prentice Hall, 1998.

7 Rossi – Welding Technologyll, Mc-Graw Hill.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (CAD/CAM)

MTIP-108A		ADVANCED METAL CUTTING											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time											
3	0	0	3	60	40	100	3 hrs						
Objective	The main obje	he main objective of the course is to impart the students with the knowledge of advanced cutting											
	tools, tools ge	tools, tools geometry, mechanisms and analysis.											
			Course Ou	tcomes									
C01	To impart know	wledge about	t various fund	ctional related to to	ools geometry.								
CO2	To acquaint w	To acquaint with the analysis of fundamental factors affecting tool forces											
CO3	To impart know	To impart knowledge about cutting tool life and mathematical modelling for wear.											
CO4	To let student	understand a	abrasive mad	hining and its pro	cess simulation.								

UNIT-I

Introduction system of Tool nomenclature, Tool Geometry, Mechanism of Chip formation and forces in orthogonal cutting, Merchant's force diagram.

Oblique Cutting: Normal chip reduction coefficient under oblique cutting, true shear angle, effective rake, influx region consideration for deformation, direction of maximum elongation, effect of cutting variables on chip reduction co-efficient, forces system in oblique cutting, effect of wear land on force system, force system in milling, effect of helix angle.

UNIT-II

Fundamentals of Dynamometry, Theoretical determination of forces, angle relations, heat and temperature during metal cutting; distribution, measurement, analysis, theoretical estimation of work piece temperature, hot machining

Fundamental factors, which effect tool forces: Correlation of standard mechanized test. (Abuladze –relation), nature of contact and stagnant phenomenon, rates of strains, shear strain and normal strain distributions, cutting variables on cutting forces.

UNIT-III

Cutting Tools: Tools materials analysis of plastic failure (from stability criterion), Analysis failure by brittle fracture, wear of cutting tools, criterion, flank and crater wear analysis, optimum tool life, tool life equations, (Taylor's woxen etc) Tool life test, machining optimization, predominant types of wear; abrasive, adhesive, diffusion wear models, wear measurements and techniques, Major Test of tool wear oxidative mathematical modelling for wear, test of machinability and influence of metallurgy on machinability. Economics of metal machining

UNIT-IV

Abrasive Machining: Mechanics of grinding, cutting action of grit, maximum grit chip thickness, energy and grit force temperature during grinding, wheel wear, grinding, process simulation, testing of grinding wheels, mechanics of lapping and honing, free body abrasion.

RECOMMENDED BOOKS:

- 1. Sen & Bhattacharya, Principles of Machine tools, New Central Book Agency.
- 2. Brown, Machining of Metals, Prentice Hall.
- 3. Shaw, Principles of Metal cutting, Oxford I.B.H.
- 4. Arshimov & Alekree, Metal cutting theory & Cutting tool design, MIR Publications.
- 5. Machining Science & Application by Knowenberg Longman Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (CAD/CAM)

MTIP-110A	Metrology									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	60	40	100	3 hrs.			
Objective	The main	objective of t	he course is	to deal with	the basic principles	of dimensional	measuring			
_	instruments	instruments and precision measurement techniques in achieving quality and reliability in the service of								
	any product in dimensional control.									
	Course Outcomes									
C01	To underst	and the stude	ents about the	e requirement	of metrology and the	concepts of lin	nit, fits and			
	gauges.			-		-				
CO2	To study th	e linear and a	ngular measu	rements and th	ne optical measureme	nt tools and tech	nniques.			
CO3	To underst	and how to us	e surface roug	hness and thr	ead measuring instrur	ments.				
CO4	To study th	e comparator	s, measureme	nt through con	nparators and the adv	anced metrology	concepts.			

UNIT-I

Introduction to metrology: Definition, types, need of inspection, terminologies, methods of measurement, selection of instruments, measurement errors, units, Measurement standards, calibration, statistical concepts in metrology.

Systems of Limits and Fits: Introduction, nominal size, tolerance limits, deviations, allowance, fits and their types – unilateral and bilateral tolerance system, hole and shaft basis systems – interchangeability and selective assembly. Indian standard Institution system – British standard system, International standard system for plain and screwed work.

Limit Gauges: Taylor's principle – Design of limit gauges, computer aided tolerancing.

UNIT-II

Linear Measurement: Length standard, line and end standards, slip gauges – calibration of the slip gauges, dial indicator, micrometres. Measurement of angles and tapers: Different methods – bevel protractor – angle slip gauges – spirit levels– sine bar – sine plate, rollers and spheres.

Flat Surface Measurement: Measurement of flat surfaces – instruments used – straight edges– surface plates – optical flat and auto collimator.

Optical Measuring Instruments: Tool maker's microscope and its uses, collimators, optical projector, optical flats and their uses, interferometer.

UNIT-III

Surface Roughness Measurement: Introduction, terminology, specifying roughness on drawings, surface roughness parameters, factors affecting surface roughness, ideal surface roughness, roughness measurement methods, precautions in measurement, surface microscopy, surface finish softwares.

Screw Thread Measurement: Elements of measurement – errors in screw threads – measurement of effective diameter, angle of thread and thread pitch, profile thread gauges.

Measurement through Comparators: Comparator: Features of comparators, classification of comparators, different comparators, advanced comparators, thread comparators.

UNIT-IV

Metrology of machine tools: Alignment and practical tests.

Gear Measurement: Gear measuring instruments, gear tooth profile measurement, measurement of diameter, pitch, pressure angle and tooth thickness.

Advanced Metrology: Advanced measuring machines, CNC systems, Laser vision, In-process gauging, 3D metrology, metrology softwares, Nano technology instrumentation, stage position metrology, testing and certification services, optical system design, lens design, coating design, precision lens assembly techniques, complex opto mechanical assemblies, contact bonding and other joining technologies.

RECOMMENDED BOOKS:

- 1. K.J. Hume, Engineering Metrology, Macdonald and Co. (publisher) London.
- 2. Czichos, The Springer handbook of metrology and Testing, 2011.
- 3. Jay. L. Bucher, The Metrology Hand book, American Society for Quality, 2004.
- 4. Smith GT, Industrial Metrology, Spinger.
- 5. John W. Greve, Frank W. Wilson, Hand book of industrial metrology, PHI New Delhi.
- 6. D.M. Anthony, Engineering Metrology, Pergamon Press.
- 7. Khare MK, Dimensional Metrology, OXFORD-IBH Publishers.
- 8. I C Gupta, "Engineering Metrology", 5th Edition, Danapath Rai & Co, 2008.
- 9. R.K. Jain, "Engineering Metrology". 20th Edition, Khanna Publishers, 2007.
- 10. M. Mahajan, "Engineering Metrology", Dhanapati Rai publications, 2007.
- 11. BIS standards on Limits & Fits (IS 919), Surface Finish (IS 2073), Machine Tool Alignment, 1993.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-IV

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (CAD/CAM)

MTIP-112A		SEQUENCING AND SCHEDULING											
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time											
3	0	0 0 3 60 40 100 3 hrs											
Objective	The main of production ar	he main objective of the course is to impart the students with the knowledge of different production and machine models of sequencing and scheduling.											
			Course Ou	utcomes									
C01	To understan	d the concept	of sequencin	g and scheduling.									
CO2	To study and	practice for the	e extension c	f basic models and	d parallel machine m	odels.							
CO3	To understan	o understand the concepts of the flow shop scheduling and practice for the flow shop scheduling											
	models.												
CO4	To understan	d the job shop	problems an	d simulation mode	Is for dynamic job sh	nop problem.							

UNIT-I

Single-Machine Sequencing: Introduction, Preliminaries, Problems without Due Dates, Problems with Due Dates **Optimization Methods for the Single-Machine Problem:** Introduction, Adjacent Pairwise Interchange Methods, A Dynamic Programming Approach, Dominance Properties, A Branch and Bound Approach.

Earliness and Tardiness Costs: Introduction, Minimizing Deviations from a Common Due Date, The Restricted Version, Asymmetric Earliness and Tardiness Costs, Quadratic Costs, Job-Dependent Costs, Distinct Due Dates, Sequencing for Stochastic Scheduling.

UNIT-II

Extensions of the Basic Model: Introduction, Non-simultaneous Arrivals, Related Jobs, Sequence-Dependent Setup Times, Stochastic Models with Sequence-Dependent Setup Times.

Parallel machine models: Introduction, Minimizing the Makespan, Minimizing Total Flow time, Stochastic Models.

UNIT-III

Flow Shop Scheduling: Introduction, Permutation Schedules, The Two-Machine Problem, Special Cases of The Three-Machine Problem, Minimizing the Makespan, Variations of the *m*-Machine Model, Stochastic flow shop scheduling.

UNIT-IV

The Job Shop Problem: Introduction, Types of Schedules, Schedule Generation, The Shifting Bottleneck Procedure, Neighborhood Search Heuristics.

Simulation Models for the Dynamic Job Shop: Introduction, Model Elements, Types of Dispatching Rules, Reducing Mean Flowtime, Meeting Due Dates.

RECOMMENDED BOOKS:

1. Michael Pinedoo, Scheduling: theory, algorithms and systems, Prentice Hall, New Delhi, 1995.

2. King, J.R. Production planning and control, Pergamon International Library, 1975.

3. Kenneth R. Baker, Introduction to sequencing and scheduling, John Wiley and Sons, 1974.

4. Kenneth R. Baker and Dan Trietsch, Principles of sequencing and scheduling, John Wiley and Sons, 2009.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (CAD/CAM)

MTIP-114A		QUALITY ENGINEERING AND MANAGEMENT										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 hrs					
Objective	The main ob	he main objective of the course is to impart the students with the knowledge of quality tools and										
	engineering f	engineering for the improvement of product quality.										
			Course	Outcomes								
C01	To understan	d the statistica	al concepts of c	juality and quality	statistics.							
CO2	To study the	To study the quality control chartsin production process and practice for its use in problem solving.										
CO3	To understan	Fo understand the quality improvement tools.										
CO4	To study the	ISO systems,	failure analysis	and testing.								

Unit-I

Introduction to Quality: An Historical Overview:Defining Quality, The Total Quality System, Total Quality Management, Economics of Quality, Quality, Productivity, and Competitive Position, Quality Costs, Success Stories.

Statistics for Quality: Variability in Populations, Some Definitions, Quality vs. Variability, Section I: Empirical Methods for Describing Populations, Section II: Mathematical Models for Describing Populations, Section III: Inference of Population Quality from a Sample.

Unit-II

Quality in Design: Planning for Quality, Product Planning, Product Design, Process Design.

Quality in Production-Process Control I: Process Control, The Control Charts, Measurement Control Charts, Attribute Control Charts, Summary on Control Charts, Process Capability, Measurement System Analysis,

QualityinProduction-ProcessControlII:DerivationofLimits,Operating Characteristics of Control Charts, Measurement Control Charts for Special Situations.Control<

Unit-III

Quality in Procurement: Importance of Quality in Supplies, Establishing a Good Supplier Relationship, Choosing and Certifying Suppliers, Specifying the Supplies Completely, Auditing the Supplier, Supply Chain Optimization Using Statistical Sampling for Acceptance,

Continuous Improvement of Quality: The Need for Continuous Improvement, The Problem-Solving Methodology, Quality Improvement Tools, Lean Manufacturing.

Unit-IV

A System for Quality: The Systems Approach, Dr. Deming's System, Dr. Juran's System, Dr. Feigenbaum's System, Baldrige Award Criteria, ISO 9000 Quality Management Systems, ISO 9001:2008 Requirements, The Six Sigma System.

RECOMMENDED BOOKS:

- 1. Grant & Leaveworth, Statistical Quality Control, McGraw Hill
- 2. Duncan, Quality Control & Industrial Statistics, Irwin Press
- 3. Juran, Quality Control Handbook, McGraw Hill.
- 4. Hansen, Quality Control, Prentice Hall
- 5. Thomason, An Introduction to reliability & control, Machinery Publishing.
- 6. A.V. Taylor, Total Quality Control, McGraw-Hill
- 7. K.S.Krishnamoorthi, V. Ram Krishnamoorthi, A First Course in Quality Engineering: Integrating Statistical and Management Methods of Quality, Second Edition, CRC Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units). All questions will have equal *weight of 12 marks*.

The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (CAD/CAM)

MTIP-116A		RELIABILITY ENGINEERING										
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time										
3	0	0 0 3 60 40 100 3 hrs										
Objective	The main ob	he main objective of the course is to impart the students with the knowledge of reliability analysis in										
	industrial sys	industrial system. Students can get acquainted with different reliability calculation models.										
			Course	Outcomes								
C01	To understan	d the concepts	s of reliability ir	industrial systems	S.							
CO2	To study the	To study the reliability determination methods and advanced evaluation techniques.										
CO3	To understan	o understand various reliability prediction and evolution methods.										
CO4	To acquaint t	he fundamenta	als of reliability	management and	risk assessment.							

UNIT-I

Reliability Engineering: Reliability function, failure rate, Mean time between failures (MTBF), Mean time to failure (MTTF), mortality curve, useful life availability, maintainability, system effectiveness. Introduction to probability distributions.

Time to failure distributions: Exponential, normal, Gamma, Weibull; ranking of data, probability plotting techniques, Hazard plotting Concept of Bathtub Hazard Rate curve, Reliability evaluation of two-state device networks-series, parallel, k-out-of-m systems; Standby redundant systems, Reliability evaluation of three-state device networks-series and parallel.

UNIT-II

Reliability Determination and Prediction: Reliability Determination Methods: Network reduction technique, Path tracing technique, Decomposition technique, Delta-Star method.

Advanced Reliability Evaluation Concepts: Supplementary variables technique, Interference theory, Human reliability, Common cause failures, Fault trees, Failure mode and effect analysis

UNIT-III

Reliability Prediction Models: Series and parallel systems - RBD approach - Standby systems - m/n configuration - Application of Baye's theorem - cut and tie set method - Markov analysis - FTA - Limitations.

UNIT-IV

Reliability testing: Time acceleration factor, influence of acceleration factor in test planning, application to acceleration test, high temperature operating life acceleration model, temperature humidity bias acceleration model, temperature cycle acceleration model, vibration accelerator model, failure free accelerated test planning. Accelerated reliability growth.

Risk Assessment: Definition and measurement of risk - risk analysis techniques - risk reduction resources - industrial safety and risk assessment.

RECOMMENDED BOOKS:

1. Charles E. Ebeling, "An introduction to Reliability and Maintainability engineering", TMH, 2000.

2. Roy Billington and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Springer, 2007.

3. Sharma S C, Inspection Quality Control and Reliability, Khanna Publishers.

4. Connor P.D.T.O. Practical Reliability Engineering", John Wiley.

5. Naikan V N A Reliability Engineering and Life Testing", PHI Learning Private Limited.

6. Prabhakar Murthy D N and Marvin R, "Product Reliability", Springer-Verlag.

7. Dana Crowe and Alec Feinberg, Design for Reliability, CRC Press.

Note:The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units). All questions will have equal *weight of 12 marks*.

The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

10(1842)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (CAD/CAM)

MTIP-118A	MECHATRONICS LAB										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Practical	Total	Time			
0	0	4	2	-	40	60	100	3 hrs			
Objective	To practice implications	To practice on electrical circuits, hydraulic and pneumatic systems and PLC's for their practical implications.									
			Col	Irse Outcom	es						
C01	To understar	o understand the PLC using PLC simulators.									
CO2	o demonstrate and actuate the positioning using sensors, actuators and programming.										
CO3	To study the	o study the pneumatic and electro-pneumatic training system with simulation software.									
CO4	To design ar	nd test on hydr	aulic and pr	neumatic circi	uits.						

List of Experiments

- 1. To study and conduct exercises on PLC Simulator.
- 2. Control of conveyor manually and through programming, also programming using sensors and conveyor.
- 3. To study and conduct exercise on CNC lathe.
- 4. To study and conduct exercises on Robotic simulation software.
- 5. To study and conduct exercises on Pneumatic & Electro-Pneumatic Training System.
- 6. To study the stepper motor interface with PLC.

7. Design and testing of hydraulic circuits such as

- i) Pressure control
- ii) Flow control
- iii) Direction control

iv)Design of circuit with programmed logic sequence, using an optional PLC in hydraulic. Electro hydraulic Trainer.

8. Design and testing of pneumatic circuits such as

- i. Pressure control
- ii. Flow control
- iii. Direction control
- iv. Circuits with logic controls
- v. Circuits with timers
- vi. Circuits with multiple cylinder sequences in Pneumatic Electro pneumatic Trainer.
- 9. To perform exercises on process control trainer.

Note: At least eight experiments should be performed from the above list.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (CAD/CAM)

MTCM-104		SIMULATION LAB										
Lecture	Tutorial	TutorialPracticalCreditMajorMinorPracticalTotalTimeTestTestTestTestTestTestTest										
0	0	4	2	-	40	60	100	3 hrs				
Objective	To study sin	o study simulation using MATLAB in various mechanical system.										
			Cou	rse Outcon	es							
C01	To understa	nd the basics (of MATLAB	software.								
CO2	To learn the	simulation of	Thermal syst	tem in MATL	AB.							
CO3	To learn the	o learn the simulation of Pneumatic system in MATLAB.										
CO4	To learn the	simulation of I	Hydraulic sys	stem in MAT	LAB.							

List of Experiments:

- 1. MAT LAB basics, dealing with matrices, Graphing-functions of one variable and two variables.
- 2. Use of MATLAB to solve simple problems in vibration.
- 3. Use of MATLAB to solve simple problems in Hydraulic system.
- 4. Analysis of force and stress using four link elements in trusses.
- 5. Use of MATLAB to solve problems in Pneumatic system.
- 6. Use of MATLAB to solve problems in Thermal system.
- 7. Model analysis of cantilever beam without load.
- 8. Model analysis of cantilever beam with load.
- 9. Simulation of cam and follower mechanism using MATLAB.
- 10. Simulation of spring-mass system using MATLAB.

Note: At least eight experiments should be performed by the students.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTCM-106		MINI PROJECT									
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Practical	Total	Time (Hrs.)			
0	0	4	2	-	-	100	100	3			
Objective	In case of r or fabricate	nini project, tr an experimer	ney will solve ntal setup.	a live prob	lem using	g software/ar	nalytical/co	mputational tools			
			Course	Outcomes	5						
CO 1	Students wi	Students will learn to write technical reports.									
CO 2	Students w audience.	ill develop sl	kills to prese	ent and de	fend thei	r work in fr	ont of tec	hnically qualified			

Students can take up small problems in the field of Design/Industrial and Production engineering/Thermal engineering as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

Students will be required to submit a brief synopsis of 3-4 pages related to the topic by the first week of September.

Audit Course-II

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (CAD/CAM)

MTAD- 102A	CONSTITUTION OF INDIA											
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)					
				Test	Test							
2	0	0	-	-	100	100	3					
Objective	The main of	pjective of the c	course is to in	mpart the stud	dents with the	knowledge o	of informing the					
	twin themes	of liberty and f	reedom from	a civil rights	perspective a	and to addres	s the growth of					
	Indian opini	on regarding m	odern Indian	intellectuals'	constitutional	role and ent	itlement to civil					
	and econor	and economic rights as well as the emergence of nationhood in the early years of Indian										
	nationalism.											
		(Course Outc	omes								
C01	To discuss	the growth of th	ne demand fo	or civil rights	in India for th	e bulk of Ind	ians before the					
	arrival of Ga	ndhi in Indian p	olitics.									
CO2	To discuss	the intellectu	ual origins	of the frame	ework of arg	gument that	informed the					
	conceptualiz	ation of social i	reforms leadi	ng to revolutio	on in India.							
CO3	To discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP]											
	under the le	eadership of Ja	awaharlal Ne	hru and the	eventual failu	re of the pro	posal of direct					
	elections thr	ough adult suffi	rage in the In	dian Constitu	tion.							
CO4	To discuss t	he passage of t	the Hindu Co	de Bill of 195	6.							

Unit-I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit-II

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit-III

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Pachayati raj: Introduction, PRI: Zila Pachayat, Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit-IV

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar, "framing of Indian Constitution", 1st Edition, 2015.
- 3. M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (CAD/CAM)

MTAD-104A			PED	AGOGY STL	JDIES					
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)			
				Test	Test					
2	0	0	-	-	100	100	3			
Objective	The main objective of the course is to review existing evidence on the review topic to inform									
	programme design and policy making undertaken by the DfID, other agencies and researchers									
	and Identify critical evidence gaps to guide the development.									
			Course Outo	omes						
C01	Understand	the pedagog	jical practice	s being use	d by teache	rs in forr	mal and informal			
	classrooms	in developing of	countries.							
CO2	Become aw	are of the evid	ence on the e	ffectiveness of	of these pedag	gogical pra	actices, in different			
	conditions a	nd with differen	nt population (of learners.						
CO3	Understand	the significant	ce of teacher	education (c	urriculum and	l practicur	n) and the school			
	curriculum a	and guidance m	naterials for ef	fective pedag	ogy.					

Unit-I

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education, Conceptual framework, Research questions. Overview of methodology and Searching.

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries, Curriculum, Teacher education.

Unit-II

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

Unit-III

Professional development: alignment with classroom practices and follow-up support, Peer support

Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

Unit-IV

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education

Curriculum and assessment, Dissemination and research impact.

- 1. Ackers J, Hardman F, "Classroom interaction in Kenyan primary schools", Compare, 31 (2): 245-261.
- 2. Agrawal M, "Curricular reform in schools: The importance of evaluation", Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K, "Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J, "Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count?" International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ, "Culture and pedagogy: International comparisons in primary education". Oxford and Boston: Blackwell.
- 6. Chavan M, "Read India: A mass scale, rapid, 'learning to read' campaign"

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (CAD/CAM)

MTAD-106A		S	FRESS MAN	AGEMENT E	BY YOGA						
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time				
				Test	Test		(Hrs.)				
2	0	0	-	-	100	100	3				
	•				•		•				
Objective	The main ol	The main objective of the course is to achieve overall health of body and mind and to									
-	overcome st	ress				-					
		Cou	rse Outcome	es							
C01	Develop he	althy mind in a	healthy body	thus improv	ing social hea	lth.					
CO2	Improve ef	ficiency									
CO3	Learn the \	′ogasan									
CO4	Learn the F	Pranayam									

Unit-I

Definitions of Eight parts of yog. (Ashtanga)

Unit-II

Yam and Niyam. Do's and Don't's in life.

i) Ahinsa, satya, astheya, bramhacharya and aparigraha ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

Unit-III

Asan and Pranayam

i) Various yog poses and their benefits for mind & body ii) Regularization of breathing techniques and its effects-Types of pranayam

- 1. Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Tarining-Part-I" : Nagpur
- 2. Swami Vivekananda, "Rajayoga or conquering the Internal Nature" Advaita Ashrama (Publication Department), Kolkata

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (CAD/CAM)

MTAD-108A		PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS										
Lecture	Tutorial	TutorialPracticalCreditsMajorMinorTotalTimeTestTestTest(Hrs.)										
2	0	0 0 100 100 3										
Objective	To learn to	To learn to achieve the highest goal happily.										
-	To become	To become a person with stable mind, pleasing personality and determination.										
	To awaken	wisdom in stud	ents.		-							
		Col	Irse Outcom	es								
C01	Students b	ecome aware a	about leaders	hip.								
CO2	Students will learn how to improve communication skills											
CO3	Understan	d the team buil	ding and conf	lict								
CO4	Student wi	l learn how to i	manage the ti	me.								

Neetisatakam-Holistic development of personality

- i) Verses- 19,20,21,22 (wisdom)
- ii) Verses- 29,31,32 (pride & heroism)
- iii) Verses- 26,28,63,65 (virtue)
- iv) Verses- 52,53,59 (dont's)
- v) Verses- 71,73,75,78 (do's)

Approach to day to day work and duties.

Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47, 48, Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5, 13, 17, 23, 35, Chapter 18-Verses 45, 46, 48.

Statements of basic knowledge.

Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68

Chapter 12 - Verses 13, 14, 15, 16, 17, 18

Personality of Role model. Shrimad Bhagwad Geeta:

Chapter 2-Verses 17,

Chapter 3-Verses 36,37,42,

Chapter 4-Verses 18, 38, 39

Chapter18 - Verses 37,38,63

- 1. Swami Swarupananda, "Srimad Bhagavad Gita" Advaita Ashram (PublicationDepartment), Kolkata
- 2. P.Gopinath, "Bhartrihari's Three Satakam (Niti-sringar-vairagya) by, Rashtriya Sanskrit Sansthanam, New Delhi.

Third Semester (Programme Elective-V)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM

MTIP-201A		ENTERPRISE RESOURCE PLANNING										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3					
Objective	The main object applications to technology, se	The main objective of the course is to impart the students with the knowledge of integrated applications to manage the business and automate many back office functions related to technology, services and human resources.										
			Course Ou	itcomes								
CO1	To study the b	asic principles	and models of	of an enterprise.								
CO2	To understand	the concepts	of technology	and architecture	e in ERP.							
CO3	To study ERP	system packa	ges.									
CO4	To study the E	RP procureme	ent issues.									

UNIT I

ENTERPRISE RESOURCE PLANNING:

Introduction, Evolution of ERP, Principle of ERP, Enabling Technologies, ERP Characteristics, Features of ERP, The advantages of ERP, Reasons for the Failure of ERP Implementation, Risk and governance issues in an ERP, ERP Framework, Business Blueprint, Business Engineering Vs. Business Process Re-Engineering, ERP Tools and Software, Demand Chain, Value Chain, and Supply Chain.

UNIT-II

ERP ARCHITECTURE: Need to Study ERP Architecture, Layered Architecture, Types of ERP Architecture, Two-tier Implementations, Three-tier Client/Server Implementations, Web-based architecture, Service-Oriented Architectures, Logical Architecture of an ERP System, Physical Architecture of an ERP System, and Evaluation Framework for ERP Acquisition.

UNIT III

ERP PACKAGE INTEGRATION AND IMPLEMENTATION: ERP market, SAP, People soft, BAAN company, ORACLE corporation, A comparative assessment and selection of ERP packages and modules, Sales Force Automation, Integration of ERP, Integration of ERP and the Internet, ERP implementation strategies, Comparison of Big Bang vs. Phased Approach, Implementation Strategy in Small and Medium Enterprise, Post Implementation Issues.

UNIT IV

OVERVIEW OF ARCHITECTURE OF DIFFERENT ERP SOFTWARES: Oracle overview, Architecture, A.I.M. and applications, SAP Software architecture overview, ERP before and after Y2K, Impact of Y2K on ERP Development, Risk and Governance Issues in an ERP

ERP MODULES: Finance module, Sales & Distribution module, Human Resources module, Plant Maintenance module, Quality Management module, Material management module, manufacturing management module.

RECOMMENDED BOOKS:

- 1. Sadagopan. S, ERP-A Managerial Perspective, Tata Mcgraw Hill, 1999.
- 2. Jose Antonio Fernandez, the SAP R/3 Handbook, Tata Mcgraw Hill, 1998.
- 3. Vinod Kumar Crag and N.K. Venkitakrishnan, Enterprise Resource Planning- Concepts and Practice, Prentice Hall of India, 1998.
- 4. Garg & Venkitakrishnan, ERPWARE, ERP Implementation Framework, Prentice Hall, 1999.
- 5. Thomas E Vollmann and Bery Whybark, Manufacturing and Control Systems, Galgothia Publications, 1998.
- 6.Alexis Leon, Enterprise resource planning, Tata Mcgraw-Hill

Note: The paper will have a total of *NINE questions*. QuestionNo.1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all FourUnits).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM

MTIP-203A		DESIGN OF EXPERIMENTS										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3 hrs										
Objective	To understand	o understand the various design of experiments techniques for optimization of problems.										
		(Course Outo	comes								
CO1	To understand t	he concepts of	Design of E	xperiment ar	nd statistical N	lethods.						
CO2	To understand the	o understand the ANOVA and factorial design and fitting response curves and surfaces.										
CO3	To study the app	study the application of Taguchi Method and testing of hypothesis										
CO4	To study and im	plement the R	esponse Sur	face Method	ology.							

UNIT-I

Introduction to Designed Experiments:

Introduction, Strategyofexperimentation, Sometypical applications of experimental design, Basic principles, Guidelines for designing experiments, Using statistical design in experimentation, A Checklist for Planning experiments, Introduction to Minitab, Interface of Minitab, Customizing Minitab, Entering Data, Graphing Data, Printing Data and Graphs, Saving and Retrieving information.

Basic Statistical Methods: Introduction, Basic statistical concepts, Types of Data, Graphical Presentation of Data. Descriptive Statistics: Measure of Location, Measure of Variation, The Normal Distribution, Counting, Minitab Commands to Calculate Descriptive Statistics.

Inferential Statistics: The Distribution of Sample Means (R Known), Confidence Interval for the Population Mean (σ Known), Hypothesis testing for one sample mean (σ Known), Hypothesis test for two sample means, Testing for Normality, Hypothesis test and Confidence Intervals with Minitab.

UNIT-II

Analysis of Variance: Introduction to Analysis of Variance, ANOVA assumptions and Validation, ANOVA Table, The sum of square approach to ANOVA calculations, Analysis of the fixed Effect model, Decomposition of the Total sum of squares. Statistical analysis, Estimation of the Model Parameters, Unbalanced Data, Model Accuracy Check, Practical interpretation of results. *ANOVA with Minitab*

Factorial Experiments: Basic definition and principles, Advantages of factorials, Two level factorial design, The 2¹ Factorial Experiment, The 2² Factorial Experiment, The 2³ Factorial Design, Addition of Centre Cells to 2^k Designs. General Procedure for Analysis of 2^k designs. 2^k Factorial Designs in Minitab.

UNIT-III

Introduction to Taguchi Method: Introduction, Taguchi Quality Ioss function, Orthogonal Array, Properties of Orthogonal Array, Minimum number of experiments to be conducted, Static Problems, Dynamic Problems, Assumptions of the Taguchi method, Steps in Taguchi Method, Assessment of Factors and Interactions, Selection and Application of Orthogonal arrays, Data Analysis from Taguchi Experiments, Variable Data with main factors only, Variable Data with Interactions, Attribute Data Analysis, Confirmation Experiment, Confidence Intervals, Robust Design Approach. *Applications of Taguchi Method using Minitab.*

UNIT-IV

Introduction to Response Surface Methodology: Introduction, Terms in Quadratic Models, The method of steepest ascent, Analysis of Second order response surfaces, Experimental design for fitting response surfaces, 2k Designs with Centers, 3^k Factorial Designs, Box- Behnken Designs, Central Composite Designs, Analysis of Data from RSM Designs, Design Considerations for Response Surface Experiments. *Response Surface Designs in Minitab.*

- 1. Douglas C Montgomery, Design and Analysis of Experiments, John Wiley
- 2. Paul G. Mathews, Design of Experiments with MINITAB, New Age International Publishers.
- 3. K. Krishnaiah, P. Shahabudeen, Applied Design of Experiments and Taguchi Methods, PHI.

- 4. Angela Dean and Daniel Voss, Design and Analysis of Experiments, Springer.
- 5. John P.W.M., Statistical Design and Analysis of Experiments, John Wiley
- 6. Montgomery D.C., Runger G. C., Introduction to Linear Regression Analysis, John Wiley
- 7. Myres R.H. and Montgomery D.C., Response Surface Methodology Process and Product Optimization Using Designed Experiments, Wiley
- 8. G UNIPUB, White Plains, Introduction to Quality Engineering Taguchi, New York.
- 9. https://www.ee.iitb.ac.in/~apte/CV_PRA_TAGUCHI_INTRO.htm
- 10. www.ecs.umass.edu/mie/labs/mda/fea/sankar/chap2.html

Note: The paper will have a total of *NINE questions*.QuestionNo.1, which is compulsory, shall be Objective Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM

MTIP-205A	STRATEGIC ENTREPRENEURSHIP										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	0 3 60 40 100 3 hr								
Objective	To provide	To provide knowledge to the students about entrepreneurship concepts and various development									
	programme	and policies.		-			-				
			Cours	e Outcomes							
C01	To know a	bout the sma	ll scale indus	stries, scopes and	the causes of their	sickness.					
CO2	To know a	To know about the EDP and different government policies.									
CO3	To learn at	oout business	s incubations	and its future pers	spectives.						
CO4	To learn E	-business ma	rketing and o	developments.							

UNIT-I

Small Scale Industries: Definition and types of SSI's; Role, scope and performance in national economy; Problems of small scale industries.

Industrial Sickness: Definition; Causes of sickness; Indian scenario, Government help; Management strategies; Need for trained entrepreneurs

UNIT-II

Entrepreneurship Development Programme: Introduction, Origin of EDP's, Organizations involved in EDP's, Objectives of EDPs, Implementation of EDP's, Short comings of EDP's, Role in entrepreneurship development. **Step:** Introduction, Origin, Status in India, Success and failure factors, Govt. polices and incentives, future prospects in India.

UNIT-III

Business Incubation: Introduction, Origin and development of business incubators in India and other countries, types of incubators, success parameters for a business incubator, Benefits to industries, institutes, government and society, future prospects, A few case studies (at least 2).

Project Management: Concept, Characteristics and Significance of Project Management, Components of Project Management, Project Life Cycle, Project Identification and Selection, Project Formulation and Appraisal.

UNIT-IV

Special Aspects of Entrepreneurship: Entrepreneurship, Social entrepreneurship, International entrepreneurship, Rural entrepreneurship, Community Development, Women entrepreneurship.

Network Marketing: Introduction, E-business, E-commerce, E-auction, A basic internet e-business architecture, A multitier e-business architecture.

RECOMMENDED BOOKS:

1. P.K. Gupta, Strategic Entrepreneurship, Everest Publishing House.

- 2. David Cleland, Project Management Strategic Design and Implementation, McGraw Hill.
- 3. David H Holl, Entrepreneurship-New Venture Creation, Prentice Hall of India.
- 4. Steed & Steed, Sustainable Strategic Management, Prentice Hall of India.
- 5. Kotler, Marketing Management by Prentice Hall of India.
- 6. Tarek Khalil, Management of Technology, McGraw Hill.
- 7. Henry Steiner, Engineering Economic Principles, McGraw Hill.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal weight of 12 marks. The student will attempt a total of *FIVE* questions, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

10(1855)

Open Elective

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM

MTOE-201A		BUSINESS ANALYTICS										
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)					
3	0	0	3	60	40	100	3					
Objective	The main ob	The main objective of this course is to give the student a comprehensive understanding of										
	business an	alytics methods	ò.									
		(Course Outc	omes								
CO1	Able to have	knowledge of	various busin	ess analysis	techniques.							
CO2	Learn the re	Learn the requirement specification and transforming the requirement into different models.										
CO3	Learn the re	Learn the requirement representation and managing requirement assets.										
CO4	Learn the Re	ecent Trends in	Embedded a	nd collaborat	ive business							

Unit-I

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

Unit-II

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents. Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

Unit-III

Finalizing Requirements, Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements, Managing Requirements Assets: Change Control, Requirements Tools

Unit-IV

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

RECOMMENDED BOOKS:

- 1. James Cadle, "Business Analysis", BCS, The Chartered Institute for IT.
- 2. Erik Larson and, Clifford Gray, "Project Management: The Managerial Process", McGraw-Hill Education.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM

MTOE-203A		INDUSTRIAL SAFETY									
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)				
3	0	0	3	60	40	100	3				
Objective	The main o and fault fir	The main objective of this course is to aware students about the industrial safety maintenance and fault findings.									
			Course Out	comes							
C01	Understand	I the industrial s	safety.								
CO2	Analyze fur	Analyze fundamentals of maintenance engineering.									
CO3	Understand	I the wear and	corrosion and	fault tracing							
CO4	Understand	ling when to do	periodic ince	eptions and a	pply the preve	enting maint	enance.				

Unit-I

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-II

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, principle and factors affecting the corrosion, Types of corrosion, Corrosion prevention methods.

Unit-III

Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-IV

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

RECOMMENDED BOOKS:

- 1. Higgins & Morrow, "Maintenance Engineering Handbook", Da Information Services.
- 2. H. P. Garg, "Maintenance Engineering", S. Chand and Company.
- 3. Audels, "Pump-hydraulic Compressors", Mcgraw Hill Publication.
- 4. Winterkorn, Hans, "Foundation Engineering Handbook", Chapman & Hall London.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM

MTOE-205A			OPER	ATIONS RE	SEARCH					
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)			
				Test	Test					
3	0	0	3	60	40	100	3			
Objective	The main of problems of it.	The main objective of this course is to aware students about the dynamic programming to solve problems of discrete and continuous variables and model the real world problem and simulate t.								
		(Course Out	comes						
C01	Students sh continuous	ould be able to variables.	apply the d	ynamic prog	ramming to so	lve proble	ms of discreet and			
CO2	Students sh	ould be able to	apply the co	ncept of non	l-linear prograr	nming				
CO3	Students sh	ould be able to	carry out sei	nsitivity anal	ysis					
CO4	Student sho	uld be able to n	nodel the rea	I world prob	lem and simula	ate it.				

Unit-I

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit-II

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit-III

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit-IV

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

RECOMMENDED BOOKS:

- 1. H.A. Taha, "Operations Research, An Introduction", PHI, 2008
- 2. H.M. Wagner, "Principles of Operations Research", PHI, Delhi, 1982.
- 3. J.C. Pant, "Introduction to Optimisation: Operations Research", Jain Brothers, Delhi, 2008
- 4. Hitler Libermann, "Operations Research", McGraw Hill Pub. 2009
- 5. Pannerselvam, "Operations Research", Prentice Hall of India 2010
- 6. Harvey M Wagner, "Principles of Operations Research", Prentice Hall of India 2010

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM

MTOE-207A		COST	MANAGEMEN	T OF ENGIN	EERING PRO	DJECTS					
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
3	0	0	3	60	40	100	3				
Objective	The main o	The main objective of this course is to impart the students with the knowledge of cost									
	managemer	management for the engineering project and apply cost models to the real world projects.									
		(Course Outco	mes							
CO1	Students sh	ould be able to	learn the stra	tegic cost ma	nagement pro	ocess.					
CO2	Students sh	Students should be able to understand types of project and project team types									
CO3	Students sh	ould be able to	carry out Cos	t Behavior ar	nd Profit Plani	ning analys	sis.				
CO4	Student sho	uld be able to l	learn the quar	ititative techni	ques for cost	managem	ent.				

Unit-I

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making, relevant cost, Differential cost, Incremental cost and Opportunity cost, Objectives of a Costing System, Inventory valuation, Creation of a Database for operational control, Provision of data for Decision-Making.

Unit-II

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning, Project execution as conglomeration of technical and nontechnical activities, Detailed Engineering activities, Pre project execution main clearances and documents Project team, Role of each member, Importance Project site, Data required with significance, Project contracts, Types and contents, Project execution Project cost control, Bar charts and Network diagram, Project commissioning, mechanical and process.

Unit-III

Cost Behavior and Profit Planning Marginal Costing, Distinction between Marginal Costing and Absorption Costing, Break-even Analysis, Cost-Volume-Profit Analysis, Various decision-making problems, Standard Costing and Variance Analysis, Pricing strategies, Pareto Analysis, Target costing, Life Cycle Costing, Costing of service sector, Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints, Activity Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis, Budgetary Control, Flexible Budgets, Performance budgets, Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit-IV

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

RECOMMENDED BOOKS:

1. Charles Thomas Horngren, "Cost Accounting a Managerial Emphasis", Prentice Hall of India, New Delhi

- 2. Charles T. Horngren and George Foster, "Advanced Management Accounting"
- 3. Robert S Kaplan Anthony A. Alkinson, "Management & Cost Accounting"
- 4. Ashish K. Bhattacharya, "Principles & Practices of Cost Accounting", A. H. Wheeler publisher
- 5. N.D. Vohra, "Quantitative Techniques in Management", Tata McGraw Hill Book Co. Ltd.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

10(1860)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM

MTOE-209A		COMPOSITE MATERIALS										
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)					
3	0	0	3	60	40	100	3					
Objective	The main o	The main objective of this course is to impart the students with the knowledge of composites,										
	its materials	its materials, analysis, fabrication, and performance analysis.										
			Course Outc	omes								
CO1	Students sh	ould be able to	learn the clas	sification and	d characterist	ics of comp	osite materials.					
CO2	Students sh	ould be able t	o understand	about differe	ent fabrication	technique	s related to metal					
	matrix comp	osites.										
CO3	Students sh	ould be able to	o understand a	bout differen	t fabrication t	echniques	related to polymer					
	matrix comp	matrix composites.										
CO4	Student sho	Student should be able to do the analyses of the composite materials under different loading										
	conditions.											

INTRODUCTION: Definition – Classification and characteristics of Composite materials, Advantages and application of composites, Functional requirements of reinforcement and matrix, Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures, Iso-strain and Iso-stress conditions.

UNIT – II

Manufacturing of Metal Matrix Composites: Casting, Solid State diffusion technique, Cladding, Hot iso static pressing, Properties and applications.

Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration, Liquid phase sintering, Manufacturing of Carbon, Carbon composites, Knitting, Braiding, Weaving. Properties and applications.

UNIT-III

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs, hand layup method, Autoclave method, Filament winding method, Compression moulding, Reaction injection moulding, Properties and applications.

UNIT – IV

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hydrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

RECOMMENDED BOOKS:

- 1. R.W.Cahn, "Material Science and Technology" VCH, West Germany.
- 2. WD Callister, Jr, "Materials Science and Engineering, An introduction"
- 3. Balasubramaniam, "John Wiley & Sons", NY, Indian edition, 2007.
- 4. Lubin, "Hand Book of Composite Materials"
- 5. K.K.Chawla, "Composite Materials"
- 6. Deborah D.L. Chung, "Composite Materials Science and Applications"
- 7. Danial Gay, Suong V. Hoa, and Stephen W. Tasi, "Composite Materials Design and Applications"

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

10(1861)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM

MTOE-211A		WASTE TO ENERGY										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)					
				Test	Test							
3	0	0	3	60	40	100	3					
	-											
Objective	The main of	he main objective of this course is to impart the students with the knowledge of generation of										
•	energy from	energy from the waste.										
			Course Outc	omes								
CO1	Students sh	ould be able to	learn the clas	sification of v	waste as a fue	el and biom	nass pyrolysis.					
CO2	Students sh	ould be able to	learn gasifica	tion process	and different	types of ga	asifiers.					
CO3	Students sh	Students should be able to learn different combustors for biomass.										
CO4	Student sho	ould be able to	learn the B	iogas plant t	echnology di	fferent bior	mass conversions					
	processes for	or different appl	ications.	C 1	0,							

Unit-I

Introduction to Energy from Waste: Classification of waste as fuel, Agro based, Forest residue, Industrial waste, MSW, Conversion devices, Incinerators, gasifiers, digestors.

Biomass Pyrolysis: Pyrolysis, Types, slow fast, Manufacture of charcoal, Methods, Yields and application, Manufacture of pyrolytic oils and gases, yields and applications.

Unit-II

Biomass Gasification: Gasifiers, Fixed bed system, Downdraft and updraft gasifies, Fluidized bed gasifiers, Design, construction and operation, Gasifier burner arrangement for thermal heating, Gasifier engine arrangement and electrical power, Equilibrium and kinetic consideration in gasifier operation.

Unit-III

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-IV

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system -Design and constructional features - Biomass resources and their classification - Biomass conversion processes -Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

RECOMMENDED BOOKS:

- 1. Desai, Ashok V, "Non-Conventional Energy", Wiley Eastern Ltd., 1990.
- 2. Khandelwal, K. C. and Mahdi, S. S., "Biogas Technology A Practical Hand Book Vol. I & II", Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Challal, D. S, "Food, Feed and Fuel from Biomass", IBH Publishing Co. Pvt. Ltd., 1991.
- 4. C. Y. WereKo-Brobby and E. B. Hagan, "Biomass Conversion and Technology", John Wiley & Sons, 1996.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM

MTCM-201	DISSERTATION PHASE – I									
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time (Hrs.)		
				Test	Test	Marks				
0	0	20	10	-	100	-	100	-		
Objective	The main objective of this course is to plan a research work (which includes the problem									
	formulation/literature review, proposed objectives, proposed methodologies and references) in the									
	field of Industrial and Production Design and Engineering issues or interrelated fields of applications.									
Course Outcomes										
CO 1	Students will be exposed to various self-learning topics.									
CO 2	Students will be exposed to an exhaustive survey of the literature such as books,									
	national/international refereed journals, resource persons and industrial surveys for the selection/									
	identification of engineering/research problem.									
CO 3	Students will be able to set the research objectives of the identified engineering/research problem.									
CO 4	Students will learn modern tools/techniques related to the identified engineering/research problem for									
	the solution and able to learn technical report writing skills.									
CO 5	Students will develop oral and written communication skills to present and defend their work in front of									
	technically o	ualified audien	ce.							

The students will start their research work in third semester with a research problem having research potential involving scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution.

The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his/her supervisor and the topic of dissertation must be mutually decided by the supervisor and student.

The students will be required to submit a progress report related to their dissertation work by the end of September. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.

The progress report must be at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The students will be required to appear for comprehensive Seminar & Viva-voce and submit a synopsis report based on their progress related to the dissertation as per the presentation date mentioned in the academic calendar for the session. The synopsis report will be submitted in the same format as that of the thesis and will contain the following:

- 1. Introduction
- 2. Literature Survey
- 3. Gaps in Literature
- 4. Objectives of the Proposed Work
- 5. Methodology
- 6. References

* Student will choose his/her guide in the end of second semester.

Fourth Semester

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (4th semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: CAD/CAM

MTCM-202	DISSERTATION PHASE -II									
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time (Hrs.)		
				Test	Test					
0	0	32	16	-	100	200	300	-		
Objective	The main objective of the course is to make the students able to do some good research in									
-	the field of their interests related to Industrial and Production Design and Engineering issues or									
	interrelated fields of applications.									
Course Outcomes										
CO 1	Students will be able to design solutions for engineering problems that meet the specified									
	needs with appropriate considerations.									
CO 2	Students will be able to conduct investigations of engineering problems using research-									
	based knowledge and experimental/research methods including design of experiments,									
	analysis and interpretation of data, and synthesis of the information to provide valid									
	conclusions.									
CO 3	Students will be able to apply resources and modern engineering tools and techniques with									
	an understanding of the limitations.									
CO 4	Students will be able to either work in a research environment or in an industrial									
	environme	ent.								
CO 5	Students will be conversant with technical report writing, professional ethics, responsibilities									
	and norms of the engineering practice.									
CO 6	Students	will be able	to present	and conv	ince their	topic of stu	dy to the	e engineering		
	community	<i>.</i>								

The students are required to continue Analytical/Experimental/Computational/Industrial Problems or Case studies investigations in the field of Industrial and Production Engineering or other related fields which have been finalized in the third semester. They would be working under the supervision of a faculty member.

The students will be required to submit a progress report duly signed by their respective supervisors to the department, related to their dissertation work in the last week of March. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.
- References

The progress report must be of at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The candidate has to prepare a detailed dissertation report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up/numerical details/industrial case study etc. as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study.
The final dissertation will be submitted in the end of semester as per academic calendar for the session, which will be evaluated by internal as well as external examiners based upon his/her research work. At least one publication is expected before final submission of the dissertation from every student in peer reviewed referred journals or reputed conference from the work done by them in their dissertation. The dissertation should be presented in standard format as provided by the department.

The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a supervisor, co-supervisor etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his supervisor.

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by state Legislature Act XII of 1956 (A+ Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS SEMESTER-1

S. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTMS-101	Tribology	3	0	0	3	3	60	40	-	100	3
2	MTMS-103	Advanced Manufacturing Technology	3	0	0	3	3	60	40	-	100	3
3		*Programme Elective-I	3	0	0	3	3	60	40	-	100	3
4		**Programme Elective-II	3	0	0	3	3	60	40	-	100	3
5	MTRM-111A	Research Methodology and IPR	2	0	0	2	2	60	40	-	100	3
6	MTMS-105	Tribology Lab	0	0	4	4	2	-	40	60	100	3
7	MTMS-107	Advanced Manufacturing Lab	0	0	4	4	2	-	40	60	100	3
8		***Audit Course-I	2	0	0	2	-	-	100	-	100	3
		Total	24	18	300	280	120	700				

*PRC	OGRAMME ELE	CTIVE- I for (MTMS) 1st Semester		**DDACDAMM	E ELECTIVE II for (MTMS) 1st Somostor
1.	MTIP-105A	Tool Engineering		MTIP-111A	Product Design and Development
2.	MTIP-107A	Advanced Engineering Materials	2.	MTIP-113A	Simulation of Industrial Systems
3.	MTIP-109A	Non-Conventional Machining		MTIP-115A	Supply Chain Management

		***AUDIT COURSE – I for 1st Semester (MTMS)
1.	MTAD-101A	English for Research Paper Writing
2.	MTAD-103A	Disaster Management
3.	MTAD-105A	Sanskrit for Technical Knowledge
4.	MTAD-107A	Value Education

Note: 1. The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

2.*** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

3. The programme Elective I & II and Audit Course-I are common with M.TECH. (I&P). The course starts with MTIP code is common with M.TECH. (I&P).

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by state Legislature Act XII of 1956 (A+ Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS <u>SEMESTER-II</u>

S. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTIP-102A	Mechatronics	3	0	0	3	3	60	40	-	100	3
2	MTMS-102	Optimization Techniques	3	0	0	3	3	60	40	-	100	3
3		*Programme Elective-III	3	0	0	3	3	60	40	-	100	3
4		**Programme Elective-IV	3	0	0	3	3	60	40	-	100	3
5	MTIP-118A	Mechatronics Lab	0	0	4	4	2	-	40	60	100	3
6	MTMS- 104	Optimization Techniques Lab	0	0	4	4	2	-	40	60	100	3
7	MTMS-106	Mini Project	0	0	4	4	2	-		100	100	3
8		***Audit Course-II	2	0	0	2	-	-	100	-	100	3
	1	Total	1	1		26	18	240	240	220	700	

	*PROGRAMME I	ELECTIVE-III for (MTMS) 2 nd Semester	**PROGRAMME ELECTIVE-IV for (MTMS) 2 nd Semester				
1	MTIP-106A	Advanced Welding Processes		1.	MTIP-112A	Sequencing and Scheduling	
2	MTIP-108A	Advanced Metal Cutting		2.	MTIP-114A	Quality Engineering and Management	
3.	MTIP-110A	Metrology		3.	MTIP-116A	Reliability Engineering	

		***AUDIT COURSE-II for (MTMS)2 nd Semester
1.	MTAD-102A	Constitution of India
2.	MTAD-104A	Pedagogy Studies
3.	MTAD-106A	Stress Management by Yoga
4.	MTAD-108A	Personality Development through Life Enlightenment Skills

Note: 1. ***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

2. The programme Elective III& IV and Audit Course-II are common with M.TECH. (I&P). The course starts with MTIP code is common with M.TECH. (I&P).

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by state Legislature Act XII of 1956 (A+ Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS <u>SEMESTER-III</u>

Sr. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1		*Programme Elective-V	3	0	0	3	3	60	40	-	100	3
2		**Open Elective	3	0	0	3	3	60	40	-	100	3
3	MTMS-201	Dissertation Phase-I	0	0	20	20	10	-	100	-	100	
	Total						16	120	180		300	

	*PROGRAMME ELECTIVE-V for (MTMS) 3rd Semester								
1.	MTIP-201A	Enterprise Resource Planning							
2.	MTIP-203A	Design of Experiments							
3.	MTIP-205A	Strategic Entrepreneurship							

	**OPEN ELECTIVE	E for (MTMS) 3rd Semester
1.	MTOE-201A	Business Analytics
2.	MTOE-203A	Industrial Safety
3.	MTOE-205A	Operations Research
4.	MTOE-207A	Cost Management of Engineering Projects
5.	MTOE-209A	Composite Materials
6.	MTOE-211A	Waste to Energy

Note: 1. The programme Elective-V and Open Elective are common with M.TECH. (I&P).

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by state Legislature Act XII of 1956 (A+ Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS

SEMESTER-IV

Sr. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTMS-202	Dissertation Phase-II	0	0	32	32	16	-	100	200	300	
Total							16		100	200	300	

Total credits = 68

INSTRUCTIONS FOR PAPER SETTER

- 1. The question paper is to be attempted in **THREE Hours**.
- 2. Maximum Marks for the paper are **60**.
- 3. The syllabus for the course is divided into FOUR units.
- 4. The paper will have a total of NINE questions.
- 5. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have content from the entire syllabus (all Four Units).

Q. No. 2 & 3	from	Unit I
Q. No. 4 & 5	from	Unit II
Q. No. 6 & 7	from	Unit III
Q. No. 8&9	from	Unit IV

- 6. All questions will have equal weightage of 12 marks.
- 7. The candidate will attempt a total of **FIVE questions**, each of 12 marks. Q. No. 1 is compulsory. The candidate shall attempt remaining **four** questions by selecting **only one question from each unit**.
- 8. A question may have any number of sections labeled as 1(a), 1(b), 1(c), 1(d), ---- 2(a), 2(b), --.A section may further have any number of subsections labeled as (i), (ii), (iii), (iii),

9. SPECIAL INSRUCTIONS FOR Q. No. 1 ONLY

Question No. 1, which is compulsory, shall be OBJECTIVE/ short answer type **and have content** from the entire syllabus (all Four Units).

Emphasis is to be given on the basic concepts, analytical reasoning and understanding of the various topics in the subject. This question may have a number of parts and/or subparts. The short questions could be combination of following types:

- i. Multiple Choice
- ii. Yes/ No choice
- iii. Fill in Blanks type
- iv. Short numerical computations
- v. Short Definitions
- vi. Matching of Tables

The above mentioned question types is **only a Guideline**. Examiner could set the question as per the nature of the subject.

First Semester

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1stSem.) (MANUFACTURING SYSTEMS)

MTMS-101		-	TRI	BOLOGY							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	60	40	100	3 hrs				
Objective	To develop a soluti	To develop a solution oriented approach by in depth knowledge of Tribology and address the									
junderlying concepts, methods and application of Tribology.											
	Course Outcomes										
C01	Students will be able to understand to fundamentals of Tribology, friction mechanisms in contacts between different materials.										
CO2	Students will be abl	e to understand	l wear mecl	nanisms and	lubrication fu	undamentals	S.				
CO3	Students will be able to design different types of bearing.										
CO4	Students will be al selection of rolling b	ole to study ro earing.	olling friction	n, Reynolds	slip and He	eathe cote	concepts for				

Unit-I

Friction: Friction, Wear and Lubrication, Types of Engineering Contacts: conforming and non-conforming. Types of motion; rubbing, sliding, oscillating, rolling and Surface of interactions: elastic and plastic deformations, properties of materials, surface energy and flash temperature theory, Law of solid friction, concept of adhesion, Taylor's model of friction elastic thermo friction, rolling friction, measurement of friction.

Unit-II

Wear and Lubrication: Laws of wear, Types of wear such as adhesive, declamination, abrasive, fatigue, corrosive, fretting, erosive, electrical and oxidative. Measurement of wear in dry atmosphere and different environments. Prevention and control of wear and friction in machines, wear of cutting tool and dies, study of abrasion in grinding, lapping and honing,

Mechanisms of lubrication, Boundary, squeeze film hydrodynamic and elasto hydro-dynamic and hydro static lubrications plasto hydrodynamic lubrication, solution of Reynolds's equation in two and three dimensional flow. Pressure distribution load carrying capacity friction forces in oil film and Co-efficient of friction in journal bearing. Sold lubricants types and applications.

Unit-III

Bearing Design: Design of bearing: clearance in journal bearing, minimum film thickness, sommar-field Number, Oil grooves and flow of oil in axial and circumferential grooves cavitations and turbulence in oil bearings. Heat generation and cooling or bearing Hydrostatic and dynamic and their applications in machine tools. Design of air bearing and other gas bearing.

Unit-IV

Rolling Friction: Reynold's slip, Heathe cote concept selection of roller bearing and their methods of lubrication design aspects and modes of bearing failures and elasto hydro dynamic lubrication.

RECOMMENDED BOOKS:

- 1. Friction & Wear by Robinogiz.
- 2. Basic Lubrication theory, Cameron
- 3. Industrial Tribology, Tribology failure and their analysis by Dr. B.S. Prabhu.
- 4. Main Engg. Handbook, A M/C Design, McGrawHill.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING SYSTEMS)

MTMS-103		ADVANCED MANUFACTURING TECHNOLOGY										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 hrs					
Objective	The main obje	ctive of this co	ourse is to im	part knowled	ge about vari	ous machinin	g and forming					
	processes.											
	Course Outcomes											
C01	To impart know angles of tools	To impart knowledge about various functional requirements of metal machining, tool life, cutting angles of tools.										
CO2	To impart known and inspection	wledge about of casting.	various requ	irements of (casting, coolir	ng and solidif	fication					
CO3	To impart kno welding.	owledge to stu	udents about	principles of	of fusion wel	ding, various	processes of					
CO4	To let student curves for hot a	understand sor and cold workir	me metal forr ng.	ning process	and selection	of stress and	d strain					

Unit-I

Metal Machining: Tool geometry; Different systems of representation; Mechanics of metal cutting—chip formation, types of chips, cutting ratio, shear angle, shear strain; Orthogonal cutting; Heat generation and cutting tool temperature; Tool wear, geometry of tool wear, wear measurement; Analysis of shaping & turning; Tool life and machinability; Cutting fluids; Surface finish in machining.

Unit-II

Casting Processes: Melting of metals—furnaces, gases in metals; Gating design—aspiration effect, friction effect and velocity distribution; Cooling & solidification—mechanism of solidification, rate of solidification; Riser design and placement; Continuous casting; Investment casting; Centrifugal casting; Die casting; CO₂ casting; Inspection of castings.

Unit-III

Welding: Principles of solid phase welding; Principles of fusion welding—Modes of metal transfer in arc welding, Gas metal reaction, Cooling of fusion weld; Advanced welding techniques—Thermit welding, Ultrasonic welding, Electron beam welding, Laser beam welding, Explosive welding; Welding defects and inspection; Soldering; Brazing; Adhesive bonding

Unit-IV

Metal Forming: True stress, true strain; True stress-strain curves; Selection of stress strain curves for hot working and cold working; Tresca and Von Mises yield criteria; Temperature in metal working; Analysis of metal forming processes— Forging, Rolling, Wire and Tube drawing; Extrusion; Numerical problems relating to analysis of metal forming; Defects in forming processes.

RECOMMENDED BOOKS:

- 1. Manufacturing Science; Ghosh A., Mallik A.K., East West Press New Delhi, 2002
- 2. Production technology; Gangopadhyay A.K., Ramananda B.S., Ranganathan M.V., HMT Bangalore, Tata McGraw-Hili Publishing Co. Ltd., New Delhi, 1991
- 3. Manufacturing Science, Rao P.N., Tata McGraw-Hili Publishing Co. Ltd., New Delhi,
- 4. A Text Book of Production Engineering, Sharma P.C., S. Chand & Co., New Delhi, 2005
- 5. Fundamentals of Metal Casting, Flin, Addison Wesley
- 6. Principles of Metal Cutting, Shaw, Oxford IBH

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-I

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1stSem.) (MANUFACTURING SYSTEMS)

MTIP-105A		TOOL ENGINEERING										
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time										
3	0	0 0 3 60 40 100 3 hrs										
Objective	The objective	The objective of the course is to impart the students with the knowledge of various aspects of										
	design of differ	design of different types of Tools and fixtures used in Industries.										
		Co	urse Outco	mes								
C01	To impart know	wledge of mate	rials for cutti	ng tool and desi	gn of cutting too	ols.						
CO2	To acquaint st	To acquaint students with various kinds of Gages and Work holding devices.										
CO3	To impart know	To impart knowledge to students about Drill jigs and Fixtures.										
CO4	To let student	understand the	tool design	process for NC	Machine tools							

UNIT-I

Cutting Tool Materials: Introduction and desirable properties, Carbon and Medium-Alloy Steels, High-Speed Steels, Cast-Cobalt Alloys, Carbides, Coated Tools, Alumina-Based Ceramics, Cubic Boron Nitride, Silicon-Nitride Based Ceramics, Diamond, Reinforced Tool Materials, Cutting-Tool Reconditioning.

Design of Cutting Tools Basic Requirements, Mechanics and Geometry of Chip Formation, General Considerations for Metal Cutting, Design of single point Cutting Tools, Design of Milling Cutters, Design of Drills and Drilling, Design of Reamers, Design of Taps, Chip Breakers.

UNIT-II

Gages and Gage Design: Limits fits and tolerances, Geometrical tolerances-specification and measurement, Types of gages, Gage design, gage tolerances, Material for Gages.

Work Holding Devices: Basic requirements of work holding devices, Location: Principles, methods and devices, Clamping: Principles, methods and devices.

UNIT-III

Drill Jigs: Definition and types of Drill Jigs, Chip Formation in Drilling, General Considerations in the Design of Drill Jigs, Drill Bushings, Drill Jigs, and Modern Manufacturing

Design of Fixtures: Fixtures and Economics , Types of Fixtures , Milling Fixtures , Boring Fixtures, Broaching Fixtures, Lathe Fixtures, Grinding

UNIT-IV

Tool Design for Numerically Controlled Machine Tools: Fixture Design for Numerically Controlled Machine Tools, Cutting Tools for Numerical Control, Tool-holding Methods for Numerical Control.

RECOMMENDED BOOKS:

1. ASTME, "Fundamentals of Tool Design", Prentice Hall of India, 1983.

2. Donaldson, "Tool Design", Tata-McGraw Hill, 3rd Edition, 2000.

3. Joshi P.H., "Jigs and Fixtures", Tata-McGraw Hill, 2010.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING SYSTEMS)

MTIP-107A	ADVANCED ENGINEERING MATERIALS											
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTimeTestTestTestTestTestTest										
3	0	0	3	60	40	100	3 hrs					
Objective	The objective of the course is to impart the students with the knowledge of various advanced and											
smart materials.												
		C	Course Outco	omes								
CO1	To impart knowledg	e of Piezoelec	tric and shap	e memory all	oys.							
CO2	To acquaint student	s with deep kn	now how abo	ut Electro-rhe	ological and c	omposite mat	erials					
CO3	To impart knowledge to students about MEMS systems and High temperature application materials.											
CO4	To let student understand the processing and characteristics of powder metallurgy processes and structural materials.											

UNIT-I

Introduction to advanced Engineering materials: Classes of Materials and their usage, Historical Perspective, Intelligent Materials, Structural Materials, Functional Materials, Primitive Functions of Intelligent Materials, Intelligence inherent in Materials, Materials Intelligently Harmonizing with humanity, Biomimetic.

Smart Materials and Structural Systems: Introduction, Actuator Materials, Sensing Technologies, Micro-sensors, Intelligent systems, Hybrid Smart Materials, Passive Sensory Smart Structures, Reactive Actuator based smart structures, Active Sensing and Reactive smart structures, smart skins, Aero-elastic tailoring of airfoils, Synthesis of future smart systems.

UNIT-II

Electrocaloric Effect: An Introduction, History of Electrocaloric Cooling, Mechanism of working of Electrocaloric Cooling, Electrocaloric Materials, Performance of Electrocaloric Materials.

Heat Resistant Steels: Conventional Heat-Resistant Steels, Silicon-Bearing High Chromium Heat-Resistant Steels, Nitride-Strengthened Reduced Activation Heat-Resistant Steels, China Low Activation Martensitic SteelNitride-Strengthened Steels, Microstructural Stability

UNIT-III

Smart Micro-systems:Silicon Capacitive Accelerometer, Piezo-resistive Pressure sensor, Conductometric Gas sensor, An Electrostatic Comb-drive, Magnetic Microrelay, Portable Blood Analyser, Piezoelectric Inkjet Print Head. **Buckyballs to robotics**: Bucky ball, Nano Structure of Fullerene, Carbon Nanotubes, Nano Diamond, Boron nitride

nanotubes, Single electron transistors, Molecular machine, Nano Biometrics, Nano Robots,

UNIT-IV

Nano-Alloys: Introduction, Chemical Synthesis: General Concepts, Reduction of Metallic Salts, The Organometallic Route: Thermal Decomposition Method, Other Chemical Methods for synthesis of Nano-alloys, Physical Routes for synthesis of Nano-Alloys; Experimental Techniques and Examples.

Shape memory alloys (SMA): Shape memory effect and the metallurgical phenomenon of SMA, Types of SMA, One way and Two way Shape memory effect. Temperature assisted shape memory effect, Applications.

RECOMMENDED BOOKS:

- 1. Gandhi, M.V. and Thompson, B.S., Smart materials and Structures, Chapman & Hall, 1992.
- 2. Ananthasuresh G.K., Vinoy K.J., Micro and Smart Systems, Wiley India.
- 3. Wei Yan, Wei Wang, 9-12 Cr Heat Resistant Steels, Engineering Material series, Springer International.
- 4. Damien Alloyeau, Christine Mottet, Nanoalloys Synthesis, Structure and Properties, Springer International.
- 5. Tatiana Correia, Qi Zhang, Electrocaloric Materials: New Generation of Coolers
- 6. Otsuka, K. and Wayman, C. M., Shape memory materials, C.U.P, 1998
- 7. Taylor, W., Pizoelectricity, George Gorden and Breach Sc. Pub., 1985
- 8. Mallick, P.K., Fiber Reinforced Composites Materials, Manufacturing and Design. Marcel Dekker Inc, New York, 1993.
- 9. Rama Rao, P. (ed.), Advances in Materials and their applications, Wiley EasternLtd.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING SYSTEMS)

MTIP-109A		NON-CONVENTIONAL MACHINING										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3 hrs										
Objective	To acquaint of Non-conve	To acquaint the students with the advanced technologies and processes in various streams of Non-conventional machining.										
		Course Outcomes										
CO1	To impart technology,	To impart knowledge of Various Non-conventional Mechanical Working Processes, technology, process parameters and analysis for metal removal for these processes.										
CO2	To acquaint processes,	students with	deep knowl	now about (chemical an	d electroch	emical machining					
CO3	To impart k processes, j characteristic	To impart knowledge to students about various kinds of Electric discharge machining processes, process parameters associated with these processes and various process characteristics.										
CO4	To let stude machining ar	ent understand nd Electron bea	d the worki am machinir	ing and ten ng processe	chnology as s.	ssociated v	vith Laser Beam					

UNIT-I

Introduction, Need of Non-conventional machining processes, Characteristics of conventional and Non-conventional Machining processes. **Mechanical Working Processes: Abrasive Jet Machining:** Machining setup, Abrasives, Process Parameters, Machining Characteristics, Material removal models in AJM, Process capability, Advantages, limitations, Applications

Water Jet Machining: Basic mechanism of Water jet machining setup, Process parameters, Catcher, Process capabilities, Advantages, limitations, Applications **Abrasive Water Jet Machining process:** Working Principle, AWJM Machine, Process Variables, Mechanism of Metal Removal, Cutting Parameters, Process capabilities, Applications, Environmental issues.

Ultrasonic Machining: Fundamental principles, Equipment, Magnetostriction, Elements of process, Mechanics of cutting, Analysis of Process Parameters, Process capabilities, Economic considerations. Applications, Limitations

UNIT-II

Chemical Machining: Introduction, Fundamental Principles, Process Parameters; Maskants and Etchants, Advantages, Limitations, Applications.

Electrochemical Machining Processes: Introduction, Classification of ECM Processes, Fundamentals Principles of ECM, Elements of ECM, ECM Machine Tool Process, Determination of Metal Removal Rate, Evaluation of Metal Removal of an alloy, Electrochemistry of ECM, Cathode and Anode reaction, Dynamics of ECM, Self-Regulating feature of ECM, Process Parameters, Process capabilities, Electrochemical Deburring. **Electrochemical Grinding:** Schematics, Electrochemistry, Process Parameters, Process capabilities, Applications, Advantages, Limitations.

UNIT-III

EDM: Introduction, Basic Principles & Schematics, Process Parameters, Characteristics of EDM, Dielectric, Electrode Material, Modelling of Material Removal, Spark Erosion Generators, Analysis and Metal Removal Rate in RC circuit, Selection of Tool Material and Tool Design, Di-Electric system, Process Variables, Dielectric Pollution and its effects, Process Characteristics, Applications, Electric Discharge Grinding and Electric Discharge Diamond Grinding; **Wire EDM:** Working Principle, Wire EDM Machine, Advances in Wire-cut EDM Process Variables, Process Characteristics, Applications.

UNIT-IV

Laser Beam Machining Back Ground, Production of Laser, Working Principle of LBM, Types of LASERS, Process Characteristics, Metallurgical effects, Advantages and Limitations, Applications.

Electron Beam Machining:

Electron Beam Action, Generation and control of Electron beam, Theory of Electron Beam Machining, Process Parameters, Process capabilities, Applications.

High Energy Rate Forming, Elctro-Hydraulic Forming, Explosive Forming, Hot Machining Analysis of the Process.

RECOMMENDED BOOKS:

1 V.K. Jain, Advanced Machining Processes, Allied Publishers Pvt Ltd

2 P.C. Pandey and H.S. Shan, Modern Machining Processes, Tata McGraw-Hill

3 M. K. Singh, Unconventional Manufacturing Process, New Age Publishers

4 J. A. Mcgeough, Advanced Methods of Machining, Springer.

5 Benedict, Non-Traditional Manufacturing Process, CRC pub.

6 P. K. Mishra, Nonconventional manufacturing, Narosa Publishers

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-II

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING SYSTEMS)

MTIP-111A		PRODUCT DESIGN AND DEVELOPMENT											
Lecture	Tutorial	Tutorial Practical Credit Major Minor Total Time											
		Test Test											
3	0	0	3	60	40	100	3 hrs						
Objective	The objective of t	The objective of the course is to understand about the product design and developments with											
	inputs from aesthe	inputs from aesthetics, ergonomics, design for manufacturing ease and cost effectiveness apart											
	from reliability and durability and other considerations.												
		Cou	rse Outcor	nes									
C01	To understand th	e concept of	product des	ign, design	considerat	ions, design p	practiced by the						
	industry, productio	n and marketir	ng, and aest	hetics.			-						
CO2	To provide a deta	iled fundamen	tal approact	n to several	primary pro	cesses and d	esign guidelines						
	for manufacturing,	assembly and	environmer	nt.									
CO3	To discuss the hur	To discuss the human factor engineering and the concept of value engineering.											
CO4	To study the mod	lern approach	es to produ	ıct design,	concept of	product deve	lopment and its						
	manufacturing and	economic asp	ects.	0	•	•	-						

UNIT-I

INTRODUCTION: Introduction to product design, Design by evolution and innovation, Essential factors of product design, Production consumption cycle, Flow and value addition in production consumption cycle, Morphology of design. **PRODUCT DESIGN PRACTICE AND INDUSTRY:** Product strategies, Time to market, Analysis of the product, Basic design considerations, Role of aesthetics in product design.

ŬNIT-II

DESIGN FOR MANUFACTURE AND ASSEMBLY: Overview and motivation, Basic method: Design guidelines: Design for assembly, Design for piece part production, Advanced method: Manufacturing cost analysis, cost driver modeling, Critique for design for assembly method.

DESIGN FOR THE ENVIRONMENT: Environmental objectives, Basic DFE methods, Design guidelines, Life cycle assessment, Techniques to reduce environmental impact.

UNIT-III

HUMAN ENGINEERING CONSIDERATIONS IN PRODUCT DESIGN: Human being as applicator of forces, Anthropometry, the design of controls, the design of displays, Man/Machine information exchange, Workplace layout from ergonomic considerations.

VALUE ENGINEERING: Value, Nature and measurement of value, Maximum value, Normal degree of value, Importance of value, value analysis job plan, creativity, steps to problem solving and value analysis, value analysis tests, value engineering idea generation check list, Cost reduction through value engineering-case study, materials and process selection in value engineering.

UNIT-IV

MODERN APPROACHES TO PRODUCT DESIGN: Concurrent design, Quality function deployment (QFD), Rapid prototyping, 3D printing, Introduction to 4D printing.

PRODUCT DEVELOPMENT: A modern product development process, reverse engineering and redesign product development process, product life cycle, product development teams, Product development planning, Manufacturing & economic aspects of product development.

RECOMMENDED BOOKS:

- 1. Kail T Ulrich and Steven D Eppinger, "Product Design and Development, TMH.
- 2. AK Chitale and Gupta, "Product Design and Engineering, PHI.
- 3. Niebel & Draper, "Product Design and Process Engineering", McGraw-Hill.
- Kevin Otto & Kristin Wood, "Product Design-Techniques in reverse engineering and new product development" Pearson.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1stSem.) (MANUFACTURING SYTEMS)

MTIP-113A	SIMULATION OF INDUSTRIAL SYSTEMS												
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time											
3	0	0	3	60	40	100) 3 hrs						
Objective	The main	The main objective of the course is to impart the students with the knowledge of industrial											
	systems a	systems and its simulation.											
	Course Outcomes												
C01	To explain	the concept	of industrial si	mulation syster	ns and its mo	dels of sim	ulation.						
CO2	To unders	tand the sim	ulation of discr	ete and queuei	ng systems.								
CO3	To under	rstand the	simulation if	inventory sys	stems and c	lesign of	simulation						
	experimer	experiments.											
CO4	To	To simulate the industrial problems like reliability											
	problems,	computertim	esharingproble	m and understa	and the simula	ition langua	ages.						

UNIT-I

Introduction and overview: concept of system, system environment, elements of system, system modeling, types of models, Monte Carlo method, system simulation, simulation - a management laboratory, advantages & limitations of system simulation, continuous and discrete systems.

Simulation of continuous systems: characteristics of a continuous system, comparison of numerical integration with continuous simulation system. Simulation of an integration formula.

UNIT-II

Simulation of discrete system: Time flow mechanisms, Discrete and continuous probability density functions. Generation of random numbers, testing of random numbers for randomness and for auto correlation, generation of random variates for discrete distribution, generation of random variates for continuous probability distributionsbinomial, normal, exponential and beta distributions; combination of discrete event and continuous models.

Simulation of queuing systems: Concept of queuing theory, characteristic of queues, stationary and time dependent queues, queue discipline, time series analysis, measure of system performance.

Kendall's notation, auto covariance and auto correlation function, auto correlation effects in queuing systems, simulation of single server queues, multi-server queues, queues involving complex arrivals and service times with blanking and reneging.

UNIT-III

Simulation of inventory systems: Rudiments of inventory theory, MRP, in-process inventory. Necessity of simulation in inventory problems, forecasting and regression analysis, forecasting through simulation, generation of Poisson and Erlang variates, simulation of complex inventory situations.

Design of Simulation experiments: Length of run, elimination of initial bias, Variance, Variance reduction techniques, stratified sampling, antipathetic sampling, common random numbers, time series analysis, spectral analysis, model validation, optimization procedures, search methods, single variable deterministic case search, single variable non-deterministic case search, and regenerative technique.

UNIT-IV

Simulation of PERT: Simulation of - maintenance and replacement problems, capacity planning, production systems, reliability problems, computer time sharing problem, the elevator system.

Simulation Languages: Continuous and discrete simulation languages, block structured continuous languages, special purpose simulation languages, SIMSCRIPT, GPSS SIMULA importance and limitations of special purpose languages.

- 1. Loffick, Simulation and Modelling Tata McGraw Hill
- 2. Deo Narsingh, System Simulation with Digital Computer Prentice Hall
- 3. Hira, D.S., System Simulation-S. Chand & Co.
- 4. Meelamkavil, Computer Simulation and Modelling John Willey
- 5. Gorden, System Simulation Prentice hall
- 6. Jerry Banks and John, S. Carson II, 'Discrete Event System Simulation', Prentice Hall Inc., NewJersey, 1984.

- 7. Geoffrey Gordon, 'System simulation', Prentice Hall, NJ, 1978.
- 8. Law, A.M. and W.D. Keltor, 'Simulation modelling analysis', McGraw Hill, 1982.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING SYSTEMS)

MTIP-115A		SUPPLY CHAIN MANAGEMENT										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 hrs					
Objective	The main c chain and d	The main objective of the course is to impart the students with the knowledge of Supply chain and different aspects of supply chain management.										
			Course Outco	omes								
C01	To impart	knowledge abo	out basics of	Supply cha	ain manageme	nt and Sup	ply chain					
CO2	To acquain supply chai	t students with n management.	the different	aspects invo	lved in sourcing	g and procu	rement in					
CO3	To impart decision ma	To impart knowledge to students about Evaluating performance of Supply chain and decision making about Transportation, Storage and warehousing.										
CO4	To let stude Chain:	ent understand	Quantitative to	ools for SCM	I, Information Te	echnology in	a Supply					

UNIT-I

Overview of supply chain management: Introduction, Definition, The Objective of a Supply Chain, The Importance of Supply Chain Decisions, Decision Phases in a Supply Chain, Process Views of a Supply Chain, Examples of Supply Chains.

Supply chain dynamics: Introduction, Coping with Dynamics in Supply chain. Bullwhip effect, Analysis of Bullwhip Effect, Impact of Lead time, Inventory management and Supply chain dynamics, offshoring and outsourcing Effect on SC dynamics and cost.

UNIT-II

Outsourcing and Make or Buy Decisions: Strategic Decisions and Core competencies, Tactical Decisions, Factors influencing make or buy decisions, Control of Production or Quality, Unreliable Suppliers, Suppliers Specialized knowledge and research, Small Volume Requirements, Limited Facilities, Workforce Stability, Multiple Sourcing Policy, Managerial and Procurement considerations, the Volatile nature of Make/Buy situation, Administration: Procedures and Personal.

Sourcing of Supply:Importance of Source Selection, Responsibilities for Source Selection, Evaluating a potential supplier, The criticality of Qualifying Sources, Competitive Bidding and Negotiation, Prerequisite for competitive bidding, Two step Bidding/Negotiation, Benefits and Risks of International Sourcing, Identifying and Qualifying an International Source.

UNIT-III

Supply Chain Performance: Achieving Strategic fit And Scope: Competitive and Supply Chain Strategies, Achieving Strategic Fit, Expanding Strategic Scope, Challenges to Achieving and Maintaining, Strategic Fit, Supply chain drivers and metrics, Financial Measures of Performance, Drivers of Supply Chain Performance, Framework for Structuring Drivers, Facilities, Inventory, Transportation, Information, Sourcing, Pricing.

Transportation, storage and warehousing: Introduction, Transportation mode choice, Transport operator decisions, Trucking sectors in India, Rail transport, Air Transport, Water transport, Transport network, Storage and warehousing, types of warehousing, risk pooling, IT Integration: Supply chain information system, Role of IT in SCM process, Business process Re-engineering, Internet and its applications in SCM.

UNIT-IV

Quantitative tools for SCM: Introduction, Forecasting, Demand forecast, Forecasting strategy & technique, Management of Inventories in SC, Linear programming, Routing models, pricing decisions, Introduction to MCDM approach.

Information Technology in a Supply Chain: The Role of IT in a Supply Chain, The Supply Chain IT Framework Customer Relationship Management, Internal Supply Chain Management, Supplier Relationship Management, The Transaction Management Foundation, The Future of IT in the Supply Chain, Risk Management in IT, Supply Chain IT in practice.

RECOMMENDED BOOKS:

1. Chopra, S., and Meindl, P., Supply chain Management: Strategy, Planning and Operations. Second Edition, Pearson Education (Singapore) Pte. Ltd, 2004.

2Rangaraj, Supply Chain Management for Competitive Advantage, TMH.

- 3Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E., Designing & Managing the Supply Chain: Concepts, Strategies & Case studies. Second Edition, Tata McGraw-Hill Edition, 2003.
- 4.Doebler, D.W. and Burt, D.N., Purchasing and Supply Chain Management: Text and Cases, McGraw-Hill Publishing Company Limited, New Delhi, 1996.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING SYSTEMS)

MTRM-111A		RESEARCH METHODOLOGY AND IPR												
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)							
				Test	Test									
2	0	0	2	60	40	100	3							
Objective	The objectiv	The objective of this course is to make the students capable of formulating the research problems/												
	proposals a	proposals and get aware about the intellectual property and patent laws.												
			Course (Outcomes										
CO 1	Student will	be able to und	erstand resea	arch problem f	formulation.									
CO 2	Student will	be able to ana	lyze research	related inforr	mation and fo	llow research	n ethics.							
CO 3	Student will	be able to unc	lerstand the F	atents, Desig	ins, Trade and	d Copyright a	and able to apply the							
	knowledge f	knowledge for patent.												
CO 4	Student wil	I be able to	understand t	he concept (of Patent Ri	ghts, Licens	ing and transfer of							
	technology	and able to ap	oly the knowle	edge in new d	evelopments	in IPR.	-							

Unit-I

Meaning of research problem, Sources of research problem, Criteria, characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.

Unit-II

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, paper. Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

Unit-III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit-IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and Institutions.

RECOMMENDED BOOKS:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: An introduction for science & engineering students" Kenwyn, South Africa : Juta & Co. Ltd., 1996
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction" Juta Academic; 2nd edition (April 28, 2004)
- 3. Ranjit Kumar, "Research Methodology: A Step by Step Guide for beginners" SAGE Publications Ltd; Fourth edition (14 January 2014)
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", Aspen Publishers; Revised edition (July 25, 2007)
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units). All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks.

Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit

10(1886)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING SYSTEMS)

MTMS-105		TRIBOLOGY LAB.											
Lecture	Tutorial	TutorialPracticalCreditMajorMinorPracticalTotalTimeTestTestTest											
0	0	4	2	-	40	60	100	3 hrs					
Objective	To make st	To make students understand about the Tribological properties of specimen.											
	Course Outcomes												
C01	To underst And dry ab	and the conce rasion tester.	pt of sliding	and abrasive	wear using	wear and friction	monitoring a	pparatus					
CO2	Students w Properties	ill be able to d of lubricants.	etermine diff	ferent type o	f lubricants tl	neir grades , test	standards an	d different					
CO3	To measur	To measure extreme pressure properties of a lubricant using four ball tester.											
CO4	Students s	hould be able	to use differe	ent types of t	ribo test equ	ipments.							

List of Experiments

- 1. To study the pressure distribution of a journal bearing using journal bearing apparatus.
- 2. To determine abrasion index of a material with the help of dry abrasion tester.
- 3. To determine the rate of Wear of metal and plot displacement v/s time curves by friction & wear monitor apparatus.
- 4. To evaluate the load wear index & weld point with the help of four ball stream pressure tester.
- 5. Analysis of various properties of Lubricant oil using lubricant oil analyzer.
- 6. Compare and analyze the wear characteristics of different materials.
- 7. To study different types of bearings used in industries.
- 8. To study the effect of axial and circumferential grooves in case of oil bearing.
- 9. To study the surface characterization of wear components.
- 10. To determine the erosive wear rate of different materials using Air Jet Erosion Tester under different conditions.

Note: Atleast nine experiments need to be performed by the students from the above mentioned list.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING SYSTEMS)

MTMS-107		ADVANCED MANUFACTURING LAB										
Lecture	Tutorial	TutorialPracticalCreditMajorMinorPracticalTotalTimTestTestTestTestTestTestTest										
0	0	4	2	-	40	60	100	3 hrs				
Objective	To make the production in	o make the students understand the different type of machines and manufacturing techniques in roduction industries.										
			Cou	rse Outcom	es							
C01	To practice	on milling mac	hine and pro	file projector								
CO2	To study wo	Fo study working of CNC machines.										
CO3	To study mo	o study moulding sand and various testing on equipments.										
CO4	To know al	oout various gi	rinding whee	Is and surface	e grinding m	achines.						

List of Experiments

- 1. Introduction to Gear Hobbing Machine and cut the Spur gear on Gear Hobbing Machine
- 2. Introduction of Horizontal Milling Machine and. to cut the Gear on Milling Machine using Indexing Head
- 3. To study the working Principal of Profile Projector and Practice on Profile Projector using small jobs.
- 4. To study the constructional details and working of CNC lathe trainer.
- 5. To generate a CNC codes program for a given drawing involving turning, facing and step turning and simulate the program and perform the job on CNC lathe.
- 6. To generate a CNC code program for a given drawing involving taper turning, grooving, threading, drilling etc. and simulate the program and perform the job on CNC lathe.
- 7. To study the CNC milling machine and generate the CNC codes for the given drawing and simulate the programs.
- 8. Introduction of Molding sand, Mould test Equipments, Sand and performance of various testing on Equipments.
- 9. Introduction of various Grinding wheels and Demonstration of Surface Grinding Machine and cylindrical grinder.
- 10. Introduction of Tool and Cutter Grinding machine.

Note: At Least nine experiments need to be performed by the students from the above mentioned list.

Audit Course-I

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING SYSTEMS)

MTAD-101A		ENGLISH FOR RESEARCH PAPER WRITING										
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time (Hr										
				Test	Test		``					
2	0	0 0 100 100 3										
Objective	The objectiv	The objective of this course is to impart the knowledge of English for research paper writing.										
			Course Outc	omes								
C01	To understa	nd that how to	improve writir	ng skills and le	evel of readab	ility.						
CO2	To Learn ab	To Learn about what to write in each section.										
CO3	To understa	To understand the skills needed when writing a title.										
CO4	To learn the	skills required	in writing the	results, discu	ssion and con	clusions.						

Unit-I

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit-II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit-III

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. Key skills needed when writing a Title, key skills needed when writing an abstract, key skills needed when writing an Introduction, skills needed when writing a Review of the Literature.

Unit-IV

Skills needed when writing the Methods, skills needed when writing the Results, skills needed when writing the Discussion, skills needed when writing the Conclusions, Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

- 1. Goldbort R, "Writing for Science", Yale University Press (available on Google Books)
- 2. Day R, "How to Write and Publish a Scientific Paper", Cambridge University Press
- 3. Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book.
- 4. Adrian Wallwork, "English for Writing Research Papers", Springer New York Dordrecht Heidelberg London, 2011

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING SYSTEMS)

MTAD-103A	DISASTER MANAGEMENT										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
	Test Test										
2	0	0	-	-	100	100	3				
Objective	The objectiv	e of this cours	e is to impart i	the knowledge	e of disasters	managemei	nt.				
			Course Outo	omes							
C01	To demons	trate a critica	l understandi	ng of key co	oncepts in d	isaster risk	reduction and				
	humanitarian response.										
CO2	To critically	evaluate disas	ster risk redu	ction and hur	manitarian res	sponse polic	cy and practice				
	from multipl	e perspectives.									
CO3	To develop	an understand	ling of standa	rds of human	itarian respor	ise and prac	ctical relevance				
	in specific ty	pes of disaster	rs and conflict	situations.							
CO4	To critically understand the strengths and weaknesses of disaster management approaches,										
	planning and programming in different countries, particularly their home country or the										
	countries the	ey work in.	-				-				
	•	-	Unit-								

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit-II

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.

Unit-III

Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics.

Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data From Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.

Unit-IV

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'New Royal book Company.
- 2. Sahni, Pardeep (Eds.)," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, New Delhi.
- 3. Goel S. L., "Disaster Administration and Management Text and Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING SYSTEMS)

MTAD- 105A		SANSKRIT FOR TECHNICAL KNOWLEDGE										
Lecture	Tutorial	Practical	Minor	Total	Time (Hrs.)							
				Test	Test							
2	0	0	-	-	100	100	3					
Objective	The objectiv	e of this cour	se is to unde	rstand basic	Sanskrit Lan	guage and	Ancient Sanskrit					
	literature related to science & technology.											
			Course Outc	omes								
C01	Students wi	ll get a workir	ng knowledge	in illustrious	Sanskrit, the	e scientific	language of the					
	world.	-										
CO2	Learning of	Sanskrit to imp	orove brain fur	nctioning.								
CO3	Learning of	Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing										
	the memory power.											
CO4	The engine	ering scholars	equipped with	Sanskrit will	be able to e	xplore the	huge knowledge					
	from ancien	t literature.										

Unit-I Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences

Unit-II

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit-III

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

- 1. Dr.Vishwas, "Abhyaspustakam" Samskrita-Bharti Publication, New Delhi
- 2. Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam "Teach Yourself Sanskrit" Prathama Deeksha-, New Delhi Publication
- 3. Suresh Soni, "India's Glorious Scientific Tradition" Ocean books (P) Ltd., New Delhi.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING SYSTEMS)

MTAD-107A	VALUE EDUCATION											
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)					
2	0	0	-	-	100	100	3					
Objective	The objectiv	e of this cours	se is to under	stand value	education, se	lf-developn	nent, Imbibe good					
	values in stu	values in students and Let them know about the importance of character building.										
			Course Outc	omes								
C01	To get knowledge of self-development.											
CO2	To learn the importance of Human values.											
CO3	To develop	To develop the overall personality.										
CO4	To know ab	out the importa	ince of charac	ter.								

Unit-I

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements

Unit-II

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

Unit-III

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

Unit-IV

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, studying effectively

RECOMMENDED BOOKS:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Second Semester

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (MANUFACTURING SYSTEMS)

MTIP-102A	MECHATRONICS										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	60	40	100	3 hrs				
Objective	The objectiv	e of the co	urse is to a	acquaint the	knowledge of	electronic	devices and				
	electromecha	electromechanical systems, hydraulic and pneumatic systems, CNC, Robotics and PLC's.									
			Course Outo	comes							
C01	To understar	To understand the concepts of Mechatronics, fundamental of electronics and digital									
	circuits and e	circuits and electrical actuating circuits.									
CO2	To acquaint the	To acquaint the knowledge of hydraulic system with its practical applications.									
CO3	To acquaint the	To acquaint the knowledge of pneumatic system with its practical applications.									
CO4	To study the	fundamentals of	of CNC, Robot	ics and progra	immable logic	controllers (PL	_C′s)				
	and their use.				-						

UNIT-I

Introduction: The Mechatronics approach: A methodology for integrated design of Mechanical, Electronics and Electrical Control, Computer and Instrumentation.

Fundamentals of Electronics and digital circuits: Number systems: Binary, Octal, Hexadecimal, Conversion from Binary to Decimal, Octal and Hexadecimal and vice-versa, Binary arithmetic: Addition, subtraction, Multiplication and division, Boolean Algebra: Laws, De-Morgan's laws, Logic Gates, Truth tables, Karnaugh maps and logic circuits. Generation of Boolean function from truth tables and simplification, **Electrical actuating system:** Basic principle of electrical switching, Solenoids, Electrical relays, Representation of output devices, Electrical motors: A.C. motors, Stepper motors, Induction motor speed control.

UNIT-II

HYDRAULIC SYSTEMS:

Direction Control Valves: Poppet Valve, Spool Valve, Sliding Spool type DCV, Check Valve, Pilot operated check valve, Restriction check valve, 2 Way vale, 3 way valve, 4 way valve, Manually actuated valve, Mechanically actuated valve, Pilot operated DCV, Solenoid Actuated valve, Rotary Valve, Centre flow path configurations for three position four way valve, Shuttle valve

Pressure Control Valve: Simple and compound pressure Relief Valve, Pressure Reducing Valve, Unloading valve, sequence valve, counterbalance valve, Brake Valve

Flow Control Valves: Fixed and non-adjustable valve, adjustable, throttling, non-pressure compensated pressure control valve, Pressure/temperature compensated flow control valve, Shuttle and Fast exhaust valve, Time delay valve, Flow Control Valves, Fluid Conditioners, Hydraulic Symbols (ANSI), Hydraulic Circuit design: Control of Single and double acting cylinders, double pump Hydraulic System

UNIT-III

PNEUMATIC SYSTEM:

Air Generation and distribution: Air compressors, Air Receiver, Filters, intercoolers, After-coolers, Relief Valve, Air dryers, Primary and secondary lines, Piping layouts, Air Filters, Air Regulators, Air Lubricator, Actuators and output devices, Direction control valves, Flow control valves, junction elements, Pneumatic circuits, Control of Single and double acting cylinders.

UNIT-IV

INTRODUCTION TO CNC MACHINES AND ROBOTICS:

CNC Machines: NC machines, CNC machines, DNC machines, Machine structure, Slidways, Guideways, Slide Drives, Spindle, Robotics:Components of robots, Classification of robots, Robots application

PROGRAMMABLE LOGIC CONTROLLERS

Introduction - Principles of operation - PLC Architecture and specifications - PLC hardware Components, Analog & digital I/O modules, CPU & memory module - Programming devices - PLC ladder diagram, Converting simple relay ladder diagram in to PLC relay ladder diagram. PLC programming Simple instructions - Manually operated switches - Mechanically operated Proximity switches - Latching relays, Applications of PLC.

RECOMMENDED BOOKS:

1. W. Bolton, Mechatronics, Pearson Education.

2. Majumdar, Pneumatic system, TMH.

3. Andrew Parr, Hydraulic and Pneumatic systems, TMH.

4. M.P. Groover, Automation, Production systems and computer integrated manufacturing, TMH.

5. Shetty and Kolk, Mechatronics system design, Thomson learning.

6. Mahalik, Mechatronics, TMH.

7. Anthony Esposito, Fluid power with application, Pearson Education.

8. K.P Ramachandran, M.S Balasundaram, Mechatronics, Wiley India.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (MANUFACTURING SYSTEMS)

MTMS-102		OPTIMIZATION TECHNIQUES										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time (Hrs.)					
3	0	0	3	60	40	100	3					
Objective	The objectiv	The objective of this course is to impart knowledge about programming and optimization.										
	Course Outcomes											
CO 1	Students sh	Students should know about the concept of linear programming and its applications.										
CO 2	Students sh solving tech	Students should know about the concept of integers and quadratic programming and its problem solving technique.										
CO 3	Students sh	Students should know about the concept of Queuing Models and Optimization.										
CO 4	Students sh	ould be able to	apply conce	ept of PERST	CPM and sc	hedule optin	nization.					

UNIT-I

Linear Programming: Variables, Constraints and Analysis of Objective Functions, Formulation, Graphical solution, standard and matrix forms of linear programming problems, Simplex method and its flow chart, Two phase Simplex method, Degeneracy, Duality: Definition, General Rule for converting any primar into its Dual, Dual Simplex method and its flow chart.

UNIT-II

Integer and Quadratic Programming: Importance and Applications, Gomorg's all integer programming problem technique, Branch and Bound Method. Limitations and application, Importance and Applications of Quadratic programming, problem solving technique.

UNIT-III

Queuing Models and Optimization States: Introduction, Applications, Characteristic, single and multiple serving stations problems, design of optimum serving stations Waiting and Ideal time costs, Transient and Steady states for Optimization, M/M/1, M/M/C, M/Ek/1 and Deterministic Models.

UNIT-IV

PERT, CPM and Schedule Optimization: Basic steps in PERT and CPM, Forward and Backward computation, Representation in Tabular form, Slack and Critical path, Difference between CPM and PERT, Float, Crashing of activities for optimization, Probabilistic approach to activity duration. Economical order size for resource planning in certainty and uncertainty situations.

RECOMMENDED BOOKS:

- 1. Operation Research, **P.KGupta.**, **D.SHira.**, Sultan Chand & Sons, New Delhi, 1994.
- 2. Operation Research, Kanti Swarup, P.KGupta. & Man Mohan, Sultan Chand & sons, New Delhi, 1990.

3. Optimization Methods in Operations Research and System Analysis, **K.V Mittal**, New Age International (P) Ltd., New Delhi, 1992.

- 4. Optimization Theory and Applications, **S.S.Rao**, Wiley Eastern Ltd. New Delhi, 1991.
- 5. Operations Research, Sharma, S.D., Kedar Nath and Ram Nath, Meerut, 1996.
- 6. Operation Research An Introduction, H.A. Taha, McMillan Publishing Co, New York, 1986.
- 7. Operation Research & Networking, **Bazara**, Wiley.
- 8. Optimization Techniques, Avieral,

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-III

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (MANUFACTURING SYSTEMS)

MTIP-106A	ADVANCED WELDING PROCESSES									
Lecture	Tutorial Practical Credit Major Test Minor Test Total Time									
3	0	0	3	60	40	100	3 hrs			
Objective	The main obj	ective of the	course is to	impart the st	udents with th	ne knowledge	e of Welding			
-	metallurgy and welding processes.									
Course Outcomes										
C01	To impart know	wledge about v	various Weld	metallurgy and	d Weld arc cha	aracteristics.				
CO2	To acquaint students with the various welding power sources and their applications.									
CO3	To impart knowledge to students about Electrode coatings and Metal transfer phenomenon in									
	weld metal transfer.									
CO4	To let student	understand t	he basics of S	Solid state we	Iding processe	es and some	of the latest			
	welding techni	iques.			÷ .					

UNIT-I

WELDING METALLURGY: Introduction, Weld Metal Zone, Theory of solidification of metals and alloys, Homogeneous Nucleation, Heterogeneous Nucleation, Freezing of alloys, Epitaxial Solidification; Effect of Welding speed on Grain structure, Fusion boundary zone, Heat affected zone, Under bead zone, Grain Refined Zone, Partial transformed zone, Properties of HAZ

WELDING ARC: Definition of Arc, Structure and characteristics, Arc efficiency, arc blow, Electrical Characteristics of arc, Types of Welding Arcs, mechanism of arc initiation and maintenance, role of electrode polarity on arc behaviour and arc stability, analysis of the arc. Arc length regulation in mechanized welding processes.

UNIT-II

WELDING POWER SOURCES: Requirement of an Arc welding power sources, basic characteristics of power sources for various arc welding processes, duty cycles, Selection of a static Volt-Ampere characteristic for a welding process, AC/DC welding power source, DC rectifiers, thyristor controlled rectifiers, transistorized units, inverter systems, Mathematical Problems on Static volt ampere characteristics

UNIT-III

COATED ELECTRODES: Electrode coatings, classification of coatings of electrodes for SMAW, SAW fluxes, role of flux ingredients and shielding gases, classification of solid and flux code wires.

METAL TRANSFER & MELTING RATE: Mechanism and types of metal transfer, forces affecting metal transfer, modes of metal transfer, metal transfer in various welding processes, effective of polarity on metal transfer and melting rate.

UNIT-IV

SOLID STATE WELDING: Theory and mechanism of solid state welding, techniques and scope of friction welding, diffusion welding, cold pressure welding and ultrasonic welding, high energy rate welding, analysis of the Process. **WELDING TECHNIQUES:** Technique, scope and application of the electron beam and laser welding processes, under water welding - process & problem.

RECOMMENDED BOOKS:

1. Raymond Sacks, -Welding: Principles & Practices II McGraw-Hill

2 R.S.Parmar, -Welding processes & Technologyll, Khanna Publishers

3 R.S.Parmar, –Welding Engineering & Technologyll, Khanna Publishers

4 S.V. Nandkarni, -- Modern Arc Welding Technology, Oxford & IBH publishing Co.

5 L.M.Gourd, - Principles of Welding TechnologyII, ELBS/ Edward Arnold.

6 Richard L. Little – Welding & Welding Technologyll, Mc-Graw Hill.

7 Cary, Howard – Modern Welding Technology', prentice Hall, 1998.

8 Rossi – Welding Technologyll, Mc-Graw Hill.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (MANUFACTURING SYSTEMS)

MTIP-108A		ADVANCED METAL CUTTING											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time											
3	0	0	3	60	40	100	3 hrs						
Objective	The main obje	The main objective of the course is to impart the students with the knowledge of advanced cutting											
	tools, tools ge	tools, tools geometry, mechanisms and analysis.											
			Course Ou	tcomes									
C01	To impart kno	To impart knowledge about various functional related to tools geometry.											
CO2	To acquaint w	To acquaint with the analysis of fundamental factors affecting tool forces											
CO3	To impart kno	wledge about	t cutting tool	life and mathemat	ical modelling for	or wear.							
CO4	To let student	understand a	abrasive mad	hining and its pro	cess simulation.								

UNIT-I

Introduction system of Tool nomenclature, Tool Geometry, Mechanism of Chip formation and forces in orthogonal cutting, Merchant's force diagram.

Oblique Cutting: Normal chip reduction coefficient under oblique cutting, true shear angle, effective rake, influx region consideration for deformation, direction of maximum elongation, effect of cutting variables on chip reduction co-efficient, forces system in oblique cutting, effect of wear land on force system, force system in milling, effect of helix angle.

UNIT-II

Fundamentals of Dynamometry, Theoretical determination of forces, angle relations, heat and temperature during metal cutting; distribution, measurement, analysis, theoretical estimation of work piece temperature, hot machining Fundamental factors, which effect tool forces: Correlation of standard mechanized test. (Abuladze –relation), nature of

contact and stagnant phenomenon, rates of strains, shear strain and normal strain distributions, cutting variables on cutting forces.

UNIT-III

Cutting Tools: Tools materials analysis of plastic failure (from stability criterion), Analysis failure by brittle fracture, wear of cutting tools, criterion, flank and crater wear analysis, optimum tool life, tool life equations, (Taylor's woxen etc) Tool life test, machining optimization, predominant types of wear; abrasive, adhesive, diffusion wear models, wear measurements and techniques, Major Test of tool wear oxidative mathematical modelling for wear, test of machinability and influence of metallurgy on machinability. Economics of metal machining

UNIT-IV

Abrasive Machining: Mechanics of grinding, cutting action of grit, maximum grit chip thickness, energy and grit force temperature during grinding, wheel wear, grinding, process simulation, testing of grinding wheels, mechanics of lapping and honing, free body abrasion.

RECOMMENDED BOOKS:

- 1. Sen & Bhattacharya, Principles of Machine tools, New Central Book Agency.
- 2. Brown, Machining of Metals, Prentice Hall.
- 3. Shaw, Principles of Metal cutting, Oxford I.B.H.
- 4. Arshimov & Alekree, Metal cutting theory & Cutting tool design, MIR Publications.
- 5. Machining Science & Application by Knowenberg Longman Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (MANUFACTURING SYSTEMS)

MTIP-110A	Metrology									
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time								
3	0	0	3	60	40	100	3 hrs.			
Objective	The main	objective of t	he course is	to deal with	the basic principles	of dimensional	measuring			
_	instruments and precision measurement techniquesin achieving quality and reliability in the service of									
	any product in dimensional control.									
			Cours	se Outcomes						
C01	To underst	and the stud	entsabout the	requirement of	of metrology and the	concepts of lin	nit, fits and			
	gauges.									
CO2	To study the linear and angular measurements and the optical measurement tools and techniques.									
CO3	To understand how to use surface roughness and thread measuring instruments.									
CO4	To study th	e comparator	s, measureme	nt through con	parators and the adv	anced metrology	concepts.			

UNIT-I

Introduction to metrology: Definition, types, need of inspection, terminologies, methods of measurement, selection of instruments, measurement errors, units, Measurement standards, calibration, statistical concepts in metrology.

Systems of Limits and Fits: Introduction, nominal size, tolerance limits, deviations, allowance, fits and their types – unilateral and bilateral tolerance system, hole and shaft basis systems – interchangeability and selective assembly. Indian standard Institution system – British standard system, International standard system for plain and screwed work.

Limit Gauges: Taylor's principle – Design of limit gauges, computer aided tolerancing.

UNIT-II

Linear Measurement:Length standard, line and end standards, slip gauges – calibration of the slip gauges, dial indicator, micrometres. Measurement of angles and tapers: Different methods – bevel protractor – angle slip gauges – spirit levels– sine bar – sine plate, rollers and spheres.

Flat Surface Measurement: Measurement of flat surfaces – instruments used – straight edges– surface plates – optical flat and auto collimator.

Optical Measuring Instruments:Tool maker's microscope and its uses, collimators, optical projector, optical flats and their uses, interferometer.

UNIT-III

Surface Roughness Measurement:Introduction, terminology, specifying roughness on drawings, surface roughness parameters, factors affecting surface roughness, ideal surface roughness, roughness measurement methods, precautions in measurement, surface microscopy, surface finish softwares.

Screw Thread Measurement: Elements of measurement – errors in screw threads – measurement of effective diameter, angle of thread and thread pitch, profile thread gauges.

Measurement through Comparators: Comparator: Features of comparators, classification of comparators, different comparators, advanced comparators, thread comparators.

UNIT-IV

Metrology of machine tools: Alignment and practical tests.

Gear Measurement: Gear measuring instruments, gear tooth profile measurement, measurement of diameter, pitch, pressure angle and tooth thickness.

Advanced Metrology: Advanced measuring machines, CNC systems, Laser vision, In-process gauging, 3D metrology, metrology softwares, Nano technology instrumentation, stage position metrology, testing and certification services, optical system design, lens design, coating design, precision lens assembly techniques, complex opto mechanical assemblies, contact bonding and other joining technologies.
RECOMMENDED BOOKS:

- 1. K.J. Hume, Engineering Metrology, Macdonald and Co. (publisher) London.
- 2. Czichos, The Springer handbook of metrology and Testing, 2011.
- 3. Jay. L. Bucher, The Metrology Hand book, American Society for Quality, 2004.
- 4. Smith GT, Industrial Metrology, Spinger.
- 5. John W. Greve, Frank W. Wilson, Hand book of industrial metrology, PHI New Delhi.
- 6. D.M. Anthony, Engineering Metrology, Pergamon Press.
- 7. Khare MK, Dimensional Metrology, OXFORD-IBH Publishers.
- 8. I C Gupta, "Engineering Metrology", 5th Edition, Danapath Rai & Co, 2008.
- 9. R.K. Jain, "Engineering Metrology". 20th Edition, Khanna Publishers, 2007.
- 10. M. Mahajan, "Engineering Metrology", Dhanapati Rai publications, 2007.
- 11. BIS standards on Limits & Fits (IS 919), Surface Finish (IS 2073), Machine Tool Alignment, 1993.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

Programme Elective-IV

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (MANUFACTURING SYSTEMS)

MTIP-112A		SEQUENCING AND SCHEDULING									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	60	40	100	3 hrs				
Objective	The main of production ar	he main objective of the course is to impart the students with the knowledge of different production and machine models of sequencing and scheduling.									
		Course Outcomes									
C01	To understan	d the concept	of sequencin	g and scheduling.							
CO2	To study and	practice for the	e extension c	f basic models and	d parallel machine m	odels.					
CO3	To understan	d the concepts	s of the flow	shop scheduling a	nd practice for the fl	ow shop sch	eduling				
	models.										
CO4	To understan	d the job shop	problems an	d simulation mode	ls for dynamic job sh	op problem.					

UNIT-I

Single-Machine Sequencing: Introduction, Preliminaries, Problems without Due Dates, Problems with Due Dates **Optimization Methods for the Single-Machine Problem:** Introduction, Adjacent Pairwise Interchange Methods, A Dynamic Programming Approach, Dominance Properties, A Branch and Bound Approach.

Earliness and Tardiness Costs: Introduction, Minimizing Deviations from a Common Due Date, The Restricted Version, Asymmetric Earliness and Tardiness Costs, Quadratic Costs, Job-Dependent Costs, Distinct Due Dates, Sequencing for Stochastic Scheduling.

UNIT-II

Extensions of the Basic Model: Introduction, Non-simultaneous Arrivals, Related Jobs, Sequence-Dependent Setup Times, Stochastic Models with Sequence-Dependent Setup Times.

Parallel machine models: Introduction, Minimizing the Makespan, Minimizing Total Flow time, Stochastic Models.

UNIT-III

Flow Shop Scheduling: Introduction, Permutation Schedules, The Two-Machine Problem, Special Cases of The Three-Machine Problem, Minimizing the Makespan, Variations of the *m*-Machine Model, Stochastic flow shop scheduling.

UNIT-IV

The Job Shop Problem: Introduction, Types of Schedules, Schedule Generation, The Shifting Bottleneck Procedure, Neighborhood Search Heuristics.

Simulation Models for the Dynamic Job Shop: Introduction, Model Elements, Types of Dispatching Rules, Reducing Mean Flowtime, Meeting Due Dates.

RECOMMENDED BOOKS:

1. Michael Pinedoo, Scheduling: theory, algorithms and systems, Prentice Hall, New Delhi, 1995.

2. King, J.R. Production planning and control, Pergamon International Library, 1975.

3. Kenneth R. Baker, Introduction to sequencing and scheduling, John Wiley and Sons, 1974.

4. Kenneth R. Baker and Dan Trietsch, Principles of sequencing and scheduling, John Wiley and Sons, 2009.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (MANUFACTURING SYSTEMS)

MTIP-114A		QUALITY ENGINEERING AND MANAGEMENT										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100										
Objective	The main ob	ne main objective of the course is to impart the students with the knowledge of quality tools and										
	engineering f	engineering for the improvement of product quality.										
			Course	Outcomes								
C01	To understan	d the statistica	al concepts of c	juality and quality s	statistics.							
CO2	To study the	quality control	chartsin produ	ction process and	practice for its use	in problem so	olving.					
CO3	To understan	understand the quality improvement tools.										
CO4	To study the	ISO systems,	failure analysis	and testing.								

Unit-I

Introduction to Quality: An Historical Overview:Defining Quality, The Total Quality System, Total Quality Management, Economics of Quality, Quality, Productivity, and Competitive Position, Quality Costs, Success Stories.

Statistics for Quality: Variability in Populations, Some Definitions, Quality vs. Variability, Section I: Empirical Methods for Describing Populations, Section II: Mathematical Models for Describing Populations, Section III: Inference of Population Quality from a Sample.

Unit-II

Quality in Design: Planning for Quality, Product Planning, Product Design, Process Design.

Quality in Production-Process Control I: Process Control, The Control Charts, Measurement Control Charts, Attribute Control Charts, Summary on Control Charts, Process Capability, Measurement System Analysis,

QualityinProduction-ProcessControlII:DerivationofLimits,Operating Characteristics of Control Charts, Measurement Control Charts for Special Situations.Control<

Unit-III

Quality in Procurement: Importance of Quality in Supplies, Establishing a Good Supplier Relationship, Choosing and Certifying Suppliers, Specifying the Supplies Completely, Auditing the Supplier, Supply Chain Optimization Using Statistical Sampling for Acceptance,

Continuous Improvement of Quality: The Need for Continuous Improvement, The Problem-Solving Methodology, Quality Improvement Tools, Lean Manufacturing.

Unit-IV

A System for Quality: The Systems Approach, Dr. Deming's System, Dr. Juran's System, Dr. Feigenbaum's System, Baldrige Award Criteria, ISO 9000 Quality Management Systems, ISO 9001:2008 Requirements, The Six Sigma System.

RECOMMENDED BOOKS:

- 1. Grant & Leaveworth, Statistical Quality Control, McGraw Hill
- 2. Duncan, Quality Control & Industrial Statistics, Irwin Press
- 3. Juran, Quality Control Handbook, McGraw Hill.
- 4. Hansen, Quality Control, Prentice Hall
- 5. Thomason, An Introduction to reliability & control, Machinery Publishing.
- 6. A.V. Taylor, Total Quality Control, McGraw-Hill
- 7. K.S.Krishnamoorthi, V. Ram Krishnamoorthi, A First Course in Quality Engineering: Integrating Statistical and Management Methods of Quality, Second Edition, CRC Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units). All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit*.

10(1905)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (MANUFACTURING SYSTEMS)

MTIP-116A		RELIABILITY ENGINEERING											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
3	0	0	3	60	40	100	3 hrs						
Objective	The main ob	he main objective of the course is to impart the students with the knowledge of reliability analysis in											
	industrial sys	industrial system. Students can get acquainted with different reliability calculation models.											
			Course	Outcomes									
C01	To understan	d the concepts	of reliability in	industrial system	S.								
CO2	To study the	To study the reliability determination methods and advanced evaluation techniques.											
CO3	To understan	understand various reliability prediction and evolution methods.											
CO4	To acquaint t	he fundamenta	lls of reliability	management and	risk assessment.								

UNIT-I

Reliability Engineering: Reliability function, failure rate, Mean time between failures (MTBF), Mean time to failure (MTTF), mortality curve, useful life availability, maintainability, system effectiveness. Introduction to probability distributions.

Time to failure distributions: Exponential, normal, Gamma, Weibull; ranking of data, probability plotting techniques, Hazard plotting Concept of Bathtub Hazard Rate curve, Reliability evaluation of two-state device networks-series, parallel, k-out-of-m systems; Standby redundant systems, Reliability evaluation of three-state device networks-series and parallel.

UNIT-II

Reliability Determination and Prediction: Reliability Determination Methods: Network reduction technique, Path tracing technique, Decomposition technique, Delta-Star method.

Advanced Reliability Evaluation Concepts: Supplementary variables technique, Interference theory, Human reliability, Common cause failures, Fault trees, Failure mode and effect analysis

UNIT-III

Reliability Prediction Models: Series and parallel systems - RBD approach - Standby systems - m/n configuration - Application of Baye's theorem - cut and tie set method - Markov analysis - FTA - Limitations.

UNIT-IV

Reliability testing: Time acceleration factor, influence of acceleration factor in test planning, application to acceleration test, high temperature operating life acceleration model, temperature humidity bias acceleration model, temperature cycle acceleration model, vibration accelerator model, failure free accelerated test planning. Accelerated reliability growth.

Risk Assessment: Definition and measurement of risk - risk analysis techniques - risk reduction resources - industrial safety and risk assessment.

RECOMMENDED BOOKS:

1. Charles E. Ebeling, "An introduction to Reliability and Maintainability engineering", TMH, 2000.

2. Roy Billington and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Springer, 2007.

3. Sharma S C, Inspection Quality Control and Reliability, Khanna Publishers.

4. Connor P.D.T.O. Practical Reliability Engineering", John Wiley.

5. Naikan V N A Reliability Engineering and Life Testing", PHI Learning Private Limited.

6. Prabhakar Murthy D N and Marvin R, "Product Reliability", Springer-Verlag.

7. Dana Crowe and Alec Feinberg, Design for Reliability, CRC Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units). All questions will have equal *weight of 12 marks*.

The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

10(1906)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (MANUFACTURING SYSTEMS)

MTIP-118A		MECHATRONICS LAB										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Practical	Total	Time				
0	0	4	2	-	40	60	100	3 hrs				
Objective	To practic implication	To practice on electrical circuits, hydraulic and pneumatic systems and PLC's for their practical implications.										
			Cou	Irse Outcom	es							
C01	To understa	nd the PLC usi	ng PLC sim	ulators.								
CO2	To demonst	o demonstrate and actuate the positioning using sensors, actuators and programming.										
CO3	To study the	study the pneumatic and electro-pneumatic training system with simulation software.										
CO4	To design a	nd test on hydr	aulic and pr	neumatic circ	uits.							

List of Experiments

- 1. To study and conduct exercises on PLC Simulator.
- 2. Control of conveyor manually and through programming, also programming using sensors and conveyor.
- 3. To study and conduct exercise on CNC lathe.
- 4. To study and conduct exercises on Robotic simulation software.
- 5. To study and conduct exercises on Pneumatic & Electro-Pneumatic Training System.
- 6. To study the stepper motor interface with PLC.

7. Design and testing of hydraulic circuits such as

- i) Pressure control
- ii) Flow control
- iii) Direction control

iv) Design of circuit with programmed logic sequence, using an optional PLC in hydraulic. Electro hydraulic Trainer.

8. Design and testing of pneumatic circuits such as

- i. Pressure control
- ii. Flow control
- iii. Direction control
- iv. Circuits with logic controls
- v. Circuits with timers
- vi. Circuits with multiple cylinder sequences in Pneumatic Electro pneumatic Trainer.
- 9. To perform exercises on process control trainer.

Note: At least eight experiments should be performed from the above list.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (MANUFACTURING SYSTEMS)

MTMS-104		OPTIMINZATION TECHNIQUES LAB											
Lecture	Tutorial	Tutorial Practical Credit Major Minor Practical Total Time Test Test											
0	0	0 4 2 - 40 60 100 3 hrs											
Objective	The lab em problems.	e lab empowers students to know about the programming for solution of different mathematical oblems.											
			Cou	rse Outcom	ies								
C01	Students kn Formula.	ow how to prog	gram linear e	equations pu	tting expone	ntial curve and n	ewtons interp	olation					
CO2	The students	The students to know how to program for Qualitative data.											
CO3	To know abo	o know about analysis of variance of data.											
CO4	Students wil	I aware about	prediction of	trend values	s of future ye	ars.							

List of Experiments

- 1. Program for fitting Linear Equation by using Least Square Method.
- 2. Program for fitting Exponential Curve.
- 3. Program to implement Lagrange's Interpolation Formula.
- 4. Program to implement Newton's Backward and Forward Interpolation Formula using Switch Statement.
- 5. Program to test the goodness of fit for Qualitative data [Chi-Square Test].
- 6. Program to test the difference between Mean of two Independent Sample using T- test.
- 7. Program to make an analysis of Variance of data [One-way ANOVA]
- 8. Program to make an analysis of Variance of data [Two-way ANOVA]
- 9. Program for computation of trend value using Semi-Average Method.
- 10. Program for Computation of trend value using Moving Average Method.
- 11. Program for prediction of Trend Value for Future Years.

Note: At least nine experiments should be performed from the above list.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (MANUFACTURING SYSTEMS)

MTMS-106		MINI PROJECT									
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time			
				lest	lest			(Hrs.)			
0	0	4	2	-	-	100	100	3			
Objective	In case of m	nini project, the	ey will solve a	i live probler	n using so	oftware/analyt	ical/comput	ational tools			
-	or fabricate	an experiment	al setup.		-	-					
	•		Course O	utcomes							
CO 1	Students wi	Students will learn to write technical reports.									
CO 2	Students w	itudents will develop skills to present and defend their work in front of technically qualified									
	audience	·									

Students can take up small problems in the field of Manufacturing and Industrial Systems or relevant field as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

Students will be required to submit a brief synopsis of 3-4 pages related to the topic by the first week of September.

Audit Course-II

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (MANUFACTURING SYSTEMS)

MTAD- 102A	CONSTITUTION OF INDIA										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
2	0	0	-	-	100	100	3				
Objective	The main objective of the course is to impart the students with the knowledge of informing the										
	twin themes	twin themes of liberty and freedom from a civil rights perspective and to address the growth of									
	Indian opini	Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil									
	and econon	and economic rights as well as the emergence of nationhood in the early years of Indian									
	nationalism.	-		-							
		(Course Outc	omes							
C01	To discuss	the growth of th	ne demand fo	or civil rights	in India for th	e bulk of Indi	ans before the				
	arrival of Ga	ndhi in Indian p	olitics.								
CO2	To discuss	the intellectu	ial origins	of the frame	ework of arg	gument that	informed the				
	conceptualiz	ation of social r	eforms leadi	ng to revolutio	on in India.						
CO3	To discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP]										
	under the le	eadership of Ja	waharlal Ne	hru and the	eventual failu	re of the pro	posal of direct				
	elections thr	ough adult suffr	age in the In	dian Constitut	tion.		-				
CO4	To discuss t	he passage of t	he Hindu Co	de Bill of 1956	ó.						

Unit-I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit-II

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit-III

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Pachayati raj: Introduction, PRI: Zila Pachayat, Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit-IV

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar, "framing of Indian Constitution", 1st Edition, 2015.
- 3. M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (MANUFACTURING SYSTEMS)

MTAD-104A	PEDAGOGY STUDIES												
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time (Hrs.)											
				Test	Test								
2	0	0	-	-	100	100	3						
Objective	The main objective of the course is to review existing evidence on the review topic to inform												
	programme design and policy making undertaken by the DfID, other agencies and researchers												
	and Identify critical evidence gaps to guide the development.												
		Course Outcomes											
C01	Understand	the pedagog	jical practice	s being use	d by teache	rs in forr	mal and informal						
	classrooms	in developing of	countries.										
CO2	Become aw	are of the evid	ence on the e	ffectiveness c	of these pedag	gogical pra	ctices, in different						
	conditions a	nd with differer	nt population (of learners.									
CO3	Understand	the significant	ce of teacher	education (c	urriculum and	l practicur	n) and the school						
	curriculum a	ind guidance m	naterials for ef	fective pedag	ogy.								

Unit-I

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education, Conceptual framework, Research questions. Overview of methodology and Searching.

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries, Curriculum, Teacher education.

Unit-II

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

Unit-III

Professional development: alignment with classroom practices and follow-up support, Peer support

Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

Unit-IV

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education

Curriculum and assessment, Dissemination and research impact.

- 1. Ackers J, Hardman F, "Classroom interaction in Kenyan primary schools", Compare, 31 (2): 245-261.
- 2. Agrawal M, "Curricular reform in schools: The importance of evaluation", Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K, "Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J, "Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count?" International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ, "Culture and pedagogy: International comparisons in primary education". Oxford and Boston: Blackwell.
- 6. Chavan M, "Read India: A mass scale, rapid, 'learning to read' campaign"

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (MANUFACTURING SYSTEMS)

MTAD-106A		S	TRESS MAN	AGEMENT E	BY YOGA						
Lecture	Tutorial	Practical	Minor	Total	Time						
				Test	Test		(Hrs.)				
2	0	0	-	-	100	100	3				
Objective	The main of	The main objective of the course is to achieve overall health of body and mind and to									
-	overcome st	ress				-					
		Cou	rse Outcome	es							
C01	Develop he	althy mind in a	healthy body	thus improv	ing social hea	lth.					
CO2	Improve eff	ficiency									
CO3	Learn the Y	'ogasan									
CO4	Learn the F	Pranayam									

Unit-I

Definitions of Eight parts of yog. (Ashtanga)

Unit-II

Yam and Niyam. Do's and Don't's in life.

i) Ahinsa, satya, astheya, bramhacharya and aparigraha ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

Unit-III

Asan and Pranayam

i) Various yog poses and their benefits for mind & body ii) Regularization of breathing techniques and its effects-Types of pranayam

- 1. Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Tarining-Part-I" : Nagpur
- 2. Swami Vivekananda, "Rajayoga or conquering the Internal Nature" Advaita Ashrama (Publication Department), Kolkata

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (MANUFACTURING SYSTEMS)

MTAD-108A		PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS										
Lecture	Tutorial	TutorialPracticalCreditsMajorMinorTotalTimeTestTestTest(Hrs.)										
2	0	0 0 100 100 3										
Objective	To learn to To become To awaken	To learn to achieve the highest goal happily. To become a person with stable mind, pleasing personality and determination. To awaken wisdom in students.										
C01	Students b	ecome aware a	about leaders	hip.								
CO2	Students w	Students will learn how to improve communication skills										
CO3	Understand	Understand the team building and conflict										
C04	Student wi	I learn how to i	manage the ti	me.								

Neetisatakam-Holistic development of personality

- i) Verses- 19,20,21,22 (wisdom)
- ii) Verses- 29,31,32 (pride & heroism)
- iii) Verses- 26,28,63,65 (virtue)
- iv) Verses- 52,53,59 (dont's)
- v) Verses- 71,73,75,78 (do's)

Approach to day to day work and duties.

Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47, 48, Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5, 13, 17, 23, 35, Chapter 18-Verses 45, 46, 48.

Statements of basic knowledge.

Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68

Chapter 12 - Verses 13, 14, 15, 16, 17, 18

Personality of Role model. Shrimad Bhagwad Geeta:

Chapter 2-Verses 17,

Chapter 3-Verses 36,37,42,

Chapter 4-Verses 18, 38, 39

Chapter18 - Verses 37,38,63

- 1. Swami Swarupananda, "Srimad Bhagavad Gita" Advaita Ashram (PublicationDepartment), Kolkata
- 2. P.Gopinath, "Bhartrihari's Three Satakam (Niti-sringar-vairagya) by, Rashtriya Sanskrit Sansthanam, New Delhi.

Third Semester (Programme Elective-V)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS

MTIP-201A		ENTERPRISE RESOURCE PLANNING										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3										
Objective	The main obj	he main objective of the course is to impart the students with the knowledge of integrated										
	applications to	applications to manage the business and automate many back office functions related to										
	technology, se	rvices and hur	nan resource	S.								
			Course Ou	itcomes								
CO1	To study the b	asic principles	and models of	of an enterprise.								
CO2	To understand	To understand the concepts of technology and architecture in ERP.										
CO3	To study ERP	system packag	ges.									
CO4	To study the E	RP procureme	ent issues.									

UNIT I

ENTERPRISE RESOURCE PLANNING:

Introduction, Evolution of ERP, Principle of ERP, Enabling Technologies, ERP Characteristics, Features of ERP, The advantages of ERP, Reasons for the Failure of ERP Implementation, Risk and governance issues in an ERP, ERP Framework, Business Blueprint, Business Engineering Vs. Business Process Re-Engineering, ERP Tools and Software, Demand Chain, Value Chain, and Supply Chain.

UNIT-II

ERP ARCHITECTURE: Need to Study ERP Architecture, Layered Architecture, Types of ERP Architecture, Two-tier Implementations, Three-tier Client/Server Implementations, Web-based architecture, Service-Oriented Architectures, Logical Architecture of an ERP System, Physical Architecture of an ERP System, and Evaluation Framework for ERP Acquisition.

UNIT III

ERP PACKAGE INTEGRATION AND IMPLEMENTATION: ERP market, SAP, People soft, BAAN company, ORACLE corporation, A comparative assessment and selection of ERP packages and modules, Sales Force Automation, Integration of ERP, Integration of ERP and the Internet, ERP implementation strategies, Comparison of Big Bang vs. Phased Approach, Implementation Strategy in Small and Medium Enterprise, Post Implementation Issues.

UNIT IV

OVERVIEW OF ARCHITECTURE OF DIFFERENT ERP SOFTWARES: Oracle overview, Architecture, A.I.M. and applications, SAP Software architecture overview, ERP before and after Y2K, Impact of Y2K on ERP Development, Risk and Governance Issues in an ERP

ERP MODULES: Finance module, Sales & Distribution module, Human Resources module, Plant Maintenance module, Quality Management module, Material management module, manufacturing management module.

RECOMMENDED BOOKS:

- 1. Sadagopan. S, ERP-A Managerial Perspective, Tata Mcgraw Hill, 1999.
- 2. Jose Antonio Fernandez, the SAP R/3 Handbook, Tata Mcgraw Hill, 1998.
- 3. Vinod Kumar Crag and N.K. Venkitakrishnan, Enterprise Resource Planning- Concepts and Practice, Prentice Hall of India, 1998.
- 4. Garg & Venkitakrishnan, ERPWARE, ERP Implementation Framework, Prentice Hall, 1999.
- 5. Thomas E Vollmann and Bery Whybark, Manufacturing and Control Systems, Galgothia Publications, 1998.
- 6.Alexis Leon, Enterprise resource planning, Tata Mcgraw-Hill

Note: The paper will have a total of *NINE questions*. QuestionNo.1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all FourUnits).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS

MTIP-203A		DESIGN OF EXPERIMENTS										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 hrs					
Objective	To understand	understand the various design of experiments techniques for optimization of problems.										
		(Course Outo	comes								
C01	To understand t	he concepts of	Design of E	xperiment ar	nd statistical N	lethods.						
CO2	To understand t	he ANOVA and	d factorial de	sign and fitti	ng response o	curves and su	ırfaces.					
CO3	To study the ap	study the application of Taguchi Method and testing of hypothesis										
CO4	To study and im	plement the R	esponse Sur	face Method	ology.							

UNIT-I

Introduction to Designed Experiments:

Introduction, Strategyof experimentation, Sometypical applications of experimental design, Basic principles, Guidelines for designing experiments, Using statistical design in experimentation, A Checklist for Planning experiments, *Introduction to Minitab, Interface of Minitab, Customizing Minitab, Entering Data, Graphing Data, Printing Data and Graphs, Saving and Retrieving information.*

Basic Statistical Methods: Introduction, Basic statistical concepts, Types of Data, Graphical Presentation of Data.

Descriptive Statistics: Measure of Location, Measure of Variation, The Normal Distribution, Counting, Minitab Commands to Calculate Descriptive Statistics.

Inferential Statistics: The Distribution of Sample Means (R Known), Confidence Interval for the Population Mean (σ Known), Hypothesis testing for one sample mean (σ Known), Hypothesis test for two sample means, Testing for Normality, Hypothesis test and Confidence Intervals with Minitab.

UNIT-II

Analysis of Variance: Introduction to Analysis of Variance, ANOVA assumptions and Validation, ANOVA Table, The sum of square approach to ANOVA calculations, Analysis of the fixed Effect model, Decomposition of the Total sum of squares. Statistical analysis, Estimation of the Model Parameters, Unbalanced Data, Model Accuracy Check, Practical interpretation of results. *ANOVA with Minitab*

Factorial Experiments: Basic definition and principles, Advantages of factorials, Two level factorial design, The 2¹ Factorial Experiment, The 2² Factorial Experiment, The 2³ Factorial Design, Addition of Centre Cells to 2^k Designs. General Procedure for Analysis of 2^k designs. 2^k Factorial Designs in Minitab.

UNIT-III

Introduction to Taguchi Method: Introduction, Taguchi Quality loss function, Orthogonal Array, Properties of Orthogonal Array, Minimum number of experiments to be conducted, Static Problems, Dynamic Problems, Assumptions of the Taguchi method, Steps in Taguchi Method, Assessment of Factors and Interactions, Selection and Application of Orthogonal arrays, Data Analysis from Taguchi Experiments, Variable Data with main factors only, Variable Data with Interactions, Attribute Data Analysis, Confirmation Experiment, Confidence Intervals, Robust Design Approach. *Applications of Taguchi Method using Minitab.*

UNIT-IV

Introduction to Response Surface Methodology: Introduction, Terms in Quadratic Models, The method of steepest ascent, Analysis of Second order response surfaces, Experimental design for fitting response surfaces, 2k Designs with Centers, 3k Factorial Designs, Box- Behnken Designs, Central Composite Designs, Analysis of Data from RSM Designs, Design Considerations for Response Surface Experiments. *Response Surface Designs in Minitab.*

- 1. Douglas C Montgomery, Design and Analysis of Experiments, John Wiley
- 2. Paul G. Mathews, Design of Experiments with MINITAB, New Age International Publishers.
- 3. K. Krishnaiah, P. Shahabudeen, Applied Design of Experiments and Taguchi Methods, PHI.
- 4. Angela Dean and Daniel Voss, Design and Analysis of Experiments, Springer.
- 5. John P.W.M., Statistical Design and Analysis of Experiments, John Wiley
- 6. Montgomery D.C., Runger G. C., Introduction to Linear Regression Analysis, John Wiley
- 7. Myres R.H. and Montgomery D.C., Response Surface Methodology Process and Product Optimization Using Designed Experiments, Wiley
- 8. G UNIPUB, White Plains, Introduction to Quality Engineering Taguchi, New York.
- 9. https://www.ee.iitb.ac.in/~apte/CV_PRA_TAGUCHI_INTRO.htm
- 10. www.ecs.umass.edu/mie/labs/mda/fea/sankar/chap2.html

Note: The paper will have a total of *NINE questions*.QuestionNo.1, which is compulsory, shall be Objective Type and have contents from the entire syllabus (all Four Units).

All questions will have equal weight of 12 marks. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS

MTIP-205A		STRATEGIC ENTREPRENEURSHIP							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0	0	3	60	40	100	3 hrs		
Objective	To provide	provide knowledge to the students about entrepreneurship concepts and various development							
	programme	programme and policies.							
			Cours	e Outcomes					
C01	To know a	bout the sma	Il scale indus	tries, scopes and	the causes of their	sickness.			
CO2	To know a	To know about the EDP and different government policies.							
CO3	To learn al	To learn about business incubations and its future perspectives.							
CO4	To learn E	To learn E-business marketing and developments.							

UNIT-I

Small Scale Industries: Definition and types of SSI's; Role, scope and performance in national economy; Problems of small scale industries.

Industrial Sickness: Definition; Causes of sickness; Indian scenario, Government help; Management strategies; Need for trained entrepreneurs

UNIT-II

Entrepreneurship Development Programme: Introduction, Origin of EDP's, Organizations involved in EDP's, Objectives of EDPs, Implementation of EDP's, Short comings of EDP's, Role in entrepreneurship development.

Step: Introduction, Origin, Status in India, Success and failure factors, Govt. polices and incentives, future prospects in India.

UNIT-III

Business Incubation: Introduction, Origin and development of business incubators in India and other countries, types of incubators, success parameters for a business incubator, Benefits to industries, institutes, government and society, future prospects, A few case studies (at least 2).

Project Management: Concept, Characteristics and Significance of Project Management, Components of Project Management, Project Life Cycle, Project Identification and Selection, Project Formulation and Appraisal.

UNIT-IV

Special Aspects of Entrepreneurship: Entrepreneurship, Social entrepreneurship, International entrepreneurship, Rural entrepreneurship, Community Development, Women entrepreneurship.

Network Marketing: Introduction, E-business, E-commerce, E-auction, A basic internet e-business architecture, A multitier e-business architecture.

RECOMMENDED BOOKS:

- 1. P.K. Gupta, Strategic Entrepreneurship, Everest Publishing House.
- 2. David Cleland, Project Management Strategic Design and Implementation, McGraw Hill.
- 3. David H Holl, Entrepreneurship-New Venture Creation, Prentice Hall of India.
- 4. Steed & Steed, Sustainable Strategic Management, Prentice Hall of India.
- 5. Kotler, Marketing Management by Prentice Hall of India.
- 6. Tarek Khalil, Management of Technology, McGraw Hill.
- 7. Henry Steiner, Engineering Economic Principles, McGraw Hill.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

Open Elective

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS

MTOE-201A		BUSINESS ANALYTICS							
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)		
				Test	Test				
3	0	0	3	60	40	100	3		
Objective	The main ob	The main objective of this course is to give the student a comprehensive understanding of							
-	business an	business analytics methods.							
		(Course Outco	omes					
C01	Able to have	Able to have knowledge of various business analysis techniques.							
CO2	Learn the requirement specification and transforming the requirement into different models.								
CO3	Learn the re	Learn the requirement representation and managing requirement assets.							
CO4	Learn the Re	ecent Trends in	Embedded a	nd collaborat	tive business				

Unit-I

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

Unit-II

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents. Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap

Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

Unit-III

Finalizing Requirements, Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements, Managing Requirements Assets: Change Control, Requirements Tools

Unit-IV

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

RECOMMENDED BOOKS:

- 1. James Cadle, "Business Analysis", BCS, The Chartered Institute for IT.
- 2. Erik Larson and, Clifford Gray, "Project Management: The Managerial Process", McGraw-Hill Education.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

10(1920)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS

MTOE-203A			INC	USTRIAL S	AFETY				
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)		
				Test	Test				
3	0	0	3	60	40	100	3		
Objective	The main o	The main objective of this course is to aware students about the industrial safety maintenance							
-	and fault fin	and fault findings.							
			Course Out	comes					
C01	Understand	the industrial s	safety.						
CO2	Analyze fundamentals of maintenance engineering.								
CO3	Understand the wear and corrosion and fault tracing.								
CO4	Understand	ling when to do	periodic ince	ptions and a	pply the preve	nting maint	enance.		

Unit-I

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-II

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion, Types of corrosion, Corrosion prevention methods.

Unit-III

Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-IV

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

- 1. Higgins & Morrow, "Maintenance Engineering Handbook", Da Information Services.
- 2. H. P. Garg, "Maintenance Engineering", S. Chand and Company.
- 3. Audels, "Pump-hydraulic Compressors", Mcgraw Hill Publication.
- 4. Winterkorn, Hans, "Foundation Engineering Handbook", Chapman & Hall London.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS

MTOE-205A		OPERATIONS RESEARCH						
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)	
				Test	Test			
3	0	0	3	60	40	100	3	
Objective	The main objective of this course is to aware students about the dynamic programming to solve problems of discrete and continuous variables and model the real world problem and simulate it.							
		(Course Outo	comes				
C01	Students sh continuous	Students should be able to apply the dynamic programming to solve problems of discreet and continuous variables.						
CO2	Students should be able to apply the concept of non-linear programming							
CO3	Students should be able to carry out sensitivity analysis							
CO4	Student sho	uld be able to m	nodel the rea	l world probl	em and simula	ite it.		

Unit-I

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit-II

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit-III

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit-IV

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

RECOMMENDED BOOKS:

- 1. H.A. Taha, "Operations Research, An Introduction", PHI, 2008
- 2. H.M. Wagner, "Principles of Operations Research", PHI, Delhi, 1982.
- 3. J.C. Pant, "Introduction to Optimisation: Operations Research", Jain Brothers, Delhi, 2008
- 4. Hitler Libermann, "Operations Research", McGraw Hill Pub. 2009
- 5. Pannerselvam, "Operations Research", Prentice Hall of India 2010
- 6. Harvey M Wagner, "Principles of Operations Research", Prentice Hall of India 2010

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS

MTOE-207A		COST MANAGEMENT OF ENGINEERING PROJECTS							
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)		
3	0	0	3	60	40	100	3		
Objective	The main objective of this course is to impart the students with the knowledge of cost								
	management for the engineering project and apply cost models to the real world projects.								
		(Course Outco	mes					
C01	Students sh	ould be able to	learn the stra	tegic cost ma	inagement pro	ocess.			
CO2	Students should be able to understand types of project and project team types								
CO3	Students should be able to carry out Cost Behavior and Profit Planning analysis.								
CO4	Student sho	uld be able to l	learn the quar	titative techn	iques for cost	managem	ent.		

Unit-I

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making, relevant cost, Differential cost, Incremental cost and Opportunity cost, Objectives of a Costing System, Inventory valuation, Creation of a Database for operational control, Provision of data for Decision-Making.

Unit-II

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning, Project execution as conglomeration of technical and nontechnical activities, Detailed Engineering activities, Pre project execution main clearances and documents Project team, Role of each member, Importance Project site, Data required with significance, Project contracts, Types and contents, Project execution Project cost control, Bar charts and Network diagram, Project commissioning, mechanical and process.

Unit-III

Cost Behavior and Profit Planning Marginal Costing, Distinction between Marginal Costing and Absorption Costing, Break-even Analysis, Cost-Volume-Profit Analysis, Various decision-making problems, Standard Costing and Variance Analysis, Pricing strategies, Pareto Analysis, Target costing, Life Cycle Costing, Costing of service sector, Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints, Activity Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis, Budgetary Control, Flexible Budgets, Performance budgets, Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit-IV

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

RECOMMENDED BOOKS:

1. Charles Thomas Horngren, "Cost Accounting a Managerial Emphasis", Prentice Hall of India, New Delhi

- 2. Charles T. Horngren and George Foster, "Advanced Management Accounting"
- 3. Robert S Kaplan Anthony A. Alkinson, "Management & Cost Accounting"
- 4. Ashish K. Bhattacharya, "Principles & Practices of Cost Accounting", A. H. Wheeler publisher
- 5. N.D. Vohra, "Quantitative Techniques in Management", Tata McGraw Hill Book Co. Ltd.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

10(1924)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS

MTOE-209A		COMPOSITE MATERIALS							
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)		
				Test	Test				
3	0	0	3	60	40	100	3		
Objective	The main of	The main objective of this course is to impart the students with the knowledge of composites,							
-	its materials	its materials, analysis, fabrication, and performance analysis.							
	Course Outcomes								
C01	Students sh	ould be able to	learn the clas	sification and	d characterist	ics of comp	osite materials.		
CO2	Students sh	ould be able t	o understand	about differe	ent fabrication	technique	s related to metal		
	matrix comp	matrix composites.							
CO3	Students should be able to understand about different fabrication techniques related to polymer								
	matrix composites.								
CO4	Student should be able to do the analyses of the composite materials under different loading								
	conditions.		,		•		5		

UNIT-I

INTRODUCTION: Definition – Classification and characteristics of Composite materials, Advantages and application of composites, Functional requirements of reinforcement and matrix, Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures, Iso-strain and Iso-stress conditions.

UNIT – II

Manufacturing of Metal Matrix Composites: Casting, Solid State diffusion technique, Cladding, Hot iso static pressing, Properties and applications.

Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration, Liquid phase sintering, Manufacturing of Carbon, Carbon composites, Knitting, Braiding, Weaving. Properties and applications.

UNIT-III

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs, hand layup method, Autoclave method, Filament winding method, Compression moulding, Reaction injection moulding, Properties and applications.

UNIT – IV

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hydrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

RECOMMENDED BOOKS:

- 1. R.W.Cahn, "Material Science and Technology" VCH, West Germany.
- 2. WD Callister, Jr, "Materials Science and Engineering, An introduction"
- 3. Balasubramaniam, "John Wiley & Sons", NY, Indian edition, 2007.
- 4. Lubin, "Hand Book of Composite Materials"
- 5. K.K.Chawla, "Composite Materials"
- 6. Deborah D.L. Chung, "Composite Materials Science and Applications"
- 7. Danial Gay, Suong V. Hoa, and Stephen W. Tasi, "Composite Materials Design and Applications"

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS

MTOE-211A		WASTE TO ENERGY						
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)	
				Test	Test			
3	0	0	3	60	40	100	3	
	•							
Objective	The main ob	The main objective of this course is to impart the students with the knowledge of generation of						
	energy from the waste.							
		(Course Outc	omes				
C01	Students sh	ould be able to	learn the clas	sification of v	waste as a fue	el and biom	ass pyrolysis.	
CO2	Students sh	Students should be able to learn gasification process and different types of gasifiers.						
CO3	Students should be able to learn different combustors for biomass.							
CO4	Student sho	Student should be able to learn the Biogas plant technology different biomass conversions						
	processes for	or different appl	ications.		0,			

Unit-I

Introduction to Energy from Waste: Classification of waste as fuel, Agro based, Forest residue, Industrial waste, MSW, Conversion devices, Incinerators, gasifiers, digestors.

Biomass Pyrolysis: Pyrolysis, Types, slow fast, Manufacture of charcoal, Methods, Yields and application, Manufacture of pyrolytic oils and gases, yields and applications.

Unit-II

Biomass Gasification: Gasifiers, Fixed bed system, Downdraft and updraft gasifies, Fluidized bed gasifiers, Design, construction and operation, Gasifier burner arrangement for thermal heating, Gasifier engine arrangement and electrical power, Equilibrium and kinetic consideration in gasifier operation.

Unit-III

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-IV

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system -Design and constructional features - Biomass resources and their classification - Biomass conversion processes -Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

RECOMMENDED BOOKS:

- 1. Desai, Ashok V, "Non-Conventional Energy", Wiley Eastern Ltd., 1990.
- 2. Khandelwal, K. C. and Mahdi, S. S., "Biogas Technology A Practical Hand Book Vol. I & II", Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Challal, D. S, "Food, Feed and Fuel from Biomass", IBH Publishing Co. Pvt. Ltd., 1991.
- 4. C. Y. WereKo-Brobby and E. B. Hagan, "Biomass Conversion and Technology", John Wiley & Sons, 1996.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS

MTMS-201	DISSERTATION PHASE – I								
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time (Hrs.)	
				Test	Test	Marks			
0	0	20	10	-	100	-	100	-	
Objective	The main	objective of th	is course is	s to plan	a research	n work (which	n includes	the problem	
	formulation/	rmulation/literature review, proposed objectives, proposed methodologies and references) in the							
	field of Indus	eld of Industrial and Manufacturing Engineering or interrelated fields of applications.							
	Course Outcomes								
CO 1	Students wil	I be exposed to	various self-	learning top	oics.				
CO 2	Students v	vill be expos	ed to an	exhaustive	e survey	of the litera	iture suc	h as books,	
	national/inte	rnational refere	ed journals,	resource	persons an	id industrial su	urveys for	the selection/	
	identification	n of engineering	/research pro	oblem.					
CO 3	Students wil	Students will be able to set the research objectives of the identified engineering/research problem.							
CO 4	Students wil	tudents will learn modern tools/techniques related to the identified engineering/research problem for							
	the solution	e solution and able to learn technical report writing skills.							
CO 5	Students wil	l develop oral a	nd written co	ommunicatio	on skills to p	present and de	fend their	work in front of	
	technically o	ualified audien	ce.						

The students will start their research work in third semester with a research problem having research potential involving scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution.

The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his/her supervisor and the topic of dissertation must be mutually decided by the supervisor and student.

The students will be required to submit a progress report related to their dissertation work by the end of September. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.

The progress report must be at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The students will be required to appear for comprehensive Seminar & Viva-voce and submit a synopsis report based on their progress related to the dissertation as per the presentation date mentioned in the academic calendar for the session. The synopsis report will be submitted in the same format as that of the thesis and will contain the following:

- 1. Introduction
- 2. Literature Survey
- 3. Gaps in Literature
- 4. Objectives of the Proposed Work
- 5. Methodology
- 6. References

* Student will choose his/her guide in the end of second semester.

Fourth Semester

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (4th semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING SYSTEMS

MTMS-202		DISSERTATION PHASE -II								
Lecture	Tutorial	Practical	Credits Major Minor I			Practical	Total	Time (Hrs.)		
				Test	Test					
0	0	32	16	-	100	200	300	-		
Objective	The main	objective of t	he course is	s to make t	he studen	ts able to do	some goo	od research in		
	the field of	their interes	ts related to	Industrial	and Manu	facturing Eng	ineering	or interrelated		
	fields of ap	elds of applications.								
		Course Outcomes								
CO 1	Students v	udents will be able to design solutions for engineering problems that meet the specified								
	needs with	needs with appropriate considerations.								
CO 2	Students v	Students will be able to conduct investigations of engineering problems using research-								
	based know	owledge and	experimen	tal/researc	h method	s including d	lesign of	experiments,		
	analysis a	and interpreta	ation of da	ta, and s	ynthesis c	of the inform	ation to	provide valid		
	conclusion	IS.								
CO 3	Students v	vill be able to	apply reso	urces and	modern er	ngineering too	ols and te	chniques with		
	an underst	anding of the	e limitations.							
CO 4	Students	Students will be able to either work in a research environment or in an industrial								
	environme	environment.								
CO 5	Students v	Students will be conversant with technical report writing, professional ethics, responsibilities								
	and norms	and norms of the engineering practice.								
CO 6	Students	tudents will be able to present and convince their topic of study to the engineering								
	community	 .								

The students are required to continue Analytical/Experimental/Computational/Industrial Problems or Case studies investigations in the field of Industrial and Production Engineering or other related fields which have been finalized in the third semester. They would be working under the supervision of a faculty member.

The students will be required to submit a progress report duly signed by their respective supervisors to the department, related to their dissertation work in the last week of March. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.
- References

The progress report must be of at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The candidate has to prepare a detailed dissertation report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up/numerical details/industrial case study etc. as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study.

The final dissertation will be submitted in the end of semester as per academic calendar for the session, which will be evaluated by internal as well as external examiners based upon his/her research work. At least one publication is expected before final submission of the dissertation from every student in peer reviewed referred journals or reputed conference from the work done by them in their dissertation. The dissertation should be presented in standard format as provided by the department.

The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a supervisor, co-supervisor etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his supervisor.

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by state Legislature Act XII of 1956 (A+ Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING TECHNOLOGY SEMESTER-1

S. No.	Course Code	Course Name	L	Т	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTMT-101	Advanced Tribology	3	0	0	3	3	60	40	-	100	3
2	MTIP-103A	Computer Aided Design and Manufacturing	3	0	0	3	3	60	40	-	100	3
3		*Programme Elective-I	3	0	0	3	3	60	40	-	100	3
4		**Programme Elective-II	3	0	0	3	3	60	40	-	100	3
5	MTRM-111A	Research Methodology and IPR	2	0	0	2	2	60	40	-	100	3
6	MTMT-103	Advanced Tribology Lab	0	0	4	4	2	-	40	60	100	3
7	MTIP-119A	Computer Aided Design and Manufacturing Lab	0	0	4	4	2	-	40	60	100	3
8		***Audit Course-I	2	0	0	2	-	-	100	-	100	3
		Total				24	18	300	280	120	700	

	*PR(OGRAMME ELE	ECTIVE- I for(MTMT) 1st Semester		**PROGRAMME ELECTIVE-IL for (MTMT) 1st Semester				
ſ	1.	MTIP-105A	Tool Engineering	1.	MTIP-111A	Product Design and Development			
	2.	MTIP-107A	Advanced Engineering Materials	2.	MTIP-113A	Simulation of Industrial Systems			
	3.	MTIP-109A	Non-Conventional Machining	3.	MTIP-115A	Supply Chain Management			

	***AUDIT COURSE – I for 1 st Semester (MTMT)								
1.	MTAD-101A	English for Research Paper Writing							
2.	MTAD-103A	Disaster Management							
3.	MTAD-105A	Sanskrit for Technical Knowledge							
4.	MTAD-107A	Value Education							

Note: 1. The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

2.*** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

3. The programme Elective I & II and Audit Course-I are common with M.TECH. (I&P).The course starts with MTIP code is common with M.TECH. (I&P).

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by state Legislature Act XII of 1956 (A+ Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING TECHNOLOGY <u>SEMESTER-II</u>

S. No.	Course Code	Course Name	L	Т	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTIP-102A	Mechatronics	3	0	0	3	3	60	40	-	100	3
2	MTMT-102	Automation and Computer- Integrated Manufacturing	3	0	0	3	3	60	40	-	100	3
3		*Programme Elective-III	3	0	0	3	3	60	40	-	100	3
4		**Programme Elective-IV	3	0	0	3	3	60	40	-	100	3
5	MTIP-118A	Mechatronics Lab	0	0	4	4	2	-	40	60	100	3
6	MTMT- 104	Advanced Welding Technology Lab	0	0	4	4	2	-	40	60	100	3
7	MTMT-106	Mini Project	0	0	4	4	2	-	-	100	100	3
8		***Audit Course-II	2	0	0	2	-	-	100	-	100	3
	Total							240	240	220	700	

*PRO	GRAMME ELE	CTIVE-III for (MTMT) 2 nd Semester	*	PROGRAMME I	ELECTIVE-IV for(MTMT) 2 nd Semester
1.	MTIP-106A	Advanced Welding Processes	1.	MTIP-112A	Sequencing and Scheduling
2.	MTIP-108A	Advanced Metal Cutting	2.	MTIP-114A	Quality Engineering and Management
3.	MTIP-110A	Metrology	3.	MTIP-116A	Reliability Engineering

***	***AUDIT COURSE–II for (MTMT)2 nd Semester								
1.	MTAD-102A	2A Constitution of India							
2.	MTAD-104A	Pedagogy Studies							
3.	MTAD-106A	Stress Management by Yoga							
4.	MTAD-108A	Personality Development through Life							
		Enlightenment Skills							

Note: 1. ***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

2. The programme Elective III& IV and Audit Course-II are common with M.TECH. (I&P). The course starts with MTIP code is common with M.TECH. (I&P).

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by state Legislature Act XII of 1956 (A+ Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MANUFACTURING TECHNOLOGY <u>SEMESTER-III</u>

Sr. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1		*Programme Elective-V	3	0	0	3	3	60	40	-	100	3
2		**Open Elective	3	0	0	3	3	60	40	-	100	3
3	MTMT-201	Dissertation Phase-I	0	0	20	20	10	-	100	-	100	
Total					26	16	120	180		300		

	*PROGRAMME ELECTIVE-V for (MTMT) 3rd Semester								
1.	MTIP-201A	Enterprise Resource Planning							
2.	MTIP-203A	Design of Experiments							
3.	MTIP-205A	Strategic Entrepreneurship							
	**OPEN	ELECTIVE for(MTMT) 3rd Semester							
1.	MTOE-201A	Business Analytics							
2.	MTOE-203A	Industrial Safety							
3.	MTOE-205A	Operations Research							
4.	MTOE-207A	Cost Management of Engineering Projects							
5.	MTOE-209A	Composite Materials							
6.	MTOE-211A	Waste to Energy							

Note:1. The programme Elective-V and Open Elective are common with M.TECH. (I&P).

SEMESTER-IV

Sr. No.	Course Code	Course Name	L	Т	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTMT-202	Dissertation Phase-II	0	0	32	32	16	-	100	200	300	
Total						32	16		100	200	300	

Total credits = 68

INSTRUCTIONS FOR PAPER SETTER

- The question paper is to be attempted in **THREE Hours**.
- Maximum Marks for the paper are **60**.
- The syllabus for the course is divided into FOUR units.
- The paper will have a total of **NINE questions**.
- Question No. 1, which is compulsory, shall be OBJECTIVE Type and have content from the entire syllabus (all Four Units).

Q. No. 2 & 3	from	Unit I
Q. No. 4 & 5	from	Unit II
Q. No. 6 & 7	from	Unit III
Q. No. 8 & 9	from	Unit IV

- All questions will have equal weightage of 12 marks.
- The candidate will attempt a total of FIVE questions, each of 12 marks. Q. No. 1 is compulsory. The candidate shall attempt remaining four questions by selecting only one question from each unit.
- A question may have any number of sections labeled as 1(a), 1(b), 1(c), 1(d), ---- 2(a), 2(b), A section may further have any number of subsections labeled as (i), (ii), (iii),.

• SPECIAL INSRUCTIONS FOR Q. No. 1 ONLY

Question No. 1, which is compulsory, shall be OBJECTIVE/ short answer type **and have content from the entire syllabus (all Four Units)**.

Emphasis is to be given on the basic concepts, analytical reasoning and understanding of the various topics in the subject. This question may have a number of parts and/or subparts. The short questions could be combination of following types:

- Multiple Choice
- Yes/ No choice
- Fill in Blanks type
- Short numerical computations
- Short Definitions
- Matching of Tables

The above mentioned question types is **only a Guideline**. Examiner could set the question as per the nature of the subject.

First Semester

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING TECHNOLOGY)

	(
MTMT- 101	- 101 ADVANCED TRIBOLOGY										
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)				
3	0	0	3	60	40	100	3				
Objective	bjective To develop a solution oriented approach by in depth knowledge of Industrial Tribology and address the underlying concepts, methods and application of Industrial Tribology.										
		Course	e Outcomes	;							
CO 1	Students w wear proce	vill be able to esses in conta	understand cts between	the fundam different m	entals of tri aterials.	bology, fric	ction and				
CO 2	Students w application	vill be able to is and differer	understand nt surface tr	the materia eatment teo	al requireme hniques.	ents for tri	bological				
CO 3	Students v techniques	vill be able	to study c	lifferent ty	pes of lubr	icants and	d testing				
CO 4	Students w testing spe	vill be able to cifications an	study the r d standards	maintenanco	e and conse	rvation teo	chniques,				

Unit I

Introduction to Tribological Systems: Industrial interface & significance of tribology, Economic Importance of Tribology, variouscondition Monitoring Techniques for tribological systems, surface energy and flash temperature theory. Analysis of surface roughness and its measurement, Analysis of real area contacts and its measurement. Material properties influencing friction, Measurement of friction.

Unit II

Wear: Wear and wear types. Mechanisms of wear - Adhesive, abrasive, corrosive, erosion, fatigue, fretting, etcIndustrial application of wear, Measurement of wear in dry atmosphere and differentenvironments. Quantitative expression for adhesive and abrasive wear. Study of abrasion in grinding, lapping and Honing, wear resisting materials, Methods of Controlling Wear, Wear in various mechanical components.

Unit III

Lubrication: Mechanism of lubrication, Functions of lubricants, properties of lubricants, Characteristics of lubricants and greases, Boundary, squeeze film hydrodynamic and hydrostatic lubrications, Reynold's equation in two and three dimensional flow. Pressure equation and its distribution, load carrying capacity, frictional energy in oil film and coefficient of friction in journal bearing.

Unit IV

Bearings: Requirements of bearings, Design of bearing: clearance in journal bearing, pressureequation of journal bearing, Bearing materials, Minimum oil film thickness, summer field number, oil grooves and flow of oil in axial and circumferential grooves, cavitation and turbulence in oil bearings. Design of air bearing and other gas bearings, journal bearings with specialized applications.

Suggested Books:

- 1. Friction & wear by Robinwlcz by John Wiliey and sons.
- 2. Basic Lubrication theory by longman
- 3. Industrial Tribology, Tribology failure and their analysis by Dr. B.S. Prahbu
- 4. E.P. Bowden and Tabor. D., "Friction and Lubrication", Heinemann Educational Books Ltd.
- 5. A. Cameron, "Basic Lubrication theory ", Longman, U.K.

Note: The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (MANUFACTURING TECHNOLOGY)

MTIP-103A		COMPUTER AIDED DESIGN AND MANUFACTURING										
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time					
3	0 0 3 60 40 100 3 hrs											
Objective	Objective The objective of the course is to understand about the technology of computers for the design, process planning and manufacturing the products.											
CO1	To understand designing and	nd the fund d manufactu	damentals ring and the	and applic e transform	ations of c ation of geo	computers ometricmoc	in the field of lels.					
CO2	To understan	d the concep	ots of G.T. a	nd FMS.								
CO3	To know the	use of compi	uters in pro	cess planni	ng and shop	o floor cont	rol.					
CO4	To learn the k	basics of AG	/ and codin	g systems fo	or CNC.							

UNIT I

Fundamentals of CAD: Introduction to CAD/CAM, Historical Development, Industrial Look at CAD/CAM, Application of computers in design, creating manufacturing database, Benefits of CAD. Computer Hardware, Graphic input devices, display devices, Graphics output devices, Central processing unit (CPU).

Geometric transformations: 2D and 3D; transformations of geometric models like translation, scaling, rotation, reflection, shear; homogeneous representations, concatenated representation; Orthographic projections, Numerical Problems

UNIT II

Group Technology and Cellular Manufacturing

Part families, parts classifications and coding, Production flow Analysis, cellular Manufacturingcomposite part concept, machine cell design, applications of group technology, Grouping parts and machines by Rank order clustering technique, Arranging machines in a G.T. cell.

Flexible Manufacturing

Introduction, FMS components, Flexibility in Manufacturing – machine, Product, Routing, Operation, types of FMS, FMS layouts, FMS planning and control issues, deadlock in FMS, FMS benefits and applications.

UNIT III

Process Planning

Introduction, Manual process planning, Computer aided process planning – variant, generative, Decision logic- decision tables, decision trees, Introduction to Artificial intelligence.

Shop Floor Control

Introduction, Shop floor control features, Major displays, Major reports, Phases of SFC Order Release, Order Scheduling, Order Progress, Manufacturing control, Methodology, Applications, Shop floor data collections, Types of data collection system, Data input techniques, Automatic data, Collection system.

UNIT IV

CNC Basics and Part Programming

Introduction, Historical Background, Basic Components of an NC, Steps in NC, Verifications of Numerical control machine tool programs, Classification of NC Machine tool, Basics of motion control and feedback for NC M/C, NC part programming, Part programming methods, Modern Machining system, Automatically programmed tools, DNC, Adaptive control

Automated Guided Vehicle

Introduction, History, Features, Functions of AGV, Types of AGV, Safety consideration for AGV, Design of AGV.
RECOMMENDED BOOKS:

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 3. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 6. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 7. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 8. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall
- 9. Chang, Wang & Wysk Computer Aided Manufacturing. Prentice Hall
- 10. Kundra & Rao, Numerical Control and Computer Aided Manufacturing by, Rao and Tiwari, Tata Mc-Graw Hill.
- 11. Mattson, CNC programming Principles and applications, Cengage Learning India Pvt. Ltd. Delhi

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-I

MTIP-105A		TOOL ENGINEERING										
Lecture	Tutorial	Tutorial Practical Credits Major Test Minor Total Tir										
					Test							
3	0	0	3	60	40	100	3 hrs.					
Objective	The objective various asp Industries.	The objective of the course is to impart the students with the knowledge of various aspects of design of different types of Tools and fixtures used in Industries.										
		Col	irse Outco	omes								
CO1	To impart kr	nowledge of r	naterials f	or cutting tool	and design of	of cutting too	ols.					
CO2	To acquaint	To acquaint students with various kinds of Gages and Work holding devices.										
CO3	To impart kr	To impart knowledge to students about Drill jigs and Fixtures.										
CO4	To let studer	nt understand	d the tool o	lesign process	for NC Mach	nine tools						

UNIT-I

Cutting Tool Materials: Introduction and desirable properties, Carbon and Medium-Alloy Steels, High-Speed Steels, Cast-Cobalt Alloys, Carbides, Coated Tools, Alumina-Based Ceramics, Cubic Boron Nitride, Silicon-Nitride Based Ceramics, Diamond, Reinforced Tool Materials, Cutting-Tool Reconditioning.

Design of Cutting Tools Basic Requirements, Mechanics and Geometry of Chip Formation, General Considerations for Metal Cutting, Design of single point Cutting Tools, Design of Milling Cutters, Design of Drills and Drilling, Design of Reamers, Design of Taps, Chip Breakers.

UNIT-II

Gages and Gage Design: Limits fits and tolerances, Geometrical tolerances-specification and measurement, Types of gages, Gage design, gage tolerances, Material for Gages.

Work Holding Devices: Basic requirements of work holding devices, Location: Principles, methods and devices, Clamping: Principles, methods and devices.

UNIT-III

Drill Jigs: Definition and types of Drill Jigs, Chip Formation in Drilling, General Considerations in the Design of Drill Jigs, Drill Bushings, Drill Jigs, and Modern Manufacturing

Design of Fixtures: Fixtures and Economics, Types of Fixtures, Milling Fixtures, Boring Fixtures, Broaching Fixtures, Lathe Fixtures, Grinding

UNIT-IV

Tool Design for Numerically Controlled Machine Tools: Fixture Design for Numerically Controlled Machine Tools, Cutting Tools for Numerical Control, Tool-holding Methods for Numerical Control.

- 1. ASTME, "Fundamentals of Tool Design", Prentice Hall of India, 1983.
- 2. Donaldson, "Tool Design", Tata-McGraw Hill, 3rd Edition, 2000.
- 3. Joshi P.H., "Jigs and Fixtures", Tata-McGraw Hill, 2010.

Note:The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem)

(MANUFACTURING TECHNOLOGY)

MTIP-107A	A	ADVANCED ENGINEERING MATERIALS										
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 hrs.					
Objective	The objective of	The objective of the course is to impart the students with the knowledge of various										
	advanced and smart materials.											
Course Outcomes												
CO1	To impart know	ledge of Piez	zoelectric ar	nd shape me	emory alloys	S.						
CO2	To acquaint stu	dents with d	eep know h	ow about E	lectro-rheo	logical and	composite					
	materials		-			-	-					
CO3	Toimpartknowl	edgetostude	ntsaboutME	MSsystems	sandHighten	nperature						
	applicationmaterials.											
CO4	To let student u	inderstand t	he processi	ng and chai	racteristics (of powder i	metallurgy					
	processes and s	tructural ma	terials.									

UNIT-I

Introduction to advanced Engineering materials: Classes of Materials and their usage, Historical Perspective, Intelligent Materials, Structural Materials, Functional Materials, Primitive Functions of Intelligent Materials, Intelligence inherent in Materials, Materials Intelligently Harmonizing with humanity, Biomimetic.

Smart Materials and Structural Systems: Introduction, Actuator Materials, Sensing Technologies, Micro-sensors, Intelligent systems, Hybrid Smart Materials, Passive Sensory Smart Structures, Reactive Actuator based smart structures, Active Sensing and Reactive smart structures, smart skins, Aero-elastic tailoring of airfoils, Synthesis of future smart systems.

UNIT-II

Electrocaloric Effect: An Introduction, History of Electrocaloric Cooling, Mechanism of working of Electrocaloric Cooling, Electrocaloric Materials, Performance of Electrocaloric Materials.

Heat Resistant Steels: Conventional Heat-Resistant Steels, Silicon-Bearing High Chromium Heat-Resistant Steels,Nitride-Strengthened Reduced Activation Heat-Resistant Steels, China Low Activation Martensitic SteelNitride-Strengthened Steels,Microstructural Stability

UNIT-III

Smart Micro-systems: Silicon Capacitive Accelerometer, Piezo-resistive Pressure sensor, Conductometric Gas sensor, An Electrostatic Comb-drive, Magnetic Micro-relay, Portable Blood Analyser, Piezoelectric Inkjet Print Head.

Bucky balls to robotics: Bucky ball, Nano Structure of Fullerene, Carbon Nanotubes, Nano Diamond, Boron nitride nanotubes, Single electron transistors, Molecular machine, Nano Biometrics, Nano Robots,

UNIT-IV

Nano-Alloys: Introduction, Chemical Synthesis: General Concepts, Reduction of Metallic Salts, The Organometallic Route: Thermal Decomposition Method, Other Chemical Methods for synthesis of Nano-alloys, Physical Routes for synthesis of Nano-Alloys; Experimental Techniques and Examples.

Shape memory alloys (SMA): Shape memory effect and the metallurgical phenomenon of SMA, Types of SMA, One way and two way Shape memory effect. Temperature assisted shape memory effect, Applications.

- Gandhi, M.V. and Thompson, B.S., Smart materials and Structures, Chapman & Hall, 1992.
- Ananthasuresh G.K., Vinoy K.J., Micro and Smart Systems, Wiley India.

- Wei Yan, Wei Wang, 9-12 Cr Heat Resistant Steels, Engineering Material series, Springer International.
- Damien Alloyeau, Christine Mottet, Nanoalloys Synthesis, Structure and Properties, Springer International.
- Tatiana Correia, Qi Zhang, Electrocaloric Materials: New Generation of Coolers
- Otsuka, K. and Wayman, C. M., Shape memory materials, C.U.P, 1998
- Taylor, W., Pizoelectricity, George Gorden and Breach Sc. Pub., 1985
- Mallick, P.K., Fiber Reinforced Composites Materials, Manufacturing and Design. Marcel Dekker Inc, New York, 1993.
- Rama Rao, P. (ed.), Advances in Materials and their applications, Wiley EasternLtd.

Note: The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MTIP-109A	NON-CONVENTIONAL MACHINING											
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time					
				Test	Test							
3	0	0	3	60	40	100	3 hrs.					
Objective	To acquaint the students with the advanced technologies and processes in											
_	various str	various streams of Non-conventional machining.										
	Course Outcomes											
CO1	To impart knowledge of Various Non-conventional Mechanical Working											
	Processes, technology, process parameters and analysis for metal removal for											
	these proc	esses.										
CO2	To acqua	int studen	ts with	deep k	nowhow	about	chemical and					
	electroche	mical machir	ning proces	sses,								
CO3	To impart	knowledge	to student	s about v	various kir	nds of Ele	ctric discharge					
	machining processes, process parameters associated with these processes											
	and variou	s process cha	aracteristic	CS.								
CO4	To let stud	ent understa	and the wo	orking and	d technolog	gy associa	ted with Laser					
	Beam macl	hining and El	ectron bea	am machi	ning proce	sses.						

UNIT-I

Introduction, Need of Non-conventional machining processes, Characteristics of conventional and Nonconventional Machining processes. **Mechanical Working Processes**: **Abrasive Jet Machining**: Machining setup, Abrasives, Process Parameters, Machining Characteristics, Material removal models in AJM, Process capability, Advantages, limitations, Applications

Water Jet Machining: Basic mechanism of Water jet machining setup, Process parameters, Catcher, Process capabilities, Advantages, limitations, Applications **Abrasive Water Jet Machining process:** Working Principle, AWJM Machine, Process Variables, Mechanism of Metal Removal, Cutting Parameters, Process capabilities, Applications, Environmental issues.

Ultrasonic Machining: Fundamental principles, Equipment, Magnetostriction, Elements of process, Mechanics of cutting, Analysis of Process Parameters, Process capabilities, Economic considerations. Applications, Limitations

UNIT-II

Chemical Machining: Introduction, Fundamental Principles, Process Parameters; Maskants and Etchants, Advantages, Limitations, Applications.

Electrochemical Machining Processes: Introduction, Classification of ECM Processes, Fundamentals Principles of ECM, Elements of ECM, ECM Machine Tool Process, Determination of Metal Removal Rate, Evaluation of Metal Removal of an alloy, Electrochemistry of ECM, Cathode and Anode reaction, Dynamics of ECM, Self-Regulating feature of ECM, Process Parameters, Process capabilities, Electrochemical Deburring. **Electrochemical Grinding:** Schematics, Electrochemistry, Process Parameters, Process capabilities, Applications, Advantages, Limitations.

UNIT-III

EDM: Introduction, Basic Principles & Schematics, Process Parameters, Characteristics of EDM, Dielectric, Electrode Material, Modelling of Material Removal, Spark Erosion Generators, Analysis and Metal Removal Rate in RC circuit, Selection of Tool Material and Tool Design, Di-Electric system, Process Variables, Dielectric Pollution and its effects, Process Characteristics, Applications, Electric Discharge Grinding and Electric Discharge Diamond Grinding; **Wire EDM**: Working Principle, Wire EDM Machine, Advances in Wire-cut EDM Process Variables, Process Characteristics, Applications.

UNIT-IV

Laser Beam Machining Back Ground, Production of Laser, Working Principle of LBM, Types of LASERS, Process Characteristics, and Metallurgical effects, Advantages and Limitations, Applications.

Electron Beam Machining:

Electron Beam Action, Generation and control of Electron beam, Theory of Electron Beam Machining, Process Parameters, Process capabilities, Applications.

High Energy Rate Forming, Elctro-Hydraulic Forming, Explosive Forming, Hot Machining Analysis of the Process.

RECOMMENDED BOOKS:

1V.K. Jain, Advanced Machining Processes, Allied Publishers Pvt Ltd
2P.C. Pandey and H.S. Shan, Modern Machining Processes, Tata McGraw-Hill
3M. K. Singh, Unconventional Manufacturing Process, New Age Publishers
4J. A. Mcgeough, Advanced Methods of Machining, Springer.
5 Benedict, Non-Traditional Manufacturing Process, CRC pub.
6P. K. Mishra, Nonconventional manufacturing, Narosa Publishers

Note:The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-II

					01)							
MTIP-111A		PRODUCT DESIGN AND DEVELOPMENT										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time					
				Test	Test							
3	0	0	3	60	40	100	3 hrs.					
Objective	The objective	The objective of the course is to understand about the product design and										
	developments with inputs from aesthetics, ergonomics, design for manufacturing											
	ease and cost effectiveness apart from reliability and durability and other											
	considerations.											
		Cou	rse Outco	mes								
CO1	To understand	the conce	pt of pro	duct des	ign, desig	n considera	ations, design					
	practiced by the	industry, pi	roduction	and marke	eting, and a	esthetics.						
CO2	To provide a c	letailed fun	damental	approach	to severa	l primary p	processes and					
	design guideline	es for manuf	acturing, a	ssembly a	nd enviror	nment.						
CO3	To discuss the h	uman factor	engineeri	ng and the	e concept c	of value engli	neering.					
CO4	To study the	modern a	pproaches	to pro	duct desi	gn, concept	t of product					
	development ar	d its manufa	acturing ar	nd econom	ic aspects.	- I	•					

UNIT-I

INTRODUCTION: Introduction to product design, Design by evolution and innovation, Essential factors of product design, Production consumption cycle, Flow and value addition in production consumption cycle, Morphology of design.

PRODUCT DESIGN PRACTICE AND INDUSTRY: Product strategies, Time to market, Analysis of the product, Basic design considerations, Role of aesthetics in product design.

UNIT-II

DESIGN FOR MANUFACTURE AND ASSEMBLY: Overview and motivation, Basic method: Design guidelines: Design for assembly, Design for piece part production, Advanced method: Manufacturing cost analysis, cost driver modeling, Critique for design for assembly method.

DESIGN FOR THE ENVIRONMENT: Environmental objectives, Basic DFE methods, Design guidelines, Life cycle assessment, Techniques to reduce environmental impact.

UNIT-III

HUMAN ENGINEERING CONSIDERATIONS IN PRODUCT DESIGN: Human being as applicator of forces, Anthropometry, the design of controls, the design of displays, Man/Machine information exchange, Workplace layout from ergonomic considerations.

VALUE ENGINEERING: Value, Nature and measurement of value, Maximum value, Normal degree of value, Importance of value, value analysis job plan, creativity, steps to problem solving and value analysis, value analysis tests, value engineering idea generation check list, Cost reduction through value engineering-case study, materials and process selection in value engineering.

UNIT-IV

MODERN APPROACHES TO PRODUCT DESIGN: Concurrent design, Quality function deployment (QFD), Rapid prototyping, 3D printing, Introduction to 4D printing.

PRODUCT DEVELOPMENT: A modern product development process, reverse engineering and redesign product development process, product life cycle, product development teams, Product development planning, Manufacturing & economic aspects of product development.

RECOMMENDED BOOKS:

1. Kail T Ulrich and Steven D Eppinger, "Product Design and Development, TMH.

- 2. AK Chitale and Gupta, "Product Design and Engineering, PHI.
- 3. Niebel & Draper, "Product Design and Process Engineering", McGraw-Hill.
- 4. Kevin Otto & Kristin Wood, "Product Design-Techniques in reverse engineering and new product development" Pearson.

Note: The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

		(/ /						
MTIP-113A		SIMULATION OF INDUSTRIAL SYSTEMS									
Lecture	Tutorial	Practical	Credit	Major Test	Minor	Total	Time				
					Test						
3	0	0	3	60	40	100	3 hrs				
Objective	The main	The main objective of the course is to impart the students with the knowledge of									
	industrial	industrial systems and its simulation.									
	Course Outcomes										
CO1	To explain	To explain the concept of industrial simulation systems and its models of									
	simulation	า.									
CO2	To unders	stand the sim	ulation of	discrete and qu	ueueing syst	ems.					
CO3	To unders	stand the sim	ulation if	inventory syste	ems and des	ign of simul	ation				
	experimer	experiments.									
CO4	To sir	nulate th	ne indu	ustrial pro	blems li	ke relia	bility				
	problems,	computertin	nesharingp	problem and	understand	the simul	ation				
	languages										

UNIT-I

Introduction and overview: concept of system, system environment, elements of system, system modeling, types of models, Monte Carlo method, system simulation, simulation - a management laboratory, advantages & limitations of system simulation, continuous and discrete systems.

Simulation of continuous systems: characteristics of a continuous system, comparison of numerical integration with continuous simulation system. Simulation of an integration formula.

UNIT-II

Simulation of discrete system: Time flow mechanisms, Discrete and continuous probability density functions. Generation of random numbers, testing of random numbers for randomness and for auto correlation, generation of random variates for discrete distribution, generation of random variates for continuous probability distributions-binomial, normal, exponential and beta distributions; combination of discrete event and continuous models.

Simulation of queuing systems: Concept of queuing theory, characteristic of queues, stationary and time dependent queues, queue discipline, time series analysis, measure of system performance.

Kendall's notation, auto covariance and auto correlation function, auto correlation effects in queuing systems, simulation of single server queues, multi-server queues, queues involving complex arrivals and service times with blanking and reneging.

UNIT-III

Simulation of inventory systems: Rudiments of inventory theory, MRP, in-process inventory. Necessity of simulation in inventory problems, forecasting and regression analysis, forecasting through simulation, generation of Poisson and Erlang variates, simulation of complex inventory situations.

Design of Simulation experiments: Length of run, elimination of initial bias, Variance, Variance reduction techniques, stratified sampling, antipathetic sampling, common random numbers,

time series analysis, spectral analysis, model validation, optimization procedures, search methods, single variable deterministic case search, single variable non-deterministic case search, and regenerative technique.

UNIT-IV

Simulation of PERT: Simulation of - maintenance and replacement problems, capacity planning, production systems, reliability problems, computer time sharing problem, the elevator system. **Simulation Languages:** Continuous and discrete simulation languages, block structured continuous languages, special purpose simulation languages, SIMSCRIPT, GPSS SIMULA importance and limitations of special purpose languages.

RECOMMENDED BOOKS:

- 1. Loffick, Simulation and Modelling Tata McGraw Hill
- 2. Deo Narsingh, System Simulation with Digital Computer Prentice Hall
- 3. Hira, D.S., System Simulation-S. Chand & Co.
- 4. Meelamkavil, Computer Simulation and Modelling John Willey
- 5. Gorden, System Simulation Prentice hall
- 6. Jerry Banks and John, S. Carson II, 'Discrete Event System Simulation', Prentice Hall Inc., NewJersey, 1984.
- 7. Geoffrey Gordon, 'System simulation', Prentice Hall, NJ, 1978.
- 8. Law, A.M. and W.D. Keltor, 'Simulation modelling analysis', McGraw Hill, 1982.

Note:The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MTIP-115A		SUPPLY CHAIN MANAGEMENT										
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time										
Lecture	Tutoriai	Flactical	Creats	Test	Test	Total	TITLE					
3	0	0 0 3 60 40 100 3										
Objective	The main of Supply	The main objective of the course is to impart the students with the knowledge of Supply chain and different aspects of supply chain management.										
		Co	ourse Outco	omes								
CO1	To impart	t knowledge a	about basics	s of Supply	chain mana	gement an	d Supply					
CO2	To acquai procurem	int students ent in supply	with the d chain mana	ifferent asp gement.	pects involve	d in sour	cing and					
CO3	To impart chain and	To impart knowledge to students about Evaluating performance of Supply chain and decision making about Transportation, Storage and warehousing.										
CO4	To let stud in a Suppl	dent understa y Chain:	ind Quantita	tive tools f	or SCM, Infor	mation Te	chnology					

UNIT-I

Overview of supply chain management: Introduction, Definition, The Objective of a Supply Chain, The Importance of Supply Chain Decisions, Decision Phases in a Supply Chain, Process Views of a Supply Chain, Examples of Supply Chains.

Supply chain dynamics: Introduction, Coping with Dynamics in Supply chain. Bullwhip effect, Analysis of Bullwhip Effect, Impact of Lead time, Inventory management and Supply chain dynamics, offshoring and outsourcing Effect on SC dynamics and cost.

UNIT-II

Outsourcing and Make or Buy Decisions:Strategic Decisions and Core competencies, Tactical Decisions, Factors influencing make or buy decisions, Control of Production or Quality, Unreliable Suppliers, Suppliers Specialized knowledge and research, Small Volume Requirements, Limited Facilities, Workforce Stability, Multiple Sourcing Policy, Managerial and Procurement considerations, the Volatile nature of Make/Buy situation, Administration: Procedures and Personal.

Sourcing of Supply:Importance of Source Selection, Responsibilities for Source Selection, Evaluating a potential supplier, the criticality of Qualifying Sources, Competitive Bidding and Negotiation, Prerequisite for competitive bidding, two step Bidding/Negotiation, Benefits and Risks of International Sourcing, Identifying and Qualifying an International Source.

UNIT-III

Supply Chain Performance: Achieving Strategic fit And Scope: Competitive and Supply Chain Strategies, Achieving Strategic Fit, Expanding Strategic Scope, Challenges to Achieving and Maintaining, Strategic Fit, Supply chain drivers and metrics, Financial Measures of Performance, Drivers of Supply Chain Performance, Framework for Structuring Drivers, Facilities, Inventory, Transportation, Information, Sourcing, Pricing.

Transportation, storage and warehousing: Introduction, Transportation mode choice, Transport operator decisions, Trucking sectors in India, Rail transport, Air Transport, Water transport, Transport network, Storage and warehousing, types of warehousing, risk pooling, IT Integration: Supply chain information system, Role of IT in SCM process, Business process Reengineering, Internet and its applications in SCM.

UNIT-IV

Quantitative tools for SCM: Introduction, Forecasting, Demand forecast, Forecasting strategy & technique, Management of Inventories in SC, Linear programming, Routing models, pricing decisions, Introduction to MCDM approach.

Information Technology in a Supply Chain: The Role of IT in a Supply Chain, The Supply Chain IT Framework Customer Relationship Management, Internal Supply Chain Management, Supplier Relationship Management, The Transaction Management Foundation, The Future of IT in the Supply Chain, Risk Management in IT, Supply Chain IT in practice.

RECOMMENDED BOOKS:

1.Chopra, S., and Meindl, P., Supply chain Management: Strategy, Planning and Operations. Second Edition, Pearson Education (Singapore) Pte. Ltd, 2004.

2Rangaraj, Supply Chain Management for Competitive Advantage, TMH.

3Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E., Designing & Managing the Supply Chain: Concepts, Strategies & Case studies. Second Edition, Tata McGraw-Hill Edition, 2003.

4.Doebler, D.W. and Burt, D.N., Purchasing and Supply Chain Management: Text and Cases, McGraw-Hill Publishing Company Limited, New Delhi, 1996.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MTRM-111A		(101/11)	RESEARCH) IPR					
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
2	0	0	2	60	40	100	3				
Objective	The objec	The objective of this course is to make the students capable of formulating the									
	research p	research problems/ proposals and get aware about the intellectual property and									
	patent laws.										
			Course C	Outcomes							
CO 1	Student w	ill be able to	understand	d research p	roblem forr	nulation.					
CO 2	Student w	/ill be able t	o analyze r	research rel	lated inforr	nation and	follow research				
	ethics.		-								
CO 3	Student w	vill be able t	o understar	nd the Pate	nts, Designs	s, Trade ar	nd Copyright and				
	able to ap	oly the know	ledge for pa	atent.	-						
CO 4	Student w	/ill be able	to understa	and the cor	ncept of Pa	itent Right	ts, Licensing and				
	transfer of	f technology	and able to	apply the k	nowledge ir	n new deve	elopments in IPR.				

Unit-I

Meaning of research problem, Sources of research problem, Criteria, characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.

Unit-II

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, paper. Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

Unit-III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit-IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and Institutions.

- Stuart Melville and Wayne Goddard, "Research methodology: An introduction for science & engineering students" Kenwyn, South Africa : Juta & Co. Ltd., 1996
- Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction" Juta Academic; 2nd edition (April 28, 2004)
- Ranjit Kumar, "Research Methodology: A Step by Step Guide for beginners" SAGE Publications Ltd; Fourth edition (14 January 2014)
- Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- Mayall, "Industrial Design", McGraw Hill, 1992.

- Niebel, "Product Design", McGraw Hill, 1974.
- Asimov, "Introduction to Design", Prentice Hall, 1962.
- Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", Aspen Publishers; Revised edition (July 25, 2007)
- T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MTMT-103		ADVANCED TRIBOLOGY LAB										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Practical	Total	Time				
0	0	4	2	-	40	60	100	3 hrs				
Objective	To study fri test conditio	o study friction, wear mechanism of materials and performance of lubricants under various est conditions using concepts, methods and application of Industrial Tribology.										
Course Outcomes												
CO1	Students v contacts b	Students will be able to understand the friction phenomena and different wear processes in contacts between metallic, ceramic and polymeric surfaces.										
CO2	Students v different p	will be able properties c	to know c of lubrican	lifferent ty ts.	pes of lubri	cants, their grad	des, test sta	ndards and				
CO3	Students will be able to understand the causes of tribological failures and surface characterization.											
CO4	Students v friction te	will be able st.	to use diff	erent type	s of tribo-te	st equipments a	ind design c	of wear and				

List of Experiments

- 1. To study the friction and wear properties of a specimen (metallic/polymeric/ceramic surfaces) using wear and friction monitoring apparatus under dry sliding conditions.
- 2. To study the friction and wear properties of a specimen (metallic/polymeric/ceramic surfaces) using wear and friction monitoring apparatus under wet sliding conditions.
- 3. To study the effect of temperature on the friction and wear performance of composite materials using high temperature pin/ball on disc tester.
- 4. To study the variation of viscosity of lubricants with temperature.
- 5. To evaluate the wear and extreme pressure properties of a lubricating oil/ grease using four ball tester.
- 6. To study the surface characterization of wear components.
- 7. To study different types of industrial abrasives materials, properties and applications.
- 8. To determine abrasion index of a material with the help of dry abrasion test rig.
- 9. To access the adhesion and scratch resistance of surface coatings (hard or soft) using Scratch Tester.
- 10. To determine the erosive wear rate of different materials using Air Jet Erosion Tester under different conditions.
- 11. To demonstrate the pressure distribution of a lubricant in a journal bearing.

Note: At least eight experiments should be performed from the above list.

MTIP-119 A	COMPUTER AIDED DESIGN AND MANUFACTURING LAB											
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Practical	Total	Time				
0	0	0 4 2 - 40 60 100 3hrs.										
Objective To acquaint the students with 2-D and 3-D modeling using design softwares.												
			Οοι	urse Outco	omes							
CO1	To underst	and the bas	ic solid m	odeling ar	d applied for	eatures of the s	oftwares.					
CO2	To learn an	d practice o	of surface	technique	s and surfa	ce creations us	ing softwar	ъе.				
CO3	To learn and practice of assembly and detailed drafting.											
CO4	To let student understand how to prepare MMCs using Stir Casting process.											

List of Experiments:

The students will be required to carry out the following exercises or their equivalent tasks using a 3-D modeling software package (e.g. Solid-works/ Creo/ Ideas/ Solid Edge/UG/CATIA/ etc.). Practical must be performed on licensed version (Preferably the latest version) of any one of above mentioned software.

1 BASIC SOLID MODELING

Introduction & sketcher tools

a) CAD Tools and Applications: CAD - CAM - CAE

- b) Parametric Feature Based Modelling and Parent-Child Relation
- c) Design Intent and Associativity between 3 Modes
- d) Modelling Software Getting Started & Graphical User Interface
- e) Sketch Entities and Tools
- f) Dimensioning and Adding Relations to define the Sketch

Sketched Features (Boss / Base and Cut)

- a) Base Features
- b) Extrude & Revolve
- c) Reference Geometry, Curves & 3D Sketch

d) Sweep & Loft

Editing & Refining Model

a) Editing Sketch, Sketch Plane and Editing Feature

b) Suppress / Un-Suppress Feature and Reordering Feature

2 ADVANCE FEATURES APPLIED FEATURES

- a) Patterns & Mirror
- b) Fillet/Round & Chamfer
- c) Hole & Hole Wizard
- d) Draft, Shell, Rib and Scale
- e) Dome, Flex and Wrap

Multi Body

- a) Indent Tool
- b) Combine Bodies Boolean Operations
- c) Split, Move/Copy and Delete Bodies

Other Tools & Options

- a) Design Table and Configurations
- b) Adding Equations and Link Values
- c) Tools Measure and Mass Properties

d) Appearance - Edit Material, Colour and Texture e) Options - System and Document Properties

3 SURFACING TECHNIQUES BASIC SURFACE CREATIONS

- a) Extrude & Revolve
- b) Sweep & Loft
- c) Boundary Surface
- d) Planar Surface

Other Derived Techniques

- a) Offset Surface
- b) Radiate Surface
- c) Ruled Surface
- d) Fill Surface
- e) Mid Surface

Modify / Edit Surfaces

- a) Fillet/Round
- b) Extend
- c) Trim & Untrim
- d) Knit Surfaces
- e) Delete and Patch

Surfaces for Hybrid Modelling

- a) Thicken Boss / Base and Cut
- b) Replace face
- c) End condition for Sketched feature Up to Surface or Offset from Surface.
- d) Solid body from closed surfaces

4 ASSEMBLY & MECHANISMS BOTTOM UP ASSEMBLY APPROACH

- a) Inserting Components/Sub-Assemblies
- b) Adding Mates Standard & Advance
- c) Editing Mates, Part and Replacing Components

Top down Approach & Mechanisms

a) Inserting New Part to Existing Assembly

b) Use of Layout Sketching

c) External References - In-context and Out-of-context, Locked and Broken

Assembly Features

a) Component Patterns & Mirrors

b) Cuts & Holes

c) Belt/Chain and Weld Bead

Representations of Assembly Components

a) Light Weight, Suppressed and Resolved

- b) Hide, Transparency and Isolate
- c) Exploded View

Assembly Check

- a) Interference Detection,
- b) Collision Detection and Physical Dynamics

Motion Study

- c) Assembly Motion & Physical Simulation
- d) Animation Wizard & Save as AVI file
- e) Mechanism Analysis Plot Displacement, Velocity and Acceleration Diagram

5 DETAILED DRAFTING

Introduction to Engineering Drawings

a) General Procedure for Drafting & Detailing

b) Inserting Drawing Views, Dimensioning and Adding Annotations

- c) Drawing Templates & Sheet Format
- d) Setting Options

Drawing Views

- a) Model View & Standard 3 View
- b) Projected View & Auxiliary View
- c) Section & Aligned Section View
- d) Detail View, Broken-out Section and Crop View.

Dimensioning

- a) Standards, Rules and Guidelines
- b) Dimension Insertion/Creation Insert Model Items & Dimension tool

Annotations

- a) Notes & Holes Callout
- b) Datum & Geometric Tolerances

c) Surface Finish & Weld Symbols, Centre Mark & Centre line, BOM Balloon & Bill of Material

Audit Course-I

MTAD-101 A		ENGLISH FOR RESEARCH PAPER WRITING										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)					
				Test	Test							
2	0	0	-	-	100	100	3					
Objective	The objective of this course is to impart the knowledge of English for research											
	paper writ	paper writing.										
		C	Course Outo	comes								
CO1	To unders	tand that ho	w to improv	ve writing sk	kills and leve	el of read	lability.					
CO2	To Learn a	To Learn about what to write in each section.										
CO3	To unders	To understand the skills needed when writing a title.										
CO4	To learn th	ne skills requ	uired in writ	ing the resu	ılts, discussi	ion and c	onclusions.					

Unit-I

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit-II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit-III

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. Key skills needed when writing a Title, key skills needed when writing an abstract, key skills needed when writing an Introduction, skills needed when writing a Review of the Literature.

Unit-IV

Skills needed when writing the Methods, skills needed when writing the Results, skills needed when writing the Discussion, skills needed when writing the Conclusions, Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

- Goldbort R, "Writing for Science", Yale University Press (available on Google Books)
- Day R, "How to Write and Publish a Scientific Paper", Cambridge University Press
- Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book.
- Adrian Wallwork, "English for Writing Research Papers", Springer New York Dordrecht Heidelberg London, 2011

MTAD-103 A	DISASTER MANAGEMENT									
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)			
				Test	Test					
2	0	0	-	-	100	100	3			
Objective	The object	ive of this co	ourse is to ir	npart the kr	nowledge of	disasters	management.			
	Course Outcomes									
CO1	To demonstrate a critical understanding of key concepts in disaster risk									
	reduction and humanitarian response.									
CO2	To critical	ly evaluate o	lisaster risk	reduction	and human	itarian res	sponse policy			
	and practi	ce from mult	tiple perspe	ctives.						
CO3	To develo	op an under	rstanding c	f standards	s of humai	nitarian r	esponse and			
	practical relevance in specific types of disasters and conflict situations.									
CO4	To critically understand the strengths and weaknesses of disaster management									
	approache	es, planning a	and progran	nming in dif	ferent coun	tries, part	icularly their			
	home cour	ntry or the co	ountries the	y work in.						

Unit-I

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit-II

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.

Unit-III

Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics.

Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data From Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.

Unit-IV

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

- R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'New Royal book Company.
- Sahni, Pardeep (Eds.)," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, New Delhi.
- Goel S. L., "Disaster Administration and Management Text and Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

MTAD- 105 A		SAN	ISKRIT FOF	R TECHNICA	AL KNOWLI	EDGE				
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)			
				Test	Test					
2	0	0	-	-	100	100	3			
Objective	The object	ive of this co	ourse is to u	nderstand b	oasic Sanskr	it Langua	age and Ancient			
Sanskrit literature related to science & technology.										
Course Outcomes										
CO1	Students	will get a w	orking knc	wledge in	illustrious	Sanskrit,	the scientific			
	language o	of the world.								
CO2	Learning	of Sanskrit to	improve br	ain function	ning.					
CO3	Learning	of Sanskrit	to develop	the logic	in mathem	atics, sci	ence & other			
	subjects enhancing the memory power.									
CO4	The engin	eering schol	lars equipp	ed with Sa	nskrit will	be able t	o explore the			
	huge knov	vledge from a	ancient liter	ature.			-			

Unit-I

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences

Unit-II

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit-III

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

- Dr.Vishwas, "Abhyaspustakam" Samskrita-Bharti Publication, New Delhi
- Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam "Teach Yourself Sanskrit" Prathama Deeksha-, New Delhi Publication
- Suresh Soni, "India's Glorious Scientific Tradition" Ocean books (P) Ltd., New Delhi.

MTAD-107 A	VALUE EDUCATION									
Lecture	Tutorial	Practical	Credits	Major Test	Minor	Total	Time (Hrs.)			
	0			Test	100	100	2			
2	0	0	-	-	100	100	3			
Objective	The objective of this course is to understand value education, self-development, and Imbibe good values in students and Let them know about the importance of character building.									
		C	Course Outo	comes						
CO1	To get kno	To get knowledge of self-development.								
CO2	To learn the importance of Human values.									
CO3	To develop	o the overall	personality							
CO4	To know a	bout the imp	portance of o	character.						

Unit-I

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements

Unit-II

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

Unit-III

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

Unit-IV

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, studying effectively

RECOMMENDED BOOKS:

• Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Second Semester

MTIP-102 A	MECHATRONICS								
Lecture	Tutorial Practical Credit Major Minor Total Til								
				Test	Test				
3	0	0	3	60	40	100	3 hrs		
Objective	The object	ive of the co	ourse is to a	acquaint the	e knowledge	e of electror	nic devices		
	and electromechanical systems, hydraulic and pneumatic systems, CNC, Robotics								
	and PLC's.								
		(Course Out	comes					
CO1	To underst	and the con	cepts of Me	chatronics, t	fundamenta	I of electror	nics		
	and digital circuits and electrical actuating circuits.								
CO2	To acquaint the knowledge of hydraulic system with its practical applications.								
CO3	To acquain	To acquaint the knowledge of pneumatic system with its practical applications.							
CO4	To study t	he fundame	entals of CN	IC, Robotics	and progr	ammable lo	ogic		
	controllers	(PLC's) and	their use.						

UNIT-I

Introduction: The Mechatronics approach: A methodology for integrated design of Mechanical, Electronics and Electrical Control, Computer and Instrumentation.

Fundamentals of Electronics and digital circuits: Number systems: Binary, Octal, Hexadecimal, Conversion from Binary to Decimal, Octal and Hexadecimal and vice–versa, Binary arithmetic: Addition, subtraction, Multiplication and division, Boolean Algebra: Laws, De-Morgan's laws, Logic Gates, Truth tables, Karnaugh maps and logic circuits. Generation of Boolean function from truth tables and simplification, Electrical actuating system: Basic principle of electrical switching, Solenoids, Electrical relays, Representation of output devices, Electrical motors: A.C. motors, Stepper motors, Induction motor speed control.

UNIT-II

HYDRAULIC SYSTEMS:

Direction Control Valves: Poppet Valve, Spool Valve, Sliding Spool type DCV, Check Valve, Pilot operated check valve, Restriction check valve, 2 Way vale, 3 way valve, 4 way valve, Manually actuated valve, Mechanically actuated valve, Pilot operated DCV, Solenoid Actuated valve, Rotary Valve, Centre flow path configurations for three position four way valve, Shuttle valve

Pressure Control Valve: Simple and compound pressure Relief Valve, Pressure Reducing Valve, Unloading valve, sequence valve, counterbalance valve, Brake Valve

Flow Control Valves: Fixed and non-adjustable valve, adjustable, throttling, non-pressure compensated pressure control valve, Pressure/temperature compensated flow control valve, Shuttle and Fast exhaust valve, Time delay valve, Flow Control Valves, Fluid Conditioners, Hydraulic Symbols (ANSI), Hydraulic Circuit design: Control of Single and double acting cylinders, double pump Hydraulic System

UNIT-III

PNEUMATIC SYSTEM:

Air Generation and distribution: Air compressors, Air Receiver, Filters, intercoolers, After-coolers, Relief Valve, Air dryers, Primary and secondary lines, Piping layouts, Air Filters, Air Regulators, Air Lubricator, Actuators and output devices, Direction control valves, Flow control valves, junction elements, Pneumatic circuits, Control of Single and double acting cylinders.

UNIT-IV

INTRODUCTION TO CNC MACHINES AND ROBOTICS:

CNC Machines: NC machines, CNC machines, DNC machines, Machine structure, Slide-ways, Guideways, Slide Drives, Spindle, Robotics:Components of robots, Classification of robots, Robots application

PROGRAMMABLE LOGIC CONTROLLERS

Introduction - Principles of operation - PLC Architecture and specifications - PLC hardware Components, Analog & digital I/O modules, CPU & memory module - Programming devices - PLC ladder diagram, Converting simple relay ladder diagram in to PLC relay ladder diagram. PLC programming Simple instructions - Manually operated switches - Mechanically operated Proximity switches - Latching relays, Applications of PLC.

RECOMMENDED BOOKS:

- 1. W. Bolton, Mechatronics, Pearson Education.
- 2. Majumdar, Pneumatic system, TMH.
- 3. Andrew Parr, Hydraulic and Pneumatic systems, TMH.
- 4. M.P. Groover, Automation, Production systems and computer integrated manufacturing, TMH.
- 5. Shetty and Kolk, Mechatronics system design, Thomson learning.
- 6. Mahalik, Mechatronics, TMH.
- 7. Anthony Esposito, Fluid power with application, Pearson Education.
- 8. K.P Ramachandran, M.S Balasundaram, Mechatronics, Wiley India.

Note: The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MTMT -102	AUTOMATION AND COMPUTER-INTEGRATED MANUFACTURING									
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time			
3	0	0	3	60	40	100	3 hrs			
Objective	The main objective of the course is to impart the students with the knowledge of automation with manufacturing concern.									
	·	Course	e Outcome	S						
CO1	To impart knowledge about various functional requirements of automation in Manufacturing and material conveyor system.									
CO2	To acquaint students with the FMS, part program and their functional significance and GT.									
CO3	To impart know	vledge to stude	ents about (CAD/CAM	/CIM and C	APP				
CO4	To let student u	understand bas	sics of NC/0	CNC/DNC						

Unit-I

Introduction: Automation in Production System, Principles and Strategies of Automation,Basic Elements of an Automated System, Advanced Automation Functions, Level of Automation **Material Handling:** Material Handling Systems, AG vehicles, conveyer system, features of industrial robots, AutomatedStorage/Retrieval Systems, Work holding system

Unit-II

Automated Manufacturing Systems: Components,Classification and Overview ofManufacturing Systems, GT and Cellular Manufacturing, Part families, Part Classification and coding,Product flow analysis, Group technology machine cells, benefits of GT.

FMS, Introduction to FMS - concepts, FMS components, application and benefits, FMS planning and implementation issues, Distributed data processing in FMS – DBMS and their applications in CAD/CAM

Unit-III

Product design: Product design and CAD, CAD system hardware, CAM, CAD/CAM and Computer Integrated Manufacturing, Quality function deployment.

Process Planning- Introduction, Computer-aided process planning, Material requirementplanning, Capacity planning, shop floor control, advanced manufacturing planning.

Unit-IV

Numeric Control: Fundamentals of NC technology, Computer numeric control, distributed numeric control, Applications of Numeric control.

Industrial Robotics: Robot anatomy and related attributes, Robot control system, End effectors, Sensors in Robotics, Industrial Robot applications.

Suggested books:

1 Automation, Production systems and CIM by MIKELL P. Grover, PHI.

2 Computer Integrated Manufacturing by Kant Vajpayee.

3. David J.Parrish, "Flexible Manufacturing" Butterworth-Heinemann, 1990.

Programme Elective-III

	- · · ·	<i>^</i>			RUCESSES	- · ·				
Lecture	Tutorial	Practical	Credit	Major	Minor Test	Total	lime			
				Test						
3	0	0	3	60	40	100	3 hrs			
Objective	The main ob	ojective of th	ne course is	to impart th	ne students v	with the kn	owledge of			
	Welding metallurgy and welding processes.									
Course Outcomes										
CO1	To impart knowledge about various Weld metallurgy and Weld arc									
	characteristics.									
CO2	To acquain	t students	with the	various we	Iding powe	r sources	and their			
	applications.									
CO3	To impart knowledge to students about Electrode coatings and Metal transfer									
	phenomenon in weld metal transfer.									
CO4	To let stude	nt understar	nd the basic	s of Solid sta	ate welding i	orocesses a	nd some of			
	the latest we	elding techn	iques.		51					

UNIT-I

WELDING METALLURGY: Introduction, Weld Metal Zone, Theory of solidification of metals and alloys, Homogeneous Nucleation, Heterogeneous Nucleation, Freezing of alloys, Epitaxial Solidification; Effect of Welding speed on Grain structure, Fusion boundary zone, Heat affected zone, Under bead zone, Grain Refined Zone, Partial transformed zone, Properties of HAZ

WELDING ARC: Definition of Arc, Structure and characteristics, Arc efficiency, arc blow, Electrical Characteristics of arc, Types of Welding Arcs, mechanism of arc initiation and maintenance, role of electrode polarity on arc behaviour and arc stability, analysis of the arc. Arc length regulation in mechanized welding processes.

UNIT-II

WELDING POWER SOURCES: Requirement of an Arc welding power sources, basic characteristics of power sources for various arc welding processes, duty cycles, Selection of a static Volt-Ampere characteristic for a welding process, AC/DC welding power source, DC rectifiers, thyristor controlled rectifiers, transistorized units, inverter systems, Mathematical Problems on Static volt ampere characteristics

UNIT-III

COATED ELECTRODES: Electrode coatings, classification of coatings of electrodes for SMAW, SAW fluxes, role of flux ingredients and shielding gases, classification of solid and flux code wires.

METAL TRANSFER & MELTING RATE: Mechanism and types of metal transfer, forces affecting metal transfer, modes of metal transfer, metal transfer in various welding processes, effective of polarity on metal transfer and melting rate.

UNIT-IV

SOLID STATE WELDING: Theory and mechanism of solid state welding,techniques and scope of friction welding, diffusion welding, cold pressure welding and ultrasonic welding, high energy rate welding,analysis of the Process.

WELDING TECHNIQUES: Technique, scope and application of the electron beam and laser welding processes, under water welding - process & problem.

RECOMMENDED BOOKS:

1Raymond Sacks, —Welding: Principles & Practices|| McGraw-Hill 2R.S.Parmar, —Welding processes & Technology||, Khanna Publishers 3R.S.Parmar, —Welding Engineering & Technology||, Khanna Publishers 4S.V. Nandkarni, —Modern Arc Welding Technology, Oxford & IBH publishing Co. 5L.M.Gourd, —Principles of Welding Technology||, ELBS/ Edward Arnold. 6Richard L. Little —Welding & Welding Technology||, Mc-Graw Hill. 7Cary, Howard —Modern Welding Technology', prentice Hall, 1998. 8Rossi —Welding Technology||, Mc-Graw Hill. **Note:** The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MTIP-108 A	ADVANCED METAL CUTTING									
Lecture	Tutorial Practical Credit Major Test Minor Total Time									
					Test					
3	0	0 0 3 60 40 100 3 h								
Objective	The main objective of the course is to impart the students with the knowledge of									
	advanced cutting tools, tools geometry, mechanisms and analysis.									
Course Outcomes										
CO1	To impart ki	To impart knowledge about various functional related to tools geometry.								
CO2	To acquaint with the analysis of fundamental factors affecting tool forces									
CO3	To impart ki	nowledge ab	out cutting	g tool life and m	athematical	modelling fo	or wear.			
CO4	To let stude	nt understar	nd abrasive	e machining and	lits process s	simulation.				

UNIT-I

Introduction system of Tool nomenclature, Tool Geometry, Mechanism of Chip formation and forces in orthogonal cutting, Merchant's force diagram.

Oblique Cutting: Normal chip reduction coefficient under oblique cutting, true shear angle, effective rake, influx region consideration for deformation, direction of maximum elongation, effect of cutting variables on chip reduction co-efficient, forces system in oblique cutting, effect of wear land on force system, force system in milling, effect of helix angle.

UNIT-II

Fundamentals of Dynamometry, Theoretical determination of forces, angle relations, heat and temperature during metal cutting; distribution, measurement, analysis, theoretical estimation of work piece temperature, hot machining

Fundamental factors, which effect tool forces: Correlation of standard mechanized test. (Abuladze – relation), nature of contact and stagnant phenomenon, rates of strains, shear strain and normal strain distributions, cutting variables on cutting forces.

UNIT-III

Cutting Tools: Tools materials analysis of plastic failure (from stability criterion), Analysis failure by brittle fracture, wear of cutting tools, criterion, flank and crater wear analysis, optimum tool life, tool life equations, (Taylor's woxen etc) Tool life test, machining optimization, predominant types of wear; abrasive, adhesive, diffusion wear models, wear measurements and techniques, Major Test of tool wear oxidative mathematical modelling for wear, test of machinability and influence of metallurgy on machinability. Economics of metal machining

UNIT-IV

Abrasive Machining: Mechanics of grinding, cutting action of grit, maximum grit chip thickness, energy and grit force temperature during grinding, wheel wear, grinding, process simulation, testing of grinding wheels, mechanics of lapping and honing, free body abrasion.

RECOMMENDED BOOKS:

- 1. Sen & Bhattacharya, Principles of Machine tools, New Central Book Agency.
- 2. Brown, Machining of Metals, Prentice Hall.
- 3. Shaw, Principles of Metal cutting, Oxford I.B.H.
- 4. Arshimov & Alekree, Metal cutting theory & Cutting tool design, MIR Publications.
- 5. Machining Science & Application by Knowenberg Longman Press.

Note: The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MTIP-110 A	METROLOGY									
Lecture	Tutoria	Tutoria Practical Credit Major Minor Test Total Time								
	l			lest						
3	0	0	3	60	40	100	3 hrs.			
Objective	The mair	n objective o	of the course	e is to deal	with the basic pri	nciples of dir	nensional			
-	measuring instruments and precision measurement techniquesin achieving quality									
	and reliability in the service of any product in dimensional control.									
Course Outcomes										
CO1	To under	stand the s	tudentsabou	it the requir	rement of metrolog	gy and the co	ncepts of			
	limit, fits and gauges.									
CO2	To study the linear and angular measurements and the optical measurement tools and									
	techniques.									
CO3	To understand how to use surface roughness and thread measuring instruments.									
CO4	To study	the compa	arators, mea	asurement t	hrough comparat	ors and the	advanced			
	metrolog	y concepts.								

UNIT-I

Introduction to metrology: Definition, types, need of inspection, terminologies, methods of measurement, selection of instruments, measurement errors, units, Measurement standards, calibration, statistical concepts in metrology.

Systems of Limits and Fits: Introduction, nominal size, tolerance limits, deviations, allowance, fits and their types – unilateral and bilateral tolerance system, hole and shaft basis systems – interchangeability and selective assembly. Indian standard Institution system – British standard system, International standard system for plain and screwed work.

Limit Gauges: Taylor's principle – Design of limit gauges, computer aided tolerancing.

UNIT-II

Linear Measurement:Length standard, line and end standards, slip gauges – calibration of the slip gauges, dial indicator, micro-meter. Measurement of angles and tapers: Different methods – bevel protractor – angle slip gauges – spirit levels– sine bar – sine plate, rollers and spheres.

Flat Surface Measurement:Measurement of flat surfaces – instruments used – straight edges– surface plates – optical flat and auto collimator.

Optical Measuring Instruments:Tool maker's microscope and its uses, collimators, optical projector, optical flats and their uses, interferometer.

UNIT-III

Surface Roughness Measurement:Introduction, terminology, specifying roughness on drawings, surface roughness parameters, factors affecting surface roughness, ideal surface roughness, roughness measurement methods, precautions in measurement, surface microscopy, surface finish softwares.

Screw Thread Measurement: Elements of measurement – errors in screw threads – measurement of effective diameter, angle of thread and thread pitch, profile thread gauges.

Measurement through Comparators: Comparator: Features of comparators, classification of comparators, different comparators, advanced comparators, thread comparators.

UNIT-IV

Metrology of machine tools: Alignment and practical tests.

Gear Measurement:Gear measuring instruments, gear tooth profile measurement, measurement of diameter, pitch, pressure angle and tooth thickness.

Advanced Metrology: Advanced measuring machines, CNC systems, Laser vision, In-process gauging, 3D metrology, metrology softwares, Nano technology instrumentation, stage position metrology, testing and certification services, optical system design, lens design, coating design, precision lens assembly techniques, complex opto mechanical assemblies, contact bonding and other joining technologies.

RECOMMENDED BOOKS:

- 1. K.J. Hume, Engineering Metrology, Macdonald and Co. (publisher) London.
- 2. Czichos, The Springer handbook of metrology and Testing, 2011.
- 3. Jay. L. Bucher, The Metrology Hand book, American Society for Quality, 2004.
- 4. Smith GT, Industrial Metrology, Spinger.
- 5. John W. Greve, Frank W. Wilson, Hand book of industrial metrology, PHI New Delhi.
- 6. D.M. Anthony, Engineering Metrology, Pergamon Press.
- 7. Khare MK, Dimensional Metrology, OXFORD-IBH Publishers.
- 8. I C Gupta, "Engineering Metrology", 5th Edition, Danapath Rai & Co, 2008.
- 9. R.K. Jain, "Engineering Metrology". 20th Edition, Khanna Publishers, 2007.
- 10. M. Mahajan, "Engineering Metrology", Dhanapati Rai publications, 2007.
- 11. BIS standards on Limits & Fits (IS 919), Surface Finish (IS 2073), Machine Tool Alignment, 1993.

Note: The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).
Programme Elective-IV

	1	(-/							
MTIP-112 A			SEQUEN	ICING AND SCH	EDULING							
			-	-								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3 hrs										
Objective	The main of	e main objective of the course is to impart the students with the knowledge of										
	different pr	ferent production and machine models of sequencing and scheduling.										
		Course Outcomes										
CO1	To underst	and the conc	ept of sequ	encing and sche	eduling.							
CO2	To study a	and practice	for the e	xtension of ba	sic models and	parallel m	nachine					
	models.					-						
CO3	To underst	and the con	cepts of th	e flow shop sch	neduling and pra	ctice for th	ne flow					
	shop sched	uling models	S.		- .							
CO4	To underst	and the job s	hop proble	ems and simulat	ion models for dy	namic job	shop					
	problem.	,			<u>,</u>	,	•					

UNIT-I

Single-Machine Sequencing: Introduction, Preliminaries, Problems without Due Dates, Problems with Due Dates

Optimization Methods for the Single-Machine Problem: Introduction, Adjacent Pairwise Interchange Methods, A Dynamic Programming Approach, Dominance Properties, A Branch and Bound Approach.

Earliness and Tardiness Costs: Introduction, Minimizing Deviations from a Common Due Date, The Restricted Version, Asymmetric Earliness and Tardiness Costs, Quadratic Costs, Job-Dependent Costs, Distinct Due Dates, Sequencing for Stochastic Scheduling.

UNIT-II

Extensions of the Basic Model: Introduction, Non-simultaneous Arrivals, Related Jobs, Sequence-Dependent Setup Times, Stochastic Models with Sequence-Dependent Setup Times. **Parallel machine models**: Introduction, Minimizing the Makespan, Minimizing Total Flow time, Stochastic Models.

UNIT-III

Flow Shop Scheduling: Introduction, Permutation Schedules, The Two-Machine Problem, Special Cases of The Three-Machine Problem, Minimizing the Makespan, Variations of the *m*-Machine Model, Stochastic flow shop scheduling.

UNIT-IV

The Job Shop Problem: Introduction, Types of Schedules, Schedule Generation, the Shifting Bottleneck Procedure, Neighborhood Search Heuristics.

Simulation Models for the Dynamic Job Shop: Introduction, Model Elements, Types of Dispatching Rules, Reducing Mean Flowtime, and Meeting Due Dates.

RECOMMENDED BOOKS:

1. Michael Pinedoo, Scheduling: theory, algorithms and systems, Prentice Hall, New Delhi, 1995.

2. King, J.R. Production planning and control, Pergamon International Library, 1975.

3. Kenneth R. Baker, Introduction to sequencing and scheduling, John Wiley and Sons, 1974.

4. Kenneth R. Baker and Dan Trietsch, Principles of sequencing and scheduling, John Wiley and Sons, 2009.

Note: The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MTIP-114A		QUALITY ENGINEERING AND MANAGEMENT										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3 hrs										
Objective	The main o	he main objective of the course is to impart the students with the knowledge of quality										
	tools and e	tools and engineering for the improvement of product quality.										
			Course C	outcomes								
CO1	To underst	and the stati	stical concep	ots of quality and	d quality statisti	CS.						
CO2	To study t problem so	he quality o Iving.	control char	tsin productior	process and p	practice for	its use in					
CO3	To underst	o understand the quality improvement tools.										
CO4	To study th	e ISO system	ns, failure an	alysis and testin	ıg.							

Unit-I

Introduction to Quality: An Historical Overview:Defining Quality, The Total Quality System, Total Quality Management, Economics of Quality, Quality, Productivity, and Competitive Position, Quality Costs, Success Stories.

Statistics for Quality: Variability in Populations, Some Definitions, Quality vs. Variability, Section I: Empirical Methods for Describing Populations, Section II: Mathematical Models for Describing Populations, Section III: Inference of Population Quality from a Sample.

Unit-II

Quality in Design: Planning for Quality, Product Planning, Product Design, Process Design.

Quality in Production-Process Control I: Process Control, the Control Charts, Measurement Control Charts, Attribute Control Charts, Summary on Control Charts, Process Capability, Measurement System Analysis,

QualityinProduction-ProcessControlII:DerivationofLimits,Operating Characteristics of Control Charts, Measurement Control Charts for Special Situations.

Unit-III

Quality in Procurement: Importance of Quality in Supplies, Establishing a Good Supplier Relationship, Choosing and Certifying Suppliers, Specifying the Supplies Completely, Auditing the Supplier, Supply Chain Optimization Using Statistical Sampling for Acceptance,

Continuous Improvement of Quality: The Need for Continuous Improvement, The Problem-Solving Methodology, Quality Improvement Tools, Lean Manufacturing.

Unit-IV

A System for Quality: The Systems Approach, Dr. Deming's System, Dr. Juran's System, Dr. Feigenbaum's System, Baldrige Award Criteria, ISO 9000 Quality Management Systems, ISO 9001:2008 Requirements, The Six Sigma System.

- 1. Grant & Leaveworth, Statistical Quality Control, McGraw Hill
- 2. Duncan, Quality Control & Industrial Statistics, Irwin Press
- 3. Juran, Quality Control Handbook, McGraw Hill.
- 4. Hansen, Quality Control, Prentice Hall
- 5. Thomason, An Introduction to reliability & control, Machinery Publishing.
- 6. A.V. Taylor, Total Quality Control, McGraw-Hill

7. K.S.Krishnamoorthi, V. Ram Krishnamoorthi, A First Course in Quality Engineering: Integrating Statistical and Management Methods of Quality, Second Edition, CRC Press.

Note:The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units). All questions will have equal *weight of 12 marks*.

The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

	T											
MTIP-116 A		RELIABILITY ENGINEERING										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3 hrs										
Objective	The main	he main objective of the course is to impart the students with the knowledge of										
	reliability	reliability analysis in industrial system. Students can get acquainted with different										
	reliability c	alculation m	odels.									
			Course C	outcomes								
CO1	To underst	and the conc	epts of relial	oility in industri	al systems.							
CO2	To study	the reliabi	lity determ	nination metho	ods and adva	nced evalu	ation					
	techniques											
CO3	To underst	and variousr	eliability pre	ediction and evo	olution methods	•						
CO4	To acquain	t the fundam	entals of rel	iability manager	ment and risk as	ssessment.						

UNIT-I

Reliability Engineering:Reliability function,failure rate, Mean time between failures (MTBF), Mean time to failure (MTTF), mortality curve, useful life availability, maintainability, system effectiveness. Introduction to probability distributions.

Time to failure distributions: Exponential, normal, Gamma, Weibull; ranking of data, probability plotting techniques, Hazard plotting Concept of Bathtub Hazard Rate curve, Reliability evaluation of two-state device networks-series, parallel, k-out-of-m systems; Standby redundant systems, Reliability evaluation of three-state device networks-series and parallel.

UNIT-II

Reliability Determination and Prediction: Reliability Determination Methods: Network reduction technique, Path tracing technique, Decomposition technique, Delta-Star method.

Advanced Reliability Evaluation Concepts: Supplementary variables technique, Interference theory, Human reliability, Common cause failures, Fault trees, Failure mode and effect analysis

UNIT-III

Reliability Prediction Models: Series and parallel systems - RBD approach - Standby systems - m/n configuration - Application of Baye's theorem - cut and tie set method - Markov analysis - FTA - Limitations.

UNIT-IV

Reliability testing: Time acceleration factor, influence of acceleration factor in test planning, application to acceleration test, high temperature operating life acceleration model, temperature humidity bias acceleration model, temperature cycle acceleration model, vibration accelerator model, failure free accelerated test planning. Accelerated reliability growth.

Risk Assessment: Definition and measurement of risk - risk analysis techniques - risk reduction resources - industrial safety and risk assessment.

RECOMMENDED BOOKS:

1. Charles E. Ebeling, "An introduction to Reliability and Maintainability engineering", TMH, 2000.

2. Roy Billington and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Springer, 2007.

- 3. Sharma S C, Inspection Quality Control and Reliability, Khanna Publishers.
- 4. Connor P.D.T.O. Practical Reliability Engineering", John Wiley.
- 5. Naikan V N A Reliability Engineering and Life Testing", PHI Learning Private Limited.
- 6. Prabhakar Murthy D N and Marvin R, "Product Reliability", Springer-Verlag.

7. Dana Crowe and Alec Feinberg, Design for Reliability, CRC Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units). All questions will have equal *weight of 12 marks*.

The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MTIP-118 A		MECHATRONICS LAB											
Lecture	Tutori	Tutori Practical Credit Majo Mino Practic Total Tim											
	al	al r r al e											
0	0	0 4 2 - 40 60 100 3											
Objective	To practi practical	To practice on electrical circuits, hydraulic and pneumatic systems and PLC's for their practical implications.											
			Cours	se Outcom	es								
CO1	To unders	tand the PLC	Cusing PLC	simulator	S.								
CO2	To demons	To demonstrate and actuate the positioning using sensors, actuators and programming.											
CO3	To study tl	he pneumati	c and elect	ro-pneum	atic trainin	g system with	simulation	software.					
CO4	To design	and test on h	nydraulic a	nd pneuma	atic circuits	δ.							

List of Experiments

- 1. To study and conduct exercises on PLC Simulator.
- 2. Control of conveyor manually and through programming, also programming using sensors and conveyor.
- 3. To study and conduct exercise on CNC lathe.
- 4. To study and conduct exercises on Robotic simulation software.
- 5. To study and conduct exercises on Pneumatic & Electro-Pneumatic Training System.
- 6. To study the stepper motor interface with PLC.
- 7. Design and testing of hydraulic circuits such as
 - i) Pressure control
 - ii) Flow control
 - iii) Direction control

iv)Design of circuit with programmed logic sequence, using an optional PLC in hydraulic. Electro hydraulic Trainer.

- 8. Design and testing of pneumatic circuits such as
 - i. Pressure control
 - ii. Flow control
 - iii. Direction control
 - iv. Circuits with logic controls
 - v. Circuits with timers
 - vi. Circuits with multiple cylinder sequences in Pneumatic Electro pneumatic Trainer.
- 9. To perform exercises on process control trainer.

Note: At least eight experiments should be performed from the above list.

MTMT-104		ADVANCED WELDING TECHNOLOGY LAB										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Practical	Total	Time				
0	0	4	2	-	40	60	100	3 hrs				
Objective	To practice	To practice on electrical circuits, hydraulic and pneumatic systems and PLC's for their										
	practical in	nplications.										
			Cou	urse Outco	mes							
CO1	To understa	nd the PLC	using PLC	simulators								
CO2	To demonst	Fo demonstrate and actuate the positioning using sensors, actuators and programming.										
CO3	To study the	o study the pneumatic and electro-pneumatic training system with simulation software.										
CO4	To design ar	nd test on h	ydraulic ar	nd pneumat	tic circuits.							

List of Experiments

- To understand the basic concepts of welding by carrying out simple exercises relevant to its principles
- Detailed study on different types of Welding Processes practised in industry.
- To study Advanced Welding Techniques and welding of Non-Ferrous Metals & Cast Iron
- To join the given two work piece as per the required type of joint by gas welding
- To join two given metal plates by a single 'V' butt joint in arc welding
- To join two given metal plates by a tee fillet joint in arc welding
- To know weld defects & their causes and weld distortions & their remedies
- To make butt welding using TIG welding equipment
- To study and observe the welding process through demonstration and practice. (Electric Arc Welding)
- To study Metal Inert Gas (MIG) Shielded Arc Welding
- Experimental Study of Welding Parameters On Tig Welding Of Aluminium Alloy

Note: At least eight experiments should be performed from the above list.

		(111)				/					
MTMT-106		MINI PROJECT									
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Practical	Total	Time (Hrs.)			
0	0	4	2	-	-	100	100	3			
Objective		In case o software/ar	of mini p nalytical/co	oroject, t omputatio	hey will nal tools c	solve a or fabricate a	live pro in experii	oblem using mental setup.			
			C	ourse Out	tcomes						
CO 1		Students wi	II learn to v	write tech	nical repo	rts.					
CO 2		Students with technically of the second seco	ill develop qualified au	skills to udience.	present a	nd defend t	their wor	k in front of			

Students can take up small problems in the field of Industrial and Production engineering as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

Students will be required to submit a brief synopsis of 3-4 pages related to the topic by the first week of September.

Audit Course-II

MTAD- 10	2A CONSTITUTION OF INDIA										
Lecture		Tutorial	Practical	Credits	Major	Minor	Total	Time			
					Test	Test		(Hrs.)			
2		0 0 100					100	3			
Objective	The	main object	tive of the c	ourse is to	o impart th	e students	with the k	nowledge of			
	info	rming the tv	vin themes of	liberty and	d freedom fr	rom a civil r	ights persp	ective and to			
	addr	ress the g	rowth of In	dian opin	ion regard	ing moder	n Indian	intellectuals'			
	cons	stitutional i	ole and ent	itlement t	o civil and	economic	rights as	well as the			
	eme	rgence of na	ationhood in t	the early ye	ears of India	n nationalis	sm.				
			Co	ourse Outo	omes						
CO1	То с	discuss the	growth of the	e demand f	for civil righ	nts in India	for the bu	lk of Indians			
	befo	re the arriv	al of Gandhi i	n Indian po	olitics.						
CO2	To c	discuss the	intellectual o	rigins of t	he framewo	ork of argui	ment that i	nformed the			
	cond	ceptualizatio	on of social re	forms lead	ing to revol	ution in Ind	lia.				
CO3	To c	discuss the	circumstance	es surroun	ding the fo	undation of	f the Congr	ess Socialist			
	Part	y [CSP] und	ler the leader	ship of Jav	vaharlal Ne	hru and the	e eventual f	ailure of the			
	prop	oosal of dire	ct elections tl	hrough adu	ilt suffrage i	n the Indiar	n Constitutio	on.			
CO4	To d	liscuss the p	assage of the	Hindu Cod	e Bill of 195	6.					

Unit-I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit-II

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit-III

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Pachayati raj: Introduction, PRI: Zila Pachayat, Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit-IV

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- The Constitution of India, 1950 (Bare Act), Government Publication.
- Dr. S. N. Busi, Dr. B. R. Ambedkar, "framing of Indian Constitution", 1st Edition, 2015.
- M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
- D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

MTAD-104A		`	PEDA	GOGY STUD	DIES						
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
2	0	0 0 100 100 3									
Objective	The main obje	ctive of the c	course is to	review exist	ting evidend	ce on the	review topic to				
	inform progra	mme design	and policy	making und	ertaken by	the DfID,	other agencies				
	and researche	rs and Identi	ify critical e	vidence gap	s to guide tl	he develo	pment.				
		C	Course Out	comes							
CO1	Understand th	e pedagogic	al practices	being used	by teachers	s in form	al and informal				
	classrooms in	developing	countries.								
CO2	Become aware	e of the evide	ence on the	effectivenes	ss of these p	pedagogi	cal practices, in				
	different cond	itions and w	ith different	population	of learners						
CO3	Understand th	ne significan	ce of teach	er educatio	n (curriculı	um and p	oracticum) and				
	the school cur	riculum and	guidance m	aterials for	effective pe	dagogy.					

Unit-I

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education, Conceptual framework, Research questions. Overview of methodology and Searching.

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries, Curriculum, Teacher education.

Unit-II

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

Unit-III

Professional development: alignment with classroom practices and follow-up support, Peer support

Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

Unit-IV

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

- Ackers J, Hardman F, "Classroom interaction in Kenyan primary schools", Compare, 31 (2): 245-261.
- Agrawal M, "Curricular reform in schools: The importance of evaluation", Journal of Curriculum Studies, 36 (3): 361- 379.
- Akyeampong K, "Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

- Akyeampong K, Lussier K, Pryor J, Westbrook J, "Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count?" International Journal Educational Development, 33 (3): 272–282.
- Alexander RJ, "Culture and pedagogy: International comparisons in primary education". Oxford and Boston: Blackwell.
- Chavan M, "Read India: A mass scale, rapid, 'learning to read' campaign"

MTAD-106 A	STRESS M	STRESS MANAGEMENT BY YOGA									
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Ti									
				Test	Test		(Hrs.)				
2	0	0	-	-	100	100	3				
Objective	The main	objective of t	he course	is to achiev	e overall h	ealth of b	ody and				
	mind and t	o overcome s	stress								
		Cour	se Outcom	nes							
CO1	Develop h	nealthy mind	in a healthy	y body thus	improving	social hea	alth.				
CO2	Improve	Improve efficiency									
CO3	Learn the	Yogasan									
CO4	Learn the	Pranayam									

Unit-I

Definitions of Eight parts of yog. (Ashtanga)

Unit-II

Yam and Niyam. Do's and Don't's in life.

i) Ahinsa, satya, astheya, bramhacharya and aparigraha ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

Unit-III

Asan and Pranayam

i) Various yog poses and their benefits for mind & body ii) Regularization of breathing techniques and its effects-Types of pranayam

- Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Tarining-Part-I" : Nagpur
- Swami Vivekananda, "Rajayoga or conquering the Internal Nature" Advaita Ashrama (Publication Department), Kolkata

MTAD-108 A		PERSONALITY DEVELOPMENT THROUGH LIFE										
		ENLIGHTENMENT SKILLS										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time					
				Test	Test		(Hrs.)					
2	0	0	-	-	100	100	3					
Objective	To learn h	now to achie	ve the highe	est goal hap	pily.							
-	To becom	To become a person with stable mind, pleasing personality and										
	termination	l.										
	To awake	n wisdom ir	i students.									
		Cou	rse Outcom	nes								
CO1	Students	Students become aware about leadership.										
CO2	Students will learn how to improve communication skills											
CO3	Understa	Understand the team building and conflict										
CO4	Student v	vill learn hov	v to manage	the time.								

Neetisatakam-Holistic development of personality

- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)
- Verses- 52,53,59 (dont's)
- Verses- 71,73,75,78 (do's)

Approach to day to day work and duties.

Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47, 48,

Chapter 3-Verses 13, 21, 27, 35,

Chapter 6-Verses 5, 13, 17, 23, 35,

Chapter 18-Verses 45, 46, 48.

Statements of basic knowledge.

Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68

Chapter 12 - Verses 13, 14, 15, 16, 17, 18

Personality of Role model. Shrimad Bhagwad Geeta:

Chapter 2-Verses 17,

Chapter 3-Verses 36, 37, 42,

Chapter 4-Verses 18, 38, 39

Chapter 18 – Verses 37, 38, 63

- Swami Swarupananda, "Srimad Bhagavad Gita" Advaita Ashram (Publication Department), Kolkata
- P.Gopinath, "Bhartrihari's Three Satakam (Niti-sringar-vairagya) by, Rashtriya Sanskrit Sansthanam, New Delhi.

Third Semester (Programme Elective-V)

MTIP-201 A		ENTERPRISE RESOURCE PLANNING											
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time											
3	0	0 0 3 60 40 100 3											
Objective	The main ob integrated a functions re	The main objective of the course is to impart the students with the knowledge of integrated applications to manage the business and automate many back office functions related to technology, services and human resources.											
		(Course Out	comes									
CO1	To study the	basic princi	ples and mo	odels of an ent	erprise.								
CO2	To understa	To understand the concepts of technology and architecture in ERP.											
CO3	To study ER	P system pad	ckages.										
CO4	To study the	ERP procur	ement issue	es.									

UNIT I

ENTERPRISE RESOURCE PLANNING:

Introduction, Evolution of ERP, Principle of ERP, Enabling Technologies, ERP Characteristics, Features of ERP, The advantages of ERP, Reasons for the Failure of ERP Implementation, Risk and governance issues in an ERP, ERP Framework, Business Blueprint, Business Engineering Vs. Business Process Re-Engineering, ERP Tools and Software, Demand Chain, Value Chain, and Supply Chain.

UNIT-II

ERP ARCHITECTURE: Need to Study ERP Architecture, Layered Architecture, Types of ERP Architecture: Two-tier Implementations, Three-tier Client/Server Implementations, Web-based architecture, Service-Oriented Architectures, Logical Architecture of an ERP System, Physical Architecture of an ERP System, Evaluation Framework for ERP Acquisition.

UNIT III

ERP PACKAGE INTEGRATION AND IMPLEMENTATION: ERP market, SAP, Peoplesoft, BAAN company, ORACLE corporation, A comparative assessment and selection of ERP packages and modules, Sales Force Automation, Integration of ERP, Integration of ERP and the Internet, ERP implementation strategies, Comparison of Big Bang vs. Phased Approach, Implementation Strategy in Small and Medium Enterprise, Post Implementation Issues.

UNIT IV

OVERVIEW OF ARCHITECTURE OF DIFFERENT ERP SOFTWARES:

Oracle overview, Architecture, A.I.M. and applications, SAP Software architecture overview, ERP before and after Y2K, Impact of Y2K on ERP Development, Risk and Governance Issues in an ERP **ERP MODULES:** *Finance module, Sales & Distribution module, Human Resources module, Plant Maintenance module, Quality Management module, Material management module, manufacturing management module.*

- 1. Sadagopan. S, ERP-A Managerial Perspective, Tata Mcgraw Hill, 1999.
- 2. Jose Antonio Fernandez, the SAP R/3 Handbook, Tata Mcgraw Hill, 1998.
- 3. Vinod Kumar Crag and N.K. Venkitakrishnan, Enterprise Resource Planning- Concepts and Practice, Prentice Hall of India, 1998.
- 4. Garg & Venkitakrishnan, ERPWARE, ERP Implementation Framework, Prentice Hall, 1999.
- 5. Thomas E Vollmann and Bery Whybark, Manufacturing and Control Systems, Galgothia Publications, 1998.

6. Alexis Leon, Enterprise resource planning, Tata Mcgraw-Hill

Note:Thepaperwillhaveatotalof*NINEquestions*.QuestionNo.1,whichiscompulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all FourUnits).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

		(/							
MTIP-203		DESIGN OF EXPERIMENTS										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3 hrs										
Objective	To unders problems.	To understand the various design of experiments techniques for optimization of problems.										
			Course	Outcomes								
CO1	To understa	and the conc	epts of Des	ign of Experime	ent and statistica	al Methods.						
CO2	To understa	and the ANO	VA and fac	torial design and	d fitting respons	e curves ar	nd					
CO3	To study th	e application	n of Taguch	i Method and te	esting of hypothe	esis						
CO4	To study an	id implemen	t the Respo	onse Surface Me	thodology.							

UNIT-I

Introduction to DesignedExperiments:

Introduction:Strategyofexperimentation,sometypicalapplicationsofexperimentaldesign, Basic principles, Guidelines for designing experiments, using statistical design in experimentation, A Checklist for Planning experiments,*Introduction to Minitab, Interface of Minitab, Customizing Minitab, Entering Data, Graphing Data, Printing Data and Graphs, Saving and Retrieving information.*

Basic Statistical Methods: Introduction, Basic statistical concepts, Types of Data, Graphical Presentation of Data.

Descriptive Statistics: Measure of Location, Measure of Variation, The Normal Distribution, Counting, Minitab Commands to Calculate Descriptive Statistics.

Inferential Statistics: The Distribution of Sample Means (R Known), Confidence Interval for the Population Mean (σ Known), Hypothesis testing for one sample mean (σ Known), Hypothesis test for two sample means, Testing for Normality, *Hypothesis test and Confidence Intervals with Minitab.*

UNIT-II

Analysis of Variance:Introduction to Analysis of Variance, ANOVA assumptions and Validation, ANOVA Table, The sum of square approach to ANOVA calculations, Analysis of the fixed Effect model, Decomposition of the Total sum of squares. Statistical analysis, Estimation of the Model Parameters, Unbalanced Data, Model Accuracy Check, Practical interpretation of results. *ANOVA with Minitab*

Factorial Experiments:Basic definition and principles, Advantages of factorials, two level factorial design, The 2¹ Factorial Experiment, The 2² Factorial Experiment, The 2³ Factorial Design, Addition of Centre Cells to 2^k Designs. General Procedure for Analysis of 2^k designs. 2^k Factorial Designs in Minitab.

UNIT-III

Introduction to Taguchi Method: Introduction, Taguchi Quality loss function, Orthogonal Array, Properties of Orthogonal Array, Minimum number of experiments to be conducted, Static Problems, Dynamic Problems, Assumptions of the Taguchi method, Steps in Taguchi Method, Assessment of Factors and Interactions, Selection and Application of Orthogonal arrays, Data Analysis from Taguchi Experiments, Variable Data with main factors only, Variable Data with Interactions, Attribute Data Analysis, Confirmation Experiment, Confidence Intervals, Robust Design Approach. *Applications of Taguchi Method using Minitab.*

UNIT-IV

Introduction to Response Surface Methodology:Introduction, Terms in Quadratic Models, The method of steepest ascent, Analysis of Second order response surfaces, Experimental design for fitting response surfaces, 2k Designs with Centers, 3^k Factorial Designs, Box-Behnken Designs, Central Composite Designs, Analysis of Data from RSM Designs, Design Considerations for Response Surface Experiments. *Response Surface Designs in Minitab.*

RECOMMENDED BOOKS:

- 1. Douglas C Montgomery, Design and Analysis of Experiments, John Wiley
- 2. Paul G. Mathews, Design of Experiments with MINITAB, New Age International Publishers.
- 3. K. Krishnaiah, P. Shahabudeen, Applied Design of Experiments and Taguchi Methods, PHI.
- 4. Angela Dean and Daniel Voss, Design and Analysis of Experiments, Springer.
- 5. John P.W.M., Statistical Design and Analysis of Experiments, John Wiley
- 6. Montgomery D.C., Runger G. C., Introduction to Linear Regression Analysis, John Wiley
- 7. Myres R.H. and Montgomery D.C., Response Surface Methodology Process and Product Optimization Using Designed Experiments, Wiley
- 8. G UNIPUB, White Plains, Introduction to Quality Engineering Taguchi, New York.
- 9. https://www.ee.iitb.ac.in/~apte/CV_PRA_TAGUCHI_INTRO.htm
- 10. www.ecs.umass.edu/mie/labs/mda/fea/sankar/chap2.html

Note:Thepaperwillhaveatotalof*NINEquestions*.QuestionNo.1,whichiscompulsory, shall be Objective Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from eachunit.*

MTIP-205 A	STRATEGIC ENTREPRENEURSHIP										
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Tim									
3	0	0	3	60	40	100	3 hrs				
Objective	To provide knowledge to the students about entrepreneurship concepts and various										
	development programmes and policies.										
Course Outcomes											
CO1	To know a	bout the sm	all scale in	dustries, scope	s and the causes	s of their sid	kness.				
CO2	To know about the EDP and different government policies.										
CO3	To learn a	To learn about business incubations and its future perspectives.									
CO4	To learn E-business marketing and developments.										

UNIT-I

Small Scale Industries: Definition and types of SSI's; Role, scope and performance in national economy; Problems of small scale industries.

Industrial Sickness: Definition; Causes of sickness; Indian scenario, Government help; Management strategies; Need for trained entrepreneurs

UNIT-II

Entrepreneurship Development Programmes: Introduction, Origin of EDP's, Organizations involved in EDP's, Objectives of EDPs, Implementation of EDP's, Short comings of EDP's, Role in entrepreneurship development.

Step: Introduction, Origin, Status in India, Success and failure factors, Govt. polices and incentives, future prospects in India.

UNIT-III

Business Incubation: Introduction, Origin and development of business incubators in India and other countries, types of incubators, success parameters for a business incubator, Benefits to industries, institutes, government and society; future prospects. A few case studies (at least 2).

Project Management: Concept, Characteristics and Significance of Project Management. Components of Project Management. Project Life Cycle. Project Identification and Selection. Project Formulation and Appraisal.

UNIT-IV

Special Aspects of Entrepreneurship: Entrepreneurship, Social entrepreneurship, International entrepreneurship, Rural entrepreneurship, Community Development, Women entrepreneurship. **Network Marketing:** Introduction, E-business, E-commerce, E-auction, A basic internet e-business architecture, A multi-tier e-business architecture.

RECOMMENDED BOOKS:

- 1. P.K. Gupta, Strategic Entrepreneurship, Everest Publishing House.
- 2. David Cleland, Project Management Strategic Design and Implementation, McGraw Hill.
- 3. David H Holl, Entrepreneurship-New Venture Creation, Prentice Hall of India.
- 4. Steed & Steed, Sustainable Strategic Management, Prentice Hall of India.
- 5. Kotler, Marketing Management by Prentice Hall of India.
- 6. Tarek Khalil, Management of Technology, McGraw Hill.
- 7. Henry Steiner, Engineering Economic Principles, McGraw Hill.

Note: The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

Open Elective

IVITUE-201A	BUSINESS ANALTTICS									
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)			
				Test	Test					
3	0	0	3	60	40	100	3			
Objective	The main o	objective of th	nis course is	s to give the	e student a d	comprehe	ensive			
-	understanding of business analytics methods.									
Course Outcomes										
CO1	Able to have	ve knowledge	e of various	business ar	nalysis tech	niques.				
CO2	Learn the requirement specification and transforming the requirement into									
	different models.									
CO3	Learn the	requirement	representa	tion and ma	naging req	uirement	assets.			
CO4	Learn the	Recent Trend	s in Embed	ded and co	llaborative	business				

Unit-I

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst.

Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts.

Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

Unit-II

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents.

Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

Unit-III

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

Unit-IV

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

RECOMMENDED BOOKS:

- 1. James Cadle, "Business Analysis", BCS, The Chartered Institute for IT.
- 2. Erik Larson and, Clifford Gray, "Project Management: The Managerial Process", McGraw-Hill Education.

Note: The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MTOE-203 A	INDUSTRIAL SAFETY									
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)			
				Test	Test					
3	0	0	3	60	40	100	3			
Objective	The main objective of this course is toaware students about the industrial safety									
	maintenance and fault findings.									
Course Outcomes										
CO1	Understar	d the industr	ial safety.							
CO2	Analyze fu	indamentals c	of maintena	ance engine	eering.					
CO3	Understand the wear and corrosion and fault tracing.									
CO4	Understar	iding when	to do pei	riodic ince	eptions and	apply	the preventing			
	Inannena	ILE.								

Unit-I

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-II

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit-III

Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-IV

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

- 1. Higgins & Morrow, "Maintenance Engineering Handbook", Da Information Services.
- 2. H. P. Garg, "Maintenance Engineering", S. Chand and Company.
- 3. Audels, "Pump-hydraulic Compressors", Mcgraw Hill Publication.
- 4. Winterkorn, Hans, "Foundation Engineering Handbook", Chapman & Hall London.

Note: The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MTOE-205 A	OPERATIONS RESEARCH								
Lecture	Tutorial Practical		Credits	Major	Minor	Total	Time (Hrs.)		
				Test	Test				
3	0	0	3	60	40	100	3		
Objective	The main objective of this course is to aware students about the dynamic								
	programming to solve problems of discrete and continuous variables and model								
	the real world problem and simulate it.								
Course Outcomes									
CO1	Students s	hould be able	e to apply t	he dynamic	programm	ing to sol	lve problems of		
	discreet and continuous variables.								
CO2	Students s	hould be able	to apply t	ne concept o	of non-linea	r prograr	nming		
CO3	Students s	hould be able	to carry o	ut sensitivit	y analysis				
CO4	Student sh	ould be able t	to model th	ne real world	d problem a	nd simul	ate it.		

Unit-I

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit-II

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit-III

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit-IV

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

RECOMMENDED BOOKS:

- 1. H.A. Taha, "Operations Research, An Introduction", PHI, 2008
- 2. H.M. Wagner, "Principles of Operations Research", PHI, Delhi, 1982.
- 3. J.C. Pant, "Introduction to Optimisation: Operations Research", Jain Brothers, Delhi, 2008
- 4. Hitler Libermann, "Operations Research", McGraw Hill Pub. 2009
- 5. Pannerselvam, "Operations Research", Prentice Hall of India 2010
- 6. Harvey M Wagner, "Principles of Operations Research", Prentice Hall of India 2010

Note:The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MTOE-207 A		COST MANAGEMENT OF ENGINEERING PROJECTS									
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
3	0	0	3	60	40	100	3				
Objective	The main	objective of	this course	is to impar	t the studer	ntswith t	he knowledge				
-	of cost ma	anagement fo	or the engir	eering pro	ject and ap	ply cost	models to the				
	real world	projects.	5	51.							
Course Outcomes											
CO1	Students s	hould be abl	e to learn th	e strategic	cost manag	ement pr	OCESS.				
CO2	Students should be able to types of project and project team types										
CO3	Students s	hould be abl	e to carry o	ut Cost Beh	avior and Pr	rofit Plan	ning analysis.				
CO4	Student s	should be a	able to lea	arn the q	uantitative	techniq	ues for cost				
	manageme	ent.		•		•					

Unit-I

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decisionmaking; relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Unit-II

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Unit-III

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit-IV

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Charles Thomas Horngren, "Cost Accounting a Managerial Emphasis", Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, "Advanced Management Accounting"
- 3. Robert S Kaplan Anthony A. Alkinson, "Management & Cost Accounting"
- 4. Ashish K. Bhattacharya, "Principles & Practices of Cost Accounting", A. H. Wheeler publisher
- 5. N.D. Vohra, "Quantitative Techniques in Management", Tata McGraw Hill Book Co. Ltd.

Note:The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MTOE-209 A		COMPOSITE MATERIALS									
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Tin									
				Test	Test						
3	0	0	3	60	40	100	3				
Objective	The main	objective of t	this course	is to impart	the studen	tswith th	e knowledge of				
-	composite	s, its materia	als, analysis,	fabrication	, and perfor	mance a	nalysis.				
Course Outcomes											
CO1	Students	should be	able to lea	arn the cla	ssification	and cha	aracteristics of				
	composite	materials.									
CO2	Students s	should be at	ole to unde	rstand abo	ut different	fabricat	ion techniques				
	related to	metal matrix	composite	S.			·				
CO3	Students s	should be at	ole to unde	rstand abo	ut different	fabricat	ion techniques				
	related to polymer matrix composites.										
CO4	Student s	hould be ab	le to do th	e analyses	of the com	nposite n	naterials under				
	different le	oading condi	tions.	5							

UNIT-I

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures, Iso-strain and Iso-stress conditions.

UNIT – II

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. **Manufacturing of Ceramic Matrix Composites**: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

UNIT-III

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT – IV

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

- 1. R.W.Cahn, "Material Science and Technology" VCH, West Germany.
- 2. WD Callister, Jr, "Materials Science and Engineering, An introduction"
- 3. Balasubramaniam, "John Wiley & Sons", NY, Indian edition, 2007.
- 4. Lubin, "Hand Book of Composite Materials"
- 5. K.K.Chawla, "Composite Materials"
- 6. Deborah D.L. Chung, "Composite Materials Science and Applications"

7. Danial Gay, Suong V. Hoa, and Stephen W. Tasi, "Composite Materials Design and Applications"

Note:The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MTOE-211 A	WASTE TO ENERGY										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
3	0	0	3	60	40	100	3				
Objective	The main objective of this course is to impart the students with the knowledge of										
-	generation of energy from the waste.										
		C	ourse Outo	omes							
CO1	Students s	hould be able	e to learn tl	ne classifica	ition of was	te as a fu	el and biomass				
	pyrolysis.										
CO2	Students :	should be ab	ole to learr	n gasificati	on process	and diff	ferent types of				
	gasifiers.										
CO3	Students s	Students should be able to learn different combustors for biomass.									
CO4	Student sh	nould be able	e to learn t	he Biogas	plant techn	ology dif	ferent biomass				
	conversion	ns processes f	for differen	t applicatio	ns.						

Unit-I

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors.

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

Unit-II

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

Unit-III

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-IV

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status -Bio energy system - Design and constructional features - Biomass resources and their classification -Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

RECOMMENDED BOOKS:

1. Desai, Ashok V, "Non-Conventional Energy", Wiley Eastern Ltd., 1990.

2. Khandelwal, K. C. and Mahdi, S. S., "Biogas Technology - A Practical Hand Book - Vol. I & II", Tata

McGraw Hill Publishing Co. Ltd., 1983.

3. Challal, D. S, "Food, Feed and Fuel from Biomass", IBH Publishing Co. Pvt. Ltd., 1991.

4. C. Y. WereKo-Brobby and E. B. Hagan, "Biomass Conversion and Technology", John Wiley & Sons, 1996.

Note:The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MTMT-201	DISSERTATION PHASE - I										
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time			
				Test	Test	Marks		(Hrs.)			
0	0	20	10	-	100	-	100	-			
Objective	The main	objective of	this cours	se is to p	lan a res	earch work	(which	includes the			
	problem fo	ormulation/li	terature re	eview, pro	posed ob	jectives, proj	posed me	ethodologies			
	and references) in the field of Industrial and Production Engineering or interrelated										
	fields of applications.										
Course Outcomes											
CO 1	Students v	vill be expose	d to variou	s self-lear	ning topi	CS.					
CO 2	Students v	will be expos	sed toan e	exhaustive	e survey	of the litera	iture suc	h as books,			
	national/i	nternational	refereed j	ournals, i	resource	persons and	dindustri	alsurveysfor			
	the selection	on/ identifica	ition of eng	ineering/	research	problem.					
CO 3	Students	will be al	ole to se	et the	research	objectives	of the	e identified			
	engineerir	ng/research p	roblem.								
CO 4	Students	will learn	modern	tools/t	echniques	s related	to the	identified			
	engineerir	engineering/research problemfor the solution and able to learn technical report									
	writing sk	ills.									
CO 5	Students v	vill develop	oral and w	ritten co	mmunicat	ion skills to	present	and defend			
	their work	in front of te	chnically q	ualified a	udience.						

The students will start their researchwork in third semester with a research problem having research potential involving scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution.

The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his/her supervisor and the topic of dissertation must be mutually decided by the supervisor and student.

The students will be required to submit a progress report related to their dissertation work by the end of September. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.

The progress report must be at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The students will be required to appear for comprehensive Seminar & Viva-voce and submit a synopsis report based on their progress related to the dissertation as per the presentation date mentioned in

the academic calendar for the session. The synopsis report will be submitted in the same format as that of the thesis and will contain the following:

- 1. Introduction
- 2. Literature Survey
- 3. Gaps in Literature
- Objectives of the Proposed Work
 Methodology
- 6. References

* Student will choose his/her guide in the end of second semester.

Fourth Semester
MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (4thSem.) (MANUFACTURING TECHNOLOGY)

MTMT-202		DISSERTATION PHASE -II									
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time (Hrs.)			
				Test	Test						
0	0	32	16	-	100	200	300	-			
Objective	The mair	n objective of	the course	is to mak	e the stud	ents able to	do some	good research in			
	the field	d of their i	nterests r	elated to	Industri	al and Pro	duction	Engineering or			
	interrela	ted fields of a	pplication	S.							
	1		Coui	rse Outco	mes						
CO 1	Students	will be able t	o design s	olutions fo	or enginee	ering problen	ns that m	neet the specified			
	needs wi	th appropria	te consider	rations.							
CO 2	Students	will be able	to conduct	t investiga	ations of e	engineering p	problems	s using research-			
	basedkn	owledge a	nd expe	erimental	/research	methods	including	g design of			
	experime	ents,analysis	and inter	pretation	of data,	and synthe	sisof the	e information to			
	provide	valid conclusi	ons.								
CO 3	Students	will be able	to apply i	resources	and mod	ernengineer	ing tools	and techniques			
	with an u	understanding	g of thelim	itations.		<u> </u>					
CO 4	Students	will be able	e to either	r work in	a resear	ch environr	nent or	in an industrial			
	environr	nent.									
CO 5	Students	will be c	onversant	with te	chnical r	eport writi	ng, pro	fessional ethics,			
	responsi	bilities and n	orms of the	e engineer	ing practi	ce.					
CO 6	Students	will be able	to preser	nt and cor	nvince the	eir topic of a	study to	the engineering			
	commun	ity.									

The students are required to continue Analytical/Experimental/Computational/Industrial Problems or Case studies investigations in the field of Industrial and Production Engineering or other related fields which have been finalized in the third semester. They would be working under the supervision of a faculty member.

The students will be required to submit a progress report duly signed by their respective supervisors to the department, related to their dissertation work in the last week of March. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.
- References

The progress report must be of at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The candidate has to prepare a detailed dissertation report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up/numerical details/industrial case study etc. as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study.

The final dissertation will be submitted in the end of semester as per academic calendar for the session, which will be evaluated by internal as well as external examiners based upon his/her research work. At least one publication is expected before final submission of the dissertation from every student in peer reviewed referred journals or reputed conference from the work done by them in their dissertation. The dissertation should be presented in standard format as provided by the department.

The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a supervisor, co-supervisor etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his supervisor.

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by the State Legislature Act XII of 1956 ('A+' Grade, NAAC Accredited) MASTER OF TECHNOLOGYINMECHANICAL ENGINEERING (CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING SEMESTER-1

Sr. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTIP-101A	Advanced Metal Casting	3	0	0	3	3	60	40	-	100	3
2	MTIP-103A	Computer Aided Design and Manufacturing	3	0	0	3	3	60	40	-	100	3
3		*Programme Elective-I	3	0	0	3	3	60	40	-	100	3
4		**Programme Elective-II	3	0	0	3	3	60	40	-	100	3
5	MTRM-111A	Research Methodology and IPR	2	0	0	2	2	60	40	-	100	3
6	MTIP-117A	Advanced Metal Casting Lab	0	0	4	4	2	-	40	60	100	3
7	MTIP-119A	Computer Aided Design and Manufacturing Lab	0	0	4	4	2	-	40	60	100	3
8		***Audit Course-I	2	0	0	2	-	-	100	-	100	3
				То	otal	24	18	300	280	120	700	

	*PROGRAMME ELECTIVE-I (I&P) for 1 st Semester							
1.	MTIP-105A	Tool Engineering						
2.	MTIP-107A	Advanced Engineering Materials						
3.	MTIP-109A	Non-Conventional Machining						

	**PROGRAMME ELECTIVE- II (1&P) for 1st Semester							
1.	MTIP-111A	Product Design and Development						
2.	MTIP-113A	Simulation of Industrial Systems						
3.	MTIP-115A	Supply Chain Management						

	***AUDIT COURSE – I for 1st Semester (I&P)								
1.	MTAD-101A	English for Research Paper Writing							
2.	MTAD-103A	Disaster Management							
3.	MTAD-105A	Sanskrit for Technical Knowledge							
4.	MTAD-107A	Value Education							

Note: 1. The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

2. ***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by the State Legislature Act XII of 1956 ('A+' Grade, NAAC Accredited) MASTER OF TECHNOLOGYINMECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING SEMESTER-II

Sr. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTIP-102A	Mechatronics	3	0	0	3	3	60	40	-	100	3
2	MTIP-104A	Industrial Tribology	3	0	0	3	3	60	40	-	100	3
3		*Programme Elective-III	3	0	0	3	3	60	40	-	100	3
4		**Programme Elective-IV	3	0	0	3	3	60	40	-	100	3
5	MTIP-118A	Mechatronics Lab	0	0	4	4	2	-	40	60	100	3
6	MTIP-120A	Industrial Tribology Lab	0	0	4	4	2	-	40	60	100	3
7	MTIP-122A	Mini Project	0	0	4	4	2	-	-	100	100	3
8		***Audit Course-II	2	0	0	2	-	-	100	-	100	3
					Total	26	18	240	240	220	700	

	*PROGRAMME ELECTIVE-III (I&P) for 2 nd Semester							
1.	MTIP-106A	Advanced Welding Processes						
2.	MTIP-108A	Advanced Metal Cutting						
3.	MTIP-110A	Metrology						

	**PROGRAMME ELECTIVE - IV (I&P) for 2 nd Semester							
1.	MTIP-112A	Sequencing and Scheduling						
2.	MTIP-114A	Quality Engineering and Management						
3.	MTIP-116A	Reliability Engineering						

	***AUDIT COURSE-II for 2 nd Semester (I&P)								
1.	MTAD-102A	Constitution of India							
2.	MTAD-104A	Pedagogy Studies							
3.	MTAD-106A	Stress Management by Yoga							
4.	MTAD-108A	Personality Development through Life Enlightenment Skills							

Note: 1. ***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by the State Legislature Act XII of 1956 ('A+' Grade, NAAC Accredited) MASTER OF TECHNOLOGYINMECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

SEMESTER-III

Sr. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1		*Programme Elective-V	3	0	0	3	3	60	40	-	100	3
2		**Open Elective	3	0	0	3	3	60	40	-	100	3
3	MTIP-207A	Dissertation Phase-I	0	0	20	20	10	-	100	-	100	
				Т	otal	26	16	120	180		300	

	*PROGRAMME ELECTIVE-V (I&P) for 3 rd Semester							
1.	MTIP-201A	Enterprise Resource Planning						
2.	MTIP-203A	Design of Experiments						
3.	MTIP-205A	Strategic Entrepreneurship						

	**OPEN ELECTIVE(I&P) for 3rd Semester							
1.	MTOE-201A	Business Analytics						
2.	MTOE-203A	Industrial Safety						
3.	MTOE-205A	Operations Research						
4.	MTOE-207A	Cost Management of Engineering Projects						
5.	MTOE-209A	Composite Materials						
6.	MTOE-211A	Waste to Energy						

SEMESTER-IV

Sr. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTIP-202A	Dissertation Phase-II	0	0	32	32	16	-	100	200	300	
					Total	32	16		100	200	300	

Total credits=68

INSTRUCTIONS FOR PAPER SETTER

- 1. The question paper is to be attempted in **THREE Hours**.
- 2. Maximum Marks for the paper are **60**.
- 3. The syllabus for the course is divided into FOUR units.
- 4. The paper will have a total of NINE questions.
- 5. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have content from the entire syllabus (all Four Units).

Q. No. 2 & 3	from	Unit I
Q. No. 4 & 5	from	Unit II
Q. No. 6 & 7	from	Unit III
Q. No. 8&9	from	Unit IV

- 6. All questions will have equal weightage of 12 marks.
- 7. The candidate will attempt a total of **FIVE questions**, each of 12 marks. Q. No. 1 is compulsory. The candidate shall attempt remaining **four** questions by selecting **only one question from each unit**.
- 8. A question may have any number of sections labeled as 1(a), 1(b), 1(c), 1(d), ---- 2(a), 2(b), --.A section may further have any number of subsections labeled as (i), (ii), (iii), (iii),

9. SPECIAL INSRUCTIONS FOR Q. No. 1 ONLY

Question No. 1, which is compulsory, shall be OBJECTIVE/ short answer type **and have content** from the entire syllabus (all Four Units).

Emphasis is to be given on the basic concepts, analytical reasoning and understanding of the various topics in the subject. This question may have a number of parts and/or subparts. The short questions could be combination of following types:

- i. Multiple Choice
- ii. Yes/ No choice
- iii. Fill in Blanks type
- iv. Short numerical computations
- v. Short Definitions
- vi. Matching of Tables

The above mentioned question types is **only a Guideline**. Examiner could set the question as per the nature of the subject.

First Semester

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1stSem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-101A		ADVANCED METAL CASTING											
Lecture	Tutorial	Total	Time										
3	0	0	3	60	40	100	3 hrs						
Objective	The main objective	e of the cours	e is to imp	art the stude	ents with the	knowledge	of moulding						
	and casting.												
		Course	Outcome	5									
C01	To impart knowl specifications and	edge about va I testing of mou	arious func Iding sand	tional requir properties.	rements of i	moulding m	aterials and						
CO2	To acquaint stues solidification of M	dents with the olten metal in v	e phenome arious type:	non of soli s of mould m	dification an netal combinti	d analytics ons.	involved in						
CO3	To impart knowledge to students about Gating system design and Riser design for getting an accurately designed defect free casting.												
CO4	To let student und	lerstand some	special cas	ing processe	es and testing	g of casting.							

UNIT-I

Functional Requirement of Moulding Materials: Principal ingredients of moulding Sands; Different Types of Sands; Clays, Different types of Clay structures, Moisture; Theories of Clay sand bonding, Sand system equipment, Flow of sand in a mechanized foundry, The Requirement of core sands,.

Specification and testing of Moulding Sands

Grain Size, Grain Shape, Clay content, Moisture Content, Bulk Density and Specific Surface Area, Acid Demand Value (ADV), Fines Content, Sintering Temperature, Mould hardness, Permeability, Strength, Deformation & toughness, Compactability, Mouldability, High Temperature Characteristics.

UNIT-II

Solidifications of Metals, Nucleation, free energy concept, critical radius of nucleus, Distribution coefficient and Constitutional Undercooling, Solidification in Pure Metals and Alloys, Directional Solidification, Casting Characteristics related to Solidification; Fluidity, Dendritic Growth, Dendrite coherency, Segregation, Inverse Segregation, Hot tearing, Hipping, Solidification under pressure.

Heat Transfer during casting process: Resistance to Heat Transfer, Centerline Feeding Resistance, Rate of solidification, Solidification of Large casting in an insulating mould, Solidification with predominant interface resistance, Solidification with constant casting surface temperature, Solidification with predominant resistance in mould and solidified Metal, Solidification Time and Chvorinov rule, Numerical Exercises.

UNIT-III

Gating System Design: Gating system defined, Types of Gating Systems, Types of Gates, Elements of Gating System, Gating System design, Factors involved in Gating design, Pouring time, Choke Area, Sprue design, Gating Ratio, Sprue runner gate ratio, Elimination of Slag and Dross, Filtration, Numerical exercises.

Riser Design: Need for riser, Basic requirements of an effective feeding system for a casting, Feeding Efficiency, Types of Risers, Effective feeding distances for simple and complex shapes. Use of chills, Directional solidification, Stresses in castings, Metal Mould reactions, Claine's Method, Modulus Method, Naval Research Laboratory (NRL) Method, Pouring rate and Temperature, Padding, Use of exothermic materials, Chills, Feeding Aids, Numerical exercises.

UNIT-IV

Special casting Processes: Shell Moulding, Investment Casting, Permanent Mould Casting, Diecasting, Centrifugal casting.

Inspection and testing of casting: Visual, Optical, Dimensional inspection, Laser Scanning, White light scanning, Radiographic Inspection, ultrasonic testing, Magnetic Particle Testing, dye penetration, Casting Defects; Classification, Causes and remedies.

- 1. H.F. Taylor, "Foundry Engineering", John Wiley and Sons.
- 2. P.L. Jain, "Principles of Foundry Technology", Mc-Graw Hill.
- 3. MahiSahoo and SudhariSahu, "Principles of Metal Casting.
- 4. AmitabhaGhosh, " Manufacuring Science", Affliated East West Press.
- 5. P.N Rao, "Manufacturing Technology: Foundry, Forming and Welding" TMH.
- 6. K.P. Sinha, "Foundry Technology", Standard Publishers, Delhi.

- 7. Flinn, "Fundamentals of Metals Casting", Addison Wesley.
- 8. Heine Loper and Resenthal, "Principles of Metal Casting", Mc-Graw Hill.
- 9. Hielel and Draper, "Product Design & Process Engineering", Mc-Graw Hill.
- 10. Salman & Simans, "Foundry Practice", Issac Pitman.
- 11. ASME, "Metals Handbook- Metal Casting."
- 12. P.C. Mukharjee, Fundamentals of Metal casting Technology, Oxford, IBH.
- 13. P.R.Beeley, Foundry Technology, Butterworth Heinmann

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-103A		COMPUTER AIDED DESIGN AND MANUFACTURING											
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTTestTestTest											
3	0	0 0 3 60 40 100 3 hrs											
Objective	The objective process plann	The objective of the course is to understand about the technology of computers for the design, process planning and manufacturing the products.											
			Course Out	comes									
C01	To understand manufacturing	d the fundame and the trans	entals and ap formation of g	plications of geometricmod	computers in lels.	the field of	designing and						
CO2	To understand	d the concepts	of G.T. and F	FMS.									
CO3	To know the u	ise of compute	ers in process	planning and	shop floor co	ntrol.							
CO4	To learn the b	asics of AGV a	and coding sy	stems for CN	C.								
			LINUT	· •									

UNIT I

Fundamentals of CAD: Introduction to CAD/CAM, Historical Development, Industrial Look at CAD/CAM, Application of computers in design, Creating manufacturing database, Benefits of CAD. Computer Hardware, Graphic input devices, display devices, Graphics output devices, Central processing unit (CPU).

Geometric transformations: 2D and 3D; transformations of geometric models like translation, scaling, rotation, reflection, shear; homogeneous representations, concatenated representation; Orthographic projections, Numerical Problems

UNIT II

Group Technology and Cellular Manufacturing

Part families, parts classifications and coding, Production flow Analysis, cellular Manufacturing- composite part concept, machine cell design, applications of group technology, Grouping parts and machines by Rank order clustering technique, Arranging machines in a G.T. cell.

Flexible Manufacturing

Introduction, FMS components, Flexibility in Manufacturing – machine, Product, Routing, Operation, types of FMS, FMS layouts, FMS planning and control issues, deadlock in FMS, FMS benefits and applications.

UNIT III

Process Planning

Introduction, Manual process planning, Computer aided process planning – variant, generative, Decision logicdecision tables, decision trees, Introduction to Artificial intelligence.

Shop Floor Control

Introduction, Shop floor control features, Major displays, Major reports, Phases of SFC Order Release, Order Scheduling, Order Progress, Manufacturing control, Methodology, Applications, Shop floor data collections, Types of data collection system, Data input techniques, Automatic data, Collection system.

UNIT IV

CNC Basics and Part Programming

Introduction, Historical Background, Basic Components of an NC, Steps in NC, Verifications of Numerical control machine tool programs, Classification of NC Machine tool, Basics of motion control and feedback for NC M/C, NC part programming, Part programming methods, Modern Machining system, Automatically programmed tools, DNC, Adaptive control

Automated Guided Vehicle

Introduction, History, Features, Functions of AGV, Types of AGV, Safety consideration for AGV, Design of AGV.

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 3. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 6. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.

7. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.

8. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice - Hall

- 9. Chang, Wang & Wysk Computer Aided Manufacturing. Prentice Hall
- 10. Kundra&Rao, Numerical Control and Computer Aided Manufacturing by, Rao and Tiwari, Tata Mc-Graw Hill.
- 11. Mattson, CNC programming Principles and applications, Cengage Learning India Pvt. Ltd. Delhi

Note:The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-I

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1stSem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-105A		TOOL ENGINEERING											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time											
3	0 0 3 60 40 100 3 h												
Objective	The objective of the course is to impart the students with the knowledge of various aspects of												
	design of different types of Tools and fixtures used in Industries.												
		Co	urse Outco	mes									
C01	To impart knov	vledge of mate	rials for cutti	ng tool and desig	gn of cutting too	ols.							
CO2	To acquaint stu	udents with var	ious kinds o	f Gages and Wo	rk holding devi	ces.							
CO3	To impart knov	vledge to stude	ents about D	rill jigs and Fixtu	res.								
CO4	To let student	understand the	tool design	process for NC	Machine tools								

UNIT-I

Cutting Tool Materials: Introduction and desirable properties, Carbon and Medium-Alloy Steels, High-Speed Steels, Cast-Cobalt Alloys, Carbides, Coated Tools, Alumina-Based Ceramics, Cubic Boron Nitride, Silicon-Nitride Based Ceramics, Diamond, Reinforced Tool Materials, Cutting-Tool Reconditioning.

Design of Cutting Tools Basic Requirements, Mechanics and Geometry of Chip Formation, General Considerations for Metal Cutting, Design of single point Cutting Tools, Design of Milling Cutters, Design of Drills and Drilling, Design of Reamers, Design of Taps, Chip Breakers.

UNIT-II

Gages and Gage Design: Limits fits and tolerances, Geometrical tolerances-specification and measurement, Types of gages, Gage design, gage tolerances, Material for Gages.

Work Holding Devices: Basic requirements of work holding devices, Location: Principles, methods and devices, Clamping: Principles, methods and devices.

UNIT-III

Drill Jigs: Definition and types of Drill Jigs, Chip Formation in Drilling, General Considerations in the Design of Drill Jigs, Drill Bushings, Drill Jigs, and Modern Manufacturing

Design of Fixtures: Fixtures and Economics , Types of Fixtures , Milling Fixtures , Boring Fixtures, Broaching Fixtures, Lathe Fixtures, Grinding

UNIT-IV

Tool Design for Numerically Controlled Machine Tools: Fixture Design for Numerically Controlled Machine Tools, Cutting Tools for Numerical Control, Tool-holding Methods for Numerical Control.

RECOMMENDED BOOKS:

1. ASTME, "Fundamentals of Tool Design", Prentice Hall of India, 1983.

2. Donaldson, "Tool Design", Tata-McGraw Hill, 3rd Edition, 2000.

3. Joshi P.H., "Jigs and Fixtures", Tata-McGraw Hill, 2010.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1StSem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-107A	A	ADVANCED ENGINEERING MATERIALS												
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTimeTestTestTestTest												
3	0	0 0 3 60 40 100 3 hrs												
Objective	The objective of the	The objective of the course is to impart the students with the knowledge of various advanced and												
-	smart materials.													
		C	Course Outc	omes										
CO1	To impart knowledg	je of Piezoelec	tric and shap	e memory all	oys.									
CO2	To acquaint studen	ts with deep kr	now how abo	ut Electro-rhe	ological and c	omposite mat	terials							
CO3	ToimpartknowledgetostudentsaboutMEMSsystemsandHightemperature applicationmaterials.													
CO4	To let student under structural materials	erstand the pro	cessing and	characteristi	cs of powder i	netallurgy pr	ocesses and							

UNIT-I

Introduction to advanced Engineering materials:Classes of Materials and their usage, Historical Perspective, Intelligent Materials, Structural Materials, Functional Materials, Primitive Functions of Intelligent Materials, Intelligence inherent in Materials, Materials Intelligently Harmonizing with humanity, Biomimetic.

Smart Materials and Structural Systems:Introduction, Actuator Materials, Sensing Technologies, Micro-sensors, Intelligent systems, Hybrid Smart Materials, Passive Sensory Smart Structures, Reactive Actuator based smart structures, Active Sensing and Reactive smart structures, smart skins, Aero-elastic tailoring of airfoils, Synthesis of future smart systems.

UNIT-II

Electrocaloric Effect: An Introduction, History of Electrocaloric Cooling, Mechanism of working of Electrocaloric Cooling, Electrocaloric Materials, Performance of Electrocaloric Materials.

Heat Resistant Steels: Conventional Heat-Resistant Steels, Silicon-Bearing High Chromium Heat-Resistant Steels, Nitride-Strengthened Reduced Activation Heat-Resistant Steels, China Low Activation Martensitic SteelNitride-Strengthened Steels, Microstructural Stability

UNIT-III

Smart Micro-systems:Silicon Capacitive Accelerometer, Piezo-resistive Pressure sensor, Conductometric Gas sensor, An Electrostatic Comb-drive, Magnetic Microrelay, Portable Blood Analyser, Piezoelectric Inkjet Print Head. **Buckyballs to robotics**: Bucky ball, Nano Structure of Fullerene, Carbon Nanotubes, Nano Diamond, Boron nitride

nanotubes, Single electron transistors, Molecular machine, Nano Biometrics, Nano Robots,

UNIT-IV

Nano-Alloys: Introduction, Chemical Synthesis: General Concepts, Reduction of Metallic Salts, The Organometallic Route: Thermal Decomposition Method, Other Chemical Methods for synthesis of Nano-alloys, Physical Routes for synthesis of Nano-Alloys; Experimental Techniques and Examples.

Shape memory alloys (SMA): Shape memory effect and the metallurgical phenomenon of SMA, Types of SMA, One way and Two way Shape memory effect. Temperature assisted shape memory effect, Applications.

RECOMMENDED BOOKS:

- 1. Gandhi, M.V. and Thompson, B.S., Smart materials and Structures, Chapman & Hall, 1992.
- 2. Ananthasuresh G.K., Vinoy K.J., Micro and Smart Systems, Wiley India.
- 3. Wei Yan, Wei Wang, 9-12 Cr Heat Resistant Steels, Engineering Material series, Springer International.
- 4. Damien Alloyeau, Christine Mottet, Nanoalloys Synthesis, Structure and Properties, Springer International.
- 5. Tatiana Correia, Qi Zhang, Electrocaloric Materials: New Generation of Coolers
- 6. Otsuka, K. and Wayman, C. M., Shape memory materials, C.U.P, 1998
- 7. Taylor, W., Pizoelectricity, George Gorden and Breach Sc. Pub., 1985
- 8. Mallick, P.K., Fiber Reinforced Composites Materials, Manufacturing and Design. Marcel Dekker Inc, New York, 1993.
- 9. Rama Rao, P. (ed.), Advances in Materials and their applications, Wiley EasternLtd.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-109A		NON-CONVENTIONAL MACHINING										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	3 hrs										
Objective	To acquaint of Non-conve	To acquaint the students with the advanced technologies and processes in various streams of Non-conventional machining.										
		Cours	se Outcome	es								
C01	To impart technology,	knowledge of process param	Various N eters and ar	lon-convent nalysis for n	ional Mech netal remova	anical Wor I for these p	king Processes, processes.					
CO2	To acquaint processes,	students with	deep knowl	now about (chemical an	d electroch	emical machining					
CO3	To impart k processes, j characteristic	To impart knowledge to students about various kinds of Electric discharge machining processes, process parameters associated with these processes and various process characteristics.										
CO4	To let stude machining a	ent understand nd Electron bea	d the worki am machinir	ing and te	chnology as s.	ssociated v	vith Laser Beam					

UNIT-I

Introduction, Need of Non-conventional machining processes, Characteristics of conventional and Non-conventional Machining processes. **Mechanical Working Processes: Abrasive Jet Machining:** Machining setup, Abrasives, Process Parameters, Machining Characteristics, Material removal models in AJM, Process capability, Advantages, limitations, Applications

Water Jet Machining: Basic mechanism of Water jet machining setup, Process parameters, Catcher, Process capabilities, Advantages, limitations, Applications **Abrasive Water Jet Machining process:** Working Principle, AWJM Machine, Process Variables, Mechanism of Metal Removal, Cutting Parameters, Process capabilities, Applications, Environmental issues.

Ultrasonic Machining: Fundamental principles, Equipment, Magnetostriction, Elements of process, Mechanics of cutting, Analysis of Process Parameters, Process capabilities, Economic considerations. Applications, Limitations

UNIT-II

Chemical Machining: Introduction, Fundamental Principles, Process Parameters; Maskants and Etchants, Advantages, Limitations, Applications.

Electrochemical Machining Processes: Introduction, Classification of ECM Processes, Fundamentals Principles of ECM, Elements of ECM, ECM Machine Tool Process, Determination of Metal Removal Rate, Evaluation of Metal Removal of an alloy, Electrochemistry of ECM, Cathode and Anode reaction, Dynamics of ECM, Self-Regulating feature of ECM, Process Parameters, Process capabilities, Electrochemical Deburring. **Electrochemical Grinding:** Schematics, Electrochemistry, Process Parameters, Process capabilities, Applications, Advantages, Limitations.

UNIT-III

EDM: Introduction, Basic Principles & Schematics, Process Parameters, Characteristics of EDM, Dielectric, Electrode Material, Modelling of Material Removal, Spark Erosion Generators, Analysis and Metal Removal Rate in RC circuit, Selection of Tool Material and Tool Design, Di-Electric system, Process Variables, Dielectric Pollution and its effects, Process Characteristics, Applications, Electric Discharge Grinding and Electric Discharge Diamond Grinding; **Wire EDM:** Working Principle, Wire EDM Machine, Advances in Wire-cut EDM Process Variables, Process Characteristics, Applications.

UNIT-IV

Laser Beam Machining Back Ground, Production of Laser, Working Principle of LBM, Types of LASERS, Process Characteristics, Metallurgical effects, Advantages and Limitations, Applications.

Electron Beam Machining:

Electron Beam Action, Generation and control of Electron beam, Theory of Electron Beam Machining, Process Parameters, Process capabilities, Applications.

High Energy Rate Forming, Elctro-Hydraulic Forming, Explosive Forming, Hot Machining Analysis of the Process.

RECOMMENDED BOOKS:

- 1. V.K. Jain, Advanced Machining Processes, Allied Publishers Pvt Ltd
- 2. P.C. Pandey and H.S. Shan, Modern Machining Processes, Tata McGraw-Hill
- 3. M. K. Singh, Unconventional Manufacturing Process, New Age Publishers

10(2024)

- 4. J. A. Mcgeough, Advanced Methods of Machining, Springer.
- 5. Benedict, Non-Traditional Manufacturing Process, CRC pub.
- 6. P. K. Mishra, Nonconventional manufacturing, Narosa Publishers

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-II

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-111A		PRODUCT DESIGN AND DEVELOPMENT												
Lecture	Tutorial	Tutorial Practical Credit Major Minor Total Time												
		Test Test 0 0 3 60 40 100 3 hrs												
3	0	0	3	60	40	100	3 hrs							
Objective	The objective of t	The objective of the course is to understand about the product design and developments with												
	inputs from aesthe	puts from aesthetics, ergonomics, design for manufacturing ease and cost effectiveness apart												
	from reliability and durability and other considerations.													
		Cou	Irse Outcor	nes										
C01	To understand th	e concept of	product des	sign, design	i considerat	ions, design p	practiced by the							
	industry, productio	n and marketir	ng, and aest	hetics.			-							
CO2	To provide a deta	iled fundamen	tal approact	n to several	primary pro	cesses and d	esign guidelines							
	for manufacturing,	assembly and	environmer	nt.										
CO3	To discuss the hur	nan factor eng	ineering and	the concept	ot of value e	ngineering.								
CO4	To study the mod	lern approach	es to produ	uct design,	concept of	product deve	lopment and its							
	manufacturing and	economic asp	bects.	Ū	•	•	-							

UNIT-I

INTRODUCTION: Introduction to product design, Design by evolution and innovation, Essential factors of product design, Production consumption cycle, Flow and value addition in production consumption cycle, Morphology of design. **PRODUCT DESIGN PRACTICE AND INDUSTRY:** Product strategies, Time to market, Analysis of the product, Basic design considerations, Role of aesthetics in product design.

ŬNIT-II

DESIGN FOR MANUFACTURE AND ASSEMBLY: Overview and motivation, Basic method: Design guidelines: Design for assembly, Design for piece part production, Advanced method: Manufacturing cost analysis, cost driver modeling, Critique for design for assembly method.

DESIGN FOR THE ENVIRONMENT: Environmental objectives, Basic DFE methods, Design guidelines, Life cycle assessment, Techniques to reduce environmental impact.

UNIT-III

HUMAN ENGINEERING CONSIDERATIONS IN PRODUCT DESIGN: Human being as applicator of forces, Anthropometry, the design of controls, the design of displays, Man/Machine information exchange, Workplace layout from ergonomic considerations.

VALUE ENGINEERING: Value, Nature and measurement of value, Maximum value, Normal degree of value, Importance of value, value analysis job plan, creativity, steps to problem solving and value analysis, value analysis tests, value engineering idea generation check list, Cost reduction through value engineering-case study, materials and process selection in value engineering.

UNIT-IV

MODERN APPROACHES TO PRODUCT DESIGN: Concurrent design, Quality function deployment (QFD), Rapid prototyping, 3D printing, Introduction to 4D printing.

PRODUCT DEVELOPMENT: A modern product development process, reverse engineering and redesign product development process, product life cycle, product development teams, Product development planning, Manufacturing & economic aspects of product development.

RECOMMENDED BOOKS:

- 1. Kail T Ulrich and Steven D Eppinger, "Product Design and Development, TMH.
- 2. AK Chitale and Gupta, "Product Design and Engineering, PHI.
- 3. Niebel& Draper, "Product Design and Process Engineering", McGraw-Hill.
- 4. Kevin Otto & Kristin Wood, "Product Design-Techniques in reverse engineering and new product development" Pearson.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1stSem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-113A		SIMULATION OF INDUSTRIAL SYSTEMS											
Lecture	Tutorial	Futorial Practical Credit Major Test Minor Test Total Time											
3	0	0	3	60	40	100	3 hrs						
Objective	The main	The main objective of the course is to impart the students with the knowledge of industrial											
	systems a	systems and its simulation.											
			Course	Outcomes									
C01	To explair	n the concept	of industrial s	imulation syster	ns and its mod	els of simulati	on.						
CO2	To unders	stand the simu	lation of disc	rete and queuei	ng systems.								
CO3	To unde	rstand the s	imulation if	inventory sys	tems and de	esign of sim	ulation						
	experimer	nts.											
CO4	То	simulate	the ir	ndustrial p	problems	like re	iability						
	problems,	computertime	sharingproble	em and understa	and the simulat	ion languages							

UNIT-I

Introduction and overview: concept of system, system environment, elements of system, system modeling, types of models, Monte Carlo method, system simulation, simulation - a management laboratory, advantages & limitations of system simulation, continuous and discrete systems.

Simulation of continuous systems: characteristics of a continuous system, comparison of numerical integration with continuous simulation system. Simulation of an integration formula.

UNIT-II

Simulation of discrete system: Time flow mechanisms, Discrete and continuous probability density functions. Generation of random numbers, testing of random numbers for randomness and for auto correlation, generation of random variates for discrete distribution, generation of random variates for continuous probability distributionsbinomial, normal, exponential and beta distributions; combination of discrete event and continuous models.

Simulation of queuing systems: Concept of queuing theory, characteristic of queues, stationary and time dependent queues, queue discipline, time series analysis, measure of system performance.

Kendall's notation, auto covariance and auto correlation function, auto correlation effects in queuing systems, simulation of single server queues, multi-server queues, queues involving complex arrivals and service times with blanking and reneging.

UNIT-III

Simulation of inventory systems: Rudiments of inventory theory, MRP, in-process inventory. Necessity of simulation in inventory problems, forecasting and regression analysis, forecasting through simulation, generation of Poisson and Erlangvariates, simulation of complex inventory situations.

Design of Simulation experiments: Length of run, elimination of initial bias, Variance, Variance reduction techniques, stratified sampling, antipathetic sampling, common random numbers, time series analysis, spectral analysis, model validation, optimization procedures, search methods, single variable deterministic case search, single variable non-deterministic case search, and regenerative technique.

UNIT-IV

Simulation of PERT: Simulation of - maintenance and replacement problems, capacity planning, production systems, reliability problems, computer time sharing problem, the elevator system.

Simulation Languages: Continuous and discrete simulation languages, block structured continuous languages, special purpose simulation languages, SIMSCRIPT, GPSS SIMULA importance and limitations of special purpose languages.

- 1. Loffick, Simulation and Modelling Tata McGraw Hill
- 2. DeoNarsingh, System Simulation with Digital Computer Prentice Hall
- 3. Hira, D.S., System Simulation-S. Chand & Co.
- 4. Meelamkavil, Computer Simulation and Modelling John Willey
- 5. Gorden, System Simulation Prentice hall
- 6. Jerry Banks and John, S. Carson II, 'Discrete Event System Simulation', Prentice Hall Inc., NewJersey, 1984.

- 7. Geoffrey Gordon, 'System simulation', Prentice Hall, NJ, 1978.
- 8. Law, A.M. and W.D. Keltor, 'Simulation modelling analysis', McGraw Hill, 1982.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-115A		SUPPLY CHAIN MANAGEMENT											
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTestTestTest											
2	0	0 0 3 60 40 100											
3	0												
Objective	The main ol chain and di	pjective of the c fferent aspects of	course is to im of supply chair	part the stund	dents with the nt.	knowledge	of Supply						
		C	ourse Outcon	nes									
CO1	To impart l	knowledge abo	ut basics of	Supply chai	in manageme	nt and Sup	ply chain						
CO2	To acquaint supply chain	students with t management.	he different a	spects involv	ved in sourcin	g and procu	rement in						
CO3	To impart k decision ma	nowledge to s king about Trans	tudents about sportation, Sto	Evaluating rage and wa	performance rehousing.	of Supply a	chain and						
CO4	To let stude Chain:	nt understand C	Quantitative too	ols for SCM,	Information To	echnology in	a Supply						

UNIT-I

Overview of supply chain management: Introduction, Definition, The Objective of a Supply Chain, The Importance of Supply Chain Decisions, Decision Phases in a Supply Chain, Process Views of a Supply Chain, Examples of Supply Chains.

Supply chain dynamics: Introduction, Coping with Dynamics in Supply chain. Bullwhip effect, Analysis of Bullwhip Effect, Impact of Lead time, Inventory management and Supply chain dynamics, offshoring and outsourcing Effect on SC dynamics and cost.

UNIT-II

Outsourcing and Make or Buy Decisions: Strategic Decisions and Core competencies, Tactical Decisions, Factors influencing make or buy decisions, Control of Production or Quality, Unreliable Suppliers, Suppliers Specialized knowledge and research, Small Volume Requirements, Limited Facilities, Workforce Stability, Multiple Sourcing Policy, Managerial and Procurement considerations, the Volatile nature of Make/Buy situation, Administration: Procedures and Personal.

Sourcing of Supply:Importance of Source Selection, Responsibilities for Source Selection, Evaluating a potential supplier, The criticality of Qualifying Sources, Competitive Bidding and Negotiation, Prerequisite for competitive bidding, Two step Bidding/Negotiation, Benefits and Risks of International Sourcing, Identifying and Qualifying an International Source.

UNIT-III

Supply Chain Performance: Achieving Strategic fit And Scope: Competitive and Supply Chain Strategies, Achieving Strategic Fit, Expanding Strategic Scope, Challenges to Achieving and Maintaining, Strategic Fit, Supply chain drivers and metrics, Financial Measures of Performance, Drivers of Supply Chain Performance, Framework for Structuring Drivers, Facilities, Inventory, Transportation, Information, Sourcing, Pricing.

Transportation, storage and warehousing: Introduction, Transportation mode choice, Transport operator decisions, Trucking sectors in India, Rail transport, Air Transport, Water transport, Transport network, Storage and warehousing, types of warehousing, risk pooling, IT Integration: Supply chain information system, Role of IT in SCM process, Business process Re-engineering, Internet and its applications in SCM.

UNIT-IV

Quantitative tools for SCM: Introduction, Forecasting, Demand forecast, Forecasting strategy & technique, Management of Inventories in SC, Linear programming, Routing models, pricing decisions, Introduction to MCDM approach.

Information Technology in a Supply Chain: The Role of IT in a Supply Chain, The Supply Chain IT Framework Customer Relationship Management, Internal Supply Chain Management, Supplier Relationship Management, The Transaction Management Foundation, The Future of IT in the Supply Chain, Risk Management in IT, Supply Chain IT in practice.

RECOMMENDED BOOKS:

1. Chopra, S., and Meindl, P., Supply chain Management: Strategy, Planning and Operations. Second Edition, Pearson Education (Singapore) Pte. Ltd, 2004.

- 2 Rangaraj, Supply Chain Management for Competitive Advantage, TMH.
- 3 Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E., Designing & Managing the Supply Chain: Concepts, Strategies & Case studies. Second Edition, Tata McGraw-Hill Edition, 2003.
- 4. Doebler, D.W. and Burt, D.N., Purchasing and Supply Chain Management: Text and Cases, McGraw-Hill Publishing Company Limited, New Delhi, 1996.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTRM-111A		RESEARCH METHODOLOGY AND IPR											
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)						
				Test	Test								
2	2 0 0 2 60 40 100 3												
Objective	The objective of this course is to make the students capable of formulating the research problems/												
	proposals and get aware about the intellectual property and patent laws.												
			Course (Outcomes									
CO 1	Student will	be able to und	erstand resea	arch problem f	formulation.								
CO 2	Student will	be able to ana	lyze research	n related inforr	mation and fo	llow research	n ethics.						
CO 3	Student will	be able to unc	lerstand the F	Patents, Desig	ns, Trade and	d Copyright a	and able to apply the						
	knowledge f	for patent.		-		-							
CO 4	Student wil	I be able to	understand t	he concept	of Patent Ri	ghts, Licens	ing and transfer of						
	technology a	and able to ap	olv the knowle	edae in new d	evelopments	in IPR.							

Unit-I

Meaning of research problem, Sources of research problem, Criteria, characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.

Unit-II

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, paper. Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

Unit-III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit-IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and Institutions.

RECOMMENDED BOOKS:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: An introduction for science & engineering students" Kenwyn, South Africa : Juta& Co. Ltd., 1996
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction" Juta Academic; 2nd edition (April 28, 2004)
- 3. Ranjit Kumar, "Research Methodology: A Step by Step Guide for beginners" SAGE Publications Ltd; Fourth edition (14 January 2014)
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", Aspen Publishers; Revised edition (July 25, 2007)
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-117A		ADVANCED METAL CASTING LAB											
Lecture	Tutorial Practical Credit Major Minor Practical Total T Tutorial Practical Credit Major Minor Practical Total T												
0	0 4 2 - 40 60 100												
Objective	The main	objective of	he course	is to impart	the student	s with the kno	wledge of fo	undry shop					
			Cou	irse Outcom	es								
CO1	To impart	knowledge of p	ractical eval	uation of sar	d grades an	d moisture conte	ent in the mou	lding sand.					
CO2	To acquai Moulding/0	nt students wi Core sand.	ith the differ	rent aspects	involved in	testing ADV, F	Permeability a	nd DCS of					
CO3	To impart strength of	o impart knowledge to students about determining grain size Mould Hardness and Compressive strength of the Mould.											
CO4	To let stude	nt understand	how to prepa	are MMCs us	ing Stir Cast	ing process.							

List of Experiments:

- 1. To perform grading of sand for foundry purpose.
- 2. Determination of optimum moisture content in Green Sand Practice.
- 3. Determination of DCS of core sand.
- 4. Determination of permeability for molding sand mixtures.
- 5. Determination of acid demand value in a moulding sand sample.
- 6. To determine mould hardness.
- 7. To determine grain size and gran fines content in moulding Sand.
- 8. To determine compressive strength of the given mould sample
- 9. To determine grain size distribution and grain fines number for a sand mix.
- 10. To prepare advanced Metal Matrix Composites using Stir Casting.

Note: At Least eight experiments need to be performed by the students from the above mentioned list.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-119A		COMPUTER AIDED DESIGN AND MANUFACTURING LAB										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Practical	Total	Time				
0	0	0 4 2 - 40 60										
Objective	To acquaint	o acquaint the students with 2-D and 3-D modeling using design softwares.										
			Cou	rse Outcom	es							
C01	To understa	Fo understand the basic solid modeling and applied features of the softwares.										
CO2	To learn and	o learn and practice of surface techniques and surface creations using software.										
CO3	To learn and	d practice of as	sembly and	detailed drat	ting.							
CO4	To let studer	nt understand	how to prepa	are MMCs us	ing Stir Cast	ing process.						

List of Experiments:

The students will be required to carry out the following exercises or their equivalent tasks using a 3-D modeling software package (e.g. Solid-works/ Creo/ Ideas/ Solid Edge/UG/CATIA/ etc.). Practical must be performed on licensed version (Preferably the latest version) of any one of above mentioned software.

1 BASIC SOLID MODELING

Introduction & sketcher tools

a) CAD Tools and Applications: CAD - CAM - CAE

b) Parametric Feature Based Modelling and Parent-Child Relation

c) Design Intent and Associativity between 3 Modes

d) Modelling Software - Getting Started & Graphical User Interface

e) Sketch Entities and Tools

f) Dimensioning and Adding Relations to define the Sketch

Sketched Features (Boss / Base and Cut)

a) Base Features

b) Extrude & Revolve

c) Reference Geometry, Curves & 3D Sketch

d) Sweep & Loft

Editing & Refining Model

a) Editing Sketch, Sketch Plane and Editing Feature

b) Suppress / Un-Suppress Feature and Reordering Feature

2 ADVANCE FEATURES APPLIED FEATURES

a) Patterns & Mirror

b) Fillet/Round & Chamfer

c) Hole & Hole Wizard

d) Draft, Shell, Rib and Scale

e) Dome, Flex and Wrap

Multi Body

a) Indent Tool

b) Combine Bodies – Boolean Operations

c) Split, Move/Copy and Delete Bodies

Other Tools & Options

a) Design Table and Configurations

b) Adding Equations and Link Values

c) Tools - Measure and Mass Properties

d) Appearance - Edit Material, Colour and Texture

e) Options - System and Document Properties

3 SURFACING TECHNIQUES BASIC SURFACE CREATIONS

a) Extrude & Revolve

b) Sweep & Loft

c) Boundary Surface

d) Planar Surface

Other Derived Techniques

a) Offset Surface b) Radiate Surface c) Ruled Surface d) Fill Surface e) Mid Surface Modify / Edit Surfaces a) Fillet/Round b) Extend c) Trim & Untrim d) Knit Surfaces e) Delete and Patch Surfaces for Hybrid Modelling a) Thicken – Boss / Base and Cut b) Replace face c) End condition for Sketched feature - Up to Surface or Offset from Surface. d) Solid body from closed surfaces **4 ASSEMBLY & MECHANISMS BOTTOM UP ASSEMBLY APPROACH** a) Inserting Components/Sub-Assemblies b) Adding Mates - Standard & Advance c) Editing Mates, Part and Replacing Components **Top down Approach & Mechanisms** a) Inserting New Part to Existing Assembly b) Use of Layout Sketching c) External References - In-context and Out-of-context, Locked and Broken Assembly Features a) Component Patterns & Mirrors b) Cuts & Holes c) Belt/Chain and Weld Bead **Representations of Assembly Components** a) Light Weight, Suppressed and Resolved b) Hide, Transparency and Isolate c) Exploded View **Assembly Check** a) Interference Detection, b) Collision Detection and Physical Dynamics Motion Study c) Assembly Motion & Physical Simulation d) Animation Wizard & Save as AVI file e) Mechanism Analysis - Plot Displacement, Velocity and Acceleration Diagram **5 DETAILED DRAFTING** Introduction to Engineering Drawings a) General Procedure for Drafting & Detailing b) Inserting Drawing Views, Dimensioning and Adding Annotations c) Drawing Templates & Sheet Format d) Setting Options **Drawing Views** a) Model View & Standard 3 View b) Projected View & Auxiliary View c) Section & Aligned Section View d) Detail View, Broken-out Section and Crop View. Dimensioning a) Standards, Rules and Guidelines b) Dimension Insertion/Creation - Insert Model Items & Dimension tool Annotations a) Notes & Holes Callout b) Datum & Geometric Tolerances c) Surface Finish & Weld Symbols, Centre Mark & Centre line, BOM Balloon & Bill of Material

Audit Course-I

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTAD-101A		ENGLISH FOR RESEARCH PAPER WRITING									
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
2	0	0	-	-	100	100	3				
Objective	The objectiv	The objective of this course is to impart the knowledge of English for research paper writing.									
	Course Outcomes										
C01	To understa	To understand that how to improve writing skills and level of readability.									
CO2	To Learn ab	To Learn about what to write in each section.									
CO3	To understa	nd the skills ne	eded when w	riting a title.							
CO4	To learn the	skills required	in writing the	results, discu	ssion and con	clusions.					

Unit-I

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit-II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit-III

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. Key skills needed when writing a Title, key skills needed when writing an abstract, key skills needed when writing an Introduction, skills needed when writing a Review of the Literature.

Unit-IV

Skills needed when writing the Methods, skills needed when writing the Results, skills needed when writing the Discussion, skills needed when writing the Conclusions, Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

- 1. Goldbort R, "Writing for Science", Yale University Press (available on Google Books)
- 2. Day R, "How to Write and Publish a Scientific Paper", Cambridge University Press
- 3. Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book.
- 4. Adrian Wallwork, "English for Writing Research Papers", Springer New York Dordrecht Heidelberg London, 2011

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTAD-103A			DISAS	TER MANAG	EMENT				
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)		
				Test	Test				
2	0	0	-	-	100	100	3		
Objective	The objective of this course is to impart the knowledge of disasters management.								
Course Outcomes									
C01	To demonstrate a critical understanding of key concepts in disaster risk reduction and								
	humanitarian response.								
CO2	To critically	To critically evaluate disaster risk reduction and humanitarian response policy and practice							
	from multipl	from multiple perspectives.							
CO3	To develop an understanding of standards of humanitarian response and practical relevance								
	in specific types of disasters and conflict situations.								
CO4	To critically	understand the	e strengths a	nd weaknesse	es of disaster	manageme	ent approaches,		
	planning ar	nd programmir	ng in differer	t countries,	particularly th	neir home	country or the		
	countries th	ey work in.							

Unit-I

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit-II

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.

Unit-III

Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics.

Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data From Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.

Unit-IV

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, Pardeep (Eds.)," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, New Delhi.
- 3. Goel S. L., "Disaster Administration and Management Text and Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

			L a l KODO								
MTAD- 105A		SANSKRIT FOR TECHNICAL KNOWLEDGE									
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
2	0	0	-	-	100	100	3				
Objective	The objectiv	The objective of this course is to understand basic Sanskrit Language and Ancient Sanskrit									
-	literature related to science & technology.										
			Course Outc	omes							
C01	Students wi	ll get a workir	ig knowledge	in illustrious	Sanskrit, the	scientific	language of the				
	world.	-									
CO2	Learning of	Sanskrit to imp	rove brain fur	nctioning.							
CO3	Learning of	Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing									
	the memory	power.	. 0				- 0				
CO4	The engine	ering scholars	equipped with	n Sanskrit will	be able to early	xplore the	huge knowledge				
	from ancien	t literature.									

Unit-l

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences

Unit-II

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit-III

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

- 1. Dr.Vishwas, "Abhyaspustakam" Samskrita-Bharti Publication, New Delhi
- 2. VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam "Teach Yourself Sanskrit" PrathamaDeeksha-, New Delhi Publication
- 3. Suresh Soni, "India's Glorious Scientific Tradition" Ocean books (P) Ltd., New Delhi.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTAD-107A			VA	LUE EDUCA	TION				
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time							
				Test	Test				
2	0	0	-	-	100	100	3		
Objective	The objectiv	The objective of this course is to understand value education, self-development, Imbibe good							
-	values in stu	values in students and Let them know about the importance of character building.							
			Course Outc	omes					
C01	To get know	To get knowledge of self-development.							
CO2	To learn the	To learn the importance of Human values.							
CO3	To develop	the overall pers	sonality.						
CO4	To know ab	out the importa	ince of charac	ter.					

Unit-I

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements

Unit-II

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

Unit-III

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

Unit-IV

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, studying effectively

RECOMMENDED BOOKS:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Second Semester

	MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2 rd Sem.)										
	(INDUSTRIAL & PRODUCTION ENGINEERING)										
MTIP-102A	MECHATRONICS										
Locturo	Tutorial	utorial Dractical Cradit Major Tact Minor Tact Tatal Time									
Lecture	TULONAL	Tutorial Practical Credit Major Test Minor Test Total				TOLAI	Time				
3	0	0	3	60	40	100	3 hrs				
Objective	The objectiv	he objective of the course is to acquaint the knowledge of electronic devices and									
	electromechanical systems, hydraulic and pneumatic systems, CNC, Robotics and PLC's.										
			Course Outo	comes							
C01	To understar	nd the concep	ts of Mechati	ronics, fundan	nental of elect	ronics and d	igital				
	circuits and e	ircuits and electrical actuating circuits.									
CO2	To acquaint the	To acquaint the knowledge of hydraulic system with its practical applications.									
CO3	To acquaint the	ne knowledge o	of pneumatic s	system with its	practical applic	ations.					
CO4	To study the	fundamentals of	of CNC, Robot	tics and progra	immable logic	controllers (PL	_C′s)				
	and their use.				-						

UNIT-I

Introduction: The Mechatronics approach: A methodology for integrated design of Mechanical, Electronics and Electrical Control, Computer and Instrumentation.

Fundamentals of Electronics and digital circuits: Number systems: Binary, Octal, Hexadecimal, Conversion from Binary to Decimal, Octal and Hexadecimal and vice-versa, Binary arithmetic: Addition, subtraction, Multiplication and division, Boolean Algebra: Laws, De-Morgan's laws, Logic Gates, Truth tables, Karnaugh maps and logic circuits. Generation of Boolean function from truth tables and simplification, Electrical actuating system: Basic principle of electrical switching, Solenoids, Electrical relays, Representation of output devices, Electrical motors: A.C. motors, Stepper motors, Induction motor speed control.

UNIT-II

HYDRAULIC SYSTEMS:

Direction Control Valves: Poppet Valve, Spool Valve, Sliding Spool type DCV, Check Valve, Pilot operated check valve, Restriction check valve, 2 Way vale, 3 way valve, 4 way valve, Manually actuated valve, Mechanically actuated valve, Pilot operated DCV, Solenoid Actuated valve, Rotary Valve, Centre flow path configurations for three position four way valve, Shuttle valve

Pressure Control Valve: Simple and compound pressure Relief Valve, Pressure Reducing Valve, Unloading valve, sequence valve, counterbalance valve, Brake Valve

Flow Control Valves: Fixed and non-adjustable valve, adjustable, throttling, non-pressure compensated pressure control valve, Pressure/temperature compensated flow control valve, Shuttle and Fast exhaust valve, Time delay valve, Flow Control Valves, Fluid Conditioners, Hydraulic Symbols (ANSI), Hydraulic Circuit design: Control of Single and double acting cylinders, double pump Hydraulic System

UNIT-III

PNEUMATIC SYSTEM:

Air Generation and distribution: Air compressors, Air Receiver, Filters, intercoolers, After-coolers, Relief Valve, Air dryers, Primary and secondary lines, Piping layouts, Air Filters, Air Regulators, Air Lubricator, Actuators and output devices, Direction control valves, Flow control valves, junction elements, Pneumatic circuits, Control of Single and double acting cylinders.

UNIT-IV

INTRODUCTION TO CNC MACHINES AND ROBOTICS:

CNC Machines: NC machines, CNC machines, DNC machines, Machine structure, Slidways, Guideways, Slide Drives, Spindle, Robotics: Components of robots, Classification of robots, Robots application

PROGRAMMABLE LOGIC CONTROLLERS

Introduction - Principles of operation - PLC Architecture and specifications - PLC hardware Components, Analog & digital I/O modules, CPU & memory module - Programming devices - PLC ladder diagram, Converting simple relay ladder diagram in to PLC relay ladder diagram. PLC programming Simple instructions - Manually operated switches - Mechanically operated Proximity switches - Latching relays, Applications of PLC.

RECOMMENDED BOOKS:

- 1. W. Bolton, Mechatronics, Pearson Education.
- 2. Majumdar, Pneumatic system, TMH.
- 3. Andrew Parr, Hydraulic and Pneumatic systems, TMH.
- 4. M.P. Groover, Automation, Production systems and computer integrated manufacturing, TMH.
- 5. Shetty and Kolk, Mechatronics system design, Thomson learning.
- 6. Mahalik, Mechatronics, TMH.
- 7. Anthony Esposito, Fluid power with application, Pearson Education.
- 8. K.P Ramachandran, M.S Balasundaram, Mechatronics, Wiley India.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.)
(INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-104A		Industrial Tribology								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time (Hrs.)			
3	0	0	3	60	40	100	3			
Objective	To develop address the	To develop a solution oriented approach by in depth knowledge of Industrial Tribology and address the underlying concepts, methods and application of Industrial Tribology.								
	Course Outcomes									
CO 1	Students wi contacts bet	Students will be able to understand the fundamentals of tribology, friction and wear processes in contacts between different materials.								
CO 2	Students wi different sur	Students will be able to understand the material requirements for tribological applications and different surface treatment techniques.								
CO 3	Students wil	ll be able to stu	udy different t	ypes of lubric	cants and test	ting techniq	ues.			
CO 4	Students w specification	<i>i</i> ill be able ns and standar	to study th ds.	e maintenar	nce and co	nservation	techniques, testi	ing		

UNIT-I

Fundamentals of Tribology: Introduction to tribology and its historical background, Economic Importance of Tribology.**Friction and Wear:**Genesis of friction, friction in contacting rough surfaces, sliding and rolling friction, various laws and theory of friction. Stick-slip friction behavior, frictional heating and temperature rise. Friction measurement techniques.

Wear and wear types. Mechanisms of wear - Adhesive, abrasive, corrosive, erosion, fatigue, fretting, etc., Wear of metals and non-metals. Wear models - asperity contact, constant and variable wear rate, geometrical influence in wear models, wear damage. Wear in various mechanical components, wear controlling techniques.

UNIT-II

Materials for Tribological Applications: An overview of engineering materials having potential for tribological application. Characterization and evaluation of Ferrous and non-ferrous materials for tribological requirements/applications, Composite materials (PM, CMC and MMC) for tribological applications.

Surface treatment techniques:Surface treatment techniques such as carburising, nitriding, induction hardening, hard facing, laser surface treatments, etcwith applications, Surface coating techniques such as electrochemical depositions, anodizing, thermal spraying, Chemical Vapour Deposition (CVD), Physical Vapour Deposition (PVD), etc. and their applications.

UNIT-III

Lubrication and lubricants: Boundary Lubrication, Mixed Lubrication, Full Fluid Film Lubrication, Hydrodynamic, Elastohydrodynamic lubrication, Primary role of lubricants in mitigation of friction and wear & heat transfer medium, Composition and properties of lubricants, Fundamentals - Mineral oil based liquid lubricants, Synthetic liquid lubricants, Solid lubricants, greases and smart lubricants, Characteristics of lubricants and greases, Rheology of lubricants, Evaluation and testing of lubricants.

UNIT-IV

Lubricants additives and application: Introduction to lubricant additives, Antioxidants and bearing corrosion inhibitors, Rust inhibitors, Viscosity improvers, Extreme pressure additives.

Consumption and conservation of lubricants: Lubricants for industrial machinery, Maintenance and conservation of lubricating oils, Storage and Handling of lubricants, Used lubricating oil, Environment and health hazards, Disposability and Recycling, Technical regulation for lubricants, Test specifications and standards for maintenance and management of industrial lubricants including greases and used oils, Selection of optimum lubricant for given application.

RECOMMENDED BOOKS:

1. I.M. Hutchings, Tribology, "Friction and Wear of Engineering Material ", Edward Arnold.

10(2044)

- 2. Gwidon W. Stachowiak, Andrew W. Batchelor, "Engineering Tribology" Butter worth, Heinemann.
- 3. T.A. Stolarski, "Tribology in Machine Design ", Industrial Press Inc.
- 4. E.P. Bowden and Tabor. D., "Friction and Lubrication ", Heinemann Educational Books Ltd.
- 5. A. Cameron, "Basic Lubrication theory ", Longman, U.K.
- 6. M.J. Neale (Editor), "Tribology Handbook ", Newnes. Butter worth, Heinemann, U.K.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).
Programme Elective-III

	(INDUSTRIAL & PRODUCTION ENGINEERING)											
MTIP-106A			ADVANCED	WELDING PI	ROCESSES							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
	-	_	-									
3	0	0 0 3 60 40 100 3 hrs										
Objective	The main objective of the course is to impart the students with the knowledge of Welding											
-	metallurgy and welding processes.											
	Course Outcomes											
C01	To impart kno	wledge about v	various Weld	metallurgy and	d Weld arc cha	aracteristics.						
CO2	To acquaint st	udents with th	e various weld	ding power sou	urces and thei	r applications						
CO3	To impart knowed weld metal tra	wledge to stu nsfer.	dents about E	Electrode coat	ings and Meta	al transfer phe	enomenon in					
CO4	To let student	understand th	ne basics of S	Solid state we	Iding processe	es and some	of the latest					
	welding techni	ques.										

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.)

UNIT-I

WELDING METALLURGY: Introduction, Weld Metal Zone, Theory of solidification of metals and alloys, Homogeneous Nucleation, Heterogeneous Nucleation, Freezing of alloys, Epitaxial Solidification; Effect of Welding speed on Grain structure, Fusion boundary zone, Heat affected zone, Under bead zone, Grain Refined Zone, Partial transformed zone, Properties of HAZ

WELDING ARC: Definition of Arc, Structure and characteristics, Arc efficiency, arc blow, Electrical Characteristics of arc, Types of Welding Arcs, mechanism of arc initiation and maintenance, role of electrode polarity on arc behaviour and arc stability, analysis of the arc. Arc length regulation in mechanized welding processes.

UNIT-II

WELDING POWER SOURCES: Requirement of an Arc welding power sources, basic characteristics of power sources for various arc welding processes, duty cycles, Selection of a static Volt-Ampere characteristic for a welding process, AC/DC welding power source, DC rectifiers, thyristor controlled rectifiers, transistorized units, inverter systems, Mathematical Problems on Static volt ampere characteristics

UNIT-III

COATED ELECTRODES: Electrode coatings, classification of coatings of electrodes for SMAW, SAW fluxes, role of flux ingredients and shielding gases, classification of solid and flux code wires.

METAL TRANSFER & MELTING RATE: Mechanism and types of metal transfer, forces affecting metal transfer, modes of metal transfer, metal transfer in various welding processes, effective of polarity on metal transfer and melting rate.

UNIT-IV

SOLID STATE WELDING: Theory and mechanism of solid state welding, techniques and scope of friction welding, diffusion welding, cold pressure welding and ultrasonic welding, high energy rate welding, analysis of the Process.

WELDING TECHNIQUES: Technique, scope and application of the electron beam and laser welding processes, under water welding - process & problem.

RECOMMENDED BOOKS:

- 1. Raymond Sacks, -Welding: Principles & Practices II McGraw-Hill
- 2. R.S.Parmar. Welding processes & Technologyll, Khanna Publishers
- 3. R.S.Parmar, –Welding Engineering & Technologyll, Khanna Publishers
- 4. S.V. Nandkarni, -- Modern Arc Welding Technology, Oxford & IBH publishing Co.
- 5. L.M.Gourd, Principles of Welding Technology II, ELBS/ Edward Arnold.
- 6. Richard L. Little Welding & Welding Technologyll, Mc-Graw Hill.
- 7. Cary, Howard Modern Welding Technology, prentice Hall, 1998.
- 8. Rossi Welding Technologyll, Mc-Graw Hill,

Note: The paper will have a total of NINE questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

10(2047)

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-108A		ADVANCED METAL CUTTING											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time											
3	0	0 0 3 60 40 100 3 hrs											
Objective	The main obje	The main objective of the course is to impart the students with the knowledge of advanced cutting											
	tools, tools geometry, mechanisms and analysis.												
			Course Ou	tcomes									
C01	To impart know	wledge about	various fund	ctional related to t	ools geometry.								
CO2	To acquaint w	ith the analys	sis of fundam	ental factors affeo	ting tool forces								
CO3	To impart know	To impart knowledge about cutting tool life and mathematical modelling for wear.											
CO4	To let student	understand a	abrasive mad	hining and its pro	cess simulation.								

UNIT-I

Introduction system of Tool nomenclature, Tool Geometry, Mechanism of Chip formation and forces in orthogonal cutting, Merchant's force diagram.

Oblique Cutting: Normal chip reduction coefficient under oblique cutting, true shear angle, effective rake, influx region consideration for deformation, direction of maximum elongation, effect of cutting variables on chip reduction co-efficient, forces system in oblique cutting, effect of wear land on force system, force system in milling, effect of helix angle.

UNIT-II

Fundamentals of Dynamometry, Theoretical determination of forces, angle relations, heat and temperature during metal cutting; distribution, measurement, analysis, theoretical estimation of work piece temperature, hot machining

Fundamental factors, which effect tool forces: Correlation of standard mechanized test. (Abuladze –relation), nature of contact and stagnant phenomenon, rates of strains, shear strain and normal strain distributions, cutting variables on cutting forces.

UNIT-III

Cutting Tools: Tools materials analysis of plastic failure (from stability criterion), Analysis failure by brittle fracture, wear of cutting tools, criterion, flank and crater wear analysis, optimum tool life, tool life equations, (Taylor's woxenetc) Tool life test, machining optimization, predominant types of wear; abrasive, adhesive, diffusion wear models, wear measurements and techniques, Major Test of tool wear oxidative mathematical modelling for wear, test of machinability and influence of metallurgy on machinability. Economics of metal machining

UNIT-IV

Abrasive Machining: Mechanics of grinding, cutting action of grit, maximum grit chip thickness, energy and grit force temperature during grinding, wheel wear, grinding, process simulation, testing of grinding wheels, mechanics of lapping and honing, free body abrasion.

RECOMMENDED BOOKS:

- 1. Sen & Bhattacharya, Principles of Machine tools, New Central Book Agency.
- 2. Brown, Machining of Metals, Prentice Hall.
- 3. Shaw, Principles of Metal cutting, Oxford I.B.H.
- 4. Arshimov&Alekree,Metal cutting theory & Cutting tool design, MIR Publications.
- 5. Machining Science & Application by Knowenberg Longman Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-110A				Metrolo	ogy					
Lecture	Tutorial	Practical	Practical Credit Major Test Minor Test Total Tir							
3	0	0	3	60	40	100	3 hrs.			
Objective	The main objective of the course is to deal with the basic principles of dimensional measuring									
	instruments	instruments and precision measurement techniquesin achieving quality and reliability in the service of								
	any product in dimensional control.									
			Cours	se Outcomes						
C01	To underst	and the stud	entsabout the	requirement of	of metrology and the	concepts of lin	nit, fits and			
	gauges.									
CO2	To study the linear and angular measurements and the optical measurement tools and techniques.									
CO3	To underst	and how to us	e surface roug	hness and thr	ead measuring instrur	nents.				
CO4	To study th	e comparator	s, measureme	nt through con	nparators and the adv	anced metrology	concepts.			

UNIT-I

Introduction to metrology: Definition, types, need of inspection, terminologies, methods of measurement, selection of instruments, measurement errors, units, Measurement standards, calibration, statistical concepts in metrology.

Systems of Limits and Fits: Introduction, nominal size, tolerance limits, deviations, allowance, fits and their types – unilateral and bilateral tolerance system, hole and shaft basis systems – interchangeability and selective assembly. Indian standard Institution system – British standard system, International standard system for plain and screwed work.

Limit Gauges: Taylor's principle – Design of limit gauges, computer aided tolerancing.

UNIT-II

Linear Measurement:Length standard, line and end standards, slip gauges – calibration of the slip gauges, dial indicator, micrometres. Measurement of angles and tapers: Different methods – bevel protractor – angle slip gauges – spirit levels– sine bar – sine plate, rollers and spheres.

Flat Surface Measurement: Measurement of flat surfaces – instruments used – straight edges– surface plates – optical flat and auto collimator.

Optical Measuring Instruments:Tool maker's microscope and its uses, collimators, optical projector, optical flats and their uses, interferometer.

UNIT-III

Surface Roughness Measurement:Introduction, terminology, specifying roughness on drawings, surface roughness parameters, factors affecting surface roughness, ideal surface roughness, roughness measurement methods, precautions in measurement, surface microscopy, surface finish softwares.

Screw Thread Measurement: Elements of measurement – errors in screw threads – measurement of effective diameter, angle of thread and thread pitch, profile thread gauges.

Measurement through Comparators: Comparator: Features of comparators, classification of comparators, different comparators, advanced comparators, thread comparators.

UNIT-IV

Metrology of machine tools: Alignment and practical tests.

Gear Measurement:Gear measuring instruments, gear tooth profile measurement, measurement of diameter, pitch, pressure angle and tooth thickness.

Advanced Metrology: Advanced measuring machines, CNC systems, Laser vision, In-process gauging, 3D metrology, metrology softwares, Nano technology instrumentation, stage position metrology, testing and certification services,

optical system design, lens design, coating design, precision lens assembly techniques, complex opto mechanical assemblies, contact bonding and other joining technologies.

RECOMMENDED BOOKS:

- 1. K.J. Hume, Engineering Metrology, Macdonald and Co. (publisher) London.
- 2. Czichos, The Springer handbook of metrology and Testing, 2011.
- 3. Jay. L. Bucher, The Metrology Hand book, American Society for Quality, 2004.
- 4. Smith GT, Industrial Metrology, Spinger.
- 5. John W. Greve, Frank W. Wilson, Hand book of industrial metrology, PHI New Delhi.
- 6. D.M. Anthony, Engineering Metrology, Pergamon Press.
- 7. Khare MK, Dimensional Metrology, OXFORD-IBH Publishers.
- 8. I C Gupta, "Engineering Metrology", 5th Edition, DanapathRai& Co, 2008.
- 9. R.K. Jain, "Engineering Metrology". 20th Edition, Khanna Publishers, 2007.
- 10. M. Mahajan, "Engineering Metrology", DhanapatiRai publications, 2007.
- 11. BIS standards on Limits & Fits (IS 919), Surface Finish (IS 2073), Machine Tool Alignment, 1993.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Programme Elective-IV

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-112A		SEQUENCING AND SCHEDULING									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	60	40	100	3 hrs				
Objective	The main ol production ar	he main objective of the course is to impart the students with the knowledge of different roduction and machine models of sequencing and scheduling.									
	Course Outcomes										
C01	To understan	d the concept	of sequencin	g and scheduling.							
CO2	To study and	practice for the	e extension c	of basic models and	d parallel machine m	odels.					
CO3	To understar	o understand the concepts of the flow shop scheduling and practice for the flow shop scheduling									
	models.										
CO4	To understan	id the job shop	problems an	d simulation mode	Is for dynamic job sh	nop problem.					

UNIT-I

Single-Machine Sequencing: Introduction, Preliminaries, Problems without Due Dates, Problems with Due Dates **Optimization Methods for the Single-Machine Problem:** Introduction, Adjacent Pairwise Interchange Methods, A Dynamic Programming Approach, Dominance Properties, A Branch and Bound Approach.

Earliness and Tardiness Costs: Introduction, Minimizing Deviations from a Common Due Date, The Restricted Version, Asymmetric Earliness and Tardiness Costs, Quadratic Costs, Job-Dependent Costs, Distinct Due Dates, Sequencing for Stochastic Scheduling.

UNIT-II

Extensions of the Basic Model: Introduction, Non-simultaneous Arrivals, Related Jobs, Sequence-Dependent Setup Times, Stochastic Models with Sequence-Dependent Setup Times.

Parallel machine models: Introduction, Minimizing the Makespan, Minimizing Total Flow time, Stochastic Models.

UNIT-III

Flow Shop Scheduling: Introduction, Permutation Schedules, The Two-Machine Problem, Special Cases of The Three-Machine Problem, Minimizing the Makespan, Variations of the *m*-Machine Model, Stochastic flow shop scheduling.

UNIT-IV

The Job Shop Problem: Introduction, Types of Schedules, Schedule Generation, The Shifting Bottleneck Procedure, Neighborhood Search Heuristics.

Simulation Models for the Dynamic Job Shop: Introduction, Model Elements, Types of Dispatching Rules, Reducing Mean Flowtime, Meeting Due Dates.

RECOMMENDED BOOKS:

1. Michael Pinedoo, Scheduling: theory, algorithms and systems, Prentice Hall, New Delhi, 1995.

2. King, J.R. Production planning and control, Pergamon International Library, 1975.

3. Kenneth R. Baker, Introduction to sequencing and scheduling, John Wiley and Sons, 1974.

4. Kenneth R. Baker and Dan Trietsch, Principles of sequencing and scheduling, John Wiley and Sons, 2009.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-114A		QUALITY ENGINEERING AND MANAGEMENT											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
3	0	0 0 3 60 40 100 3 hrs											
Objective	The main ob	he main objective of the course is to impart the students with the knowledge of quality tools and											
	engineering for the improvement of product quality.												
			Course	Outcomes									
C01	To understan	d the statistica	I concepts of q	juality and quality s	statistics.								
CO2	To study the	To study the quality control chartsin production process and practice for its use in problem solving.											
CO3	To understan	To understand the quality improvement tools.											
CO4	To study the	ISO systems, t	failure analysis	and testing.									

Unit-I

Introduction to Quality: An Historical Overview:Defining Quality, The Total Quality System, Total Quality Management, Economics of Quality, Quality, Productivity, and Competitive Position, Quality Costs, Success Stories.

Statistics for Quality: Variability in Populations, Some Definitions, Quality vs. Variability, Section I: Empirical Methods for Describing Populations, Section II: Mathematical Models for Describing Populations, Section III: Inference of Population Quality from a Sample.

Unit-II

Quality in Design: Planning for Quality, Product Planning, Product Design, Process Design.

Quality in Production-Process Control I: Process Control, The Control Charts, Measurement Control Charts, Attribute Control Charts, Summary on Control Charts, Process Capability, Measurement System Analysis,

QualityinProduction-ProcessControlII:DerivationofLimits,Operating Characteristics of Control Charts, Measurement Control Charts for Special Situations.Control<

Unit-III

Quality in Procurement: Importance of Quality in Supplies, Establishing a Good Supplier Relationship, Choosing and Certifying Suppliers, Specifying the Supplies Completely, Auditing the Supplier, Supply Chain Optimization Using Statistical Sampling for Acceptance,

Continuous Improvement of Quality: The Need for Continuous Improvement, The Problem-Solving Methodology, Quality Improvement Tools, Lean Manufacturing.

Unit-IV

A System for Quality: The Systems Approach, Dr. Deming's System, Dr.Juran's System, Dr.Feigenbaum's System, Baldrige Award Criteria, ISO 9000 Quality Management Systems, ISO 9001:2008 Requirements, The Six Sigma System.

RECOMMENDED BOOKS:

- 1. Grant &Leaveworth, Statistical Quality Control, McGraw Hill
- 2. Duncan, Quality Control & Industrial Statistics, Irwin Press
- 3. Juran, Quality Control Handbook, McGraw Hill.
- 4. Hansen, Quality Control, Prentice Hall
- 5. Thomason, An Introduction to reliability & control, Machinery Publishing.
- 6. A.V. Taylor, Total Quality Control, McGraw-Hill
- 7. K.S.Krishnamoorthi, V. Ram Krishnamoorthi, A First Course in Quality Engineering: Integrating Statistical and Management Methods of Quality, Second Edition, CRC Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units). All questions will have equal *weight of 12 marks*.

The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-116A		RELIABILITY ENGINEERING										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3 hrs										
Objective	The main ob	he main objective of the course is to impart the students with the knowledge of reliability analysis in										
	industrial system. Students can get acquainted with different reliability calculation models.											
			Course	Outcomes								
C01	To understan	d the concept	s of reliability ir	industrial systems	δ.							
CO2	To study the	reliability deter	rmination meth	ods and advanced	evaluation technic	ques.						
CO3	To understan	To understand variousreliability prediction and evolution methods.										
CO4	To acquaint t	he fundamenta	als of reliability	management and	risk assessment.							

UNIT-I

Reliability Engineering:Reliability function,failure rate, Mean time between failures (MTBF), Mean time to failure (MTTF), mortality curve, useful life availability, maintainability, system effectiveness. Introduction to probability distributions.

Time to failure distributions: Exponential, normal, Gamma, Weibull; ranking of data, probability plotting techniques, Hazard plotting Concept of Bathtub Hazard Rate curve, Reliability evaluation of two-state device networks-series, parallel, k-out-of-m systems; Standby redundant systems, Reliability evaluation of three-state device networks-series and parallel.

UNIT-II

Reliability Determination and Prediction: Reliability Determination Methods: Network reduction technique, Path tracing technique, Decomposition technique, Delta-Star method.

Advanced Reliability Evaluation Concepts: Supplementary variables technique, Interference theory, Human reliability, Common cause failures, Fault trees, Failure mode and effect analysis

UNIT-III

Reliability Prediction Models: Series and parallel systems - RBD approach - Standby systems - m/n configuration - Application of Baye's theorem - cut and tie set method - Markov analysis - FTA - Limitations.

UNIT-IV

Reliability testing: Time acceleration factor, influence of acceleration factor in test planning, application to acceleration test, high temperature operating life acceleration model, temperature humidity bias acceleration model, temperature cycle acceleration model, vibration accelerator model, failure free accelerated test planning. Accelerated reliability growth.

Risk Assessment: Definition and measurement of risk - risk analysis techniques - risk reduction resources - industrial safety and risk assessment.

RECOMMENDED BOOKS:

1. Charles E. Ebeling, "An introduction to Reliability and Maintainability engineering", TMH, 2000.

2. Roy Billington and Ronald N. Allan, "Reliability Évaluation of Engineering Systems", Springer, 2007.

- 3. Sharma S C, Inspection Quality Control and Reliability, Khanna Publishers.
- 4. Connor P.D.T.O. Practical Reliability Engineering", John Wiley.

5. Naikan V N A Reliability Engineering and Life Testing", PHI Learning Private Limited.

6. Prabhakar Murthy D N and Marvin R, "Product Reliability", Springer-Verlag.

7. Dana Crowe and Alec Feinberg, Design for Reliability, CRC Press.

Note:The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units). All questions will have equal *weight of 12 marks*.

The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-118A		MECHATRONICS LAB										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Practical	Total	Time				
0	0	4	2	-	40	60	100	3 hrs				
Objective	To practice implications	o practice on electrical circuits, hydraulic and pneumatic systems and PLC's for their practical mplications.										
			Cou	Irse Outcom	es							
C01	To understa	nd the PLC us	ing PLC sim	ulators.								
CO2	To demonstr	o demonstrate and actuate the positioning using sensors, actuators and programming.										
CO3	To study the	o study the pneumatic and electro-pneumatic training system with simulation software.										
CO4	To design ar	nd test on hydr	aulic and pr	neumatic circ	uits.							

List of Experiments

- 1. To study and conduct exercises on PLC Simulator.
- 2. Control of conveyor manually and through programming, also programming using sensors and conveyor.
- 3. To study and conduct exercise on CNC lathe.
- 4. To study and conduct exercises on Robotic simulation software.
- 5. To study and conduct exercises on Pneumatic & Electro-Pneumatic Training System.
- 6. To study the stepper motor interface with PLC.

7. Design and testing of hydraulic circuits such as

- i) Pressure control
- ii) Flow control
- iii) Direction control

iv)Design of circuit with programmed logic sequence, using an optional PLC in hydraulic. Electro hydraulic Trainer.

8. Design and testing of pneumatic circuits such as

- i. Pressure control
- ii. Flow control
- iii. Direction control
- iv. Circuits with logic controls
- v. Circuits with timers
- vi. Circuits with multiple cylinder sequences in Pneumatic Electro pneumatic Trainer.
- 9. To perform exercises on process control trainer.

Note: At least eight experiments should be performed from the above list.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-120A			IN	idustrial '	TRIBOLOG	(LAB						
Lecture	Tutorial	TutorialPracticalCreditMajorMinorPracticalTotalTimeTestTestTestTestTestTestTest										
0	0	4	2	-	40	60	100	3 hrs				
Objective	To study fr conditions u	study friction, wear mechanism of materials and performance of lubricants under various test inditions using concepts, methods and application of Industrial Tribology.										
		Course Outcomes										
C01	Students with between me	ill be able to etallic, ceramic	explain the and polymer	friction phe	nomena an	d different wea	r processes i	n contacts				
CO2	Students will properties of	tudents will be able to determine different types of lubricants, their grades, test standards and different roperties of lubricants.										
CO3	Students wil	I be able to un	derstand the	causes of tr	ibological fai	lures and surfac	e characteriza	ation.				
CO4	Students wil	I be able to us	e different ty	pes of tribo-t	est equipme	nts and design o	of wear and frid	ction test.				

List of Experiments

- 1. To study the friction and wear properties of a specimen (metallic/polymeric/ceramic surfaces) using wear and friction monitoring apparatus under dry sliding conditions.
- 2. To study the friction and wear properties of a specimen (metallic/polymeric/ceramic surfaces) using wear and friction monitoring apparatus under wet sliding conditions.
- 3. To study the effect of temperature on the friction and wear performance of composite materials using high temperature pin/ball on disc tester.
- 4. To study the variation of viscosity of lubricants with temperature.
- 5. To evaluate the wear and extreme pressure properties of a lubricating oil/ grease using four ball tester.
- 6. To study the surface characterization of wear components.
- 7. To study different types of industrial abrasives materials, properties and applications.
- 8. To determine abrasion index of a material with the help of dry abrasion test rig.
- 9. To access the adhesion and scratch resistance of surface coatings (hard or soft) using Scratch Tester.
- 10. To determine the erosive wear rate of different materials using Air Jet Erosion Tester under different conditions.
- 11. To demonstrate the pressure distribution of a lubricant in a journal bearing.

Note: At least eight experiments should be performed from the above list.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTIP-122A		•		MINI PROJ	IECT					
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Practical	Total	Time (Hrs.)		
0	0	4	2	-	-	100	100	3		
Objective	In case of m or fabricate	In case of mini project, they will solve a live problem using software/analytical/computational tools or fabricate an experimental setup.								
			Course O	utcomes						
CO 1	Students wi	Students will learn to write technical reports.								
CO 2	Students w audience.	ill develop ski	lls to preser	it and defend	d their work	in front of te	echnically (qualified		

Students can take up small problems in the field of Industrialand Production engineering as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

Students will be required to submit a brief synopsis of 3-4 pages related to the topic by the first week of September.

Audit Course-II

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTAD- 102A	CONSTITUTION OF INDIA											
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)					
				Test	Test							
2	0	0	-	-	100	100	3					
Objective	The main objective of the course is to impart the students with the knowledge of informing the											
	twin themes	twin themes of liberty and freedom from a civil rights perspective and to address the growth of										
	Indian opinio	ndian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil										
	and economic rights as well as the emergence of nationhood in the early years of Indian											
	nationalism.											
		(Course Outc	omes								
C01	To discuss	the growth of th	ne demand fo	or civil rights	in India for th	e bulk of Indi	ans before the					
	arrival of Ga	ndhi in Indian p	olitics.									
CO2	To discuss	the intellectu	ial origins	of the frame	ework of arg	gument that	informed the					
	conceptualiz	ation of social r	eforms leadi	ng to revolutio	on in India.							
CO3	To discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP]											
	under the le	eadership of Ja	waharlal Ne	hru and the	eventual failu	re of the pro	posal of direct					
	elections thr	ough adult suffr	age in the In	dian Constitut	tion.		-					
CO4	To discuss t	he passage of t	he Hindu Co	de Bill of 1956	<i>б</i> .							

Unit-I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit-II

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit-III

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Pachayati raj: Introduction, PRI: ZilaPachayat, Elected officials and their roles, CEO ZilaPachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit-IV

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar, "framing of Indian Constitution", 1st Edition, 2015.
- 3. M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTAD-104A	PEDAGOGY STUDIES										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
2	0	0	-	-	100	100	3				
Objective	The main objective of the course is to review existing evidence on the review topic to inform										
	programme design and policy making undertaken by the DfID, other agencies and researchers										
	and Identify critical evidence gaps to guide the development.										
	Course Outcomes										
C01	Understand	the pedagog	jical practice	s being use	d by teache	rs in fori	mal and informal				
	classrooms	in developing of	countries.								
CO2	Become aware of the evidence on the effectiveness of these pedagogical practices, in different										
	conditions and with different population of learners.										
CO3	Understand	the significant	ce of teacher	education (c	urriculum and	l practicur	n) and the school				
	curriculum a	and guidance m	naterials for ef	fective pedag	ogy.						

Unit-I

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education, Conceptual framework, Research questions. Overview of methodology and Searching.

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries, Curriculum, Teacher education.

Unit-II

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

Unit-III

Professional development: alignment with classroom practices and follow-up support, Peer support

Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

Unit-IV

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education

Curriculum and assessment, Dissemination and research impact.

- 1. Ackers J, Hardman F, "Classroom interaction in Kenyan primary schools", Compare, 31 (2): 245-261.
- 2. Agrawal M, "Curricular reform in schools: The importance of evaluation", Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K, "Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J, "Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count?" International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ, "Culture and pedagogy: International comparisons in primary education". Oxford and Boston: Blackwell.
- 6. Chavan M, "Read India: A mass scale, rapid, 'learning to read' campaign"

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

MTAD-106A		S	FRESS MAN	AGEMENT B	SY YOGA					
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time			
				Test	Test		(Hrs.)			
2	0	0	-	-	100	100	3			
Objective	The main of	pjective of the a	course is to a	achieve overa	all health of b	ody and m	ind and to			
-	overcome st	overcome stress								
		Cou	rse Outcome	es						
C01	Develop he	ealthy mind in a	healthy body	thus improvi	ng social hea	lth.				
CO2	Improve eff	ficiency								
CO3	Learn the Y	'ogasan								
CO4	Learn the F	Pranayam								

Unit-I

Definitions of Eight parts of yog. (Ashtanga)

Unit-II

Yam and Niyam. Do's and Don't's in life.

i) Ahinsa, satya, astheya, bramhacharya and aparigraha ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

Unit-III

Asan and Pranayam

i) Various yog poses and their benefits for mind & body ii) Regularization of breathing techniques and its effects-Types of pranayam

- 1. Janardan Swami YogabhyasiMandal, "Yogic Asanas for Group Tarining-Part-I" : Nagpur
- 2. Swami Vivekananda, "Rajayoga or conquering the Internal Nature" AdvaitaAshrama (Publication Department), Kolkata

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (INDUSTRIAL & PRODUCTION ENGINEERING)

	Т											
MTAD-108A		PERSONALITY DEVELOPMENT THROUGH LIFE										
		ENLIGHTENMENT SKILLS										
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time										
				Test	Test		(Hrs.)					
2	0	0 0 100 100 3										
Objective	To learn ho	To learn how to achieve the highest goal happily.										
-	To become	To become a person with stable mind, pleasing personality and determination.										
	To awaken	wisdom in stud	ents.		-							
		Cou	Irse Outcom	es								
C01	Students b	ecome aware a	about leaders	hip.								
CO2	Students w	Students will learn how to improve communication skills										
CO3	Understand	Understand the team building and conflict										
CO4	Student wil	I learn how to	manage the ti	me.								

Neetisatakam-Holistic development of personality

- i) Verses- 19,20,21,22 (wisdom)
- ii) Verses- 29,31,32 (pride & heroism)
- iii) Verses- 26,28,63,65 (virtue)
- iv) Verses- 52,53,59 (dont's)
- v) Verses- 71,73,75,78 (do's)

Approach to day to day work and duties.

ShrimadBhagwadGeeta: Chapter 2-Verses 41, 47, 48, Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5, 13, 17, 23, 35, Chapter 18-Verses 45, 46, 48.

Statements of basic knowledge.

ShrimadBhagwadGeeta: Chapter2-Verses 56, 62, 68

Chapter 12 - Verses 13, 14, 15, 16, 17, 18

Personality of Role model. ShrimadBhagwadGeeta:

Chapter 2-Verses 17,

Chapter 3-Verses 36,37,42,

Chapter 4-Verses 18, 38, 39

Chapter18 - Verses 37,38,63

- 1. Swami Swarupananda, "Srimad Bhagavad Gita" Advaita Ashram (PublicationDepartment), Kolkata
- 2. P.Gopinath, "Bhartrihari's Three Satakam (Niti-sringar-vairagya) by, Rashtriya Sanskrit Sansthanam, New Delhi.

Third Semester (Programme Elective-V)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING(3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

MTIP-201A	ENTERPRISE RESOURCE PLANNING											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3										
Objective	The main obj applications to technology, se	The main objective of the course is to impart the students with the knowledge of integrated applications to manage the business and automate many back office functions related to technology, services and human resources.										
	•		Course Ou	utcomes								
C01	To study the b	asic principles	and models (of an enterprise.								
CO2	To understand the concepts of technology and architecture in ERP.											
CO3	To study ERP	To study ERP system packages.										
CO4	To study the E	RP procureme	ent issues.									

UNIT I

ENTERPRISE RESOURCE PLANNING:

Introduction, Evolution of ERP, Principle of ERP, Enabling Technologies, ERP Characteristics, Features of ERP, The advantages of ERP, Reasons for the Failure of ERP Implementation, Risk and governance issues in an ERP, ERP Framework, Business Blueprint, Business Engineering Vs. Business Process Re-Engineering, ERP Tools and Software, Demand Chain, Value Chain, and Supply Chain.

UNIT-II

ERP ARCHITECTURE: Need to Study ERP Architecture, Layered Architecture, Types of ERP Architecture, Two-tier Implementations, Three-tier Client/Server Implementations, Web-based architecture, Service-Oriented Architectures, Logical Architecture of an ERP System, Physical Architecture of an ERP System, and Evaluation Framework for ERP Acquisition.

UNIT III

ERP PACKAGE INTEGRATION AND IMPLEMENTATION: ERP market, SAP, People soft, BAAN company, ORACLE corporation, A comparative assessment and selection of ERP packages and modules, Sales Force Automation, Integration of ERP, Integration of ERP and the Internet, ERP implementation strategies, Comparison of Big Bang vs. Phased Approach, Implementation Strategy in Small and Medium Enterprise, Post Implementation Issues.

UNIT IV

OVERVIEW OF ARCHITECTURE OF DIFFERENT ERP SOFTWARES: Oracle overview, Architecture, A.I.M. and applications, SAP Software architecture overview, ERP before and after Y2K, Impact of Y2K on ERP Development, Risk and Governance Issues in an ERP

ERP MODULES: Finance module, Sales & Distribution module, Human Resources module, Plant Maintenance module, Quality Management module, Material management module, manufacturing management module.

RECOMMENDED BOOKS:

- 1. Sadagopan. S, ERP-A Managerial Perspective, Tata Mcgraw Hill, 1999.
- 2. Jose Antonio Fernandez, the SAP R/3 Handbook, Tata Mcgraw Hill, 1998.
- 3. Vinod Kumar Crag and N.K. Venkitakrishnan, Enterprise Resource Planning- Concepts and Practice, Prentice Hall of India, 1998.
- 4. Garg &Venkitakrishnan, ERPWARE, ERP Implementation Framework, Prentice Hall, 1999.
- 5. Thomas E Vollmann and BeryWhybark, Manufacturing and Control Systems, Galgothia Publications, 1998.
- 6.Alexis Leon, Enterprise resource planning, Tata Mcgraw-Hill

Note: Thepaperwillhaveatotalof *NINEquestions*. Question No.1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all FourUnits).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING(3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

MTIP-203A		DESIGN OF EXPERIMENTS											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
3	0	0 0 3 60 40 100 3 hrs											
Objective	To understand	To understand the various design of experiments techniques for optimization of problems.											
			Course Outo	comes									
C01	To understand th	he concepts of	Design of E	xperiment an	nd statistical N	lethods.							
CO2	To understand the	o understand the ANOVA and factorial design and fitting response curves and surfaces.											
CO3	To study the app	o study the application of Taguchi Method and testing of hypothesis											
CO4	To study and im	o study and implement the Response Surface Methodology.											

UNIT-I

IntroductiontoDesignedExperiments:

Introduction, Strategyofexperimentation, Sometypical applications of experimental design, Basic principles, Guidelines for designing experiments, Using statistical design in experimentation, A Checklist for Planning experiments, Introduction to Minitab, Interface of Minitab, Customizing Minitab, Entering Data, Graphing Data, Printing Data and Graphs, Saving and Retrieving information.

Basic Statistical Methods: Introduction, Basic statistical concepts, Types of Data, Graphical Presentation of Data. Descriptive Statistics: Measure of Location, Measure of Variation, The Normal Distribution, Counting, Minitab Commands to Calculate Descriptive Statistics.

Inferential Statistics: The Distribution of Sample Means (R Known), Confidence Interval for the Population Mean (σ Known), Hypothesis testing for one sample mean (σ Known), Hypothesis test for two sample means, Testing for Normality, Hypothesis test and Confidence Intervals with Minitab.

UNIT-II

Analysis of Variance: Introduction to Analysis of Variance, ANOVA assumptions and Validation, ANOVA Table, The sum of square approach to ANOVA calculations, Analysis of the fixed Effect model, Decomposition of the Total sum of squares. Statistical analysis, Estimation of the Model Parameters, Unbalanced Data, Model Accuracy Check, Practical interpretation of results. *ANOVA with Minitab*

Factorial Experiments: Basic definition and principles, Advantages of factorials, Two level factorial design, The 2¹ Factorial Experiment, The 2² Factorial Experiment, The 2³ Factorial Design, Addition of Centre Cells to 2^k Designs. General Procedure for Analysis of 2^k designs. 2^k Factorial Designs in Minitab.

UNIT-III

Introduction to Taguchi Method: Introduction, Taguchi Quality Ioss function, Orthogonal Array, Properties of Orthogonal Array, Minimum number of experiments to be conducted, Static Problems, Dynamic Problems, Assumptions of the Taguchi method, Steps in Taguchi Method, Assessment of Factors and Interactions, Selection and Application of Orthogonal arrays, Data Analysis from Taguchi Experiments, Variable Data with main factors only, Variable Data with Interactions, Attribute Data Analysis, Confirmation Experiment, Confidence Intervals, Robust Design Approach. *Applications of Taguchi Method using Minitab.*

UNIT-IV

Introduction to Response Surface Methodology: Introduction, Terms in Quadratic Models, The method of steepest ascent, Analysis of Second order response surfaces, Experimental design for fitting response surfaces, 2k Designs with Centers, 3^k Factorial Designs, Box- Behnken Designs, Central Composite Designs, Analysis of Data from RSM Designs, Design Considerations for Response Surface Experiments. *Response Surface Designs in Minitab.*

- 1. Douglas C Montgomery, Design and Analysis of Experiments, John Wiley
- 2. Paul G. Mathews, Design of Experiments with MINITAB, New Age International Publishers.
- 3. K. Krishnaiah, P. Shahabudeen, Applied Design of Experiments and Taguchi Methods, PHI.

- 4. Angela Dean and Daniel Voss, Design and Analysis of Experiments, Springer.
- 5. John P.W.M., Statistical Design and Analysis of Experiments, John Wiley
- 6. Montgomery D.C., Runger G. C., Introduction to Linear Regression Analysis, John Wiley
- 7. Myres R.H. and Montgomery D.C., Response Surface Methodology Process and Product Optimization Using Designed Experiments, Wiley
- 8. G UNIPUB, White Plains, Introduction to Quality Engineering Taguchi, New York.
- 9. https://www.ee.iitb.ac.in/~apte/CV_PRA_TAGUCHI_INTRO.htm
- 10. www.ecs.umass.edu/mie/labs/mda/fea/sankar/chap2.html

Note:Thepaperwillhaveatotalof*NINEquestions*.QuestionNo.1, which is compulsory, shall be Objective Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING(3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

MTIP-205A		STRATEGIC ENTREPRENEURSHIP										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3 hrs										
Objective	To provide programme	To provide knowledge to the students about entrepreneurship concepts and various development programmeand policies.										
			Cours	e Outcomes								
C01	To know a	bout the sma	II scale indus	stries, scopes and	the causes of their	sickness.						
CO2	To know a	To know about the EDP and different government policies.										
CO3	To learn a	o learn about business incubations and its future perspectives.										
CO4	To learn E	-business ma	rketing and o	developments.								

UNIT-I

Small Scale Industries: Definition and types of SSI's; Role, scope and performance in national economy; Problems of small scale industries.

Industrial Sickness: Definition; Causes of sickness; Indian scenario, Government help; Management strategies; Need for trained entrepreneurs

UNIT-II

Entrepreneurship Development Programme: Introduction, Origin of EDP's , Organizations involved in EDP's, Objectives of EDPs, Implementation of EDP's, Short comings of EDP's, Role in entrepreneurship development.

Step: Introduction, Origin, Status in India, Success and failure factors, Govt. polices and incentives, future prospects in India.

UNIT-III

Business Incubation: Introduction, Origin and development of business incubators in India and other countries, types of incubators, success parameters for a business incubator, Benefits to industries, institutes, government and society, future prospects, A few case studies (at least 2).

Project Management: Concept, Characteristics and Significance of Project Management, Components of Project Management, Project Life Cycle, Project Identification and Selection, Project Formulation and Appraisal.

UNIT-IV

Special Aspects of Entrepreneurship: Entrepreneurship, Social entrepreneurship, International entrepreneurship, Rural entrepreneurship, Community Development, Women entrepreneurship.

Network Marketing: Introduction, E-business, E-commerce, E-auction, A basic internet e-business architecture, A multitier e-business architecture.

RECOMMENDED BOOKS:

- 1. P.K. Gupta, Strategic Entrepreneurship, Everest Publishing House.
- 2. David Cleland, Project Management Strategic Design and Implementation, McGraw Hill.
- 3. David H Holl, Entrepreneurship-New Venture Creation, Prentice Hall of India.
- 4. Steed & Steed, Sustainable Strategic Management, Prentice Hall of India.
- 5. Kotler, Marketing Management by Prentice Hall of India.
- 6. TarekKhalil,Management of Technology, McGraw Hill.
- 7. Henry Steiner, Engineering Economic Principles, McGraw Hill.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

Open Elective

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING(3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

MTOE-201A		BUSINESS ANALYTICS											
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)						
3	0	0	3	60	40	100	3						
Objective	The main ob	The main objective of this course is to give the student a comprehensive understanding of											
-	business an	alytics methods	S		-		-						
		(Course Outc	omes									
CO1	Able to have	e knowledge of	various busin	ess analysis	techniques.								
CO2	Learn the re	Learn the requirement specification and transforming the requirement into different models.											
CO3	Learn the re	Learn the requirement representation and managing requirement assets.											
CO4	Learn the R	ecent Trends in	Embedded a	nd collaborat	tive business								

Unit-I

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

Unit-II

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents. Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

Unit-III

Finalizing Requirements, Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements, Managing Requirements Assets: Change Control, Requirements Tools

Unit-IV

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

RECOMMENDED BOOKS:

- 1. James Cadle, "Business Analysis", BCS, The Chartered Institute for IT.
- 2. Erik Larson and, Clifford Gray, "Project Management: The Managerial Process", McGraw-Hill Education.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING(3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

MTOE-203A		INDUSTRIAL SAFETY										
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time (Hr										
				Test	Test							
3	0	0	3	60	40	100	3					
Objective	The main o	The main objective of this course is to aware students about the industrial safety maintenance										
-	and fault fin	and fault findings.										
		(Course Outo	comes								
C01	Understand	the industrial sa	afety.									
CO2	Analyze fun	Analyze fundamentals of maintenance engineering.										
CO3	Understand	Understand the wear and corrosion and fault tracing.										
CO4	Understand	ing when to do p	periodic ince	ptions and ap	oply the prever	nting maint	enance.					

Unit-I

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-II

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion, Types of corrosion, Corrosion prevention methods.

Unit-III

Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-IV

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

RECOMMENDED BOOKS:

- 1. Higgins & Morrow, "Maintenance Engineering Handbook", Da Information Services.
- 2. H. P. Garg, "Maintenance Engineering", S. Chand and Company.
- 3. Audels, "Pump-hydraulic Compressors", Mcgraw Hill Publication.
- 4. Winterkorn, Hans, "Foundation Engineering Handbook", Chapman & Hall London.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING(3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

MTOE-205A		OPERATIONS RESEARCH										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)					
				Test	Test							
3	0	0	3	60	40	100	3					
Objective	The main of problems of it.	The main objective of this course is to aware students about the dynamic programming to solve problems of discrete and continuous variables and model the real world problem and simulate it.										
		(Course Out	comes								
C01	Students sh continuous	ould be able to variables.	apply the d	ynamic prog	ramming to sc	lve proble	ms of discreet and					
CO2	Students sh	ould be able to	apply the co	ncept of non	n-linear program	nming						
CO3	Students sh	ould be able to	carry out sei	nsitivity anal	ysis							
CO4	Student sho	uld be able to n	nodel the rea	I world prob	lem and simula	ate it.						

Unit-I

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit-II

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit-III

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit-IV

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

RECOMMENDED BOOKS:

- 1. H.A. Taha, "Operations Research, An Introduction", PHI, 2008
- 2. H.M. Wagner, "Principles of Operations Research", PHI, Delhi, 1982.
- 3. J.C. Pant, "Introduction to Optimisation: Operations Research", Jain Brothers, Delhi, 2008
- 4. Hitler Libermann, "Operations Research", McGraw Hill Pub. 2009
- 5. Pannerselvam, "Operations Research", Prentice Hall of India 2010
- 6. Harvey M Wagner, "Principles of Operations Research", Prentice Hall of India 2010

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING(3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

MTOE-207A		COST MANAGEMENT OF ENGINEERING PROJECTS											
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)						
3	0	0	3	60	40	100	3						
Objective	The main o	The main objective of this course is to impart the students with the knowledge of cost											
	managemer	management for the engineering project and apply cost models to the real world projects.											
		(Course Outco	mes									
C01	Students sh	ould be able to	learn the stra	tegic cost ma	nagement pro	ocess.							
CO2	Students sh	Students should be able to understand types of project and project team types											
CO3	Students sh	ould be able to	carry out Cos	t Behavior ar	nd Profit Plani	ning analys	sis.						
CO4	Student sho	uld be able to I	earn the quar	titative techn	iques for cost	managem	ent.						

Unit-I

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making, relevant cost, Differential cost, Incremental cost and Opportunity cost, Objectives of a Costing System, Inventory valuation, Creation of a Database for operational control, Provision of data for Decision-Making.

Unit-II

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning, Project execution as conglomeration of technical and nontechnical activities, Detailed Engineering activities, Pre project execution main clearances and documents Project team, Role of each member, Importance Project site, Data required with significance, Project contracts, Types and contents, Project execution Project cost control, Bar charts and Network diagram, Project commissioning, mechanical and process.

Unit-III

Cost Behavior and Profit Planning Marginal Costing, Distinction between Marginal Costing and Absorption Costing, Break-even Analysis, Cost-Volume-Profit Analysis, Various decision-making problems, Standard Costing and Variance Analysis, Pricing strategies, Pareto Analysis, Target costing, Life Cycle Costing, Costing of service sector, Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints, Activity Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis, Budgetary Control, Flexible Budgets, Performance budgets, Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit-IV

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

RECOMMENDED BOOKS:

1. Charles Thomas Horngren, "Cost Accounting a Managerial Emphasis", Prentice Hall of India, New Delhi

- 2. Charles T. Horngren and George Foster, "Advanced Management Accounting"
- 3. Robert S Kaplan Anthony A. Alkinson, "Management & Cost Accounting"
- 4. Ashish K. Bhattacharya, "Principles & Practices of Cost Accounting", A. H. Wheeler publisher
- 5. N.D. Vohra, "Quantitative Techniques in Management", Tata McGraw Hill Book Co. Ltd.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING(3rd semester) (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

MTOE-209A	COMPOSITE MATERIALS											
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)					
3	0	0	3	60	40	100	3					
Objective	The main objective of this course is to impart the students with the knowledge of composites,											
	its materials, analysis, fabrication, and performance analysis.											
			Course Outc	omes								
C01	Students sh	ould be able to	learn the clas	sification and	l characteristi	ics of comp	osite materials.					
CO2	Students sh matrix comp	ould be able t	o understand	about differe	nt fabrication	technique	s related to metal					
CO3	Students should be able to understand about different fabrication techniques related to polymer matrix composites.											
CO4	Student sho conditions.	ould be able to	do the analy	ses of the co	mposite mate	erials unde	r different loading					

UNIT-I

INTRODUCTION: Definition – Classification and characteristics of Composite materials, Advantages and application of composites, Functional requirements of reinforcement and matrix, Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures, Iso-strain and Iso-stress conditions.

UNIT – II

Manufacturing of Metal Matrix Composites: Casting, Solid State diffusion technique, Cladding, Hot iso static pressing, Properties and applications.

Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration, Liquid phase sintering, Manufacturing of Carbon, Carbon composites, Knitting, Braiding, Weaving. Properties and applications.

UNIT-III

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs, hand layup method, Autoclave method, Filament winding method, Compression moulding, Reaction injection moulding, Properties and applications.

UNIT – IV

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hydrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

RECOMMENDED BOOKS:

- 1. R.W.Cahn, "Material Science and Technology" VCH, West Germany.
- 2. WD Callister, Jr, "Materials Science and Engineering, An introduction"
- 3. Balasubramaniam, "John Wiley & Sons", NY, Indian edition, 2007.
- 4. Lubin, "Hand Book of Composite Materials"
- 5. K.K.Chawla, "Composite Materials"
- 6. Deborah D.L. Chung, "Composite Materials Science and Applications"
- 7. Danial Gay, Suong V. Hoa, and Stephen W. Tasi, "Composite Materials Design and Applications"

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING(3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

MTOE-211A		WASTE TO ENERGY										
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)					
3	0	0	3	60	40	100	3					
Objective	The main objective of this course is to impart the students with the knowledge of generation of											
-	energy from the waste.											
		(Course Outc	omes								
C01	Students sh	ould be able to	learn the clas	sification of v	vaste as a fue	el and biom	ass pyrolysis.					
CO2	Students sh	ould be able to	learn gasifica	tion process	and different	types of ga	sifiers.					
CO3	Students should be able to learn different combustors for biomass.											
CO4	Student sho	ould be able to	learn the B	iogas plant t	echnology dif	ferent bior	mass conversions					
	processes for	or different appli	ications.									

Unit-I

Introduction to Energy from Waste: Classification of waste as fuel, Agro based, Forest residue, Industrial waste, MSW, Conversion devices, Incinerators, gasifiers, digestors.

Biomass Pyrolysis: Pyrolysis, Types, slow fast, Manufacture of charcoal, Methods, Yields and application, Manufacture of pyrolytic oils and gases, yields and applications.

Unit-II

Biomass Gasification: Gasifiers, Fixed bed system, Downdraft and updraft gasifies, Fluidized bed gasifiers, Design, construction and operation, Gasifier burner arrangement for thermal heating, Gasifier engine arrangement and electrical power, Equilibrium and kinetic consideration in gasifier operation.

Unit-III

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-IV

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system -Design and constructional features - Biomass resources and their classification - Biomass conversion processes -Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

RECOMMENDED BOOKS:

1. Desai, Ashok V, "Non-Conventional Energy", Wiley Eastern Ltd., 1990.

2. Khandelwal, K. C. and Mahdi, S. S., "Biogas Technology - A Practical Hand Book - Vol. I & II", Tata McGraw Hill Publishing Co. Ltd., 1983.

3. Challal, D. S, "Food, Feed and Fuel from Biomass", IBH Publishing Co. Pvt. Ltd., 1991.

4. C. Y. WereKo-Brobby and E. B. Hagan, "Biomass Conversion and Technology", John Wiley & Sons, 1996.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING(3rd semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

MTIP-207A	DISSERTATION PHASE – I										
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time (Hrs.)			
				Test	Test	Marks					
0	0	20	10	-	100	-	100	-			
Objective	The main objective of this course is to plan a research work (which includes the problem										
	formulation/	literature reviev	v, proposed	objectives,	proposed	methodologies	and refe	rences) in the			
	field of Indus	field of Industrial and Production Engineering or interrelated fields of applications.									
Course Outcomes											
CO 1	Students wil	Students will be exposed to various self-learning topics.									
CO 2	Students v	vill be expos	ed to an	exhaustive	e survey	of the litera	iture suc	h as books,			
	national/inte	rnational refere	ed journals,	resource	persons an	id industrial su	urveys for	the selection/			
	identification	n of engineering	/research pro	oblem.							
CO 3	Students wil	I be able to set	the research	objectives	of the ident	ified engineerir	ng/researc	h problem.			
CO 4	Students wi	ll learn modern	tools/techniq	ues related	l to the ider	ntified engineer	ing/resear	ch problem for			
	the solution	and able to lear	n technical r	eport writing	g skills.						
CO 5	Students wil	l develop oral a	nd written co	ommunicatio	on skills to p	present and de	fend their	work in front of			
	technically o	qualified audiend	ce.								

The students will start their research work in third semester with a research problem having research potential involving scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution.

The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his/her supervisor and the topic of dissertation must be mutually decided by the supervisor and student.

The students will be required to submit a progress report related to their dissertation work by the end of September. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.

The progress report must be at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The students will be required to appear for comprehensive Seminar & Viva-voce and submit a synopsis report based on their progress related to the dissertation as per the presentation date mentioned in the academic calendar for the session. The synopsis report will be submitted in the same format as that of the thesis and will contain the following:

- 1. Introduction
- 2. Literature Survey
- 3. Gaps in Literature
- 4. Objectives of the Proposed Work
- 5. Methodology
- 6. References

* Student will choose his/her guide in the end of second semester.

10(2075)

Fourth Semester

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING(4th semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

MTIP-202A	DISSERTATION PHASE -II										
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time (Hrs.)			
				Test	Test						
0	0	32	16	-	100	200	300	-			
Objective	The main	objective of t	ne course is	s to make t	he studen	ts able to do s	some goo	d research in			
-	the field o	f their intere	sts related	to Industri	al and Pro	duction Engi	neering o	or interrelated			
	fields of ap	oplications.									
			Cours	e Outcom	es						
CO 1	Students v	will be able to	o design so	lutions for	engineerir	ng problems t	hat meet	the specified			
	needs with	n appropriate	consideratio	ons.							
CO 2	Students v	Students will be able to conduct investigations of engineering problems using research-									
	based know	owledge and	experimen	tal/researc	h method	s including d	lesign of	experiments,			
	analysis a	and interpreta	ation of da	ta, and s	ynthesis c	of the inform	ation to	provide valid			
	conclusion	IS.									
CO 3	Students v	vill be able to	apply reso	urces and	modern er	ngineering too	ols and te	chniques with			
	an underst	tanding of the	limitations.								
CO 4	Students	will be able	to either	work in a	a researcl	h environmer	nt or in	an industrial			
	environme	environment.									
CO 5	Students v	Students will be conversant with technical report writing, professional ethics, responsibilities									
	and norms	of the engin	eering pract	ice.							
CO 6	Students	will be able	to present	and conv	ince their	topic of stu	dy to the	e engineering			
	community	/ .									

The students are required to continue Analytical/Experimental/Computational/Industrial Problems or Case studies investigations in the field of Industrial and Production Engineering or other related fields which have been finalized in the third semester. They would be working under the supervision of a faculty member.

The students will be required to submit a progress report duly signed by their respective supervisors to the department, related to their dissertation work in the last week of March. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.
- References

The progress report must be of at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The candidate has to prepare a detailed dissertation report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up/numerical details/industrial case study etc. as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study.

The final dissertation will be submitted in the end of semester as per academic calendar for the session, which will be evaluated by internal as well as external examiners based upon his/her research work. At least one publication is expected before final submission of the dissertation from every student in peer reviewed referred journals or reputed conference from the work done by them in their dissertation. The dissertation should be presented in standard format as provided by the department.

The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a supervisor, co-supervisor etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his supervisor.

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Established by the State Legislature Act XII of 1956

('A+' Grade, NAAC Accredited)

MASTER OF TECHNOLOGYINMECHANICAL ENGINEERING

(CREDIT BASED)(w. e. f. 2018-19) SPECIALIZATION: MECHANICAL ENGINEERING

SEMESTER-1

Sr. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTME-101	Industrial Engineering & Ergonomics	3	0	0	3	3	60	40	-	100	3
2	MTIP-103A	Computer Aided Design and Manufacturing	3	0	0	3	3	60	40	-	100	3
3		*Programme Elective-I	3	0	0	3	3	60	40	-	100	3
4		**Programme Elective- II	3	0	0	3	3	60	40	-	100	3
5	MTRM-111A	Research Methodology and IPR	2	0	0	2	2	60	40	-	100	3
6	MTME-103	Industrial Engineering Lab	0	0	4	4	2	-	40	60	100	3
7	MTIP-119A	Computer Aided Design and Manufacturing Lab	0	0	4	4	2	-	40	60	100	3
8		***Audit Course-I	2	0	0	2	-	-	100		100	3
				Tot	al	24	18	300	280	120	700	

	*PROGRAMME ELECTIVE- I for MTME 1 st Semester									
1.	MTIP-105A	Tool Engineering								
2.	MTIP-107A	Advanced Engineering Materials								
3.	MTIP-109A	Non – Conventional Machining								

	**PROGRAMME ELECTIVE- II for MTME 1 st Semester									
1.	MTIP-111A	Product Design and Development								
2.	MTIP-113A	Simulation of Industrial Systems								
3.	MTIP-115A	Supply Chain Management								

	AUDIT COURSE – I for MTME 1 st Semester									
1.	1. MTAD-101A English for Research Paper Writing									
2.	MTAD-103A	Disaster Management								
3.	MTAD-105A	Sanskrit for Technical Knowledge								
4.	MTAD-107A	Value Education								

Note: 1. The course of program elective will be offered at $1/3^{rd}$ or 6 numbers of students (whichever is smaller) strength of the class.

2. ***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

3. The programme elective I & II and Audit course-I are common with M. Tech. (I&P). The course starts with MTIP code is common with M. Tech. (I&P)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MECHANICAL ENGINEERING SEMESTER-II

S No	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTME-102	Operation Research & Optimization Techniques	3	0	0	3	3	60	40	-	100	3
2	MTME-104	Refrigeration & Cryogenics	3	0	0	3	3	60	40	-	100	3
3		*Programme Elective-III	3	0	0	3	3	60	40	-	100	3
4		**Programme Elective-IV	3	0	0	3	3	60	40	-	100	3
5	MTME -106	Advance Welding Lab	0	0	4	4	2	-	40	60	100	3
6	MTME-108	Refrigeration & Cryogenics Lab	0	0	4	4	2	-	40	60	100	3
7	MTME-110	Mini Project	0	0	4	4	2	-	-	100	100	3
8		***Audit Course- II	2	0 To	0 otal	2 26	- 18	- 240	100 240	- 220	100 700	3

	*PROGRAMME ELECTIVE-II for MTME 2 nd Semester								
1.	1. MTIP-106A Advanced Welding Processes								
2.	MTIP-108A	Advanced Metal Cutting							
3.	MTIP- 110A	Metrology							

	**PROGRAMME ELECTIVE - IV for MTME 2 nd Semester									
1.	1. MTIP-112A Sequencing and Scheduling									
2.	MTIP-114A	Quality Engineering and Management								
3.	MTIP-116A	Reliability Engineering								

	AUDIT COURSE-II for MTME 2 nd Semester									
1.	MTAD-102A	Constitution of India								
2.	MTAD-104A Pedagogy Studies									
3.	MTAD-106A	Stress Management by Yoga								
4.	MTAD-108A	Personality Development through Life Enlightenment Skills								

Note: 1.The course of program elective will be offered at $1/3^{rd}$ or 6 numbers of students (whichever is smaller) strength of the class.

2. ***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

3. The programme elective III& IV and Audit course-II are common with M. Tech. (I&P). The course starts with MTIP code is common with M. Tech. (I&P)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: MECHANICAL ENGINEERING <u>SEMESTER-III</u>

Sr. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1		*Programme Elective-V	3	0	0	3	3	60	40	-	100	3
2		**Open Elective	3	0	0	3	3	60	40	-	100	3
3	MTME-201	Dissertation Phase-I	0	0	20	20	10	-	100	-	100	
	•			Т	otal	26	16	120	180		300	

	*PROGRAMME ELECTIVE-V for MTME 3 rd Semester									
1.	MTIP-201A Enterprise Resource Planning									
2.	MTIP-203A	Design of Experiments								
3.	MTME-205A	Strategic Entrepreneurship								

	**OPEN ELECTIVE for MTME 3 rd Semester								
1. MTOE-201A Business Analytics									
2.	MTOE-203A	Industrial Safety							
3.	Operations Research								
4.	MTOE-207A	Cost Management of Engineering Projects							
5.	MTOE-209A	Composite Materials							
6.	MTOE-211A	Waste to Energy							

Note: 1 The programme elective-V and Open elective are common with M. Tech. (I&P). The course starts with MTIP code is common with M. Tech. (I&P)

SEMESTER-IV

Sr. No.	Course Code	Course Name	L	T	P	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTME-202	Dissertation Phase-II	0	0	32	32	16	-	100	200	300	
			Total	32	16		100	200	300			

Total credits=68

10(2081)
INSTRUCTIONS FOR PAPER SETTER

- 1. The question paper is to be attempted in **THREE Hours**.
- 2. Maximum Marks for the paper are 60.
- 3. The syllabus for the course is divided into FOUR units.
- 4. The paper will have a total of **NINE questions**.
- 5. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have content from the entire syllabus (all Four Units).

Q. No. 2 & 3	from	Unit I
Q. No. 4 & 5	from	Unit II
Q. No. 6 & 7	from	Unit III
O. No. 8&9	from	Unit IV

- 6. All questions will have equal weightage of 12 marks.
- The candidate will attempt a total of FIVE questions, each of 12 marks. Q. No. 1 is compulsory. The candidate shall attempt remaining four questions by selecting only one question from each unit.
- **8.** A question may have any number of sections labeled as 1(a), 1(b), 1(c), 1(d), ---- 2(a), 2(b), --.A section may further have any number of subsections labeled as (i), (ii), (iii),.
- 9. SPECIAL INSRUCTIONS FOR Q. No. 1 ONLY

Question No. 1, which is compulsory, shall be OBJECTIVE/ short answer type **and have content** from the entire syllabus (all Four Units).

Emphasis is to be given on the basic concepts, analytical reasoning and understanding of the various topics in the subject. This question may have a number of parts and/or subparts. The short questions could be combination of following types:

- i. Multiple Choice
- ii. Yes/ No choice
- iii. Fill in Blanks type
- iv. Short numerical computations
- v. Short Definitions
- vi. Matching of Tables

The above mentioned question types is **only a Guideline**. Examiner could set the question as per the nature of the subject.

First Semester

MTME-101		INDUSTRIAL ENGINEERING & ERGONOMICS										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 hrs					
Objective	To provide knowledge necessary to either initiate a new or improve an existing ergonomics											
		Course	Outcome	S								
CO1	Understand erg of a system.	onomics and i	its three m	ajor comp	onents. Outl	ine the co	mponents					
CO2	Describe the co	mponents of o	office and	shop floor	ergonomic e	evaluation	S.					
CO3	Study the com foundries	Study the common risk factors and areas for ergonomic improvement within foundries										
CO4	Describe how to	o evaluate, sel	lect and im	plement e	ergonomic so	lutions						

UNIT-I

Introduction to industrial engineering and productivity, measurement of productivity, introduction to work study, methods study principles and motion economy, filming techniques and micro-motion analysis. **Introduction to work measurement**, Time study, performance allowances, works sampling.

UNIT-II

Introduction of Ergonomics, system approach to ergonomic model, Area of study covered under ergonomics, man/machine systems, characteristics of man machine system, limitation of man & machine with respect to each other, Design approach: Work design consideration, General principles for carrying out the physical activities, Design of workplace, machine at workplace, seat for workplace, posture-standing at work, seated at work, work station heights and seat geometry.

UNIT-III

Controls: Criteria for control design, Hand controls and foot controls, Relationship between controls and display instruments, location of controls and displays, controls for high precision work (push buttons, switches, knob etc.),**Displays**:- Types of displays, Design recommendation for quantitative displays.

Workload: static and dynamic muscular work, physical workload, measurement of physical workload, mental workload, measurement of metal workload.

UNIT-IV

Climates: (a) Heat Humidity- Fundamentals of human thermal regulation, measuring the thermal environment, work in hot climate, work in cold climate, protection against climatic extremesand effect of climate on performance.

(b) Vibration-Terminology, response of body to low frequency (LF) vibration, Discomfort and effect of vibrations on health of worker, high frequency (HF) vibration, effect of H.F. vibrations, methods of reducing vibration.

(c) Noise-Terminology, physiological effects of noise, annoyance of noise, speed interference, hearing loss temporary and permanent thread hold shift, effect of noise on performance reduction of noise, personal noise protection,

- 1. Method Engineering study Krick, S.V.
- 2. Work study and Ergonics- Shah, H.S. Dhanpat Rai & Sons-1988
- 3. Introduction of Ergonomics-Bridger-Tata McGraw Hill 1995
- 4. Work Study Khanna- Dhanpat Rai & Sons- 1995
- 5. Work study and Ergonomics-Suresh Dalela, Saurabh.
- 6. Industrial Ergonomics- Khan, M.I. PHI Learning.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MTIP- 103A		COMPUTER AIDED DESIGN AND MANUFACTURING										
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time					
				lest	lest							
3	0	0	3	60	40	100	3 hrs					
Objective	The objective	The objective of the course is to understand about the technology of computers for										
-	the design, p	the design, process planning and manufacturing the products.										
			Course Out	comes								
CO1	To understa	nd the func	lamentals a	nd applicat	ions of con	nputers in	the field of					
	designing an	d manufactu	ring and the	transforma	tion of geom	netricmodels	S.					
CO2	To understar	nd the conce	pts of G.T. a	nd FMS.								
CO3	To know the	use of comp	uters in pro	cess plannin	g and shop f	loor control						
CO4	To learn the	basics of AG	V and coding	g systems for	r CNC.							

UNIT I

Fundamentals of CAD: Introduction to CAD/CAM, Historical Development, Industrial Look at CAD/CAM, Application of computers in design, creating manufacturing database, Benefits of CAD. Computer Hardware, Graphic input devices, display devices, Graphics output devices, Central processing unit (CPU).

Geometric transformations: 2D and 3D; transformations of geometric models like translation, scaling, rotation, reflection, shear; homogeneous representations, concatenated representation; Orthographic projections, Numerical Problems

UNIT II

Group Technology and Cellular Manufacturing

Part families, parts classifications and coding, Production flow Analysis, cellular Manufacturingcomposite part concept, machine cell design, applications of group technology, Grouping parts and machines by Rank order clustering technique, Arranging machines in a G.T. cell.

Flexible Manufacturing

Introduction, FMS components, Flexibility in Manufacturing – machine, Product, Routing, Operation, types of FMS, FMS layouts, FMS planning and control issues, deadlock in FMS, FMS benefits and applications.

UNIT III

Process Planning

Introduction, Manual process planning, Computer aided process planning – variant, generative, Decision logic- decision tables, decision trees, Introduction to Artificial intelligence.

Shop Floor Control

Introduction, Shop floor control features, Major displays, Major reports, Phases of SFC Order Release, Order Scheduling, Order Progress, Manufacturing control, Methodology, Applications, Shop floor data collections, Types of data collection system, Data input techniques, Automatic data, Collection system.

CNC Basics and Part Programming

Introduction, Historical Background, Basic Components of an NC, Steps in NC, Verifications of Numerical control machine tool programs, Classification of NC Machine tool, Basics of motion control and feedback for NC M/C, NC part programming, Part programming methods, Modern Machining system, Automatically programmed tools, DNC, Adaptive control

Automated Guided Vehicle

Introduction, History, Features, Functions of AGV, Types of AGV, Safety consideration for AGV, Design of AGV.

RECOMMENDED BOOKS:

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 3. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 6. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 7. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 8. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall
- 9. Chang, Wang & Wysk Computer Aided Manufacturing. Prentice Hall
- 10. Kundra&Rao, Numerical Control and Computer Aided Manufacturing by, Rao and Tiwari, Tata Mc-Graw Hill.
- 11. Mattson, CNC programming Principles and applications, Cengage Learning India Pvt. Ltd. Delhi

Note:The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

Programme Elective-I

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1stSem.) (Credit based)

MTIP-105A		TOOL ENGINEERING											
Lecture	Tutorial	Practical	Credit	Major Test	Minor	Total	Time						
					Test								
3	0	0 0 3 60 40 100 3 hrs											
Objective	The objective	The objective of the course is to impart the students with the knowledge of various											
	aspects of design of different types of Tools and fixtures used in Industries.												
		Co	urse Outco	mes									
CO1	To impart kno	owledge of m	aterials for	cutting tool ar	nd design of c	utting tools.							
CO2	To acquaint s	students with	various kin	ids of Gages an	d Work holdi	ng devices.							
CO3	To impart kno	To impart knowledge to students about Drill jigs and Fixtures.											
CO4	To let studen	t understand	the tool de	esign process fo	or NC Machin	e tools							

UNIT-I

Cutting Tool Materials: Introduction and desirable properties, Carbon and Medium-Alloy Steels, High-Speed Steels, Cast-Cobalt Alloys, Carbides, Coated Tools, Alumina-Based Ceramics, Cubic Boron Nitride, Silicon-Nitride Based Ceramics, Diamond, Reinforced Tool Materials, Cutting-Tool Reconditioning. **Design of Cutting Tools** Basic Requirements, Mechanics and Geometry of Chip Formation, General Considerations for Metal Cutting, Design of single point Cutting Tools, Design of Milling Cutters, Design of Drills and Drilling, Design of Reamers, Design of Taps, Chip Breakers.

UNIT-II

Gages and Gage Design: Limits fits and tolerances, Geometrical tolerances-specification and measurement, Types of gages, Gage design, gage tolerances, Material for Gages.

Work Holding Devices: Basic requirements of work holding devices, Location: Principles, methods and devices, Clamping: Principles, methods and devices.

UNIT-III

Drill Jigs: Definition and types of Drill Jigs, Chip Formation in Drilling, General Considerations in the Design of Drill Jigs, Drill Bushings, Drill Jigs, and Modern Manufacturing

Design of Fixtures: Fixtures and Economics, Types of Fixtures, Milling Fixtures, Boring Fixtures, Broaching Fixtures, Lathe Fixtures, Grinding

UNIT-IV

Tool Design for Numerically Controlled Machine Tools: Fixture Design for Numerically Controlled Machine Tools, Cutting Tools for Numerical Control, Tool-holding Methods for Numerical Control.

RECOMMENDED BOOKS:

1. ASTME, "Fundamentals of Tool Design", Prentice Hall of India, 1983.

2. Donaldson, "Tool Design", Tata-McGraw Hill, 3rd Edition, 2000.

3. Joshi P.H., "Jigs and Fixtures", Tata-McGraw Hill, 2010.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

10(2089)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1stSem.) (Credit based)

MTIP-	A	DVANCED EN	IGINEERING		5					
107A										
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time			
				Test	Test					
3	0	0	3	60	40	100	3 hrs			
Objective	The objective of the course is to impart the students with the knowledge of various									
_	advanced and sm	art materials				-				
		C	ourse Outc	omes						
CO1	To impart knowle	dge of Piezoe	electric and	shape memo	ory alloys.					
CO2	To acquaint stud	lents with d	eep know I	how about	Electro-rheo	logical and	composite			
CO3	Toimpartknowled	getostudents	saboutMEN	ISsystemsan	dHightempe	rature				
CO4	To let student u	nderstand t	he processi	ing and cha	racteristics	of powder	metallurgy			
	processes and str	uctural mate	rials.	-		-	05			

UNIT-I

Introduction to advanced Engineering materials:Classes of Materials and their usage, Historical Perspective, Intelligent Materials, Structural Materials, Functional Materials, Primitive Functions of Intelligent Materials, Intelligence inherent in Materials, Materials Intelligently Harmonizing with humanity, Biomimetic.

Smart Materials and Structural Systems:Introduction, Actuator Materials, Sensing Technologies, Microsensors, Intelligent systems, Hybrid Smart Materials, Passive Sensory Smart Structures, Reactive Actuator based smart structures, Active Sensing and Reactive smart structures, smart skins, Aero-elastic tailoring of airfoils, Synthesis of future smart systems.

UNIT-II

Electrocaloric Effect: An Introduction, History of Electrocaloric Cooling, Mechanism of working of Electrocaloric Cooling, Electrocaloric Materials, Performance of Electrocaloric Materials.

Heat Resistant Steels: Conventional Heat-Resistant Steels, Silicon-Bearing High Chromium Heat-Resistant Steels, Nitride-Strengthened Reduced Activation Heat-Resistant Steels, China Low Activation Martensitic SteelNitride-Strengthened Steels, Microstructural Stability

UNIT-III

Smart Micro-systems:Silicon Capacitive Accelerometer, Piezo-resistive Pressure sensor, Conductometric Gas sensor, An Electrostatic Comb-drive, Magnetic Microrelay, Portable Blood Analyser, Piezoelectric Inkjet Print Head.

Buckyballs to robotics: Bucky ball, Nano Structure of Fullerene, Carbon Nanotubes, Nano Diamond, Boron nitride nanotubes, Single electron transistors, Molecular machine, Nano Biometrics, Nano Robots,

UNIT-IV

Nano-Alloys: Introduction, Chemical Synthesis: General Concepts, Reduction of Metallic Salts, The Organometallic Route: Thermal Decomposition Method, Other Chemical Methods for synthesis of Nano-alloys, Physical Routes for synthesis of Nano-Alloys; Experimental Techniques and Examples.

Shape memory alloys (SMA): Shape memory effect and the metallurgical phenomenon of SMA, Types of SMA, One way and Two way Shape memory effect. Temperature assisted shape memory effect, Applications.

- 1. Gandhi, M.V. and Thompson, B.S., Smart materials and Structures, Chapman & Hall, 1992.
- 2. Ananthasuresh G.K., Vinoy K.J., Micro and Smart Systems, Wiley India.
- 3. Wei Yan, Wei Wang, 9-12 Cr Heat Resistant Steels, Engineering Material series, Springer International.
- 4. Damien Alloyeau, Christine Mottet, Nanoalloys Synthesis, Structure and Properties, Springer International.
- 5. Tatiana Correia, Qi Zhang, Electrocaloric Materials: New Generation of Coolers
- 6. Otsuka, K. and Wayman, C. M., Shape memory materials, C.U.P, 1998
- 7. Taylor, W., Pizoelectricity, George Gorden and Breach Sc. Pub., 1985

- 8. Mallick, P.K., Fiber Reinforced Composites Materials, Manufacturing and Design. Marcel Dekker Inc, New York, 1993.
- 9. Rama Rao, P. (ed.), Advances in Materials and their applications, Wiley EasternLtd.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q.

No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (Credit based)

MTIP-109A		Ň	ION-CONV	ENTIONAL	MACHINI	NG			
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0	0	3	60	40	100	3 hrs		
Objective	To acquaint the students with the advanced technologies and processes in various streams of Non-conventional machining.								
Course Outcomes									
CO1	To impart knowledge of Various Non-conventional Mechanical Working Processes, technology, process parameters and analysis for metal removal for these processes								
CO2	To acquain machining	t students w processes,	ith deep k	nowhow a	about chen	nical and e	electrochemical		
CO3	To impart knowledge to students about various kinds of Electric discharge machining processes, process parameters associated with these processes and various process characteristics.								
CO4	To let stud Beam mach	ent understa ining and Ele	and the w ctron bear	orking and n machinir	d technolo ng processe	gy associa es.	ted with Laser		

UNIT-I

Introduction, Need of Non-conventional machining processes, Characteristics of conventional and Nonconventional Machining processes. **Mechanical Working Processes**: **Abrasive Jet Machining**: Machining setup, Abrasives, Process Parameters, Machining Characteristics, Material removal models in AJM, Process capability, Advantages, limitations, Applications

Water Jet Machining: Basic mechanism of Water jet machining setup, Process parameters, Catcher, Process capabilities, Advantages, limitations, Applications **Abrasive Water Jet Machining process:** Working Principle, AWJM Machine, Process Variables, Mechanism of Metal Removal, Cutting Parameters, Process capabilities, Applications, Environmental issues.

Ultrasonic Machining: Fundamental principles, Equipment, Magnetostriction, Elements of process, Mechanics of cutting, Analysis of Process Parameters, Process capabilities, Economic considerations. Applications, Limitations

UNIT-II

Chemical Machining: Introduction, Fundamental Principles, Process Parameters; Maskants and Etchants, Advantages, Limitations, Applications.

Electrochemical Machining Processes: Introduction, Classification of ECM Processes, Fundamentals Principles of ECM, Elements of ECM, ECM Machine Tool Process, Determination of Metal Removal Rate, Evaluation of Metal Removal of an alloy, Electrochemistry of ECM, Cathode and Anode reaction, Dynamics of ECM, Self-Regulating feature of ECM, Process Parameters, Process capabilities, Electrochemical Deburring. **Electrochemical Grinding:** Schematics, Electrochemistry, Process Parameters, Process capabilities, Applications, Advantages, Limitations.

UNIT-III

EDM: Introduction, Basic Principles & Schematics, Process Parameters, Characteristics of EDM, Dielectric, Electrode Material, Modeling of Material Removal, Spark Erosion Generators, Analysis and Metal Removal Rate in RC circuit, Selection of Tool Material and Tool Design, Di-Electric system, Process Variables, Dielectric Pollution and its effects, Process Characteristics, Applications, Electric Discharge Grinding and Electric Discharge Diamond Grinding; **Wire EDM**: Working Principle, Wire EDM Machine, Advances in Wire-cut EDM Process Variables, Process Characteristics, Applications.

UNIT-IV

Laser Beam Machining Back Ground, Production of Laser, Working Principle of LBM, Types of LASERS, Process Characteristics, Metallurgical effects, Advantages and Limitations, Applications.

Electron Beam Machining:

Electron Beam Action, Generation and control of Electron beam, Theory of Electron Beam Machining, Process Parameters, Process capabilities, Applications.

High Energy Rate Forming, Electro-Hydraulic Forming, Explosive Forming, Hot Machining Analysis of the Process.

RECOMMENDED BOOKS:

- 1. V.K. Jain, Advanced Machining Processes, Allied Publishers Pvt Ltd
- 2. P.C. Pandey and H.S. Shan, Modern Machining Processes, Tata McGraw-Hill
- 3. M. K. Singh, Unconventional Manufacturing Process, New Age Publishers
- 4. J. A. Mcgeough, Advanced Methods of Machining, Springer.
- 5. Benedict, Non-Traditional Manufacturing Process, CRC pub.
- 6. P. K. Mishra, Nonconventional manufacturing, Narosa Publishers

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

Programme Elective-II

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1st Sem.) (Credit based)

MTIP-111A		PROE	DUCT DESI	GN AND D	EVELOPME	NT				
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	60	40	100	3 hrs			
Objective	The objective of the course is to understand about the product design and developments with inputs from aesthetics, ergonomics, design for manufacturing ease and cost effectiveness apart from reliability and durability and other considerations.									
		Cou	rse Outcor	nes						
CO1	To understand t by the industry,	he concept oproduction a	of product nd marketi	design, de ng, and ae	esign consi sthetics.	derations, de	esign practiced			
CO2	To provide a de guidelines for ma	To provide a detailed fundamental approach to several primary processes and design guidelines for manufacturing, assembly and environment.								
CO3	To discuss the hu	uman factor e	engineering	g and the c	oncept of v	/alue enginee	ering.			
CO4	To study the mo and its manufact	dern approa	iches to pr onomic asp	oduct des bects.	ign, conce	ot of product	t development			

UNIT-I

INTRODUCTION: Introduction to product design, Design by evolution and innovation, Essential factors of product design, Production consumption cycle, Flow and value addition in production consumption cycle, Morphology of design.

PRODUCT DESIGN PRACTICE AND INDUSTRY: Product strategies, Time to market, Analysis of the product, Basic design considerations, Role of aesthetics in product design.

UNIT-II

DESIGN FOR MANUFACTURE AND ASSEMBLY: Overview and motivation, Basic method: Design guidelines: Design for assembly, Design for piece part production, Advanced method: Manufacturing cost analysis, cost driver modeling, Critique for design for assembly method.

DESIGN FOR THE ENVIRONMENT: Environmental objectives, Basic DFE methods, Design guidelines, Life cycle assessment, Techniques to reduce environmental impact.

UNIT-III

HUMAN ENGINEERING CONSIDERATIONS IN PRODUCT DESIGN: Human being as applicator of forces, Anthropometry, the design of controls, the design of displays, Man/Machine information exchange, Workplace layout from ergonomic considerations.

VALUE ENGINEERING: Value, Nature and measurement of value, Maximum value, Normal degree of value, Importance of value, value analysis job plan, creativity, steps to problem solving and value analysis, value analysis tests, value engineering idea generation check list, Cost reduction through value engineering-case study, materials and process selection in value engineering.

UNIT-IV

MODERN APPROACHES TO PRODUCT DESIGN: Concurrent design, Quality function deployment (QFD), Rapid prototyping, 3D printing, Introduction to 4D printing.

PRODUCT DEVELOPMENT: A modern product development process, reverse engineering and redesign product development process, product life cycle, product development teams, Product development planning, Manufacturing & economic aspects of product development.

- 1. Kail T Ulrich and Steven D Eppinger, "Product Design and Development, TMH.
- 2. AK Chitale and Gupta, "Product Design and Engineering, PHI.
- 3. Niebel & Draper, "Product Design and Process Engineering", McGraw-Hill.
- 4. Kevin Otto & Kristin Wood, "Product Design-Techniques in reverse engineering and new product development" Pearson.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1stSem.) (Credit based)

MTIP-113A			SIMULATI	ON OF INDUST	RIAL SYSTEM	ЛS						
Lecture	Tutorial	Practical	Credit	Major Test	Minor	Total	Time					
					Test							
3	0	0	3	60	40	100	3 hrs					
Objective	The main	The main objective of the course is to impart the students with the knowledge of										
	industrial systems and its simulation.											
Course Outcomes												
CO1	To explai	n the conce	ot of indus	strial simulatio	n systems a	nd its mode	els of					
	simulatio	n.										
CO2	To unders	stand the sim	ulation of	discrete and qu	ueueing syste	ems.						
CO3	To under	stand the sin	nulation if	inventory system	ems and des	ign of simul	ation					
	experime	nts.										
CO4	To si	mulate t	heind	lustrial pro	blems li	ke relia	bility					
	problems	computertir	nesharingp	oroblem and	understand	the simul	ation					
	languages	S.										

UNIT-I

Introduction and overview: concept of system, system environment, elements of system, system modeling, types of models, Monte Carlo method, system simulation, simulation - a management laboratory, advantages & limitations of system simulation, continuous and discrete systems.

Simulation of continuous systems: characteristics of a continuous system, comparison of numerical integration with continuous simulation system. Simulation of an integration formula.

UNIT-II

Simulation of discrete system: Time flow mechanisms, Discrete and continuous probability density functions. Generation of random numbers, testing of random numbers for randomness and for auto correlation, generation of random variates for discrete distribution, generation of random variates for continuous probability distributions-binomial, normal, exponential and beta distributions; combination of discrete event and continuous models.

Simulation of queuing systems: Concept of queuing theory, characteristic of queues, stationary and time dependent queues, queue discipline, time series analysis, measure of system performance.

Kendall's notation, auto covariance and auto correlation function, auto correlation effects in queuing systems, simulation of single server queues, multi-server queues, queues involving complex arrivals and service times with blanking and reneging.

UNIT-III

Simulation of inventory systems: Rudiments of inventory theory, MRP, in-process inventory. Necessity of simulation in inventory problems, forecasting and regression analysis, forecasting through simulation, generation of Poisson and Erlang variates, simulation of complex inventory situations.

Design of Simulation experiments: Length of run, elimination of initial bias, Variance, Variance reduction techniques, stratified sampling, antipathetic sampling, common random numbers, time series analysis, spectral analysis, model validation, optimization procedures, search methods, single variable deterministic case search, single variable non-deterministic case search, and regenerative technique.

UNIT-IV

Simulation of PERT: Simulation of - maintenance and replacement problems, capacity planning, production systems, reliability problems, computer time sharing problem, the elevator system.

Simulation Languages: Continuous and discrete simulation languages, block structured continuous languages, special purpose simulation languages, SIMSCRIPT, GPSS SIMULA importance and limitations of special purpose languages.

RECOMMENDED BOOKS:

- 1. Loffick, Simulation and Modelling Tata McGraw Hill
- 2. DeoNarsingh, System Simulation with Digital Computer Prentice Hall
- 3. Hira, D.S., System Simulation-S. Chand & Co.
- 4. Meelamkavil, Computer Simulation and Modelling John Willey
- 5. Gorden, System Simulation Prentice hall
- 6. Jerry Banks and John, S. Carson II, 'Discrete Event System Simulation', Prentice Hall Inc., NewJersey, 1984.
- 7. Geoffrey Gordon, 'System simulation', Prentice Hall, NJ, 1978.
- 8. Law, A.M. and W.D. Keltor, 'Simulation modelling analysis', McGraw Hill, 1982.

Note:The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MTIP-115A			SUPPLY CI	HAIN MANA	GEMENT						
Lecture	Tuto rial	Practical	Credit	Majo r Test	Minor Test	Total	Time				
3	0	0	3	60	40	100	3 hrs				
Objective	The ma	The main objective of the course is to impart the students with the knowledge									
	of Supply chain and different aspects of supply chain management.										
			Course Outco	omes							
CO1	To impa	art knowledge	e about basi	cs of Supply	y chain mana	gement and	d Supply				
CO2	To acq	uaint student	s with the	different a	spects involve	ed in sourc	cing and				
	procure	ement in suppl	y chain mana	agement.							
CO3	To imp	art knowledg	e to studen	ts about Ev	aluating perf	ormance o	f Supply				
	chain ai	nd decision ma	aking about T	ransportati	on, Storage ar	nd warehou	sing.				
CO4	To let s	tudent unders	stand Quanti	tative tools	for SCM, Info	rmation Tee	chnology				
	in a Sup	ply Chain:									

UNIT-I

Overview of supply chain management: Introduction, Definition, The Objective of a Supply Chain, The Importance of Supply Chain Decisions, Decision Phases in a Supply Chain, Process Views of a Supply Chain, Examples of Supply Chains.

Supply chain dynamics: Introduction, Coping with Dynamics in Supply chain. Bullwhip effect, Analysis of Bullwhip Effect, Impact of Lead time, Inventory management and Supply chain dynamics, offshoring and outsourcing Effect on SC dynamics and cost.

UNIT-II

Outsourcing and Make or Buy Decisions:Strategic Decisions and Core competencies, Tactical Decisions, Factors influencing make or buy decisions, Control of Production or Quality, Unreliable Suppliers, Suppliers Specialized knowledge and research, Small Volume Requirements, Limited Facilities, Workforce Stability, Multiple Sourcing Policy, Managerial and Procurement considerations, the Volatile nature of Make/Buy situation, Administration: Procedures and Personal.

Sourcing of Supply:Importance of Source Selection, Responsibilities for Source Selection, Evaluating a potential supplier, The criticality of Qualifying Sources, Competitive Bidding and Negotiation, Prerequisite for competitive bidding, Two step Bidding/Negotiation, Benefits and Risks of International Sourcing, Identifying and Qualifying an International Source.

UNIT-III

Supply Chain Performance: Achieving Strategic fit And Scope: Competitive and Supply Chain Strategies, Achieving Strategic Fit, Expanding Strategic Scope, Challenges to Achieving and Maintaining, Strategic Fit, Supply chain drivers and metrics, Financial Measures of Performance, Drivers of Supply Chain Performance, Framework for Structuring Drivers, Facilities, Inventory, Transportation, Information, Sourcing, Pricing.

Transportation, storage and warehousing: Introduction, Transportation mode choice, Transport operator decisions, Trucking sectors in India, Rail transport, Air Transport, Water transport, Transport network, Storage and warehousing, types of warehousing, risk pooling, IT Integration: Supply chain information system, Role of IT in SCM process, Business process Re-engineering, Internet and its applications in SCM.

UNIT-IV

Quantitative tools for SCM: Introduction, Forecasting, Demand forecast, Forecasting strategy & technique, Management of Inventories in SC, Linear programming, Routing models, pricing decisions, Introduction to MCDM approach.

Information Technology in a Supply Chain: The Role of IT in a Supply Chain, The Supply Chain IT Framework Customer Relationship Management, Internal Supply Chain Management, Supplier

Relationship Management, The Transaction Management Foundation, The Future of IT in the Supply Chain, Risk Management in IT, Supply Chain IT in practice.

RECOMMENDED BOOKS:

- 1) Chopra, S., and Meindl, P., Supply chain Management: Strategy, Planning and Operations. Second Edition, Pearson Education (Singapore) Pte. Ltd, 2004.
- 2) Rangaraj, Supply Chain Management for Competitive Advantage, TMH.
- 3) Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E., Designing & Managing the Supply Chain: Concepts, Strategies & Case studies. Second Edition, Tata McGraw-Hill Edition, 2003.
- 4) Doebler, D.W. and Burt, D.N., Purchasing and Supply Chain Management: Text and Cases, McGraw-Hill Publishing Company Limited, New Delhi, 1996.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.from each unit.*

	(Credit based)										
MTRM-111A			RESEARCH	H METHODO	DLOGY AND	IPR					
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
2	0	0	2	60	40	100	3				
Objective	The object	The objective of this course is to make the students capable of formulating the research									
	problems/	problems/ proposals and get aware about the intellectual property and patent laws.									
			Course C	Outcomes							
CO 1	Student wi	Il be able to	understand r	research pro	blem formu	lation.					
CO 2	Student wi	II be able to a	analyze rese	arch related	informatior	n and follow	research ethics.				
CO 3	Student wi	ill be able to	understand	the Patents	s, Designs, T	rade and C	opyright and able				
	to apply th	e knowledge	for patent.								
CO 4	Student wi	ill be able to	understand	the concep	t of Patent F	Rights, Licer	nsing and transfer				
	of technolo	ogy and able	to apply the	knowledge	in new deve	lopments ir	n IPR.				

Unit-I

Meaning of research problem, Sources of research problem, Criteria, characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.

Unit-II

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, paper. Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

Unit-III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit-IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and Institutions.

- 1. Stuart Melville and Wayne Goddard, "Research methodology: An introduction for science & engineering students" Kenwyn, South Africa : Juta& Co. Ltd., 1996
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction" Juta Academic; 2nd edition (April 28, 2004)
- 3. Ranjit Kumar, "Research Methodology: A Step by Step Guide for beginners" SAGE Publications Ltd; Fourth edition (14 January 2014)
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", Aspen Publishers; Revised edition (July 25, 2007)

9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (1 st Sem.)
(Credit based)

MTME-103			INC	DUSTRIAL E	NGINEERIN	IG LAB					
Lecture	Tutoria	Practical	Credit	Major	Mino	Practical	Total	Time			
	I .			Test	r						
0	0	4	2	-	40	60	100	3 hrs			
Objective	Student v	will be able	to take t	he right d	ecisions to	o optimize res	sources utili	zation by			
			Cou	rse Outcom	es						
CO1	Student wi productivit	Student will be able to take the right decisions to optimize resources utilization by improving productivity of the Lands, Buildings, People, Materials, Machines, Money, Methods and									
CO2	Student wi Manageme	ll understanc ent, Supervise	l to elimina or, worker a	te unprodu and the Des	ctive activit ign of Prod	ies under the outs and Proce	control of the esses	e			
CO3	Student wi number of	Student will introduce with different attributes and variables chart and draw them to find number of defects and defectives in required sample size.									
CO4	Student wi Efficiency a	ll get the kno and reduce th	wledge to a	design the N the workers	Aan Machii s through e	ne System to ir rgonomics.	mprove Hum	an			

List of Experiments:

- 1. P-CHART FOR FRACTION DEFECTIVES
- 2. C- CHART FOR NUMBER OF DEFECTIVES (CONSTANT SAMPLE SIZE)
- 3. OPERATING CHARECTERSTIC CURVE OF SINGLE SAMPLING ATTRIBUTES PLAN
- 4. TEST FOR NORMALITY OF SAMPLE MEANS(NORMAL DISTRIBUTION)
- 5. X, R CHARTS & PROCESS CAPBILITY
- 6. PIN BOARD STUDY EXPERIMENT
- 7. TO DRAW TWO HANDED PROCESS CHART FOR BOLT, WASHER & NUT ASSEMBLY
- 8. MULTIPLE ACTIVITY CHART (OR) MAN MACHINE CHART
- 9. ERGOCYCLE EXERCISE

Note: At Least eight experiments need to be performed by the students from the above mentioned list.

MTIP-119A		COMPUTER AIDED DESIGN AND MANUFACTURING LAB										
Lecture	Tutoria	Practical	Credit	Major	Mino	Practical	Total	Time				
				Test	r							
0	0	4	2	-	40	60	100	3 hrs				
Objective	To acquain	To acquaint the students with 2-D and 3-D modeling using design softwares.										
	Course Outcomes											
CO1	To underst	To understand the basic solid modeling and applied features of the softwares.										
CO2	To learn an	To learn and practice of surface techniques and surface creations using software.										
CO3	To learn an	d practice of	assembly a	and detailed	d drafting.							
CO4	To let stude	ent understa	nd how to p	prepare MN	/ICs using S	tir Casting pro	cess.					

List of Experiments:

The students will be required to carry out the following exercises or their equivalent tasks using a 3-D modeling software package (e.g. Solid-works/ Creo/ Ideas/ Solid Edge/UG/CATIA/ etc.). Practical must be performed on licensed version (Preferably the latest version) of any one of above mentioned software.

1 BASIC SOLID MODELING

Introduction & sketcher tools

a) CAD Tools and Applications: CAD - CAM - CAE

- b) Parametric Feature Based Modelling and Parent-Child Relation
- c) Design Intent and Associativity between 3 Modes
- d) Modelling Software Getting Started & Graphical User Interface
- e) Sketch Entities and Tools
- f) Dimensioning and Adding Relations to define the Sketch

Sketched Features (Boss / Base and Cut)

- a) Base Features
- b) Extrude & Revolve
- c) Reference Geometry, Curves & 3D Sketch
- d) Sweep & Loft

Editing & Refining Model

a) Editing Sketch, Sketch Plane and Editing Feature

b) Suppress / Un-Suppress Feature and Reordering Feature

2 ADVANCE FEATURES APPLIED FEATURES

- a) Patterns & Mirror
- b) Fillet/Round & Chamfer
- c) Hole & Hole Wizard
- d) Draft, Shell, Rib and Scale
- e) Dome, Flex and Wrap

Multi Body

- a) Indent Tool
- b) Combine Bodies Boolean Operations
- c) Split, Move/Copy and Delete Bodies

Other Tools & Options

- a) Design Table and Configurations
- b) Adding Equations and Link Values
- c) Tools Measure and Mass Properties
- d) Appearance Edit Material, Colour and Texture
- e) Options System and Document Properties

3 SURFACING TECHNIQUES BASIC SURFACE CREATIONS

a) Extrude & Revolve

- b) Sweep & Loft
- c) Boundary Surface
- d) Planar Surface

Other Derived Techniques

- a) Offset Surface
- b) Radiate Surface
- c) Ruled Surface
- d) Fill Surface
- e) Mid Surface

Modify / Edit Surfaces

- a) Fillet/Round
- b) Extend
- c) Trim & Un-trim
- d) Knit Surfaces
- e) Delete and Patch

Surfaces for Hybrid Modelling

- a) Thicken Boss / Base and Cut
- b) Replace face
- c) End condition for Sketched feature Up to Surface or Offset from Surface.
- d) Solid body from closed surfaces

4 ASSEMBLY & MECHANISMS BOTTOM UP ASSEMBLY APPROACH

- a) Inserting Components/Sub-Assemblies
- b) Adding Mates Standard & Advance
- c) Editing Mates, Part and Replacing Components

Top down Approach & Mechanisms

- a) Inserting New Part to Existing Assembly
- b) Use of Layout Sketching
- c) External References In-context and Out-of-context, Locked and Broken

Assembly Features

- a) Component Patterns & Mirrors
- b) Cuts & Holes
- c) Belt/Chain and Weld Bead

Representations of Assembly Components

- a) Light Weight, Suppressed and Resolved
- b) Hide, Transparency and Isolate
- c) Exploded View

Assembly Check

- a) Interference Detection,
- b) Collision Detection and Physical Dynamics

Motion Study

- c) Assembly Motion & Physical Simulation
- d) Animation Wizard & Save as AVI file
- e) Mechanism Analysis Plot Displacement, Velocity and Acceleration Diagram

5 DETAILED DRAFTING

Introduction to Engineering Drawings

- a) General Procedure for Drafting & Detailing
- b) Inserting Drawing Views, Dimensioning and Adding Annotations
- c) Drawing Templates & Sheet Format
- d) Setting Options

Drawing Views

- a) Model View & Standard 3 View
- b) Projected View & Auxiliary View

c) Section & Aligned Section View

d) Detail View, Broken-out Section and Crop View.

Dimensioning

a) Standards, Rules and Guidelines

b) Dimension Insertion/Creation - Insert Model Items & Dimension tool

Annotations

a) Notes & Holes Callout

b) Datum & Geometric Tolerances

c) Surface Finish & Weld Symbols, Centre Mark & Centre line, BOM Balloon & Bill of Material

Audit Course-I

MTAD-101A	ENGLISH FOR RESEARCH PAPER WRITING										
Lecture	Tutorial Practical Credits Major Minor Total Ti						Time (Hrs.)				
				Test	Test						
2	0	0	-	-	100	100	3				
Objective	The objective of this course is to impart the knowledge of English for research paper										
	writing.										
	Course Outcomes										
CO1	To underst	To understand that how to improve writing skills and level of readability.									
CO2	To Learn al	To Learn about what to write in each section.									
CO3	To underst	and the skills	needed whe	en writing a	title.						
CO4	To learn th	e skills requir	ed in writing	g the results,	discussion	and concl	usions.				

Unit-I

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit-II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit-III

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. Key skills needed when writing a Title, key skills needed when writing an abstract, key skills needed when writing an Introduction, skills needed when writing a Review of the Literature.

Unit-IV

Skills needed when writing the Methods, skills needed when writing the Results, skills needed when writing the Discussion, skills needed when writing the Conclusions, Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

- 1. Goldbort R, "Writing for Science", Yale University Press (available on Google Books)
- 2. Day R, "How to Write and Publish a Scientific Paper", Cambridge University Press
- 3. Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book.
- 4. Adrian Wallwork, "English for Writing Research Papers", Springer New York Dordrecht Heidelberg London, 2011

(Credit based)											
MTAD-103A	DISASTER MANAGEMENT										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
2	0	0	-	-	100	100	3				
Objective	The objecti	ive of this cou	urse is to imp	part the know	wledge of di	sasters ma	nagement.				
Course Outcomes											
CO1	To demons	strate a critic	al understa	nding of key	concepts i	n disaster i	risk reduction				
	and humar	nitarian respo	onse.								
CO2	To criticall	y evaluate di	saster risk re	eduction and	d humanitar	ian respor	se policy and				
	practice from multiple perspectives.										
CO3	To develop an understanding of standards of humanitarian response and practical										
	relevance i	n specific typ	es of disaste	ers and confl	ict situation	S.					
CO4	To criticall	y understand	d the streng	gths and we	eaknesses o	f disaster	management				
	approache	s, planning a	and progran	nming in di	fferent coui	ntries, par	ticularly their				
	home cour	try or the co	untries they	work in							

Unit-I

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit-II

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.

Unit-III

Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics. Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data From Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.

Unit-IV

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'New Royal book Company.
- 2. Sahni, Pardeep (Eds.)," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, New Delhi.
- 3. Goel S. L., "Disaster Administration and Management Text and Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

				aseu)					
MTAD- 105A		S	ANSKRIT FO	R TECHNICA	L KNOWLED	JGE			
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)		
				Test	Test				
2	0	0	-	-	100	100	3		
Objective	The objective of this course is to understand basic Sanskrit Language and Ancient								
	Sanskrit literature related to science & technology.								
	Course Outcomes								
CO1	Students w	/ill get a work	king knowled	dge in illustri	ious Sanskri [.]	t, the scie	ntific language		
	of the world.								
CO2	Learning of	^f Sanskrit to i	mprove brai	n functionin	g.				
CO3	Learning o	f Sanskrit to	develop the	logic in ma	thematics, s	cience &	other subjects		
	enhancing	the memory	power.	-			-		
CO4	The engine	ering schola	rs equipped	with Sansk	rit will be a	ble to ex	plore the huge		
	knowledge	from ancient	t literature.				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

Unit-I

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences

Unit-II

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit-III

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

- 1. Dr.Vishwas, "Abhyaspustakam" Samskrita-Bharti Publication, New Delhi
- 2. VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam "Teach Yourself Sanskrit" Prathama Deeksha-, New Delhi Publication
- 3. Suresh Soni, "India's Glorious Scientific Tradition" Ocean books (P) Ltd., New Delhi.

MTAD-107A	VALUE EDUCATION										
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time (Hrs. Test Tes									
2	0	0	-	-	100	100	3				
		•									
Objective	The object Imbibe go character b	tive of this c od values in puilding.	ourse is to 1 students a	understand and Let the	value edue em know a	cation, se bout the	lf-development, importance of				
		(Course Outc	omes							
	To get knowledge of self-development.										
CO1	To get kno	wledge of sel ⁻	f-developme	ent.							
CO1 CO2	To get kno To learn th	wledge of sel e importance	f-developme e of Human v	ent. values.							
CO1 CO2 CO3	To get kno To learn th To develop	wledge of sel le importance o the overall p	f-developme e of Human v personality.	ent. values.							

Unit-I

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgments

Unit-II

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

Unit-III

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

Unit-IV

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, studying effectively

RECOMMENDED BOOKS:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Second Semester

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2 nd Sem.)											
(Credit based)											
MTME-102	OPERATION RESEARCH & OPTIMIZATION TECHNIQUES										
Lecture	Tutorial	Tutorial Practical Credit Major Minor Total Time									
				Test	Test						
3	0	0	3	60	40	100	3 hrs				
Objective	The main objective of this course is to aware students about the dynamic programming										
	to solve pro	oblems of di	screte and o	continuous v	variables and	model the	real world				
	problem and simulate it.										
			Course Outc	omes							
CO1	Students sh	ould be able	e to apply th	ne dynamic	programming	g to solve p	roblems of				
	discreet and continuous variables.										
CO2	Students she	ould be able t	o apply the c	oncept of no	n-linear prog	ramming					
CO3	Students sho	ould be able t	o carry out s	ensitivity ana	llysis						
CO4	Student sho	uld be able to	o model the r	eal world pro	oblem and sin	nulate it.					

UNIT:-1

Introduction to Operation Research: Operation Research approach, scientific methods, introduction to models and modelling techniques, general methods for Operation Research models, methodology and advantages of Operation Research, history of Operation Research.

Linear Programming (LP): Introduction to LP and formulation of Linear Programming problems, Graphical solution method, alternative or multiple optimal solutions, Unbounded solutions, Infeasible solutions, Maximization – Simplex Algorithm, Minimization – Simplex Algorithm using Big-M method, Two phase method, Duality in linear programming, Integer linear programming.

UNIT:-2

Transportation & Assignment Problems: Introduction to Transportation problems, various methods of Transportation problem, Variations in Transportation problem, introduction to Assignment problems, variations in Assignment problems.

Network Analysis: Network definition and Network diagram, probability in PERT analysis, project time cost trade off, introduction to resource smoothing and allocation.

UNIT:-3

Inventory Model: Introduction to inventory control, deterministic inventory model, EOQ model with quantity discount.

Sequential optimization; Representation of multistage decision process; Types of multistage decision problems; Concept of sub optimization and the principle of optimality, Recursive equations –Forward and backward recursions.

Queuing Models & Simulation: Concepts relating to queuing systems, basic elements of queuing model, role of Poison & exponential distribution, concepts of birth and death process. Introduction & steps of simulation method, distribution functions and random number generation.

Advanced Topics in Optimization

Piecewise linear approximation of a nonlinear function Multi objective optimization – Weighted and constrained methods; Multi level optimization Direct and indirect search methods Evolutionary algorithms for optimization and search Applications in mechanical engineering

RECOMMENDED BOOKS:

1. Gupta P.K, Hira and D.S., operation research, sultan chand and sons, New Delhi.1994.

2. Kanti Swarup, Gupta P.K. & Man Mohan, Operation Research, sultan chand and sons, New Delhi.1990.

3. Mittal K.V., Optimization Methods in Operation Research and system Analysis, New Age International (P) Itd., New Delhi, 1992.

4. Rao S.S., Optimization Theory and applications, wlley Eastern Itd. New Delhi, 1991.

5. Sharma, S.D., Optimization Research, Kedar Nath and RamNath.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining/our questions by selecting only one question from each unit*.

MTME-104	REFRIGERATION & CRYOGENICS										
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
3	0	0	3	60	60 40 100 3						
Objective	The main objective of this course is to aware students about the different refrigeration systems and their applications simulate these with cryogenics to address and find the solution of various environmental and industrial issues.										
	Course Outcomes										
CO 1	Understan	d the basic p	rinciples of	refrigeratior	n and cryoge	enic					
CO 2	Student should analyze air refrigeration systems, vapor compression refrigeration systems, vapour absorption refrigeration systems, and steam jet refrigeration systems										
CO 3	Student sh issues of d	Student should be able to understand the properties, applications and environmental issues of different refrigerants									
CO 4	Student sh	ould operate	and analyz	e the refrige	eration and a	air conditic	ning systems.				

UNIT-I

Introduction: Lubrication of reverse carnot cycle with vapour as a refrigerant, simple vapour compression cycle, Pressure- Enthaply diagram, Ewing's construction, suction state for max. COP standard rating cycle & effect of operating conditions (evaporator pressure, condenser pressure, suction vapour superheat, liquid sub cooling, liquid vapour regenerative heat exchanger) deviation of actual compression cycle with that of theoretical.

UNIT-II

AIR REFRIGERATION SYSTEM: Reverse Carnot cycle, most efficient refrigeration, Bell cooling the aero plane, simple cooling & simple evaporative type, Bootstrap & Bootstrap evaporative type, Regenerative type, reduced ambient, limitations, merit & comparison. Multi Temperature: Method of improving the COP, Optimum interstate pressure for two stages refrigeration system, multistage or compound compression with flash intercooler, single expansion valve & multi expansion valve, multi evaporator system with single compressor, individual compressor with compound compression, single expansion valve & multi expansion valve & mult

UNIT-III

Vapour Absorption System:

Simple Vapour absorption system, Max, Coefficient of performance, Modification of simple vapour absorption system, Actual vapour absorption cycle and its representation on Enthalpy- Composition diagram, Absorption systm calculations, Rich and Poor solution concentrations, Lithium & Bromide water system.

UNIT-IV

CRYOGENICS:

Limitation of simple vapour compression system, Multi-stage system, Cascade system, Production of solid carbon dioxide, Joule- Thomson effect, Liquefaction of gases, Hydrogen ,Helium, application of low temperature, Cryogenic insulation. Steam Jet Refrigeration: Steam jet Refrigerator, component of steam jet refrigeration plant, advantages of steam jet refrigeration system, Performance of system, determination of equilibrium concentration.

RECOMMENDED BOOKS:

- 1. Mechanical Refrigeration by Sporks and Diffio
- 2. ASHRE Handbook (Fundamentals) ASHRE.
- 3. Thermal Environment by Threlkeld.
- 4. Refrigeration & Air-Conditioning by C.P. Arora.
- 5. Refrigeration & Air-Conditioning by Stocker
- 6. Cascade system Ejector Comparison system, Method, Use of pre-cooling, liquefaction.

Note: The paper will have a total of *NINE questions.* Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining/our questions by selecting only one question from each unit*.

Programme Elective-III
MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (Credit based)

				- /						
MTIP-106A			ADVANCED	WELDING P	ROCESSES					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
				-						
3	0	0	3	60	40	100	3 hrs			
Objective	The main objective of the course is to impart the students with the knowledge of									
-	Welding metallurgy and welding processes.									
	Course Outcomes									
CO1	To impart kn	owledge abo	ut various V	/eld metallu	rgy and Weld	arc charact	eristics.			
	L									
CO2	To acquaint s	students with	n the various	welding po	ver sources a	and their app	olications.			
CO3	To impart k	nowledge to	o students	about Elect	rode coating	s and Met	al transfer			
	phenomenor	n in weld me	tal transfer.			•				
CO4	To let stude	nt understan	d the basics	s of Solid sta	ate welding p	processes ar	nd some of			
	the latest we	lding technic	ques.		01					

UNIT-I

WELDING METALLURGY: Introduction, Weld Metal Zone, Theory of solidification of metals and alloys, Homogeneous Nucleation, Heterogeneous Nucleation, Freezing of alloys, Epitaxial Solidification; Effect of Welding speed on Grain structure, Fusion boundary zone, Heat affected zone, Under bead zone, Grain Refined Zone, Partial transformed zone, Properties of HAZ

WELDING ARC: Definition of Arc, Structure and characteristics, Arc efficiency, arc blow, Electrical Characteristics of arc, Types of Welding Arcs, mechanism of arc initiation and maintenance, role of electrode polarity on arc behaviour and arc stability, analysis of the arc. Arc length regulation in mechanized welding processes.

UNIT-II

WELDING POWER SOURCES: Requirement of an Arc welding power sources, basic characteristics of power sources for various arc welding processes, duty cycles, Selection of a static Volt-Ampere characteristic for a welding process, AC/DC welding power source, DC rectifiers, thyristor controlled rectifiers, transistorized units, inverter systems, Mathematical Problems on Static volt ampere characteristics

UNIT-III

COATED ELECTRODES: Electrode coatings, classification of coatings of electrodes for SMAW, SAW fluxes, role of flux ingredients and shielding gases, classification of solid and flux code wires.

METAL TRANSFER & MELTING RATE: Mechanism and types of metal transfer, forces affecting metal transfer, modes of metal transfer, metal transfer in various welding processes, effective of polarity on metal transfer and melting rate.

UNIT-IV

SOLID STATE WELDING: Theory and mechanism of solid state welding, techniques and scope of friction welding, diffusion welding, cold pressure welding and ultrasonic welding, high energy rate welding, analysis of the Process.

WELDING TECHNIQUES: Technique, scope and application of the electron beam and laser welding processes, under water welding - process & problem.

RECOMMENDED BOOKS:

1. Raymond Sacks, —Welding: Principles & Practices McGraw-Hill

- 2. R.S.Parmar, —Welding processes & Technology, Khanna Publishers
- 3. R.S.Parmar, —Welding Engineering & Technology, Khanna Publishers
- 4. S.V. Nandkarni, —Modern Arc Welding Technology, Oxford & IBH publishing Co.
- 5. L.M.Gourd, —Principles of Welding Technology, ELBS/ Edward Arnold.
- 6. Richard L. Little Welding & Welding Technology, Mc-Graw Hill.
- 7. Cary, Howard Modern Welding Technology', prentice Hall, 1998.

8. Rossi — Welding Technology, Mc-Graw Hill.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.)

MTIP-108A		ADVANCED METAL CUTTING									
Lecture	Tutorial	Practical	Credit	Major Test	Minor	Total	Time				
					Test						
3	0	0	3	60	40	100	3 hrs				
Objective	The main o	The main objective of the course is to impart the students with the knowledge of									
	advanced cu	tting tools,	tools geome	etry, mechanism	s and analysis	S.					
			Course Out	tcomes							
CO1	To impart kn	owledge ab	out various	functional relate	ed to tools ge	eometry.					
CO2	To acquaint	with the and	alysis of fun	damental factor	s affecting to	ol forces					
CO3	To impart kn	To impart knowledge about cutting tool life and mathematical modelling for wear.									
CO4	To let studer	nt understar	nd abrasive	machining and i	ts process sim	nulation.					

UNIT-I

Introduction system of Tool nomenclature, Tool Geometry, Mechanism of Chip formation and forces in orthogonal cutting, Merchant's force diagram.

Oblique Cutting: Normal chip reduction coefficient under oblique cutting, true shear angle, effective rake, influx region consideration for deformation, direction of maximum elongation, effect of cutting variables on chip reduction co-efficient, forces system in oblique cutting, effect of wear land on force system, force system in milling, effect of helix angle.

UNIT-II

Fundamentals of Dynamometry, Theoretical determination of forces, angle relations, heat and temperature during metal cutting; distribution, measurement, analysis, theoretical estimation of work piece temperature, hot machining

Fundamental factors, which effect tool forces: Correlation of standard mechanized test. (Abuladze – relation), nature of contact and stagnant phenomenon, rates of strains, shear strain and normal strain distributions, cutting variables on cutting forces.

UNIT-III

Cutting Tools: Tools materials analysis of plastic failure (from stability criterion), Analysis failure by brittle fracture, wear of cutting tools, criterion, flank and crater wear analysis, optimum tool life, tool life equations, (Taylor's woxenetc) Tool life test, machining optimization, predominant types of wear; abrasive, adhesive, diffusion wear models, wear measurements and techniques, Major Test of tool wear oxidative mathematical modelling for wear, test of machinability and influence of metallurgy on machinability. Economics of metal machining

UNIT-IV

Abrasive Machining: Mechanics of grinding, cutting action of grit, maximum grit chip thickness, energy and grit force temperature during grinding, wheel wear, grinding, process simulation, testing of grinding wheels, mechanics of lapping and honing, free body abrasion.

RECOMMENDED BOOKS:

- 1. Sen & Bhattacharya, Principles of Machine tools, New Central Book Agency.
- 2. Brown, Machining of Metals, Prentice Hall.
- 3. Shaw, Principles of Metal cutting, Oxford I.B.H.
- 4. Arshimov&Alekree,Metal cutting theory & Cutting tool design, MIR Publications.
- 5. Machining Science & Application by Knowenberg Longman Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.) (Credit based)

MTIP-110A			•	Metrol	ogy						
Lecture	Tutorial	Practical	Credit	Major	Minor Test	Total	Time				
				Test							
3	0	0	3	60	40	100	3 hrs.				
Objective	The main	he main objective of the course is to deal with the basic principles of dimensional									
	measuring	measuring instruments and precision measurement techniquesin achieving quality and									
	reliability in the service of any product in dimensional control.										
Course Outcomes											
CO1	To unders	stand the stu	dentsabout 1	the requirem	nent of metrology a	nd the concep	ts of limit,				
	fits and ga	auges.									
CO2	To study	the linear a	nd angular n	neasurement	ts and the optical	measurement	tools and				
	technique	es.									
CO3	To understand how to use surface roughness and thread measuring instruments.										
CO4	To study	the compa	arators, mea	asurement 1	through comparate	ors and the	advanced				
	metrology	y concepts.									

UNIT-I

Introduction to metrology: Definition, types, need of inspection, terminologies, methods of measurement, selection of instruments, measurement errors, units, Measurement standards, calibration, statistical concepts in metrology.

Systems of Limits and Fits: Introduction, nominal size, tolerance limits, deviations, allowance, fits and their types – unilateral and bilateral tolerance system, hole and shaft basis systems – interchangeability and selective assembly. Indian standard Institution system – British standard system, International standard system for plain and screwed work.

Limit Gauges: Taylor's principle – Design of limit gauges, computer aided tolerancing.

UNIT-II

Linear Measurement:Length standard, line and end standards, slip gauges – calibration of the slip gauges, dial indicator, micrometres. Measurement of angles and tapers: Different methods – bevel protractor – angle slip gauges – spirit levels– sine bar – sine plate, rollers and spheres.

Flat Surface Measurement: Measurement of flat surfaces – instruments used – straight edges– surface plates – optical flat and auto collimator.

Optical Measuring Instruments: Tool maker's microscope and its uses, collimators, optical projector, optical flats and their uses, interferometer.

UNIT-III

Surface Roughness Measurement:Introduction, terminology, specifying roughness on drawings, surface roughness parameters, factors affecting surface roughness, ideal surface roughness, roughness measurement methods, precautions in measurement, surface microscopy, surface finish softwares.

Screw Thread Measurement: Elements of measurement – errors in screw threads – measurement of effective diameter, angle of thread and thread pitch, profile thread gauges.

Measurement through Comparators: Comparator: Features of comparators, classification of comparators, different comparators, advanced comparators, thread comparators.

UNIT-IV

10(2121)

Metrology of machine tools: Alignment and practical tests.

Gear Measurement:Gear measuring instruments, gear tooth profile measurement, measurement of diameter, pitch, pressure angle and tooth thickness.

Advanced Metrology: Advanced measuring machines, CNC systems, Laser vision, In-process gauging, 3D metrology, metrology softwares, Nano technology instrumentation, stage position metrology, testing and certification services, optical system design, lens design, coating design, precision lens assembly techniques, complex opto mechanical assemblies, contact bonding and other joining technologies.

RECOMMENDED BOOKS:

- 1. K.J. Hume, Engineering Metrology, Macdonald and Co. (publisher) London.
- 2. Czichos, The Springer handbook of metrology and Testing, 2011.
- 3. Jay. L. Bucher, The Metrology Hand book, American Society for Quality, 2004.
- 4. Smith GT, Industrial Metrology, Spinger.
- 5. John W. Greve, Frank W. Wilson, Hand book of industrial metrology, PHI New Delhi.
- 6. D.M. Anthony, Engineering Metrology, Pergamon Press.
- 7. Khare MK, Dimensional Metrology, OXFORD-IBH Publishers.
- 8. I C Gupta, "Engineering Metrology", 5th Edition, Danapath Rai & Co, 2008.
- 9. R.K. Jain, "Engineering Metrology". 20th Edition, Khanna Publishers, 2007.
- 10. M. Mahajan, "Engineering Metrology", Dhanapati Rai publications, 2007.
- 11. BIS standards on Limits & Fits (IS 919), Surface Finish (IS 2073), Machine Tool Alignment, 1993.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

Programme Elective-IV

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.)

MTIP-112A		SEQUENCING AND SCHEDULING										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 hrs					
Objective	The main c	bjective of t	the course	is to impart the	e students with t	he knowle	dge of					
	different production and machine models of sequencing and scheduling.											
	Course Outcomes											
CO1	To understa	nd the conce	pt of seque	ncing and schedu	uling.							
CO2	To study an	d practice for	the extension	ion of basic mode	els and parallel ma	achine moo	dels.					
CO3	To understa	nd the conce	epts of the f	flow shop schedu	ling and practice	for the flo	w shop					
	scheduling r	nodels.										
CO4	To understa	and the job s	hop proble	ms and simulati	on models for dy	namic job	shop					
	problem.											

UNIT-I

Single-Machine Sequencing: Introduction, Preliminaries, Problems without Due Dates, Problems with Due Dates

Optimization Methods for the Single-Machine Problem: Introduction, Adjacent Pairwise Interchange Methods, A Dynamic Programming Approach, Dominance Properties, A Branch and Bound Approach. **Earliness and Tardiness Costs:** Introduction, Minimizing Deviations from a Common Due Date, The Restricted Version, Asymmetric Earliness and Tardiness Costs, Quadratic Costs, Job-Dependent Costs, Distinct Due Dates, Sequencing for Stochastic Scheduling.

UNIT-II

Extensions of the Basic Model: Introduction, Non-simultaneous Arrivals, Related Jobs, Sequence-Dependent Setup Times, Stochastic Models with Sequence-Dependent Setup Times.

Parallel machine models: Introduction, Minimizing the Makespan, Minimizing Total Flow time, Stochastic Models.

UNIT-III

Flow Shop Scheduling: Introduction, Permutation Schedules, The Two-Machine Problem, Special Cases of The Three-Machine Problem, Minimizing the Makespan, Variations of the *m*-Machine Model, Stochastic flow shop scheduling.

UNIT-IV

The Job Shop Problem: Introduction, Types of Schedules, Schedule Generation, The Shifting Bottleneck Procedure, Neighborhood Search Heuristics.

Simulation Models for the Dynamic Job Shop: Introduction, Model Elements, Types of Dispatching Rules, Reducing Mean Flowtime, Meeting Due Dates.

RECOMMENDED BOOKS:

1. Michael Pinedoo, Scheduling: theory, algorithms and systems, Prentice Hall, New Delhi, 1995.

- 2. King, J.R. Production planning and control, Pergamon International Library, 1975.
- 3. Kenneth R. Baker, Introduction to sequencing and scheduling, John Wiley and Sons, 1974.
- 4. Kenneth R. Baker and Dan Trietsch, Principles of sequencing and scheduling, John Wiley and Sons, 2009.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

w.e.f. 2018-19

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.)

	(Credit based)											
MTIP-			QUALITY EN	GINEERING AND	MANAGEMENT	-						
114A												
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time										
3	0	0	3	60	40	100	3 hrs					
Objective	The main of	The main objective of the course is to impart the students with the knowledge of quality tools										
	and engineering for the improvement of product quality.											
			Course	Outcomes								
CO1	To understa	nd the statis	tical concepts	s of quality and q	uality statistics.							
CO2	To study th	e quality cor	trol chartsin	production prod	cess and practice	e for its use	in problem					
	solving.											
CO3	To understand the quality improvement tools.											
CO4	To study the	e ISO systems	s, failure anal	ysis and testing.								

Unit-I

Introduction to Quality: An Historical Overview:Defining Quality, The Total Quality System, Total Quality Management, Economics of Quality, Quality, Productivity, and Competitive Position, Quality Costs, Success Stories.

Statistics for Quality: Variability in Populations, Some Definitions, Quality vs. Variability, Section I: Empirical Methods for Describing Populations, Section II: Mathematical Models for Describing Populations, Section III: Inference of Population Quality from a Sample.

Unit-II

Quality in Design: Planning for Quality, Product Planning, Product Design, Process Design.

Quality in Production-Process Control I: Process Control, The Control Charts, Measurement Control Charts, Attribute Control Charts, Summary on Control Charts, Process Capability, Measurement System Analysis,

QualityinProduction-ProcessControlII:DerivationofLimits,Operating Characteristics of Control Charts, Measurement Control Charts for Special Situations.

Unit-III

Quality in Procurement: Importance of Quality in Supplies, Establishing a Good Supplier Relationship, Choosing and Certifying Suppliers, Specifying the Supplies Completely, Auditing the Supplier, Supply Chain Optimization Using Statistical Sampling for Acceptance,

Continuous Improvement of Quality: The Need for Continuous Improvement, The Problem-Solving Methodology, Quality Improvement Tools, Lean Manufacturing.

Unit-IV

A System for Quality: The Systems Approach, Dr. Deming's System, Dr.Juran's System, Dr.Feigenbaum's System, Baldrige Award Criteria, ISO 9000 Quality Management Systems, ISO 9001:2008 Requirements, The Six Sigma System.

- 1. Grant &Leaveworth, Statistical Quality Control, McGraw Hill
- 2. Duncan, Quality Control & Industrial Statistics, Irwin Press
- 3. Juran, Quality Control Handbook, McGraw Hill.
- 4. Hansen, Quality Control, Prentice Hall
- 5. Thomason, An Introduction to reliability & control, Machinery Publishing.

- 6. A.V. Taylor, Total Quality Control, McGraw-Hill
- 7. K.S.Krishnamoorthi, V. Ram Krishnamoorthi, A First Course in Quality Engineering: Integrating Statistical and Management Methods of Quality, Second Edition, CRC Press.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units). All questions will have equal *weight of 12 marks*.

The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

	IVIASTER OF TEURINOLOGY IN IVIEURANIUAL EINGINEERING (Z. SEM.)											
			(Cred	it based)								
MTIP-		RELIABILITY ENGINEERING										
116A												
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 hrs					
Objective	The main o	The main objective of the course is to impart the students with the knowledge of reliability										
	analysis in i	ndustrial syst	tem. Students	s can get acquai	nted with differe	ent reliability	calculation					
	models.											
			Course	Outcomes								
CO1	To understa	ind the conce	pts of reliabi	lity in industrial	systems.							
CO2	To study the	To study the reliability determination methods and advanced evaluation techniques.										
CO3	To understa	To understand various reliability prediction and evolution methods.										
CO4	To acquaint	the fundame	entals of relia	bility manageme	ent and risk asses	ssment.						

UNIT-I

Reliability Engineering: Reliability function, failure rate, Mean time between failures (MTBF), Mean time to failure (MTTF), mortality curve, useful life availability, maintainability, system effectiveness. Introduction to probability distributions.

Time to failure distributions: Exponential, normal, Gamma, Weibull; ranking of data, probability plotting techniques, Hazard plotting Concept of Bathtub Hazard Rate curve, Reliability evaluation of two-state device networks-series, parallel, k-out-of-m systems; Standby redundant systems, Reliability evaluation of three-state device networks-series and parallel.

UNIT-II

Reliability Determination and Prediction: Reliability Determination Methods: Network reduction technique, Path tracing technique, Decomposition technique, Delta-Star method.

Advanced Reliability Evaluation Concepts: Supplementary variables technique, Interference theory, Human reliability, Common cause failures, Fault trees, Failure mode and effect analysis

UNIT-III

Reliability Prediction Models: Series and parallel systems - RBD approach - Standby systems - m/n configuration - Application of Baye's theorem - cut and tie set method - Markov analysis - FTA - Limitations.

UNIT-IV

Reliability testing: Time acceleration factor, influence of acceleration factor in test planning, application to acceleration test, high temperature operating life acceleration model, temperature humidity bias acceleration model, temperature cycle acceleration model, vibration accelerator model, failure free accelerated test planning. Accelerated reliability growth.

Risk Assessment: Definition and measurement of risk - risk analysis techniques - risk reduction resources industrial safety and risk assessment.

RECOMMENDED BOOKS:

1. Charles E. Ebeling, "An introduction to Reliability and Maintainability engineering", TMH, 2000.

2. Roy Billington and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Springer, 2007.

3. Sharma S C, Inspection Quality Control and Reliability, Khanna Publishers.

4. Connor P.D.T.O. Practical Reliability Engineering", John Wiley.

5. Naikan V N A Reliability Engineering and Life Testing", PHI Learning Private Limited.

6. Prabhakar Murthy D N and Marvin R, "Product Reliability", Springer-Verlag.

10(2127)

7. Dana Crowe and Alec Feinberg, Design for Reliability, CRC Press.

Note:The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units). All questions will have equal *weight of 12 marks*.

The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2nd Sem.)

MTME-106		ADVANCE WELDING LAB										
Lecture	Tutoria I	Practical	Credit	Major Test	Mino r	Practical	Total	Time				
0	0	4	2	-	40	60	100	3 hrs				
Objective	To familia	To familiar about the advance welding techniques.										
		Course Outcomes										
			Cou	rse Outcom	es							
CO1	To study va	arious proper	ty of metal	r se Outcom s under diff	i es Terent weld	lings.						
CO1 CO2	To study va To acquain	arious proper t students va	Cou ty of metal rious weldi	r se Outcom s under diff ng tests.	erent weld	lings.						
CO1 CO2 CO3	To study va To acquain Various sol	arious proper t students va id state weld	Cou ty of metal rious weldi ings.	r se Outcom s under diff ng tests.	ies Terent weld	lings.						

- 1) To study Heat Flow in welding by using Gas Welding Equipment
- 2) To study tensile property, bead geometry, hardness of bead, microstructure of welding bead in case of:
- a) MIG Welding
- b) TIG Welding
- c) SAW Welding
- d) Arc Welding
- 3) Use different destructive testing methods (Impact test- Charpy and Izod impact tests, Hardness test- Brinell, Vickers, Rockwell hardness tests) for quality control of welds.
- 4) Use different non destructive testing (Dye Penetrant Testing and Magnetic Particle Testing, Visual inspection; Radiography Testing) for quality control of welds.
- 5) To study mechanical behavior (tensile strength hardness of bead, micro structure of welding bead, impact strength, corrosion and wear, fatigue behavior) in case of
- a) Frictions stir welding
- b) Frictions stir processing
- 6) To study welding thermal cycles, weld metal solidification process and welding metallurgy during the welding of ferrous and non ferrous metals.
- 7) To study the different codes and symbols use in welding to differentiate electrodes and consumables according to ASME standard.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (Credit based)

			(Ur	edit based	I)							
MTME-108		REFRIGERATION AND CRYOGENICS LAB										
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time				
				Test	Test	Marks		(Hrs.)				
-	-	4	2	-	40	60	100	3				
Objective	Objective To make students understand the applications of refrigeration and cryogenics.											
			Course O	utcomes								
CO 1	Students cryogenics	will understa s systems.	and about	the basi	ics and v	vorking of	refrigerat	tion and				
CO 2	Students v	vill be able to	identify the	e different	t cycle of c	peration in I	refrigerat	ion.				
CO 3	CO 3 Students will know the working principle to achieve very low temperature and its importance in air-conditioning.											
CO 4	Student v refrigerati	vill learn abo on systems.	out the va	rious wor	king and	design of d	lifferent	types of				

List of Experiments

- 1. To study and perform experiment on compound vapour compression Refrigeration Cycle.
- 2. To study and perform experiment on Solar Air-conditioner based on vapour absorption cycle.
- 3. To study and perform experiments on multi-load systems.
- 4. To study and perform experiment on vapour absorption apparatus.
- 5. To find the performance parameter of cooling tower.
- 6. To study various components in room air conditioner.
- 7. To find performance of a refrigeration test rig system by using different expansion devices.
- 8. To study and perform experiments on cascade system.
- 9. To study and perform experiments on dry ice machine.
- 10. To study and perform experiments on gas liquefaction system.

Note: Total eight experiments are to be performed selecting at least six from the above list

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (Credit based)

MTME-110		MINI PROJECT									
Lecture	Tutorial	Practical	Credit	Major	Minor	Practical	Total	Time			
				lest	lest						
0	0	4	2	-	-	100	100	3 hrs			
Objective	In case of mini project, they will solve a live problem using software/analytical/computational tools										
			Cou	rse Outcom	es						
CO 1	Students w	ill learn to wi	ite technic	al reports.							
CO 2	Students w audience.	ill develop sl	kills to pre	sent and de	efend their	work in front	of technical	ly qualified			

Students can take up small problems in the field of mechanicalengineering as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

Students will be required to submit a brief synopsis of 3-4 pages related to the topic by the first week of September.

Audit Course-II

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.)

MTAD- 102A	CONSTITUTION OF INDIA											
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)					
				Test	Test							
2	0	0	-	-	100	100	3					
Objective	The main objective of the course is to impart the students with the knowledge of											
	informing	informing the twin themes of liberty and freedom from a civil rights perspective and										
	to address	to address the growth of Indian opinion regarding modern Indian intellectuals'										
	constitutional role and entitlement to civil and economic rights as well as the											
	emergence of nationhood in the early years of Indian nationalism.											
		0	Course Outc	omes								
CO1	To discuss	the growth o	f the dema	nd for civil r	rights in Ind	ia for the bu	ulk of Indians					
	before the	arrival of Gan	dhi in India	n politics.								
CO2	To discuss	the intellectu	al origins o	f the frame	work of argu	ument that	informed the					
	conceptua	ization of soc	ial reforms	eading to re	volution in l	ndia.						
CO3	To discuss the circumstances surrounding the foundation of the Congress Socialist											
	Party [CSP]	under the lea	adership of	Jawaharlal I	Vehru and the	ne eventual	failure of the					
	proposal o	f direct electio	ons through	adult suffra	ge in the Ind	lian Constitu	ition.					
CO4	To discuss	the passage o	f the Hindu	Code Bill of	1956.							

Unit-I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit-II

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit-III

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Pachayati raj: Introduction, PRI: ZilaPachayat, Elected officials and their roles, CEO ZilaPachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit-IV

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar, "framing of Indian Constitution", 1st Edition, 2015.
- 3. M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.)

MTAD-104A		PEDAGOGY STUDIES										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)					
				Test	Test							
2	0	0	-	-	100	100	3					
Objective	The main c	The main objective of the course is to review existing evidence on the review topic to										
	inform pro	inform programme design and policy making undertaken by the DfID, other agencies										
	and researchers and Identify critical evidence gaps to guide the development.											
			Course Outc	omes								
CO1	Understan	d the pedago	gical practic	es being use	d by teache	rs in form	nal and informal					
	classrooms	in developin	g countries.									
CO2	Become av	vare of the e	evidence on	the effective	eness of the	se pedag	ogical practices,					
	in different	in different conditions and with different population of learners.										
CO3	Understan	d the significa	ance of teach	ner educatio	n (curriculur	m and pra	icticum) and the					
	school curr	riculum and g	uidance mat	erials for eff	ective peda	gogy.						

Unit-I

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education, Conceptual framework, Research questions. Overview of methodology and Searching.

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries, Curriculum, Teacher education.

Unit-II

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

Unit-III

Professional development: alignment with classroom practices and follow-up support, Peer support Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

Unit-IV

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

- 1. Ackers J, Hardman F, "Classroom interaction in Kenyan primary schools", Compare, 31 (2): 245-261.
- 2. Agrawal M, "Curricular reform in schools: The importance of evaluation", Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K, "Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J, "Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count?" International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ, "Culture and pedagogy: International comparisons in primary education". Oxford and Boston: Blackwell.
- 6. Chavan M, "Read India: A mass scale, rapid, 'learning to read' campaign"

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2ndSem.) (Credit based)

	1		()									
MTAD-106A		STRESS MANAGEMENT BY YOGA										
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total										
				Test	Test		(Hrs.)					
2	0	0	-	-	100	100	3					
	•											
Objective	The main o	The main objective of the course is to achieve overall health of body and mind										
	and to ove	and to overcome stress										
		Coui	rse Outcom	es								
CO1	Develop h	ealthy mind i	n a healthy l	body thus in	nproving soc	ial health	l.					
CO2	Improve e	efficiency										
CO3	Learn the	Yogasan										
CO4	Learn the	Pranayam										

Unit-I

Definitions of Eight parts of yog. (Ashtanga)

Unit-II

Yam and Niyam. Do's and Don't's in life.

i) Ahinsa, satya, astheya, bramhacharya and aparigraha ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

Unit-III

Asan and Pranayam

i) Various yog poses and their benefits for mind & body ii) Regularization of breathing techniques and its effects-Types of pranayam

- 1. Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Tarining-Part-I" : Nagpur
- 2. Swami Vivekananda, "Rajayoga or conquering the Internal Nature" AdvaitaAshrama (Publication Department), Kolkata

	MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (2""Sem.)											
			(Credit ba	ased)								
MTAD-108A		PERSON	JALITY DEVE	LOPMENT T	HROUGH L	IFE						
			ENLIGHT	ENMENT SK	ILLS							
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time					
		Test Test (Hrs.)										
2	0	0 0 - 100 100 3										
Objective	To learn h	To learn how to achieve the highest goal happily.										
	To becom	To become a person with stable mind, pleasing personality and										
	termination.											
	To awaken	wisdom in st	udents.									
		Cou	Irse Outcom	es								
CO1	Students	pecome awar	e about lead	lership.								
CO2	Students	will learn hov	v to improve	communica	ition skills							
CO3	Understar	nd the team b	building and	conflict								
CO4	Student w	ill learn how	to manage t	he time.								

-

Neetisatakam-Holistic development of personality

- i) Verses- 19,20,21,22 (wisdom)
- ii) Verses- 29,31,32 (pride & heroism)
- iii) Verses- 26,28,63,65 (virtue)
- iv) Verses- 52,53,59 (dont's)
- v) Verses- 71,73,75,78 (do's)

Approach to day to day work and duties.

Shrimad BhagwadGeeta: Chapter 2-Verses 41, 47, 48, Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5, 13, 17, 23, 35, Chapter 18-Verses 45, 46, 48.

Statements of basic knowledge.

Shrimad BhagwadGeeta: Chapter2-Verses 56, 62, 68

Chapter 12 - Verses 13, 14, 15, 16, 17, 18

Personality of Role model. Shrimad BhagwadGeeta:

Chapter 2-Verses 17,

Chapter 3-Verses 36, 37, 42,

Chapter 4-Verses 18, 38, 39

Chapter18 – Verses 37,38,63

- 1. Swami Swarupananda, "Srimad Bhagavad Gita" Advaita Ashram (PublicationDepartment), Kolkata
- 2. P.Gopinath, "Bhartrihari's Three Satakam (Niti-sringar-vairagya) by, Rashtriya Sanskrit Sansthanam, New Delhi.

Third Semester (Programme Elective-V)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3^{rd.}Sem.) (Credit based)

MTIP-201A		ENTERPRISE RESOURCE PLANNING											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
3	0	0 0 3 60 40 100 3											
Objective	The main ob	The main objective of the course is to impart the students with the knowledge of											
	integrated applications to manage the business and automate many back office												
	functions related to technology, services and human resources.												
			Course Ou	tcomes									
CO1	To study the	basic princip	es and mod	els of an enter	orise.								
CO2	To understan	To understand the concepts of technology and architecture in ERP.											
CO3	To study ERP	system pack	ages.										
CO4	To study the	ERP procurer	nent issues.										

UNIT I

ENTERPRISE RESOURCE PLANNING:

Introduction, Evolution of ERP, Principle of ERP, Enabling Technologies, ERP Characteristics, Features of ERP, The advantages of ERP, Reasons for the Failure of ERP Implementation, Risk and governance issues in an ERP, ERP Framework, Business Blueprint, Business Engineering Vs. Business Process Re-Engineering, ERP Tools and Software, Demand Chain, Value Chain, and Supply Chain.

UNIT-II

ERP ARCHITECTURE: Need to Study ERP Architecture, Layered Architecture, Types of ERP Architecture: Two-tier Implementations, Three-tier Client/Server Implementations, Web-based architecture, Service-Oriented Architectures, Logical Architecture of an ERP System, Physical Architecture of an ERP System, Evaluation Framework for ERP Acquisition.

UNIT III

ERP PACKAGE INTEGRATION AND IMPLEMENTATION: ERP market, SAP, Peoplesoft, BAAN company, ORACLE corporation, A comparative assessment and selection of ERP packages and modules, Sales Force Automation, Integration of ERP, Integration of ERP and the Internet, ERP implementation strategies, Comparison of Big Bang vs. Phased Approach, Implementation Strategy in Small and Medium Enterprise, Post Implementation Issues.

UNIT IV

OVERVIEW OF ARCHITECTURE OF DIFFERENT ERP SOFTWARES:

Oracle overview, Architecture, A.I.M. and applications, SAP Software architecture overview, ERP before and after Y2K, Impact of Y2K on ERP Development, Risk and Governance Issues in an ERP

ERP MODULES: Finance module, Sales & Distribution module, Human Resources module, Plant Maintenance module, Quality Management module, Material management module, manufacturing management module.

RECOMMENDED BOOKS:

- 1. Sadagopan. S, ERP-A Managerial Perspective, Tata Mcgraw Hill, 1999.
- 2. Jose Antonio Fernandez, the SAP R/3 Handbook, Tata Mcgraw Hill, 1998.
- 3. Vinod Kumar Crag and N.K. Venkitakrishnan, Enterprise Resource Planning- Concepts and Practice, Prentice Hall of India, 1998.
- 4. Garg & Venkitakrishnan, ERPWARE, ERP Implementation Framework, Prentice Hall, 1999.
- 5. Thomas E Vollmann and BeryWhybark, Manufacturing and Control Systems, Galgothia Publications, 1998.
- 6. Alexis Leon, Enterprise resource planning, Tata Mcgraw-Hill

Note: Thepaperwillhaveatotalof *NINEquestions*. Question No.1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all FourUnits).

All questions will have equal weight of 12 marks. The student will attempt a total of FIVE questions, each of

w.e.f. 2018-19

12 marks. Q. No. 1 is compulsory. The student shall attempt remaining four questions by selecting only one question from each unit.

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rdSem.)

MTIP-203A		DESIGN OF EXPERIMENTS											
Lecture	Tutorial	Tutorial Practical Credit Major Minor Total Time Test											
3	0	0 0 3 60 40 100 3 hrs											
ObjectiveTo understand the various design of experiments techniques for optimization of													
		(Course Out	comes									
CO1	To understand	I the concept	s of Design	of Experime	ent and stat	istical Metho	ods.						
CO2	To understand	I the ANOVA	and factori	al design an	d fitting res	oonse curves	and surfaces.						
CO3	To study the application of Taguchi Method and testing of hypothesis												
CO4 To study and implement the Response Surface Methodology.													
	LINIT-I												

Introduction

Designed

Experiments:Introduction:Strategyofexperimentation,Sometypicalapplicationsofexperimentaldesign, Basic principles, Guidelines for designing experiments, Using statistical design in experimentation, A Checklist for Planning experiments, *Introduction to Minitab, Interface of Minitab, Customizing Minitab, Entering Data, Graphing Data, Printing Data and Graphs, Saving and Retrieving information.*

to

Basic Statistical Methods: Introduction, Basic statistical concepts, Types of Data, Graphical Presentation of Data.

Descriptive Statistics: Measure of Location, Measure of Variation, The Normal Distribution, Counting, Minitab Commands to Calculate Descriptive Statistics.

Inferential Statistics: The Distribution of Sample Means (R Known), Confidence Interval for the Population Mean (σ Known), Hypothesis testing for one sample mean (σ Known), Hypothesis test for two sample means, Testing for Normality, *Hypothesis test and Confidence Intervals with Minitab.*

UNIT-II

Analysis of Variance:Introduction to Analysis of Variance, ANOVA assumptions and Validation, ANOVA Table, The sum of square approach to ANOVA calculations, Analysis of the fixed Effect model, Decomposition of the Total sum of squares. Statistical analysis, Estimation of the Model Parameters, Unbalanced Data, Model Accuracy Check, Practical interpretation of results. *ANOVA with Minitab*

Factorial Experiments:Basic definition and principles, Advantages of factorials, Two level factorial design, The 2¹ Factorial Experiment, The 2² Factorial Experiment, The 2³ Factorial Design, Addition of Centre Cells to 2^k Designs. General Procedure for Analysis of 2^k designs. 2^k Factorial Designs in Minitab.

UNIT-III

Introduction to Taguchi Method: Introduction, Taguchi Quality loss function, Orthogonal Array, Properties of Orthogonal Array, Minimum number of experiments to be conducted, Static Problems, Dynamic Problems, Assumptions of the Taguchi method, Steps in Taguchi Method, Assessment of Factors and Interactions, Selection and Application of Orthogonal arrays, Data Analysis from Taguchi Experiments, Variable Data with main factors only, Variable Data with Interactions, Attribute Data Analysis, Confirmation Experiment, Confidence Intervals, Robust Design Approach. *Applications of Taguchi Method using Minitab.*

UNIT-IV

Introduction to Response Surface Methodology:Introduction, Terms in Quadratic Models, The method of steepest ascent, Analysis of Second order response surfaces, Experimental design for fitting response surfaces, 2k Designs with Centers, 3^k Factorial Designs, Box-Behnken Designs, Central Composite Designs, Analysis of Data from RSM Designs, Design Considerations for Response Surface Experiments. *Response Surface Designs in Minitab.*

RECOMMENDED BOOKS:

- 1. Douglas C Montgomery, Design and Analysis of Experiments, John Wiley
- 2. Paul G. Mathews, Design of Experiments with MINITAB, New Age International Publishers.
- 3. K. Krishnaiah, P. Shahabudeen, Applied Design of Experiments and Taguchi Methods, PHI.
- 4. Angela Dean and Daniel Voss, Design and Analysis of Experiments, Springer.
- 5. John P.W.M., Statistical Design and Analysis of Experiments, John Wiley
- 6. Montgomery D.C., Runger G. C., Introduction to Linear Regression Analysis, John Wiley
- 7. Myres R.H. and Montgomery D.C., Response Surface Methodology Process and Product Optimization Using Designed Experiments, Wiley
- 8. G UNIPUB, White Plains, Introduction to Quality Engineering Taguchi, New York.
- 9. https://www.ee.iitb.ac.in/~apte/CV_PRA_TAGUCHI_INTRO.htm
- 10. www.ecs.umass.edu/mie/labs/mda/fea/sankar/chap2.html

Note:Thepaperwillhaveatotalof*NINEquestions*.QuestionNo.1,whichiscompulsory, shall be Objective Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from eachunit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rdSem.)

	(Credit based)											
MTIP-205A			STR	ATEGIC ENTREPR	RENEURSHIP							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 3 60 40 100 3 hrs										
Objective	To provid	To provide knowledge to the students about entrepreneurship concepts and various										
	development programmes and policies.											
			Cours	e Outcomes								
CO1	To know a	about the sr	nall scale ir	ndustries, scopes	and the causes	of their sickn	iess.					
CO2	To know a	about the El	DP and diffe	erent governmer	nt policies.							
CO3	To learn a	To learn about business incubations and its future perspectives.										
CO4	To learn E	E-business n	narketing ar	nd developments	S.							
	•											

UNIT-I

Small Scale Industries: Definition and types of SSI's; Role, scope and performance in national economy; Problems of small scale industries.

Industrial Sickness: Definition; Causes of sickness; Indian scenario, Government help; Management strategies; Need for trained entrepreneurs

UNIT-II

Entrepreneurship Development Programmes: Introduction, Origin of EDP's, Organizations involved in EDP's, Objectives of EDPs, Implementation of EDP's, Short comings of EDP's, Role in entrepreneurship development.

Step: Introduction, Origin, Status in India, Success and failure factors, Govt. polices and incentives, future prospects in India.

UNIT-III

Business Incubation: Introduction, Origin and development of business incubators in India and other countries, types of incubators, success parameters for a business incubator, Benefits to industries, institutes, government and society; future prospects. A few case studies (at least 2).

Project Management: Concept, Characteristics and Significance of Project Management. Components of Project Management. Project Life Cycle. Project Identification and Selection. Project Formulation and Appraisal.

UNIT-IV

Special Aspects of Entrepreneurship: Entrepreneurship, Social entrepreneurship, International entrepreneurship, Rural entrepreneurship, Community Development, Women entrepreneurship.

Network Marketing: Introduction, E-business, E-commerce, E-auction, A basic internet e-business architecture, A multi-tier e-business architecture.

RECOMMENDED BOOKS:

- 1. P.K. Gupta, Strategic Entrepreneurship, Everest Publishing House.
- 2. David Cleland, Project Management Strategic Design and Implementation, McGraw Hill.
- 3. David H Holl, Entrepreneurship-New Venture Creation, Prentice Hall of India.
- 4. Steed & Steed, Sustainable Strategic Management, Prentice Hall of India.
- 5. Kotler, Marketing Management by Prentice Hall of India.
- 6. Tarek Khalil, Management of Technology, McGraw Hill.
- 7. Henry Steiner, Engineering Economic Principles, McGraw Hill.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

w.e.f. 2018-19

All questions will have equal *weight of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

Open Elective

	1		(Credit ba	isea)						
MTOE-201A			BUS	NESS ANAL	YTICS					
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)			
				Test	Test					
3	0	0	3	60	40	100	3			
Objective	The main o	The main objective of this course is to give the student a comprehensive								
	understand	ling of busine	ss analytics	methods.						
		C	Course Outc	omes						
CO1	Able to have	e knowledge	of various b	usiness ana	lysis technic	ues.				
CO2	Learn the r	equirement s	pecification	and transfo	rming the re	equiremen	nt into different			
	models.	models.								
CO3	Learn the r	equirement r	epresentatio	on and mana	aging requir	ement ass	sets.			
CO4	Learn the F	Recent Trends	in Embedde	ed and colla	borative bus	siness				

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rdSem.)

Unit-I

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

Unit-II

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents.

Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

Unit-III

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

Unit-IV

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

RECOMMENDED BOOKS:

- 1. James Cadle, "Business Analysis", BCS, The Chartered Institute for IT.
- 2. Erik Larson and, Clifford Gray, "Project Management: The Managerial Process", McGraw-Hill Education.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

w.e.f. 2018-19

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rdSem.) (Credit based)

MTOE-203A			IN	DUSTRIAL S	AFETY						
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
3	0	0	3	60	40	100	3				
Objective	The main	The main objective of this course is toaware students about the industrial safety									
	maintenance and fault findings.										
	Course Outcomes										
CO1	Understan	d the industria	al safety.								
CO2	Analyze fu	ndamentals o	f maintena	nce enginee	ering.						
CO3	Understan	d the wear an	d corrosio	n and fault t	racing.						
CO4	Understan	ding when	to do p	eriodic inc	eptions and	d apply	the preventing				
	maintenan	ice.									

Unit-I

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-II

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit-III

Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-IV

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of

preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

RECOMMENDED BOOKS:

- 1. Higgins & Morrow, "Maintenance Engineering Handbook", Da Information Services.
- 2. H. P. Garg, "Maintenance Engineering", S. Chand and Company.
- 3. Audels, "Pump-hydraulic Compressors", Mcgraw Hill Publication.
- 4. Winterkorn, Hans, "Foundation Engineering Handbook", Chapman & Hall London.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rdSem.) (Credit based)

MTOE-205A			OPER	ATIONS RES	EARCH					
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)			
				Test	Test					
3	0	0	3	60	40	100	3			
Objective	The main objective of this course is to aware students about the dynamic									
	programming to solve problems of discrete and continuous variables and model the									
	real world problem and simulate it.									
		C	ourse Outo	comes						
CO1	Students s	hould be able	e to apply	the dynamic	: programmi	ng to so	lve problems of			
	discreet ar	d continuous	variables.							
CO2	Students s	hould be able	to apply th	e concept of	non-linear p	orogramm	ning			
CO3	Students s	hould be able	to carry ou	t sensitivity a	analysis					
CO4	Student sh	ould be able to	o model the	e real world	problem and	d simulate	e it.			

Unit-I

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit-II

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit-III

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit-IV

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, "Operations Research, An Introduction", PHI, 2008
- 2. H.M. Wagner, "Principles of Operations Research", PHI, Delhi, 1982.
- 3. J.C. Pant, "Introduction to Optimization: Operations Research", Jain Brothers, Delhi, 2008
- 4. Hitler Libermann, "Operations Research", McGraw Hill Pub. 2009
- 5. Pannerselvam, "Operations Research", Prentice Hall of India 2010
- 6. Harvey M Wagner, "Principles of Operations Research", Prentice Hall of India 2010

w.e.f. 2018-19

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rdSem.) (Credit based)

MTOE-207A		COST MANAGEMENT OF ENGINEERING PROJECTS									
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)				
3	0	0	3	60	40	100	3				

Objective	The main objective of this course is to impart the students with the knowledge of cost management for the organized and apply cost models to the real						
	cost management for the engineering project and apply cost models to the real						
	world projects.						
CourseOutcomes							
CO1	Students should be able to learn the strategic cost management process.						
CO2	Students should be able to types of project and project team types						
CO3	Students should be able to carry out Cost Behavior and Profit Planning analysis.						
CO4	Student should be able to learn the quantitative techniques for cost management.						

Unit-I

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Unit-II

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Unit-III

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit-IV

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Charles Thomas Horngren, "Cost Accounting a Managerial Emphasis", Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, "Advanced Management Accounting"
- 3. Robert S Kaplan Anthony A. Alkinson, "Management & Cost Accounting"

- 4. Ashish K. Bhattacharya, "Principles & Practices of Cost Accounting", A. H. Wheeler publisher
- 5. N.D. Vohra, "Quantitative Techniques in Management", Tata McGraw Hill Book Co. Ltd.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rdSem.) (Credit based)

MTOE-209A			COM	POSITE MAT	ERIALS						
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
3	0	0	3	60	40	100	3				
Objective	The main objective of this course is to impart the students with the knowledge of										
	composites, its materials, analysis, fabrication, and performance analysis.										
	Course Outcomes										
CO1	Students s	hould be abl	e to learn th	ne classifica	tion and cha	aracteristi	cs of composite				
	materials.										
CO2	Students sl	hould be able	e to understa	ind about di	fferent fabri	cation teo	hniques related				
	to metal m	atrix compos	sites.								
CO3	Students sl	hould be able	e to understa	ind about di	fferent fabri	cation teo	chniques related				
	to polymer	matrix comp	osites.								
CO4	Student sh	ould be able	to do the an	alyses of the	e composite	materials	under different				
	loading cor	nditions.									

UNIT-I

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures, Iso-strain and Iso-stress conditions.

UNIT – II

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications.

Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

UNIT-III

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT – IV

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

RECOMMENDED BOOKS:

1. R.W.Cahn, "Material Science and Technology" VCH, West Germany.

- 2. WD Callister, Jr, "Materials Science and Engineering, An introduction"
- 3. Balasubramaniam, "John Wiley & Sons", NY, Indian edition, 2007.
- 4. Lubin, "Hand Book of Composite Materials"
- 5. K.K.Chawla, "Composite Materials"
- 6. Deborah D.L. Chung, "Composite Materials Science and Applications"
- 7. Danial Gay, Suong V. Hoa, and Stephen W. Tasi, "Composite Materials Design and Applications"

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rdSem.) (Credit based)

MTOE-211A			WA	STE TO ENE	RGY						
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time (Hrs.)				
				Test	Test						
3	0	0	3	60	40	100	3				
Objective	The main objective of this course is to impart the studentswith the knowledge of										
	generation of energy from the waste.										
		C	Course Outc	omes							
CO1	Students s	hould be able	e to learn tl	ne classifica	tion of was	te as a fu	uel and biomass				
	pyrolysis.										
CO2	Students sl	nould be able	to learn gas	ification pro	cess and dif	fferent typ	pes of gasifiers.				
CO3	Students st	nould be able	to learn diff	erent comb	ustors for b	iomass.	-				
CO4	Student sh	nould be able	e to learn	the Biogas	plant techr	nology dif	fferent biomass				
	conversion	s processes fo	or different a	applications		2.0					

Unit-I

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors.

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

Unit-II

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

Unit-III

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-IV

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications -Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

RECOMMENDED BOOKS:

1. Desai, Ashok V, "Non-Conventional Energy", Wiley Eastern Ltd., 1990.

2. Khandelwal, K. C. and Mahdi, S. S., "Biogas Technology - A Practical Hand Book - Vol. I & II", Tata McGraw Hill Publishing Co. Ltd., 1983.

3. Challal, D. S, "Food, Feed and Fuel from Biomass", IBH Publishing Co. Pvt. Ltd., 1991.

4. C. Y. WereKo-Brobby and E. B. Hagan, "Biomass Conversion and Technology", John Wiley & Sons, 1996.

Note: The paper will have a total of *NINE questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all Four Units).

All questions will have equal *weightage of 12 marks*. The student will attempt a total of *FIVE questions*, each of 12 marks. Q. No. 1 is compulsory. *The student shall attempt remaining four questions by selecting only one question from each unit.*

(Credit based)												
MTME-201			DI	SSERTATIC	ON PHASE	-1						
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time (Hrs.)				
				Test	Test	Marks						
0	0	20	10	-	100	-	100	-				
Objective	The main objective of this course is to plan a research work (which includes the problem											
	formulation/literature review, proposed objectives, proposed methodologies and											
	references) in the field of Industrial and Production Engineering or interrelated fields of											
	applications.											
Course Outcomes												
CO 1	Students will be exposed to various self-learning topics.											
CO 2	Students	will be expos	sed toan e	exhaustive	survey of	of the litera	iture suc	h as books,				
	national/ir	iternational r	efereed jou	urnals, res	source pe	rsons and in	dustrialsu	irveysfor the				
	selection/	identification	of engineer	ing/resear	ch probler	n.						
CO 3	Students w	ill be able to	set the res	earch obje	ectives of t	he identified	enginee	ring/research				
	problem.											
CO 4	Students	will learn	modern	tools/te	echniques	related	to the	e identified				
	engineerin	g/researchpro	blem for tl	he solutio	n and abl	e to learn te	chnical r	eport writing				
	skills.											
CO 5	Students w	ill develop or	al and writ	tten comm	nunication	skills to pres	sent and	defend their				
	work in fro	nt of technica	lly qualified	laudience								

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (3rdSem.) (Credit based)

The students will start their research workin third semester with a research problem having research potential involving scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution.

The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his/her supervisor and the topic of dissertation must be mutually decided by the supervisor and student.

The students will be required to submit a progress report related to their dissertation work by the end of September. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.

w.e.f. 2018-19

The progress report must be at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The students will be required to appear for comprehensive Seminar & Viva-voce and submit a synopsis report based on their progress related to the dissertation as per the presentation date mentioned in the academic calendar for the session. The synopsis report will be submitted in the same format as that of the thesis and will contain the following:

- 1. Introduction
- 2. Literature Survey
- 3. Gaps in Literature
- 4. Objectives of the Proposed Work
- 5. Methodology
- 6. References

* Student will choose his/her guide in the end of second semester.

Fourth Semester
MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (4thSem.) (Credit based)

MTME-202		DISSERTATION PHASE -II										
Lecture	Tutoria	Practical	Credits	Maior	Minor	Practical	Total	Time (Hrs.)				
	I			Test	Test							
0	0	32	16	-	100	200	300	-				
Objective	The main	objective of	the course i	is to make	the stude	ents able to d	o some g	ood research				
	in the fi	eld of their	interests r	related to	Industria	I and Produ	iction En	igineering or				
	interrelat	ted fields of a	oplications.									
			Course	e Outcome	es							
CO 1	Students	will be able	to design	solutions	s for engi	neering prol	plems th	at meet the				
	specified	needs with ap	opropriate o	considerati	ions.							
CO 2	Students	will be able t	o conduct	investigati	ons of eng	gineering pro	blems us	ing research-				
	basedkno	owledge and	experiment	al/researc	hmethods	including d	esign of	experiments,				
	analysis	and interpret	ation of da	ata, and s	ynthesisof	the information	ation to	provide valid				
	conclusio	ons.			<u> </u>	<u> </u>						
CO 3	Students	will be able	to apply re	sources a	nd moderi	nengineering	tools an	d techniques				
	with an u	inderstanding	of the limita	ations.								
CO 4	Students	will be able	to either	work in a	a research	environmer	nt or in	an industrial				
	environm	nent.					-					
CO 5	Students	will be co	nversant v	with tech	nical rep	ort writing,	profess	ional ethics,				
	responsit	bilities and no	rms of the e	engineerin	g practice.			<u> </u>				
CO 6	Students	will be able	to present	and conv	ince their	topic of stu	dy to the	engineering				
	commun	ity.										

The students are required to continue Analytical/Experimental/Computational/Industrial Problems or Case studies investigations in the field of Industrial and Production Engineering or other related fields which have been finalized in the third semester. They would be working under the supervision of a faculty member.

The students will be required to submit a progress report duly signed by their respective supervisors to the department, related to their dissertation work in the last week of March. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.

- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.
- References

The progress report must be of at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The candidate has to prepare a detailed dissertation report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up/numerical details/industrial case study etc. as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study.

The final dissertation will be submitted in the end of semester as per academic calendar for the session, which will be evaluated by internal as well as external examiners based upon his/her research work. At least one publication is expected before final submission of the dissertation from every student in peer reviewed referred journals or reputed conference from the work done by them in their dissertation. The dissertation should be presented in standard format as provided by the department.

The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a supervisor, co-supervisor etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his supervisor.

KURUKSHETRA UNIVERSITY, KURUKSHETRA

('A+' Grade, NAAC Accredited)

SCHEME OF EXAMINATIONS FOR MASTER OF TECHNOLOGY IN ELECTRICAL ENGINEERING (w. e. f. 2018-19)

SEMESTER-I

Sr. No.	Course Code	SUBJECT	L	Т	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	MTEL-101A	Advanced Power System Analysis	3	-	-	3	40	60	3	3
2	MTEL-103A	Advanced Instrumentation & Control	3	-	-	3	40	60	3	3
3	*	Program Elective-I	3	-	-	3	40	60	3	3
4	**	Program Elective-II	3	-	-	3	40	60	3	3
5	MTEL-117A	Instrumentation & Control Lab	-	-	4	4	40	60	2	3
6	MTEL-119A	Advanced Power System Lab-I	-	-	4	4	40	60	2	3
7	MTRM-111A	Research Methodology and IPR	2	-	-	2	40	60	2	3
8	***	Audit Course-I	2	-	-	2	-	-	-	-
		Total	16		8	24	280	420	18	

	* PROGRAM ELECTIVE – I								
1.	MTEL-105A	Renewable Energy Resources							
2.	MTEL-107A	Power Electronics Applications in Renewable Energy							
3.	MTEL-109A	Smart Grid							
	**	PROGRAM ELECTIVE - II							
1.	MTEL-111A	Bio-Medical Signal & Image Processing							
2.	MTEL-113A	Advanced Digital Signal Processing							
3.	MTEL-115A	Bio-Medical Instrumentation							
		*** AUDIT COURSE – I							
1.	MTAD-101A	English for Research Paper Writing							
2.	MTAD-103A	Disaster Management							
3.	MTAD-105A	Sanskrit for Technical Knowledge							
4.	MTAD-107A	Value Education							

Note: 1. The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

2. *** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

SEMESTER-II

Sr. No.	Course Code	Subject	L	T	Ρ	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	MTEL-102A	Advanced Power System Protection	3	-	-	3	40	60	3	3
2	MTEL-104A	Intelligent Control	3	-	-	3	40	60	3	3
3	*	Program Elective-III	3	-	-	3	40	60	3	3
4	**	Program Elective-IV	3	-	-	3	40	60	3	3
5	MTEL-118A	Modeling & Simulation Lab	-	-	4	4	40	60	2	3
6	MTEL-120A	Advanced Power System Lab-II	-	-	4	4	40	60	2	3
7	#MTEL-122A	Mini Project	-	-	4	4	100	-	2	3
8	***	Audit Course-II	2	-	-	-	-	-	-	-
		Total	14		12	26	340	360	18	

	*PROGRAM ELECTIVES - III							
1.	MTEL-106A	HVDC Transmission & FACTS Devices						
2.	MTEL-108A	Transients in Power System						
3.	MTEL-110A	Advanced Power Distribution & Automation						

	**PROGRAM ELECTIVE – IV							
1.	MTEL-112A	Digital Control System						
2.	MTEL-114A	Advanced Microprocessors						
3.	MTEL-116A	Reliability Engineering						

	*** AUDIT COURSE–II								
1.	MTAD-102A	Constitution of India							
2.	MTAD-104A	Pedagogy Studies							
3.	MTAD-106A	Stress Management by Yoga							
4.	MTAD-108A	Personality Development through Life Enlightenment							
		Skills							

Note: 1. The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

Note 2. *** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

#Note3: Mini project: During this course the student will be able to understand the contemporary/emerging technologies for various processes and systems. During the semester, the students are required to search/gather the material/information on a specific topic, comprehend it and present/discuss the same in the class. He/she will be acquainted to share knowledge effectively in oral (seminar) and written form (formulate documents) in the form of report. The student will be evaluated on the basis of viva/ seminar (40 marks) and report (60 marks).

SEMESTER-III

Sr. No.	Course Code	Subject	L	Т	Р	Total	Minor* Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	*	Program Elective-V	3	-	-	3	40	60	3	3
2	**	Open Elective	3	-	-	3	40	60	3	3
3	MTEL-207A	Dissertation Phase-I	-	-	20	20	100	-	10	
		Total	6		20	26	180	120	16	

	** OPEN ELECTIVE							
1.	MTOE-201A	Business Analytics						
2.	MTOE-203A	Industrial Safety						
3.	MTOE-205A	Operation Research						
4.	MTOE-207A	Cost Management of Engineering Projects						
5.	MTOE-209A	Composite Materials						
6.	MTOE-211A	Waste to Energy						

	* PROGRAM ELECTIVE - V							
1.	MTEL-201A	Distributed Generation						
2.	MTEL-203A	Electric Drives & Control						
3.	MTEL-205A	Power System Restructuring & Deregulation						

SEMESTER-IV

Sr. No.	Course Code		L	T	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	MTEL-202A	Dissertation Phase-II	-	-	32	-	100	200	16	
						Total	100	200	16	

Total Credits – 68

- **Note 1**: At the end of the second semester each student is required to do his/her Dissertation work in the identified area in consent of the Guide/Supervisor. Synopsis for the Dissertation Part-I is to be submitted within three weeks of the beginning of the Third Semester.
- **Note 2**: Each admitted student is required to submit the report of his/her Dissertation Part-I as per the schedule mentioned in Academic calendar for the corresponding academic session otherwise the Dissertation Part-II cannot be continued at any level.
- **Note 3**: Each admitted student is required to submit his/her final Dissertation Part-II as per the schedule mentioned in Academic calendar for the corresponding academic session only after the publication of two papers in a journal/International/National conference of repute like IEEE, Springer, Elsevier, ACM etc.
- **Note 4:** The course of program/open elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

MTEL-101A		Advanced Power System Analysis											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)						
3	0	0	3	60	40	100	3						
Program	To enable stu	dents to analyse	e power system	n networks, var	ious faults, loa	d flow study, se	ecurity and						
Objective	contingency a	contingency analysis.											
(PO)													
			Course Outco	mes (CO)									
After complet	ion of course	students will b	e able to										
C01	Understand m	atrices related	o power syster	n and its forma	ition with differe	ent methods.							
CO2	Understand h	ow to analyze v	arious types of	faults in power	system								
CO3	Study various	methods of loa	d flow and their	r advantages a	nd disadvantag	jes							
CO4	Understand n	eed of power sy	stem security,	state estimatio	n and continge	ncy analysis							

UNIT1

Network Modelling: System graph, loop, cut set and Incidence matrices, Primitive network and matrix, Formation of various network matrices by singular transformation.

Bus Impedance Algorithm: Singular transformation, direct inspection, Building Block algorithm for bus impedance matrix, Addition of links, addition of branches, (considering mutual coupling).

UNIT2

Balanced and unbalanced network elements: Representation of three phase network elements, representation under balanced and unbalanced excitation, transformation matrices, symmetrical components, sequence impedances, unbalanced elements and three phase power invariance.

Short circuit studies: Network representations for single line to ground fault, line to line fault, LL-G fault, and 3-phase faults, Short circuit calculations for various types of faults in matrix form.

UNIT3

Load flow studies: Load flow and its importance. Classification of buses, load flow techniques, Iterative solutions and computer flow charts using Gauss-Seidel and Newton-Raphson methods, Decoupled and fast decoupled methods, Representation of regulating and off nominal ratio transformers and modification of Ybus.

UNIT4

Power system security: Introduction to Power system security, Addition and removal of multiple lines, network reduction for contingency analysis, current injection, shift destitution factor, single outage contingency analysis. State estimation in power systems: data acquisition system, Method of least-squares, State estimation by weighted least square technique.

- 1. Stagg G W, El-Abaid A H, "Computer methods in Power system analysis", McGraw Hill.
- 2. Singh L P, "Advanced Power System Analysis and Dynamics", New Age, Int. Publication.
- 3. Ramana N V, "Power System Analysis", Pearson Education.
- 4. Nagsarkar T K, Sukhija M S, "Power System Analysis", Oxford University Press.
- 5. Uma Rao K, "Computer Techniques and Models in Power System", IK Publications.
- 6. Grainger J J, Stevenson W D, "Power System Analysis", McGraw Hill.
- 7. Allen Wood, Bruce Wollenberg, "Power Generation operation & control", John Wiley & Sons.
- 8. Nagrath I J, Kothari D P, "Power System Engineering" McGraw Hill, New York.
- 9. Pai M A, "Computer Techniques in Power System Analysis", 2nd Edition, TMH-New Delhi.

MTEL-103A		Advanced Instrumentation & Control									
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)									
3	0	0	3	60	40	100	3				
Program	This course wi	his course will look at different types of Instruments with their controls.									
Objective											
(PO)											
			Course Outco	omes (CO)							
After completi	ion of course st	udents will be	able to								
C01	Understand dif	ferent types of I	nstruments wit	h their application	ons.						
CO2	Understand ba	sics of smart Se	nsor with their a	advantages ,disa	advantages and	applications					
CO3	To emphasize	and analysis of	Virtual Instrume	nts.							
CO4	To study differ	ent types of VI s	structures								

Transducers: Introduction, Characteristics and Classifications of electrical transducers, measurement of displacement, Force, pressure, speed, temperature and intensity of light using different electrical transducers, advantages, disadvantages and applications of transducers

. Unit 2

Smart Sensors: Introduction, architecture of smart sensor, optical sensor, microelectronic sensor, chemical, Bio Sensor and Physical Sensor, piezo-resistive pressure sensor, fibre optic temperature sensor, light sensor, advantages, disadvantages and applications of smart sensors.

Unit 3

Virtual Instrumentation: Introduction, architecture of VI, Evaluation and architecture of VI, conventional Virtual Instrumentation, Advantage of Lab View, Software Environment, Creating and Saving VI, front Panel and block diagram Tool Bar, Palettes, front panel control and indicators, block diagram: Terminals, Nodes, Functions, Sub VI, Data Flow Program.

Unit 4

VI Structures: Control structures, selection structures, case structures, Sequence structures, formula node, array, single and multi-dimensional array, auto indexing, clusters, creating clusters control and indicators, data plotting.

Suggested Books:

1. Johnson G W, "Lab VIEW Graphical Programming", Second edition, McGraw Hill.

2. Kring J & Travis J, "LabVIEW for everyone", Prentice Hall, New Jersey.

3. James K, "PC Interfacing and Data Acquisition", Elsevier.

4. Jerome J, "Virtual Instrumentation using Lab View", Prentice Hall, India.

MTEL-105A		Renewable Energy Resources									
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)									
3	0	0	3	60	40	100	3				
Program	The main obje	The main objective of the course is to impart the students with the knowledge of renewable energy									
Objective	resources and	esources and different factors related to them.									
(PO)											
			Course Outco	omes (CO)							
After complet	tion of course	students will b	e able to								
C01	To impart kno	wledge about re	enewable energ	gy resources ar	nd solar power	system.					
CO2	To acquaint students with the phenomenon of wind power system and its applications with grid.										
CO3	To impart kno	wledge to stude	ents about geot	hermal and oce	ean power syst	em.					
CO4	To let student	understand fue	I cell, hydroger	n and hybrid en	ergy system.						

ENERGY RESOURCES: Renewable energy sources, distributed energy systems and dispersed generation, atmospheric aspects of electric energy generation, Impact of renewable energy generation on environment

SOLAR ENERGY: Solar Radiation and its Measurement, Solar Thermal Energy Collectors: different types of collectors and their performance analysis, Solar Thermal Energy Conversion System: solar water heater, solar distillation, slat thermal power plant and various applications of solar system, Solar Photovoltaic System: solar cell, VI characteristics, solar electricity and grid and off-grid solar system.

Unit 2

WIND ENERGY: Wind turbines and rotors, Wind Energy Extraction, Wind Characteristics, Power Density Duration Curve, Design of Wind Turbine Rotor, Design of Regulating System for Rotor, Wind Power Generation Curve, Subsystems of a Horizontal Axis Wind Turbine Generator, Modes of Wind Power Generation, Estimation of Wind Energy Potential, Selection of Optimum Wind Energy Generator (WEG), Grid Interfacing of a Wind Farm, Methods of Grid Connection, Grid System and Properties, Capacity of Wind Farms for Penetration into Grid, Control System for Wind Farms, Economics of Wind Farms

Unit 3

GEOTHERMAL ENERGY: Structure of the Earth's Interior, Plate Tectonic Major Test, Geothermal Sites, Geothermal Field, Geothermal Gradients, Geothermal Resources, Geothermal Power Generation, Geothermal Electric Power Plant, Geothermal-Preheat Hybrid with Conventional Plant

OCEAN ENERGY: Development of a Tidal Power Scheme, Grid Interfacing of Tidal Power, Wave Energy, Mathematical Analysis of Wave Energy, Empirical Formulae on Wave Energy, Wave Energy Conversion, Principle of Wave Energy plant, Wave Energy Conversion Machines.

Unit 4

FUEL CELLS: Principle of Operation of Fuel Cell, Fuel Processor, Fuel Cell Types, Energy Output of a Fuel Cell, Efficiency, and EMF of a Fuel Cell, Operating Characteristics of Fuel Cells, Thermal Efficiency of Fuel Cell

HYDROGEN ENERGY SYSTEM: Hydrogen Production, Hydrogen Storage, Development of Hydrogen Cartridge, Gas Hydrate

HYBRID ENERGY SYSTEMS: Hybrid Systems AND ITS Types, Electric and Hybrid Electric Vehicles, Hydrogen-Powered-Electric Vehicles.

- 1. Kothari DP, Singal KC, Ranjan Rakesh, "Renewable energy sources and emerging technologies, 2nd ed, Prentice Hall (India)
- 2. Rai G D, "Non-Conventional Sources of Energy, Khanna Publishers.
- 3. Bansal N K, Kleemann M, Heliss M, "Renewable energy sources and conversion technology", McGraw Hill Education.
- 4. Abbasi S A, Abbasi N, "Renewable energy sources and their environmental impact", PHI.
- 5. Mittal KM, "Renewable energy Systems", Wheelar Publishing.
- 6. Mukherjee D, "Renewable energy Systems", New Age International.

MTEL-107A		Power Electronics Applications in Renewable Energy									
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)									
3	0	0	3	60	40	100	3				
Program	The main obje	The main objective of the course is to impart the students with the application of power system in									
Objective	renewable en	enewable energy resources.									
(PO)											
			Course Outco	omes (CO)							
After complet	ion of course	students will b	e able to								
C01	To impart kno	wledge about p	ower electronic	s devices and	DC-DC conver	ters.					
CO2	To acquaint st	udents with the	modern power	r electronics co	nverters.						
CO3	To impart kno	wledge to stude	nts about pow	er electronics ir	nterface device	s for solar ene	rgy.				
CO4	To let student	understand win	d energy interf	acing devices.							

Review of Power Devices: SCR, BJT, MOSFET, IGBT, GTO, Safe operating Limits, Selection of devices for various applications.

Phase controlled Converters: $(1-\phi \& 3-\phi)$ thyristor fed half controlled, fully controlled and Dual converters with inductive and motor load.

DC to DC converters: Analysis of various conduction modes of Buck, Boost, Buck-Boost.

Unit2

Modern Power Electronic Converters: Basic concepts of VSI, single phase half bridge, full bridge and three phase bridge inverters, PWM modulation strategies, Sinusoidal PWM, Space vector modulation, Selective Harmonic Elimination method, other inverter switching schemes, blanking time, Current source inverters.

Unit3

Design of Power Electronics Interfaces for Solar PV: Solar PV technologies, MPPT, Design of DC-DC converters for MPPT, MPPT algorithms, Implementation of MPPT control through DSP controllers. Topologies for grid connected and standalone applications: single phase and three phase systems, Single stage and multistage, isolated and non-isolated.

Unit4

Power Electronics Interfaces for WES: Topologies of WES, design considerations for wind energy Switch rectifier/inverter system, Power Converters for Doubly Fed Induction Generators (DFIG) in Wind Turbines.

Power Electronics Interfaces for Fuel Cells: Types of fuel cells, Proton Exchange Membrane (PEM) fuel cell: features and operational characteristics, Design of DC-DC converters for PEM fuel cell, MPPT in Fuel Cell.

- 1. Mohan N, Undel and T M, Robbins W P, "Power Electronics, Converters, Applications & Design", Wiley India Pvt. Ltd.
- 2. Bose B K, "Modern Power Electronics and AC Drives", Pearson Education.
- 3. Joseph Vithayathil, "Power Electronics", Tata McGraw Hil.
- 4. Amirnaser Yezdani, and Reza Iravani, "Voltage Source Converters in Power Systems: Modelling, Control and Applications", IEEE John Wiley Publications.
- 5. Solanki C S, "Solar Photo Voltaic", PHI learning Pvt Ltd.

MTEL-109A				Smart Grid					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)		
3	0	0	3	60	40	100	3		
Program	The main obje	ective of the cou	urse is to impai	rt the students	with the knowl	edge of smart	Grid and its		
Objective	advantages ov	ver conventiona	l grid						
(PO)									
Course Outcomes (CO)									
After complet	After completion of course students will be able to								
C01	To impart kno	wledge about S	mart Grids and	Appreciate the	e difference be	tween smart gr	id &		
	conventional g	grid							
CO2	To acquaint st	udents with the	phenomenon	of smart meteri	ng concepts to	industrial and	commercial		
	installations								
CO3	To impart kno	wledge to stude	nts about Forn	nulate solutions	s in the areas o	f smart substa	tions,		
	distributed ger	neration and wid	de area measu	rements					
CO4	To let student	understand mic	rogrid and rela	ited issues					

UNIT-1

Introduction to Smart Grid, Evolution of Electric Grid Concept of Smart Grid, Definitions Need of Smart Grid, Concept of Robust & Self-Healing Grid, Present development & International policies in Smart Grid. Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources Power Quality Conditioners for Smart Grid

UNIT-2

Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS) Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Smart Substations, Substation Automation, Feeder Automation. Cyber Security for Smart Grid

UNIT-3

Geographic Information System(GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU)

UNIT-4

Concept of micro-grid, need & applications of micro-grid, formation of micro-grid, Issues of interconnection, protection & control of Plastic & Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel-cells, micro-turbines Captive power plants, Integration of renewable energy sources

- 1. Keyhani A, "Design of smart power grid renewable energy systems", Wiley IEEE.
- 2. Berger L T, Iniewski K, "Smart Grid: Applications, Communications and Security", Wiley.
- 3. Gellings C W., "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press.
- 4. Ekanayake J B, Jenkins N, Liyanage K, Yokoyama A, "Smart Grid: Technology and Applications", Wiley.
- 5. Borlase S, "Smart Grid: Infrastructure, Technology and solutions", CRC Press.
- 6. Phadke A G, "Synchronized Phasor Measurement and their Applications", Springer.

MTEL-111A		Bio-Medical Signal & Image Processing									
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)									
3	0	0	3	60	40	100	3				
Program	This course wi	This course will look at Biomedical signal and Image for understanding and their processing									
Objective	assessing	issessing									
(PO)	_										
			Course Outco	omes (CO)							
After complet	ion of course s	tudents will be	e able to								
C01	Understand di	fferent types of	biomedical sigr	al and Identify	and analyse dif	ferent biomedi	cal signals.				
CO2	Understand ba	isics of Image p	rocessing and	its methods							
CO3	To emphasize	and analysis of	Clustering and	Classification							
CO4	To study diffe	rent types of bio	signals and th	eir processina							

Signals and Biomedical Signal Processing: Introduction and overview, Analog, discrete and digital signals, Processing and transformation of signals, Signal processing for feature extraction, Characteristics of digital Images, Fourier transform: Properties of One-Dimensional Fourier Transform, Discrete Fourier Transform.

. Unit-2

Image Processing: Image filtering Enhancement and Restoration, Point processing, Mask processing: linear filtering in Space domain, Frequency-domain filtering, Smoothing and sharping filters in frequency domain, Wavelet transform, FFT to STFT, One-Dimensional Continuous and discrete Wavelet Transform, Image processing methods.

Unit-3

Clustering and Classification: Clustering versus Classification, Feature extraction, Biomedical and. Biological features, Signal and Image processing features, K-means: A Simple Clustering Method, study of different types of Classifiers for signal processing.

Unit-4

Processing of Biomedical Signals: Electric activities of Cell, Electric data acquisition, Electrocardiogram: Signal of Cardiovascular system, Processing and feature extraction of ECG, Electroencephalogram, Signal of the brain, Processing and feature extraction of EEG, Electromyogram: Signal of muscles, Processing and feature extraction of EMG. Frequency and wavelet-domain analysis.

Suggested Books:

KayvanNajarian& Robert Splinter, "Introduction to Biomedical signal and Image Processing", CRC Press
MetinAkay "Time Frequency & Wavelets in Biomedical Signal Processing", Wiley-IEEE Press.
Amine Nait-Ali, "Advanced Biomedical Signal Processing", Springer.

MTEL-113A		Advanced Digital Signal Processing								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)			
3	0	0	3	60	40	100	3			
Program	The main obje	ective of the cou	rse is to impart	the students v	ith the knowle	dge of LTI syst	em and			
Objective	designing of d	lifferent types of	Filters.							
(PO)										
Course Outco	omes (CO)									
After complet	ion of course	students will b	e able to							
C01	To impart	knowledge abo	out LTI system	and DFT.						
CO2	To acqua	int students with	n the study and	design of FIR	filters.					
CO3	To impart	To impart knowledge to students about study and design of IIR filters.								
CO4	To let studen	t understand th	e concept and	l design of ada	aptive digital fi	Iters and powe	er spectrum			
	estimation.			-	-		-			

UNIT-1

Introduction of DSP: Introduction to Signal Processing, Discrete Linear Systems, superposition Principle, UNIT-Sample response, stability & causality Criterion.

Fourier Transform & inverse Fourier transform: Frequency domain design of digital filters, Fourier transform, use of Fourier transform in Signal processing. The inverse fourier transform, sampling continuous function to generate a sequence, Reconstruction of continuous -time signals from Discrete-time sequences.

UNIT-2

Digital Filter Structure & Implementation: Linearity, time invariance & causality, the discrete convolution, the transfer function, stability tests, steady state response, Amplitude & Phase Characteristics, stabilization procedure, Ideal LP Filter, Physical reliability & specifications. FIR Filters, Truncation windowing & Delays, design example, IIR Filters: Review of design of analog filters & analog frequency transformation. Digital frequency transformation. Design of LP filters using impulse invariance method, bilinear transformation, Phase equalizer, digital all pass filters.

UNIT-3

Implementation of Filters: Realization block diagrams, Cascade & parallel realization, effect of infinite-word length, transfer function of degree 1&2, Sensitivity comparisons, effects of finite precision arithmetic on Digital filters.

UNIT-4

DFT & FFT & Z transform with Applications: Discrete Fourier transform, properties of DFT, Circular Convolution, Fast Fourier Transform, Realizations of DFT. The Z-transform, the system function of a digital filter, Digital Filter implementation from the system function, the inverse Z- transform, properties & applications, Special computation of finite sequences, sequence of infinite length & continuous time signals, computation of Fourier series & time sequences from spectra.

- 1. J G Proakis, "Digital Signal Processing using Matlab", Pearson Education.
- 2. Alam V. Oppenheim and Ronald W. Schafer, "Digital Signal Processing" Pearson Education.
- 3. Rabiner & Gold, "Major Test& application of digital Signal Processing", Pearson Education
- 4. Roman kuc, "Introduction to Digital Signal Processing," Tata McGraw Hill Edition.
- 5. Richard G. Lyons, "Understanding Digital Signal Processing", Pearson Education.
- 6. Paulo S. R. Diniz, Eduardo A. B. da Silva, Sergio L. Netto, "Digital Signal Processing: System Analysis and Design", Springer.
- 7. Manolakis G Demitries, "Applied Digital Signal Processing", Cambridge Univ. Press.

MTEL-115A		Bio-Medical Instrumentation								
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)								
3	0	0	3	60	40	100	3			
Program	The main obje	ective of the cou	rse is to impar	t the students v	vith the knowle	dge of differen	t types of			
Objective	Biomedical Inst	struments with t	heir controls.			-				
(PO)										
Course Outco	omes (CO)									
After complet	ion of course	students will b	e able to							
C01	Understand th	e different type	s of biomedical	transducer for	signal measur	ement and rec	ording.			
CO2	Understand ba	Understand basics of blood pressure, blood flow and respiratory system measurements.								
CO3	Understand th	e muscoskeleta	al and nervous	system and the	eir measureme	nt.				
CO4	To emphasize	e and analysis o	of recent trends	in biomedical	Engg and safe	ty measureme	nt.			

Characteristics of Transducers and Electrodes for Biological Measurement: Introduction to human body, block diagram, classification, various physiological events and suitable transducer for their recording, bioelectric potentials.

Cardiac system: Cardiac musculature, Electro cardiography, ECG recording, phonocardiography, holter recording ECG lead system, Heart rate meter, vector cardiography, pacemakers,

Unit-2

Blood pressure and Blood flow measurement; Invasive and non-invasive methods of blood pressure, characteristics of blood flow and heart sound, Cardiac output measurement, Plethysmography.

Respiratory system: Mechanics or breathing, parameters of respiration, Respiratory system measurements, respiratory therapy instruments.

Unit-3

Muscoskeletal Systems; EMG, Clinical applications, Muscles stimulator, Instrumentation for measuring Nervous function; EEG signal, frequency band classification, Lead systems, EEG recording, Clinical applications of EEG signal, X-ray CT scan, MRI, PET.

Clinical Laboratory Instrumentation; Test on blood cell, Blood cell counter, Blood glucose monitors, auto analyzer, pulse-oximeter.

Unit-4

Recent Trends in Biomedical Engg: Patient care and monitoring, Non-invasive diagnostic instrumentation, biotelemetry, telemedicine, prosthetic devices, lie detector test, Application of lasers and ultrasonic in biomedical field.

Troubleshooting and Electrical safety of Biomedical instruments; Physiological effect of current and safety measurement.

Suggested Books:

1.W T Wester, J G Tompkins, "Design of Microprocessor based Medical Instrumentation", Englewood cliffs

2.Tatsuo, Togato & Toshiya, "Biomedical transducers and instruments", CRC Press

3. Joseph P Bronzino, "The Biomedical engineering handbook", CRC Press

MTEL-117A		Instrumentation & Control Lab									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)				
0	0	4	2	60	40	100	3				
Program	The main ob	jective of the	course is to	impart the st	udents with	the knowled	ge of how				
Objective	to create, si	mulate and m	easure the c	lifferent appli	cations in VI						
(PO)											
Course Outcomes (CO)											
After complet	ion of course s	tudents will be	able to								
C01	To impart know	vledge about ma	thematical, Boo	plean operations	s, half adder.						
CO2	Understand ho	ow to create the	VI for decimal	to binary conve	ersion, array fur	nction, sequend	ce structure.				
	Also studying t	Also studying the properties and options of graphs/charts.									
CO3	To impart know	vledge about me	easurement of te	emperature, stra	ain and power u	sing VI.					
CO4	Understand to	create model fo	r speed control	of DC motor, ar	nalysis of PID c	ontroller.					

Following experiments (at least 10) are required to be performed in MATLAB/ETAP/LabView or equivalent:

- 1. Find addition, subtraction, multiplication and division of two numeric inputs
- 2. Perform various Boolean operations (AND, OR, NAND, NOR, XOR).
- 3. Add two binary bits and find the sum and carry (half adder).
- 4. Create a Vito find the decimal equivalent of a binary number using sub VI.
- 5. Create VI for studying array functions.
- 6. Create VI for studying sequence structure.
- 7. Create VI for studying properties and options of graphs/charts.
- 8. Measurement of Temperature using Virtual instrumentation.
- 9. Measurement of Strain using Virtual instrumentation.
- 10.ImplementationofVI to control the speed of a DC motor.
- 11.RealTime Power measurement and analysis using Virtual instrumentation.
- 12. Creating Models, Simulation and Analysis of PID Controller.
- 13. Study and Implementation of Displacement Transducers.

MTEL-119A		Advanced Power System Lab-I									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)				
0	0	4	2	60	40	100	3				
Program	The main obje	ective of the cou	rse is to impart	t the students w	ith the knowle	dge of progran	ning for				
Objective	various types	of power syster	n appliances.								
(PO)											
		Course Outcomes (CO)									
After completion of course students will be able to											
C01	To impart kno	Fo impart knowledge about a program to develop Bus Admittance Matrix, power flow studies using									
	Newton-Raph	son and Gauss	Siedel method	l.		•	0				
CO2	Understand h	ow to determine	e the generalize	ed constants A	, B, C, D of a	long transmiss	ion line and				
	voltage & curr	ent for three ph	ase faults ona2	2-buspowersys	tem	-					
CO3	To impart kno	wledge about s	imulation and a	analysis of a si	ngle phase & t	hree phase po	ower system				
	and generatio	n, transmission	& distribution in	n power system	۱.						
CO4	To impart kno	owledge about	simulation and	d analysis of c	lifferent fault o	condition and	contingency				
	concept in a p	ower system.									

Following experiments are required to be performed in MATLAB/ETAP/LabView or equivalent.

- 1. Write a program to develop Bus Admittance Matrix YBUS.
- 2. Write a program for the Power Flow Studies using N-R(Newton-Raphson) method.
- 3. Write a program for the power flow analysis of system using Gauss-Siedel Technique.
- 4. Determination of the generalized constants A, B, C, D of a long transmission line.
- 5. Determination of the voltage and current for three phase faults on a 2-bus power system.
- 6. Simulation and Analysis of a single phase & three phase power system.
- 7. Simulation & Analysis of generation, transmission & distribution in power system.
- 8. Simulation & Analysis of different fault condition in power system.
- 9. Simulation and Analysis of 9-bus power system.
- 10. Simulation and Analysis of contingency concept in a power system.

MTRM-111A			Resear	ch Methodolo	gy and IPR					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	2	60	40	100	3 Hrs.			
Program	To enable	Fo enable students to Research Methodology and IPR for further research work and								
Objective (PO)	investmen	nvestment in R & D, which leads to creation of new and better products, and in turn brings								
	about, ecc	bout, economic growth and social benefits.								
Course Outcomes (CO)										
C01	Understar	nderstand research problem formulation.								
CO2	Analyze re	esearch rela	ted inform	nation						
CO3	Understar	id that today	s world is	s controlled by	Computer, Information Tec	hnology,	but			
	tomorrow	world will be	e ruled by	ideas, concept	, and creativity.					
CO4	Understar	iding that w	nen IPR w	ould take such	important place in growth	of				
	individuals	idividuals & nation, it is needless to emphasis the need of information about								
	Intellectua	l Property F	ight to be	promoted amo	ong students in general &					
	engineerir	ng in particu	lar.		-					

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit 2

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

Unit 3

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit 4

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

References:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'.
- 2. C.R. Kothari, "Research Methodology: Methods & Techniques, 2nd edition or above, New Age Publishers.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel , "Product Design", McGraw Hill, 1974.
- 7. Asimov , "Introduction to Design", Prentice Hall, 1962.

8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

MTEL-102A		Advanced Power System Protection								
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)								
3	0	0	3	60	40	100	3			
Program	The main obje	ective of the cou	irse is to impar	t the students	with the knowl	edge of advan	ced			
Objective	protection sys	rotection system in modern power system.								
(PO)										
	Course Outcomes (CO)									
After complet	tion of course	students will b	e able to							
C01	To impar	t knowledge abo	out need of pro	tection system	and various is	ssues of CT ar	nd PT			
CO2	To acqua	int students wit	h the comparat	tors and relays	5.					
CO3	To impar	t knowledge t	o students at	oout distance	protection ar	d protection	of feeders,			
	generators ar	d motors.								
CO4	To let student	understand pro	otection of trans	sformers, buse	s and modern	protection sys	tem.			

Introduction: Need for protective systems, Zones of protection, classification of protective relays, electromechanical, solid state and digital relays, comparisons between different types of relays.

Current transformers and potential transformers: construction, operating principle and their performance

Unit2

Comparators: general equation of comparators, Analysis for amplitude comparator, analysis for phase comparator, duality between amplitude and phase comparators.

Over current relays, differential relays, operating and restraining characteristics, distance relays, impedance relays, reactance relays, and mho relay quadrilateral relays, elliptical relays, comparison with conventional relays.

Unit3

Distance protection: Principle of distance relaying, time grading of distance relays, schemes of distance protection, distance protection by impedance, reactance and mho relays, Effect of power swings on the performance of distance relays.

Pilot relaying schemes: Pilot wire protection, carrier current protection.

Protection of Generators and Motors: Types of faults, Stator and rotor protection against various types of faults.

Unit4

Protection of Transformers: Types of faults, differential protection schemes, harmonic restraint relay, over flux protection, Earthing transformer protection.

Bus Zone Protection: Types of Bus-bar faults, differential current protection frame leakage protection. Microprocessor based protective relays: Overcurrent relay, impedance relay, reactance relay, mho relay, microprocessor based distance relaying.

Application of artificial intelligence and wavelet transform in protective relays

Suggested Books:

1. TSM Rao, "Power System Protection-Static Relays", Tata McGraw Hill Education Pvt. Ltd.

2. B. Bhalja, R P Maheshwari and N G Chothani, "Protection and Switchgear", Oxford University Press.

3. Ravinder Nath & Chander, "Power System Protection and Switchgear", New Age International Publishers.

4. Badri Ram & Vishwakarma, "Power system protection and switch gear" McGraw Hill Education(India)

5. C L Wadhwa, "Electrical Power Systems", New Age International Publishers.

6. Protective Relays - Their Major Test and Practice Vol. I & II by W. Van Warrington.

7. Advanced power system analysis and dynamics by L P Singh: Wiley Eastern N. Delhi.

8. Digital Protection: Protective relay from Electro Mechanical to Microprocessor, L P Singh: Wiley

Eastern.

9. Switchgear and protection by S S Rao: Khanna Pub

MTEL-104A			Inte	lligent Contro			
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)
3	0	0	3	60	40	100	3 Hrs.
Program	This course w	ill look at differe	ent types of Inte	elligent control	S.		
Objective							
(PO)							
Course Outco	omes (CO)						
After complet	ion of course	students will b	e able to				
C01	Understand re	easoning and a	oply the ANN n	nodels to differ	ent problems.		
CO2	Understand re	easoning and a	oply the learnin	ig scheme to d	ifferent problen	IS.	
CO3	Understand re	easoning and a	oply the Fuzzy	system to diffe	erent problems.		
CO4	Understand re	easoning and a	oply the Geneti	c & PSO algor	ithm to differen	t problems.	

ANN Models & Architecture:

Biological foundations, ANN models, Types of activation function, introduction to network architecture, multilayer feed forward network (MLFFN), Kohonen self-organizing map, radial basis Function network (RBFN), recurring neural network.

Unit-2

Learning Processes:

Supervised and unsupervised learning, error-correction learning, Hebbian learning, Boltzman learning, single layer and multilayer perception model, least mean square algorithm, back propagation algorithm, Application in forecasting and pattern recognition and other engineering problems.

Unit-3

Fuzzy Control System:

Fuzzy sets, fuzzy set operations, properties, membership functions, fuzzy to crisp conversion, measures of fuzziness, fuzzification and defuzzification methods, application in engineering problems. Simple fuzzy logic controllers with examples, special forms of fuzzy logic models, classical fuzzy control problems.

Unit-4

Genetic & PSO Algorithm:

Genetic Algorithm: Types of reproduction operators, crossover & mutation Principles of genetic programming, terminal sets, functional sets, differences between GA & GP, random population generation, solving differential equations using GP, Simulated Annealing Algorithm, Particle Swarm Optimization (PSO) - Graph Grammer Approach - Example Problems

Suggested Books:

1. M. T. Hagon, Howard B. Demuth and Mark Beale, "Neural Network Design", PWS Publishing.

2. Jacek M Zurada, "Introduction to Artificial Neural Systems", Jaico Publishing House, Bombay.

3. Wasserman, "Neural Computing: Major Test and Practice", Van Nastr and Reinhold.

4. Freeman "Neural Networks-Algorithms, application and programming techniques", Pearson Education.

MTEL-106A			HVDC Transm	nission & FAC	S Devices						
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)									
3	0	0	3	60	40	100	3				
Program	The main obje	ctive of the cou	rse is to impart	the students wi	th the knowled	ge of HVDC an	Id FACTS				
Objective	devices.										
(PO)											
Course Outco	mes (CO)										
After complet	ion of course s	students will be	e able to								
C01	To impart	knowledge abo	ut HVDC transi	mission system							
CO2	To acqua	To acquaint students with the interaction of AC and DC system and various links.									
CO3	To impart	knowledge to st	udents about fa	acts devices.							
CO4	To let student	understand con	pensation syst	em and control	techniques.						

HVDC Transmission: Development of HVDC Technology, Selection of converter configuration. Rectifier and Inverter operation. Control of HVDC converters and Systems.

Harmonics in HVDC Systems, Harmonic elimination, AC and DC filters.

Unit 2

Interaction between HVAC and DC systems – Voltage interaction, over voltages on AC/DC side, Harmonic instability problems and DC power modulation.

Multi-terminal DC links and systems; series, parallel and series parallel systems, their operation and control.

Unit 3

Introduction of Facts Concepts: Basic of flexible alternating current transmission system (FACTS) controllers, shunt, series, combined and other controllers, HVDC or FACTS, static VAR compensator (SVC) and static synchronous compensator (STATCOM), Static Synchronous Series Compensator (SSSC), Thyristor Controlled Series, Capacitor (TCSC). Solid State Contactors (SSC) and TSSC.

Unit 4

Combined Compensators: Introduction, Unified power flow controller (UPFC), conventional power control capabilities, real and reactive power flow control, comparison of UPFC to series compensators, control structure, dynamic performance. Interline power flow controller (IPFC) basic operating principles, control structure, application considerations.

Suggested Books:

1. Hingorani N.G, "Understanding FACTS (Concepts and Technology of Flexible AC Transmission System)", Standard Publishers.

2. Song Y.H. and Johns A.T., "Flexible AC Transmission Systems", IEEE Press.

3. Ghosh A. and Ledwich G., "Power Quality Enhancement using Custom Power Devices", Kluwer Academic Publishers.

4. Mathur R.M. and Verma R.K., "Thyristor based FACTS controllers for Electrical Transmission Systems", IEEE Press.

5. Bollen M.H.J., "Understanding Power Quality and Voltage Sag", IEEE Press.

6. Padiyar K.R., "FACTS Controllers in Power Transmission and Distribution", New Age International Publisher.

7. Miller T.J.E., "Reactive Power Control in Electric Systems", John Wiley.

8. Kamakshaiah S, Kamaraju V, "HVDC Transmission", McGraw Hill Education.

MTEL-108A			Transien	ts in Power S	ystem					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)			
3	0	0	3	60	40	100	3 Hrs.			
Program	The main obje	ctive of the cou	rse is to impart	the students w	ith the knowle	dge of transien	its in power			
Objective	system.									
(PO)	-									
Course Outco	mes (CO)									
After complet	ion of course s	students will b	e able to							
C01	To impart know	wledge about di	fferent types of	f factors effecti	ng power quali	ty.				
CO2	To acquaint st	udents with the	transients and	lightning.						
CO3	To impart know	wledge to harm	onics.							
CO4	To let student	understand abo	out distributed g	generation and	various issues	related to pow	er quality.			

UNIT-1

What is Power Quality, Power Quality is Equal to Voltage Quality, Why are we concerned about Power Quality, Voltage Imbalance, Waveform Distortion, Voltage Fluctuation, Power Frequency Variations, Power Quality Terms, Sources of Sags and Interruption, Estimating Voltage Sag Performance, Area of Vulnerability, Equipment Sensitivity of Voltage Sags, Transmission Systems Sag Performance Evaluation, Utility Distribution System Sag Performance Evaluation.

UNIT-2

Sources of Transient Overvoltage's: Capacitor Switching, Restrike during Capacitor De-energizing, Lightning, Ferro - resonance, Other Switching Transients. Principles of Overvoltage Protection.

Devices for Overvoltage Protection: Surge Arresters and Transient Voltage Surge Suppressor, Isolation Transformers, Utility System Lightning Protection, Shielding, Line Arresters, Low Side Surges, Cable Protection, Scout Arrester Scheme, Computer Tools for Transient Analysis.

UNIT-3

Fundamentals of Harmonics: Harmonic Distortion, Voltage vs Current Distortion, Harmonics vs Transients, Power System Quantities Under Non Sinusoidal Conditions, Active, Reactive and Apparent Power, Power Factor: Displacement and True, Harmonic Phase Sequences, Triplen Harmonics.

Harmonic Sources from Commercial Loads: Single Phase Power Supplies, Fluorescent Lighting, Adjustable Speed Drives for HVAC and Elevators.

Effects of Harmonic Distortion: Impact on Capacitors, Impact on Transformers, Impact on Motors, Impact on Telecommunications, Impact on Energy and Demand Metering.

UNIT-4

Distributed Generation and Power Quality: Resurgence of DG, Perspectives on DG Benefits, Perspectives on Interconnection, DG Technologies, Fuel Cells, Wind Turbines, Photovoltaic Systems, Interface to the Utility System, Synchronous Machines, Asynchronous Machines, Electronic Power Inverters, Power Quality Issues, Voltage Regulation, Harmonics, Voltage Sags, Operating Conflicts, Voltage Regulation Issues, Islanding, Transformer Connections.

- 1. R C Dugan, M F McGranaghan, S Santoso, H. Wayne Beaty, "Electrical Power System Quality", McGraw Hill.
- 2. Akihiro Ametani, Naoto Nagaoka, Yoshihiro Baba, Teruo Ohno, "Power System Transients: Theory and Applications", CRC Press.
- 3. L.V. Bewley, "Traveling waves in Transmission Systems", Dover.
- 4. R. Rudenberg, "Electric Stroke waves in Power Systems", Harvard University Press, Cambridge, Massachusetts.
- 5. Allan Greenwood, "Electric Transients in Power Systems", Wiley Interscience.
- 6. CS Indulkar and DP Kothari, "Power System Transients, Statistical Approach", PHI Pvt Ltd., New Delhi.
- 7. VA Venikov, "Transient phenomena in Electrical Power Systems", Pergamon Press, London.
- 8. Klaus Ragaller, "Surges in High Voltage Networks", Plenum Press, New York.
- 9. Pritindra Chowdhari, "Electromagnetic transients in Por System", John Wiley and Sons Inc.
- 10. Naidu M S and Kamaraju V, "High Voltage Engineering", TMH Publishing Company Ltd., New Delhi.

MTEL-110A		Advanced Power Distribution & Automation										
Lecture	Tutorial	TutorialPracticalCreditMajor TestMinorTotal										
				-	Test							
3	0	0	3	60	40	100	3 Hrs.					
Program	The main obje	he main objective of the course is to impart the students with the knowledge of electricity										
Objective	distribution and	listribution and automation.										
(PO)												
Course Outc	omes (CO)											
After comple	tion of course	students will be	e able to									
C01	To impart know	vledge about dis	tribution autor	nation.								
CO2	To acquaint st	udents with the o	control and int	elligent system	in distribution	automation.						
CO3	To impart know	vledge to studen	its about rene	wable energy re	esources and	distribution m	nanagement.					
CO4	To let student	understand com	munication sy	stem implemen	tation in distri	bution syster	n.					

UNIT-1

Introduction: General Concept, Distribution of Power, Power Loads, Connected Loads.

Load Forecasting: Concept of Statistics, Regression Analysis, Correlation Theory, Factor in Power System Loading, Unloading the System, Forecast of System peak.

UNIT-2

System Planning: Planning Process, Basic Principle in system planning, System Development, Overview of Distributed generation, Different types of mapping: Global positioning System GPS, Automated mapping AM/Facility Management FM.

Introductory Methods in Power System Planning: Per Unit Calculation, Matrix Algebra, Symmetrical Components, Overview of Load Flow, Automated Planning: software needs, Data, solution techniques (Gauss Iterative method, Gauss seidel iterative method, Newton Raphson iterative method, Improved newton Raphson method) Effect of Abnormal Loads.

UNIT-3

Brief introduction of Distribution Automation, Role of PLC & SCADA in substation and distribution automation, Consumer information Service (CIS), Geographical information system GIS, Automatic meter Reading (AMR), Automation System.

UNIT-4

Metering System: Different types of Meter, Metering system component, Ferraris Meters, Solid state meters, Advance meter Infrastructure Systems (AMI).

Overview of Net metering, Meter current Rating, Prepaid Electricity meters, Meter selection and Location, testing methods.

Suggested Books:

1. A. S Pabla, "Electric Power Distribution", McGraw Hill Education.

2. James A. Momoh, "Electric Power Distribution Automation Protection and Control", CRC Press.

3. James N-Green and R Wilson, "Control and Automation of electric Power Distribution Systems", CRC Press.

4. Turan Gonen, "Electric Power Distribution System Engineering", CRC Press.

5. Abdelhay A. Sallam, "Electric Distribution Systems", Wiley-IEEEPress.

MTEL-112A		Digital Control System										
Lecture	Tutorial	Tutorial Practical Credit Maior Test Minor Test Total Time(Hrs)										
3	0	0	3	60	40	100	3 Hrs.					
Program	The main obje	The main objective of the course is to impart the students with the knowledge of digital control										
Objective	system.	system.										
(PO)												
			Course Outco	mes (CO)								
After complet	ion of course	students will b	e able to									
C01	To impart kno	wledge about s	ignal processir	ng in digital cor	ntrol system.							
CO2	To acquaint s	tudents with the	e control device	es and systems	S							
CO3	To impart kno	wledge to stude	ents about stat	e variables, co	ntrollability and	l observability						
CO4	To let student	understand the	e various conce	epts of digital o	bservers.							

Signal Processing in Digital Control: Basic digital control scheme, principle of signal conversion, basic discrete-time signal, time-domain model for discrete-time systems, z-transform, transfer function models, jury stability criterion, sample and hold systems, sample spectra and aliasing

Unit-2

Models of Digital Control Devices and Systems: Introduction, z-domain description of sampled continuous-time plants, z-domain description of systems with dead-time, implementation of digital controllers, digital PID controllers, digital temperature control system, stepping motors and their control, PLC

Unit-3.

Analysis using State Variable Methods: State variable representation-concepts, modeling, transformation, state diagrams, Jordan canonical form, Eigen values and Eigenvectors,

Solution of state equations, concepts of controllability and Observability,

Unit-4

Digital Observers: State regulator design-full order and reduced order state observer, design of state observers, compensator design by separation principle, state feedback with integral control, deadbeat control by state feedback and deadbeat observers

- 1. Ogata K," Discrete time Control Systems", Pearson Education.
- 2. Nagrath and Gopal, "Control System Engineering", New Age International.
- 3. Kuo B C, "Digital Control Systems", Oxford University Press.
- 4. Goapl, "Digital Control & State Variable Method", McGraw Hill Education.

MTEL-114A		Advanced Microprocessors										
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)										
3	0	0 0 3 60 40 100 3 Hrs.										
Program	The main obje	he main objective of the course is to impart the students with the knowledge of advanced										
Objective	microprocesso	nicroprocessor.										
(PO)												
Course Outco	omes (CO)											
After complet	tion of course s	students will be	e able to									
C01	To impart know	wledge about 80	086 microproce	essors.								
CO2	To acquaint st	udents with the	interfacing cor	nverters etc.								
CO3	To impart know	wledge to stude	nts about micro	ocontrollers.								
CO4	To let student	about application	on of microproc	essor and varie	ous controllers	related to it.						

UNIT-1

Architecture of 8086 microprocessor, Memory Addressing, Bus Timings for MN/MX mode, interrupt structure. Memory Interfacing and Addressed encoding techniques for 8086 microprocessor

UNIT-2

Addressing modes, Instruction set and application programs, Assembler Directives, Programming Techniques using TASM, Interfacing D/A and A/D converters using programmable I/O devices, Interfacing Stepper motor. Architecture of INTEL X86 Family: CPU block diagrams, Pin diagrams and internal descriptions of 80286, 386, 486 and Pentium Processor, Instruction formats.

UNIT-3

Introduction to micro controllers, Architecture of 8051microcontroller, basic Instruction set, programming, serial data communication, inter facing with D/A and A/D converters.

UNIT-4

Application of Microprocessors, A Microcomputer-based Industrial Process-control System, Hardware for Control Systems and Temperature Controller, Overview of Smart-Scale Operation.

Suggested Books:

1. Hall D V, "Microprocessors & Interfacing", McGraw Hill Education.

2. Brey B, "The Intel Processors", Pearson Education.

3. Gibson, "Microprocessors", Prentice Hall of India.

4. Jean Loup Baer, "Microprocessor Architecture", Cambridge University Press.

5. Ayala K J, "Micro Controller", Penram International

MTEL-116A		Reliability Engineering											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)											
3	0	0 0 3 60 40 100 3 Hrs.											
Program	The main ob	he main objective of the course is to impart the students with the concept of Reliability											
Objective	Engineering a	Engineering and its application in Engineering.											
(PO)													
			Course Outco	mes (CO)									
After complet	tion of course	students will b	e able to										
CO1	To emphasize	and analysis o	f basic of reliat	oility engineerir	ng.								
CO2	To understand	d the concept of	Fault tree ana	lysis in reliabili	ty.								
CO3	To understand	the concept of	Maintainability	/ Analysis in re	liability.								
CO4	To study the c	oncept of Artific	ial Intelligence	in reliability er	ngineering.								

Review of basic concepts in Reliability Engg., Reliability function, different reliability models, etc. Reliability evaluation techniques for complex systems; Tie set and cut set approaches, different reliability measures, Reliability allocation/apportionment, reliability improvement, redundancy optimization techniques.

Unit-2

Fault tree analysis: fault tree construction, simplification and evaluation, importance measures, modularization, applications, advantages and disadvantages of fault tree techniques.

Unit-3

Maintainability Analysis: measures of system performance, types of maintenance, reliability centred maintenance, reliability and availability, evaluation of engine ring systems using Markov models.

Unit-4

Applications of fuzzy Major Test and neural networks to Reliability Engineering. Reliability testing, design for reliability and maintainability. Typical reliability case studies.

Suggested Books:

1. R. Rama Kumar, "Engineering Reliability", Prentice Hall.

- 2. K B Mishra, "Reliability Analysis & Prediction".
- 3. K B Mishra, "New trends in System Reliability Evaluation".
- 4. M L Shooman, "Probabilistic reliability-an engineering approach", R E Krieger Pub.
- 5. K K Aggarwal, "Reliability Engineering".
- 6. Roy & Billington, "Reliability Engineering".
- 7. Balagurswami, "Reliability Engineering", McGraw Hill Education.

MTEL-118A			Modellin	g & Simulatio	n Lab				
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)		
0	0	4	2	60	40	100	3		
Program	The main obje	ective of the cou	rse is to impart	the students w	ith the knowled	dge of modellir	ng and		
Objective	simulation of c	different types of	applications.						
(PO)									
Course Outcomes (CO)									
After complete	After completion of course students will be able to								
C01	To impart kno	wledge about to	preform Theve	enin's ,Norton's	s,& Superpositi	ion theorem ar	nd Avg. & R.		
	M. S. value of	R L C different	R, L and C circ	uit.			-		
CO2	To impart kno	wledge about to	preform half	and full wave r	ectifier with dif	ferent R, L an	d C load for		
	both single an	d three phase.	-						
CO3	To impart kn	owledge about	to preform di	fferent types o	of power elect	ronics compo	nent mainly		
	inverter and c	hopper.							
CO4	To impart know	wledge about to	preform speed	and torque co	ntrol of DC and	d AC motors.			

Following experiments (at least 10) are required to be performed in MATLAB/ETAP/LabView or equivalent.

1. To verify Thevenin's, Norton's & Superposition theorem.

- 2. To find Average & RMS value of (V-I) of RLC series & parallel; series parallel RC-RL circuit.
- 3. To perform1- ϕ (half & full) wave rectifier with (R, R-L & R-C) load.
- 5. To find Average RMS.&T.H.D. of 1-¢ (half & full) wave inverter with (R & R-L) load.
- 6. To find Avg., R.M.S.&T.H.D. of 3-φ (half & full) wave inverter with (R & R-L) load.
- 7. To perform current source inverter (C.S.I.) & PWM inverter.
- 8. To perform step down (BUCK)& step up (BOOST) chopper.
- 9. To perform Type (A, B, C & D) chopper.
- 10.To perform Field & Armature control of separately excited DC motor.
- 11.To perform Field & Armature control of DC series & DC shunt motor.
- 12.To perform 3-**\$** Induction Motor with constant & variable torque.
- 13. To perform speed control of 3-**\$** Synchronous motor with constant & variable torque.

MTEL-120A			Advanced	Power System	n Lab-II						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)				
0	0	0 4 2 60 40 100 3									
Program	The main obje	The main objective of the course is to impart the students with the knowledge of programing for									
Objective	various types	of power system	n appliances.				-				
(PO)											
Course Outcomes (CO)											
After complet	ion of course s	students will be	e able to								
C01	To impart know	wledge the simu	Ilation& analysi	s of the genera	tor and transfo	rmer protectior	۱.				
CO2	To impart know	wledge the simu	Ilation& analysi	s of power qual	lity improvemer	nt, different type	es of load.				
CO3	To impart know	wledge the simu	Ilation& analysi	s of PV cell.							
CO4	To impart kno	wledge the simu	lation& analysi	s of different no	on-conventional	plant biomass	gasifier and				
	wind turbine.	-	-			-	-				

Following experiments are required to be performed in MATLAB/ETAP/LabView or equivalent.

- 1. Simulation & Analysis of the generator protection.
- 2. Simulation & Analysis of the transformer protection.
- 3. Simulation & Analysis of power quality improvement.
- 4. Simulation & Analysis of different types of relays in power system.
- 5. To perform the simulation of Photo-Electric Effect.
- 6. To perform the simulation to construct the PV cell to show the V-I & P-V characteristics curve of it.
- 7. ToperformthesimulationofPhotovoltaicpowerconversionforsingleand3-phase load on account with MPPT.
- 8. To perform the construction of a Simulink model of Biomass Gasifier.
- 9. To study mathematical modelling of DFIG based Wind Turbine and its impact on connection with grid.
- 10. To perform the simulation of Permanent Magnet Synchronous Generator (PMSG) based wind energy conversion system.
- 11. To perform the simulation of PV-Grid inter connection using MPPT technique with the partial shading effect.

MTEL-201A			Distri	buted Generat	ion						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)				
3	0	0 3		60	40	100	3				
Program Objective	To understand connected ren	To understand renewable energy sources. To gain understanding of the working of off-grid and grid- connected renewable energy generation schemes.									
(PO)											
			Course Outco	omes (CO)							
After complet	ion of course s	students will be	e able to								
C01	To understand	I the planning a	nd operational i	ssues related to	o Distributed G	eneration.					
CO2	Acquire Know	ledge about Dis	tributed Genera	ation Learn Mic	ro-Grids						
CO3	understand re	newable energy	sources								
CO4	Understanding	g of the working	of off-grid and	grid-connected	renewable ene	ergy generation	schemes.				

UNIT-1

Need for Distributed generation. Renewable sources in distributed generation and current scenario in Distributed Generation. Introduction to micro-grids. Types of micro-grids: autonomous and non-autonomous grids Sizing of micro-grids. Modelling & analysis of Micro-grids with multiple DGs. Micro-grids with power electronic interfacing units.

UNIT-2

Planning of DGs. Sitting and sizing of DGs optimal placement of DG sources in distribution systems. Grid integration of DGs Different types of interfaces, Inverter based DGs and rotating machine based interfaces. Aggregation of multiple DG units.

UNIT-3

Technical impacts of DGs. Transmission systems Distribution Systems De-Regulation Impact of DGs upon protective relaying. Impact of DGs upon transient and dynamic stability of existing distribution systems, Steady-state and Dynamic analysis...

UNIT-4

Economic and control aspects of DGs Market facts. Issues and challenges Limitations of DGs, Voltage control techniques. Reactive power control, Harmonics Power quality issues, Reliability of DG based systems.

Suggested reading:

1. H. Lee Willis, Walter G. Scott, "Distributed Power Generation – Planning and Evaluation", Marcel Decker Press.

2. M Godoy Simoes, Felix A. Farret, "Renewable Energy Systems – Design and Analysis with Induction Generators", CRC press.

3. Stuart Borlase. "Smart Grid: Infrastructure Technology Solutions" CRC Press

MTEL-203A			ELECTRIC	DRIVES & CO	NTROL						
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)									
3	0	0 3 60 40 100									
Program	The main obje	The main objective of the course is to impart the students with the knowledge of electric drives &									
Objective	control in elect	ric system.									
(PO)											
Course Outco	mes (CO)										
After complet	ion of course s	tudents will be	able to								
C01	To study basic	electric drives,	types of loads,	classes of mot	or duty.						
CO2	To study differ	ent types of DC	drives, stability	r analysis, mod	ern control tech	nniques.					
CO3	To study mat	hematical mod	elling of induc	tion motor driv	ves, introductio	on to Cyclo-co	onverter fed				
	induction moto	or drive.				-					
CO4	To study differ	ent types of syn	chronous moto	r drives used ir	n mills.						

UNIT 1

Introduction: Definition, Part of the electric drive, Types of loads, steady state & transient stability of Drive, state of art of power electronics and drives, thermal model of motor for heating and cooling, classes of motor duty, determination of motor rating.

UNIT 2

D.C. Drives: Review of braking and speed control of D.C. motors, multi-quadrant operation, loss minimization in adjustable speed drives. Mathematical modelling of dc drives, stability analysis, modern control techniques: variable structure, adaptive control, Chopper-Controlled DC Drives.

UNIT 3

Induction motor drives: Review of braking and speed control of induction motors, constant V/F, constant air gap flux, controlled voltage, controlled current and controlled slip operation. Mathematical modelling of induction motor drives, transient response and stability analysis Introduction to Cyclo-converter fed induction motor drive. Pulse Width Modulation for Electric Power Converters

UNIT 4

Synchronous motor drives: Adjustable frequency operation, voltage fed drive, current fed self-controlled drive. Application of electric drives in steel mills, paper mills, textile mills and machine tools etc. A. C. motor drives in transportation system and traction.

Suggested Books:

1. Dubey G K, "Fundamentals of Electrical Drives", Narosa Publishing House, New Delhi.

2. S K Pillai, "A First Course on Electrical Drives", New Age International (P) Ltd., New Delhi.

3. Krishan R, "Electric Motor Drives: Modeling Analysis and Control", PHI Pvt Ltd. New Delhi-2001.

4. Bose B K, "Power Electronics and Variable Frequency Drives: Technology and Applications", IEEE Press, 1997.

5. Bose B K, "Modern Power Electronics and AC Drives", Pearson Educational, Delhi,

MTEL-205A		Power System Restructuring & Deregulation									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)				
3	0	0	3	60	40	100	3 Hrs.				
Program	The main obje	ctive of the cou	rse is to impart	the students w	ith the knowle	dge of restruct	uring and				
Objective	deregulation.										
(PO)	_	·									
Course Outco	omes (CO)										
After complet	ion of course	students will be	e able to								
C01	To impart kno	wledge about re	structuring and	d its various iss	ues related to	it.					
CO2	To acquaint st	udents with the	deregulation a	nd market mod	lels.						
CO3	To impart kno	wledge to stude	nts about trans	smission pricing] .						
CO4	To let studen	t understand ir	n detail about	congestion ma	anagement an	d experiences	s of various				
	nations.			-	-	-					

Introduction: Basic concept and definitions, privatization, restructuring, transmission open access, wheeling, deregulation, components of deregulated system, advantages of competitive system.

Power System Restructuring: An overview of the restructured power system, Difference between integrated power system and restructured power system, Explanation with suitable practical examples.

Unit-2

Deregulation of Power Sector: Separation of owner ship and operation, Deregulated models, pool model, pool and bilateral trades model, multilateral trade model.

Competitive electricity market: Independent System Operator activities in pool market, Wholesale electricity market characteristics, central auction, single auction power pool, double auction power pool, market clearing and pricing, Market Power and its Mitigation Techniques, Bilateral trading, Ancillary services.

Unit-3

Transmission Pricing: Marginal pricing of Electricity, nodal pricing, zonal pricing, embedded cost, Postage stamp method, Contract Path method, Boundary flow method, MW-mile method, MVA-mile method, Comparison of different methods.

Unit-4

Congestion Management: Congestion management in normal operation, explanation with suitable example, total transfer capability (TTC), Available transfer capability (ATC), Different Experiences in deregulation: England and Wales, Norway, China, California, New Zealand and Indian power system.

Suggested Books:

1.LoiLei Lai, "Power System Restructuring and Deregulation", John Wiley & Sons Ltd.

2.K Bhattacharya, M H T Bollen and J C Doolder, "Operation of Restructured Power Systems", Kluwer Academic Publishers.

3.Lorrin Philipson and H Lee Willis, "Understanding Electric Utilities and Deregulation", Marcel Dekker Inc, New York.

4. Yong-Hua Song, Xi-Fan Wang, "Operation of market-oriented power systems", Springer, Germany.

MTOE-201A			E	Business Analytic	CS						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	60	40	100	3 Hrs.				
Program Objective (PO)	rogram The main objective of this course is to give the student a comprehensive understanding of business analytics methods.										
	Course Outcomes (CO)										
C01	Able to ha	ve knowled	ge of vario	ous business analy	ysis techniques.						
C02	Learn the models.	requiremen	t specifica	ition and transforn	ning the requiremen	nt into differe	nt				
CO3	Learn the	requiremen	t represer	ntation and manag	ing requirement as	sests.					
CO4	Learn the	Recent Tre	nds in Em	bedded and collat	porative business						

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst.

Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts.

Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

Unit 2

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents.

Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

Unit 3

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

Unit 4

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

- 1. Business Analysis by James Cadle et al.
- 2. Project Management: The Managerial Process by Erik Larson and, Clifford Gray

MTOE-203A	Industrial Safety								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0	0	3	60	40	100	3 Hrs.		
Program	To enable	To enable students to aware about the industrial safety.							
Objective (PO)									
Course Outcomes (CO)									
C01	Understar	nd the indus	trial safety	Ι.					
CO2	Analyze fu	Analyze fundamental of maintenance engineering.							
CO3	Understand the wear and corrosion and fault tracing.								
CO4	CO4 Understanding that when to do periodic inceptions and apply the preventing								
	maintenar	nce.							

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-2

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricantstypes and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit-3

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-4

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

MTOE-205A	Operations Research									
Lecture	Tutorial	Futorial Practical Credit Major Test Minor Test Total Time								
3	0	0	3	60	40	100	3 Hrs.			
Program Objective (PO)	To enable students to aware about the dynamic programming to solve problems of discreet and continuous variables and model the real world problem and simulate it.									
Course Outcomes (CO)										
C01	Students and cont	Students should able to apply the dynamic programming to solve problems of discreet and continuous variables.								
CO2	Students	Students should able to apply the concept of non-linear programming								
CO3	Students	should able	e to carry o	out sensitivity a	analysis					
CO4	Student s	should able	to model t	the real world p	problem and simulate	it.				

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit -2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit- 3

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit -4

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

MTOE-207A	Cost Management of Engineering Projects									
Lecture	Tutorial	Futorial Practical Credit Major Test Minor Test Total Time								
3	0	0	3	60	40	100	3 Hrs.			
Program	To enable	To enable students to make aware about the cost management for the engineering								
Objective (PO)	Objective (PO) project and apply cost models the real world projects.									
Course Outcomes (CO)										
C01	CO1 Students should able to learn the strategic cost management process.									
CO2	Students	Students should able to types of project and project team types								
CO3	Students	should able	e to carry o	out Cost Behavio	r and Profit Planr	ning analysis.				
CO4	Student s	should able	to learn th	ne quantitative tec	hniques for cost	management.				

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Unit-2

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Unit-3

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit-4

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

MTOE-209A	Composite Materials								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0	0	3	60	40	100	3 Hrs.		
Program	To enable	To enable students to aware about the composite materials and their properties.							
Objective (PO)									
Course Outcomes (CO)									
C01	Students	Students should able to learn the Classification and characteristics of Composite							
	materials	materials.							
CO2	Students	Students should able reinforcements Composite materials.							
CO3	Students	Students should able to carry out the preparation of compounds.							
CO4	Student s	should able	to do the a	analysis of the	composite mat	erials.			

UNIT-1:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Iso-strain and Iso-stress conditions.

UNIT – 2

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

UNIT-3

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT – 4

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.
- 3. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

MTOE-211A	Waste to Energy									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	60	40	100	3 Hrs.			
Program	To enable	To enable students to aware about the generation of energy from the waste.								
Objective (PO)										
Course Outcomes (CO)										
C01	CO1 Students should able to learn the Classification of waste as a fuel.									
CO2	Students	Students should able to learn the Manufacture of charcoal.								
CO3	Students	should able	e to carry o	out the designi	ng of gasifiers and l	biomass stoves.				
CO4	Student :	should able	to learn th	ne Biogas plant	technology.					

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

Unit-2

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

Unit-3

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-4

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications -Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

MTAD-101A	English For Research Paper Writing									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	0	-	100	100	3 Hrs.			
Program	Student w	Student will able to understand the basic rules of research paper writing.								
Objective (PO)										
Course Outcomes (CO)										
C01	I Understand that how to improve your writing skills and level of readability									
CO2	Learn a	Learn about what to write in each section								
CO3	Underst	Understand the skills needed when writing a Title								
CO4	Ensure t	he good qua	ality of pap	oer at very first-til	me submission					

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit 3

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

Unit 4

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011
| MTAD-103A | | | Di | saster Manag | ement | | |
|-----------------------|--------------|---|-------------|------------------|--------------------|--------------------|------------|
| Lecture | Tutorial | Practical | Credit | Major Test | Minor Test | Total | Time |
| 2 | 0 | 0 | 0 | - | 100 | 100 | 3 Hrs. |
| Program | Develop a | Develop an understanding of disaster risk reduction and management | | | | | |
| Objective (PO) | | | | | | | |
| Course Outcomes (CO) | | | | | | | |
| C01 | Learn to d | earn to demonstrate a critical understanding of key concepts in disaster risk reduction | | | | | |
| | and huma | nd humanitarian response. | | | | | |
| CO2 | Critically e | evaluate dis | aster risk | reduction and | humanitarian res | ponse policy and | l practice |
| | from multi | ple perspec | tives. | | | | |
| CO3 | Develop a | an understa | nding of s | tandards of hu | manitarian respons | se and practical r | elevance |
| | in specific | types of dis | sasters an | d conflict situa | tions. | | |
| CO4 | critically | critically understand the strengths and weaknesses of disaster management | | | | | |
| | approache | oproaches, planning and programming in different countries, particularly their | | | | | |
| | home cou | ntry or the a | countries t | hey work in | | | |

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit 2

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

Unit 3

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'New Royal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

MTAD-105A		Sanskrit for Technical Knowledge						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time	
2	0	0	0	-	100	100	3 Hrs.	
Program Objective (PO)	 m Students will be able to Understanding basic Sanskrit language and Ancient Sanskrit (PO) literature about science & technology can be understood and Being a logical language will help to develop logic in students 							
Course Outcomes (CO)								
C01	To get a	working kno	owledge in	n illustrious Sar	nskrit, the scientific	language in the	world	
CO2	Learning	of Sanskrit	to improv	e brain functioi	ning			
CO3	Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power							
CO4	The engi huge kno	ineering sch owledge fror	olars equi m ancient	ipped with San literature	skrit will be able to	explore the		

Unit –1

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit – 2

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit -3

Technical concepts of Engineering: Electrical, Mechanical

Unit -4

Technical concepts of Engineering: Architecture, Mathematics

- 1. "Abhyaspustakam" Dr.Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

MTAD-107A		Value Education						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time	
2	0	0	0	-	100	100	3 Hrs.	
Program Objective (PO)	Understand value of education and self- development, Imbibe good values in students and Let the should know about the importance of character							
		С	ourse Ou	tcomes (CO)				
C01	Knowledg	e of self-de	/elopment	ł				
CO2	Learn the	Learn the importance of Human values						
CO3	Developin	Developing the overall personality						
CO4	Know ab	out the impo	ortance of	character				

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements.

Unit 2

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism.Love for nature,Discipline

Unit 3

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

Unit 4

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence,Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

References

1.Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

MTAD-102A		Constitution of India						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time	
2	0	0	0	-	100	100	3 Hrs.	
Program	Understar	Understand the premises informing the twin themes of liberty and freedom from a civil						
Objective (PO)	rights pers	rights perspective and to address the growth of Indian opinion regarding modern Indian						
	intellectua	ntellectuals' constitutional role and entitlement to civil and economic rights as well as the						
	emergence of nationhood in the early years of Indian nationalism.							
Course Outcomes (CO)								
C01	Discuss th	Discuss the growth of the demand for civil rights in India for the bulk of Indians before the						
	arrival of (Gandhi in In	dian politi	CS.				
CO2	Discuss th	ne intellectu	al origins (of the framewo	rk of argument that	informed the		
	conceptua	alization of s	ocial refo	rms leading to	revolution in India.			
CO3	Discuss th	ne circumsta	nces surr	ounding the fo	undation of the Cor	ngress Socialist F	Party	
	[CSP] una	CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal						
	of direct e	lections thro	ough aduli	t suffrage in the	e Indian Constitution	n.		
CO4	Discuss th	ne passage	of the Hin	du Code Bill of	⁻ 1956.			

Unit I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

MTAD-104A		Pedagogy Studies					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time
2	0	0	0	-	100	100	3 Hrs.
Program	Review	existing evi	dence on	the review topic	to inform progr	amme design ar	nd policy
Objective (PO)	making	undertaken	by the D	FID, other agend	cies and researd	chers and Identif	fy critical
	evidence gaps to guide the development.						
Course Outcomes (CO)							
C01	What peo	hat pedagogical practices are being used by teachers in formal and informal					
	classroom	ns in develoj	oing count	tries?			
CO2	What is	the evidena	e on the	effectiveness o	f these pedago	gical practices,	in what
	conditions	s, and with v	/hat popul	ation of learners?)		
CO3	How can teacher education (curriculum and practicum) and the school curriculum and						
	guidance	materials be	est suppor	t effective pedage	ogy?		
CO4	What is th	e importanc	e of ident	ifying research ga	aps?		

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

Unit 2

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

Unit 3

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

Unit 4

Research gaps and future directions: Research design, Contexts , Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

MTAD-106A		Stress Management by Yoga					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time
2	0	0	0	-	100	100	3 Hrs.
Program Objective (PO)	To achiev	o achieve overall health of body and mind and to overcome stress					
		C	ourse Ou	tcomes (CO)			
C01	Develop	healthy min	d in a hea	lthy body thus	improving social hea	alth.	
CO2	Improve	Improve efficiency					
CO3	Learn th	Learn the Yog asan					
CO4	Learn the	e pranayam	а				

Unit – 1

Definitions of Eight parts of yog (Ashtanga).

Unit- 2

Yam and Niyam, Do's and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

Unit- 3

Asan and Pranayam, Various yog poses and their benefits for mind & body,

Unit-4

Regularization of breathing techniques and its effects-Types of pranayam.

- 1. 'Yogic Asanas for Group Tarining-Part-I" :Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

MTAD-108A	l	Personality Development through Life Enlightenment Skills						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time	
2	0	0	0	-	100	100	3 Hrs.	
Program	To learn	to achieve t	he highes	t goal happily			•	
Objective (PO)	To becor	become a person with stable mind, pleasing personality and determination						
	To awake	o awaken wisdom in students						
		C	ourse Ou	tcomes (CO)				
C01	Students	become av	/are abou	t leadership.				
CO2	Students	Students will learn how to perform his/her duties in day to day work.						
CO3	Understa	Inderstand the team building and conflict						
CO4	Student	will learn ho	w to beco	me role model	for the society.			

Unit – 1

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

Unit – 2

Approach to day to day work and duties; Shrimad Bhagwad Geeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

Unit - 3

Statements of basic knowledge; Shrimad Bhagwad Geeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

Unit – 4

Personality of Role model; Shrimad Bhagwad Geeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1. Srimad Bhagavad Gita, Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

Dissertation Phase - I and Dissertation Phase - II

Teaching Scheme

Lab work : 20 and 32 hrs/week for Dissertation Phase- I (MTEL-207A) and Phase- II (MTEL-202A) respectively

Course Outcomes:

At the end of this course, students will be able to

- a. Ability to synthesize knowledge and skills previously gained and applied to an in-depth study and execution of new technical problem.
- b. Capable to select from different methodologies, methods and forms of analysis to produce a suitable research design, and justify their design.
- c. Ability to present the findings of their technical solution in a written report. Presenting the work in International/ National conference or reputed journals.

Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following

- 1. Relevance to social needs of society
 - Relevance to value addition to existing facilities in the
 - Relevance to industry need
- 2. Problems of national importance
- 3. Research and development in various domain
- 4. The student should complete the following:
 - Literature survey Problem
 - efinition Motivation for study and Objectives
 - Preliminary design / feasibility / modular approaches
 - Implementation and Verification
- 5. Report and presentation

.

The dissertation phase- II is based on a report prepared by the students on dissertation allotted to them. It may be based on:

D

Experimental verification / Proof of concept.

Design, fabrication, testing of Communication System. The viva-voce examination will be based on the above report and work.

•••••

Guidelines for Dissertation Phase - I and Phase-II

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two phases i.e. Phase – I: July to December and Phase – II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives. The referredliterature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing and Processing (Hardware and Software), Circuits-Devices and Systems, Communication-Networking and Security, Robotics and Control Systems, Signal Processing and Analysis and any other related domain. In case of Industry sponsored projects, the relevant application notes, while papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Phase – I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper and/or computer aided design, proof of concept/functionality, part results, A record of continuous progress.

Phase – I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Phase-I work.

During phase – II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Phase – II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, A record of continuous progress.

Phase – II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the work

KURUKSHETRA UNIVERSITY, KURUKSHETRA

('A+' Grade, NAAC Accredited)

SCHEME OF EXAMINATIONS FOR MASTER OF TECHNOLOGY IN ELECTRICAL POWER SYSTEM (w. e. f. 2018-19)

	SEMESTER-I									
Sr. No.	Course Code	SUBJECT		Т	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	MTEL-101A	Advanced Power System Analysis	3	-	-	3	40	60	3	3
2	MTPS-103A	EHV-AC Transmission System	3	-	-	3	40	60	3	3
3	*	Program Elective-I	3	-	-	3	40	60	3	3
4	**	Program Elective-II	3	-	-	3	40	60	3	3
5	MTPS-117A	Power Electronics and Drives Lab	-	-	4	4	40	60	2	3
6	MTEL-119A	Advanced Power System Lab-I	-	-	4	4	40	60	2	3
7	MTRM-111A	Research Methodology and IPR	2	-	-	2	40	60	2	3
8	***	Audit Course-I	2	-	-	2	-	-	-	-
		Total	16		8	24	280	420	18	

Note: 1. The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

2. *** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

SEMESTER-II

Sr. No.	Course Code	Subject	L	T	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	MTPS-102A	Power system operation & control	3	-	-	3	40	60	3	3
2	MTPS-104A	Power System Protection & Relaying	3	-	-	3	40	60	3	3
3	*	Program Elective-III	3	-	-	3	40	60	3	3
4	**	Program Elective-IV	3	-	-	3	40	60	3	3
5	MTPS-118A	Power System Protection Lab	-	-	4	4	40	60	2	3
6	MTEL-120A	Advanced Power System Lab-II	-	-	4	4	40	60	2	3
7	#MTEL-122A	Mini Project	-	-	4	4	100	-	2	3
8	***	Audit Course-II	2	-	-	-	-	-	-	-
		Total	14		12	26	340	360	18	

	*PROGRAM ELECTIVES - III						
1.	MTEL-106A	HVDC Transmission & FACTS Devices					
2.	MTEL-108A	Transients in Power System					
3.	MTEL-110A	Advanced Power Distribution & Automation					

		**PROGRAM ELECTIVE – IV
1.	MTEL-112A	Digital Control System
2.	MTEL-114A	Advanced Microprocessors
3.	MTEL-116A	Reliability Engineering

	*** AUDIT COURSE-II						
1.	MTAD-102A	Constitution of India					
2.	MTAD-104A	Pedagogy Studies					
3.	MTAD-106A	Stress Management by Yoga					
4.	MTAD-108A	Personality Development through Life Enlightenment Skills					

Note: 1.The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

Note 2. *** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

#Note3: Mini project: During this course the student will be able to understand the contemporary/emerging technologies for various processes and systems. During the semester, the students are required to search/gather the material/information on a specific topic, comprehend it and present/discuss the same in the class. He/she will be acquainted to share knowledge effectively in oral

	SEMESTER-III													
Sr.Course CodeSubjectLTPTotalMinor*MajorCr.Duration of Exam (HrsNo.No.Course CodeSubjectLTPTotalMinor*TestCr.Duration of Exam (Hrs														
1	*	Program Elective-V	3	-	-	3	40	60	3	3				
2	**	Open Elective	3	-	-	3	40	60	3	3				
3	3 MTPS-207A Dissertation Phase-I - - 20 20 100 - 10													
		Total	6		20	26	180	120	16					

(seminar) and written form (formulate documents) in the form of report. The student will be evaluated on the basis of viva/ seminar (40 marks) and report (60 marks).

	* PROGRAM ELECTIVE - V								
1.	MTEL-201A	Distributed Generation							
2.	MTEL-203A	Electric Drives & Control							
3.	MTEL-205A	Power System Restructuring & Deregulation							

	** OPEN ELECTIVE									
1.	MTOE-201A	Business Analytics								
2.	MTOE-203A	Industrial Safety								
3.	MTOE-205A	Operation Research								
4.	MTOE-207A	Cost Management of Engineering Projects								
5.	MTOE-209A	Composite Materials								
6.	MTOE-211A	Waste to Energy								

SEMESTER-IV

Sr. No.	Course Code		L	Т	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	MTPS-202A	Dissertation Phase-II	-	-	32	-	100	200	16	
						Total	100	200	16	

Total Credits – 68

Note 1: At the end of the second semester each student is required to do his/her Dissertation work in the identified area in consent of the Guide/Supervisor. Synopsis for the Dissertation Part-I is to be submitted within three weeks of the beginning of the Third Semester.
 Note 2: Each admitted student is required to submit the report of his/her Dissertation Part-I as per the schedule mentioned in Academic

calendar for the corresponding academic session otherwise the Dissertation Part-II cannot be continued at any level.

Note 3: Each admitted student is required to submit his/her final Dissertation Part-II as per the schedule mentioned in Academic calendar for the corresponding academic session only after the publication of two papers in a journal/International/National conference of repute like IEEE, Springer, Elsevier, ACM and UGC Approved Journals etc.

Note 4: The course of program/open elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

MTEL-101A			Advanced I	Power Syste	m Analysis							
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)					
				Test	Test							
3	0	0	3	60	40	100	3					
Program	To enable s	To enable students to analyse power system networks, various faults, load flow study,										
Objective	security and	security and contingency analysis.										
(PO)												
		(Course Outco	omes (CO)								
After complete	tion of cours	e students w	ill be able to									
C01	Understand	l matrices relat	ed to power s	system and its	s formation wi	th different m	nethods.					
CO2	Understand	I how to analyz	e various typ	es of faults in	power syster	n						
CO3	Study vario	us methods of	load flow and	d their advant	ages and disa	advantages						
CO4	Understand	need of powe	r system seci	urity, state es	timation and o	contingency a	analysis					

UNIT1

Network Modelling: System graph, loop, cut set and Incidence matrices, Primitive network and matrix, Formation of various network matrices by singular transformation.

Bus Impedance Algorithm: Singular transformation, direct inspection, Building Block algorithm for bus impedance matrix, Addition of links, addition of branches, (considering mutual coupling).

UNIT2

Balanced and unbalanced network elements: Representation of three phase network elements, representation under balanced and unbalanced excitation, transformation matrices, symmetrical components, sequence impedances, unbalanced elements and three phase power invariance.

Short circuit studies: Network representations for single line to ground fault, line to line fault, LL-G fault, and 3-phase faults, Short circuit calculations for various types of faults in matrix form.

UNIT3

Load flow studies: Load flow and its importance. Classification of buses, load flow techniques, Iterative solutions and computer flow charts using Gauss-Seidel and Newton-Raphson methods, Decoupled and fast decoupled methods, Representation of regulating and off nominal ratio transformers and modification of Ybus.

UNIT4

Power system security: Introduction to Power system security, Addition and removal of multiple lines, network reduction for contingency analysis, current injection, shift destitution factor, single outage contingency analysis.

State estimation in power systems: data acquisition system, Method of least-squares, State estimation by weighted least square technique.

- 1. Stagg G W, EI-Abaid A H, "Computer methods in Power system analysis", McGraw Hill.
- 2. Singh L P, "Advanced Power System Analysis and Dynamics", New Age, Int. Publication.
- 3. Ramana N V, "Power System Analysis", Pearson Education.
- 4. Nagsarkar T K, Sukhija M S, "Power System Analysis", Oxford University Press.
- 5. Uma Rao K, "Computer Techniques and Models in Power System", IK Publications.
- 6. Grainger J J, Stevenson W D, "Power System Analysis", McGraw Hill.
- 7. Allen Wood, Bruce Wollenberg, "Power Generation operation & control", John Wiley & Sons.
- 8. Nagrath I J, Kothari D P, "Power System Engineering" McGraw Hill, New York.
- 9. Pai M A, "Computer Techniques in Power System Analysis", 2nd Edition, TMH-New Delhi.

MTPS-103A		EHV- AC TRANSMISSION SYSTEM										
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)										
3	0	0 0 3 60 40 100 3										
Program	This course will look at Transmission of power at extra high level of voltage											
Objective												
(PO)												
			Course Outc	omes (CO)								
After comple	tion of course	e students wil	l be able to									
C01	Understand F	Role of EHV AC	C Transmission	٦.								
CO2	Understand concept of corona, its causes, effects and remedies											
CO3	To study Ori	gin of over volt	ages and their	types								
CO4	To study Po	wer frequency	over voltages									

Introduction: Role of EHV AC Transmission, standard transmission voltages, average value of line parameters, power handling capacity. Line parameters, Properties of bundled conductors, Resistance, Inductance and Capacitance of bundled conductor lines. Temperature rise of conductors and current carrying capacity.

·

. Unit 2

Voltage gradients on conductors: Charge potential relations for multi-conductor lines, surface voltage gradient on conductors, distribution of voltage gradient on sub conductors of bundle. Corona Effects, Corona loss, attenuation of traveling waves, audible noise, limits for audible noise, AN measurement and meters, Day night equivalent noise level.

Unit 3

Limits for radio interference fields: RI excitation function, measurements of RI, RIV, Excitation function. Switching Over voltages: Origin of over voltages and their types, over voltages due to interruption of low inductive current and interruption of capacitive currents, Reduction of switching surges on EHV systems.

Unit 4

Power frequency over voltages: Problems at power frequency, no-load voltage conditions and charging current, voltage control using synchronous condensers, sub synchronous resonance in series-capacitor compensated lines, state reactive compensating schemes.

Operational aspects of Power flow: Line load ability, effects of over load, reactive power limitations and over voltage problem.

Suggested Books:

1. Begamudre, "EHV AC Transmission engineering", Wiley Easter Ltd. 2nd Ed.

2. Edison Electric Institute, "EHV transmission reference book", GE Co.

3. EPRI, Palo Alto, "Transmission line reference book 345 KV".

4. Rudenberg, "Transient performance of electric power systems" McGraw Hill

MTEL-105A			Renewabl	e Energy Re	sources						
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	60	40	100	3				
Program	The main ob	The main objective of the course is to impart the students with the knowledge of renewable									
Objective (PO)	energy resources and different factors related to them.										
	Course Outcomes (CO)										
After completion	of course stu	dents will be	able to								
C01	To impart kn	owledge abou	t renewable e	nergy resourd	ces and solar	power syster	n.				
CO2	To acquaint	students with	the phenome	non of wind p	ower system	and its appli	ications with				
	grid.										
CO3	To impart kn	owledge to stu	idents about g	geothermal ar	nd ocean pow	er system.					
CO4	To let studer	nt understand f	uel cell, hydro	ogen and hyb	rid energy sys	stem.					

ENERGY RESOURCES: Renewable energy sources, distributed energy systems and dispersed generation, atmospheric aspects of electric energy generation, Impact of renewable energy generation on environment

SOLAR ENERGY: Solar Radiation and its Measurement, Solar Thermal Energy Collectors: different types of collectors and their performance analysis, Solar Thermal Energy Conversion System: solar water heater, solar distillation, slat thermal power plant and various applications of solar system, Solar Photovoltaic System: solar cell, VI characteristics, solar electricity and grid and off-grid solar system.

Unit 2

WIND ENERGY: Wind turbines and rotors, Wind Energy Extraction, Wind Characteristics, Power Density Duration Curve, Design of Wind Turbine Rotor, Design of Regulating System for Rotor, Wind Power Generation Curve, Sub-systems of a Horizontal Axis Wind Turbine Generator, Modes of Wind Power Generation, Estimation of Wind Energy Potential, Selection of Optimum Wind Energy Generator (WEG), Grid Interfacing of a Wind Farm, Methods of Grid Connection, Grid System and Properties, Capacity of Wind Farms for Penetration into Grid, Control System for Wind Farms, Economics of Wind Farms

Unit 3

GEOTHERMAL ENERGY: Structure of the Earth's Interior, Plate Tectonic Major Test, Geothermal Sites, Geothermal Field, Geothermal Gradients, Geothermal Resources, Geothermal Power Generation, Geothermal Electric Power Plant, Geothermal-Preheat Hybrid with Conventional Plant

OCEAN ENERGY: Development of a Tidal Power Scheme, Grid Interfacing of Tidal Power, Wave Energy, Mathematical Analysis of Wave Energy, Empirical Formulae on Wave Energy, Wave Energy Conversion, Principle of Wave Energy plant, Wave Energy Conversion Machines.

Unit 4

FUEL CELLS: Principle of Operation of Fuel Cell, Fuel Processor, Fuel Cell Types, Energy Output of a Fuel Cell, Efficiency, and EMF of a Fuel Cell, Operating Characteristics of Fuel Cells, Thermal Efficiency of Fuel Cell

HYDROGEN ENERGY SYSTEM: Hydrogen Production, Hydrogen Storage, Development of Hydrogen Cartridge, Gas Hydrate

HYBRID ENERGY SYSTEMS: Hybrid Systems AND ITS Types, Electric and Hybrid Electric Vehicles, Hydrogen-Powered-Electric Vehicles.

- 1. Kothari DP, Singal KC, Ranjan Rakesh, "Renewable energy sources and emerging technologies, 2nd ed, Prentice Hall (India)
- 2. Rai G D, "Non-Conventional Sources of Energy, Khanna Publishers.
- 3. Bansal, Kleemann, Heliss, "Renewable energy sources and conversion technology", McGraw Hill Education.
- 4. Abbasi S A, Abbasi N, "Renewable energy sources and their environmental impact", PHI.
- 5. Mittal KM, "Renewable energy Systems", Wheelar Publishing.
- 6. Mukherjee D, "Renewable energy Systems", New Age International.

MTEL- 107A		Power Electronics Applications in Renewable Energy											
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)						
				lest	lest								
3	0	0	3	60	40	100	3						
Program	The main ob	The main objective of the course is to impart the students with the application of power											
Objective	system in rei	system in renewable energy resources											
(PO)	-)		J · · · · · · · · · · · · · · ·										
		(Course Outco	omes (CO)									
After comple	etion of cours	e students wi	ill be able to										
C01	To impart kn	owledge about	t power electr	onics devic	es and DC-DC	converters.							
CO2	To acquaint	students with t	he modern po	ower electro	onics converter	S.							
CO3	To impart k	nowledge to	students abo	out power	electronics int	erface devic	es for solar						
	energy.	U		·									
CO4	To let studer	nt understand w	wind energy in	nterfacing d	levices.								

Review of Power Devices: SCR, BJT, MOSFET, IGBT, GTO, Safe operating Limits, Selection of devices for various applications.

Phase controlled Converters: $(1-\phi \& 3-\phi)$ thyristor fed half controlled, fully controlled and Dual converters with inductive and motor load.

DC to DC converters: Analysis of various conduction modes of Buck, Boost, Buck-Boost.

Unit2

Modern Power Electronic Converters: Basic concepts of VSI, single phase half bridge, full bridge and three phase bridge inverters, PWM modulation strategies, Sinusoidal PWM, Space vector modulation, Selective Harmonic Elimination method, other inverter switching schemes, blanking time, Current source inverters.

Unit3

Design of Power Electronics Interfaces for Solar PV: Solar PV technologies, MPPT, Design of DC-DC converters for MPPT, MPPT algorithms, Implementation of MPPT control through DSP controllers. Topologies for grid connected and standalone applications: single phase and three phase systems, Single stage and multistage, isolated and non-isolated.

Unit4

Power Electronics Interfaces for WES: Topologies of WES, design considerations for wind energy Switch rectifier/inverter system, Power Converters for Doubly Fed Induction Generators (DFIG) in Wind Turbines. Power Electronics Interfaces for Fuel Cells: Types of fuel cells, Proton Exchange Membrane (PEM) fuel cell: features and operational characteristics, Design of DC-DC converters for PEM fuel cell, MPPT in Fuel Cell.

- 1. Mohan N, Undel and T M, Robbins W P, "Power Electronics, Converters, Applications & Design", Wiley India Pvt. Ltd.
- 2. Bose B K, "Modern Power Electronics and AC Drives", Pearson Education.
- 3. Joseph Vithayathil, "Power Electronics", Tata McGraw Hil.
- 4. Amirnaser Yezdani, and Reza Iravani, "Voltage Source Converters in Power Systems: Modelling, Control and Applications", IEEE John Wiley Publications.
- 5. Solanki C S, "Solar Photo Voltaic", PHI learning Pvt Ltd.

MTEL-		SMART GRID											
109A													
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)						
				Test	Test								
3	0	0	3	60	40	100	3						
Program	The main ob	jective of the c	course is to in	npart the stud	lents with the	knowledge o	f smart Grid						
Objective	and its advar	ntages over co	nventional gr	id									
(PO)	, , , , , , , , , , , , , , , , , , ,												
		(Course Outco	omes (CO)									
After comple	etion of cours	e students w	ill be able to										
C01	To impart kn	owledge abou	t Smart Grids	and Apprecia	ate the differe	nce between	smart grid						
	& convention	nal grid					-						
CO2	To acquaint	students with t	he phenomer	non of smart i	metering conc	epts to indus	trial and						
	commercial i	nstallations											
CO3	To impart kn	owledge to stu	idents about l	Formulate sol	utions in the a	areas of smar	t						
	substations,	distributed ger	neration and w	vide area me	asurements								
CO4	To let studen	nt understand r	nicrogrid and	related issue	S								

UNIT-1

Introduction to Smart Grid, Evolution of Electric Grid Concept of Smart Grid, Definitions Need of Smart Grid, Concept of Robust & Self-Healing Grid, Present development & International policies in Smart Grid. Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources Power Quality Conditioners for Smart Grid

UNIT-2

Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS) Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Smart Substations, Substation Automation, Feeder Automation. Cyber Security for Smart Grid

UNIT-3

Geographic Information System(GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU)

UNIT-4

Concept of micro-grid, need & applications of micro-grid, formation of micro-grid, Issues of interconnection, protection & control of Plastic & Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel-cells, micro-turbines Captive power plants, Integration of renewable energy sources

Suggested Books:

1. Keyhani A, "Design of smart power grid renewable energy systems", Wiley IEEE.

- 2. Berger L T, Iniewski K, "Smart Grid: Applications, Communications and Security", Wiley.
- 3. Gellings C W., "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press.
- 4. Ekanayake J B, Jenkins N, Liyanage K, Yokoyama A, "Smart Grid: Technology and Applications", Wiley.
- 5. Borlase S, "Smart Grid: Infrastructure, Technology and solutions", CRC Press.
- 6. Phadke A G, "Synchronized Phasor Measurement and their Applications", Springer.

MTEL-		В	io-Medical Si	ignal & Image	e Processing							
111A												
Lecture	Tutorial	Tutorial Practical Credit Major Minor Total Time(Hrs)										
				Test	Test							
3	0 0 3 60 40 100 3											
Program	This course	This course will look at Biomedical signal and Image for understanding and their processing										
Objective	assessing											
(PO)												
		(Course Outco	omes (CO)								
After comple	etion of cours	e students wi	ll be able to									
C01	Understand	different types	of biomedical	signal and Id	lentify and ana	alyse differer	nt biomedical					
	signals.			-	-	-						
CO2	Understand I	Understand basics of Image processing and its methods										
CO3	To emphasiz	e and analysis	of Clustering	and Classific	ation							
CO4	To study diff	ferent types of	bio signals ar	nd their proces	ssing							

Unit-1

Signals and Biomedical Signal Processing: Introduction and overview, Analog, discrete and digital signals, Processing and transformation of signals, Signal processing for feature extraction, Characteristics of digital Images, Fourier transform: Properties of One-Dimensional Fourier Transform, Discrete Fourier Transform.

. Unit-2

Image Processing: Image filtering Enhancement and Restoration, Point processing, Mask processing: linear filtering in Space domain, Frequency-domain filtering, Smoothing and sharping filters in frequency domain, Wavelet transform, FFT to STFT, One-Dimensional Continuous and discrete Wavelet Transform, Image processing methods.

Unit-3

Clustering and Classification: Clustering versus Classification, Feature extraction, Biomedical and. Biological features, Signal and Image processing features, K-means: A Simple Clustering Method, study of different types of Classifiers for signal processing.

Unit-4

Processing of Biomedical Signals: Electric activities of Cell, Electric data acquisition, Electrocardiogram: Signal of Cardiovascular system, Processing and feature extraction of ECG, Electroencephalogram, Signal of the brain, Processing and feature extraction of EEG, Electromyogram: Signal of muscles, Processing and feature extraction of EMG. Frequency and wavelet-domain analysis.

Suggested Books:

KayvanNajarian& Robert Splinter, "Introduction to Biomedical signal and Image Processing", CRC Press
 MetinAkay "Time Frequency & Wavelets in Biomedical Signal Processing", Wiley-IEEE Press.
 Amine Nait-Ali, "Advanced Biomedical Signal Processing", Springer.

MTEL-		Advanced Digital Signal Processing											
113A													
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)						
				Test	Test								
3	0 0 3 60 40 100 3												
Program	The main ob	The main objective of the course is to impart the students with the knowledge of LTI system											
Objective	and designing of different types of Filters.												
(PO)													
Course Outo	comes (CO)												
After comple	etion of cours	e students w	ill be able to										
C01	To impai	t knowledge a	bout LTI syst	em and DFT.									
CO2	To acqua	aint students v	ith the study	and design of	f FIR filters.								
CO3	To impar	t knowledge to	students abo	out study and	design of IIR	filters.							
CO4	To let stude spectrum est	nt understand imation.	I the concept	t and design	of adaptive	digital filters	and power						

UNIT-1

Introduction of DSP: Introduction to Signal Processing, Discrete Linear Systems, superposition Principle, UNIT-Sample response, stability & causality Criterion.

Fourier Transform & inverse Fourier transform: Frequency domain design of digital filters, Fourier transform, use of Fourier transform in Signal processing. The inverse fourier transform, sampling continuous function to generate a sequence, Reconstruction of continuous -time signals from Discrete-time sequences.

UNIT-2

Digital Filter Structure & Implementation: Linearity, time invariance & causality, the discrete convolution, the transfer function, stability tests, steady state response, Amplitude & Phase Characteristics, stabilization procedure, Ideal LP Filter, Physical reliability & specifications. FIR Filters, Truncation windowing & Delays, design example, IIR Filters: Review of design of analog filters & analog frequency transformation. Digital frequency transformation. Design of LP filters using impulse invariance method, bilinear transformation, Phase equalizer, digital all pass filters.

UNIT-3

Implementation of Filters: Realization block diagrams, Cascade & parallel realization, effect of infinite-word length, transfer function of degree 1&2, Sensitivity comparisons, effects of finite precision arithmetic on Digital filters.

UNIT-4

DFT & FFT & Z transform with Applications: Discrete Fourier transform, properties of DFT, Circular Convolution, Fast Fourier Transform, Realizations of DFT. The Z-transform, the system function of a digital filter, Digital Filter implementation from the system function, the inverse Z- transform, properties & applications, Special computation of finite sequences, sequence of infinite length & continuous time signals, computation of Fourier series & time sequences from spectra.

Suggested Books:

1. J G Proakis, "Digital Signal Processing using Matlab", Pearson Education.

- 2. Alam V. Oppenheim and Ronald W. Schafer, "Digital Signal Processing" Pearson Education.
- 3. Rabiner & Gold, "Major Test& application of digital Signal Processing", Pearson Education
- 4. Roman kuc, "Introduction to Digital Signal Processing," Tata McGraw Hill Edition.
- 5. Richard G. Lyons, "Understanding Digital Signal Processing", Pearson Education.
- 6. Paulo S. R. Ďiniz, Eduardo A. B. da Šilva, Šergio L. Netto, "Digital Signal Processing: System Analysis and Design", Springer.
- 7. Manolakis G Demitries, "Applied Digital Signal Processing", Cambridge Univ. Press.

MTEL- 115A		Bio-Medical Instrumentation											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)						
3	0	0 0 3 60 40 100 3											
Program	The main ob	The main objective of the course is to impart the students with the knowledge of different											
Objective	types of Biomedical Instruments with their controls.												
(PO)													
Course Outo	comes (CO)												
After comple	etion of cours	e students wi	ill be able to										
C01	Understand	the different	types of bio	medical tran	sducer for si	ignal measu	rement and						
	recording.												
CO2	Understand	basics of blood	l pressure, bl	ood flow and	respiratory sy	stem measu	rements.						
CO3	Understand	the muscoskel	etal and nerv	ous system a	nd their meas	urement.							
CO4	To emphasi	ze and analysi	s of recent tre	ends in biome	dical Engg ar	nd safety me	asurement.						

Unit-1

Characteristics of Transducers and Electrodes for Biological Measurement: Introduction to human body, block diagram, classification, various physiological events and suitable transducer for their recording, bioelectric potentials.

Cardiac system: Cardiac musculature, Electro cardiography, ECG recording, phonocardiography, holter recording ECG lead system, Heart rate meter, vector cardiography, pacemakers,

Unit-2

Blood pressure and Blood flow measurement; Invasive and non-invasive methods of blood pressure, characteristics of blood flow and heart sound, Cardiac output measurement, Plethysmography.

Respiratory system: Mechanics or breathing, parameters of respiration, Respiratory system measurements, respiratory therapy instruments.

Unit-3

Muscoskeletal Systems; EMG, Clinical applications, Muscles stimulator, Instrumentation for measuring Nervous function; EEG signal, frequency band classification, Lead systems, EEG recording, Clinical applications of EEG signal, X-ray CT scan, MRI, PET.

Clinical Laboratory Instrumentation; Test on blood cell, Blood cell counter, Blood glucose monitors, auto analyzer, pulse-oximeter.

Unit-4

Recent Trends in Biomedical Engg: Patient care and monitoring, Non-invasive diagnostic instrumentation, biotelemetry, telemedicine, prosthetic devices, lie detector test, Application of lasers and ultrasonic in biomedical field.

Troubleshooting and Electrical safety of Biomedical instruments; Physiological effect of current and safety measurement.

Suggested Books:

1.W T Wester, J G Tompkins, "Design of Microprocessor based Medical Instrumentation", Englewood cliffs

2. Tatsuo, Togato & Toshiya, "Biomedical transducers and instruments", CRC Press

3. Joseph P Bronzino, "The Biomedical engineering handbook", CRC Press.

MTPS-		Power Electronics & Drives Lab								
11/A			1	1		1				
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
0	0	4	2	60	40	100	3			
Program	The main ob	jective of the	course is to	impart the s	tudents with	the knowledg	ge of power			
Objective	electronics de	electronics devices and their applications								
(PO)										
			Course Outco	omes (CO)						
After comple	etion of course	e students wil	l be able to							
C01	To impart kno	wledge about	Power Electro	nic Devices						
CO2	Understand h	ow to create th	ne VI Characte	eristics of Vari	ous Devices a	nd Their Anal	lysis.			
CO3	To impart kno	wledge about	chopper, bridg	e invertor and	d Cycloconvert	ter				
CO4	Understand to	o create model	for speed cor	ntrol of AC mo	tor using TRIA	AC.				

Following experiments (at least 08) are required to be performed:

- 1. Experiment to study characteristics of Diode, Thyristor and TRIAC.
- 2. Experiment to study characteristics of transistor and MOSFET.
- 3. Experiment to study R and R-C firing circuits
- 4. Experiment to study UJT firing circuit.
- 5. Study of A.C single phase motor speed control using TRIAC.
- 6. Experiment to study Thyristorised D.C circuit breaker.
- 7. Experiment to study Thyristorised A.C phase control.
- 8. Experiment to study full wave converter.
- 9. Experiment to study series inverter.
- 10. Experiment to study DC chopper.
- 11. Experiment to study of bridge inverter.
- 12. Experiment to study of single phase Cycloconvertor

MTEL- 119A			Advanced	Power Syste	em Lab-I					
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
0	0	4	2	60	40	100	3			
Program	The main ob	The main objective of the course is to impart the students with the knowledge of								
Objective	programing for various types of power system appliances.									
(PO)	(PO)									
Course Outcomes (CO)										
After comple	etion of cours	se students w	ill be able to							
C01	To impart kn	owledge about	t a program to	develop Bus	Admittance I	Matrix, power	r flow			
	studies using	y Newton-Rapl	nson and Gau	Iss-Siedel me	thod.	. 1				
CO2	Understand	how to determ	ine the gene	ralized consta	ants A, B, C,	D of a long t	ransmission			
	line and volta	age & current f	or three phas	e faults ona2	-buspowersys	stem				
CO3	To impart kn	owledge abou	t simulation a	nd analysis o	f a single pha	ase & three p	hase power			
	system and	generation, tra	nsmission & c	distribution in	power system	۱.	•			
CO4	To impart I	knowledge ab	out simulatio	n and analy	sis of differ	ent fault co	ndition and			
	contingency	concept in a p	ower system.	-						

Following experiments (at least 8) are required to be performed in MATLAB/ETAP/LabView or equivalent:

- 1. Write a program to develop Bus Admittance Matrix YBUS.
- 2. Write a program for the Power Flow Studies using N-R(Newton-Raphson) method.
- 3. Write a program for the power flow analysis of system using Gauss-Siedel Technique.
- 4. Determination of the generalized constants , A, B, C, D of a long transmission line.
- 5. Determination of the voltage and current for three phase faults on a 2-bus power system.
- 6. Simulation and Analysis of a single phase & three phase power system.
- 7. Simulation & Analysis of generation, transmission & distribution in power system.
- 8. Simulation & Analysis of different fault condition in power system.
- 9. Simulation and Analysis of 9-bus power system.
- 10. Simulation and Analysis of contingency concept in a power system.

MTRM-111A			Resear	ch Methodolo	gy and IPR				
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
2	0	0	2	60	40	100	3 Hrs.		
Program	To enable	students to	Research	h Methodology	and IPR for further researc	h work a	nd		
Objective (PO)	investmer	nt in R & D,	which lead	ds to creation o	f new and better products,	and in tu	rn brings		
	about, ecc	onomic grow	rth and so	cial benefits.					
Course Outcomes (CO)									
C01	Understar	nderstand research problem formulation.							
CO2	Analyze re	esearch rela	ted inform	nation					
CO3	Understar	nd that today	's world is	s controlled by	Computer, Information Tec	hnology,	but		
	tomorrow	world will be	e ruled by	ideas, concept	t, and creativity.				
CO4	Understar	iding that w	nen IPR w	ould take such	n important place in growth	of			
	individuals	s & nation, it	is needle	ss to emphasi	s the need of information al	oout			
	Intellectua	I Property F	ight to be	promoted am	ong students in general &				
	engineerir	ng in particu	lar.						

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit 2

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

Unit 3

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit 4

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'.
- 2. C.R. Kothari, "Research Methodology: Methods & Techniques, 2nd edition or above, New Age Publishers.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall , "Industrial Design", McGraw Hill, 1992.
- 6. Niebel , "Product Design", McGraw Hill, 1974.
- 7. Asimov , "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

MTPS-		POWER SYSTEM OPERATION & CONTROL									
102A											
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	60	40	100	3				
Program	The main ob	he main objective of the course is to impart the students with the knowledge of power									
Objective	system oper	system operation, load forecasting and load frequency control									
(PO)											
		C	Course Outc	omes (CO)							
After comple	etion of cours	se students w	vill be able to)							
C01	To impar	t knowledge a	bout Load C	haracteristic	cs and modell	ing					
CO2	To acqua	aint students v	ith the Hydro	electric pla	nt model, Ene	ergy schedulir	ng				
CO3	To impa	art knowledg	e to stude	nts about	Load fored	asting, Pow	er Systems				
	interconnect	ion									
CO4	To let stu	udent understa	and Load free	uency conti	rol problem.						

Load Characteristics and modeling: Thermal UNITs cost models, Formulation and solution of optimum dispatch without considering transmission losses using Lagrange's methods, General transmission loss formula and B-Coefficients, Incremental transmission loss formula, Optimum dispatch considering transmission losses, Penalty factor technique, Iterative computational procedure for dispatch problem.

Unit2

Hydroelectric plant model: Energy scheduling, Incremental water rate, Coordination equations for shortrange hydrothermal scheduling with fixed head hydro plant, Computational flow-chart, Optimal scheduling of hydrothermal system using discretization and gradient vector approach.

Unit3

Load forecasting: Power Systems interconnection, Un-integrated and integrated operation, UNIT commitment problem, Solution of the problem by priority list scheduling and using dynamic programming principle and Lagrangian relaxation technique, Economics of inter-change of energy, Effects of transmission losses, SCADA systems.

Unit4

Load frequency control problem: Models of various subsystems of a generating UNIT, Governor Characteristics, Steady-state and dynamic analysis, Control area concept, Incorporating proportional and integral type controllers. Area control error, LFC and economic dispatch, Two-area LFC, Tie-line Control, Control of active and reactive power, Shunt and series compensation and associated analysis

- 1. Allen J. Wood, and Bruce F. Wollenberg, "Power Generation, Operation and Control", John Wiley & Sons, Inc., New York.
- 2. Olle I. Elgerd, "Electric Energy Systems Theory An Introduction", Mc Graw-Hill Book Company, New York.
- 3. John J. Grainger and William D. Stevenson, Jr, "Power System Analysis", Mc Graw Hill Book Company, Inc., New York.
- 4. P S R Murty, "Power System Operation and Control", Tata McGraw-Hill Publishing Company Ltd., New Delhi.
- 5. I J Nagrath and DP Kothari, "Power System Engineering", Tata McGraw Hill Publishing Co., Ltd. New Delhi.

6. B R Gupta, "Generation of Electrical Energy", S. Chand & Co. Ltd. N. Dell	6.	B R Gupta	, "Generation of Electrical Energy", S. Chand & Co. Ltd. N. Delh
--	----	-----------	--

MTPS-		P	ower Syster	n Protection	& Relaying		
104A			-				
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)
				Test	Test		
3	0	0	3	60	40	100	3 Hrs.
Program	This course	will look at diff	erent types o	f Power Syst	em Protectior	schemes.	
Objective				2			
(PO)							
		C	Course Outco	omes (CO)			
After comple	etion of cours	se students w	vill be able to)			
C01	Understand	Protective Rel	aying Fundar	nental.			
CO2	Understand	Static relays a	nd their oper	ation			
CO3	Understand	Distance prote	ection Princip	le			
CO4	Understand	Protection of C	Generators ar	nd Motors			

Unit-1

Protective Relaying Fundamental: Need for protective systems, Zones of protection, classification of protective relays and protective schemes, Advantages and disadvantages of different relays.

Current transformers and potential transformers: Operating principle, construction, characteristics, performance and specifications.

Comparators: general equation of comparators, Analysis for amplitude comparator, analysis for phase comparator, duality between amplitude and phase comparators, different types of amplitude and phase comparators.

Unit-2

Static relays: Over current relays- Instantaneous over current relays, definite time over current relays, directional over current relay, comparison with conventional relays, differential relays, operating and restraining characteristics, types of differential relays, comparison with conventional relays, distance relays, impedance relays, reactance relays, mho relay guadrilateral relays, elliptical relays, comparison with conventional relays.

Unit-3

Distance protection: Principle of distance relaying, time grading of distance relays, schemes of distance protection, distance protection by impedance, reactance and mho relays, Effect of power swings on the performance of distance relays.

Pilot relaying schemes: Pilot wire protection, carrier current protection.

Unit-4

Protection of Generators and Motors: Types of faults, Stator and rotor protection against various types of faults. Protection of Transformers: Types of faults, differential protection schemes, harmonic restraint relay, over flux protection, earthing transformer protection.

Bus Zone Protection: Types of Bus-bar faults, differential current protection frame leakage protection. Microprocessor based Protective relays: Over current relay, impedance relay, reactance relay, mho relay, distance relaying.

- TSM Rao, "Power System Protection Static Relays", Tata McGraw Hill.
 B Bhalja, R P Maheshwari and N G Chothani, "Protection and Switchgear", Oxford University Press, New Delhi, 2011.
- 3. Badri Ram and Vishwakarma, "Power System protection and Switchgear", Tata McGraw Hill.
- B. Ravindernath and M. Chander, "Power System Protection and Switchgear, New 5.
 S. P Patra, S.K Basu and S. Choudhary, "Power System Protection", Oxford IBH Pub. B. Ravindernath and M. Chander, "Power System Protection and Switchgear", New Age Publication, New Delhi, 2012.
- 6. C L Wadhwa, "Electrical Power Systems", New Age Publication, New Delhi, 2012

MTEL- 106A	HVDC Transmission & FACTS Devices									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)			
3	0	0	3	60	40	100	3			
Program	The main ob	he main objective of the course is to impart the students with the knowledge of HVDC and								
Objective	FACTS device	FACTS devices.								
(PO)										
Course Outo	comes (CO)									
After comple	etion of cours	e students wi	I be able to							
C01	To impar	t knowledge a	bout HVDC tr	ansmission sy	/stem.					
CO2	To acqua	aint students w	ith the interac	tion of AC an	d DC system	and various	links.			
CO3	To impar	knowledge to	students abo	ut facts device	es.					
CO4	To let studen	t understand c	ompensation	system and c	ontrol techniq	ues.				

HVDC Transmission: Development of HVDC Technology, Selection of converter configuration. Rectifier and Inverter operation. Control of HVDC converters and Systems.

Harmonics in HVDC Systems, Harmonic elimination, AC and DC filters.

Unit 2

Interaction between HVAC and DC systems – Voltage interaction, over voltages on AC/DC side, Harmonic instability problems and DC power modulation.

Multi-terminal DC links and systems; series, parallel and series parallel systems, their operation and control.

Unit 3

Introduction of Facts Concepts: Basic of flexible alternating current transmission system (FACTS) controllers, shunt, series, combined and other controllers, HVDC or FACTS, static VAR compensator (SVC) and static synchronous compensator (STATCOM), Static Synchronous Series Compensator (SSSC), Thyristor Controlled Series, Capacitor (TCSC). Solid State Contactors (SSC) and TSSC.

Unit 4

Combined Compensators: Introduction, Unified power flow controller (UPFC), conventional power control capabilities, real and reactive power flow control, comparison of UPFC to series compensators, control structure, dynamic performance. Interline power flow controller (IPFC) basic operating principles, control structure, application considerations.

Suggested Books:

1. Hingorani N.G, "Understanding FACTS (Concepts and Technology of Flexible AC Transmission System)", Standard Publishers.

2. Song Y.H. and Johns A.T., "Flexible AC Transmission Systems", IEEE Press.

3. Ghosh A. and Ledwich G., "Power Quality Enhancement using Custom Power Devices", Kluwer Academic Publishers.

4. Mathur R.M. and Verma R.K., "Thyristor based FACTS controllers for Electrical Transmission Systems", IEEE Press.

5. Bollen M.H.J., "Understanding Power Quality and Voltage Sag", IEEE Press.

6. Padiyar K.R., "FACTS Controllers in Power Transmission and Distribution", New Age International Publisher.

7. Miller T.J.E., "Reactive Power Control in Electric Systems", John Wiley.

8. Kamakshaiah S, Kamaraju V, "HVDC Transmission", McGraw Hill Education.

MTEL-		TRANSIENTS IN POWER SYSTEM									
108A			-								
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	60	40	100	3 Hrs.				
Program	The main ob	The main objective of the course is to impart the students with the knowledge of transients									
Objective	in power sys	in power system.									
(PO)											
Course Outo	comes (CO)										
After comple	etion of cours	e students w	ill be able to								
C01	To impai	t knowledge a	bout different	types of fact	ors effecting p	ower quality					
CO2	To acqua	aint students w	ith the transi	ents and light	ning.						
CO3	To impar	t knowledge to	harmonics.								
CO4	To let studer	nt understand	about distribu	ited generation	on and various	s issues relat	ed to power				
	quality.			-			•				

UNIT-1

What is Power Quality, Power Quality is Equal to Voltage Quality, Why are we concerned about Power Quality, Voltage Imbalance, Waveform Distortion, Voltage Fluctuation, Power Frequency Variations, Power Quality Terms, Sources of Sags and Interruption, Estimating Voltage Sag Performance, Area of Vulnerability, Equipment Sensitivity of Voltage Sags, Transmission Systems Sag Performance Evaluation, Utility Distribution System Sag Performance Evaluation.

UNIT-2

Sources of Transient Overvoltage's: Capacitor Switching, Restrike during Capacitor De-energizing, Lightning, Ferro -resonance, Other Switching Transients. Principles of Overvoltage Protection.

Devices for Overvoltage Protection: Surge Arresters and Transient Voltage Surge Suppressor, Isolation Transformers, Utility System Lightning Protection, Shielding, Line Arresters, Low Side Surges, Cable Protection, Scout Arrester Scheme, Computer Tools for Transient Analysis.

UNIT-3

Fundamentals of Harmonics: Harmonic Distortion, Voltage vs Current Distortion, Harmonics vs Transients, Power System Quantities Under Non Sinusoidal Conditions, Active, Reactive and Apparent Power, Power Factor: Displacement and True, Harmonic Phase Sequences, Triplen Harmonics.

Harmonic Sources from Commercial Loads: Single Phase Power Supplies, Fluorescent Lighting, Adjustable Speed Drives for HVAC and Elevators.

Effects of Harmonic Distortion: Impact on Capacitors, Impact on Transformers, Impact on Motors, Impact on Telecommunications, Impact on Energy and Demand Metering.

UNIT-4

Distributed Generation and Power Quality: Resurgence of DG, Perspectives on DG Benefits, Perspectives on Interconnection, DG Technologies, Fuel Cells, Wind Turbines, Photovoltaic Systems, Interface to the Utility System, Synchronous Machines, Asynchronous Machines, Electronic Power Inverters, Power Quality Issues, Voltage Regulation, Harmonics, Voltage Sags, Operating Conflicts, Voltage Regulation Issues, Islanding, Transformer Connections.

- 1. Dugan, McGranaghan, Santoso, H. Wayne Beaty, "Electrical Power System Quality", McGraw Hill.
- 2. Akihiro Ametani, Naoto Nagaoka, Yoshihiro Baba, Teruo Ohno, "Power System Transients: Theory and Applications", CRC Press.
- 3. L.V. Bewley, "Traveling waves in Transmission Systems", Dover.
- 4. R. Rudenberg, "Electric Stroke waves in Power Systems", Harvard University Press, Cambridge.
- 5. Allan Greenwood, "Electric Transients in Power Systems", Wiley Interscience.
- 6. CS Indulkar and DP Kothari, "Power System Transients, Statistical Approach", PHI Pvt Ltd., New Delhi.
- 7. VA Venikov, "Transient phenomena in Electrical Power Systems", Pergamon Press, London.
- 8. Klaus Ragaller, "Surges in High Voltage Networks", Plenum Press, New York.
- 9. Pritindra Chowdhari, "Electromagnetic transients in Por System", John Wiley and Sons Inc.

10. Naidu M S and Kamaraju V, "High Voltage Engineering", TMH Publishing Company Ltd., New Delhi.

MTEL-		Advanced Power Distribution & Automation									
TIUA		.	A W								
Lecture	lutorial	Practical	Credit	Major	Minor	lotal	lime(Hrs)				
				Test	Test						
3	0	0	3	60	40	100	3 Hrs.				
Program	The main obj	The main objective of the course is to impart the students with the knowledge of electricity									
Objective	distribution ar	distribution and automation.									
(PO)											
Course Out	comes (CO)										
After comp	etion of cours	se students w	ill be able to								
C01	To impart kno	owledge about	distribution a	utomation.							
CO2	To acquaint s	students with th	ne control and	l intelligent s	ystem in distr	ibution auto	mation.				
CO3	To impart kr	nowledge to s	tudents abou	ut renewable	e energy res	ources and	distribution				
	management										
CO4	To let student	t understand c	ommunicatior	n system imp	lementation i	n distributio	n system.				

UNIT-1

Introduction: General Concept, Distribution of Power, Power Loads, Connected Loads. Load Forecasting: Concept of Statistics, Regression Analysis, Correlation Theory, Factor in Power System Loading, Unloading the System, Forecast of System peak.

UNIT-2

System Planning: Planning Process, Basic Principle in system planning, System Development, Overview of Distributed generation, Different types of mapping: Global positioning System GPS, Automated mapping AM/Facility Management FM.

Introductory Methods in Power System Planning: Per Unit Calculation, Matrix Algebra, Symmetrical Components, Overview of Load Flow, Automated Planning: software needs, Data, solution techniques (Gauss Iterative method, Gauss seidel iterative method, Newton Raphson iterative method, Improved newton Raphson method) Effect of Abnormal Loads.

UNIT-3

Brief introduction of Distribution Automation, Role of PLC & SCADA in substation and distribution automation, Consumer information Service (CIS), Geographical information system GIS, Automatic meter Reading (AMR), Automation System.

UNIT-4

Metering System: Different types of Meter, Metering system component, Ferraris Meters, Solid state meters, Advance meter Infrastructure Systems (AMI).

Overview of Net metering, Meter current Rating, Prepaid Electricity meters, Meter selection and Location, testing methods.

Suggested Books:

1. A. S Pabla, "Electric Power Distribution", McGraw Hill Education.

2. James A. Momoh, "Electric Power Distribution Automation Protection and Control", CRC Press.

3. James N-Green and R Wilson, "Control and Automation of electric Power Distribution Systems", CRC Press.

4. Turan Gonen, "Electric Power Distribution System Engineering", CRC Press.

5. Abdelhay A. Sallam, "Electric Distribution Systems", Wiley-IEEEPress.

MTEL- 112A		Digital Control System								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)			
3	0	0	3	60	40	100	3 Hrs.			
Program	The main ob	he main objective of the course is to impart the students with the knowledge of digital								
Objective	control system.									
(PO)	_									
		0	Course Outc	omes (CO)						
After comple	etion of cours	se students w	vill be able to)						
C01	To impart kn	owledge abou	t signal proce	essing in digit	tal control sys	tem.				
CO2	To acquaint	students with	the control de	evices and sy	stems.					
CO3	To impart kn	owledge to stu	udents about	state variable	es, controllabi	lity and obse	ervability.			
CO4	To let studer	nt understand	the various c	oncepts of dia	gital observer	s.				

Unit-1

Signal Processing in Digital Control: Basic digital control scheme, principle of signal conversion, basic discrete-time signal, time-domain model for discrete-time systems, z-transform, transfer function models, jury stability criterion, sample and hold systems, sample spectra and aliasing

Unit-2

Models of Digital Control Devices and Systems: Introduction, z-domain description of sampled continuoustime plants, z-domain description of systems with dead-time, implementation of digital controllers, digital PID controllers, digital temperature control system, stepping motors and their control, PLC

Unit-3.

Analysis using State Variable Methods: State variable representation-concepts, modeling, transformation, state diagrams, Jordan canonical form, Eigen values and Eigenvectors,

Solution of state equations, concepts of controllability and Observability,

Unit-4

Digital Observers: State regulator design-full order and reduced order state observer, design of state observers, compensator design by separation principle, state feedback with integral control, deadbeat control by state feedback and deadbeat observers

- 1. Ogata K," Discrete time Control Systems", Pearson Education.
- 2. Nagrath and Gopal, "Control System Engineering", New Age International.
- 3. Kuo B C, "Digital Control Systems", Oxford University Press.
- 4. Goapl, "Digital Control & State Variable Method", McGraw Hill Education.

MTEL-		Advanced Microprocessors								
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
3	0	0	3	60	40	100	3 Hrs.			
Program	The main ob	he main objective of the course is to impart the students with the knowledge of advanced								
Objective	microproces	microprocessor.								
(PO)										
Course Outo	comes (CO)									
After comple	etion of cours	e students wi	ill be able to							
C01	To impart kn	owledge about	8086 microp	rocessors.						
CO2	To acquaint	students with t	he interfacing	converters e	tc.					
CO3	To impart kn	owledge to stu	dents about r	nicrocontrolle	rs.					
CO4	To let studer	it about applica	ation of micro	processor and	d various con	trollers relate	d to it.			

UNIT-1

Architecture of 8086 microprocessor, Memory Addressing, Bus Timings for MN/MX mode, interrupt structure. Memory Interfacing and Addressed encoding techniques for 8086 microprocessor

UNIT-2

Addressing modes, Instruction set and application programs, Assembler Directives, Programming Techniques using TASM, Interfacing D/A and A/D converters using programmable I/O devices, Interfacing Stepper motor. Architecture of INTEL X86 Family: CPU block diagrams, Pin diagrams and internal descriptions of 80286, 386, 486 and Pentium Processor, Instruction formats.

UNIT-3

Introduction to micro controllers, Architecture of 8051microcontroller, basic Instruction set, programming, serial data communication, inter facing with D/A and A/D converters.

UNIT-4

Application of Microprocessors, A Microcomputer-based Industrial Process-control System, Hardware for Control Systems and Temperature Controller, Overview of Smart-Scale Operation.

- 1. Hall D V, "Microprocessors & Interfacing", McGraw Hill Education.
- 2. Brey B, "The Intel Processors", Pearson Education.
- 3. Gibson, "Microprocessors", Prentice Hall of India.
- 4. Jean Loup Baer, "Microprocessor Architecture", Cambridge University Press.
- 5. Ayala K J, "Micro Controller", Penram International

MTEL- 116A			Reliability E	ngineering					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)		
3	0	0	3	60	40	100	3 Hrs.		
Program	The main ob	The main objective of the course is to impart the students with the concept of Reliability							
Objective	Engineering	Engineering and its application in Engineering.							
(PO)									
		C	ourse Outco	omes (CO)					
After comple	etion of cours	se students w	ill be able to						
C01	To emphasiz	e and analysis	s of basic of r	eliability engi	neering.				
CO2	To understar	nd the concept	of Fault tree	analysis in re	eliability.				
CO3	To understar	nd the concept	of Maintaina	bility Analysis	s in reliability.				
CO4	To study the	concept of Ar	tificial Intellige	ence in reliabi	ility engineeri	ng.			

Unit-1

Review of basic concepts in Reliability Engg., Reliability function, different reliability models, etc. Reliability evaluation techniques for complex systems; Tie set and cut set approaches, different reliability measures, Reliability allocation/apportionment, reliability improvement, redundancy optimization techniques.

Unit-2

Fault tree analysis: fault tree construction, simplification and evaluation, importance measures, modularization, applications, advantages and disadvantages of fault tree techniques.

Unit-3

Maintainability Analysis: measures of system performance, types of maintenance, reliability centred maintenance, reliability and availability, evaluation of engine ring systems using Markov models.

Unit-4

Applications of fuzzy Major Test and neural networks to Reliability Engineering. Reliability testing, design for reliability and maintainability. Typical reliability case studies.

Suggested Books:

- 1. R. Rama Kumar, "Engineering Reliability", Prentice Hall.
- 2. K B Mishra, "Reliability Analysis & Prediction".

3. K B Mishra, "New trends in System Reliability Evaluation".

- 4. M L Shooman, "Probabilistic reliability-an engineering approach", R E Krieger Pub.
- 5. K K Aggarwal, "Reliability Engineering".
- 6. Roy & Billington, "Reliability Engineering".
- 7. Balagurswami, "Reliability Engineering", McGraw Hill Education.

MTPS-	Power System Protection								
118A	Lab								
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)		
				Test	Test				
0	0	4	2	60	40	100	3		
Program	The main objective of the course is to impart the students with the knowledge of Power								
Objective	System Protection								
(PO)									
Course Outcomes (CO)									
After completion of course students will be able to									
C01	To impart knowledge about to preform test for dielectric strength of transformer oil, zero								
	sequence.	0	·		0				
CO2	To impart knowledge about to preform test on relays								
CO3	To impart knowledge about to preform different types of test on transmission lines								
CO4	To impart knowledge about to preform test on current transformer								

Following experiments (at least 08) are required to be performed:

- 1. To find out the dielectric strength of transformer oil.
- 2. To find zero sequence component of three phase line.
- 3. To draw the characteristics of thermal overload relay.
- 4. To study an IDMT over current relay to obtain and plot its characteristic curves i.e. the graph between current and time
- 5. To measure the ABCD parameters of a given transmission line.
- 6. To plot the power angle characteristics of given transmission lines.
- 7. To find the string efficiency of a string insulator with/without guard rings.
- 8. To study the characteristics of transmission line for t-network & pie- network.
- 9. To study and testing of a current transformer.
- 10. To study various types of distance relay.

MTEL-	Advanced Power System Lab-II								
120A									
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)		
				Test	Test				
0	0	4	2	60	40	100	3		
Program	The main objective of the course is to impart the students with the knowledge of programing								
Objective	for various types of power system appliances.								
(PO)									
Course Outcomes (CO)									
After completion of course students will be able to									
C01	To impart knowledge the simulation& analysis of the generator and transformer protection.								
CO2	To impart knowledge the simulation analysis of power quality improvement, different types								
	of load.								
CO3	To impart knowledge the simulation& analysis of PV cell.								
CO4	To impart knowledge the simulation& analysis of different non-conventional plant biomass								
	gasifier and v	vind turbine.		-		·			

Following experiments are required to be performed in MATLAB/ETAP/LabView or equivalent.

- 1. Simulation & Analysis of the generator protection.
- 2. Simulation & Analysis of the transformer protection.
- 3. Simulation & Analysis of power quality improvement.
- 4. Simulation & Analysis of different types of relays in power system.
- 5. To perform the simulation of Photo-Electric Effect.
- 6. To perform the simulation to construct the PV cell to show the V-I & P-V characteristics curve of it.
- 7. ToperformthesimulationofPhotovoltaicpowerconversionforsingleand3-phase load on account with MPPT.
- 8. To perform the construction of a Simulink model of Biomass Gasifier.
- 9. To study mathematical modelling of DFIG based Wind Turbine and its impact on connection with grid.
- 10. To perform the simulation of Permanent Magnet Synchronous Generator (PMSG) based wind energy conversion system.
- 11. To perform the simulation of PV-Grid inter- connection using MPPT technique with the partial shading effect.

MTEL- 201A	DISTRIBUTED GENERATION								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)		
3	0	0	3	60	40	100	3		
Program	To understand renewable energy sources. To gain understanding of the working of off-grid								
Objective	and grid-connected renewable energy generation schemes.								
(PO)									
	Course Outcomes (CO)								
After comple	etion of cours	e students wi	II be able to						
C01	To understar	To understand the planning and operational issues related to Distributed Generation.							
CO2	Acquire Knowledge about Distributed Generation Learn Micro-Grids								
CO3	understand renewable energy sources								
CO4	Understanding of the working of off-grid and grid-connected renewable energy generation schemes.								

UNIT-1

Need for Distributed generation. Renewable sources in distributed generation and current scenario in Distributed Generation. Introduction to micro-grids. Types of micro-grids: autonomous and non-autonomous grids Sizing of micro-grids. Modelling & analysis of Micro-grids with multiple DGs. Micro-grids with power electronic interfacing units.

UNIT-2

Planning of DGs. Sitting and sizing of DGs optimal placement of DG sources in distribution systems. Grid integration of DGs Different types of interfaces, Inverter based DGs and rotating machine based interfaces. Aggregation of multiple DG units.

UNIT-3

Technical impacts of DGs. Transmission systems Distribution Systems De-Regulation Impact of DGs upon protective relaying. Impact of DGs upon transient and dynamic stability of existing distribution systems, Steady-state and Dynamic analysis...

UNIT-4

Economic and control aspects of DGs Market facts. Issues and challenges Limitations of DGs, Voltage control techniques. Reactive power control, Harmonics Power quality issues, Reliability of DG based systems.

Suggested reading:

1. H. Lee Willis, Walter G. Scott, "Distributed Power Generation – Planning and Evaluation", Marcel Decker Press.

2. M Godoy Simoes, Felix A. Farret, "Renewable Energy Systems – Design and Analysis with Induction Generators", CRC press.

3. Stuart Borlase. "Smart Grid: Infrastructure Technology Solutions" CRC Press.

MTEL-	ELECTRIC DRIVES & CONTROL								
203A									
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)		
				Test	Test				
3	0	0	3	60	40	100	3		
Program	The main objective of the course is to impart the students with the knowledge of electric								
Objective	drives & control in electric system.								
(PO)									
Course Outcomes (CO)									
After comple	etion of cours	e students wi	ll be able to						
C01	To study basic electric drives, types of loads, classes of motor duty.								
CO2	To study different types of DC drives, stability analysis, modern control techniques.								
CO3	To study mathematical modelling of induction motor drives, introduction to Cyclo-converter								
	fed induction motor drive.								
CO4	To study different types of synchronous motor drives used in mills.								

UNIT 1

Introduction: Definition, Part of the electric drive, Types of loads, steady state & transient stability of Drive, state of art of power electronics and drives, thermal model of motor for heating and cooling, classes of motor duty, determination of motor rating.

UNIT 2

D.C. Drives: Review of braking and speed control of D.C. motors, multi-quadrant operation, loss minimization in adjustable speed drives. Mathematical modelling of dc drives, stability analysis, modern control techniques: variable structure, adaptive control, Chopper-Controlled DC Drives.

UNIT 3

Induction motor drives: Review of braking and speed control of induction motors, constant V/F, constant air gap flux, controlled voltage, controlled current and controlled slip operation. Mathematical modelling of induction motor drives, transient response and stability analysis Introduction to Cyclo-converter fed induction motor drive. Pulse Width Modulation for Electric Power Converters

UNIT 4

Synchronous motor drives: Adjustable frequency operation, voltage fed drive, current fed self-controlled drive. Application of electric drives in steel mills, paper mills, textile mills and machine tools etc. A. C. motor drives in transportation system and traction.

Suggested Books:

- 1. Dubey G K, "Fundamentals of Electrical Drives", Narosa Publishing House, New Delhi.
- 2. S K Pillai, "A First Course on Electrical Drives", New Age International (P) Ltd., New Delhi.
- 3. Krishan R, "Electric Motor Drives: Modeling Analysis and Control", PHI Pvt Ltd. New Delhi-2001.
- 4. Bose B K, "Power Electronics and Variable Frequency Drives: Technology and Applications", IEEE Press, 1997.

5. Bose B K, "Modern Power Electronics and AC Drives", Pearson Educational, Delhi,

MTEL- 205A	Power System Restructuring and Deregulation								
Lecture	Tutorial	Practical	Credit	Major Tost	Minor	Total	Time(Hrs)		
2	0	0	2		10	100	2 1.1mg		
5	U	U	3	60	40	100	3 Hrs.		
Program	The main objective of the course is to impart the students with the knowledge of								
Objective	restructuring and deregulation.								
(PO)	5 5								
Course Outo	comes (CO)								
After comple	etion of cours	e students wi	ill be able to						
C01	To impart knowledge about restructuring and its various issues related to it.								
CO2	To acquaint students with the deregulation and market models.								
CO3	To impart knowledge to students about transmission pricing.								
CO4	To let student understand in detail about congestion management and experiences of								
	various nations.								

Unit-1

Introduction: Basic concept and definitions, privatization, restructuring, transmission open access, wheeling, deregulation, components of deregulated system, advantages of competitive system.

Power System Restructuring: An overview of the restructured power system, Difference between integrated power system and restructured power system, Explanation with suitable practical examples.

Unit-2

Deregulation of Power Sector: Separation of owner ship and operation, Deregulated models, pool model, pool and bilateral trades model, multilateral trade model.

Competitive electricity market: Independent System Operator activities in pool market, Wholesale electricity market characteristics, central auction, single auction power pool, double auction power pool, market clearing and pricing, Market Power and its Mitigation Techniques, Bilateral trading, Ancillary services.

Unit-3

Transmission Pricing: Marginal pricing of Electricity, nodal pricing, zonal pricing, embedded cost, Postage stamp method, Contract Path method, Boundary flow method, MW-mile method, MVA-mile method, Comparison of different methods.

Unit-4

Congestion Management: Congestion management in normal operation, explanation with suitable example, total transfer capability (TTC), Available transfer capability (ATC), Different Experiences in deregulation: England and Wales, Norway, China, California, New Zealand and Indian power system.

Suggested Books:

1.LoiLei Lai, "Power System Restructuring and Deregulation", John Wiley & Sons Ltd.

2.K Bhattacharya, M H T Bollen and J C Doolder, "Operation of Restructured Power Systems", Kluwer Academic Publishers.

3.Lorrin Philipson and H Lee Willis, "Understanding Electric Utilities and Deregulation", Marcel Dekker Inc, New York.

4. Yong-Hua Song, Xi-Fan Wang, "Operation of market-oriented power systems", Springer, Germany.
| MTOE-201A | | Business Analytics | | | | | | | | | | |
|---|--|--|-------------|-------------------|--------------------|---------|--------|--|--|--|--|--|
| Lecture | Tutorial | Practical | Credit | Major Test | Minor Test | Total | Time | | | | | |
| 3 | 0 | 0 | 3 | 60 | 40 | 100 | 3 Hrs. | | | | | |
| Program | The main objective of this course is to give the student a comprehensive understanding | | | | | | | | | | | |
| Objective (PO) of business analytics methods. | | | | | | | | | | | | |
| Course Outcomes (CO) | | | | | | | | | | | | |
| C01 | Able to ha | ve knowled | ge of vario | ous business anal | ysis techniques. | | | | | | | |
| C02 | Learn the
models. | earn the requirement specification and transforming the requirement into different nodels. | | | | | | | | | | |
| CO3 | Learn the | requiremen | t represer | ntation and manag | ing requirement as | ssests. | | | | | | |
| CO4 | Learn the | Recent Tre | nds in Em | bedded and collal | borative business | | | | | | | |

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst.

Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts.

Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

Unit 2

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents.

Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

Unit 3

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

Unit 4

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

- 1. Business Analysis by James Cadle et al.
- 2. Project Management: The Managerial Process by Erik Larson and, Clifford Gray

		Industrial Safety										
MTOE-203A					-							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 Hrs.					
Program	To enable	enable students to aware about the industrial safety.										
Objective (PO)												
		C	ourse Ou	tcomes (CO)								
C01	Understar	nd the indus	trial safet	у.								
CO2	Analyze fu	undamental	of mainte	nance enginee	e ring .							
CO3	Understar	nd the wear	and corro	sion and fault	tracing.							
CO4	Understar	nding that v	vhen to d	do periodic ind	ceptions and a	pply the preventing	j					
	maintenai	nce.										

Unit-1

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-2

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit-3

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-4

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

MTOE-205A		Operations Research											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
3	0	0	3	60	40	100	3 Hrs.						
Program	To enable	o enable students to aware about the dynamic programming to solve problems of											
Objective (PO)) discreet and continuous variables and model the real world problem and simulate it.												
Course Outcomes (CO)													
C01	Students and cont	Students should able to apply the dynamic programming to solve problems of discreet and continuous variables.											
CO2	Students	should able	e to apply	the concept of	non-linear programm	ning							
CO3	Students	should able	e to carry	out sensitivity a	analysis								
CO4	Student s	should able	to model	the real world p	problem and simulate	e it.							

Unit -1

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit -2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit- 3

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit -4

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

MTOE-207A		Cost Management of Engineering Projects										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 Hrs.					
Program Objective (PO)	To enable students to make aware about the cost management for the engineering project and apply cost models the real world projects.											
Course Outcomes (CO)												
C01	Students	should able	e to learn	the strategic cost	management pro	ocess.						
CO2	Students	should able	e to types	of project and pro	oject team types							
CO3	Students	should able	e to carry	out Cost Behavio	r and Profit Planı	ning analysis.						
CO4	Student	should able	to learn th	he quantitative te	chniques for cost	management						

Unit-1

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Unit-2

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Unit-3

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit-4

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher

MTOE-209A		Composite Materials										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 Hrs.					
Program	n To enable students to aware about the composite materials and their properties.											
Objective (PO)												
Course Outcomes (CO)												
C01	Students	should at	ole to lea	arn the Classi	ification and c	haracteristics	of Composite					
	materials	<u>).</u>										
CO2	Students	should able	e reinforce	ements Compo	site materials.							
CO3	Students	should able	e to carry	out the prepara	ation of compo	unds.						
CO4	Student s	should able	to do the	analysis of the	composite ma	terials.						

UNIT-1:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Iso-strain and Iso-stress conditions.

UNIT – 2

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

UNIT-3

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT – 4

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

1. Material Science and Technology – Vol 13 – Composites by R.W.Cahn – VCH, West Germany.

2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.

3. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

References:

1. Hand Book of Composite Materials-ed-Lubin.

- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.

4. Composite Materials Design and Applications – Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

MTOE-211A		Waste to Energy									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	60	40	100	3 Hrs.				
Program	To enable	enable students to aware about the generation of energy from the waste.									
Objective (PO)											
Course Outcomes (CO)											
C01	Students	should able	e to learn	the Classificat	ion of waste as a fu	el.					
CO2	Students	should able	e to learn	the Manufactu	re of charcoal.						
CO3	Students	should able	e to carry	out the design	ing of gasifiers and	biomass stoves.					
CO4	Student :	should able	to learn th	he Biogas plan	t technology.						

Unit-1

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

Unit-2

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

Unit-3

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-4

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications -Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

References:

1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.

2. Biogas Technology - A Practical Hand Book - Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.

3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.

4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

MTAD-101A		English For Research Paper Writing										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
2	0	0	0	-	100	100	3 Hrs.					
Program Objective (PO)	Student w	tudent will able to understand the basic rules of research paper writing.										
Course Outcomes (CO)												
C01	Underst	and that ho	w to impro	ove your writing s	skills and level of r	eadability						
CO2	Learn a	bout what to	o write in e	each section								
CO3	Underst	and the skil	ls needed	when writing a	Title							
CO4	Ensure ti	he good qua	ality of pap	oer at very first-ti	me submission							

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit 3

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

Unit 4

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

References:

1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)

2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press

3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.

4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

MTAD-103A			Di	saster Manag	ement						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Tota		Time			
2	0	0	0	-	100	100		3 Hrs.			
Program	Develop a	Develop an understanding of disaster risk reduction and management									
Objective (PO)											
Course Outcomes (CO)											
C01	Learn to d	arn to demonstrate a critical understanding of key concepts in disaster risk reduction									
	and huma	nd humanitarian response.									
CO2	Critically e	evaluate dis	aster risk	reduction and	humanitarian res	ponse polic	y and	l practice			
	from multi	ple perspec	tives.								
CO3	Develop	an unders	tanding d	of standards	of humanitarian	response	and	practical			
	relevance	in specific	ypes of d	isasters and co	onflict situations.	-		-			
CO4	critically	understand	the stre	ngths and we	aknesses of disas	ster manag	iemen	t			
	approache	es, planning	and pro	gramming in d	different countries,	particularl	y thei	ſ			
	home cou	ntry or the o	countries i	they work in							

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit 2

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

Unit 3

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

References:

1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.

2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.

3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi.

MTAD-105A			Sanskr	it for Technic	al Knowledge							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
2	0	0	0	-	100	100	3 Hrs.					
Program Objective (PO)	Students literature a will help to	Students will be able to Understanding basic Sanskrit language and Ancient Sanskrit terature about science & technology can be understood and Being a logical language vill help to develop logic in students										
Course Outcomes (CO)												
C01	To get a	working kno	owledge in	n illustrious Sai	nskrit, the scientifi	c language in the	world					
CO2	Learning	of Sanskrit	to improv	e brain functio	ning							
CO3	Learning enhancir	of Sanskrit ng the memo	to develo ory power	p the logic in n	nathematics, scien	ce & other subjec	cts					
CO4	The engi huge kno	neering sch wledge froi	olars equ m ancient	ipped with San literature	skrit will be able to	o explore the						

Unit –1

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit – 2

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit –3

Technical concepts of Engineering: Electrical, Mechanical

Unit -4

Technical concepts of Engineering: Architecture, Mathematics

- 1. "Abhyaspustakam" Dr.Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

MTAD-107A		Value Education										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
2	0	0	0	-	100	100	3 Hrs.					
Program	Understar	nderstand value of education and self- development, Imbibe good values in students										
Objective (PO)	and Let th	nd Let the should know about the importance of character										
Course Outcomes (CO)												
C01	Knowledg	e of self-de	velopmen	t								

CO2	Learn the importance of Human values
CO3	Developing the overall personality
CO4	Know about the importance of character

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Stadards and principles. Value judgements.

Unit 2

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism.Love for nature, Discipline

Unit 3

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

Unit 4

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence,Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

References

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

MTAD-102A			Constit	ution of India						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	0	-	100	100	3 Hrs.			
Program	Understar	nd the prem	ises infor	ming the twin	themes of liberty a	and freedom froi	m a civil			
Objective (PO)	rights per:	spective an	d to addre	ess the growth	n of Indian opinion	regarding moder	n Indian			
	intellectua	ntellectuals' constitutional role and entitlement to civil and economic rights as well as the								
emergence of nationhood in the early years of Indian nationalism.										
Course Outcomes (CO)										
C01	Discuss th	he growth of	the dema	and for civil rig	hts in India for the L	oulk of Indians be	efore the			
	arrival of (Gandhi in In	dian politi	ics.						
CO2	Discuss th	ne intellectu	al origins	of the framewo	ork of argument tha	t informed the				
	conceptua	alization of s	ocial refo	rms leading to	revolution in India.					
CO3	Discuss th	ne circumsta	ances suri	rounding the fo	oundation of the Co	ngress Socialist	Party			
	[CSP] und	ler the lead	ership of J	lawaharlal Nel	hru and the eventua	al failure of the pr	roposal			
	of direct e	lections thro	ough adul	t suffrage in th	e Indian Constitutio	n.				
CO4	Discuss th	ne passage	of the Hin	ndu Code Bill o	f 1956.					
				Unit I						

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

References

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

MTAD-104A			Pedago	gy Studies				
Lecture	Tutorial Practical Credit Major Test Minor Test Total Ti							
2	2 0 0 0 - 100 100 3							
Program	Review existing evidence on the review topic to inform programme design and policy							
Objective (PO)	PO) making undertaken by the DFID, other agencies and researchers and Identify critical							
	evidence	e gaps to gu	ide the de	evelopment.				
	Course Outcomes (CO)							
C01	What pedagogical practices are being used by teachers in formal and informal							
	classroom	ns in develoj	oing coun	tries?				
CO2	What is t	the evidenc	e on the	effectiveness a	of these pedago	gical practices,	in what	
	conditions	s, and with w	hat popul	lation of learners	?			
CO3	How can	teacher edu	ucation (c	urriculum and p	racticum) and th	e school curricu	ilum and	
	guidance	materials be	est suppor	rt effective pedag	jogy?			
CO4	What is th	e importanc	e of ident	ifying research g	aps?			

Unit 1

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being

used by teachers in formal and informal classrooms in developing countries. , Curriculum, Teacher education.

Unit 2

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

Unit 3

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

Unit 4

Research gaps and future directions: Research design, Contexts , Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

References

1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.

2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.

3. Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

0.	ampaign.
----	----------

MTAD-106A		Stress Management by Yoga								
Lecture	Tutorial Practical Credit Major Test Minor Test Total Time									
2	0 0 0 - 100 100 3 Hrs.									
Program Objective (PO)	ogram To achieve overall health of body and mind and to overcome stress ctive (PO)									
		C	ourse Ou	tcomes (CO)						
C01	Develop	healthy min	d in a hea	althy body thus	improving social he	alth.				
CO2	Improve	efficiency								
CO3	CO3 Learn the Yog asan									
CO4	Learn the	e pranayam	9							

Unit – 1

Definitions of Eight parts of yog (Ashtanga).

Unit-2

Yam and Niyam, Do's and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

Unit-3

Asan and Pranayam, Various yog poses and their benefits for mind & body,

Unit-4

Regularization of breathing techniques and its effects-Types of pranayam.

References

1. 'Yogic Asanas for Group Tarining-Part-I" : Janardan Swami Yogabhyasi Mandal, Nagpur

2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

MTAD-108A		Personality Development through Life Enlightenment Skills										
Lecture	Tutorial	Futorial Practical Credit Major Test Minor Test Total Time										
2	0	0 0 0 - 100 100 3 Hrs.										
Program	To learn t	o achieve the	e highest g	oal happily								
Objective (PO)	To becom	ne a person v	/ith stable	mind, pleasing p	personality and deterr	nination						
	To awaken wisdom in students											
		C	ourse Ou	tcomes (CO)								
C01	Students	become awa	re about le	eadership.								
CO2	Students	will learn how	v to perfori	m his/her duties	in day to day work.							
CO3	Understa	nd the team l	ouilding an	d conflict								
CO4	Student w	vill learn how	to become	e role model for	the society.							

Unit – 1

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

Unit – 2

Approach to day to day work and duties; Shrimad Bhagwad Geeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

Unit - 3

Statements of basic knowledge; Shrimad Bhagwad Geeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

Unit – 4

Personality of Role model; Shrimad Bhagwad Geeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1. Srimad Bhagavad Gita, Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

Teaching Scheme

Lab work : 20 and 32 hrs/week for Dissertation Phase- I (MTPS-207A) and Phase- II (MTPS-202A) respectively

Course Outcomes:

At the end of this course, students will be able to

- a. Ability to synthesize knowledge and skills previously gained and applied to an in-depth study and execution of new technical problem.
- b. Capable to select from different methodologies, methods and forms of analysis to produce a suitable research design, and justify their design.
- c. Ability to present the findings of their technical solution in a written report. Presenting the work in International/ National conference or reputed journals.

Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following

D

- 1. Relevance to social needs of society
 - Relevance to value addition to existing facilities in the
 - Relevance to industry need
- 2. Problems of national importance
- 3. Research and development in various domain
- 4. The student should complete the following:
 - Literature survey Problem

efinition Motivation for study and Objectives

- Preliminary design / feasibility / modular approaches
- Implementation and Verification
- 5. Report and presentation

The dissertation phase- II is based on a report prepared by the students on dissertation allotted to them. It may be based on:

Experimental verification / Proof of concept.

Design, fabrication, testing of Communication System.

The viva-voce examination will be based on the above report and work.

•••••

Guidelines for Dissertation Phase - I and Phase-II

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two phases i.e. Phase – I: July to December and Phase – II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives. The referredliterature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing and Processing (Hardware and Software), Circuits-Devices and Systems, Communication-Networking and Security, Robotics and Control Systems, Signal Processing and Analysis and any other related domain. In case of Industry sponsored projects, the relevant application notes, while papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Phase – I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper and/or computer aided design, proof of concept/functionality, part results, A record of continuous progress.

Phase – I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Phase-I work.

During phase – II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Phase – II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, A record of continuous progress.

Phase – II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the work

KURUKSHETRA UNIVERSITY, KURUKSHETRA ('A+' Grade, NAAC Accredited) SCHEME OF EXAMINATIONS FOR MASTER OF TECHNOLOGY IN POWER ELECTRONICS AND DRIVES (w. e. f. 2018-19)

SEMESTER-I

Sr. No.	Course Code	SUBJECT	L	Т	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	MTPE-101A	PWM converter and Applications	3	-	-	3	40	60	3	3
2	MTPE-103A	Power Quality	3	-	-	3	40	60	3	3
3	*	Program Elective –I	3	-	-	3	40	60	3	3
4	**	Program Elective-II	3	-	-	3	40	60	3	3
5	MTPE - 117A	Electrical Drives Laboratory	-	-	4	4	40	60	2	3
6	MTPE - 119A	Digital Signal Processing Lab	-	-	4	4	40	60	2	3
7	MTRM- 111A	Research Methodology and IPR	2	-	-	2	40	60	2	3
8	***	Audit Course-I	2	-	-	2	-	-	-	-
		Total	16		8	24	280	420	18	

	* PROGRAM ELECTIVE – I							
1. MTEL-105A Renewable Energy Resources								
2.	MTEL-107A	Power Electronics Applications in Renewable Energy						
3.	3. MTEL-109A Smart Grid							
	** PROGRAM ELECTIVE - II							
1.	MTEL-111A	Bio-Medical Signal & Image Processing						
2.	MTEL-113A	Advanced Digital Signal Processing						
3.	MTEL-115A	Bio-Medical Instrumentation						

	*** AUDIT COURSE – I							
1.	MTAD-101A English for Research Paper Writing							
2.	MTAD-103A	Disaster Management						
3.	MTAD-105A	Sanskrit for Technical Knowledge						
4.	MTAD-107A	Value Education						

Note: 1. The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

2.*** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

SEMESTER-II

Sr. No.	Course Code	Subject	L	T	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam
						-				(Hrs.)
1	MTPE-102A	Power Electronic	3	-	-	3	40	60	3	3
		Converters								
2	MTPE-104A	Digital Control of Power	3	-	-	3	40	60	3	3
		Electronic and Drive								
		Systems								
3	*	Program Elective-III	3	-	-	3	40	60	3	3
4	**	Program Elective-IV	3	-	-	3	40	60	3	3
5	MTPE-118A	Power Electronics	-	-	4	4	40	60	2	3
		Laboratory								
6	MTPE-120A	Microcontrollers Lab	-	-	4	4	40	60	2	3
7	MTPE-122A	Mini Project	-	-	4	4	100	-	2	3
8	***	Audit Course-II	2	-	-	-	-	-	-	-
		Total	14		12	26	340	360	18	

	*PROGRAM ELECTIVES - III							
1.	1. MTEL-106A HVDC Transmission & FACTS Devices							
2.	Transients in Power System							
3.	MTEL-110A	Advanced Power Distribution & Automation						

	**PROGRAM ELECTIVE – IV							
1.	MTEL-112A	Digital Control System						
2.	MTEL-114A	Advanced Microprocessors						
3.	MTEL-116A	Reliability Engineering						

	*** AUDIT COURSE-II								
1.	MTAD-102A	Constitution of India							
2.	MTAD-104A	Pedagogy Studies							
3.	MTAD-106A	Stress Management by Yoga							
4.	MTAD-108A	Personality Development through Life Enlightenment							
		Skills							

Note: 1. The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

Note 2.*** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

#Note3: Mini project: During this course the student will be able to understand the contemporary/emerging technologies for various processes and systems. During the semester, the students are required to search/gather the material/information on a specific topic, comprehend it and

present/discuss the same in the class. He/she will be acquainted to share knowledge effectively in oral (seminar) and written form (formulate documents) in the form of report. The student will be evaluated on the basis of viva/ seminar (40 marks) and report (60 marks).

Sr. No.	Course Code	Subject	L	Т	Р	Total	Minor* Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	*	Program Elective-V	3	-	-	3	40	60	3	3
2	**	Open Elective	3	-	-	3	40	60	3	3
3	MTPE-207A	Dissertation Phase-I	-	-	20	20	100	-	10	
		Total	6		20	26	180	120	16	

SEMESTER-III

* PROGRAM ELECTIVE - V								
1.	MTEL-201A	Distributed Generation						
2.	MTEL-203A	Electric Drives & Control						
3.	MTEL-205A	Power System Restructuring & Deregulation						

** OPEN ELECTIVE								
1.	MTOE-201A	Business Analytics						
2.	MTOE-203A	Industrial Safety						
3.	MTOE-205A	Operation Research						
4.	MTOE-207A	Cost Management of Engineering Projects						
5.	MTOE-209A	Composite Materials						
6.	MTOE-211A	Waste to Energy						

SEMESTER-IV

Sr. No.	Course Code		L	Т	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	MTPE-202A	Dissertation Phase-II	-	-	32	-	100	200	16	
Total							100	200	16	

Total Credits – 68

- **Note 1**: At the end of the second semester each student is required to do his/her Dissertation work in the identified area in consent of the Guide/Supervisor. Synopsis for the Dissertation Part-I is to be submitted within three weeks of the beginning of the Third Semester.
- **Note 2**: Each admitted student is required to submit the report of his/her Dissertation Part-I as per the schedule mentioned in Academic calendar for the corresponding academic session otherwise the Dissertation Part-II cannot be continued at any level.
- **Note 3**: Each admitted student is required to submit his/her final Dissertation Part-II as per the schedule mentioned in Academic calendar for the corresponding academic session only after the publication of two papers in a journal/International/National conference of repute like IEEE, Springer, Elsevier, 10(2244)

ACM etc.

Note 4: The course of program/open elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.