# UNIVERSITY INSTITUTE OF ENGINEERING & TECHNOLOGY KURUKSHETRA UNIVERSITY, KURUKSHETRA

('A+' Grade, NAAC Accredited)

## SCHEME OF EXAMINATIONS FOR MASTER OF TECHNOLOGY IN ELECTRONICS & COMMUNICATION ENGINEERING

# (W. E. F. SESSION: 2018-19)

### SEMESTER- I

| S. No. | Course Code | SUBJECT                                  |    | T | Ρ | Total | Minor<br>Test | Major<br>Test | Cr. | Dur. of<br>Exam<br>(Hrs.) |
|--------|-------------|------------------------------------------|----|---|---|-------|---------------|---------------|-----|---------------------------|
| 1      | MTEC-101    | RF and Microwave Circuit Design          | 3  | - | - | 3     | 40            | 60            | 3   | 3                         |
| 2      | MTEC-103    | Wireless & Mobile Communications         | 3  | - | - | 3     | 40            | 60            | 3   | 3                         |
| 3      | *           | Program Elective –I                      |    | - | - | 3     | 40            | 60            | 3   | 3                         |
| 4      | **          | Program Elective-II                      | 3  | - | - | 3     | 40            | 60            | 3   | 3                         |
| 5      | MTEC-117    | RF and Microwave Circuit<br>Design(Lab.) | -  | - | 4 | 4     | 40            | 60            | 2   | 3                         |
| 6      | MTEC-119    | Wireless & Mobile Communications (Lab.)  | -  | - | 4 | 4     | 40            | 60            | 2   | 3                         |
| 7      | MTRM-111    | Research Methodology and IPR             | 2  | - | - | 2     | 40            | 60            | 2   | 3                         |
| 8      | ***         | Audit Course-I                           |    | - | - | 2     | 100           | -             | 0   | 3                         |
|        |             | TOTAL                                    | 16 | 0 | 8 | 24    | 280           | 420           | 18  |                           |
|        |             |                                          |    |   |   |       | 70            | 0             | 1   |                           |

|          | *Program Elective - I                    | **       | Program Elective- II      |
|----------|------------------------------------------|----------|---------------------------|
| MTEC-105 | Advanced Communication Networks          | MTEC-111 | Cognitive Radio           |
| MTEC-107 | Pattern Recognition and Machine Learning | MTEC-113 | Wireless Sensor Networks  |
| MTEC-109 | Statistical Information Processing       | MTEC-115 | High Performance Networks |

| *** Audit Course-I                          |                                  |  |  |  |  |
|---------------------------------------------|----------------------------------|--|--|--|--|
| MTAD-101 English for Research Paper Writing |                                  |  |  |  |  |
| MTAD-103 Disaster Management                |                                  |  |  |  |  |
| MTAD-105                                    | Sanskrit for Technical Knowledge |  |  |  |  |
| MTAD-107                                    | Value Education                  |  |  |  |  |

**Note1:** The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

\*\*\* **Note2:**Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

#### SEMESTER-II

| S. No. | Course code | Subject                                   | L  | T | Р  | Total | Minor<br>Test | Major<br>Test | Cr. | Dur. of Exam<br>(Hrs.) |
|--------|-------------|-------------------------------------------|----|---|----|-------|---------------|---------------|-----|------------------------|
| 1      | MTEC-102    | Antennas and Radiating<br>Systems         | 3  | - | -  | 3     | 40            | 60            | 3   | 3                      |
| 2      | MTEC-104    | Advanced Digital Signal<br>Processing     | 3  | - | -  | 3     | 40            | 60            | 3   | 3                      |
| 3      | *           | Program Elective-III                      | 3  | - | -  | 3     | 40            | 60            | 3   | 3                      |
| 4      | **          | Program Elective-IV                       | 3  | - | -  | 3     | 40            | 60            | 3   | 3                      |
| 5      | MTEC-118    | Antennas and Radiating<br>Systems Lab     |    | - | 4  | 4     | 40            | 60            | 2   | 3                      |
| 6      | MTEC-120    | Advanced Digital Signal<br>Processing Lab | -  | - | 4  | 4     | 40            | 60            | 2   | 3                      |
| 7      | # MTEC-122  | Mini Project                              | -  | - | 4  | 4     | 100           | -             | 2   | 3                      |
| 8      | ***         | Audit Course-II                           | 2  |   |    | 2     | 100           | -             | 0   | 3                      |
|        | TOTAL       |                                           | 14 |   | 12 | 26    | 340           | 360           | 18  |                        |
|        |             |                                           |    |   |    |       | 7             | 00            |     |                        |

| *Prog    | gram Elective - III     |          | **Program Elective - IV          |
|----------|-------------------------|----------|----------------------------------|
| MTEC-106 | Satellite Communication | MTEC-112 | Optimization Techniques          |
| MTEC-108 | Internet of Things      | MTEC-114 | MIMO System                      |
| MTEC-110 | Voice and Data networks | MTEC-116 | Programmable Networks – SDN, NFV |

|                           | *** Audit Course - II                                      |  |  |  |  |  |  |
|---------------------------|------------------------------------------------------------|--|--|--|--|--|--|
| MTAD-102                  | Constitution of India                                      |  |  |  |  |  |  |
| MTAD-104 Pedagogy Studies |                                                            |  |  |  |  |  |  |
| MTAD-106                  | Stress Management by Yoga                                  |  |  |  |  |  |  |
| MTAD-108                  | Personality Development through Life Enlightenment Skills. |  |  |  |  |  |  |

**Note1:** The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

\*\*\***Note2**:Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

**#Note3:** Mini project: During this course the student will be able to understand the contemporary/emerging technologies for various processes and systems. During the semester, the students are required to search/gather the material/information on a specific topic, comprehend it and present/discuss the same in the class. He/she will be acquainted to share knowledge effectively in oral (seminar) and written form (formulate documents) in the form of report. The student will be evaluated on the basis of viva/ seminar (40 marks) and report (60 marks).

#### SEMESTER-III

| S.<br>No. | Course Code | Subject             | L | T | Р  | Total | Minor<br>Test | Major<br>Test | Cr. | Duration of<br>Exam (Hrs.) |
|-----------|-------------|---------------------|---|---|----|-------|---------------|---------------|-----|----------------------------|
| 1         | *           | Program Elective-V  | 3 | - | -  | 3     | 40            | 60            | 3   | 3                          |
| 2         | **          | Open Elective       | 3 | - | -  | 3     | 40            | 60            | 3   | 3                          |
| 3         | MTEC-207    | Dissertation Part-I | - | - | 20 | 20    | 100           | -             | 10  | 3                          |
|           |             | TOTAL               | 6 |   | 20 | 26    | 180           | 120           | 16  |                            |
|           |             |                     |   | • |    | •     | 30            | 0             |     |                            |

| *Program Elective - V |                        |  |  |  |  |  |
|-----------------------|------------------------|--|--|--|--|--|
| MTEC-201              | Adaptive Filter Theory |  |  |  |  |  |
| MTEC-203              | Optical Networks       |  |  |  |  |  |
| MTEC-205              | Remote Sensing         |  |  |  |  |  |

|    | **Open Elective |                                         |  |  |  |  |  |  |
|----|-----------------|-----------------------------------------|--|--|--|--|--|--|
| 1. | MTOE-201        | Business Analytics                      |  |  |  |  |  |  |
| 2. | MTOE-203        | Industrial Safety                       |  |  |  |  |  |  |
| 3. | MTOE-205        | Operations Research                     |  |  |  |  |  |  |
| 4. | MTOE-207        | Cost Management of Engineering Projects |  |  |  |  |  |  |
| 5. | MTOE-209        | Composite Materials                     |  |  |  |  |  |  |
| 6. | MTOE-211        | Waste to Energy                         |  |  |  |  |  |  |

### **SEMESTER-IV**

| S.<br>No. | Course Code |                      | L | Т | Р  | Total | Minor<br>Test | Major<br>Test | Cr. | Duration of<br>Exam (Hrs.) |
|-----------|-------------|----------------------|---|---|----|-------|---------------|---------------|-----|----------------------------|
| 1         | MTEC-202    | Dissertation Part-II | - | - | 32 | 32    | 100           | 200           | 16  | 3                          |
|           |             | TOTAL                |   |   |    |       | 30            | 0             | 16  |                            |

### Total credits of all four semesters - 68

- **Note 1**: At the end of the second semester each student is required to do his/her Dissertation work in the identified area in consent of the Guide/Supervisor. Synopsis for the Dissertation Part-I is to be submitted within three weeks of the beginning of the Third Semester.
- **Note 2**: Each admitted student is required to submit the report of his/her Dissertation Part-I as per the schedule mentioned in Academic calendar for the corresponding academic session otherwise the Dissertation Part-II cannot be continued at any level.
- Note 3: Each admitted student is required to submit his/her final Dissertation Part-II as per the schedule mentioned in Academic calendar for the corresponding academic session only after the publication of two papers in a journal/International/National conference of repute like IEEE, Springer, Elsevier, ACM etc.
- **Note 4:** The course of program/open elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

| MTEC-101 | RF and Microwave Circuit Design                                    |               |              |                                |                        |               |         |  |  |  |  |  |
|----------|--------------------------------------------------------------------|---------------|--------------|--------------------------------|------------------------|---------------|---------|--|--|--|--|--|
| Lecture  | Lecture Tutorial Practical Credit Major Test Minor Test Total Time |               |              |                                |                        |               |         |  |  |  |  |  |
| 3        | 0 0                                                                |               |              | 60                             | 40                     | 100           | 3 Hrs.  |  |  |  |  |  |
|          |                                                                    |               | Course O     | utcomes (CO)                   |                        |               |         |  |  |  |  |  |
| C01      |                                                                    |               |              | <sup>-</sup> passive component |                        |               |         |  |  |  |  |  |
|          | transmissi                                                         | on line analy | isis and de  | emonstrate use of Smi          | th Chart for high freq | uency circuit | design. |  |  |  |  |  |
| CO2      | Able to ana                                                        | alyze the mid | crowave re   | esonators, filters, coup       | lers etc.              |               |         |  |  |  |  |  |
| CO3      | Analyze th                                                         | e microwave   | e solid stat | e devices such as dio          | des and Transistors.   |               |         |  |  |  |  |  |
| CO4      | Able to design and analyze the microwave amplifiers.               |               |              |                                |                        |               |         |  |  |  |  |  |

Transmission Line Theory: Lumped element circuit model for transmission line, field analysis, Smith chart, quarter wave transformer, generator and load mismatch, impedance matching and tuning. Microwave Network Analysis: Impedance and equivalent voltage and current, Impedance and admittance matrix, The scattering matrix, transmission matrix, Signal flow graph.

### Unit 2

Microwave Components: Microwave resonators, Microwave filters, power dividers and directional couplers, Ferromagnetic devices and components.Nonlinearity and Time Variance, Inter-symbol interference, random process & noise, definition of sensitivity and dynamic range, conversion gain and distortion.

#### Unit 3

Microwave Semiconductor Devices and Modeling: PIN diode, Tunnel diodes, Varactordiode, Schottky diode, IMPATT and TRAPATT devices, transferred electron devices, Microwave BJTs, GaAs FETs, low noise and power GaAs FETs, MESFET, MOSFET, HEMT.

### Unit 4

Amplifiers Design: Power gain equations, stability, impedance matching, constant gain and noise figure circles, small signal, low noise, high power and broadband amplifier, oscillators, Mixers design.

- 1) Matthew M. Radmanesh, "Advanced RF & Microwave Circuit Design: The Ultimate Guide to Superior Design", Author House, 2009.
- 2) D.M.Pozar, "Microwave Engineering", Wiley, 4th edition, 2011.
- 3) R.Ludwig and P.Bretchko, "R. F. Circuit Design", Pearson Education Inc, 2009.
- 4) G.D. Vendelin, A.M. Pavoi, U. L. Rohde, "Microwave Circuit Design Using Linear And Non Linear Techniques", John Wiley 1990.
- 5) S.Y. Liao, "Microwave circuit Analysis and Amplifier Design", Prentice Hall 1987. Radmanesh, "RF and Microwave Electronics Illustrated", Pearson Education, 2004.

| MTEC-103             |                                                                                           |               | Wireless     | s & Mobile Commur     | nication               |           |           |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------|---------------|--------------|-----------------------|------------------------|-----------|-----------|--|--|--|
| Lecture              | Tutorial Practical Cr                                                                     |               | Credit       | Major Test            | Minor Test             | Total     | Time      |  |  |  |
| 3                    | 0                                                                                         | 0             | 3            | 60                    | 40                     | 100       | 3 Hrs.    |  |  |  |
| Course Outcomes (CO) |                                                                                           |               |              |                       |                        |           |           |  |  |  |
| C01                  | CO1 Apply frequency-reuse concept in mobile communications, and to analyze its effects on |               |              |                       |                        |           |           |  |  |  |
|                      | interference, system capacity, handoff techniques                                         |               |              |                       |                        |           |           |  |  |  |
| CO2                  | Distinguish                                                                               | h various mu  | Itiple-acce  | ess techniques for m  | obile communications   | e.g. FDM  | A, TDMA,  |  |  |  |
|                      | CDMĂ, an                                                                                  | d their advar | ntages and   | l disadvantages.      |                        | -         |           |  |  |  |
| CO3                  | Analyze p                                                                                 | ath loss and  | l interferei | nce for wireless tele | phony and their influe | nces on   | a mobile- |  |  |  |
|                      | communic                                                                                  | ation system  | 's perform   | ance.                 |                        |           |           |  |  |  |
| CO4                  | Analyze ar                                                                                | nd design Cl  | DMA syste    | m functioning with kı | nowledge of forward an | d reverse |           |  |  |  |
|                      | channel                                                                                   | details, ad   | /antages     | and disadvantage      | s of using the te      | chnology, |           |  |  |  |
|                      | understand                                                                                | ding upcomii  | ng technolo  | ogies like 3G, 4G etc |                        | 05        |           |  |  |  |

Cellular Communication Fundamentals:Cellular system design, Frequency reuse, cellsplitting, handover concepts, Co channel and adjacent channel interference, interference reductiontechniques and methods to improve cell coverage, Frequency management and channel assignment.GSM architecture and interfaces, GSM architecture details, GSM subsystems, GSM Logical Channels, Data Encryption in GSM, Mobility Management, Call Flows in GSM.2.5 G Standards: High speed Circuit Switched Data (HSCSD), General Packet Radio Service (GPRS), 2.75 G Standards: EDGE,

## Unit 2

Spectral efficiency analysis based on calculations for Multiple access technologies:TDMA,FDMA and CDMA,Comparison of these technologies based on their signal separation techniques, advantages, disadvantages and application areas.Wireless network planning (Link budget and power spectrum calculations)

### Unit 3

Mobile Radio Propagation:Large Scale Path Loss, Free Space Propagation Model, Reflection, Ground Reflection (Two-Ray) Model, Diffraction, Scattering, Practical Link Budget Design using Path Loss Models, Outdoor Propagation Models, Indoor Propagation Models, Signal Penetration into Buildings. Small Scale Fading and Multipath Propagation, Impulse Response Model, Multipath Measurements, Parameters of Multipath channels, Types of Small Scale Fading: Time Delay Spread; Flat, Frequency selective, Doppler Spread; Fast and Slow fading.Equalization, Diversity:Equalizers in a communications receiver, Algorithms for adaptiveequalization, diversity techniques, space, polarization, frequency diversity, Interleaving.

### Unit 4

Code Division Multiple Access:Introduction to CDMA technology, IS 95 systemArchitecture, Air Interface, Physical and logical channels of IS 95, Forward Link and Reverse link operation, Physical and Logical channels of IS 95 CDMA, IS 95 CDMA Call Processing, soft Handoff, Evolution of IS 95 (CDMA One) to CDMA 2000, CDMA 2000 layering structure and channels.Higher Generation Cellular Standards:3G Standards: evolved EDGE, enhancements in 4Gstandard, Architecture and representative protocols, call flow for LTE, VoLTE, UMTS, introduction to 5G

### References:

1. V.K.Garg, J.E.Wilkes, "Principle and Application of GSM", Pearson Education, 5<sup>th</sup> edition, 2008.

2. V.K.Garg, "IS-95 CDMA & CDMA 2000", Pearson Education, 4<sup>th</sup> edition, 2009.

3. T.S.Rappaport, "Wireless Communications Principles and Practice", 2<sup>nd</sup> edition, PHI,2002.

4. William C.Y.Lee, "Mobile Cellular Telecommunications Analog and Digital Systems", 2<sup>nd</sup> edition, TMH, 1995.

5. AshaMehrotra, "A GSM system Engineering" Artech House Publishers Bosten, London, 1997.

| MTEC-105 |                      | Advanced Communication Networks                         |             |                      |            |       |        |  |  |  |  |
|----------|----------------------|---------------------------------------------------------|-------------|----------------------|------------|-------|--------|--|--|--|--|
| Lecture  | Tutorial             | Practical                                               | Credit      | Major Test           | Minor Test | Total | Time   |  |  |  |  |
| 3        | 0                    | 0                                                       | 3           | 60                   | 40         | 100   | 3 Hrs. |  |  |  |  |
|          | Course Outcomes (CO) |                                                         |             |                      |            |       |        |  |  |  |  |
| C01      | Understan            | derstand advanced concepts in Communication Networking. |             |                      |            |       |        |  |  |  |  |
| CO2      | Design and           | d develop pr                                            | otocols for | Communication Netw   | /orks.     |       |        |  |  |  |  |
| CO3      | Optimize ti          | nize the Network Design.                                |             |                      |            |       |        |  |  |  |  |
| CO4      | Understan            | d the differei                                          | nt versions | of Internet Protocol |            |       |        |  |  |  |  |

Overview of Internet-Concepts, challenges and history.Overview of -ATM. TCP/IPCongestion and Flow Control in Internet-Throughput analysis of TCP congestion control. TCP for high bandwidth delay networks. Fairness issues in TCP.Real Time Communications over Internet. Adaptive applications.Latency and throughputissues.Integrated Services Model (intServ).Resource reservation in Internet.RSVP.Characterization of Traffic by Linearly Bounded Arrival Processes (LBAP).Leaky bucket algorithm and its properties.

### Unit 2

Packet Scheduling Algorithms-requirements and choices. Scheduling guaranteed serviceconnections. GPS, WFQ and Rate proportional algorithms. High speed scheduler design. Theoryof Latency Rate servers and delay bounds in packet switched networks for LBAP traffic; Active Queue Management - RED, WRED and Virtual clock. Control theoretic analysis of activequeue management.

### Unit 3

IP address lookup-challenges. Packet classification algorithms and Flow Identification-Grid of Tries, Cross producting and controlled prefix expansion algorithms. Admission control in Internet. Concept of Effective bandwidth. Measurement based admission control. Differentiated Services in Internet (Diff Serv). Diff Serv architecture and framework.

### Unit 4

IPV4, IPV6, IP tunnelling, IP switching and MPLS, Overview of IP over ATM and itsevolution to IP switching.MPLS architecture and framework.MPLS Protocols. Traffic engineering issues in MPLS.

- 1. Jean Wairand and PravinVaraiya, "High Performance Communications Networks", 2<sup>nd</sup> edition, 2000.
- 2. Jean Le Boudec and Patrick Thiran, "Network Calculus A Theory of Deterministic Queueing Systems for the Internet", Springer Veriag, 2001.
- 3. Zhang Wang, "Internet QoS", Morgan Kaufman, 2001.
- 4. Anurag Kumar, D. Manjunath and Joy Kuri, "Communication Networking: An Analytical Approach", Morgan Kaufman Publishers, 2004.
- 5. George Kesidis, "ATM Network Performance", Kluwer Academic, Research Papers, 2005.

| MTEC-107 |                      | Pattern Recognition and Machine Learning                                                                |             |                     |                   |       |        |  |  |  |  |  |
|----------|----------------------|---------------------------------------------------------------------------------------------------------|-------------|---------------------|-------------------|-------|--------|--|--|--|--|--|
| Lecture  | Tutorial             | Practical                                                                                               | Credit      | Major Test          | Minor Test        | Total | Time   |  |  |  |  |  |
| 3        | 0                    | 0                                                                                                       | 3           | 60                  | 40                | 100   | 3 Hrs. |  |  |  |  |  |
|          | Course Outcomes (CO) |                                                                                                         |             |                     |                   |       |        |  |  |  |  |  |
| C01      |                      | udy the parametric and linear models for classification Design neural network and SVM for assification. |             |                     |                   |       |        |  |  |  |  |  |
| CO2      | Develop m            | achine inde                                                                                             | pendent ar  | nd unsupervised lea | rning techniques. |       |        |  |  |  |  |  |
| CO3      | Understan            | rstand programming algorithms                                                                           |             |                     |                   |       |        |  |  |  |  |  |
| CO4      | Understan            | d machine le                                                                                            | earning and | d clustering        |                   |       |        |  |  |  |  |  |

**Introduction to Pattern Recognition**: Problems, applications, design cycle, learning andadaptation, examples, Probability Distributions, Parametric Learning - Maximum likelihood and Bayesian Decision Theory- Bayes rule, discriminant functions, loss functions and Bayesian error analysis **Linear models**: Linear Models for Regression, linear regression, logistic regression LinearModels for Classification

### Unit 2

**Neural Network**: perceptron, multi-layer perceptron, backpropagation algorithm, error surfaces, practical techniques for improving backpropagation, additional networks and training methods, Adaboost, Deep Learning

#### Unit 3

Linear discriminant functions - decision surfaces, two-category, multi-category, minimum-squared error procedures, the Ho-Kashyap procedures, linear programming algorithms, Support vector machine

### Unit 4

Algorithm independent machine learning – lack of inherent superiority of any classifier, biasand variance, resampling for classifier design, combining classifiers Unsupervised learning and clustering – k-means clustering, fuzzy k-means clustering, hierar chical clustering

- 1) Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification", 2nd Edition John Wiley & Sons, 2001.
- 2) Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.

| MTEC-109 |                      |                                                                                                 | Statist    | ical Information Pro                                    | cessing                |               |           |  |  |  |  |
|----------|----------------------|-------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------|------------------------|---------------|-----------|--|--|--|--|
| Lecture  | Tutorial             | Practical                                                                                       | Credit     | Major Test                                              | Minor Test             | Total         | Time      |  |  |  |  |
| 3        | 0                    | 0                                                                                               | 3          | 60                                                      | 40                     | 100           | 3 Hrs.    |  |  |  |  |
|          | Course Outcomes (CO) |                                                                                                 |            |                                                         |                        |               |           |  |  |  |  |
| C01      | Characteri           | Characterize and apply probabilistic techniques in modern decision systems, such as information |            |                                                         |                        |               |           |  |  |  |  |
|          | systems, r           | systems, receivers, filtering and statistical operations.                                       |            |                                                         |                        |               |           |  |  |  |  |
| CO2      | Demonstra            | ate mathema                                                                                     | tical mode | elling and problem sol                                  | ving using such mode   | els.          |           |  |  |  |  |
| CO3      |                      | vely evolve<br>ations syste                                                                     | ,          | s developed in this co                                  | ourse for applications | to signal pro | ocessing, |  |  |  |  |
| CO4      | analysis o           |                                                                                                 | stems inv  | robabilistic and stoch<br>olving functionalities<br>on. |                        |               |           |  |  |  |  |

Review of random variables: Probability Concepts, distribution and density functions, moments, independent, uncorrelated and orthogonal random variables; Vector-space representation of Random variables, Vector quantization, Tchebaychef inequality theorem, Central Limit theorem, Discrete &Continuous Random Variables. Random process: Expectations, Moments, Ergodicity, Discrete-Time Random Processes Stationary process, autocorrelation and auto covariance functions, Spectral representation of random signals, Properties of power spectral density, Gaussian Process and White noise process.

### Unit 2

Random signal modelling: MA(q), AR(p), ARMA(p,q) models, Hidden Markov Model &its applications ,Linear System with random input , Forward and Backward Predictions, Levinson Durbin Algorithm.Statistical Decision Theory: Bayes' Criterion, Binary Hypothesis Testing, M-aryHypothesis Testing, Minimax Criterion, Neyman-Pearson Criterion, Composite Hypothesis Testing.Parameter Estimation Theory: Maximum Likelihood Estimation, Generalized Likelihood Ratio Test ,Some Criteria for Good Estimators, Bayes' Estimation Minimum Mean-Square Error Estimate, Minimum, Mean Absolute Value of Error Estimate Maximum A Posteriori Estimate , Multiple Parameter Estimation Best Linear Unbiased Estimator ,Least-Square Estimation Recursive Least-Square Estimator.

### Unit 3

Spectral analysis: Estimated autocorrelation function, Periodogram, Averaging theperiodogram (Bartlett Method), Welch modification, Parametric method, AR(p) spectral estimation and detection of Harmonic signals.

Information Theory and Source Coding: Introduction, Uncertainty, Information and Entropy, Source coding theorem, Huffman, ShanonFano, Arithmetic, Adaptive coding, RLE, LZW Data compaction, , LZ-77, LZ-78. Discrete Memory less channels, Mutual information, channel capacity, Channel coding theorem, Differential entropy and mutual information for continuous ensembles.

### Unit 4

Application of Information Theory: Group, Ring & Field, Vector, GF addition,multiplication rules. Introduction to BCH codes, Primitive elements ,Minimal polynomials, Generator polynomials in terms of Minimal polynomials, Some examples of BCH codes,& Decoder, Reed- Solomon codes & Decoder, Implementation of Reed Solomon encoders and decoders.

- 1) Papoulis and S.U. Pillai, "Probability, Random Variables and Stochastic Processes",4th Edition, McGraw-Hill, 2002.
- 2) D.G. Manolakis, V.K. Ingle and S.M. Kogon, "Statistical and Adaptive Signal Processing", McGraw Hill, 2000.
- 3) MouradBarkat, "Signal Detection and Estimation", Artech House, 2nd Edition, 2005.
- 4) R G. Gallager, "Information theory and reliable communication", Wiley, 1<sup>st</sup> edition, 1968. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes", New
- 5) York, North-Holland, 1977.

| MTEC-111 |                      |                                                                                                      |              | Cognitive Radio         |                      |               |             |  |  |  |  |
|----------|----------------------|------------------------------------------------------------------------------------------------------|--------------|-------------------------|----------------------|---------------|-------------|--|--|--|--|
| Lecture  | Tutorial             | Practical                                                                                            | Credit       | Major Test              | Minor Test           | Total         | Time        |  |  |  |  |
| 3        | 0                    | 0                                                                                                    | 3            | 60                      | 40                   | 100           | 3 Hrs.      |  |  |  |  |
|          | Course Outcomes (CO) |                                                                                                      |              |                         |                      |               |             |  |  |  |  |
| C01      | Understan            | Understand the fundamental concepts of cognitive radio networks.                                     |              |                         |                      |               |             |  |  |  |  |
| CO2      | Develop th           | Develop the cognitive radio, as well as techniques for spectrum holes detection that cognitive radio |              |                         |                      |               |             |  |  |  |  |
|          | takes adva           | antages in ol                                                                                        | der to exp   | loit it.                |                      |               |             |  |  |  |  |
| CO3      | Understan            | d technolog                                                                                          | ies to allov | v an efficient use of T | VWS for radio comm   | unications ba | ased on two |  |  |  |  |
|          | spectrum s           | sharing busi                                                                                         | ness mode    | els/policies.           |                      |               |             |  |  |  |  |
| CO4      | Understan            | Inderstand fundamental issues regarding dynamic spectrum access, the radio-resource                  |              |                         |                      |               |             |  |  |  |  |
|          | managem              | ent and trad                                                                                         | ling, as w   | ell as a number of o    | ptimisation techniqu | es for bette  | r           |  |  |  |  |
|          | spectrum             | exploitation.                                                                                        | -            |                         | · ·                  |               |             |  |  |  |  |

Introduction to Cognitive Radios: Digital dividend, cognitive radio (CR) architecture, functions of cognitive radio, dynamic spectrum access (DSA), components of cognitive radio, spectrum sensing, spectrum analysis and decision, potential applications of cognitive radio.

# Unit 2

Spectrum Sensing: Spectrum sensing, detection of spectrum holes (TVWS), collaborativesensing, geo-location database and spectrum sharing business models (spectrum of commons, real time secondary spectrum market).Optimization Techniques of Dynamic Spectrum Allocation: Linear programming, convexprogramming, non-linear programming, integer programming, dynamic programming, stochastic programming.

# Unit 3

Dynamic Spectrum Access and Management: Spectrum broker, cognitive radioarchitectures, centralized dynamic spectrum access, distributed dynamic spectrum access, learning algorithms and protocols.

# Unit 4

Spectrum Trading: Introduction to spectrum trading, classification to spectrum trading,radio resource pricing, brief discussion on economics theories in DSA (utility, auction theory), classification of auctions (single auctions, double auctions, concurrent, sequential).Research Challenges in Cognitive Radio: Network layer and transport layer issues, cross-layer design for cognitive radio networks.

- 1) EkramHossain, DusitNiyato, Zhu Han, "Dynamic Spectrum Access and Management in Cognitive Radio Networks", Cambridge University Press, 2009.
- 2) Kwang-Cheng Chen, Ramjee Prasad, "Cognitive radio networks", John Wiley & Sons Ltd., 2009.
- 3) Bruce Fette, "Cognitive radio technology", Elsevier, 2<sup>nd</sup> edition, 2009.
- 4) HuseyinArslan, "Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems", Springer, 2007.
- 5) Francisco Rodrigo Porto Cavalcanti, SorenAndersson, "Optimizing Wireless Communication Systems" Springer, 2009.
- 6) Linda Doyle, "Essentials of Cognitive Radio", Cambridge University Press, 2009.

| MTEC-113 |                      |                                                                                                                       | Wi        | reless Sensor Netwo  | orks                                                                     |              |              |  |  |  |  |
|----------|----------------------|-----------------------------------------------------------------------------------------------------------------------|-----------|----------------------|--------------------------------------------------------------------------|--------------|--------------|--|--|--|--|
| Lecture  | Tutorial             | Practical                                                                                                             | Credit    | Major Test           | Minor Test                                                               | Total        | Time         |  |  |  |  |
| 3        | 0                    | 0                                                                                                                     | 3         | 60                   | 40                                                                       | 100          | 3 Hrs.       |  |  |  |  |
|          | Course Outcomes (CO) |                                                                                                                       |           |                      |                                                                          |              |              |  |  |  |  |
| C01      | Design wir           | sign wireless sensor network system for different applications under consideration.                                   |           |                      |                                                                          |              |              |  |  |  |  |
| CO2      |                      | nderstand the hardware details of different types of sensors and select right type of sensor for arious applications. |           |                      |                                                                          |              |              |  |  |  |  |
| CO3      |                      | d radio star<br>tems and ap                                                                                           |           | l communication prot | tocols to be used for                                                    | wireless sen | nsor network |  |  |  |  |
| CO4      | performan            | ce of wirele                                                                                                          | ss sensor | networks systems a   | ges for wireless ser<br>ind platforms and abl<br>ition and security chal | e to handle  |              |  |  |  |  |

Introduction and overview of sensor network architecture and its applications, sensornetwork comparison with Ad Hoc Networks, Sensor node architecture with hardware and software details.Hardware: Examples like mica2, micaZ, telosB, cricket, Imote2, tmote, btnode, and Sun

SPOT, Software (Operating Systems): tinyOS, MANTIS, Contiki, and RetOS.

## Unit 2

Programming tools: C, nesC. Performance comparison of wireless sensor networkssimulation and experimental platforms like open source (ns-2) and commercial (QualNet, Opnet)

### Unit 3

Overview of sensor network protocols (details of atleast 2 important protocol per layer): Physical, MAC and routing/ Network layer protocols, node discovery protocols, multi-hop and cluster based protocols, Fundamentals of 802.15.4, Bluetooth, BLE (Bluetooth low energy), UWB.

### Unit 4

Data dissemination and processing; differences compared with other database managementsystems, data storage; query processing.Specialized features: Energy preservation and efficiency; security challenges; fault-tolerance, Issues related to Localization, connectivity and topology, Sensor deployment mechanisms; coverage issues; sensor Web; sensor Grid, Open issues for future research, and Enabling technologies in wireless sensor network.

- 1) H. Karl and A. Willig, "Protocols and Architectures for Wireless Sensor Networks", John Wiley & Sons, India, 2012.
- 2) C. S. Raghavendra, K. M. Sivalingam, and T. Znati, Editors, "Wireless Sensor Networks", Springer Verlag, 1<sup>st</sup> Indian reprint, 2010.
- 3) F. Zhao and L. Guibas, "Wireless Sensor Networks: An Information Processing Approach", Morgan Kaufmann, 1<sup>st</sup> Indian reprint, 2013.
- 4) YingshuLi, MyT. Thai, Weili Wu, "Wireless sensor Network and Applications", Springer series on signals and communication technology, 2008.

| MTEC-115 |                          | High Performance Networks                                                                                   |             |                      |                                              |       |      |  |  |  |  |  |
|----------|--------------------------|-------------------------------------------------------------------------------------------------------------|-------------|----------------------|----------------------------------------------|-------|------|--|--|--|--|--|
| Lecture  | Tutorial                 | Practical                                                                                                   | Credit      | Major Test           | Minor Test                                   | Total | Time |  |  |  |  |  |
| 3        | 0                        | 0                                                                                                           | 100         | 3 Hrs.               |                                              |       |      |  |  |  |  |  |
|          |                          |                                                                                                             | Course O    | utcomes (CO)         |                                              |       |      |  |  |  |  |  |
| C01      | Apply know<br>protocols. | Apply knowledge of mathematics, probability, and statistics to model and analyze some networking protocols. |             |                      |                                              |       |      |  |  |  |  |  |
| CO2      | Design, im               | plement, an                                                                                                 | d analyze   | computer networks.   |                                              |       |      |  |  |  |  |  |
| CO3      | ldentify, fo             | rmulate, and                                                                                                | l solve net | work engineering pro | oblems.                                      |       |      |  |  |  |  |  |
| CO4      |                          |                                                                                                             |             |                      | formance computer i<br>ssary for engineering |       | ć    |  |  |  |  |  |

Types of Networks, Network design issues, Data in support of network design. Networkdesign tools, protocols and architecture. Streaming stored Audio and Video, Best effort service, protocols for real time interactive applications, Beyond best effort, scheduling and policing mechanism, integrated services, and RSVP-differentiated services.

### Unit 2

VoIP system architecture, protocol hierarchy, Structure of a voice endpoint, Protocols for the transport of voice media over IP networks.Providing IP quality of service for voice, signaling protocols for VoIP, PSTN gateways, VoIP applications.VPN-Remote-Access VPN, site-to-site VPN, Tunneling to PPP, Security in VPN. MPLS-operation, Routing, Tunneling and use of FEC, Traffic Engineering, MPLS based VPN, overlay networks-P2P connections.

## Unit 3

Traffic Modeling: Little's theorem, Need for modeling, Poisson modeling, Non-poissonmodels, Network performance evaluation.Network Security and Management: Principles of cryptography, Authentication, integrity,key distribution and certification, Access control and fire walls, attacks and counter measures, security in many layers.

## Unit 4

Infrastructure for network management, The internet standard management framework –SMI, MIB, SNMP, Security and administration, ASN.1.

- 1) Kershenbaum A., "Telecommunications Network Design Algorithms", Tata McGraw Hill, 1993.
- 2) Larry Peterson & Bruce David, "Computer Networks: A System Approach", Morgan Kaufmann, 2003.
- 3) Douskalis B., "IP Telephony: The Integration of Robust VoIP Services", Pearson Ed. Asia, 2000.
- 4) Warland J., Varaiya P., "High-Performance Communication Networks", Morgan Kaufmann, 1996.
- 5) Stallings W., "High-Speed Networks: TCP/IP and ATM Design Principles", Prentice Hall, 1998.
- 6) Leon Garcia, Widjaja, "Communication networks", TMH 7<sup>th</sup>reprint 2002.
- 7) William Stalling, "Network security, essentials", Pearson education Asia publication, 4<sup>th</sup> Edition, 2011.

| MTEC-117             |                       | RF and Microwave Circuit Design (Lab.)                                                         |        |            |            |       |      |  |  |  |  |
|----------------------|-----------------------|------------------------------------------------------------------------------------------------|--------|------------|------------|-------|------|--|--|--|--|
| Lecture              | Tutorial              | Practical                                                                                      | Credit | Major Test | Minor Test | Total | Time |  |  |  |  |
| 0                    | 0                     | 4 2 60 40 100 3 Hrs.                                                                           |        |            |            |       |      |  |  |  |  |
| Course Outcomes (CO) |                       |                                                                                                |        |            |            |       |      |  |  |  |  |
| C01                  | Learn to ι<br>design. | earn to use HFSS (High Frequency Structural Simulator) to simulate, verify, and optimize their |        |            |            |       |      |  |  |  |  |
| CO2                  |                       | rn to fabricate RF and Microwave circuits and then measure, and evaluate their prototype of    |        |            |            |       |      |  |  |  |  |
|                      | Network A             | nalyzer.                                                                                       |        |            |            |       |      |  |  |  |  |

## List of Experiments:

- **1.** To learn through demonstration the Radio-Frequency Characteristics of Components.
- 2. To Design, Characterize, fabricate and test the Microstrip Line.
- 3. To Design, Characterize, fabricate and test Wilkinson Power Divider.
- 4. To Design, Characterize, fabricate and test Hybrid Network.
- 5. To Design, Characterize, fabricate and test Phase Shifter.
- 6. To Design, Characterize, fabricate and test Microwave Filters.
- 7. To Design and Characterize Coaxial Cavity Resonator.
- 8. To study Impedance Matching and Tuning Techniques for microwave circuits.
- 9. To design and characterize Directional Coupler.
- **10.** To study Characteristics of Gunn Diode.

| MTEC-119 | Wireless & Mobile Communications(Lab.)                                                  |                                                         |             |                     |                      |  |  |  |  |  |  |  |  |
|----------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|---------------------|----------------------|--|--|--|--|--|--|--|--|
| Lecture  | Tutorial                                                                                | orial Practical Credit Major Test Minor Test Total Time |             |                     |                      |  |  |  |  |  |  |  |  |
| 0        | 0                                                                                       | 4 2 60 40 100 3 Hrs.                                    |             |                     |                      |  |  |  |  |  |  |  |  |
|          |                                                                                         |                                                         | Course O    | utcomes (CO)        |                      |  |  |  |  |  |  |  |  |
| C01      | Understan                                                                               | ding Cellular                                           | concepts,   | GSM and CDMA ne     | etworks              |  |  |  |  |  |  |  |  |
| CO2      | To study G                                                                              | SM handset                                              | t by experi | mentation and fault | insertion techniques |  |  |  |  |  |  |  |  |
| CO3      | CO3 Understating of 3G communication system by means of various AT commands usage inGSM |                                                         |             |                     |                      |  |  |  |  |  |  |  |  |
| CO4      | Understan                                                                               | ding CDMA                                               | concept us  | sing DSSS kit       |                      |  |  |  |  |  |  |  |  |

## List of Experiments:

- 1. Introduction to LabVIEW/MATLAB/SciLab with its basic functions and study of modulation toolkit.
- 2. Learn how to Perform Basic Arithmetic and Boolean operations, Maximum and Minimum of an Array, Flat and Stacked sequence, Bundle and Unbundle cluster.
- 3. Design and verify the MSK modulator.
- 4. Design and verify the MSK demodulator
- 5. Design and verify the FSK modulator.
- 6. Design and verify the FSK demodulator.
- 7. Design and verify the BPSK modulator.
- 8. Design and verify the BPSK demodulator.
- 9. Design and verify the QPSK modulator.
- 10. Design and verify the QPSK demodulator
- 11. Design and verify the QAM modulator.
- 12. Design and verify the QAM demodulator.

| MTRM-111       |                      |                                                                                                              | Resea        | rch Methodolo     | gy and IPR                     |            |         |  |  |  |
|----------------|----------------------|--------------------------------------------------------------------------------------------------------------|--------------|-------------------|--------------------------------|------------|---------|--|--|--|
| Lecture        | Tutorial             | Practical                                                                                                    | Credit       | Major Test        | Minor Test                     | Total      | Time    |  |  |  |
| 2              | 0                    | 0                                                                                                            | 2            | 60                | 40                             | 100        | 3 Hrs.  |  |  |  |
| Program        | To enable            | o enable students to Research Methodology and IPR for further research work and investment                   |              |                   |                                |            |         |  |  |  |
| Objective (PO) | in R & D, v          | <i>R</i> & <i>D</i> , which leads to creation of new and better products, and in turn brings about, economic |              |                   |                                |            |         |  |  |  |
|                | growth and           | rowth and social benefits.                                                                                   |              |                   |                                |            |         |  |  |  |
|                | Course Outcomes (CO) |                                                                                                              |              |                   |                                |            |         |  |  |  |
| C01            | Understan            | erstand research problem formulation.                                                                        |              |                   |                                |            |         |  |  |  |
| CO2            | Analyze re           | search relate                                                                                                | ed informa   | tion              |                                |            |         |  |  |  |
| CO3            | Understan            | d that today'                                                                                                | s world is o | controlled by Co  | omputer, Information Technol   | ogy, but t | omorrow |  |  |  |
|                | world will b         | be ruled by ic                                                                                               | leas, conc   | ept, and creativ  | ity.                           |            |         |  |  |  |
|                |                      |                                                                                                              |              |                   | nportant place in growth of in |            |         |  |  |  |
|                | & nation, it         | is needless                                                                                                  | to emphas    | sis the need of i | nformation about Intellectual  | Property   |         |  |  |  |
|                | Right to be          | promoted a                                                                                                   | mong stud    | lents in general  | & engineering in particular.   |            |         |  |  |  |

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

### Unit 2

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

# Unit 3

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

# Unit 4

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology.Patent information and databases.Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc.Traditional knowledge Case Studies, IPR and IITs.

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'.
- 2. C.R. Kothari, "Research Methodology: Methods & Techniques, 2<sup>nd</sup> edition or above, New Age Publishers.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 ndEdition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel , "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

| MTEC-102 |                      |                                                                                         | Antenr        | nas and Radiating Sy    | /stems               |              |                |  |  |  |  |
|----------|----------------------|-----------------------------------------------------------------------------------------|---------------|-------------------------|----------------------|--------------|----------------|--|--|--|--|
| Lecture  | Tutorial             | Practical                                                                               | Credit        | Major Test              | Minor Test           | Total        | Time           |  |  |  |  |
| 3        | 0                    | 0 3 60 40 100 3 Hrs                                                                     |               |                         |                      |              |                |  |  |  |  |
|          | Course Outcomes (CO) |                                                                                         |               |                         |                      |              |                |  |  |  |  |
| C01      |                      | he far field o<br>antenna par                                                           |               | diation pattern and ga  | in of an antenna for | given curren | t distribution |  |  |  |  |
| CO2      | Design an            | d analyze lin                                                                           | ear wire ar   | nd linear array antenn  | as.                  |              |                |  |  |  |  |
| CO3      | Design an            | sign antennas and antenna arrays for various desired radiation pattern characteristics. |               |                         |                      |              |                |  |  |  |  |
| CO4      | Able to de:          | sign and ana                                                                            | alyze differe | ent types of Microstrip | antenna.             |              |                |  |  |  |  |

Types of Antennas: Wire antennas, Aperture antennas, Micro strip antennas, Arrayantennas Reflector antennas, Lens antennas, Radiation Mechanism, Current distribution on thin wire antenna.

Fundamental Parameters of Antennas: Radiation Pattern, Radiation Power Density, Radiation Intensity, Directivity, Gain, Antenna efficiency, Beam efficiency, Bandwidth, Polarization, Input Impedance, radiation efficiency, Antenna Vector effective length, Friis Transmission equation, Antenna Temperature.

### Unit 2

Linear Wire Antennas: Infinitesimal dipole, Small dipole, Region separation, Finite lengthdipole, half wave dipole, Ground effects.Loop Antennas: Small Circular loop, Circular Loop of constant current, Circular loop with nonuniform current.LinearArrays: Two element array, N Element array: Uniform Amplitude and spacing,Broadside and End fire array, Super directivity, Planar array, Design consideration.

### Unit 3

Aperture Antennas: Huygen's Field Equivalence principle, radiation equations, Rectangular Aperture, Circular Aperture. Horn Antennas: E-Plane, H-plane Sectoral horns, Pyramidal and Conical horns. Reflector Antennas: Plane reflector, parabolic reflector, Cassegrain reflectors, Introduction MIMO.

### Unit 4

Micro strip Antennas: Basic Characteristics, Feeding mechanisms, Method of analysis, Rectangular Patch, Circular Patch.

- 1) Constantine A. Balanis, "Antenna Theory Analysis and Design", John Wiley & Sons, 4th edition, 2016.
- 2) John D Kraus, Ronald J Marhefka, Ahmad S Khan, "Antennas for All Applications", Tata McGraw-Hill, 2002.
- R.C.Johnson and H.Jasik, "Antenna Engineering hand book", Mc-Graw Hill, 1984. I.J.Bhal and P.Bhartia, "Micro-strip antennas", Artech house, 1980.

| MTEC-104 |                      | Advanced Digital Signal Processing                                 |              |                       |                        |              |  |  |  |  |  |  |
|----------|----------------------|--------------------------------------------------------------------|--------------|-----------------------|------------------------|--------------|--|--|--|--|--|--|
| Lecture  | Tutorial             | torial Practical Credit Major Test Minor Test Total Time           |              |                       |                        |              |  |  |  |  |  |  |
| 3        | 0                    | 0 3 60 40 100 3 Hrs.                                               |              |                       |                        |              |  |  |  |  |  |  |
|          | Course Outcomes (CO) |                                                                    |              |                       |                        |              |  |  |  |  |  |  |
| CO1      | To unders            | tand theory                                                        | of different | filters and algorithm | IS                     |              |  |  |  |  |  |  |
| CO2      | To unders            | tand theory                                                        | of multirate | DSP, solve numeri     | cal problems and write | e algorithms |  |  |  |  |  |  |
| CO3      | To unders            | o understand theory of prediction and solution of normal equations |              |                       |                        |              |  |  |  |  |  |  |
| CO4      | To know a            | pplications of                                                     | of DSP at b  | lock level.           | •                      |              |  |  |  |  |  |  |

## Unit-1

**Review of Filter concepts**- Review of design techniques and structures for FIR and IIR filters, representation of numbers, quantization of filter coefficients, round-off effects in digital filters.

### Unit-2

**Multirate Digital Signal Processing:** Introduction, Decimation by a factor D, Interpolation by a factor I, sampling rate conversion by rational factor I/D, implementation of sampling rate conversion, multistage implementation of sampling rate conversion, sampling rate conversion of band pass signals, sampling rate conversion by an arbitrary factor, application of Multirate signal processing, digital filter bank, two-channel quadrature-mirror filter bank, M-channel QMF bank.

## Unit-3

**Wavelet Transform:** Introduction to wavelet transform- Short Time Fourier Transform (STFT), Wavelet transform, Haar wavelet and Multirate resolution analysis, Daubechies wavelet, some other standard wavelets, applications of wavelet transform.

### Unit-4

**Power Spectrum Estimation:** Estimation of spectra from finite-duration observation of signals, non-parametric methods for power spectrum estimation, parametric methods for power spectrum estimation, filter bank methods, Eigen analysis algorithms for spectrum estimation.

# Text Books:

- 1. Digital Signal Processing : Principles, Algorithms, and Applications, 4/e, Authors : John G. ProakisDimitris G Manolakis Imprint : Pearson Education
- 2. Digital Signal Processing, Authors, Oppenheim, Alan V, Schafer, Ronald W., PHI

# Reference Books:

- 1. Advanced Digital Signal Processing, Authors: Dr. Shaila D. Apte, Imprint: Wiley
- 2. Digital Signal Processing, 3/e, Authors: S.K.Mitra, Imprint : McGraw Hill
- 3. Digital Signal Processing and Applications with the TMS 320C6713 and TMS 320C6416 DSK, 2/e,Authors: RulphChassaing,DonaldReay, Imprint : Wiley
- 4. Digital Signal Processing, Authors: Tarun Kumar Rawat, Imprint: Oxford
- 5. Digital Signal Processing, Spectral Computation and Filter Design, Authors:CHI-Tsong Chen, Indian Edition, Imprint: Oxford
- 6. Theory and Applications of Digital Signal Processing, Authors: Lawrence R. Rabiner, Bernard Gold, Imprint: Prentice- Hall
- 7. Digital Signal Processing, Authors: Thomas J. Cavicchi, Imprint: Wiley
- 8. Modern Digital Signal Processing, Authors: V.Udayshankar, Imprint: PHI
- 9. Digital Signal Processing using MAT and Wavelets,2/e,Authors:MichaelWeeks,Imprint: Jones & Bartlett Publishers.

| MTEC-106 |                        | Satellite Communication                                                                                    |             |                        |                        |                |       |  |  |  |  |  |
|----------|------------------------|------------------------------------------------------------------------------------------------------------|-------------|------------------------|------------------------|----------------|-------|--|--|--|--|--|
| Lecture  | Tutorial               | orial Practical Credit Major Test Minor Test Total Time                                                    |             |                        |                        |                |       |  |  |  |  |  |
| 3        | 0                      | 0 0 3 60 40 100                                                                                            |             |                        |                        |                |       |  |  |  |  |  |
|          | Course Outcomes (CO)   |                                                                                                            |             |                        |                        |                |       |  |  |  |  |  |
| C01      | Visualize t<br>system. | Visualize the architecture of satellite systems as a means of high speed, high range communication system. |             |                        |                        |                |       |  |  |  |  |  |
| CO2      | State vario            | us aspects i                                                                                               | elated to s | satellite systems suc  | ch as orbital equation | S,             |       |  |  |  |  |  |
| CO3      | Understan              | d sub-syster                                                                                               | ns in a sat | ellite, link budget, m | nodulation and multip  | le access sche | emes. |  |  |  |  |  |
| CO4      |                        | nerical probl<br>meters and                                                                                |             |                        | and design of link     | budget for th  | e     |  |  |  |  |  |

Architecture of Satellite Communication System: Principles and architecture of satelliteCommunication, Brief history of Satellite systems, advantages, disadvantages, applications, and frequency bands used for satellite communication and their advantages/drawbacks.

## Unit 2

Orbital Analysis: Orbital equations, Kepler's laws of planetary motion, Apogee and Perigee for an elliptical orbit, evaluation of velocity, orbital period, angular velocity etc of a satellite, concepts of Solar day and Sidereal day.

### Unit 3

Satellite sub-systems: Architecture and Roles of various sub-systems of a satellite systemsuch as Telemetry, tracking, command and monitoring (TTC & M), Attitude and orbit control system (AOCS), Communication sub-system, power sub-systems, antenna sub-system.Typical Phenomena in Satellite Communication: Solar Eclipse on satellite, its effects, remedies for Eclipse, Sun Transit Outage phenomena, its effects and remedies, Doppler frequency shift phenomena and expression for Doppler shift.

# Unit 4

Satellite link budget: Flux density and received signal power equations, Calculation ofSystem noise temperature for satellite receiver, noise power calculation, Drafting of satellite link budget and C/N ratio calculations in clear air and rainy conditions, Case study of Personal Communication system (satellite telephony) using LEO.Modulation and Multiple Access Schemes used in satellite communication.Typicalcasestudies of VSAT, DBS-TV satellites and few recent communication satellites launched by NASA/ ISRO. GPS.

- 1. S. K. Raman, "Fundamentals of Satellite Communication", PearsonEducation India, 2011. Tri T. Ha, "Digital Satellite Communications", Tata McGraw Hill, 2009.
- 2. Dennis Roddy, "Satellite Communication", McGraw Hill, 4th Edition, 2008.

| MTEC-108 |                      |                                                                                                                                                               |             | Internet of Things |    |     |        |  |  |  |  |  |  |
|----------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|----|-----|--------|--|--|--|--|--|--|
| Lecture  | Tutorial             | Tutorial         Practical         Credit         Major Test         Minor Test         Total         Time                                                    |             |                    |    |     |        |  |  |  |  |  |  |
| 3        | 0                    | 0                                                                                                                                                             | 3           | 60                 | 40 | 100 | 3 Hrs. |  |  |  |  |  |  |
|          | Course Outcomes (CO) |                                                                                                                                                               |             |                    |    |     |        |  |  |  |  |  |  |
| C01      | Understan            | Inderstand what IoT technologies are used for today, and what is required in certain scenarios.                                                               |             |                    |    |     |        |  |  |  |  |  |  |
| CO2      |                      | Understand the types of technologies that are available and in use today and can be utilized to implement IoT solutions.                                      |             |                    |    |     |        |  |  |  |  |  |  |
| CO3      |                      | Apply these technologies to tackle scenarios in teams of using an experimental platform for implementing prototypes and testing them as running applications. |             |                    |    |     |        |  |  |  |  |  |  |
| CO4      | Understan            | d operating :                                                                                                                                                 | system requ | irements of IOT.   |    |     |        |  |  |  |  |  |  |

Smart cities and IoT revolution, Fractal cities, From IT to IoT, M2M and peer networkingconcepts, Ipv4 and IPV6.Software Defined Networks SDN, From Cloud to Fog and MIST networking for IoTcommunications, Principles of Edge/P2P networking, Protocols to support IoT communications, modular design and abstraction, security and privacy in fog.

### Unit 2

Wireless sensor networks: introduction, IOT networks (PAN, LAN and WAN), Edgeresource pooling and caching, client side control and configuration.

## Unit 3

Smart objects as building blocks for IoT, Open source hardware and Embedded systemsplatforms for IoT, Edge/gateway, IO drivers, C Programming, multithreading concepts.

### Unit 4

Operating systems requirement of IoT environment, study of mbed, RIoT, andContikioperating systems, Introductory concepts of big data for IoTapplications.Applications of IoT, Connected cars IoT Transportation, Smart Grid and Healthcare sectorsusingIoT, Security and legal considerations, IT Act 2000 and scope for IoT legislation.

### References:

- 1) A Bahaga, V. Madisetti, "Internet of Things- Hands on approach", VPT publisher, 2014. A. McEwen, H. Cassimally, "Designing the Internet of Things", Wiley, 2013.
- 2) CunoPfister, "Getting started with Internet of Things", Maker Media, 1<sup>st</sup> edition, 2011. Samuel Greenguard, "Internet of things", MIT Press, 2015.

### Web resources:

- 1) http://www.datamation.com/open-source/35-open-source-tools-for-the-internet-of-things-1.html
- 2) https://developer.mbed.org/handbook/AnalogIn
- 3) http://www.libelium.com/50\_sensor\_applications
- 4) M2MLabs Mainspring http://www.m2mlabs.com/framework Node-RED http://nodered.org/

| MTEC-110 |                                                     | Voice and Data Networks                                    |             |                        |  |  |  |  |  |  |  |  |  |
|----------|-----------------------------------------------------|------------------------------------------------------------|-------------|------------------------|--|--|--|--|--|--|--|--|--|
| Lecture  | Tutorial                                            | Tutorial Practical Credit Major Test Minor Test Total Time |             |                        |  |  |  |  |  |  |  |  |  |
| 3        | 0                                                   | 0 0 3 60 40 100 3 Hrs.                                     |             |                        |  |  |  |  |  |  |  |  |  |
|          | Course Outcomes (CO)                                |                                                            |             |                        |  |  |  |  |  |  |  |  |  |
| C01      | Protocol, a                                         | algorithms, tr                                             | ade-offs ra | itionale.              |  |  |  |  |  |  |  |  |  |
| CO2      | Routing, tr                                         | ansport, DN                                                | S resolutio | ns                     |  |  |  |  |  |  |  |  |  |
| CO3      | CO3 Understand different Queuing models of Networks |                                                            |             |                        |  |  |  |  |  |  |  |  |  |
| CO4      | Network e                                           | xtensions an                                               | d next gen  | eration architectures. |  |  |  |  |  |  |  |  |  |

Network Design Issues, Network Performance Issues, Network Terminology, centralized and distributed approaches for networks design, Issues in design of voice and data networks.Layered and Layer less Communication, Cross layer design of Networks, Voice Networks(wired and wireless) and Switching, Circuit Switching and Packet Switching, Statistical Multiplexing.

### Unit 2

Data Networks and their Design, Link layer design- Link adaptation, Link LayerProtocols, Retransmission.Mechanisms (ARQ), Hybrid ARQ (HARQ), Go Back N, Selective Repeat protocols and their analysis.

### Unit 3

Queuing Models of Networks, Traffic Models, Little's Theorem, Markov chains, M/M/1and other Markov systems, Multiple Access Protocols, Aloha System, Carrier Sensing, Examples of Local area networks.

#### Unit 4

Inter-networking, Bridging, Global Internet, IP protocol and addressing, Sub netting ,Classless Inter domain Routing (CIDR), IP address lookup, Routing in Internet. End to End Protocols, TCP and UDP. Congestion Control, Additive Increase/Multiplicative Decrease, Slow Start, Fast Retransmit/ Fast Recovery,Congestion avoidance, RED TCP Throughput Analysis, Quality of Service in PacketNetworks. Network Calculus, Packet Scheduling Algorithms.

- 1) D. Bertsekas and R. Gallager, "Data Networks", 2<sup>nd</sup> Edition, Prentice Hall, 1992.
- 2) L. Peterson and B. S. Davie, "Computer Networks: A Systems Approach",5<sup>th</sup> Edition, Morgan Kaufman, 2011.
- Kumar, D. Manjunath and J. Kuri, "Communication Networking: An analytical approach", 1<sup>st</sup> Edition, Morgan Kaufman, 2004.
- 4) Walrand, "Communications Network: A First Course", 2<sup>nd</sup> Edition, McGraw Hill, 2002.
- 5) Leonard Kleinrock, "Queueing Systems, Volume I: Theory", 1<sup>st</sup> Edition, John Wiley and Sons, 1975.
- 6) Aaron Kershenbaum, "Telecommunication Network Design Algorithms", McGraw Hill, 1993.
- 7) Vijay Ahuja, "Design and Analysis of Computer Communication Networks", McGraw Hill, 1987

| MTEC-112 |           | Optimization Techniques                                                                                    |              |                       |                                                               |   |  |  |  |  |  |  |  |  |  |
|----------|-----------|------------------------------------------------------------------------------------------------------------|--------------|-----------------------|---------------------------------------------------------------|---|--|--|--|--|--|--|--|--|--|
| Lecture  | Tutorial  | Futorial         Practical         Credit         Major Test         Minor Test         Total         Time |              |                       |                                                               |   |  |  |  |  |  |  |  |  |  |
| 3        | 0         | 0 0 3 60 40 100 3 Hrs.                                                                                     |              |                       |                                                               |   |  |  |  |  |  |  |  |  |  |
|          |           |                                                                                                            | Course Ou    | utcomes (CO)          |                                                               |   |  |  |  |  |  |  |  |  |  |
| C01      | Understan | nd importanc                                                                                               | e of optimiz | zation                |                                                               |   |  |  |  |  |  |  |  |  |  |
| CO2      | Apply bas | ic concepts (                                                                                              | of mathema   | atics to formulate an | optimization problem                                          | ו |  |  |  |  |  |  |  |  |  |
| CO3      |           |                                                                                                            |              |                       |                                                               |   |  |  |  |  |  |  |  |  |  |
| CO4      | Understan | d Genetic a                                                                                                | lgorithm an  | d particle swarm Op   | Understand Genetic algorithm and particle swarm Optimization. |   |  |  |  |  |  |  |  |  |  |

Introduction to Classical Methods & Linear Programming Problems Terminology, Design Variables, Constraints, Objective Function, Problem Formulation. Calculus method, Kuhn Tucker conditions, Method of Multipliers. Linear Programming Problem, Simplex method, Two-phase method, Big-M method, Duality, Integer linear Programming, Dynamic Programming, Sensitivity analysis.

## Unit 2

Single Variable Optimization Problems: Optimality Criterion, Bracketing Methods, Region Elimination Methods, Interval Halving Method, Fibonacci Search Method, Golden Section Method. Gradient Based Methods: Newton-Raphson Method, Bisection Method, Secant Method, Cubic search method.

## Unit 3

Multi Variable and Constrained Optimization Technique, Optimality criteria, Direct search Method, Simplex search methods, Hooke-Jeeve'spatternsearch method, Powell's conjugate direction method, Gradient based method, Cauchy's Steepest descent method, Newton's method, Conjugate gradient method. Kuhn - Tucker conditions, Penalty Function, Concept of Lagrangian multiplier, Complex search method, Random search method.

# Unit 4

Genetic Algorithm: Types of reproduction operators, crossover & mutation, Simulated Annealing Algorithm, Particle Swarm Optimization (PSO) – Example Problems

- 1) S. S. Rao, "Engineering Optimization: Theory and Practice", Wiley, 2008.
- 2) K. Deb, "Optimization for Engineering design algorithms and Examples", Prentice Hall, 2005.
- 3) Mohan, C. and Deep, K.: "Optimization Techniques", New Age India Pvt. Ltd., 2009
- 4) Belegundu, A. D. and Chandrupatla, T. R. "Optimization Concepts and Applicationsin Engineering", Pearson Education Pvt. Ltd., 2002
- 5) D. E. Goldberg, "Genetic algorithms in Search, Optimization, and Machine learning", Addison-Wesley Longman Publishing, 1989.

| MTEC-114 |                      |                                                                                                                                                                                                            |           | MIMO Systems         |                    |     |        |  |  |  |  |
|----------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|--------------------|-----|--------|--|--|--|--|
| Lecture  | Tutorial             | utorial Practical Credit Major Test Minor Test Total T                                                                                                                                                     |           |                      |                    |     |        |  |  |  |  |
| 3        | 0                    | 0                                                                                                                                                                                                          | 3         | 60                   | 40                 | 100 | 3 Hrs. |  |  |  |  |
|          | Course Outcomes (CO) |                                                                                                                                                                                                            |           |                      |                    |     |        |  |  |  |  |
| C01      | receivers,           | Understand channel modelling and propagation, MIMO Capacity, space-time coding, MIMO<br>receivers, MIMO for multi-carrier systems, multi-user communications, multi-user MIMO and<br>diversity techniques. |           |                      |                    |     |        |  |  |  |  |
| CO2      | Understan            | d equalising                                                                                                                                                                                               | MIMO sys  | stems and pre-distor | ion in MIMO system |     |        |  |  |  |  |
| CO3      |                      | Understand cooperative and coordinated multi-cell MIMO, introduction to MIMO in 4G (LTE, LTE Advanced, WiMAX).                                                                                             |           |                      |                    |     |        |  |  |  |  |
| CO4      | Perform M            | lathematical                                                                                                                                                                                               | modelling | and analysis of MIM  | O systems.         |     |        |  |  |  |  |

Introduction to Multi-antenna Systems, Motivation, Types of multi-antenna systems, MIMO vs. multi-antenna systems. Diversity, Exploiting multipath diversity, Transmit diversity, Space-time codes, TheAlamouti scheme, Delay diversity, Cyclic delay diversity, Space-frequency codes, Receive diversity, The rake receiver, Combining techniques, Spatial Multiplexing, Spectral efficiency and capacity, Transmitting independent streams in parallel, Mathematical notation.

## Unit 2

The generic MIMO problem, Singular Value Decomposition, Eigenvalues and eigenvectors, Equalising MIMO systems, Disadvantages of equalising MIMO systems, Pre-distortion in MIMO systems, Disadvantages of pre-distortion in MIMO systems, Pre-coding and combining in MIMO systems, Advantages of pre-coding and combining, Disadvantages of pre-coding and combining, Channel state information.

Codebooks for MIMO, Beamforming, Beamforming principles, Increasedspectrumefficiency, Interference cancellation, Switched beamformer, Adaptive beamformer, Narrowband beamformer, Wideband beamformer

### Unit 3

Case study: MIMO in LTE, Codewords to layers mapping, Pre-coding for spatialmultiplexing, Pre-coding for transmit diversity, Beamforming in LTE, Cyclic delay diversity based pre-coding, Pre-coding codebooks, Propagation Channels, Time & frequency channel dispersion, AWGN and multipath propagation channels, Delay spread values and time variations, Fast and slow fading environments, Complex baseband multipath channels, Narrowband and wideband channels, MIMO channel models

### Unit 4

Channel Estimation, Channel estimation techniques, Estimation and tracking, Trainingbased channel estimation, Blind channel estimation, Channel estimation architectures, Iterative channel estimation, MMSE channel estimation, Correlative channel sounding, Channel estimation in single carrier systems, Channel estimation for CDMA, Channel estimation for OFDM.

- 1) Claude Oestges, Bruno Clerckx, "MIMO Wireless Communications : From Real-world Propagation to Space-time Code Design", Academic Press, 1<sup>st</sup> edition, 2010.
- 2) MohinderJanakiraman, "Space Time Codes and MIMO Systems", Artech House Publishers, 2004.

| MTEC-116 |                                                            |             | Program     | nmable Networks | s - SDN, NFV                                 |       |        |  |  |  |  |
|----------|------------------------------------------------------------|-------------|-------------|-----------------|----------------------------------------------|-------|--------|--|--|--|--|
| Lecture  | Tutorial                                                   | Practical   | Credit      | Major Test      | Minor Test                                   | Total | Time   |  |  |  |  |
| 3        | 0                                                          | 0           | 3           | 60              | 40                                           | 100   | 3 Hrs. |  |  |  |  |
|          | Course Outcomes (CO)                                       |             |             |                 |                                              |       |        |  |  |  |  |
| C01      | CO1 Understand advanced concepts in Programmable Networks. |             |             |                 |                                              |       |        |  |  |  |  |
| CO2      |                                                            |             |             |                 | n emerging Internet<br>prithms, protocols an |       |        |  |  |  |  |
| CO3      | Understan                                                  | d Programn  | ning for SE | DNs.            |                                              |       |        |  |  |  |  |
| CO4      | Understan                                                  | d Network t | opologies.  |                 |                                              |       |        |  |  |  |  |

Introduction to Programmable Networks, History and Evolution of Software DefinedNetworking (SDN), Fundamental Characteristics of SDN, Separation of Control Plane and Data Plane, Active Networking.Control and Data Plane Separation: Concepts, Advantages and Disadvantages, the basicsofOpenFlow protocol.

### Unit 2

Network Virtualization: Concepts, Applications, Existing Network VirtualizationFramework, Mininet A simulation environment for SDN.Control Plane: Overview, ExistingSDN Controllers including Floodlight andOpenDaylight projects. Customization of Control Plane: Switching and Firewall Implementation using SDN Concepts. Data Plane: Software-based and Hadrware-based; Programmable Network Hardware.

### Unit 3

Programming SDNs: Northbound Application Programming Interface, Current Languagesand Tools, Composition of SDNs. Network Functions Virtualization (NFV) and Software Defined Networks: Concepts, Implementation and Applications.

### Unit 4

Data Center Networks: Packet, Optical and Wireless Architectures, NetworkTopologies.Use Cases of SDNs: Data Centers, Internet Exchange Points, Backbone Networks, Home Networks, Traffic Engineering.

- 1) Thomas D. Nadeau, Ken Gray, "SDN: Software Defined Networks, An Authoritative Review of Network Programmability Technologies", O'Reilly Media, August 2013.
- 2) Paul Goransson, Chuck Black, Timothy Culver. "Software Defined Networks: A Comprehensive Approach", Morgan Kaufmann Publishers, 2016.
- 3) Fei Hu, "Network Innovation through OpenFlow and SDN: Principles and Design", CRC Press, 2014.
- 4) Vivek Tiwari, "SDN and OpenFlow for Beginners", Amazon Digital Services, Inc., ASIN: , 2013.
- 5) Nick Feamster, Jennifer Rexford and Ellen Zegura, "The Road to SDN: An Intellectual History of Programmable Networks" ACM CCR April 2014.
- 6) Open Networking Foundation (ONF) Documents, https://www.opennetworking.org, 2015. OpenFlow standards, http://www.openflow.org, 2015.

| MTEC-118 |           | Antennas and Radiating Systems Lab |            |                      |                                               |       |        |  |  |  |  |  |
|----------|-----------|------------------------------------|------------|----------------------|-----------------------------------------------|-------|--------|--|--|--|--|--|
| Lecture  | Tutorial  | Practical                          | Credit     | Major Test           | Minor Test                                    | Total | Time   |  |  |  |  |  |
| 0        | 0         | 4                                  | 2          | 60                   | 40                                            | 100   | 3 Hrs. |  |  |  |  |  |
|          |           |                                    | Course O   | utcomes (CO)         |                                               |       |        |  |  |  |  |  |
| C01      | Determine | specificatio                       | ns, design | , construct and test | antenna.                                      |       |        |  |  |  |  |  |
| C02      | design an |                                    | software,  |                      | testing antennas. The<br>s, spectrum analyzer |       |        |  |  |  |  |  |

# List of Experiments:

- 1. Simulation of half wave dipole antenna.
- 2. Simulation of change of the radius and length of dipole wire on frequency of resonance of antenna.
- 3. Simulation of quarter wave, full wave antenna and comparison of their parameters.
- 4. Simulation of monopole antenna with and without ground plane.
- 5. Study the effect of the height of the monopole antenna on the radiation characteristics of the antenna.
- 6. Simulation of a half wave dipole antenna array.
- 7. Study the effect of change in distance between elements of array on radiation pattern of dipole array.
- 8. Study the effect of the variation of phase difference 'beta' between the elements of the array on the radiation pattern of the dipole array.
- 9. Simulation of Microstrip Antenna.
- 10. Case study.

| MTEC-120 |            | Advanced Digital Signal Processing Lab                                              |          |              |  |  |  |  |  |  |  |  |  |
|----------|------------|-------------------------------------------------------------------------------------|----------|--------------|--|--|--|--|--|--|--|--|--|
| Lecture  | Tutorial   | Tutorial Practical Credit Major Test Minor Test Total Time                          |          |              |  |  |  |  |  |  |  |  |  |
| 0        | 0          |                                                                                     |          |              |  |  |  |  |  |  |  |  |  |
|          |            |                                                                                     | Course O | utcomes (CO) |  |  |  |  |  |  |  |  |  |
| C01      |            |                                                                                     |          |              |  |  |  |  |  |  |  |  |  |
| CO2      | Apply vari | Apply various transforms in time and frequency Perform decimation and interpolation |          |              |  |  |  |  |  |  |  |  |  |

# List of Experiments:

- 1. Write a program for cascade and parallel realization of an FIR transfer function.
- 2. Write a program for cascade and parallel realization of an IIR transfer function.
- 3. Write a program to design a Butterworth IIR Band Pass Filter.
- 4. Write a program to design an FIR filter using various window functions.
- 5. Write a program to implement the interpolation and decimation.
- 6. Write a program to design two channels QMF Bank.
- 7. Write a program to compute the CWT.
- 8. Write a program to compute the DWT.
- 9. Write a program to design a wavelet filter.
- 10. Write a program to find the magnitude response of a wavelet.

| MTEC-201 |                      | Adaptive Filter Theory                                   |             |                        |                      |               |              |  |  |  |  |  |  |
|----------|----------------------|----------------------------------------------------------|-------------|------------------------|----------------------|---------------|--------------|--|--|--|--|--|--|
| Lecture  | Tutorial             | torial Practical Credit Major Test Minor Test Total Time |             |                        |                      |               |              |  |  |  |  |  |  |
| 3        | 0                    | 0 0 3 60 40 100 3 Hrs.                                   |             |                        |                      |               |              |  |  |  |  |  |  |
|          | Course Outcomes (CO) |                                                          |             |                        |                      |               |              |  |  |  |  |  |  |
| C01      | To unders            | tand the con                                             | cepts of e  | stimation, normal equ  | ations and linear mo | dels.         |              |  |  |  |  |  |  |
| CO2      | To unders            | tand Stocha                                              | stic-Gradie | ent Algorithms and Ste | eady-State Performa  | ince of Adapt | ive Filters. |  |  |  |  |  |  |
| CO3      |                      |                                                          |             |                        |                      |               |              |  |  |  |  |  |  |
| CO4      | Understan            | ding of RLS                                              | and variou  | us QR Algorithms.      |                      |               |              |  |  |  |  |  |  |

## Unit-1

Introduction:-Variance of a random variable, Estimation: Given No Observations, Given Dependent Observations, Complex and Vector Cases, Normal Equations, Design Examples, Linear Models and applications. Minimum-Variance Unbiased Estimation and applications.

Steepest-Descent Algorithms:- Steepest-Descent Method, Transient Behavior, Iteration-Dependent Step-Sizes, Newton's Method.

## Unit-2

Stochastic-Gradient Algorithms:- LMS Algorithm and applications, Normalized LMS Algorithm, Non-Blind Algorithms, Blind Algorithms and properties, Affine Projection Algorithms, Ensemble-Average Learning Curves. Steady-State Performance of Adaptive Filters:- Performance Measures, Stationary Data Model, Fundamental Energy-Conservation Relation, Fundamental Variance Relation, Mean-Square Performance of LMS and ε-NLMS.

## Unit-3

Tracking Performance of Adaptive Filters:-Non-stationary Data Model, Fundamental Energy-Conservation Relation, Fundamental Variance Relation, Tracking Performance of LMS and ε-NLMS.

Transient Performance of Adaptive Filters:-Data Model, Data-Normalized Adaptive Filters, Weighted Energy-Conservation Relation, Weighted Variance Relation, Transient Performance of LMS and ε-NLMS.

### Unit-4

Recursive Least-Squares:-RLS Algorithm, Exponentially-Weighted RLS Algorithm, RLS Array Algorithms: Square-Root Factors, Norm and Angle Preservation, Motivation for Array Methods, RLS Algorithm, Inverse QR Algorithm, QR Algorithm, Extended QR Algorithm.

# Text Books

- 1) "Fundamentals of Adaptive Filtering" by Ali H. Sayed, John Wiley and Sons.
- 2) "Adaptive Filter Theory" by S. Haykin, Pearson India.

# **Reference Books**

- 1) "Adaptive Filters Theory and Applications", by B. Farhang-Boroujeny, John Wiley and Sons.
- 2) "Linear Estimation" by Kailath&Sayed, PHI
- 3) "Adaptive Filters" by Ali H. Sayed, John Wiley and Sons.

| MTEC-203 |                      |                                                                          |             | <b>Optical Networks</b> |                      |              |        |  |  |  |  |  |  |
|----------|----------------------|--------------------------------------------------------------------------|-------------|-------------------------|----------------------|--------------|--------|--|--|--|--|--|--|
| Lecture  | Tutorial             |                                                                          |             |                         |                      |              |        |  |  |  |  |  |  |
| 3        | 0                    | 0 0 3 60 40 100 3 Hrs.                                                   |             |                         |                      |              |        |  |  |  |  |  |  |
|          | Course Outcomes (CO) |                                                                          |             |                         |                      |              |        |  |  |  |  |  |  |
| C01      | Contribute           | Contribute in the areas of optical network and WDM network design.       |             |                         |                      |              |        |  |  |  |  |  |  |
| CO2      | Implement            | t simple opti                                                            | cal networl | k and understand fur    | ther technology deve | lopments for | future |  |  |  |  |  |  |
|          | enhanced             | network.                                                                 |             |                         |                      |              |        |  |  |  |  |  |  |
| CO3      | Able to un           | Able to understand the importance of Network Survivability in modern age |             |                         |                      |              |        |  |  |  |  |  |  |
| CO4      | Understan            | d the Netwo                                                              | rk access   | techniques              |                      |              |        |  |  |  |  |  |  |

### Unit- 1

SONET/SDH: optical transport network, IP, routing and forwarding, multiprotocol labelswitching.

WDM network elements: optical line terminals and amplifiers, optical add/dropmultiplexers, OADM architectures, reconfigurable OADM, optical cross connects.

## Unit- 2

Control and management: network management functions, optical layer services and interfacing, performance and fault management, configuration management, optical safety.

## Unit -3

Network Survivability: protection in SONET/SDH & client layer, optical layer protectionschemes, WDM network design: LTD and RWA problems, dimensioning wavelength routingnetworks, statistical dimensioning models.

### Unit- 4

Access networks: Optical time division multiplexing, synchronization, header processing, buffering, burst switching, test beds, Introduction to PON, GPON, AON.

- 1) Rajiv Ramaswami, Sivarajan, Sasaki, "Optical Networks: A Practical Perspective", MK, Elsevier, 3 <sup>rd</sup> edition, 2010.
- 2) C. Siva Ram Murthy and Mohan Gurusamy, "WDM Optical Networks: Concepts Design, and Algorithms", PHI, EEE, 2001.

| MTEC-205 |                                                                  | Remote Sensing                                                                             |              |                    |                          |                  |                |  |  |  |  |  |  |
|----------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|--------------------|--------------------------|------------------|----------------|--|--|--|--|--|--|
| Lecture  | Tutorial                                                         | Tutorial Practical Credit Major Test Minor Test Total Time                                 |              |                    |                          |                  |                |  |  |  |  |  |  |
| 3        | 0                                                                | 0                                                                                          | 3            | 60                 | 40                       | 100              | 3 Hrs.         |  |  |  |  |  |  |
|          | Course Outcomes (CO)                                             |                                                                                            |              |                    |                          |                  |                |  |  |  |  |  |  |
| C01      | Understan                                                        | Understand basic concepts, principles and applications of remote sensing, particularly the |              |                    |                          |                  |                |  |  |  |  |  |  |
|          | geometric                                                        | and radiom                                                                                 | etric princi | ples;              |                          |                  |                |  |  |  |  |  |  |
| CO2      | Provide ex                                                       | amples of a                                                                                | pplication   | s of principles to | o a variety of topics il | n remote sensing | , particularly |  |  |  |  |  |  |
|          | related to data collection, radiation, resolution, and sampling. |                                                                                            |              |                    |                          |                  |                |  |  |  |  |  |  |
| CO3      | Understan                                                        | d Microwav                                                                                 | e Scatterir  | ng and Imaging     | System                   |                  |                |  |  |  |  |  |  |
| CO4      | Understan                                                        | d Concepts                                                                                 | of Therma    | al and Hyper Sp    | ectral Remote Sensi      | ing              |                |  |  |  |  |  |  |

Physics Of Remote Sensing: Electro Magnetic Spectrum, Physics of Remote Sensing-Effects of Atmosphere-Scattering–Different types–Absorption-Atmospheric window-Energy interaction with surface features –Spectral reflectance of vegetation, soil and water atmospheric influence on spectral response patterns-multi concept in Remote sensing.Data Acquisition: Types of Platforms–different types of aircrafts-Manned and Unmannedspacecrafts–sun synchronous and geo synchronous satellites –Types and characteristics of different platforms–LANDSAT,SPOT,IRS,INSAT,IKONOS,QUICKBIRD etc.

## Unit 2

Photographic products, B/W, color, color IR film and their characteristics –resolvingpower of lens and film -Opto mechanical electro optical sensors –across track and along track scanners-multispectral scanners and thermal scanners–geometric characteristics of scanner imagery -calibration of thermal scanners.

## Unit 3

Scattering System: Microwave scatterometry, types of RADAR –SLAR –resolution –range and azimuth –real aperture and synthetic aperture RADAR. Characteristics of Microwave images topographic effect-different types of Remote Sensing platforms –airborne and space borne sensors -ERS, JERS, RADARSAT, RISAT - Scatterometer, Altimeter-LiDAR remote sensing, principles, applications.

# Unit 4

Thermal and Hyper Spectral Remote Sensing: Sensors characteristics-principle ofspectroscopy-imaging spectroscopy–field conditions, compound spectral curve, Spectral library, radiative models, processing procedures, derivative spectrometry, thermal remote sensing – thermal sensors, principles, thermal data processing, applications.Data Analysis: Resolution–Spatial, Spectral, Radiometric and temporal resolution-signalto noise ratio-data products and their characteristics-visual and digital interpretation–Basic principles of data processing –Radiometric correction–Image enhancement–Image classification– Principles of LiDAR, Aerial Laser Terrain Mapping.

- 1) Lillesand T.M., and Kiefer, R.W. Remote Sensing and Image interpretation, John Wiley & Sons-2000, 6<sup>th</sup>Edition
- 2) John R. Jensen, Introductory Digital Image Processing: A Remote Sensing Perspective, 2nd Edition, 1995.
- 3) John A.Richards, Springer –Verlag, Remote Sensing Digital Image Analysis,1999. Paul Curran P.J. Principles of Remote Sensing, ELBS; 1995.
- 4) Charles Elachi and Jakob J. van Zyl, Introduction To The Physics and Techniques of Remote Sensing, Wiley Series in Remote Sensing and Image Processing, 2006.
- 5) Sabins, F.F.Jr, Remote Sensing Principles and Image interpretation, W.H.Freeman& Co, 1978.

| MTOE-201              |             | Business Analytics                                         |             |                      |                      |                 |        |  |  |  |  |  |
|-----------------------|-------------|------------------------------------------------------------|-------------|----------------------|----------------------|-----------------|--------|--|--|--|--|--|
| Lecture               | Tutorial    | Tutorial Practical Credit Major Test Minor Test Total Time |             |                      |                      |                 |        |  |  |  |  |  |
| 3                     | 0           | 0 0 3 60 40 100 3 Hrs                                      |             |                      |                      |                 |        |  |  |  |  |  |
| Program               | The main of | objective of t                                             | his course  | is to give the stude | ent a comprehensiv   | e understandi   | ng of  |  |  |  |  |  |
| <b>Objective (PO)</b> | business a  | usiness analytics methods.                                 |             |                      |                      |                 |        |  |  |  |  |  |
|                       |             | C                                                          | ourse Ou    | tcomes (CO)          |                      |                 |        |  |  |  |  |  |
| C01                   | Able to ha  | ve knowledg                                                | e of variou | is business analysis | s techniques.        |                 |        |  |  |  |  |  |
| CO2                   | Learn the   | requirement                                                | specificati | ion and transforming | g the requirement ir | nto different m | odels. |  |  |  |  |  |
| CO3                   | Learn the   | requirement                                                | represent   | ation and managing   | requirement asses    | sts.            |        |  |  |  |  |  |
| CO4                   | Learn the   | Recent Tren                                                | ds in Emb   | edded and collabor   | ative business       |                 |        |  |  |  |  |  |

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

## Unit 2

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents. Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

## Unit 3

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

### Unit 4

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

- 1. Business Analysis by James Cadle et al.
- 2. Project Management: The Managerial Process by Erik Larson and, Clifford Gray

| MTOE-203              |                      | Industrial Safety                                                        |              |              |       |   |    |        |  |  |  |  |
|-----------------------|----------------------|--------------------------------------------------------------------------|--------------|--------------|-------|---|----|--------|--|--|--|--|
| Lecture               | Tutorial             | torial Practical Credit Major Test Minor Test Total Time                 |              |              |       |   |    |        |  |  |  |  |
| 3                     | 0                    | 0                                                                        | 3            | 60           | 40    | 1 | 00 | 3 Hrs. |  |  |  |  |
| Program               | To enable            | enable students to aware about the industrial safety.                    |              |              |       |   |    |        |  |  |  |  |
| <b>Objective (PO)</b> |                      |                                                                          |              |              |       |   |    |        |  |  |  |  |
|                       | Course Outcomes (CO) |                                                                          |              |              |       |   |    |        |  |  |  |  |
| C01                   | Understan            | nd the industi                                                           | rial safety. |              |       |   |    |        |  |  |  |  |
| CO2                   | Analyze fu           | indamental d                                                             | of maintena  | ance enginee | ring. |   |    |        |  |  |  |  |
| CO3                   | Understan            | Inderstand the wear and corrosion and fault tracing.                     |              |              |       |   |    |        |  |  |  |  |
| CO4                   |                      | lerstanding that when to do periodic inceptions and apply the preventing |              |              |       |   |    |        |  |  |  |  |
|                       | maintenan            | ice.                                                                     |              |              |       |   |    |        |  |  |  |  |

## Unit-1

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

### Unit-2

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricantstypes and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

### Unit-3

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic,automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

### Unit-4

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

| MTOE-205              | Operations Research                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |                       |                 |         |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|-----------------------|-----------------|---------|--|--|--|--|
| Lecture               | Tutorial                                                                                         | Interview         Interview <t< th=""></t<> |             |                  |                       |                 |         |  |  |  |  |
| 3                     | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3           | 60               | 40                    | 100             | 3 Hrs.  |  |  |  |  |
| Program               | gram To enable students to aware about the dynamic programming to solve problems of discreet     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |                       |                 |         |  |  |  |  |
| <b>Objective (PO)</b> | <b>Objective (PO)</b> and continuous variables and model the real world problem and simulate it. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |                       |                 |         |  |  |  |  |
|                       |                                                                                                  | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ourse Ou    | tcomes (CO)      |                       |                 |         |  |  |  |  |
| C01                   | Students                                                                                         | should able                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to apply th | ne dynamic prog  | gramming to solve pro | oblems of discr | eet and |  |  |  |  |
|                       | continuou                                                                                        | ıs variables.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                  |                       |                 |         |  |  |  |  |
| CO2                   | Students                                                                                         | should able                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to apply th | ne concept of n  | on-linear programmin  | g               |         |  |  |  |  |
| CO3                   |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |                       |                 |         |  |  |  |  |
| CO4                   | Student s                                                                                        | hould able t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o model th  | e real world pro | blem and simulate it. |                 |         |  |  |  |  |

### Unit -1

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

### Unit -2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

### Unit- 3

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

## Unit -4

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

| MTOE-207              |                                                                                  | Cost Management of Engineering Projects                                                                   |             |                    |                    |           |        |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------|--------------------|--------------------|-----------|--------|--|--|--|--|
| Lecture               | Tutorial                                                                         | utorial         Practical         Credit         Major Test         Minor Test         Total         Time |             |                    |                    |           |        |  |  |  |  |
| 3                     | 0                                                                                | 0                                                                                                         | 3           | 60                 | 40                 | 100       | 3 Hrs. |  |  |  |  |
| Program               | To enable                                                                        | To enable students to make aware about the cost management for the engineering project                    |             |                    |                    |           |        |  |  |  |  |
| <b>Objective (PO)</b> | <b>Objective (PO)</b> and apply cost models the real world projects.             |                                                                                                           |             |                    |                    |           |        |  |  |  |  |
|                       |                                                                                  | C                                                                                                         | ourse Ou    | tcomes (CO)        |                    |           |        |  |  |  |  |
| C01                   | Students                                                                         | should able                                                                                               | to learn th | e strategic cost m | anagement proce    | SS.       |        |  |  |  |  |
| CO2                   | Students should able to types of project and project team types                  |                                                                                                           |             |                    |                    |           |        |  |  |  |  |
| CO3                   | 03 Students should able to carry out Cost Behavior and Profit Planning analysis. |                                                                                                           |             |                    |                    |           |        |  |  |  |  |
| CO4                   | Student s                                                                        | hould able t                                                                                              | o learn the | quantitative techr | niques for cost ma | nagement. |        |  |  |  |  |

### Unit-1

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost.Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

### Unit-2

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

### Unit-3

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems.Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector.Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints.Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis.Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets.Measurement of Divisional profitability pricing decisions including transfer pricing.

### Unit-4

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

| MTOE-209              |           | Composite Materials                                                                                        |             |                   |                    |                  |            |  |  |  |  |
|-----------------------|-----------|------------------------------------------------------------------------------------------------------------|-------------|-------------------|--------------------|------------------|------------|--|--|--|--|
| Lecture               | Tutorial  | Futorial         Practical         Credit         Major Test         Minor Test         Total         Time |             |                   |                    |                  |            |  |  |  |  |
| 3                     | 0         | 0                                                                                                          | 3           | 60                | 40                 | 100              | 3 Hrs.     |  |  |  |  |
| Program               | To enable | To enable students to aware about the composite materials and their properties.                            |             |                   |                    |                  |            |  |  |  |  |
| <b>Objective (PO)</b> |           |                                                                                                            |             |                   |                    |                  |            |  |  |  |  |
| Course Outcomes (CO)  |           |                                                                                                            |             |                   |                    |                  |            |  |  |  |  |
| C01                   | Students  | should able                                                                                                | to learn th | e Classification  | n and characterist | ics of Composite | materials. |  |  |  |  |
| CO2                   | Students  | Students should able reinforcements Composite materials.                                                   |             |                   |                    |                  |            |  |  |  |  |
| CO3                   | Students  | Students should able to carry out the preparation of compounds.                                            |             |                   |                    |                  |            |  |  |  |  |
| CO4                   | Student s | should able t                                                                                              | o do the ai | nalysis of the co | omposite material  | ls.              |            |  |  |  |  |

### UNIT-1:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites.Functional requirements of reinforcement and matrix.Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Iso-strain and Iso-stress conditions.

UNIT – 2

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostaticpressing.Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

## UNIT-3

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

### UNIT – 4

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

# **TEXT BOOKS:**

1. Material Science and Technology – Vol 13 – Composites by R.W.Cahn – VCH, West Germany.

2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.

3. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

| MTOE-211              |                                                                                  | Waste to Energy                                                           |             |                   |            |     |        |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------|-------------------|------------|-----|--------|--|--|--|--|
| Lecture               | Tutorial                                                                         | torial Practical Credit Major Test Minor Test Total Time                  |             |                   |            |     |        |  |  |  |  |
| 3                     | 0                                                                                | 0                                                                         | 3           | 60                | 40         | 100 | 3 Hrs. |  |  |  |  |
| Program               | To enable                                                                        | o enable students to aware about the generation of energy from the waste. |             |                   |            |     |        |  |  |  |  |
| <b>Objective (PO)</b> |                                                                                  |                                                                           |             |                   |            |     |        |  |  |  |  |
|                       | Course Outcomes (CO)                                                             |                                                                           |             |                   |            |     |        |  |  |  |  |
| C01                   | <b>CO1</b> Students should able to learn the Classification of waste as a fuel.  |                                                                           |             |                   |            |     |        |  |  |  |  |
| CO2                   | Students should able to learn the Manufacture of charcoal.                       |                                                                           |             |                   |            |     |        |  |  |  |  |
| CO3                   | Students should able to carry out the designing of gasifiers and biomass stoves. |                                                                           |             |                   |            |     |        |  |  |  |  |
| CO4                   | Student s                                                                        | hould able t                                                              | o learn the | e Biogas plant te | echnology. |     |        |  |  |  |  |

### Unit-1

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

### Unit-2

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

### Unit-3

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

#### Unit-4

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

| MTAD-101              |            | English For Research Paper Writing                                         |              |                      |                       |          |        |  |  |  |  |
|-----------------------|------------|----------------------------------------------------------------------------|--------------|----------------------|-----------------------|----------|--------|--|--|--|--|
| Lecture               | Tutorial   | utorial Practical Credit Major Test Minor Test Total Time                  |              |                      |                       |          |        |  |  |  |  |
| 2                     | 0          | 0                                                                          | 0            | -                    | 100                   | 100      | 3 Hrs. |  |  |  |  |
| Program               | Student wi | Student will able to understand the basic rules of research paper writing. |              |                      |                       |          |        |  |  |  |  |
| <b>Objective (PO)</b> |            |                                                                            |              |                      |                       |          |        |  |  |  |  |
| Course Outcomes (CO)  |            |                                                                            |              |                      |                       |          |        |  |  |  |  |
| C01                   | Understa   | and that how                                                               | to improv    | e your writing ski   | lls and level of read | dability |        |  |  |  |  |
| CO2                   | Learn ab   | Learn about what to write in each section                                  |              |                      |                       |          |        |  |  |  |  |
| CO3                   | Understa   | Understand the skills needed when writing a Title                          |              |                      |                       |          |        |  |  |  |  |
| CO4                   | Ensure th  | ne good qua                                                                | lity of pape | r at very first-time | e submission          |          |        |  |  |  |  |

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

### Unit 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

## Unit 3

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

#### Unit4

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

| MTAD-103              |                      | Disaster Management                                                                            |             |                  |                      |                    |        |  |  |  |
|-----------------------|----------------------|------------------------------------------------------------------------------------------------|-------------|------------------|----------------------|--------------------|--------|--|--|--|
| Lecture               | Tutorial             | Practical                                                                                      | Credit      | Major Test       | Minor Test           | Total              | Time   |  |  |  |
| 2                     | 0                    | 0                                                                                              | 0           | -                | 100                  | 100                | 3 Hrs. |  |  |  |
| Program               | Develop a            | n understan                                                                                    | ding of dis | aster risk reduc | tion and managem     | ent                |        |  |  |  |
| <b>Objective (PO)</b> |                      |                                                                                                |             |                  |                      |                    |        |  |  |  |
|                       | Course Outcomes (CO) |                                                                                                |             |                  |                      |                    |        |  |  |  |
| C01                   | Learn to a           | earn to demonstrate a critical understanding of key concepts in disaster risk reduction and    |             |                  |                      |                    |        |  |  |  |
|                       | humanitari           | numanitarian response.                                                                         |             |                  |                      |                    |        |  |  |  |
| CO2                   | ,                    | Critically evaluate disaster risk reduction and humanitarian response policy and practice from |             |                  |                      |                    |        |  |  |  |
|                       |                      | nultiple perspectives.                                                                         |             |                  |                      |                    |        |  |  |  |
| CO3                   |                      | Develop an understanding of standards of humanitarian response and practical relevance in      |             |                  |                      |                    |        |  |  |  |
|                       | specific ty          | specific types of disasters and conflict situations.                                           |             |                  |                      |                    |        |  |  |  |
| CO4                   | critically           | critically understand the strengths and weaknesses of disaster management                      |             |                  |                      |                    |        |  |  |  |
|                       |                      |                                                                                                |             |                  | rent countries, part | icularly their hor | me     |  |  |  |
|                       | country or           | the countrie                                                                                   | s they wor  | rk in            |                      |                    |        |  |  |  |

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

### Unit 2

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

### Unit 3

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

### Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment.Strategies for Survival.Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation.Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep&Deep Publication Pvt. Ltd., New Delhi.

| MTAD-105 | Sanskrit for Technical Knowledge  |                                                                                                            |              |                  |                          |                  |        |  |  |  |  |
|----------|-----------------------------------|------------------------------------------------------------------------------------------------------------|--------------|------------------|--------------------------|------------------|--------|--|--|--|--|
| Lecture  | Tutorial                          | Tutorial         Practical         Credit         Major Test         Minor Test         Total         Time |              |                  |                          |                  |        |  |  |  |  |
| 2        | 0                                 | 0                                                                                                          | 0            | -                | 100                      | 100              | 3 Hrs. |  |  |  |  |
| Program  |                                   |                                                                                                            |              |                  | nskrit language and      |                  |        |  |  |  |  |
|          |                                   | literature about science & technology can be understood and Being a logical language will                  |              |                  |                          |                  |        |  |  |  |  |
|          | help to develop logic in students |                                                                                                            |              |                  |                          |                  |        |  |  |  |  |
|          |                                   | C                                                                                                          | ourse Ou     | tcomes (CO)      |                          |                  |        |  |  |  |  |
| C01      |                                   |                                                                                                            |              |                  | krit, the scientific lar | nguage in the wo | orld   |  |  |  |  |
| CO2      | Learning                          | Learning of Sanskrit to improve brain functioning                                                          |              |                  |                          |                  |        |  |  |  |  |
| CO3      | Learning                          | of Sanskrit t                                                                                              | o develop    | the logic in mat | hematics, science        | & other subjects |        |  |  |  |  |
|          | enhancing the memory power        |                                                                                                            |              |                  |                          |                  |        |  |  |  |  |
| CO4      | The engir                         | neering scho                                                                                               | lars equip   | ped with Sansk   | rit will be able to ex   | plore the huge   |        |  |  |  |  |
|          | knowledg                          | e from ancie                                                                                               | ent literatu | re               |                          |                  |        |  |  |  |  |

## Unit –1

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit – 2

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit –3

Technical concepts of Engineering: Electrical, Mechanical

Unit -4

Technical concepts of Engineering: Architecture, Mathematics

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" PrathamaDeeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

| MTAD-107              |                                    | Value Education                                       |             |                   |                  |                    |         |  |
|-----------------------|------------------------------------|-------------------------------------------------------|-------------|-------------------|------------------|--------------------|---------|--|
| Lecture               | Tutorial                           | Practical                                             | Credit      | Major Test        | Minor Test       | Total              | Time    |  |
| 2                     | 0                                  | 0                                                     | 0           | -                 | 100              | 100                | 3 Hrs.  |  |
| Program               | Understan                          | nd value of e                                         | ducation a  | nd self- developn | nent, Imbibe god | d values in studer | nts and |  |
| <b>Objective (PO)</b> | Let the sho                        | Let the should know about the importance of character |             |                   |                  |                    |         |  |
|                       |                                    |                                                       |             |                   |                  |                    |         |  |
|                       |                                    | C                                                     | ourse Ou    | tcomes (CO)       |                  |                    |         |  |
| C01                   | Knowledge                          | e of self-dev                                         | elopment    |                   |                  |                    |         |  |
| CO2                   | Learn the                          | Learn the importance of Human values                  |             |                   |                  |                    |         |  |
| CO3                   | Developing the overall personality |                                                       |             |                   |                  |                    |         |  |
| CO4                   | Know abo                           | out the impo                                          | rtance of c | haracter          |                  |                    |         |  |

Values and self-development –Social values and individual attitudes.Work ethics, Indian vision of humanism.Moral and non- moral valuation.Standards and principles.Value judgements.

# Unit 2

Importance of cultivation of values.Sense of duty.Devotion, Self-reliance.Confidence, Concentration.Truthfulness, Cleanliness.Honesty, Humanity.Power of faith, National Unity.Patriotism.Love for nature,Discipline

# Unit 3

Personality and Behavior Development - Soul and Scientific attitude.Positive Thinking.Integrity and discipline.Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance.True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits.Association and Cooperation. Doing best for saving nature

# Unit 4

Character and Competence –Holy books vs Blind faith.Self-management and Good health.Science of reincarnation. Equality, Nonviolence,Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

# References

1.Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

| MTAD-102 |              |                                                                                             | Constitu      | tion of India       |                       |                   |             |
|----------|--------------|---------------------------------------------------------------------------------------------|---------------|---------------------|-----------------------|-------------------|-------------|
| Lecture  | Tutorial     | utorial Practical Credit Major Te                                                           |               |                     | Minor Test            | Total             | Time        |
| 2        | 0            | 0                                                                                           | 0             | -                   | 100                   | 100               | 3 Hrs.      |
| Program  | Understan    | d the premis                                                                                | ses inform    | ing the twin the    | emes of liberty and i | freedom from a cl | ivil rights |
|          |              |                                                                                             |               |                     | opinion regarding n   |                   |             |
|          | constitutio  | nal role and                                                                                | entitleme     | nt to civil and o   | economic rights as    | well as the emer  | gence of    |
|          | nationhood   | d in the early                                                                              | years of l    | Indian nationali:   | sm.                   |                   |             |
|          |              | C                                                                                           | ourse Ou      | tcomes (CO)         |                       |                   |             |
| C01      | Discuss th   | e growth of                                                                                 | the deman     | nd for civil rights | in India for the bulk | of Indians before | the         |
|          | arrival of C | Gandhi in Ind                                                                               | lian politics | S.                  |                       |                   |             |
| CO2      |              |                                                                                             |               |                     | of argument that inf  | formed the        |             |
|          | conceptua    | lization of so                                                                              | ocial reform  | ns leading to re    | volution in India.    |                   |             |
| CO3      |              |                                                                                             |               |                     | dation of the Congre  |                   |             |
|          | under the    | inder the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct |               |                     |                       |                   |             |
|          | elections t  | hrough adul                                                                                 | t suffrage i  | in the Indian Co    | nstitution.           |                   |             |
| CO4      | Discuss th   | e passage o                                                                                 | f the Hind    | u Code Bill of 1    | 956.                  |                   |             |

# Unit I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

## Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

## Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

## Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

## References

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

| MTAD-104              |                           | Pedagogy Studies                                                                   |              |                     |                   |                    |            |  |
|-----------------------|---------------------------|------------------------------------------------------------------------------------|--------------|---------------------|-------------------|--------------------|------------|--|
| Lecture               | Tutorial Practical Credit |                                                                                    |              | Major Test          | Minor Test        | Total              | Time       |  |
| 2                     | 0                         | 0                                                                                  | 0            | -                   | 100               | 100                | 3 Hrs.     |  |
| Program               | Review                    | existing evi                                                                       | dence on     | the review topic    | to inform progr   | amme design ar     | nd policy  |  |
| <b>Objective (PO)</b> | making                    | undertaken                                                                         | by the D     | FID, other agend    | ies and researd   | chers and Identif  | y critical |  |
|                       | evidence                  | e gaps to gui                                                                      | de the dev   | elopment.           |                   |                    |            |  |
|                       |                           | C                                                                                  | ourse Ou     | tcomes (CO)         |                   |                    |            |  |
| C01                   | What peda                 | agogical pra                                                                       | ctices are   | being used by tea   | chers in formal a | nd informal class  | rooms in   |  |
|                       | developing                | countries?                                                                         |              |                     |                   |                    |            |  |
| CO2                   | What is th                | e evidence (                                                                       | on the effe  | ectiveness of these | pedagogical pra   | ctices, in what co | nditions,  |  |
|                       | and with w                | hat populati                                                                       | on of learr  | ners?               |                   |                    |            |  |
| CO3                   | How can                   | How can teacher education (curriculum and practicum) and the school curriculum and |              |                     |                   |                    |            |  |
|                       | guidance r                | naterials be                                                                       | st support   | effective pedagog   | γ?                |                    |            |  |
| CO4                   | What is the               | e importance                                                                       | e of identif | ying research gaps  | 5?                |                    |            |  |

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

# Unit 2

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change.Strength and nature of the body of evidence for effective pedagogical practices.Pedagogic theory and pedagogical approaches.Teachers' attitudes and beliefs and Pedagogic strategies.

## Unit 3

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

## Unit 4

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

# References

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272– 282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

| MTAD-106              |            | Stress Management by Yoga                                |              |                 |                        |     |        |  |  |
|-----------------------|------------|----------------------------------------------------------|--------------|-----------------|------------------------|-----|--------|--|--|
| Lecture               | Tutorial   | torial Practical Credit Major Test Minor Test Total Time |              |                 |                        |     |        |  |  |
| 2                     | 0          | 0                                                        | 0            | -               | 100                    | 100 | 3 Hrs. |  |  |
| Program               | To achieve | e overall hea                                            | Ith of body  | and mind and    | to overcome stress     |     |        |  |  |
| <b>Objective (PO)</b> |            |                                                          |              |                 |                        |     |        |  |  |
|                       |            | C                                                        | ourse Ou     | tcomes (CO)     |                        |     |        |  |  |
| C01                   | Develop I  | healthy mind                                             | l in a healt | hy body thus in | proving social health. |     |        |  |  |
| CO2                   | Improve e  | Improve efficiency                                       |              |                 |                        |     |        |  |  |
| CO3                   | Learn the  | Learn the Yogasan                                        |              |                 |                        |     |        |  |  |
| CO4                   | Learn the  | Learn the pranayama                                      |              |                 |                        |     |        |  |  |

## Unit – 1

Definitions of Eight parts of yog (Ashtanga).

# Unit- 2

Yam and Niyam, Do's and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

## Unit-3

Asan and Pranayam, Various yog poses and their benefits for mind & body,

# Unit-4

Regularization of breathing techniques and its effects-Types of pranayam.

## References

- 1. 'Yogic Asanas for Group Tarining-Part-I" :Janardan Swami YogabhyasiMandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

| MTAD-108              |           | Personality Development through Life Enlightenment Skills                   |             |                  |                |     |        |  |
|-----------------------|-----------|-----------------------------------------------------------------------------|-------------|------------------|----------------|-----|--------|--|
| Lecture               | Tutorial  | utorial Practical Credit Major Test Minor Test Total Ti                     |             |                  |                |     |        |  |
| 2                     | 0         | 0                                                                           | 0           | -                | 100            | 100 | 3 Hrs. |  |
| Program               |           |                                                                             |             | goal happily     |                |     |        |  |
| <b>Objective (PO)</b> |           | To become a person with stable mind, pleasing personality and determination |             |                  |                |     |        |  |
|                       | To awake  | To awaken wisdom in students                                                |             |                  |                |     |        |  |
|                       |           | C                                                                           | ourse Ou    | tcomes (CO)      |                |     |        |  |
| C01                   | Students  | become awa                                                                  | are about l | leadership.      |                |     |        |  |
| CO2                   | Students  | Students will learn how to perform his/her duties in day to day work.       |             |                  |                |     |        |  |
| CO3                   | Understa  | Understand the team building and conflict                                   |             |                  |                |     |        |  |
| CO4                   | Student v | vill learn how                                                              | to becom    | ne role model fo | r the society. |     |        |  |

# Unit – 1

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

Unit – 2

Approach to day to day work and duties; ShrimadBhagwadGeeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

# Unit - 3

Statements of basic knowledge; ShrimadBhagwadGeeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

# Unit – 4

Personality of Role model; ShrimadBhagwadGeeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

## References:

- 1. Srimad Bhagavad Gita, Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

# Dissertation Part – I and Dissertation Part - II

|     | Dissertation Part-I (MTEC-207) and Dissertation Part-II (MTEC-202)                                |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | Course Outcomes (CO)                                                                              |  |  |  |  |  |
| C01 | Ability to synthesize knowledge and skills previously gained and applied to an in depth study and |  |  |  |  |  |
|     | execution of new technical problem.                                                               |  |  |  |  |  |
| CO2 | CO2 Capable to select from different methodologies, methods and forms of analysis to produce a    |  |  |  |  |  |
|     | suitable research design, and justify their design.                                               |  |  |  |  |  |
| CO3 | Ability to present the findings of their technical solution in a written report.                  |  |  |  |  |  |
| CO4 | Presenting the work in International/National conference or reputed journals.                     |  |  |  |  |  |

## Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following:

Relevance to social needs of society

Relevance to value addition to existing facilities in the institute

Relevance to industry need

Problems of national importance

Research and development in various domain

## The student should complete the following:

Literature survey Problem Definition

Motivation for study and Objectives

Preliminary design / feasibility / modular approaches

Implementation and Verification

Report and presentation

The dissertation part- II is based on a report prepared by the students on dissertation allotted to them. It may be based on: Experimental verification / Proof of concept.

The viva-voce examination will be based on the above report and work.

## Guidelines for Dissertation Part - I and Dissertation Part - II

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two parts i.e. Part– I: July to December and Part– II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives.

The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing Engineering and any other related domain. In case of Industry sponsored projects, the relevant application notes, white papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Part–I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper, proof of concept/functionality, part results, and record of continuous progress.

Part–I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Part-I work.

During Part– II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Part–II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, and record of continuous progress.

Part-II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the Part-I work.

# UNIVERSITY INSTITUTE OF ENGINEERING & TECHNOLOGY KURUKSHETRA UNIVERSITY, KURUKSHETRA

('A+' Grade, NAAC Accredited)

# SCHEME OF EXAMINATIONS FOR MASTER OF TECHNOLOGY IN ELECTRICAL ENGINEERING (w. e. f. 2018-19)

|            |                          | SE                                    | MEST | ER-I |   |       |               |               |     |                               |
|------------|--------------------------|---------------------------------------|------|------|---|-------|---------------|---------------|-----|-------------------------------|
| Sr.<br>No. | Course<br>Code           | SUBJECT                               | L    | Т    | Ρ | Total | Minor<br>Test | Major<br>Test | Cr. | Duration<br>of Exam<br>(Hrs.) |
| 1          | MTEL-101                 | Advanced Power System<br>Analysis     | 3    | -    | - | 3     | 40            | 60            | 3   | 3                             |
| 2          | MTEL-103                 | Advanced Instrumentation &<br>Control | 3    | -    | - | 3     | 40            | 60            | 3   | 3                             |
| 3          | *                        | Program Elective-I                    | 3    | -    | - | 3     | 40            | 60            | 3   | 3                             |
| 4          | **                       | Program Elective-II                   | 3    | -    | - | 3     | 40            | 60            | 3   | 3                             |
| 5          | MTEL-117                 | Instrumentation & Control Lab         | -    | -    | 4 | 4     | 40            | 60            | 2   | 3                             |
| 6          | MTEL-119                 | Advanced Power System Lab-I           | -    | -    | 4 | 4     | 40            | 60            | 2   | 3                             |
| 7          | MTRM-111                 | Research Methodology and IPR          | 2    | -    | - | 2     | 40            | 60            | 2   | 3                             |
| 8          | ***                      | Audit Course-I                        | 2    | -    | - | 2     | 100           | -             | -   | -                             |
|            | Total 16 8 24 280 420 18 |                                       |      |      |   |       |               |               |     |                               |

**SEMESTER-I** 

|    | * PROGRAM ELECTIVE – I                      |                                                    |  |  |  |  |  |
|----|---------------------------------------------|----------------------------------------------------|--|--|--|--|--|
| 1. | MTEL-105                                    | Renewable Energy Resources                         |  |  |  |  |  |
| 2. | MTEL-107                                    | Power Electronics Applications in Renewable Energy |  |  |  |  |  |
| 3. | MTEL-109                                    | Smart Grid                                         |  |  |  |  |  |
|    | ** PROGRAM ELECTIVE - II                    |                                                    |  |  |  |  |  |
| 1. | MTEL-111                                    | Bio-Medical Signal & Image Processing              |  |  |  |  |  |
| 2. | MTEL-113 Advanced Digital Signal Processing |                                                    |  |  |  |  |  |
| 3. | MTEL-115                                    | Bio-Medical Instrumentation                        |  |  |  |  |  |
|    |                                             | *** AUDIT COURSE – I                               |  |  |  |  |  |
| 1. | MTAD-101                                    | English for Research Paper Writing                 |  |  |  |  |  |
| 2. | MTAD-103                                    | Disaster Management                                |  |  |  |  |  |
| 3. | MTAD-105                                    | Sanskrit for Technical Knowledge                   |  |  |  |  |  |
| 4. | MTAD-107                                    | Value Education                                    |  |  |  |  |  |

**Note:** 1. The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

2. \*\*\* Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

# **SEMESTER-II**

| Sr.<br>No. | Course Code | Subject                             | L  | T | Ρ  | Total | Minor<br>Test | Major<br>Test | Cr. | Duration<br>of Exam<br>(Hrs.) |
|------------|-------------|-------------------------------------|----|---|----|-------|---------------|---------------|-----|-------------------------------|
| 1          | MTEL-102    | Advanced Power System<br>Protection | 3  | - | -  | 3     | 40            | 60            | 3   | 3                             |
| 2          | MTEL-104    | Intelligent Control                 | 3  | - | -  | 3     | 40            | 60            | 3   | 3                             |
| 3          | *           | Program Elective-III                | 3  | - | -  | 3     | 40            | 60            | 3   | 3                             |
| 4          | **          | Program Elective-IV                 | 3  | - | -  | 3     | 40            | 60            | 3   | 3                             |
| 5          | MTEL-118    | Modeling & Simulation<br>Lab        | -  | - | 4  | 4     | 40            | 60            | 2   | 3                             |
| 6          | MTEL-120    | Advanced Power System<br>Lab-II     | -  | - | 4  | 4     | 40            | 60            | 2   | 3                             |
| 7          | #MTEL-122   | Mini Project                        | -  | - | 4  | 4     | 100           | -             | 2   | 3                             |
| 8          | ***         | Audit Course-II                     | 2  | - | -  | -     | 100           | -             | -   | -                             |
|            |             | Total                               | 14 |   | 12 | 26    | 340           | 360           | 18  |                               |

|    | *PROGRAM ELECTIVE - III                       |                            |  |  |  |
|----|-----------------------------------------------|----------------------------|--|--|--|
| 1. | 1. MTEL-106 HVDC Transmission & FACTS Devices |                            |  |  |  |
| 2. | MTEL-108                                      | Transients in Power System |  |  |  |
| 3. |                                               |                            |  |  |  |

|    | **PROGRAM ELECTIVE – IV             |                          |  |  |  |  |  |
|----|-------------------------------------|--------------------------|--|--|--|--|--|
| 1. | 1. MTEL-112 Digital Control System  |                          |  |  |  |  |  |
| 2. | MTEL-114                            | Advanced Microprocessors |  |  |  |  |  |
| 3. | 3. MTEL-116 Reliability Engineering |                          |  |  |  |  |  |

|    | *** AUDIT COURSE–II            |                                                    |  |  |  |  |
|----|--------------------------------|----------------------------------------------------|--|--|--|--|
| 1. | MTAD-102 Constitution of India |                                                    |  |  |  |  |
| 2. | MTAD-104 Pedagogy Studies      |                                                    |  |  |  |  |
| 3. | MTAD-106                       | Stress Management by Yoga                          |  |  |  |  |
| 4. | MTAD-108                       | Personality Development through Life Enlightenment |  |  |  |  |
|    |                                | Skills                                             |  |  |  |  |

**Note** 1:. The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

**Note 2:** \*\*\* Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

**#Note3:** Mini project: During this course the student will be able to understand the contemporary/emerging technologies for various processes and systems. During the semester, the students are required to search/gather the material/ information on a specific topic, comprehend it and present/discuss the same in the class. He/she will be acquainted to share knowledge effectively in oral (seminar) and written form (formulate documents) in the form of report. The student will be evaluated on the basis of viva/ seminar (40 marks) and report (60 marks).

# **SEMESTER-III**

| Sr.<br>No. | Course Code | Subject             | L | Т | Ρ  | Total | Minor*<br>Test | Major<br>Test | Cr. | Duration of<br>Exam (Hrs.) |
|------------|-------------|---------------------|---|---|----|-------|----------------|---------------|-----|----------------------------|
| 1          | *           | Program Elective-V  | 3 | - | -  | 3     | 40             | 60            | 3   | 3                          |
| 2          | **          | Open Elective       | 3 | - | -  | 3     | 40             | 60            | 3   | 3                          |
| 3          | MTEL-207    | Dissertation Part-I | - | - | 20 | 20    | 100            | -             | 10  |                            |
|            |             | Total               | 6 |   | 20 | 26    | 180            | 120           | 16  |                            |

|    | * PROGRAM ELECTIVE - V             |                                           |  |  |  |  |  |  |  |
|----|------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|
| 1. | 1. MTEL-201 Distributed Generation |                                           |  |  |  |  |  |  |  |
| 2. | MTEL-203                           | Advanced Electric Drives & Control        |  |  |  |  |  |  |  |
| 3. | MTEL-205                           | Power System Restructuring & Deregulation |  |  |  |  |  |  |  |

|    |          | ** OPEN ELECTIVE                        |
|----|----------|-----------------------------------------|
| 1. | MTOE-201 | Business Analytics                      |
| 2. | MTOE-203 | Industrial Safety                       |
| 3. | MTOE-205 | Operation Research                      |
| 4. | MTOE-207 | Cost Management of Engineering Projects |
| 5. | MTOE-209 | Composite Materials                     |
| 6. | MTOE-211 | Waste to Energy                         |

## SEMESTER-IV

| Sr.<br>No. | Course Code |                         | L | Т | Р  | Total | Minor<br>Test | Major<br>Test | Cr. | Duration of<br>Exam<br>(Hrs.) |
|------------|-------------|-------------------------|---|---|----|-------|---------------|---------------|-----|-------------------------------|
| 1          | MTEL-202    | Dissertation<br>Part-II | - | - | 32 | -     | 100           | 200           | 16  |                               |
|            |             | ·                       | - | • | •  | Total | 100           | 200           | 16  |                               |

## Total Credits – 68

**Note 1**: At the end of the second semester each student is required to do his/her Dissertation work in the identified area in consent of the Guide/Supervisor. Synopsis for the Dissertation Part-I is to be submitted within three weeks of the beginning of the Third Semester.

**Note 2**: Each admitted student is required to submit the report of his/her Dissertation Part-I as per the schedule mentioned in Academic calendar for the corresponding academic session otherwise the Dissertation Part-II cannot be continued at any level.

**Note 3**: Each admitted student is required to submit his/her final Dissertation Part-II as per the schedule mentioned in Academic calendar for the corresponding academic session only after the publication of two papers in a journal/International/National conference of repute like IEEE, Springer, Elsevier, ACM etc.

**Note 4:** The course of program/open elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

| MTEL-101      |                                                                                                    | Advanced Power System Analysis                                    |                  |                  |                   |              |           |  |  |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------|------------------|-------------------|--------------|-----------|--|--|--|--|--|
| Lecture       | Tutorial                                                                                           | Practical                                                         | Credit           | Major Test       | Minor Test        | Total        | Time(Hrs) |  |  |  |  |  |
| 3             | 0                                                                                                  | 0                                                                 | 3                | 60               | 40                | 100          | 3         |  |  |  |  |  |
| Program       | To enable students to analyse power system networks, various faults, load flow study, security and |                                                                   |                  |                  |                   |              |           |  |  |  |  |  |
| Objective     | contingency a                                                                                      | contingency analysis.                                             |                  |                  |                   |              |           |  |  |  |  |  |
| (PO)          |                                                                                                    |                                                                   |                  |                  |                   |              |           |  |  |  |  |  |
|               |                                                                                                    |                                                                   | Course Outco     | mes (CO)         |                   |              |           |  |  |  |  |  |
| After complet | ion of course                                                                                      | students will be                                                  | e able to        |                  |                   |              |           |  |  |  |  |  |
| C01           | Understand m                                                                                       | atrices related t                                                 | o power syster   | n and its forma  | tion with differe | ent methods. |           |  |  |  |  |  |
| CO2           | Understand he                                                                                      | Understand how to analyze various types of faults in power system |                  |                  |                   |              |           |  |  |  |  |  |
| CO3           | Study various                                                                                      | methods of load                                                   | d flow and their | advantages a     | nd disadvantag    | les          |           |  |  |  |  |  |
| CO4           | Understand ne                                                                                      | eed of power sy                                                   | stem security,   | state estimation | n and continge    | ncy analysis |           |  |  |  |  |  |

## UNIT1

Network Modelling: System graph, loop, cut set and Incidence matrices, Primitive network and matrix, Formation of various network matrices by singular transformation.

Bus Impedance Algorithm: Singular transformation, direct inspection, Building Block algorithm for bus impedance matrix, Addition of links, addition of branches, (considering mutual coupling).

## UNIT2

Balanced and unbalanced network elements: Representation of three phase network elements, representation under balanced and unbalanced excitation, transformation matrices, symmetrical components, sequence impedances, unbalanced elements and three phase power invariance.

Short circuit studies: Network representations for single line to ground fault, line to line fault, LL-G fault, and 3-phase faults, Short circuit calculations for various types of faults in matrix form.

#### UNIT3

Load flow studies: Load flow and its importance. Classification of buses, load flow techniques, Iterative solutions and computer flow charts using Gauss-Seidel and Newton-Raphson methods, Decoupled and fast decoupled methods, Representation of regulating and off nominal ratio transformers and modification of Ybus.

#### UNIT4

Power system security: Introduction to Power system security, Addition and removal of multiple lines, network reduction for contingency analysis, current injection, shift destitution factor, single outage contingency analysis. State estimation in power systems: data acquisition system, Method of least-squares, State estimation by weighted least square technique.

- 1. Stagg G W, El-Abaid A H, "Computer methods in Power system analysis", McGraw Hill.
- 2. Singh L P, "Advanced Power System Analysis and Dynamics", New Age, Int. Publication.
- 3. Ramana N V, "Power System Analysis", Pearson Education.
- 4. Nagsarkar T K, Sukhija M S, "Power System Analysis", Oxford University Press.
- 5. Uma Rao K, "Computer Techniques and Models in Power System", IK Publications.
- 6. Grainger J J, Stevenson W D, "Power System Analysis", McGraw Hill.
- 7. Allen Wood, Bruce Wollenberg, "Power Generation operation & control", John Wiley & Sons.
- 8. Nagrath I J, Kothari D P, "Power System Engineering" McGraw Hill, New York.
- 9. Pai M A, "Computer Techniques in Power System Analysis", 2<sup>nd</sup> Edition, TMH-New Delhi.

| MTEL-103                     |                   |                                                                                          | Advanced I   | nstrumentation        | & Control  |       |           |  |  |  |  |  |
|------------------------------|-------------------|------------------------------------------------------------------------------------------|--------------|-----------------------|------------|-------|-----------|--|--|--|--|--|
| Lecture                      | Tutorial          | Practical                                                                                | Credit       | Major Test            | Minor Test | Total | Time(Hrs) |  |  |  |  |  |
| 3                            | 0 0 3 60 40 100 3 |                                                                                          |              |                       |            |       |           |  |  |  |  |  |
| Program<br>Objective<br>(PO) | This course wi    | This course will look at different types of Instruments with their controls.             |              |                       |            |       |           |  |  |  |  |  |
|                              |                   |                                                                                          | Course Outc  | omes (CO)             |            |       |           |  |  |  |  |  |
| After complet                | ion of course st  | tudents will be                                                                          | able to      |                       |            |       |           |  |  |  |  |  |
| C01                          | Understand dif    | ferent types of <b>I</b>                                                                 | nstruments w | ith their application | ons.       |       |           |  |  |  |  |  |
| CO2                          | Understand ba     | Understand basics of smart Sensor with their advantages , disadvantages and applications |              |                       |            |       |           |  |  |  |  |  |
| CO3                          | To emphasize      | To emphasize and analysis of Virtual Instruments.                                        |              |                       |            |       |           |  |  |  |  |  |
| CO4                          | To study differ   | rent types of VI s                                                                       | structures   |                       |            |       |           |  |  |  |  |  |

**Transducers:** Introduction, Characteristics and Classifications of electrical transducers, measurement of displacement, Force, pressure, speed, temperature and intensity of light using different electrical transducers, advantages, disadvantages and applications of transducers

#### . Unit 2

**Smart Sensors**: Introduction, architecture of smart sensor, optical sensor, microelectronic sensor, chemical, Bio Sensor and Physical Sensor, piezo-resistive pressure sensor, fibre optic temperature sensor, light sensor, advantages, disadvantages and applications of smart sensors.

#### Unit 3

**Virtual Instrumentation:** Introduction, architecture of VI, Evaluation and architecture of VI, conventional Virtual Instrumentation, Advantage of Lab View, Software Environment, Creating and Saving VI, front Panel and block diagram Tool Bar, Palettes, front panel control and indicators, block diagram: Terminals, Nodes, Functions, Sub VI, Data Flow Program.

## Unit 4

**VI Structures:** Control structures, selection structures, case structures, Sequence structures, formula node, array, single and multi-dimensional array, auto indexing, clusters, creating clusters control and indicators, data plotting.

#### Suggested Books:

1. Johnson G W, "Lab VIEW Graphical Programming", Second edition, McGraw Hill.

2. Kring J & Travis J, "LabVIEW for everyone", Prentice Hall, New Jersey.

3. James K, "PC Interfacing and Data Acquisition", Elsevier.

4. Jerome J, "Virtual Instrumentation using Lab View", Prentice Hall, India.

| MTEL-105      |                                                                                                   |                                                                                               | Renewab          | e Energy Res    | ources         |         |           |  |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------|-----------------|----------------|---------|-----------|--|--|--|--|--|
| Lecture       | Tutorial                                                                                          | Practical                                                                                     | Credit           | Major Test      | Minor Test     | Total   | Time(Hrs) |  |  |  |  |  |
| 3             | 0                                                                                                 | 0                                                                                             | 3                | 60              | 40             | 100     | 3         |  |  |  |  |  |
| Program       | The main objective of the course is to impart the students with the knowledge of renewable energy |                                                                                               |                  |                 |                |         |           |  |  |  |  |  |
| Objective     | resources and                                                                                     | resources and different factors related to them.                                              |                  |                 |                |         |           |  |  |  |  |  |
| (PO)          |                                                                                                   |                                                                                               |                  |                 |                |         |           |  |  |  |  |  |
|               |                                                                                                   |                                                                                               | Course Outco     | mes (CO)        |                |         |           |  |  |  |  |  |
| After complet | ion of course s                                                                                   | students will b                                                                               | e able to        |                 |                |         |           |  |  |  |  |  |
| C01           | To impart know                                                                                    | wledge about re                                                                               | enewable energ   | gy resources ar | nd solar power | system. |           |  |  |  |  |  |
| CO2           | To acquaint st                                                                                    | To acquaint students with the phenomenon of wind power system and its applications with grid. |                  |                 |                |         |           |  |  |  |  |  |
| CO3           | To impart know                                                                                    | To impart knowledge to students about geothermal and ocean power system.                      |                  |                 |                |         |           |  |  |  |  |  |
| CO4           | To let student                                                                                    | understand fue                                                                                | I cell, hydroger | and hybrid en   | ergy system.   |         |           |  |  |  |  |  |

**ENERGY RESOURCES:** Renewable energy sources, distributed energy systems and dispersed generation, atmospheric aspects of electric energy generation, Impact of renewable energy generation on environment

**SOLAR ENERGY**: Solar Radiation and its Measurement, Solar Thermal Energy Collectors: different types of collectors and their performance analysis, Solar Thermal Energy Conversion System: solar water heater, solar distillation, slat thermal power plant and various applications of solar system, Solar Photovoltaic System: solar cell, VI characteristics, solar electricity and grid and off-grid solar system.

## Unit 2

**WIND ENERGY:** Wind turbines and rotors, Wind Energy Extraction, Wind Characteristics, Power Density Duration Curve, Design of Wind Turbine Rotor, Design of Regulating System for Rotor, Wind Power Generation Curve, Subsystems of a Horizontal Axis Wind Turbine Generator, Modes of Wind Power Generation, Estimation of Wind Energy Potential, Selection of Optimum Wind Energy Generator (WEG), Grid Interfacing of a Wind Farm, Methods of Grid Connection, Grid System and Properties, Capacity of Wind Farms for Penetration into Grid, Control System for Wind Farms, Economics of Wind Farms

#### Unit 3

**GEOTHERMAL ENERGY:** Structure of the Earth's Interior, Plate Tectonic Major Test, Geothermal Sites, Geothermal Field, Geothermal Gradients, Geothermal Resources, Geothermal Power Generation, Geothermal Electric Power Plant, Geothermal-Preheat Hybrid with Conventional Plant

**OCEAN ENERGY:** Development of a Tidal Power Scheme, Grid Interfacing of Tidal Power, Wave Energy, Mathematical Analysis of Wave Energy, Empirical Formulae on Wave Energy, Wave Energy Conversion, Principle of Wave Energy plant, Wave Energy Conversion Machines.

## Unit 4

**FUEL CELLS:** Principle of Operation of Fuel Cell, Fuel Processor, Fuel Cell Types, Energy Output of a Fuel Cell, Efficiency, and EMF of a Fuel Cell, Operating Characteristics of Fuel Cells, Thermal Efficiency of Fuel Cell

**HYDROGEN ENERGY SYSTEM:** Hydrogen Production, Hydrogen Storage, Development of Hydrogen Cartridge, Gas Hydrate

**HYBRID ENERGY SYSTEMS:** Hybrid Systems AND ITS Types, Electric and Hybrid Electric Vehicles, Hydrogen-Powered-Electric Vehicles.

- 1. Kothari DP, Singal KC, Ranjan Rakesh, "Renewable energy sources and emerging technologies, 2nd ed, Prentice Hall (India)
- 2. Rai G D, "Non-Conventional Sources of Energy, Khanna Publishers.
- 3. Bansal N K, Kleemann M, Heliss M, "Renewable energy sources and conversion technology", McGraw Hill Education.
- 4. Abbasi S A, Abbasi N, "Renewable energy sources and their environmental impact", PHI.
- 5. Mittal KM, "Renewable energy Systems", Wheelar Publishing.
- 6. Mukherjee D, "Renewable energy Systems", New Age International.

| MTEL-107                     | Power Electr     | onics Applica                                                                                                                  | tions in Rene   | wable Energy   |              |       |           |  |  |  |  |  |
|------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|--------------|-------|-----------|--|--|--|--|--|
| Lecture                      | Tutorial         | Practical                                                                                                                      | Credit          | Major Test     | Minor Test   | Total | Time(Hrs) |  |  |  |  |  |
| 3                            | 0                | 0 0 3 60 40 100 3                                                                                                              |                 |                |              |       |           |  |  |  |  |  |
| Program<br>Objective<br>(PO) |                  | The main objective of the course is to impart the students with the application of power system in renewable energy resources. |                 |                |              |       |           |  |  |  |  |  |
|                              |                  |                                                                                                                                | Course Outco    | omes (CO)      |              |       |           |  |  |  |  |  |
| After complet                | tion of course s | students will be                                                                                                               | e able to       |                |              |       |           |  |  |  |  |  |
| C01                          | To impart know   | wledge about po                                                                                                                | ower electronic | s devices and  | DC-DC conver | ters. |           |  |  |  |  |  |
| CO2                          | To acquaint st   | To acquaint students with the modern power electronics converters.                                                             |                 |                |              |       |           |  |  |  |  |  |
| CO3                          | To impart know   | To impart knowledge to students about power electronics interface devices for solar energy.                                    |                 |                |              |       |           |  |  |  |  |  |
| CO4                          | To let student   | understand win                                                                                                                 | d energy interf | acing devices. |              |       |           |  |  |  |  |  |

Review of Power Devices: SCR, BJT, MOSFET, IGBT, GTO, Safe operating Limits, Selection of devices for various applications.

Phase controlled Converters:  $(1-\phi \& 3-\phi)$  thyristor fed half controlled, fully controlled and Dual converters with inductive and motor load.

DC to DC converters: Analysis of various conduction modes of Buck, Boost, Buck-Boost.

#### Unit2

Modern Power Electronic Converters: Basic concepts of VSI, single phase half bridge, full bridge and three phase bridge inverters, PWM modulation strategies, Sinusoidal PWM, Space vector modulation, Selective Harmonic Elimination method, other inverter switching schemes, blanking time, Current source inverters.

## Unit3

Design of Power Electronics Interfaces for Solar PV: Solar PV technologies, MPPT, Design of DC-DC converters for MPPT, MPPT algorithms, Implementation of MPPT control through DSP controllers. Topologies for grid connected and standalone applications: single phase and three phase systems, Single stage and multistage, isolated and non-isolated.

#### Unit4

Power Electronics Interfaces for WES: Topologies of WES, design considerations for wind energy Switch rectifier/inverter system, Power Converters for Doubly Fed Induction Generators (DFIG) in Wind Turbines. Power Electronics Interfaces for Fuel Cells: Types of fuel cells, Proton Exchange Membrane (PEM) fuel cell: features and operational characteristics, Design of DC-DC converters for PEM fuel cell, MPPT in Fuel Cell.

- 1. Mohan N, Undel and T M, Robbins W P, "Power Electronics, Converters, Applications & Design", Wiley India Pvt. Ltd.
- 2. Bose B K, "Modern Power Electronics and AC Drives", Pearson Education.
- 3. Joseph Vithayathil, "Power Electronics", Tata McGraw Hil.
- 4. Amirnaser Yezdani, and Reza Iravani, "Voltage Source Converters in Power Systems: Modelling, Control and Applications", IEEE John Wiley Publications.
- 5. Solanki C S, "Solar Photo Voltaic", PHI learning Pvt Ltd.

| MTEL-109      |                                   |                   |                  | Smart Grid       |                  |                |              |  |  |  |  |
|---------------|-----------------------------------|-------------------|------------------|------------------|------------------|----------------|--------------|--|--|--|--|
| Lecture       | Tutorial                          | Practical         | Credit           | Major Test       | Minor Test       | Total          | Time(Hrs)    |  |  |  |  |
| 3             | 0                                 | 0                 | 3                | 60               | 40               | 100            | 3            |  |  |  |  |
| Program       | The main obje                     | ective of the cou | irse is to impar | t the students   | with the knowle  | edge of smart  | Grid and its |  |  |  |  |
| Objective     | advantages over conventional grid |                   |                  |                  |                  |                |              |  |  |  |  |
| (PO)          |                                   |                   |                  |                  |                  |                |              |  |  |  |  |
|               | Course Outcomes (CO)              |                   |                  |                  |                  |                |              |  |  |  |  |
| After complet | ion of course s                   | students will be  | e able to        |                  |                  |                |              |  |  |  |  |
| C01           |                                   | wledge about S    | mart Grids and   | Appreciate the   | e difference bet | tween smart gr | id &         |  |  |  |  |
|               | conventional g                    |                   |                  |                  |                  |                |              |  |  |  |  |
| CO2           | To acquaint st<br>installations   | udents with the   | phenomenon of    | of smart meteri  | ng concepts to   | industrial and | commercial   |  |  |  |  |
| CO3           |                                   | wledge to stude   | nts about Forn   | nulate solutions | in the areas o   | f smart substa | tions.       |  |  |  |  |
|               |                                   | neration and wid  |                  |                  |                  |                | ,            |  |  |  |  |
| CO4           | To let student                    | understand mic    | rogrid and rela  | ted issues       |                  |                |              |  |  |  |  |

## UNIT-1

Introduction to Smart Grid, Evolution of Electric Grid Concept of Smart Grid, Definitions Need of Smart Grid, Concept of Robust & Self-Healing Grid, Present development & International policies in Smart Grid. Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources Power Quality Conditioners for Smart Grid

### UNIT-2

Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS) Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Smart Substations, Substation Automation, Feeder Automation. Cyber Security for Smart Grid

#### UNIT-3

Geographic Information System(GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU)

## UNIT-4

Concept of micro-grid, need & applications of micro-grid, formation of micro-grid, Issues of interconnection, protection & control of Plastic & Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel-cells, micro-turbines Captive power plants, Integration of renewable energy sources

- 1. Keyhani A, "Design of smart power grid renewable energy systems", Wiley IEEE.
- 2. Berger L T, Iniewski K, "Smart Grid: Applications, Communications and Security", Wiley.
- 3. Gellings C W., "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press.
- 4. Ekanayake J B, Jenkins N, Liyanage K, Yokoyama A, "Smart Grid: Technology and Applications", Wiley.
- 5. Borlase S, "Smart Grid: Infrastructure, Technology and solutions", CRC Press.
- 6. Phadke A G, "Synchronized Phasor Measurement and their Applications", Springer.

| MTEL-111                     |                             |                                                                                                       | Bio-Medical S  | ignal & Image    | Processing      |               |               |  |  |  |  |  |
|------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------|----------------|------------------|-----------------|---------------|---------------|--|--|--|--|--|
| Lecture                      | Tutorial                    | Practical                                                                                             | Credit         | Major Test       | Minor Test      | Total         | Time(Hrs)     |  |  |  |  |  |
| 3                            | 0                           | 0                                                                                                     | 3              | 60               | 40              | 100           | 3             |  |  |  |  |  |
| Program<br>Objective<br>(PO) | This course wi<br>assessing | This course will look at Biomedical signal and Image for understanding and their processing assessing |                |                  |                 |               |               |  |  |  |  |  |
|                              |                             |                                                                                                       | Course Outc    | omes (CO)        |                 |               |               |  |  |  |  |  |
| After complet                | tion of course s            | tudents will be                                                                                       | able to        |                  |                 |               |               |  |  |  |  |  |
| C01                          | Understand di               | fferent types of I                                                                                    | biomedical sig | nal and Identify | and analyse dif | ferent biomed | ical signals. |  |  |  |  |  |
| CO2                          | Understand ba               | Understand basics of Image processing and its methods                                                 |                |                  |                 |               |               |  |  |  |  |  |
| CO3                          | To emphasize                | To emphasize and analysis of Clustering and Classification                                            |                |                  |                 |               |               |  |  |  |  |  |
| CO4                          | To study diffe              | rent types of bio                                                                                     | signals and th | neir processing  |                 |               |               |  |  |  |  |  |

#### Unit-1

**Signals and Biomedical Signal Processing:** Introduction and overview, Analog, discrete and digital signals, Processing and transformation of signals, Signal processing for feature extraction, Characteristics of digital Images, Fourier transform: Properties of One-Dimensional Fourier Transform, Discrete Fourier Transform.

### . Unit-2

**Image Processing:** Image filtering Enhancement and Restoration, Point processing, Mask processing: linear filtering in Space domain, Frequency-domain filtering, Smoothing and sharping filters in frequency domain, Wavelet transform, FFT to STFT, One-Dimensional Continuous and discrete Wavelet Transform, Image processing methods.

#### Unit-3

**Clustering and Classification:** Clustering versus Classification, Feature extraction, Biomedical and. Biological features, Signal and Image processing features, K-means: A Simple Clustering Method, study of different types of Classifiers for signal processing.

·

## Unit-4

**Processing of Biomedical Signals:** Electric activities of Cell, Electric data acquisition, Electrocardiogram: Signal of Cardiovascular system, Processing and feature extraction of ECG, Electroencephalogram, Signal of the brain, Processing and feature extraction of EEG, Electromyogram: Signal of muscles, Processing and feature extraction of EMG. Frequency and wavelet-domain analysis.

#### Suggested Books:

- 1.KayvanNajarian& Robert Splinter, "Introduction to Biomedical signal and Image Processing", CRC Press
- 2.MetinAkay "Time Frequency & Wavelets in Biomedical Signal Processing", Wiley-IEEE Press.

3. Amine Nait-Ali, "Advanced Biomedical Signal Processing", Springer.

| MTEL-113      |                  |                                                                                                 | Advanced Di      | gital Signal Pr    | rocessing           |                |               |  |  |  |  |  |
|---------------|------------------|-------------------------------------------------------------------------------------------------|------------------|--------------------|---------------------|----------------|---------------|--|--|--|--|--|
| Lecture       | Tutorial         | Practical                                                                                       | Credit           | Major Test         | Minor Test          | Total          | Time(Hrs)     |  |  |  |  |  |
| 3             | 0                | 0                                                                                               | 3                | 60                 | 40                  | 100            | 3             |  |  |  |  |  |
| Program       | The main obje    | The main objective of the course is to impart the students with the knowledge of LTI system and |                  |                    |                     |                |               |  |  |  |  |  |
| Objective     | designing of dif | designing of different types of Filters.                                                        |                  |                    |                     |                |               |  |  |  |  |  |
| (PO)          |                  |                                                                                                 |                  |                    |                     |                |               |  |  |  |  |  |
| Course Outco  | omes (CO)        |                                                                                                 |                  |                    |                     |                |               |  |  |  |  |  |
| After complet | ion of course    | students will b                                                                                 | e able to        |                    |                     |                |               |  |  |  |  |  |
| C01           | To impart        | knowledge abo                                                                                   | out LTI system a | nd DFT.            |                     |                |               |  |  |  |  |  |
| CO2           | To acqua         | int students with                                                                               | n the study and  | design of FIR filt | ers.                |                |               |  |  |  |  |  |
| CO3           | To impart        | knowledge to s                                                                                  | tudents about s  | study and design   | of IIR filters.     |                |               |  |  |  |  |  |
| CO4           | To let student   | understand the                                                                                  | concept and des  | sign of adaptive   | digital filters and | power spectrun | n estimation. |  |  |  |  |  |

### UNIT-1

Introduction of DSP: Introduction to Signal Processing, Discrete Linear Systems, superposition Principle, UNIT-Sample response, stability & causality Criterion.

Fourier Transform & inverse Fourier transform: Frequency domain design of digital filters, Fourier transform, use of Fourier transform in Signal processing. The inverse fourier transform, sampling continuous function to generate a sequence, Reconstruction of continuous -time signals from Discrete-time sequences.

## UNIT-2

Digital Filter Structure & Implementation: Linearity, time invariance & causality, the discrete convolution, the transfer function, stability tests, steady state response, Amplitude & Phase Characteristics, stabilization procedure, Ideal LP Filter, Physical reliability & specifications. FIR Filters, Truncation windowing & Delays, design example, IIR Filters: Review of design of analog filters & analog frequency transformation. Digital frequency transformation. Design of LP filters using impulse invariance method, bilinear transformation, Phase equalizer, digital all pass filters.

## UNIT-3

Implementation of Filters: Realization block diagrams, Cascade & parallel realization, effect of infinite-word length, transfer function of degree 1&2, Sensitivity comparisons, effects of finite precision arithmetic on Digital filters.

#### UNIT-4

DFT & FFT & Z transform with Applications: Discrete Fourier transform, properties of DFT, Circular Convolution, Fast Fourier Transform, Realizations of DFT. The Z-transform, the system function of a digital filter, Digital Filter implementation from the system function, the inverse Z- transform, properties & applications, Special computation of finite sequences, sequence of infinite length & continuous time signals, computation of Fourier series & time sequences from spectra.

- 1. J G Proakis, "Digital Signal Processing using Matlab", Pearson Education.
- 2. Alam V. Oppenheim and Ronald W. Schafer, "Digital Signal Processing" Pearson Education.
- 3. Rabiner & Gold, "Major Test& application of digital Signal Processing", Pearson Education
- 4. Roman kuc, "Introduction to Digital Signal Processing," Tata McGraw Hill Edition.
- 5. Richard G. Lyons, "Understanding Digital Signal Processing", Pearson Education.
- 6. Paulo S. R. Diniz, Eduardo A. B. da Silva, Sergio L. Netto, "Digital Signal Processing: System Analysis and Design", Springer.
- 7. Manolakis G Demitries, "Applied Digital Signal Processing", Cambridge Univ. Press.

| MTEL-115      |                                                                                                     |                                             | Bio-Med          | ical Instrumen  | tation         |               |           |  |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------|------------------|-----------------|----------------|---------------|-----------|--|--|--|--|--|
| Lecture       | Tutorial                                                                                            | Practical                                   | Credit           | Major Test      | Minor Test     | Total         | Time(Hrs) |  |  |  |  |  |
| 3             | 0                                                                                                   | 0                                           | 3                | 60              | 40             | 100           | 3         |  |  |  |  |  |
| Program       | The main objective of the course is to impart the students with the knowledge of different types of |                                             |                  |                 |                |               |           |  |  |  |  |  |
| Objective     | <b>Biomedical Ins</b>                                                                               | Biomedical Instruments with their controls. |                  |                 |                |               |           |  |  |  |  |  |
| (PO)          |                                                                                                     |                                             |                  |                 |                |               |           |  |  |  |  |  |
| Course Outco  | omes (CO)                                                                                           |                                             |                  |                 |                |               |           |  |  |  |  |  |
| After complet | ion of course                                                                                       | students will be                            | e able to        |                 |                |               |           |  |  |  |  |  |
| C01           | Understand th                                                                                       | e different types                           | s of biomedical  | transducer for  | signal measur  | ement and rec | ording.   |  |  |  |  |  |
| CO2           | Understand ba                                                                                       | asics of blood p                            | ressure, blood   | flow and respir | atory system n | neasurements. |           |  |  |  |  |  |
| CO3           | Understand th                                                                                       | e muscoskeleta                              | I and nervous    | system and the  | eir measuremei | nt.           |           |  |  |  |  |  |
| CO4           | To emphasize                                                                                        | e and analysis c                            | of recent trends | in biomedical   | Engg and safe  | ty measureme  | nt.       |  |  |  |  |  |

#### Unit-1

Characteristics of Transducers and Electrodes for Biological Measurement: Introduction to human body, block diagram, classification, various physiological events and suitable transducer for their recording, bioelectric potentials.

Cardiac system: Cardiac musculature, Electro cardiography, ECG recording, phonocardiography, holter recording ECG lead system, Heart rate meter, vector cardiography, pacemakers,

#### Unit-2

Blood pressure and Blood flow measurement; Invasive and non-invasive methods of blood pressure, characteristics of blood flow and heart sound, Cardiac output measurement, Plethysmography.

Respiratory system: Mechanics or breathing, parameters of respiration, Respiratory system measurements, respiratory therapy instruments.

#### Unit-3

Muscoskeletal Systems; EMG, Clinical applications, Muscles stimulator, Instrumentation for measuring Nervous function; EEG signal, frequency band classification, Lead systems, EEG recording, Clinical applications of EEG signal, X-ray CT scan, MRI, PET.

Clinical Laboratory Instrumentation; Test on blood cell, Blood cell counter, Blood glucose monitors, auto analyzer, pulse-oximeter.

#### Unit-4

Recent Trends in Biomedical Engg: Patient care and monitoring, Non-invasive diagnostic instrumentation, biotelemetry, telemedicine, prosthetic devices, lie detector test, Application of lasers and ultrasonic in biomedical field.

Troubleshooting and Electrical safety of Biomedical instruments; Physiological effect of current and safety measurement.

#### Suggested Books:

1.W T Wester, J G Tompkins, "Design of Microprocessor based Medical Instrumentation", Englewood cliffs

2.Tatsuo, Togato & Toshiya, "Biomedical transducers and instruments", CRC Press

3. Joseph P Bronzino, "The Biomedical engineering handbook", CRC Press

| MTEL-117      | Instrumentation & Control Lab                              |                                                                                      |                   |                  |                  |                 |               |  |  |  |  |
|---------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------|------------------|------------------|-----------------|---------------|--|--|--|--|
| Lecture       | Tutorial                                                   | Practical                                                                            | Credit            | Major Test       | Minor Test       | Total           | Time(Hrs)     |  |  |  |  |
| 0             | 0                                                          | 4                                                                                    | 2                 | 60               | 40               | 100             | 3             |  |  |  |  |
| Program       | The main ob                                                | The main objective of the course is to impart the students with the knowledge of how |                   |                  |                  |                 |               |  |  |  |  |
| Objective     | to create, si                                              | mulate and m                                                                         | easure the c      | lifferent appli  | cations in VI    |                 |               |  |  |  |  |
| (PO)          |                                                            |                                                                                      |                   |                  |                  |                 |               |  |  |  |  |
|               |                                                            |                                                                                      | Course Outco      | mes (CO)         |                  |                 |               |  |  |  |  |
| After complet | tion of course s                                           | tudents will be                                                                      | able to           |                  |                  |                 |               |  |  |  |  |
| C01           | To impart knov                                             | vledge about ma                                                                      | ithematical, Boo  | plean operations | s, half adder.   |                 |               |  |  |  |  |
| CO2           | Understand ho                                              | w to create the                                                                      | VI for decimal    | to binary conve  | rsion, array fur | nction, sequend | ce structure. |  |  |  |  |
|               | Also studying the properties and options of graphs/charts. |                                                                                      |                   |                  |                  |                 |               |  |  |  |  |
| CO3           | To impart know                                             | vledge about me                                                                      | easurement of the | emperature, stra | ain and power u  | ising VI.       |               |  |  |  |  |
| CO4           | Understand to                                              | create model fo                                                                      | r speed control   | of DC motor, ar  | alysis of PID co | ontroller.      |               |  |  |  |  |

## Following experiments (at least 10) are required to be performed in MATLAB/ETAP/LabView or equivalent:

- 1. Find addition, subtraction, multiplication and division of two numeric inputs
- 2. Perform various Boolean operations (AND, OR, NAND, NOR, XOR).
- 3. Add two binary bits and find the sum and carry (half adder).
- 4. Create a Vito find the decimal equivalent of a binary number using sub VI.
- 5. Create VI for studying array functions.
- 6. Create VI for studying sequence structure.
- 7. Create VI for studying properties and options of graphs/charts.
- 8. Measurement of Temperature using Virtual instrumentation.
- 9. Measurement of Strain using Virtual instrumentation.
- 10.ImplementationofVI to control the speed of a DC motor.
- 11.RealTime Power measurement and analysis using Virtual instrumentation.
- 12. Creating Models, Simulation and Analysis of PID Controller.
- 13. Study and Implementation of Displacement Transducers.

| MTEL-119      | Advanced Power System Lab-I                                                                    |                                                              |                 |                 |                   |                |               |  |  |
|---------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------|-----------------|-------------------|----------------|---------------|--|--|
| Lecture       | Tutorial                                                                                       | Practical                                                    | Credit          | Major Test      | Minor Test        | Total          | Time(Hrs)     |  |  |
| 0             | 0                                                                                              | 4                                                            | 2               | 60              | 40                | 100            | 3             |  |  |
| Program       |                                                                                                | ctive of the cou                                             |                 | the students w  | ith the knowled   | lge of progran | ning for      |  |  |
| Objective     | various types                                                                                  | of power systen                                              | n appliances.   |                 |                   |                |               |  |  |
| (PO)          |                                                                                                |                                                              |                 |                 |                   |                |               |  |  |
|               |                                                                                                |                                                              | Course Outco    | mes (CO)        |                   |                |               |  |  |
| After complet | ion of course s                                                                                | students will be                                             | e able to       |                 |                   |                |               |  |  |
| C01           | To impart kno                                                                                  | wledge about a                                               | program to de   | velop Bus Adm   | ittance Matrix,   | power flow stu | udies using   |  |  |
|               | Newton-Raph                                                                                    | son and Gauss                                                | Siedel method   |                 |                   | •              | 5             |  |  |
| CO2           | Understand h                                                                                   | ow to determine                                              | the generalize  | ed constants A  | , B, C, D of a I  | ong transmiss  | sion line and |  |  |
|               | voltage & curr                                                                                 | ent for three ph                                             | ase faults ona2 | 2-buspowersys   | tem               | -              |               |  |  |
| CO3           | To impart knowledge about simulation and analysis of a single phase & three phase power system |                                                              |                 |                 |                   |                |               |  |  |
|               | and generatio                                                                                  | and generation, transmission & distribution in power system. |                 |                 |                   |                |               |  |  |
| CO4           |                                                                                                | owledge about                                                | simulation and  | d analysis of c | lifferent fault c | ondition and   | contingency   |  |  |
|               | concept in a p                                                                                 | ower system.                                                 |                 |                 |                   |                |               |  |  |

## Following experiments are required to be performed in MATLAB/ETAP/LabView or equivalent.

- 1. Write a program to develop Bus Admittance Matrix YBUS.
- 2. Write a program for the Power Flow Studies using N-R(Newton-Raphson) method.
- 3. Write a program for the power flow analysis of system using Gauss-Siedel Technique.
- 4. Determination of the generalized constants A, B, C, D of a long transmission line.
- 5. Determination of the voltage and current for three phase faults on a 2-bus power system.
- 6. Simulation and Analysis of a single phase & three phase power system.
- 7. Simulation & Analysis of generation, transmission & distribution in power system.
- 8. Simulation & Analysis of different fault condition in power system.
- 9. Simulation and Analysis of 9-bus power system.
- 10. Simulation and Analysis of contingency concept in a power system.

| MTRM-111              |             |                                                                                           | Resear      | ch Methodolo    | gy and IPR                |          |        |  |  |  |
|-----------------------|-------------|-------------------------------------------------------------------------------------------|-------------|-----------------|---------------------------|----------|--------|--|--|--|
| Lecture               | Tutorial    | Practical                                                                                 | Credit      | Major Test      | Minor Test                | Total    | Time   |  |  |  |
| 2                     | 0           | 0                                                                                         | 2           | 60              | 40                        | 100      | 3 Hrs. |  |  |  |
| Program               | To enable   | o enable students to Research Methodology and IPR for further research work and           |             |                 |                           |          |        |  |  |  |
| <b>Objective (PO)</b> | investmer   | vestment in R & D, which leads to creation of new and better products, and in turn brings |             |                 |                           |          |        |  |  |  |
|                       | about, ecc  | onomic grov                                                                               | th and so   | cial benefits.  |                           |          |        |  |  |  |
|                       |             | C                                                                                         | ourse Ou    | tcomes (CO)     |                           |          |        |  |  |  |
| C01                   | Understar   | nd research                                                                               | problem f   | ormulation.     |                           |          |        |  |  |  |
| CO2                   | Analyze re  | esearch rela                                                                              | ted inform  | nation          |                           |          |        |  |  |  |
| CO3                   | Understar   | id that today                                                                             | 's world is | s controlled by | Computer, Information Tec | hnology, | but    |  |  |  |
|                       | tomorrow    | world will be                                                                             | e ruled by  | ideas, concept  | t, and creativity.        |          |        |  |  |  |
|                       |             | 0                                                                                         |             |                 | important place in growth |          |        |  |  |  |
|                       | individuals | ividuals & nation, it is needless to emphasis the need of information about               |             |                 |                           |          |        |  |  |  |
|                       | Intellectua | I Property F                                                                              | ight to be  | promoted amo    | ong students in general & |          |        |  |  |  |
|                       | engineerir  | ng in particu                                                                             | lar.        |                 |                           |          |        |  |  |  |

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

# Unit 2

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

# Unit 3

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

# Unit 4

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

# References:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'.
- 2. C.R. Kothari, "Research Methodology: Methods & Techniques, 2<sup>nd</sup> edition or above, New Age Publishers.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall , "Industrial Design", McGraw Hill, 1992.
- 6. Niebel , "Product Design", McGraw Hill, 1974.
- 7. Asimov , "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

| MTEL-102      |                                           | Advanced Power System Protection                                                          |                  |                 |                |                |             |  |  |  |  |
|---------------|-------------------------------------------|-------------------------------------------------------------------------------------------|------------------|-----------------|----------------|----------------|-------------|--|--|--|--|
| Lecture       | Tutorial                                  | Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)                           |                  |                 |                |                |             |  |  |  |  |
| 3             | 0                                         | 0                                                                                         | 3                | 60              | 40             | 100            | 3           |  |  |  |  |
| Program       | The main obje                             | The main objective of the course is to impart the students with the knowledge of advanced |                  |                 |                |                |             |  |  |  |  |
| Objective     | protection system in modern power system. |                                                                                           |                  |                 |                |                |             |  |  |  |  |
| (PO)          |                                           |                                                                                           |                  |                 |                |                |             |  |  |  |  |
|               |                                           |                                                                                           | Course Outco     | mes (CO)        |                |                |             |  |  |  |  |
| After complet | tion of course                            | students will b                                                                           | e able to        |                 |                |                |             |  |  |  |  |
| C01           | To impart                                 | knowledge abo                                                                             | out need of pro  | tection system  | and various is | sues of CT ar  | nd PT       |  |  |  |  |
| CO2           | To acqua                                  | int students wit                                                                          | h the comparat   | tors and relays |                |                |             |  |  |  |  |
| CO3           | To impar                                  | t knowledge to                                                                            | o students ab    | out distance    | protection an  | d protection   | of feeders, |  |  |  |  |
|               | generators and motors.                    |                                                                                           |                  |                 |                |                |             |  |  |  |  |
| CO4           | To let student                            | understand pro                                                                            | tection of trans | sformers, buse  | s and modern   | protection sys | stem.       |  |  |  |  |

Introduction: Need for protective systems, Zones of protection, classification of protective relays, electromechanical, solid state and digital relays, comparisons between different types of relays.

Current transformers and potential transformers: construction, operating principle and their performance

## Unit2

Comparators: general equation of comparators, Analysis for amplitude comparator, analysis for phase comparator, duality between amplitude and phase comparators.

Over current relays, differential relays, operating and restraining characteristics, distance relays, impedance relays, reactance relays, and mho relay guadrilateral relays, elliptical relays, comparison with conventional relays.

## Unit3

Distance protection: Principle of distance relaying, time grading of distance relays, schemes of distance protection, distance protection by impedance, reactance and mho relays, Effect of power swings on the performance of distance relays.

Pilot relaying schemes: Pilot wire protection, carrier current protection.

Protection of Generators and Motors: Types of faults, Stator and rotor protection against various types of faults.

## Unit4

Protection of Transformers: Types of faults, differential protection schemes, harmonic restraint relay, over flux protection, Earthing transformer protection.

Bus Zone Protection: Types of Bus-bar faults, differential current protection frame leakage protection. Microprocessor based protective relays: Overcurrent relay, impedance relay, reactance relay, mho relay, microprocessor based distance relaying.

Application of artificial intelligence and wavelet transform in protective relays

## Suggested Books:

1. TSM Rao, "Power System Protection–Static Relays", Tata McGraw Hill Education Pvt. Ltd.

2. B. Bhalja, R P Maheshwari and N G Chothani, "Protection and Switchgear", Oxford University Press.

3. Ravinder Nath & Chander, "Power System Protection and Switchgear", New Age International Publishers.

4. Badri Ram & Vishwakarma, "Power system protection and switch gear" McGraw Hill Education(India)

5. C L Wadhwa, "Electrical Power Systems", New Age International Publishers.

6. Protective Relays – Their Major Test and Practice Vol. I & II by W. Van Warrington.

7. Advanced power system analysis and dynamics by L P Singh: Wiley Eastern N. Delhi.

8. Digital Protection: Protective relay from Electro Mechanical to Microprocessor, L P Singh: Wiley Eastern.

9. Switchgear and protection by S S Rao: Khanna Pub

| MTEL-104      |               | Intelligent Control                                                       |                |                  |                  |             |        |  |  |  |  |
|---------------|---------------|---------------------------------------------------------------------------|----------------|------------------|------------------|-------------|--------|--|--|--|--|
| Lecture       | Tutorial      | Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)           |                |                  |                  |             |        |  |  |  |  |
| 3             | 0             | 0                                                                         | 3              | 60               | 40               | 100         | 3 Hrs. |  |  |  |  |
| Program       | This course w | ill look at <b>differ</b>                                                 | ent types of I | ntelligent con   | trols.           |             |        |  |  |  |  |
| Objective     |               |                                                                           |                | -                |                  |             |        |  |  |  |  |
| (PO)          |               |                                                                           |                |                  |                  |             |        |  |  |  |  |
| Course Outco  | omes (CO)     |                                                                           |                |                  |                  |             |        |  |  |  |  |
| After complet | ion of course | students will b                                                           | e able to      |                  |                  |             |        |  |  |  |  |
| C01           | Understand re | asoning and ap                                                            | oply the ANN r | nodels to differ | ent problems.    |             |        |  |  |  |  |
| CO2           | Understand re | Understand reasoning and apply the learning scheme to different problems. |                |                  |                  |             |        |  |  |  |  |
| CO3           | Understand re | Understand reasoning and apply the Fuzzy system to different problems.    |                |                  |                  |             |        |  |  |  |  |
| CO4           | Understand re | asoning and ap                                                            | ply the Genet  | ic & PSO algor   | ithm to differen | t problems. |        |  |  |  |  |

#### Unit-1

## ANN Models & Architecture:

Biological foundations, ANN models, Types of activation function, introduction to network architecture, multilayer feed forward network (MLFFN), Kohonen self-organizing map, radial basis Function network (RBFN), recurring neural network.

#### Unit-2

#### Learning Processes:

Supervised and unsupervised learning, error-correction learning, Hebbian learning, Boltzman learning, single layer and multilayer perception model, least mean square algorithm, back propagation algorithm, Application in forecasting and pattern recognition and other engineering problems.

### Unit-3

## Fuzzy Control System:

Fuzzy sets, fuzzy set operations, properties, membership functions, fuzzy to crisp conversion, measures of fuzziness, fuzzification and defuzzification methods, application in engineering problems. Simple fuzzy logic controllers with examples, special forms of fuzzy logic models, classical fuzzy control problems.

## Unit-4

## Genetic & PSO Algorithm:

Genetic Algorithm: Types of reproduction operators, crossover & mutation Principles of genetic programming, terminal sets, functional sets, differences between GA & GP, random population generation, solving differential equations using GP, Simulated Annealing Algorithm, Particle Swarm Optimization (PSO) - Graph Grammer Approach - Example Problems

## Suggested Books:

1. M. T. Hagon, Howard B. Demuth and Mark Beale, "Neural Network Design", PWS Publishing.

2. Jacek M Zurada, "Introduction to Artificial Neural Systems", Jaico Publishing House, Bombay.

3. Wasserman, "Neural Computing: Major Test and Practice", Van Nastr and Reinhold.

4. Freeman "Neural Networks-Algorithms, application and programming techniques", Pearson Education.

| MTEL-106      |                 | HVDC Transmission & FACTS Devices                                                |                  |                 |                |               |         |  |  |  |  |
|---------------|-----------------|----------------------------------------------------------------------------------|------------------|-----------------|----------------|---------------|---------|--|--|--|--|
| Lecture       | Tutorial        | Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)                  |                  |                 |                |               |         |  |  |  |  |
| 3             | 0               | 0                                                                                | 3                | 60              | 40             | 100           | 3       |  |  |  |  |
| Program       | The main obje   | ctive of the cou                                                                 | rse is to impart | the students wi | th the knowled | ge of HVDC ar | d FACTS |  |  |  |  |
| Objective     | devices.        |                                                                                  |                  |                 |                |               |         |  |  |  |  |
| (PO)          |                 |                                                                                  |                  |                 |                |               |         |  |  |  |  |
| Course Outco  | mes (CO)        |                                                                                  |                  |                 |                |               |         |  |  |  |  |
| After complet | ion of course s | tudents will be                                                                  | e able to        |                 |                |               |         |  |  |  |  |
| C01           | To impart       | knowledge abo                                                                    | ut HVDC trans    | mission system  |                |               |         |  |  |  |  |
| CO2           | To acquai       | To acquaint students with the interaction of AC and DC system and various links. |                  |                 |                |               |         |  |  |  |  |
| CO3           | To impart       | To impart knowledge to students about facts devices.                             |                  |                 |                |               |         |  |  |  |  |
| CO4           | To let student  | understand con                                                                   | npensation syst  | em and control  | techniques.    |               |         |  |  |  |  |

HVDC Transmission: Development of HVDC Technology, Selection of converter configuration. Rectifier and Inverter operation. Control of HVDC converters and Systems.

Harmonics in HVDC Systems, Harmonic elimination, AC and DC filters.

## Unit 2

Interaction between HVAC and DC systems – Voltage interaction, over voltages on AC/DC side, Harmonic instability problems and DC power modulation.

Multi-terminal DC links and systems; series, parallel and series parallel systems, their operation and control.

## Unit 3

Introduction of Facts Concepts: Basic of flexible alternating current transmission system (FACTS) controllers, shunt, series, combined and other controllers, HVDC or FACTS, static VAR compensator (SVC) and static synchronous compensator (STATCOM), Static Synchronous Series Compensator (SSSC), Thyristor Controlled Series, Capacitor (TCSC). Solid State Contactors (SSC) and TSSC.

## Unit 4

Combined Compensators: Introduction, Unified power flow controller (UPFC), conventional power control capabilities, real and reactive power flow control, comparison of UPFC to series compensators, control structure, dynamic performance. Interline power flow controller (IPFC) basic operating principles, control structure, application considerations.

## Suggested Books:

1. Hingorani N.G, "Understanding FACTS (Concepts and Technology of Flexible AC Transmission System)", Standard Publishers.

2. Song Y.H. and Johns A.T., "Flexible AC Transmission Systems", IEEE Press.

3. Ghosh A. and Ledwich G., "Power Quality Enhancement using Custom Power Devices", Kluwer Academic Publishers.

4. Mathur R.M. and Verma R.K., "Thyristor based FACTS controllers for Electrical Transmission Systems", IEEE Press.

5. Bollen M.H.J., "Understanding Power Quality and Voltage Sag", IEEE Press.

- 6. Padiyar K.R., "FACTS Controllers in Power Transmission and Distribution", New Age International Publisher.
- 7. Miller T.J.E., "Reactive Power Control in Electric Systems", John Wiley.

8. Kamakshaiah S, Kamaraju V, "HVDC Transmission", McGraw Hill Education.

| MTEL-108      |                 |                   | Transien          | ts in Power Sy   | /stem            |                 |              |
|---------------|-----------------|-------------------|-------------------|------------------|------------------|-----------------|--------------|
| Lecture       | Tutorial        | Practical         | Credit            | Major Test       | Minor Test       | Total           | Time(Hrs)    |
| 3             | 0               | 0                 | 3                 | 60               | 40               | 100             | 3 Hrs.       |
| Program       | The main obje   | ctive of the cou  | rse is to impart  | the students w   | ith the knowled  | dge of transien | its in power |
| Objective     | system.         |                   |                   |                  |                  |                 |              |
| (PO)          | -               |                   |                   |                  |                  |                 |              |
| Course Outco  | omes (CO)       |                   |                   |                  |                  |                 |              |
| After complet | ion of course s | students will be  | e able to         |                  |                  |                 |              |
| C01           | To impart       | knowledge abo     | out different typ | es of factors ef | fecting power of | quality.        |              |
| CO2           | To acqua        | int students with | n the transients  | and lightning.   |                  |                 |              |
| CO3           | To impart       | knowledge to h    | armonics.         |                  |                  |                 |              |
| CO4           | To let student  | understand abo    | out distributed g | generation and   | various issues   | related to pow  | ver quality. |

UNIT-1

What is Power Quality, Power Quality is Equal to Voltage Quality, Why are we concerned about Power Quality, Voltage Imbalance, Waveform Distortion, Voltage Fluctuation, Power Frequency Variations, Power Quality Terms, Sources of Sags and Interruption, Estimating Voltage Sag Performance, Area of Vulnerability, Equipment Sensitivity of Voltage Sags, Transmission Systems Sag Performance Evaluation, Utility Distribution System Sag Performance Evaluation.

## UNIT-2

Sources of Transient Overvoltage's: Capacitor Switching, Restrike during Capacitor Deenergizing, Lightning, Ferro - resonance, Other Switching Transients. Principles of Overvoltage Protection.

Devices for Overvoltage Protection: Surge Arresters and Transient Voltage Surge Suppressor, Isolation Transformers, Utility System Lightning Protection, Shielding, Line Arresters, Low Side Surges, Cable Protection, Scout Arrester Scheme, Computer Tools for Transient Analysis.

## UNIT-3

Fundamentals of Harmonics: Harmonic Distortion, Voltage vs Current Distortion, Harmonics vs Transients, Power System Quantities Under Non Sinusoidal Conditions, Active, Reactive and Apparent Power, Power Factor: Displacement and True, Harmonic Phase Sequences, Triplen Harmonics.

Harmonic Sources from Commercial Loads: Single Phase Power Supplies, Fluorescent Lighting, Adjustable Speed Drives for HVAC and Elevators.

Effects of Harmonic Distortion: Impact on Capacitors, Impact on Transformers, Impact on Motors, Impact on Telecommunications, Impact on Energy and Demand Metering.

## UNIT-4

Distributed Generation and Power Quality: Resurgence of DG, Perspectives on DG Benefits, Perspectives on Interconnection, DG Technologies, Fuel Cells, Wind Turbines, Photovoltaic Systems, Interface to the Utility System, Synchronous Machines, Asynchronous Machines, Electronic Power Inverters, Power Quality Issues, Voltage Regulation, Harmonics, Voltage Sags, Operating Conflicts, Voltage Regulation Issues, Islanding, Transformer Connections.

- 1. R C Dugan, M F McGranaghan, S Santoso, H. Wayne Beaty, "Electrical Power System Quality", McGraw Hill.
- 2. Akihiro Ametani, Naoto Nagaoka, Yoshihiro Baba, Teruo Ohno, "Power System Transients: Theory and Applications", CRC Press.
- 3. L.V. Bewley, "Traveling waves in Transmission Systems", Dover.
- 4. R. Rudenberg, "Electric Stroke waves in Power Systems", Harvard University Press, Cambridge, Massachusetts.
- 5. Allan Greenwood, "Electric Transients in Power Systems", Wiley Interscience.
- 6. CS Indulkar and DP Kothari, "Power System Transients, Statistical Approach", PHI Pvt Ltd., New Delhi.
- 7. VA Venikov, "Transient phenomena in Electrical Power Systems", Pergamon Press, London.
- 8. Klaus Ragaller, "Surges in High Voltage Networks", Plenum Press, New York.
- 9. Pritindra Chowdhari, "Electromagnetic transients in Por System", John Wiley and Sons Inc.
- 10. Naidu M S and Kamaraju V, "High Voltage Engineering", TMH Publishing Company Ltd., New Delhi.

| MTEL-110     |                  | Advanced Power Distribution & Automation                                                                   |                 |                 |                   |                |             |  |  |  |  |
|--------------|------------------|------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-------------------|----------------|-------------|--|--|--|--|
| Lecture      | Tutorial         | Tutorial         Practical         Credit         Major Test         Minor         Total         Time(Hrs) |                 |                 |                   |                |             |  |  |  |  |
|              |                  |                                                                                                            |                 | -               | Test              |                |             |  |  |  |  |
| 3            | 0                | 0                                                                                                          | 3               | 60              | 40                | 100            | 3 Hrs.      |  |  |  |  |
| Program      | The main obje    | ctive of the cours                                                                                         | se is to impart | the students w  | ith the knowle    | dge of electr  | icity       |  |  |  |  |
| Objective    | distribution and | distribution and automation.                                                                               |                 |                 |                   |                |             |  |  |  |  |
| (PO)         |                  |                                                                                                            |                 |                 |                   |                |             |  |  |  |  |
| Course Outc  | omes (CO)        |                                                                                                            |                 |                 |                   |                |             |  |  |  |  |
| After comple | tion of course   | students will be                                                                                           | e able to       |                 |                   |                |             |  |  |  |  |
| C01          | To impart know   | vledge about dis                                                                                           | tribution autor | nation.         |                   |                |             |  |  |  |  |
| CO2          | To acquaint stu  | To acquaint students with the control and intelligent system in distribution automation.                   |                 |                 |                   |                |             |  |  |  |  |
| CO3          | To impart know   | vledge to studer                                                                                           | its about rene  | wable energy re | esources and      | distribution n | nanagement. |  |  |  |  |
| CO4          | To let student   | understand com                                                                                             | munication sy   | stem implemen   | tation in distril | bution syster  | n           |  |  |  |  |

## UNIT-1

Introduction: General Concept, Distribution of Power, Power Loads, Connected Loads.

Load Forecasting: Concept of Statistics, Regression Analysis, Correlation Theory, Factor in Power System Loading, Unloading the System, Forecast of System peak.

#### UNIT-2

System Planning: Planning Process, Basic Principle in system planning, System Development, Overview of Distributed generation, Different types of mapping: Global positioning System GPS, Automated mapping AM/Facility Management FM.

Introductory Methods in Power System Planning: Per Unit Calculation, Matrix Algebra, Symmetrical Components, Overview of Load Flow, Automated Planning: software needs, Data, solution techniques (Gauss Iterative method, Gauss seidel iterative method, Newton Raphson iterative method, Improved newton Raphson method) Effect of Abnormal Loads.

## UNIT-3

Brief introduction of Distribution Automation, Role of PLC & SCADA in substation and distribution automation, Consumer information Service (CIS), Geographical information system GIS, Automatic meter Reading (AMR), Automation System.

#### UNIT-4

Metering System: Different types of Meter, Metering system component, Ferraris Meters, Solid state meters, Advance meter Infrastructure Systems (AMI).

Overview of Net metering, Meter current Rating, Prepaid Electricity meters, Meter selection and Location, testing methods.

#### Suggested Books:

1. A. S Pabla, "Electric Power Distribution", McGraw Hill Education.

2. James A. Momoh, "Electric Power Distribution Automation Protection and Control", CRC Press.

- 3. James N-Green and R Wilson, "Control and Automation of electric Power Distribution Systems", CRC Press.
- 4. Turan Gonen, "Electric Power Distribution System Engineering", CRC Press.

5. Abdelhay A. Sallam, "Electric Distribution Systems", Wiley-IEEEPress.

| MTEL-112                     | Digital Control System                                          |                                                                                                          |                 |                   |                   |                 |            |  |  |  |  |
|------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------|-------------------|-------------------|-----------------|------------|--|--|--|--|
| Lecture                      | Tutorial Practical Credit Major Test Minor Test Total Time(Hrs) |                                                                                                          |                 |                   |                   |                 |            |  |  |  |  |
| 3                            | 0                                                               | 0                                                                                                        | 3               | 60                | 40                | 100             | 3 Hrs.     |  |  |  |  |
| Program<br>Objective<br>(PO) | The main obje<br>system.                                        | The main objective of the course is to impart the students with the knowledge of digital control system. |                 |                   |                   |                 |            |  |  |  |  |
|                              |                                                                 |                                                                                                          | Course Outco    | omes (CO)         |                   |                 |            |  |  |  |  |
| After complete               | tion of course                                                  | students will b                                                                                          | e able to       |                   |                   |                 |            |  |  |  |  |
| C01                          | To impart kno                                                   | wledge about s                                                                                           | ignal processii | ng in digital cor | ntrol system.     |                 |            |  |  |  |  |
| CO2                          | To acquaint s                                                   | To acquaint students with the control devices and systems.                                               |                 |                   |                   |                 |            |  |  |  |  |
| CO3                          | To impart kno                                                   | wledge to stude                                                                                          | ents about stat | e variables, co   | ntrollability and | l observability | <i>I</i> . |  |  |  |  |
| CO4                          | To let student                                                  | understand the                                                                                           | various conce   | epts of digital o | bservers.         |                 |            |  |  |  |  |

## Unit-1

Signal Processing in Digital Control: Basic digital control scheme, principle of signal conversion, basic discrete-time signal, time-domain model for discrete-time systems, z-transform, transfer function models, jury stability criterion, sample and hold systems, sample spectra and aliasing

### Unit-2

Models of Digital Control Devices and Systems: Introduction, z-domain description of sampled continuous-time plants, z-domain description of systems with dead-time, implementation of digital controllers, digital PID controllers, digital temperature control system, stepping motors and their control, PLC

## Unit-3.

Analysis using State Variable Methods: State variable representation-concepts, modeling, transformation, state diagrams, Jordan canonical form, Eigen values and Eigenvectors,

Solution of state equations, concepts of controllability and Observability,

#### Unit-4

Digital Observers: State regulator design-full order and reduced order state observer, design of state observers, compensator design by separation principle, state feedback with integral control, deadbeat control by state feedback and deadbeat observers

- 1. Ogata K," Discrete time Control Systems", Pearson Education.
- 2. Nagrath and Gopal, "Control System Engineering", New Age International.
- 3. Kuo B C, "Digital Control Systems", Oxford University Press.
- 4. Goapl, "Digital Control & State Variable Method", McGraw Hill Education.

| MTEL-114      | Advanced Microprocessors |                                                                 |                 |                  |                   |               |        |  |  |  |  |  |
|---------------|--------------------------|-----------------------------------------------------------------|-----------------|------------------|-------------------|---------------|--------|--|--|--|--|--|
| Lecture       | Tutorial                 | Tutorial Practical Credit Major Test Minor Test Total Time(Hrs) |                 |                  |                   |               |        |  |  |  |  |  |
| 3             | 0                        | 0                                                               | 3               | 60               | 40                | 100           | 3 Hrs. |  |  |  |  |  |
| Program       | The main obje            | ctive of the cou                                                | rse is to impar | t the students w | ith the knowled   | ge of advan   | ced    |  |  |  |  |  |
| Objective     | microprocesso            | microprocessor.                                                 |                 |                  |                   |               |        |  |  |  |  |  |
| (PO)          |                          |                                                                 |                 |                  |                   |               |        |  |  |  |  |  |
| Course Outco  | omes (CO)                |                                                                 |                 |                  |                   |               |        |  |  |  |  |  |
| After complet | tion of course s         | students will be                                                | e able to       |                  |                   |               |        |  |  |  |  |  |
| C01           | To impart know           | wledge about 80                                                 | )86 microproc   | essors.          |                   |               |        |  |  |  |  |  |
| CO2           | To acquaint st           | To acquaint students with the interfacing converters etc.       |                 |                  |                   |               |        |  |  |  |  |  |
| CO3           | To impart know           | wledge to stude                                                 | nts about mici  | ocontrollers.    |                   |               |        |  |  |  |  |  |
| CO4           | To let student           | about application                                               | on of micropro  | cessor and vari  | ous controllers r | elated to it. |        |  |  |  |  |  |

## UNIT-1

Architecture of 8086 microprocessor, Memory Addressing, Bus Timings for MN/MX mode, interrupt structure. Memory Interfacing and Addressed encoding techniques for 8086 microprocessor

## UNIT-2

Addressing modes, Instruction set and application programs, Assembler Directives, Programming Techniques using TASM, Interfacing D/A and A/D converters using programmable I/O devices, Interfacing Stepper motor. Architecture of INTEL X86 Family: CPU block diagrams, Pin diagrams and internal descriptions of 80286, 386, 486 and Pentium Processor, Instruction formats.

## UNIT-3

Introduction to micro controllers, Architecture of 8051 microcontroller, basic Instruction set, programming, serial data communication, inter facing with D/A and A/D converters.

## UNIT-4

Application of Microprocessors, A Microcomputer-based Industrial Process-control System, Hardware for Control Systems and Temperature Controller, Overview of Smart-Scale Operation.

## Suggested Books:

1. Hall D V, "Microprocessors & Interfacing", McGraw Hill Education.

2. Brey B, "The Intel Processors", Pearson Education.

3. Gibson, "Microprocessors", Prentice Hall of India.

4. Jean Loup Baer, "Microprocessor Architecture", Cambridge University Press.

5. Ayala K J, "Micro Controller", Penram International

| MTEL-116                     | Reliability Engineering |                                                                                                                                            |                   |                   |             |     |        |  |  |  |  |  |
|------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------|-----|--------|--|--|--|--|--|
| Lecture                      | Tutorial                | Tutorial Practical Credit Major Test Minor Test Total Time(Hrs)                                                                            |                   |                   |             |     |        |  |  |  |  |  |
| 3                            | 0                       | 0                                                                                                                                          | 3                 | 60                | 40          | 100 | 3 Hrs. |  |  |  |  |  |
| Program<br>Objective<br>(PO) |                         | The main objective of the course is to impart the students with the concept of Reliability Engineering and its application in Engineering. |                   |                   |             |     |        |  |  |  |  |  |
|                              |                         |                                                                                                                                            | Course Outco      | mes (CO)          |             |     |        |  |  |  |  |  |
| After complete               | tion of course :        | students will b                                                                                                                            | e able to         |                   |             |     |        |  |  |  |  |  |
| C01                          | To emphasize            | and analysis o                                                                                                                             | f basic of reliat | oility engineerii | ng.         |     |        |  |  |  |  |  |
| CO2                          | To understand           | To understand the concept of Fault tree analysis in reliability.                                                                           |                   |                   |             |     |        |  |  |  |  |  |
| CO3                          | To understand           | the concept of                                                                                                                             | Maintainability   | / Analysis in re  | liability.  |     |        |  |  |  |  |  |
| CO4                          | To study the c          | oncept of Artific                                                                                                                          | ial Intelligence  | in reliability er | ngineering. |     |        |  |  |  |  |  |

#### Unit-1

Review of basic concepts in Reliability Engg., Reliability function, different reliability models, etc. Reliability evaluation techniques for complex systems; Tie set and cut set approaches, different reliability measures, Reliability allocation/apportionment, reliability improvement, redundancy optimization techniques.

#### Unit-2

Fault tree analysis: fault tree construction, simplification and evaluation, importance measures, modularization, applications, advantages and disadvantages of fault tree techniques.

#### Unit-3

Maintainability Analysis: measures of system performance, types of maintenance, reliability centred maintenance, reliability and availability, evaluation of engine ring systems using Markov models.

#### Unit-4

Applications of fuzzy Major Test and neural networks to Reliability Engineering. Reliability testing, design for reliability and maintainability. Typical reliability case studies.

## Suggested Books:

1. R. Rama Kumar, "Engineering Reliability", Prentice Hall.

- 2. K B Mishra, "Reliability Analysis & Prediction".
- 3. K B Mishra, "New trends in System Reliability Evaluation".
- 4. M L Shooman, "Probabilistic reliability-an engineering approach", R E Krieger Pub.
- 5. K K Aggarwal, "Reliability Engineering".
- 6. Roy & Billington, "Reliability Engineering".
- 7. Balagurswami, "Reliability Engineering", McGraw Hill Education.

| MTEL-118      |                      |                                                                                            | Modeling         | g & Simulatior   | n Lab             |                 |              |  |  |  |
|---------------|----------------------|--------------------------------------------------------------------------------------------|------------------|------------------|-------------------|-----------------|--------------|--|--|--|
| Lecture       | Tutorial             | Practical                                                                                  | Credit           | Major Test       | Minor Test        | Total           | Time(Hrs)    |  |  |  |
| 0             | 0                    | 4                                                                                          | 2                | 60               | 40                | 100             | 3            |  |  |  |
| Program       | The main obje        | ctive of the cou                                                                           | rse is to impart | the students w   | ith the knowled   | dge of modellir | ng and       |  |  |  |
| Objective     | simulation of d      | lifferent types of                                                                         | applications.    |                  |                   |                 |              |  |  |  |
| (PO)          |                      |                                                                                            |                  |                  |                   |                 |              |  |  |  |
|               | Course Outcomes (CO) |                                                                                            |                  |                  |                   |                 |              |  |  |  |
| After complet | ion of course s      | students will be                                                                           | e able to        |                  |                   |                 |              |  |  |  |
| C01           | To impart know       | wledge about to                                                                            | preform Theve    | enin's ,Norton's | s,& Superpositi   | ion theorem ar  | nd Avg. & R. |  |  |  |
|               | M. S. value of       | R L C different                                                                            | R, L and C circ  | uit.             |                   |                 | -            |  |  |  |
| CO2           | To impart know       | wledge about to                                                                            | preform half a   | and full wave r  | ectifier with dif | ferent R, L an  | d C load for |  |  |  |
|               | both single an       | d three phase.                                                                             |                  |                  |                   |                 |              |  |  |  |
| CO3           | To impart kno        | To impart knowledge about to preform different types of power electronics component mainly |                  |                  |                   |                 |              |  |  |  |
|               | inverter and cl      | nopper.                                                                                    |                  |                  |                   |                 |              |  |  |  |
| CO4           | To impart know       | wledge about to                                                                            | preform speed    | l and torque co  | ntrol of DC and   | d AC motors.    |              |  |  |  |

## Following experiments (at least 10) are required to be performed in MATLAB/ETAP/LabView or equivalent.

1. To verify Thevenin's, Norton's & Superposition theorem.

- 2. To find Average & RMS value of (V-I) of RLC series & parallel; series parallel RC-RL circuit.
- 3. To perform1- $\phi$  (half & full) wave rectifier with (R, R-L & R-C) load.
- 5. To find Average RMS.&T.H.D. of 1-**\$\$** (half & full) wave inverter with (R & R-L) load.
- 6. To find Avg., R.M.S.&T.H.D. of 3-φ (half & full) wave inverter with (R & R-L) load.
- 7. To perform current source inverter (C.S.I.) & PWM inverter.
- 8. To perform step down (BUCK)& step up (BOOST) chopper.
- 9. To perform Type (A, B, C & D) chopper.
- 10.To perform Field & Armature control of separately excited DC motor.
- 11.To perform Field & Armature control of DC series & DC shunt motor.
- 12.To perform 3-**\$** Induction Motor with constant & variable torque.

13.To perform speed control of 3-φ Synchronous motor with constant & variable torque.

| MTEL-120             | Advanced Power System Lab-II                                                                                    |                 |                |                    |                  |                 |              |  |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|----------------|--------------------|------------------|-----------------|--------------|--|--|--|--|
| Lecture              | Tutorial         Practical         Credit         Major Test         Minor Test         Total         Time(Hrs) |                 |                |                    |                  |                 |              |  |  |  |  |
| 0                    | 0                                                                                                               | 4               | 2              | 60                 | 40               | 100             | 3            |  |  |  |  |
| Program              | The main objective of the course is to impart the students with the knowledge of programing for                 |                 |                |                    |                  |                 |              |  |  |  |  |
| Objective            | various types of power system appliances.                                                                       |                 |                |                    |                  |                 |              |  |  |  |  |
| (PO)                 |                                                                                                                 |                 |                |                    |                  |                 |              |  |  |  |  |
| Course Outcomes (CO) |                                                                                                                 |                 |                |                    |                  |                 |              |  |  |  |  |
| After complet        | ion of course s                                                                                                 | tudents will be | e able to      |                    |                  |                 |              |  |  |  |  |
| C01                  | To impart know                                                                                                  | wledge the simu | lation& analys | is of the genera   | tor and transfor | rmer protectior | ۱.           |  |  |  |  |
| CO2                  | To impart knowledge the simulation analysis of power quality improvement, different types of load.              |                 |                |                    |                  |                 |              |  |  |  |  |
| CO3                  | To impart knowledge the simulation analysis of PV cell.                                                         |                 |                |                    |                  |                 |              |  |  |  |  |
| CO4                  |                                                                                                                 | wledge the simu | lation& analys | is of different no | on-conventional  | plant biomass   | gasifier and |  |  |  |  |
|                      | wind turbine.                                                                                                   |                 |                |                    |                  |                 |              |  |  |  |  |

## Following experiments are required to be performed in MATLAB/ETAP/LabView or equivalent.

- 1. Simulation & Analysis of the generator protection.
- 2. Simulation & Analysis of the transformer protection.
- 3. Simulation & Analysis of power quality improvement.
- 4. Simulation & Analysis of different types of relays in power system.
- 5. To perform the simulation of Photo-Electric Effect.
- 6. To perform the simulation to construct the PV cell to show the V-I & P-V characteristics curve of it.
- 7. Toperform the simulation of Photovoltaic power conversion for single and 3-phase load on account with MPPT.
- 8. To perform the construction of a Simulink model of Biomass Gasifier.
- 9. To study mathematical modelling of DFIG based Wind Turbine and its impact on connection with grid.
- 10. To perform the simulation of Permanent Magnet Synchronous Generator (PMSG) based wind energy conversion system.
- 11. To perform the simulation of PV-Grid inter connection using MPPT technique with the partial shading effect.

| MTEL-201          | DISTRIBUTED GENERATION                                                                                          |                                                                                                    |                  |                  |               |                 |          |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------|------------------|---------------|-----------------|----------|--|--|--|--|--|
| Lecture           | Tutorial         Practical         Credit         Major Test         Minor Test         Total         Time(Hrs) |                                                                                                    |                  |                  |               |                 |          |  |  |  |  |  |
| 3                 | 0                                                                                                               | 0                                                                                                  | 3                | 60               | 40            | 100             | 3        |  |  |  |  |  |
| Program           |                                                                                                                 | To understand renewable energy sources. To gain understanding of the working of off-grid and grid- |                  |                  |               |                 |          |  |  |  |  |  |
| Objective<br>(PO) | connected renewable energy generation schemes.                                                                  |                                                                                                    |                  |                  |               |                 |          |  |  |  |  |  |
|                   | Course Outcomes (CO)                                                                                            |                                                                                                    |                  |                  |               |                 |          |  |  |  |  |  |
| After complet     | ion of course s                                                                                                 | tudents will be                                                                                    | able to          |                  |               |                 |          |  |  |  |  |  |
| C01               | To understand                                                                                                   | the planning ar                                                                                    | nd operational i | ssues related to | Distributed G | eneration.      |          |  |  |  |  |  |
| CO2               | Acquire Knowledge about Distributed Generation Learn Micro-Grids                                                |                                                                                                    |                  |                  |               |                 |          |  |  |  |  |  |
| CO3               | understand renewable energy sources                                                                             |                                                                                                    |                  |                  |               |                 |          |  |  |  |  |  |
| CO4               | Understanding                                                                                                   | of the working                                                                                     | of off-grid and  | grid-connected   | renewable ene | ergy generation | schemes. |  |  |  |  |  |

## UNIT-1

Need for Distributed generation. Renewable sources in distributed generation and current scenario in Distributed Generation. Introduction to micro-grids. Types of micro-grids: autonomous and non-autonomous grids Sizing of micro-grids. Modelling & analysis of Micro-grids with multiple DGs. Micro-grids with power electronic interfacing units.

## UNIT-2

Planning of DGs. Sitting and sizing of DGs optimal placement of DG sources in distribution systems. Grid integration of DGs Different types of interfaces, Inverter based DGs and rotating machine based interfaces. Aggregation of multiple DG units.

## UNIT-3

Technical impacts of DGs. Transmission systems Distribution Systems De-Regulation Impact of DGs upon protective relaying. Impact of DGs upon transient and dynamic stability of existing distribution systems, Steady-state and Dynamic analysis...

## UNIT-4

Economic and control aspects of DGs Market facts. Issues and challenges Limitations of DGs, Voltage control techniques. Reactive power control, Harmonics Power quality issues, Reliability of DG based systems.

## Suggested reading:

1. H. Lee Willis, Walter G. Scott, "Distributed Power Generation – Planning and Evaluation", Marcel Decker Press.

2. M Godoy Simoes, Felix A. Farret, "Renewable Energy Systems – Design and Analysis with Induction Generators", CRC press.

3. Stuart Borlase. "Smart Grid: Infrastructure Technology Solutions" CRC Press

| MTEL-203      | ADVANCED ELECTRIC DRIVES & CONTROL                                                             |                                                                                                    |               |                  |          |     |   |  |  |  |  |
|---------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------|------------------|----------|-----|---|--|--|--|--|
| Lecture       | Tutorial Practical Credit Major Test Minor Test Total Time(Hrs                                 |                                                                                                    |               |                  |          |     |   |  |  |  |  |
| 3             | 0                                                                                              | 0                                                                                                  | 3             | 60               | 40       | 100 | 3 |  |  |  |  |
| Program       | The main obje                                                                                  | The main objective of the course is to impart the students with the knowledge of electric drives & |               |                  |          |     |   |  |  |  |  |
| Objective     | control in electric system.                                                                    |                                                                                                    |               |                  |          |     |   |  |  |  |  |
| (PO)          |                                                                                                |                                                                                                    |               |                  |          |     |   |  |  |  |  |
| Course Outco  | mes (CO)                                                                                       |                                                                                                    |               |                  |          |     |   |  |  |  |  |
| After complet | ion of course s                                                                                | tudents will be                                                                                    | able to       |                  |          |     |   |  |  |  |  |
| C01           | To study basic electric drives, types of loads, classes of motor duty.                         |                                                                                                    |               |                  |          |     |   |  |  |  |  |
| CO2           | To study different types of DC drives, stability analysis, modern control techniques.          |                                                                                                    |               |                  |          |     |   |  |  |  |  |
| CO3           | To study mathematical modelling of induction motor drives, introduction to Cyclo-converter fed |                                                                                                    |               |                  |          |     |   |  |  |  |  |
|               | induction moto                                                                                 | or drive.                                                                                          | -             |                  |          | -   |   |  |  |  |  |
| CO4           | To study differ                                                                                | ent types of syn                                                                                   | chronous moto | r drives used in | n mills. |     |   |  |  |  |  |

## UNIT 1

**Introduction:** Definition, Part of the electric drive, Types of loads, steady state & transient stability of Drive, state of art of power electronics and drives, thermal model of motor for heating and cooling, classes of motor duty, determination of motor rating.

## UNIT 2

**D.C. Drives:** Review of braking and speed control of D.C. motors, multi-quadrant operation, loss minimization in adjustable speed drives. Mathematical modelling of dc drives, stability analysis, modern control techniques: variable structure, adaptive control, Chopper-Controlled DC Drives.

## UNIT 3

**Induction motor drives:** Review of braking and speed control of induction motors, constant V/F, constant air gap flux, controlled voltage, controlled current and controlled slip operation. Mathematical modelling of induction motor drives, transient response and stability analysis Introduction to Cyclo-converter fed induction motor drive. Pulse Width Modulation for Electric Power Converters

## UNIT 4

**Synchronous motor drives:** Adjustable frequency operation, voltage fed drive, current fed self-controlled drive. Application of electric drives in steel mills, paper mills, textile mills and machine tools etc. A. C. motor drives in transportation system and traction.

## **References:**

1. Dubey G K, "Fundamentals of Electrical Drives", Narosa Publishing House, New Delhi.

2. S K Pillai, "A First Course on Electrical Drives", New Age International (P) Ltd., New Delhi.

3. Krishan R, "Electric Motor Drives: Modeling Analysis and Control", PHI Pvt Ltd. New Delhi-2001.

4. Bose B K, "Power Electronics and Variable Frequency Drives: Technology and Applications", IEEE Press, 1997.

5. Bose B K, "Modern Power Electronics and AC Drives", Pearson Educational, Delhi,

| MTEL-205      | Power System Restructuring & Deregulation                                                          |                                                               |                 |                   |                  |               |            |  |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------|-------------------|------------------|---------------|------------|--|--|--|--|
| Lecture       | Tutorial                                                                                           | Practical                                                     | Credit          | Major Test        | Minor Test       | Total         | Time(Hrs)  |  |  |  |  |
| 3             | 0                                                                                                  | 0                                                             | 3               | 60                | 40               | 100           | 3 Hrs.     |  |  |  |  |
| Program       | The main objective of the course is to impart the students with the knowledge of restructuring and |                                                               |                 |                   |                  |               |            |  |  |  |  |
| Objective     | deregulation.                                                                                      |                                                               |                 |                   |                  |               |            |  |  |  |  |
| (PO)          | -                                                                                                  |                                                               |                 |                   |                  |               |            |  |  |  |  |
| Course Outco  | omes (CO)                                                                                          |                                                               |                 |                   |                  |               |            |  |  |  |  |
| After complet | ion of course s                                                                                    | students will be                                              | e able to       |                   |                  |               |            |  |  |  |  |
| C01           | To impart know                                                                                     | wledge about re                                               | structuring and | l its various iss | ues related to i | t.            |            |  |  |  |  |
| CO2           | To acquaint st                                                                                     | To acquaint students with the deregulation and market models. |                 |                   |                  |               |            |  |  |  |  |
| CO3           | To impart know                                                                                     | wledge to stude                                               | nts about trans | mission pricing   | <b>J</b> .       |               |            |  |  |  |  |
| CO4           | To let studen                                                                                      | t understand ir                                               | n detail about  | congestion ma     | anagement an     | d experiences | of various |  |  |  |  |
|               | nations.                                                                                           |                                                               |                 | -                 | -                | -             |            |  |  |  |  |

#### Unit-1

**Introduction:** Basic concept and definitions, privatization, restructuring, transmission open access, wheeling, deregulation, components of deregulated system, advantages of competitive system.

Power System Restructuring: An overview of the restructured power system, Difference between integrated power system and restructured power system, Explanation with suitable practical examples.

#### Unit-2

**Deregulation of Power Sector:** Separation of owner ship and operation, Deregulated models, pool model, pool and bilateral trades model, multilateral trade model.

Competitive electricity market: Independent System Operator activities in pool market, Wholesale electricity market characteristics, central auction, single auction power pool, double auction power pool, market clearing and pricing, Market Power and its Mitigation Techniques, Bilateral trading, Ancillary services.

#### Unit-3

**Transmission Pricing:** Marginal pricing of Electricity, nodal pricing, zonal pricing, embedded cost, Postage stamp method, Contract Path method, Boundary flow method, MW-mile method, MVA-mile method, Comparison of different methods.

#### Unit-4

**Congestion Management:** Congestion management in normal operation, explanation with suitable example, total transfer capability (TTC), Available transfer capability (ATC), Different Experiences in deregulation: England and Wales, Norway, China, California, New Zealand and Indian power system.

#### Suggested Books:

1.LoiLei Lai, "Power System Restructuring and Deregulation", John Wiley & Sons Ltd.

2.K Bhattacharya, M H T Bollen and J C Doolder, "Operation of Restructured Power Systems", Kluwer Academic Publishers.

3.Lorrin Philipson and H Lee Willis, "Understanding Electric Utilities and Deregulation", Marcel Dekker Inc, New York.

4. Yong-Hua Song, Xi-Fan Wang, "Operation of market-oriented power systems", Springer, Germany.

| MTOE-201              | Business Analytics                                                                        |                                                                                                            |             |                    |                      |                 |        |  |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------|--------------------|----------------------|-----------------|--------|--|--|--|--|--|
| Lecture               | Tutorial                                                                                  | Tutorial         Practical         Credit         Major Test         Minor Test         Total         Time |             |                    |                      |                 |        |  |  |  |  |  |
| 3                     | 0                                                                                         | 0                                                                                                          | 3           | 60                 | 40                   | 100             | 3 Hrs. |  |  |  |  |  |
| Program               | The main objective of this course is to give the student a comprehensive understanding of |                                                                                                            |             |                    |                      |                 |        |  |  |  |  |  |
| <b>Objective (PO)</b> | Objective (PO) business analytics methods.                                                |                                                                                                            |             |                    |                      |                 |        |  |  |  |  |  |
|                       | Course Outcomes (CO)                                                                      |                                                                                                            |             |                    |                      |                 |        |  |  |  |  |  |
| C01                   | Able to ha                                                                                | ive knowled                                                                                                | ge of vario | ous business analy | sis techniques.      |                 |        |  |  |  |  |  |
| CO2                   | Learn the                                                                                 | requiremen                                                                                                 | t specifica | tion and transform | ning the requirement | nt into differe | ent    |  |  |  |  |  |
|                       | models.                                                                                   |                                                                                                            |             |                    |                      |                 |        |  |  |  |  |  |
| CO3                   | Learn the                                                                                 | requiremen                                                                                                 | t represen  | ntation and managi | ing requirement as   | sests.          |        |  |  |  |  |  |
| CO4                   | Learn the                                                                                 | Recent Tre                                                                                                 | nds in Em   | bedded and collab  | orative business     |                 |        |  |  |  |  |  |

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst.

Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts.

Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

# Unit 2

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents.

Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

# Unit 3

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

# Unit 4

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

# **References:**

- 1. Business Analysis by James Cadle et al.
- 2. Project Management: The Managerial Process by Erik Larson and, Clifford Gray

| MTOE-203              | Industrial Safety                                                |                                                                                                            |              |                 |                  |                |        |  |  |  |  |  |
|-----------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------|-----------------|------------------|----------------|--------|--|--|--|--|--|
| Lecture               | Tutorial                                                         | Futorial         Practical         Credit         Major Test         Minor Test         Total         Time |              |                 |                  |                |        |  |  |  |  |  |
| 3                     | 0                                                                | 0                                                                                                          | 3            | 60              | 40               | 100            | 3 Hrs. |  |  |  |  |  |
| Program               | Program To enable students to aware about the industrial safety. |                                                                                                            |              |                 |                  |                |        |  |  |  |  |  |
| <b>Objective (PO)</b> | bjective (PO)                                                    |                                                                                                            |              |                 |                  |                |        |  |  |  |  |  |
|                       |                                                                  | C                                                                                                          | ourse Ou     | tcomes (CO)     |                  |                |        |  |  |  |  |  |
| C01                   | Understar                                                        | nd the indus                                                                                               | trial safety | <b>/</b> .      |                  |                |        |  |  |  |  |  |
| CO2                   | Analyze fu                                                       | undamental                                                                                                 | of mainte    | nance enginee   | ering.           |                |        |  |  |  |  |  |
| CO3                   | CO3 Understand the wear and corrosion and fault tracing.         |                                                                                                            |              |                 |                  |                |        |  |  |  |  |  |
| CO4                   | Understar                                                        | nding that v                                                                                               | vhen to a    | do periodic ind | ceptions and app | oly the preven | ting   |  |  |  |  |  |
|                       | maintenance.                                                     |                                                                                                            |              |                 |                  |                |        |  |  |  |  |  |

# Unit-1

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

## Unit-2

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

## Unit-3

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

## Unit-4

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

# Reference:

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

| MTOE-205              | Operations Research                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                   |                      |               |          |  |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|----------------------|---------------|----------|--|--|--|--|
| Lecture               | Tutorial                                                                                                  | Interview         Interview <t< th=""></t<> |            |                   |                      |               |          |  |  |  |  |
| 3                     | 0                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3          | 60                | 40                   | 100           | 3 Hrs.   |  |  |  |  |
| Program               | <b>Program</b> To enable students to aware about the dynamic programming to solve problems of             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                   |                      |               |          |  |  |  |  |
| <b>Objective (PO)</b> | <b>Objective (PO)</b> discreet and continuous variables and model the real world problem and simulate it. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                   |                      |               |          |  |  |  |  |
|                       |                                                                                                           | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ourse Ou   | tcomes (CO)       |                      |               |          |  |  |  |  |
| C01                   | Students                                                                                                  | should able                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e to apply | the dynamic pi    | rogramming to solve  | problems of d | liscreet |  |  |  |  |
|                       | and continuous variables.                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                   |                      |               |          |  |  |  |  |
| CO2                   | <b>O2</b> Students should able to apply the concept of non-linear programming                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                   |                      |               |          |  |  |  |  |
| CO3                   | Students                                                                                                  | should able                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e to carry | out sensitivity a | analysis             |               |          |  |  |  |  |
| CO4                   | Student s                                                                                                 | should able                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to model i | the real world p  | problem and simulate | it.           |          |  |  |  |  |

# Unit -1

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

## Unit -2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

# Unit- 3

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

# Unit -4

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

## **References:**

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

| MTOE-207                                                                                      |                                                                               | Cost Management of Engineering Projects                 |              |                    |                  |             |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|--------------|--------------------|------------------|-------------|--|--|--|
| Lecture                                                                                       | Tutorial                                                                      | orial Practical Credit Major Test Minor Test Total Time |              |                    |                  |             |  |  |  |
| 3                                                                                             | 0                                                                             | 0 0 3 60 40 100 3 H                                     |              |                    |                  |             |  |  |  |
| <b>Program</b> To enable students to make aware about the cost management for the engineering |                                                                               |                                                         |              |                    |                  |             |  |  |  |
| Objective (PO) project and apply cost models the real world projects.                         |                                                                               |                                                         |              |                    |                  |             |  |  |  |
|                                                                                               |                                                                               | C                                                       | ourse Ou     | tcomes (CO)        |                  |             |  |  |  |
| C01                                                                                           | Students                                                                      | should able                                             | e to learn t | the strategic cost | management pro   | ocess.      |  |  |  |
| CO2                                                                                           | Students                                                                      | should able                                             | e to types   | of project and pro | ject team types  |             |  |  |  |
| CO3                                                                                           | Students should able to carry out Cost Behavior and Profit Planning analysis. |                                                         |              |                    |                  |             |  |  |  |
| CO4                                                                                           | Student s                                                                     | should able                                             | to learn th  | e quantitative tec | hniques for cost | management. |  |  |  |

## Unit-1

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

## Unit-2

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

## Unit-3

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

# Unit-4

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

| MTOE-209              |            | Composite Materials                                             |             |                 |                  |                |              |  |  |
|-----------------------|------------|-----------------------------------------------------------------|-------------|-----------------|------------------|----------------|--------------|--|--|
| Lecture               | Tutorial   | Practical                                                       | Credit      | Major Test      | Minor Test       | Total          | Time         |  |  |
| 3                     | 0          | 0                                                               | 3           | 60              | 40               | 100            | 3 Hrs.       |  |  |
| Program               |            |                                                                 |             |                 |                  |                |              |  |  |
| <b>Objective (PO)</b> | ctive (PO) |                                                                 |             |                 |                  |                |              |  |  |
| Course Outcomes (CO)  |            |                                                                 |             |                 |                  |                |              |  |  |
| C01                   | Students   | should at                                                       | ole to lea  | irn the Class   | ification and ch | naracteristics | of Composite |  |  |
|                       | materials  | i.                                                              |             |                 |                  |                |              |  |  |
| CO2                   | Students   | Students should able reinforcements Composite materials.        |             |                 |                  |                |              |  |  |
| CO3                   | Students   | Students should able to carry out the preparation of compounds. |             |                 |                  |                |              |  |  |
| CO4                   | Student s  | should able                                                     | to do the a | analysis of the | composite mate   | rials.         |              |  |  |

## UNIT-1:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Iso-strain and Iso-stress conditions.

## UNIT – 2

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

## UNIT–3

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

## UNIT – 4

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

# **TEXT BOOKS:**

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.
- 3. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

| MTOE-211                                                                                  |                                                                                  | Waste to Energy |              |                  |                      |       |        |  |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------|--------------|------------------|----------------------|-------|--------|--|--|
| Lecture                                                                                   | Tutorial                                                                         | Practical       | Credit       | Major Test       | Minor Test           | Total | Time   |  |  |
| 3                                                                                         | 0                                                                                | 0               | 3            | 60               | 40                   | 100   | 3 Hrs. |  |  |
| <b>Program</b> To enable students to aware about the generation of energy from the waste. |                                                                                  |                 |              |                  |                      |       |        |  |  |
| <b>Objective (PO)</b>                                                                     |                                                                                  |                 |              |                  |                      |       |        |  |  |
|                                                                                           |                                                                                  | C               | ourse Ou     | tcomes (CO)      |                      |       |        |  |  |
| C01                                                                                       | Students                                                                         | should able     | e to learn i | the Classificati | on of waste as a fue | el.   |        |  |  |
| CO2                                                                                       | Students                                                                         | should able     | e to learn   | the Manufactur   | re of charcoal.      |       |        |  |  |
| CO3                                                                                       | Students should able to carry out the designing of gasifiers and biomass stoves. |                 |              |                  |                      |       |        |  |  |
| CO4                                                                                       | Student s                                                                        | should able     | to learn th  | ne Biogas plant  | t technology.        |       |        |  |  |

## Unit-1

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

## Unit-2

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

## Unit-3

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

## Unit-4

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications -Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

| MTAD-101                                                                                  |                                                   | English For Research Paper Writing                      |                    |                       |                      |            |        |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|--------------------|-----------------------|----------------------|------------|--------|--|--|
| Lecture                                                                                   | Tutorial                                          | orial Practical Credit Major Test Minor Test Total Time |                    |                       |                      |            |        |  |  |
| 2                                                                                         | 0                                                 | 0                                                       | 0                  | -                     | 100                  | 100        | 3 Hrs. |  |  |
| <b>Program</b> Student will able to understand the basic rules of research paper writing. |                                                   |                                                         |                    |                       |                      |            |        |  |  |
| <b>Objective (PO)</b>                                                                     |                                                   |                                                         |                    |                       |                      |            |        |  |  |
|                                                                                           |                                                   | C                                                       | ourse Ou           | tcomes (CO)           |                      |            |        |  |  |
| C01                                                                                       | Underst                                           | and that ho                                             | <i></i> и to impro | we your writing s     | kills and level of r | eadability |        |  |  |
| CO2                                                                                       | Learn a                                           | Learn about what to write in each section               |                    |                       |                      |            |        |  |  |
| CO3                                                                                       | Understand the skills needed when writing a Title |                                                         |                    |                       |                      |            |        |  |  |
| CO4                                                                                       | Ensure ti                                         | he good qua                                             | nlity of pap       | oer at very first-til | me submission        |            |        |  |  |

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

## Unit 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

## Unit 3

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

## Unit 4

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

| MTAD-103              |              |                                                                                        | Di          | saster Manag     | ement                |                  |             |  |
|-----------------------|--------------|----------------------------------------------------------------------------------------|-------------|------------------|----------------------|------------------|-------------|--|
| Lecture               | Tutorial     | Practical                                                                              | Credit      | Major Test       | Minor Test           | Total            | Time        |  |
| 2                     | 0            | 0                                                                                      | 0           | -                | 100                  | 100              | 3 Hrs.      |  |
| Program               | Develop a    | n understar                                                                            | nding of di | saster risk red  | uction and manage    | ement            |             |  |
| <b>Objective (PO)</b> |              |                                                                                        |             |                  |                      |                  |             |  |
| Course Outcomes (CO)  |              |                                                                                        |             |                  |                      |                  |             |  |
| C01                   | Learn to d   | arn to demonstrate a critical understanding of key concepts in disaster risk reduction |             |                  |                      |                  |             |  |
|                       | and huma     | nd humanitarian response.                                                              |             |                  |                      |                  |             |  |
| CO2                   | Critically e | evaluate dis                                                                           | aster risk  | reduction and    | humanitarian resp    | oonse policy ar  | nd practice |  |
|                       | from multi   | ple perspec                                                                            | tives.      |                  |                      |                  |             |  |
| CO3                   | Develop a    | n understar                                                                            | nding of si | tandards of hui  | manitarian respons   | se and practical | relevance   |  |
|                       | in specific  | types of dis                                                                           | asters an   | d conflict situa | tions.               |                  |             |  |
| CO4                   | critically   | itically understand the strengths and weaknesses of disaster management                |             |                  |                      |                  |             |  |
|                       | approache    | es, planning                                                                           | and pro     | gramming in d    | different countries, | particularly the | eir         |  |
|                       | home cou     | ntry or the c                                                                          | ountries t  | hey work in      |                      |                  |             |  |

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

## Unit 2

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

## Unit 3

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

## Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

| MTAD-105                               |                                                                                              |                                                                             | Sanskr    | it for Technica  | al Knowledge           |                 |         |  |
|----------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------|------------------|------------------------|-----------------|---------|--|
| Lecture                                | Tutorial                                                                                     | Practical                                                                   | Credit    | Major Test       | Minor Test             | Total           | Time    |  |
| 2                                      | 0                                                                                            | 0                                                                           | 0         | -                | 100                    | 100             | 3 Hrs.  |  |
| Program                                | gram Students will be able to Understanding basic Sanskrit language and Ancient Sanskrit     |                                                                             |           |                  |                        |                 |         |  |
| <b>Objective (PO)</b>                  | re (PO) literature about science & technology can be understood and Being a logical language |                                                                             |           |                  |                        |                 |         |  |
| will help to develop logic in students |                                                                                              |                                                                             |           |                  |                        |                 |         |  |
| Course Outcomes (CO)                   |                                                                                              |                                                                             |           |                  |                        |                 |         |  |
| C01                                    | To get a                                                                                     | working kna                                                                 | wledge in | illustrious Sar  | nskrit, the scientific | language in th  | e world |  |
| CO2                                    | Learning                                                                                     | of Sanskrit                                                                 | to improv | e brain functioi | ning                   |                 |         |  |
| CO3                                    | Learning                                                                                     | of Sanskrit                                                                 | to develo | p the logic in m | athematics, scien      | ce & other subj | ects    |  |
|                                        | enhancin                                                                                     | ng the memo                                                                 | ory power |                  |                        |                 |         |  |
| CO4                                    | The engi                                                                                     | The engineering scholars equipped with Sanskrit will be able to explore the |           |                  |                        |                 |         |  |
|                                        | huge kno                                                                                     | wledge fror                                                                 | n ancient | literature       |                        |                 |         |  |

# Unit –1

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit – 2

Order, Introduction of roots, Technical information about Sanskrit Literature

# Unit –3

Technical concepts of Engineering: Electrical, Mechanical

# Unit –4

Technical concepts of Engineering: Architecture, Mathematics

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

| MTAD-107              |            | Value Education                                                                    |            |             |            |       |        |  |  |
|-----------------------|------------|------------------------------------------------------------------------------------|------------|-------------|------------|-------|--------|--|--|
| Lecture               | Tutorial   | Practical                                                                          | Credit     | Major Test  | Minor Test | Total | Time   |  |  |
| 2                     | 0          | 0                                                                                  | 0          | -           | 100        | 100   | 3 Hrs. |  |  |
| Program               | Understar  | nderstand value of education and self- development, Imbibe good values in students |            |             |            |       |        |  |  |
| <b>Objective (PO)</b> | and Let th | nd Let the should know about the importance of character                           |            |             |            |       |        |  |  |
|                       |            |                                                                                    |            |             |            |       |        |  |  |
|                       |            | C                                                                                  | ourse Ou   | tcomes (CO) |            |       |        |  |  |
| C01                   | Knowledg   | e of self-de                                                                       | velopment  | t           |            |       |        |  |  |
| CO2                   | Learn the  | earn the importance of Human values                                                |            |             |            |       |        |  |  |
| CO3                   | Developin  | eveloping the overall personality                                                  |            |             |            |       |        |  |  |
| CO4                   | Know ab    | out the impo                                                                       | ortance of | character   |            |       |        |  |  |

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements.

## Unit 2

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism.Love for nature,Discipline

## Unit 3

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

## Unit 4

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

## References

1.Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

| MTAD-102             |                                                                                                |                                                                                        | Constit      | ution of India     |                        |                    |           |  |
|----------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------|--------------------|------------------------|--------------------|-----------|--|
| Lecture              | Tutorial                                                                                       | Practical                                                                              | Credit       | Major Test         | Minor Test             | Total              | Time      |  |
| 2                    | 0                                                                                              | 0                                                                                      | 0            | -                  | 100                    | 100                | 3 Hrs.    |  |
| Program              | Understar                                                                                      | nd the prem                                                                            | ises infor   | ming the twin      | themes of liberty a    | and freedom from   | m a civil |  |
|                      |                                                                                                | ights perspective and to address the growth of Indian opinion regarding modern Indian  |              |                    |                        |                    |           |  |
|                      | intellectuals' constitutional role and entitlement to civil and economic rights as well as the |                                                                                        |              |                    |                        |                    |           |  |
|                      | emergenc                                                                                       | mergence of nationhood in the early years of Indian nationalism.                       |              |                    |                        |                    |           |  |
| Course Outcomes (CO) |                                                                                                |                                                                                        |              |                    |                        |                    |           |  |
| C01                  | Discuss th                                                                                     | ne growth of                                                                           | the dema     | and for civil righ | nts in India for the b | ulk of Indians be  | fore the  |  |
|                      | arrival of (                                                                                   | Gandhi in In                                                                           | dian politi  | CS.                |                        |                    |           |  |
| CO2                  | Discuss th                                                                                     | ne intellectu                                                                          | al origins ( | of the framewo     | rk of argument that    | informed the       |           |  |
|                      | conceptua                                                                                      | alization of s                                                                         | ocial refo   | rms leading to     | revolution in India.   |                    |           |  |
| CO3                  | Discuss th                                                                                     | ne circumsta                                                                           | nces surr    | ounding the fo     | undation of the Con    | ngress Socialist F | Party     |  |
|                      | [CSP] una                                                                                      | CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal |              |                    |                        |                    |           |  |
|                      | of direct e                                                                                    | lections thro                                                                          | ough adult   | suffrage in the    | e Indian Constitution  | n                  |           |  |
| CO4                  | Discuss th                                                                                     | ne passage                                                                             | of the Hin   | du Code Bill of    | 1956.                  |                    |           |  |

## Unit I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

## Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

## Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

## Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

| MTAD-104              |            |                                                          | Pedago     | gy Studies          |                  |                  |             |  |
|-----------------------|------------|----------------------------------------------------------|------------|---------------------|------------------|------------------|-------------|--|
| Lecture               | Tutorial   | torial Practical Credit Major Test Minor Test Total Time |            |                     |                  |                  |             |  |
| 2                     | 0          | 0                                                        | 0          | -                   | 100              | 100              | 3 Hrs.      |  |
| Program               | Review     | existing evi                                             | dence on   | the review topic    | to inform progra | amme design ai   | nd policy   |  |
| <b>Objective (PO)</b> | making     | undertaken                                               | by the D   | FID, other agenc    | ies and researd  | hers and Identif | fy critical |  |
|                       | evidence   | vidence gaps to guide the development.                   |            |                     |                  |                  |             |  |
| Course Outcomes (CO)  |            |                                                          |            |                     |                  |                  |             |  |
| C01                   | What peo   | dagogical p                                              | oractices  | are being used      | by teachers      | in formal and    | informal    |  |
|                       | classroom  | ns in develo                                             | bing count | tries?              |                  |                  |             |  |
| CO2                   | What is i  | the evidenc                                              | e on the   | effectiveness of    | f these pedago   | gical practices, | in what     |  |
|                       | conditions | s, and with w                                            | vhat popul | lation of learners? | ,                |                  |             |  |
| CO3                   | How can    | teacher ed                                               | ucation (c | urriculum and pra   | acticum) and th  | e school curricu | lum and     |  |
|                       | guidance   | materials be                                             | est suppor | t effective pedago  | ogy?             |                  |             |  |
| CO4                   | What is th | e importanc                                              | e of ident | ifying research ga  | ps?              |                  |             |  |

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

## Unit 2

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

## Unit 3

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

## Unit 4

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

| MTAD-106                                                                  |           | Stress Management by Yoga                               |            |                |                      |       |        |  |  |  |
|---------------------------------------------------------------------------|-----------|---------------------------------------------------------|------------|----------------|----------------------|-------|--------|--|--|--|
| Lecture                                                                   | Tutorial  | orial Practical Credit Major Test Minor Test Total Time |            |                |                      |       |        |  |  |  |
| 2                                                                         | 0         | 0                                                       | 0          | -              | 100                  | 100   | 3 Hrs. |  |  |  |
| Program To achieve overall health of body and mind and to overcome stress |           |                                                         |            |                |                      |       |        |  |  |  |
| <b>Objective (PO)</b>                                                     |           |                                                         |            |                |                      |       |        |  |  |  |
|                                                                           |           | C                                                       | ourse Ou   | tcomes (CO)    |                      |       |        |  |  |  |
| C01                                                                       | Develop   | healthy min                                             | d in a hea | Ithy body thus | improving social hea | alth. |        |  |  |  |
| CO2                                                                       | Improve   | Improve efficiency                                      |            |                |                      |       |        |  |  |  |
| CO3                                                                       | Learn th  | Learn the Yog asan                                      |            |                |                      |       |        |  |  |  |
| CO4                                                                       | Learn the | e pranayam                                              | а          |                |                      |       |        |  |  |  |

## Unit – 1

Definitions of Eight parts of yog (Ashtanga).

## Unit- 2

Yam and Niyam, Do`s and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

## Unit- 3

Asan and Pranayam, Various yog poses and their benefits for mind & body,

# Unit-4

Regularization of breathing techniques and its effects-Types of pranayam.

- 1. 'Yogic Asanas for Group Tarining-Part-I" :Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

| MTAD-108              | I         | Personality                                                              | Develop   | ment through  | Life Enlightenment | t Skills |        |  |  |
|-----------------------|-----------|--------------------------------------------------------------------------|-----------|---------------|--------------------|----------|--------|--|--|
| Lecture               | Tutorial  | Practical                                                                | Credit    | Major Test    | Minor Test         | Total    | Time   |  |  |
| 2                     | 0         | 0                                                                        | 0         | -             | 100                | 100      | 3 Hrs. |  |  |
| Program               | To learn  | elearn to achieve the highest goal happily                               |           |               |                    |          |        |  |  |
| <b>Objective (PO)</b> | To becor  | become a person with stable mind, pleasing personality and determination |           |               |                    |          |        |  |  |
|                       | To awake  | To awaken wisdom in students                                             |           |               |                    |          |        |  |  |
|                       |           | C                                                                        | ourse Ou  | tcomes (CO)   |                    |          |        |  |  |
| C01                   | Students  | become av                                                                | vare abou | t leadership. |                    |          |        |  |  |
| CO2                   | Students  | Students will learn how to perform his/her duties in day to day work.    |           |               |                    |          |        |  |  |
| CO3                   | Understa  | Inderstand the team building and conflict                                |           |               |                    |          |        |  |  |
| CO4                   | Student v | vill learn ho                                                            | w to beco | me role model | for the society.   |          |        |  |  |

## Unit – 1

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

Unit – 2

Approach to day to day work and duties; Shrimad Bhagwad Geeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

## Unit - 3

Statements of basic knowledge; Shrimad Bhagwad Geeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

## Unit – 4

Personality of Role model; Shrimad Bhagwad Geeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1. Srimad Bhagavad Gita, Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

## Dissertation Part – I and Dissertation Part - II

|     | Dissertation Part-I (MTEL-207) and Dissertation Part-II (MTEL-202)                                |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|     | Course Outcomes (CO)                                                                              |  |  |  |  |  |  |  |
| C01 | Ability to synthesize knowledge and skills previously gained and applied to an in depth study and |  |  |  |  |  |  |  |
|     | execution of new technical problem.                                                               |  |  |  |  |  |  |  |
| CO2 |                                                                                                   |  |  |  |  |  |  |  |
|     | suitable research design, and justify their design.                                               |  |  |  |  |  |  |  |
| CO3 | Ability to present the findings of their technical solution in a written report.                  |  |  |  |  |  |  |  |
| CO4 | Presenting the work in International/National conference or reputed journals.                     |  |  |  |  |  |  |  |

### Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following:

Relevance to social needs of society

Relevance to value addition to existing facilities in the institute

Relevance to industry need

Problems of national importance

Research and development in various domain

## The student should complete the following:

Literature survey Problem Definition

Motivation for study and Objectives

Preliminary design / feasibility / modular approaches

Implementation and Verification

Report and presentation

The dissertation part- II is based on a report prepared by the students on dissertation allotted to them. It may be based on:

Experimental verification / Proof of concept.

The viva-voce examination will be based on the above report and work.

## Guidelines for Dissertation Part – I and Dissertation Part - II

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two parts i.e. Part– I: July to December and Part– II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives.

The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing Engineering and any other related domain. In case of Industry sponsored projects, the relevant application notes, white papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Part–I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper, proof of concept/functionality, part results, and record of continuous progress.

Part–I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Part-I work.

During Part– II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Part–II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, and record of continuous progress.

Part-II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the Part-I work.

# UNIVERSITY INSTITUTE OF ENGINEERING & TECHNOLOGY KURUKSHETRA UNIVERSITY, KURUKSHETRA

('A+' Grade, NAAC Accredited)

### SCHEME OF EXAMINATIONS FOR MASTER OF TECHNOLOGY IN COMPUTER ENGINEERING (W. E. F. SESSION: 2018-19)

|           | SEMESTER-I     |                                                              |                      |   |    |                |               |                           |       |                            |        |  |
|-----------|----------------|--------------------------------------------------------------|----------------------|---|----|----------------|---------------|---------------------------|-------|----------------------------|--------|--|
| S.<br>No. | Course<br>Code | Subject                                                      | Teaching<br>Schedule |   |    | Hours/<br>Week |               | ation Sche<br>age Distrik |       | Duration of<br>Exam (Hrs.) | Credit |  |
|           |                |                                                              |                      | T | Ρ  |                | Major<br>Test | Minor<br>Test             | Total |                            |        |  |
| 1         | MTCE-101       | Advanced Computer<br>Architecture and Parallel<br>Processing |                      | 0 | 0  | 3              | 60            | 40                        | 100   | 3                          | 3      |  |
| 2         | MTCE-103       | Software Quality Models<br>& Testing                         |                      | 0 | 0  | 3              | 60            | 40                        | 100   | 3                          | 3      |  |
| 3         | *              | Program Elective -I                                          | 3                    | 0 | 0  | 3              | 60            | 40                        | 100   | 3                          | 3      |  |
| 4         | **             | Program Elective -II                                         | 3                    | 0 | 0  | 3              | 60            | 40                        | 100   | 3                          | 3      |  |
| 5         | MTCE-117       | Software Quality Models<br>& Testing Lab                     | 0                    | 0 | 4  | 4              | 60            | 40                        | 100   | 3                          | 2      |  |
| 6         | \$             | Program Elective Lab-I                                       | 0                    | 0 | 4  | 4              | 60            | 40                        | 100   | 3                          | 2      |  |
| 7         | MTRM-111       | Research Methodology<br>and IPR                              |                      | 0 | 0  | 2              | 60            | 40                        | 100   | 3                          | 2      |  |
| 8         | ***            | Audit Course-I                                               | 2                    | 0 | 0  | 2              |               | 100                       | 100   | 3                          | 0      |  |
|           |                | Total                                                        |                      |   | 24 | 420            | 280           | 700                       | -     | 18                         |        |  |

|            | *Program Elective -I           | **Program Elective -II |                                |  |  |
|------------|--------------------------------|------------------------|--------------------------------|--|--|
| Course No. | Subject                        | Course No.             | Subject                        |  |  |
| MTCE-105   | Advanced Computer Networks     | MTCE-111               | Algorithm Analysis and Design  |  |  |
| MTCE-107   | Distributed Operating Systems  | MTCE-113               | Soft Computing                 |  |  |
| MTCE-109   | Number Theory and Cryptography | MTCE-115               | Speech and Language Processing |  |  |

|          | \$ Program Elective Lab-I          |          |                                    |  |  |  |  |  |  |  |  |
|----------|------------------------------------|----------|------------------------------------|--|--|--|--|--|--|--|--|
| MTCE-119 | Advanced Computer Networks Lab     | MTCE-125 | Algorithm Analysis and Design Lab  |  |  |  |  |  |  |  |  |
| MTCE-121 | Distributed Operating Systems Lab  | MTCE-127 | Soft Computing Lab                 |  |  |  |  |  |  |  |  |
| MTCE-123 | Number Theory and Cryptography Lab | MTCE-129 | Speech and Language Processing Lab |  |  |  |  |  |  |  |  |

|            | *** Audit Course-I                 |  |  |  |  |  |  |  |  |
|------------|------------------------------------|--|--|--|--|--|--|--|--|
| Course No. | Subject                            |  |  |  |  |  |  |  |  |
| MTAD-101   | English for Research Paper Writing |  |  |  |  |  |  |  |  |
| MTAD-103   | Disaster Management                |  |  |  |  |  |  |  |  |
| MTAD-105   | Sanskrit for Technical Knowledge   |  |  |  |  |  |  |  |  |
| MTAD-107   | Value Education                    |  |  |  |  |  |  |  |  |

**Note:** 1. The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

2. \*\*\*Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

| S.<br>No. | Course<br>Code | Subject                            | Teaching<br>Schedule |   |   | Hours/<br>Week |               | nation Schedu<br>ntage Distribut |       | Duration<br>of Exam<br>(Hrs.) | Credit |
|-----------|----------------|------------------------------------|----------------------|---|---|----------------|---------------|----------------------------------|-------|-------------------------------|--------|
|           |                |                                    | L                    | Т | Ρ |                | Major<br>Test | Minor Test                       | Total |                               |        |
| 1         | MTCE-102       | Social Networks                    | 3                    | 0 | 0 | 3              | 60            | 40                               | 100   | 3                             | 3      |
| 2         | MTCE-104       | Advanced Database<br>System Design | 3                    | 0 | 0 | 3              | 60            | 40                               | 100   | 3                             | 3      |
| 3         | *              | Program Elective-III               | 3                    | 0 | 0 | 3              | 60            | 40                               | 100   | 3                             | 3      |
| 4         | **             | Program Elective-IV                | 3                    | 0 | 0 | 3              | 60            | 40                               | 100   | 3                             | 3      |
| 5         | MTCE-118       | Social Networks Lab                | 0                    | 0 | 4 | 4              | 60            | 40                               | 100   | 3                             | 2      |
| 6         | \$             | Program Elective Lab-II            | 0                    | 0 | 4 | 4              | 60            | 40                               | 100   | 3                             | 2      |
| 7         | #MTCE-<br>120  | Mini Project                       | 0                    | 0 | 4 | 4              | -             | 100                              | 100   | 3                             | 2      |
| 8         | ***            | Audit Course-II                    | 2                    | 0 | 0 | 2              |               | 100                              | 100   | 3                             | 0      |
|           |                | Total                              |                      |   |   | 26             | 360           | 340                              | 700   | -                             | 18     |

| *Program I | Elective -III                                 | **Program  | Elective -IV          |
|------------|-----------------------------------------------|------------|-----------------------|
| Course No. | Subject                                       | Course No. | Subject               |
| MTCE-106   | Mobile Ad-hoc and Wireless Sensor<br>Networks | MTCE-112   | Security In Computing |
| MTCE-108   | Information Theory and Coding                 | MTCE-114   | Embedded System       |
| MTCE-110   | Agile Software Engineering                    | MTCE-116   | Data Mining           |

|          | \$ Program Elective Lab-II        |          |                           |  |  |  |  |  |  |  |
|----------|-----------------------------------|----------|---------------------------|--|--|--|--|--|--|--|
| MTCE-122 | Mobile Ad-hoc and Wireless Sensor | MTCE-128 | Security In Computing Lab |  |  |  |  |  |  |  |
|          | Networks Lab                      |          |                           |  |  |  |  |  |  |  |
| MTCE-124 | Information Theory and Coding Lab | MTCE-130 | Embedded System Lab       |  |  |  |  |  |  |  |
| MTCE-126 | Agile Software Engineering Lab    | MTCE-132 | Data Mining Lab           |  |  |  |  |  |  |  |
|          | 5 5 5                             |          | 5                         |  |  |  |  |  |  |  |

|            | ***Audit Course-II                      |  |  |  |  |  |  |  |  |
|------------|-----------------------------------------|--|--|--|--|--|--|--|--|
| Course No. | Subject                                 |  |  |  |  |  |  |  |  |
| MTAD-102   | Constitution of India                   |  |  |  |  |  |  |  |  |
| MTAD-104   | Pedagogy Studies                        |  |  |  |  |  |  |  |  |
| MTAD-106   | Stress Management by Yoga               |  |  |  |  |  |  |  |  |
| MTAD-110   | Personality Development and Soft Skills |  |  |  |  |  |  |  |  |

**Note 1:** After the second semester exams, the students are encouraged to go to Industrial Training/Internship for at least 6-8 weeks during the summer break with a specific objective for Dissertation Part–I (MTCE-207). The industrial Training/Internship would be evaluated as the part of the Dissertation–I (with the marks distribution as 40 marks for Industrial Training/Internship and 60 marks for Dissertation Part–I).

Note 2: The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

**\*\*\*Note 3:** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

**#Note4:** Mini project: During this course the student will be able to understand the contemporary/emerging technologies for various processes and systems. During the semester, the students are required to search/gather the material/information on a specific topic, comprehend it and present/discuss the same in the class. He/she will be acquainted to share knowledge effectively in oral (seminar) and written form (formulate documents) in the form of report. The student will be evaluated on the basis of viva/ seminar (40 marks) and report (60 marks).

|           |                |                        |   |               |    | SEMESTE    | R-III                                             |               |       |                               |        |
|-----------|----------------|------------------------|---|---------------|----|------------|---------------------------------------------------|---------------|-------|-------------------------------|--------|
| S.<br>No. | Course<br>Code | Subject                |   | eachi<br>ched |    | Hours/Week | Examination Schedule &<br>Percentage Distribution |               |       | Duration<br>of Exam<br>(Hrs.) | Credit |
|           |                |                        | L | Т             | Р  |            | Major<br>Test                                     | Minor<br>Test | Total |                               |        |
| 1         | *              | Program<br>Elective -V | 3 | 0             | 0  | 03         | 60                                                | 40            | 100   | 3                             | 3      |
| 2         | **             | Open<br>Elective       | 3 | 0             | 0  | 03         | 60                                                | 40            | 100   | 3                             | 3      |
| 3         | MTCE-<br>207   | Dissertation<br>Part-I | 0 | 0             | 20 | 20         |                                                   | 100           | 100   |                               | 10     |
|           |                | Total                  | • |               |    |            | 120                                               | 180           | 300   |                               | 16     |

| *Program Elective-V |                                        |  |  |  |  |  |
|---------------------|----------------------------------------|--|--|--|--|--|
| Course No.          | Subject                                |  |  |  |  |  |
| MTCE-201            | Object Oriented Software System Design |  |  |  |  |  |
| MTCE-203            | Big Data Analytics                     |  |  |  |  |  |
| MTCE-205            | Digital Image Processing               |  |  |  |  |  |

|    | **Open Elective |                                         |  |  |  |  |  |  |
|----|-----------------|-----------------------------------------|--|--|--|--|--|--|
| 1. | MTOE-201        | Business Analytics                      |  |  |  |  |  |  |
| 2. | MTOE-203        | Industrial Safety                       |  |  |  |  |  |  |
| 3. | MTOE-205        | Operations Research                     |  |  |  |  |  |  |
| 4. | MTOE-207        | Cost Management of Engineering Projects |  |  |  |  |  |  |
| 5. | MTOE-209        | Composite Materials                     |  |  |  |  |  |  |
| 6. | MTOE-211        | Waste to Energy                         |  |  |  |  |  |  |

## SEMESTER: IV

|           | SEMESTER. W    |                         |                      |   |    |                |               |                                                   |       |  |        |
|-----------|----------------|-------------------------|----------------------|---|----|----------------|---------------|---------------------------------------------------|-------|--|--------|
| S.<br>No. | Course<br>Code | Subject                 | Teaching<br>Schedule |   |    | Hours<br>/Week |               | Examination Schedule &<br>Percentage Distribution |       |  | Credit |
|           |                |                         | L                    | T | Р  |                | Major<br>Test | Minor Test                                        | Total |  |        |
| 1         | MTCE-<br>202   | Dissertation<br>Part-II | 0                    | 0 | 32 | 32             | 200           | 100                                               | 300   |  | 16     |
|           | Total          |                         |                      |   |    | 32             | 200           | 100                                               | 300   |  | 16     |

## Total Credits - 68

- **Note 1**: At the end of the second semester each student is required to do his/her Dissertation work in the identified area in consent of the Guide/Supervisor. Synopsis for the Dissertation Part-I is to be submitted within three weeks of the beginning of the Third Semester.
- **Note 2**: Each admitted student is required to submit the report of his/her Dissertation Part-I as per the schedule mentioned in Academic calendar for the corresponding academic session otherwise the Dissertation Part-II cannot be continued at any level.
- Note 3: Each admitted student is required to submit his/her final Dissertation Part-II as per the schedule mentioned in Academic calendar for the corresponding academic session only after the publication of two papers in a journal/International/National conference of repute like IEEE, Springer, Elsevier, ACM etc.
- **Note 4:**The course of program/open elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

| MTCE-101                 |                                                                                                                                                              | Advanced            | Computer     | Architecture a   | nd Parallel Proce  | essing            |              |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|------------------|--------------------|-------------------|--------------|--|--|--|
| Lecture                  | Tutorial                                                                                                                                                     | Practical           | Credit       | Major Test       | Minor Test         | Total             | Time         |  |  |  |
| 3                        | 0                                                                                                                                                            | 0 3 60 40 100 3 Hrs |              |                  |                    |                   |              |  |  |  |
| Program<br>Objective (PO | To enable students to describe and compare different parallel computers, processor architectures<br>and various techniques to improve processor performance. |                     |              |                  |                    |                   |              |  |  |  |
| Course Outcomes (CO)     |                                                                                                                                                              |                     |              |                  |                    |                   |              |  |  |  |
| C01                      | Classify par<br>mechanisms                                                                                                                                   | •                   | ers based    | on different cr  | iteria and comp    | are various p     | rogram flow  |  |  |  |
| CO2                      | Contrast var<br>networks.                                                                                                                                    | ious processo       | r architectu | ires and solve p | roblems of routing | g in various inte | erconnection |  |  |  |
| CO3                      | Explain various instruction pipeline design techniques, memory hierarchy concepts and identify ways to reduce miss penalty and miss rate.                    |                     |              |                  |                    |                   |              |  |  |  |
| CO4                      |                                                                                                                                                              | d distinguish       |              |                  | protocols used     | in various sha    | red memory   |  |  |  |

**Parallel computer models:** The state of computing, Classification of parallel computers, Multiprocessors and multicomputer, Multivector and SIMD computers.

**Program and network properties:** Conditions of parallelism, Data and resource Dependences, Hardware and software parallelism, Program partitioning and scheduling, Grain Size and latency, Program flow mechanisms, Control flow versus data flow, Data flow Architecture, Demand driven mechanisms, Comparisons of flow mechanisms

#### Unit 2

**System Interconnect Architectures:** Network properties and routing, Static interconnection Networks, Dynamic interconnection Networks, Multiprocessor system Interconnects, Hierarchical bus systems, Crossbar switch and multiport memory, Multistage and combining network.

Advanced processors: Advanced processor technology, Instruction-set Architectures, CISC Scalar Processors, RISC Scalar Processors, VLIW Architectures, Vector and Symbolic processors

#### Unit 3

**Pipelining:** Linear pipeline processor, nonlinear pipeline processor, Instruction pipeline Design, Mechanisms for instruction pipelining, Dynamic instruction scheduling, Branch Handling techniques, branch prediction, Arithmetic Pipeline Design, Computer arithmetic principles, Static Arithmetic pipeline, Multifunctional arithmetic pipelines

**Memory Hierarchy Design:** Cache basics & cache performance, reducing miss rate and miss penalty, multilevel cache hierarchies, main memory organizations, design of memory hierarchies.

#### Unit 4

**Multiprocessor Architectures:** Symmetric shared memory architectures, distributed shared memory architectures, models of memory consistency, cache coherence protocols (MSI, MESI, MOESI), scalable cache coherence, overview of directory based approaches, design challenges of directory protocols, memory based directory protocols, cache based directory protocols, protocol design trade-offs, synchronization,

Enterprise Memory subsystem Architecture: Enterprise RAS Feature set: Machine check, hot add/remove, domain partitioning, memory mirroring/migration, patrol scrubbing, fault tolerant system.

## Text Books:

1. Kai Hwang, "Advanced computer architecture"; TMH. 2000

2. Patterson and Hennessey, "Computer organization and design", Morgan Kaufmann, 2nd Ed. 2002

## Reference Books:

1. Harvey G.Cragon,"Memory System and Pipelined processors"; Narosa Publication. 1998.

2. V.Rajaranam&C.S.R.Murthy, "Parallel computer"; PHI. 2002.

- 3. R.K.Ghose, RajanMoona&Phalguni Gupta, "Foundation of Parallel Processing", Narosa Publications, 2003
- 4. Stalling W, "Computer Organisation & Architecture", PHI. 2000
- 5. D.Sima, T.Fountain, P.Kasuk, "Advanced Computer Architecture-A Design space Approach," Addison Wesley, 1997.
- 6. M.J Flynn, "Computer Architecture, Pipelined and Parallel Processor Design", Narosa Publishing. 1998
- 7. Patterson, Hennessy, "Computer Architecture: A quantitative approach"; Morgan Kauffmann, February, 2002.

8. Hwan and Briggs, "Computer Architecture and Parallel Processing"; MGH. 1999.

| MTCE-103  |                |                                                                                                        | Softwa        | re Quality Models     | s & Testing            |               |              |  |  |  |  |
|-----------|----------------|--------------------------------------------------------------------------------------------------------|---------------|-----------------------|------------------------|---------------|--------------|--|--|--|--|
| Lecture   | Tutorial       | utorial Practical Credit Major Test Minor Test Total Time                                              |               |                       |                        |               |              |  |  |  |  |
| 3         | 0              | 0                                                                                                      | 3             | 60                    | 40                     | 100           | 3 Hrs.       |  |  |  |  |
| Program   | The objectiv   | e of this cour                                                                                         | se is to pro  | vide the in-depth     | coverage of softw      | are quality i | models and   |  |  |  |  |
| Objective | software tes   | software testing strategies. It focuses on test case generation techniques and testing levels. It also |               |                       |                        |               |              |  |  |  |  |
| (PO)      | focuses on te  | focuses on testing different kinds of software.                                                        |               |                       |                        |               |              |  |  |  |  |
|           |                |                                                                                                        | Course C      | Outcomes (CO)         |                        |               |              |  |  |  |  |
| CO1       | To develop t   | est cases for a                                                                                        | ny problem    |                       |                        |               |              |  |  |  |  |
| CO2       | To pursue te   | sting on any le                                                                                        | vel of softwa | re design by using    | g different testing st | rategies      |              |  |  |  |  |
| CO3       | To learn the   | e configuration                                                                                        | manageme      | ent activities and    | testing object orie    | nted softwar  | e by using   |  |  |  |  |
|           | different test | ing methods.                                                                                           | _             |                       | -                      |               | -            |  |  |  |  |
| CO4       | To apply tes   | sting principles                                                                                       | for Testab    | ility, observability, | controllability and    | software re   | factoring to |  |  |  |  |
|           | achieve Agili  | ty.                                                                                                    |               | · ·                   | -                      |               | -            |  |  |  |  |

### UNIT – I

Overview of SQM: Concepts of Software Quality, Quality Attributes, Software Quality Models: McCall, Boehm, ISO-9000, CMM.

Software testing principles: Need for testing, Psychology of testing, Testing economics, White box, Black box, Grey box testing, Software Development Life Cycle (SDLC) and Testing, Software Verification Validation, Weyuker's adequacy axioms.

### UNIT – II

Testing strategies: White box testing techniques: Control Flow based testing - Statement coverage, Branch Coverage, Path Coverage; Data flow based testing, Mutation testing, Automated code coverage analysis, Black box testing techniques: Boundary value analysis, Equivalence partitioning, Cause-effect graphing, Robustness testing, Levels of testing - Unit, Integration and System Testing; Acceptance testing:  $\alpha$ ,  $\beta$ , and  $\gamma$  testing.

#### UNIT – III

Configuration Management: Maintaining Product Integrity, Components, configuration items, change Management, Version Control, Configuration accounting, Reviews, Walkthrough, Inspection, and Configuration Audits.

Testing object oriented software: Challenges, Differences from testing non-Object Oriented Software, Class testing strategies, Class Modality, State-based Testing.

## UNIT – IV

Testability and related issues: Design for Testability, Observability & Controllability, Design by Contract, Precondition, Post condition and Invariant, Regression Testing, Challenges, test optimization.

Miscellaneous topics: Stress Testing, Testing web-enabled applications, Ad hoc testing: Buddy testing, pair testing, Exploratory testing, Agile and extreme testing.

#### **Text Books:**

1. Jorgensen P. C., "Software Testing - A Craftman's Approach", 2<sup>nd</sup> Ed., CRC Press.

2. Glenford J. Myers, "The Art of Software Testing", 3rd Ed., Wiley India Pvt. Ltd.

## **Reference Books:**

1. Mathur P. Aditya, "Foundations of Software Testing", 2<sup>nd</sup> Ed., Pearson Education.

2. Robert V. Binder, "Testing Object-Oriented Systems: Models Patterns and Tools", Pearson Education.

3. Limaye G. M., "Software Testing - Principles, Techniques, and Tools", Tata McGraw Hill.

4. Boris Beizer, "Black-Box Testing: Techniques for Functional Testing of Software and Systems",1st Ed., Wiley India Pvt Ltd.

5. William E. Perry, "Effective Methods for Software Testing", 3<sup>rd</sup> Ed., Wiley India Pvt Ltd.

| MTCE-105              |                                                           | Advanced Computer Networks                                                                     |             |                   |                    |                |            |      |  |  |  |  |
|-----------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------|-------------------|--------------------|----------------|------------|------|--|--|--|--|
| Lecture               | Tutorial                                                  | Practical                                                                                      | Credit      | Major Test        | Minor Test         | Practical      | Total      | Time |  |  |  |  |
| 3                     | 0 0 3 60 40 - 100 3 Hr                                    |                                                                                                |             |                   |                    |                |            |      |  |  |  |  |
| Program               | v                                                         | To enable students to describe and deal with computer communication and networking, various    |             |                   |                    |                |            |      |  |  |  |  |
| <b>Objective (PO)</b> |                                                           | eference models and architectures along with implemented wireless communication techniques and |             |                   |                    |                |            |      |  |  |  |  |
| •                     | various security and privacy parameters are also studied. |                                                                                                |             |                   |                    |                |            |      |  |  |  |  |
|                       |                                                           |                                                                                                | Course Ou   | tcomes (CO)       |                    |                |            |      |  |  |  |  |
| C01                   |                                                           |                                                                                                |             |                   | vireless networkir | ng standards,  | compare a  | ind  |  |  |  |  |
|                       | contrast var                                              | ious IEEE wir                                                                                  | eless LAN   | and Ethernet sta  | indards.           |                |            |      |  |  |  |  |
| CO2                   | To describe                                               | cellular arch                                                                                  | tecture and | IPv4 and IPv6 h   | neader formats ha  | s to be discus | ssed along | with |  |  |  |  |
|                       | mobile IP.                                                |                                                                                                |             |                   |                    |                |            |      |  |  |  |  |
| CO3                   | To deploy h                                               | igh performai                                                                                  | nce comput  | ting standards, V | PN and routing p   | rotocols.      |            |      |  |  |  |  |
| CO4                   | To get famil                                              | liar with variou                                                                               | us security | and privacy stan  | dards/tools.       |                |            |      |  |  |  |  |

MAC Protocols for high speed and wireless networks -IEEE 802.3 standards for fast Ethernet, gigabit Ethernet, 10G, and 100VG-AnyLAN, IEEE 802.11, 802.15, and 802.16 standards for Wireless PAN, LAN, and MAN

#### Unit 2

IPv6: IPv4 versus IPv6, basic protocol, Header-extensions and options, support for QoS, security, etc., neighbour discovery, auto-configuration, DHCPv6, IPv6 Routers and Routing.

Mobility in networks – Mobility Management: Cellular architecture, Mobility: handoff, types of handoffs; location management, HLR-VLR scheme, Mobile IP and IPv6.

#### Unit 3

IP Multicasting. Multicast routing protocols, address assignments, session discovery, etc. IPsec protected channel service, virtual private network service, multiprotocol label switching, MPLS VPN

Traffic Types, TCP extensions for high-speed networks, transaction-oriented applications. Other improvements in TCP, Performance issues, TCP Congestion Control – fairness, scheduling and Delay modeling, QoS issues, differentiated services.

#### Unit 4

Network security at various layers. Security related issues in mobility. Secure-HTTP, SSL, Message digests, Key distribution protocols. Digital signatures and digital certificates.

#### Books and References:

- 1 W. R. Stevens. TCP/IP Illustrated, Volume 1: The protocols, Addison Wesley, 1994.
- 2 G. R. Wright. TCP/IP Illustrated, Volume 2: The Implementation, Addison Wesley, 1995.
- 3 W. R. Stevens. TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the Unix Domain Protocols, Addison Wesley, 1996.
- 4 W. Stallings. Cryptography and Network Security: Principles and Practice, 2nd Edition, Prentice Hall, 1998.
- 5 C. E. Perkins, B. Woolf, and S. R. Alpert Mobile IP: Design Principles and Practices, Addison Wesley, 1997.
- 6 J.F. Kurose and K.W. Ross, Computer Networking A Top-down Approach Featuring the Internet, Pearson Education, New Delhi, 2004.
- 7 N. Olifer & V. Olifer, Computer Networks: Principles, Technologies, and Protocols for network Design, Wiley-Dreamtech Low Price, New Delhi

| MTCE-107  |                   | Distributed Operating Systems                                                                        |               |                     |                      |                |             |  |  |  |  |  |
|-----------|-------------------|------------------------------------------------------------------------------------------------------|---------------|---------------------|----------------------|----------------|-------------|--|--|--|--|--|
| Lecture   | Tutorial          | Tutorial Practical Credit Major Test Minor Test Total Time                                           |               |                     |                      |                |             |  |  |  |  |  |
| 3         | 0 0 3 60 40 100 3 |                                                                                                      |               |                     |                      |                |             |  |  |  |  |  |
| Program   |                   | This course is planned to understand the basics of distributed systems, and various issues in        |               |                     |                      |                |             |  |  |  |  |  |
| Objective |                   | distributed operating systems. The focus is on distributed system models , distributed architecture, |               |                     |                      |                |             |  |  |  |  |  |
| (PO)      | synchronizat      | synchronization, process allocation methods and memory sharing techniques.                           |               |                     |                      |                |             |  |  |  |  |  |
|           |                   |                                                                                                      | Course O      | utcomes (CO)        |                      |                |             |  |  |  |  |  |
| C01       | Understand        | basics of distri                                                                                     | buted systen  | n and architecture  | with related factors | 5.             |             |  |  |  |  |  |
| CO2       | Recognize th      | ne synchroniza                                                                                       | tion concepts | s, transactions pro | cessing and deadlo   | ock issues.    |             |  |  |  |  |  |
| CO3       | Explanation       | of fault tolerand                                                                                    | e, real time  | system and distrib  | uted file system.    |                |             |  |  |  |  |  |
| CO4       | To know the       | e concepts of                                                                                        | consistency   | , shared memory     | and description      | of distributed | d operating |  |  |  |  |  |
|           | systems.          |                                                                                                      |               |                     |                      |                |             |  |  |  |  |  |

**Introduction:** Distributed system, goals, Hardware and Software concepts, Fundamental Issues in Distributed Systems, Distributed System Models and Architectures.

**Communication in distributed systems:** Layered protocols, client-server model.RPC, Group communication.

#### Unit 2

**Synchronization in distributed Systems:** Clock synchronization, Clock synchronization Algorithms, Mutual Exclusion and its algorithms, Election algorithms: Bully algorithm, Ring algorithm, Atomic transactions, Transaction models, Deadlocks: Distributed deadlock detection and prevention.

#### Unit 3

**Process management:** Threads, System models, processor allocation, scheduling algorithms, fault tolerance, real-time distributed systems

**Distributed File System:** Design and implementation of distributed file system, scalability and mobility issues, fault tolerance.

#### Unit 4

**Distributed Shared Memory:** Shared memory, consistency models, Page-based distributed shared memory **Case Studies:** AMOEBA, MACH

- 1 Distributed Operating Systems; Andrew S Tanenbaum, Pearson Ed.
- 2 Distributed Systems: Concepts and Design; G Colouris, J Dollimore, T Kindberg 3/e Pearson Ed. 2002.
- 3 Principles of Distributed Systems, VK Garg, Kluwer Academic Publishers, 1996.
- 4 Distributed Systems and Algorithmic Approach by Su Kumar Boss, Chamal& Hall.
- 5 Principles of Distributed Computing by V K Garg, IEEE Press.
- 6 Distributed Computing by A D KshemKalyani&MukeshSingha.
- 7 Distributed Algorithms by Nancy Lynch, Morgan Kaufmann Press.
- 8 Introduction to Distributed Algorithms by G Tel, Cambridge University.

| MTCE-109                     |              | Number Theory and Cryptography                                                        |               |                    |               |       |       |  |  |  |  |
|------------------------------|--------------|---------------------------------------------------------------------------------------|---------------|--------------------|---------------|-------|-------|--|--|--|--|
| Lecture                      | Tutorial     | Practical                                                                             | Credit        | Major Test         | Minor Test    | Total | Time  |  |  |  |  |
| 4                            | 0            | 0                                                                                     | 4             | 60                 | 40            | 100   | 3Hrs. |  |  |  |  |
| Program<br>Objective<br>(PO) | To introduce | To introduce the concepts and methodology used in the Number Theory and Cryptography. |               |                    |               |       |       |  |  |  |  |
|                              |              |                                                                                       | Course        | Outcomes (CO)      |               |       |       |  |  |  |  |
| CO1                          | To introduce | e the mathema                                                                         | atical fundam | nentals involve in | cryptography. |       |       |  |  |  |  |
| CO2                          | To describe  | To describe the process of primality testing and factorization                        |               |                    |               |       |       |  |  |  |  |
| CO2                          | To understa  | To understand the strength and weakness of cryptosystems                              |               |                    |               |       |       |  |  |  |  |
| CO3                          | To introduce | e the elliptic ci                                                                     | urve cryptogi | raphy.             |               |       |       |  |  |  |  |

#### Unit I

Elementary Number Theory: Divisibility, Division Algorithm, Euclidean Algorithm; Congruences, Complete Residue systems, Reduced Residue systems; Fermat's little theorem, Euler's Generalization, Wilson's Theorem; Chinese Remainder Theorem, Generalized Chinese Remainder Theorem-Euler Phi-function, multiplicative property; Finite Fields, Primitive Roots; Quadratic Residues, Legendre Symbol, Jacobi Symbol; Gauss's lemma, Quadratic Reciprocity Law.

#### Unit II

Primality Testing and Factorization: Primality Tests; Pseudo primes, Carmichael Numbers; Fermat's pseudoprimes, Euler pseudo primes; Factorization by Pollard's Rho method; Simple Continued Fraction, simple infinite continued fractions; Approximation to irrational numbers using continued fractions; Continued Fraction method for factorization.

#### Unit III

Public Key Cryptosystems: Traditional Cryptosystem, limitations; Public Key Cryptography; Diffie Hellmann key exchange; Discrete Logarithm problem; One-way functions, Trapdoor functions; RSA cryptosystem; Digital signature schemes; Digital signature standards; RSA signature schemes; Knapsack problem; El Gamal Public Key Cryptosystem; Attacks on RSA cryptosystem: Common modulus attack; Homomorphism attack, timing attack; Forging of digital signatures; Strong primes, Safe primes, Gordon's algorithm for generating strong primes.

#### Unit IV

Elliptic Curve Cryptography: Cubic Curves, Singular points, Discriminant; Introduction to Elliptic Curves, Geometry of elliptic curves over reals; Weier strass normal form, point at infinity; Addition of two points; Bezout's theorem, associativity; Group structure, Points of finite order; Elliptic Curves over finite fields, Discrete Log problem for Elliptic curves; Elliptic Curve Cryptography; Factorization using Elliptic Curve; Lenstra's algorithm; ElGamal Public Key Cryptosystem for elliptic curves.

#### Reference Books:

- 1. A Course in Number Theory and Cryptography, Neal Koblitz, (Springer 2006).
- 2. An Introduction to Mathematical Cryptography, Jill Pipher, Jeffrey Hoffstein, Joseph H.Silverman (Springer, 2008).
- 3. An Introduction to theory of numbers, Niven, Zuckerman and Montgomery, (Wiley 2006).
- 4. Elliptic curves: Number theory and cryptography, Lawrence C. Washington, (Chapman & Hall/CRC 2003).
- 5. An Introduction to Cryptography, R.A. Mollin (Chapman & Hall, 2001).
- 6. Rational Points on Elliptic Curves, Silverman and Tate (Springer 2005).
- 7. Guide to elliptic curve cryptography Hankerson, Menezes, Vanstone (Springer, 2004).
- 8. Elementary Number Theory, Jones and Jones (Springer, 1998).

| MTCE-111  | Algorithm Analysis and Design |                                                                                                 |                |                               |                    |     |        |  |  |  |  |
|-----------|-------------------------------|-------------------------------------------------------------------------------------------------|----------------|-------------------------------|--------------------|-----|--------|--|--|--|--|
| Lecture   | Tutorial                      | Tutorial Practical Credit Major Test Minor Test Total Time                                      |                |                               |                    |     |        |  |  |  |  |
| 3         | 0                             | 0                                                                                               | 3              | 60                            | 40                 | 100 | 3 Hrs. |  |  |  |  |
| Program   |                               | To Apply important Algorithmic design paradigms & methods of analysis & to Synthesize efficient |                |                               |                    |     |        |  |  |  |  |
| Objective | Algorithms in                 | Algorithms in common engineering design situations.                                             |                |                               |                    |     |        |  |  |  |  |
| (PO)      |                               |                                                                                                 | Course C       | uteemee (CO)                  |                    |     |        |  |  |  |  |
|           | 1                             |                                                                                                 |                | utcomes (CO)                  |                    |     |        |  |  |  |  |
| CO1       | To prove the                  | correctness &                                                                                   | analyse the    | asymptotic perform            | mance of Algorithm | S.  |        |  |  |  |  |
| CO2       | To know var                   | To know various Number Theoretic Algorithms & Graph Algorithms.                                 |                |                               |                    |     |        |  |  |  |  |
| CO3       | To Analyse v                  | Fo Analyse various Geometric Algorithms.                                                        |                |                               |                    |     |        |  |  |  |  |
| CO4       | Understand                    | NP-completen                                                                                    | ess & identify | <pre>/ different NP-com</pre> | plete problems.    |     |        |  |  |  |  |

## Introduction:

Algorithm concepts, Analyzing and design, Pseudocode conventions, asymptotic efficiency of algorithms, asymptotic notations and their properties.

## Analysis Techniques:

Growth Functions, Recurrences and Solution of Recurrence equation-, Amortized Analysis, Aggregate, Accounting and Potential Methods, Probabilistic analysis concepts, hiring problem and its probabilistic analysis, String Matching: naive string Matching, Rabin Karp, and String matching with finite Automata, KW and Boyer – Moore algorithm.

#### Unit 2

### Number Theoretic Algorithms:

Elementary notions, GCD, Modular Arithmetic, Solving modular linear equations, The chines remainder theorem, Powers of an element, RSA cryptosystem, Primality testing, Integer factorization, Polynomials. Huffman Codes: Concepts, construction, correctness of Huffman's algorithms; Representation of polynomials, DFT, FFT, Efficient implementation of FFT, Graph Algorithm, Bellman Ford Algorithm, Single source shortest paths in a DAG Johnson's Algorithm for sparse graph, Flow networks & Ford fulkerson Algorithm, Maximum bipartite matching.

## **Computational Geometry:**

Geometric structures using C++: Vectors, points, Polygons, Edges: Geometric Objects in space: Finding the intersection of a line & triangle, Finding star shaped polygons and convex hull using incremental insertion.

Unit 3

#### Unit 4

## **NP-completeness Concepts:**

Polynomial time verification, NP-completeness and reducibility, showing problems to be NP-complete like Clique problem, vertex cover problem etc. Approximation algorithms of these problems.

#### **Reference Books**

- 1 T. H Cormen, C E Leiserson.R L Rivest& C Stein, "Introduction to algorithms", 2<sup>™</sup>Edition, PHI.
- 2 Michael J Laszio, "Computational Geometry and Computer Graphics in C++", PHI. India 1996.
- 3 Brassard, Bratley, "Fundamentals of algorithms", Prentice Hall of India.
- 4 Knuth, "The Art of Computer Programming", Vol I-III, Pearson Education.

| MTCE-113  |                |                                                                                                            |              | Soft Computin      | ng               |              |                |  |  |  |  |
|-----------|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------------|------------------|--------------|----------------|--|--|--|--|
| Lecture   | Tutorial       | Tutorial         Practical         Credit         Major Test         Minor Test         Total         Time |              |                    |                  |              |                |  |  |  |  |
| 4         | 0              | 0                                                                                                          | 4            | 60                 | 40               | 100          | 3 Hrs.         |  |  |  |  |
| Program   |                |                                                                                                            |              |                    | Neural Networks, | Fuzzy Logic, | , Optimization |  |  |  |  |
| Objective | & Regression   | and Genetic alo                                                                                            | gorithms ap  | proaches.          |                  |              |                |  |  |  |  |
| (PO)      |                |                                                                                                            |              |                    |                  |              |                |  |  |  |  |
|           |                |                                                                                                            | Course O     | utcomes (CO)       |                  |              |                |  |  |  |  |
| C01       | Understand v   | arious types of I                                                                                          | Veural Netw  | /orks.             |                  |              |                |  |  |  |  |
| CO2       | Understand th  | ne detailed expla                                                                                          | anation of F | uzzy Logic with f  | fuzzy sets.      |              |                |  |  |  |  |
| CO3       | Description of | Description of optimization, regression methods and Genetic Algorithms for solving engineering             |              |                    |                  |              |                |  |  |  |  |
|           | problems       |                                                                                                            |              |                    |                  |              |                |  |  |  |  |
| CO4       | Understandin   | g all concepts o                                                                                           | f Soft Comp  | outing for probler | n solving.       |              |                |  |  |  |  |

**Neural Networks:** History, overview of biological Neuro-system, Mathematical Models of Neurons, ANN architecture, Learning rules, Learning Paradigms-Supervised, Unsupervised and reinforcement Learning, ANN training Algorithms-perceptions, Training rules, Delta, Back Propagation Algorithm, Multilayer Perceptron Model, Hopfield Networks, Associative Memories, Applications of Artificial Neural Networks.

#### Unit 2

**Fuzzy Logic:** Introduction to Fuzzy Logic, Classical and Fuzzy Sets: Overview of Classical Sets, Membership Function, Fuzzy rule generation, Operations on Fuzzy Sets: Compliment, Intersections, Unions, Combinations of Operations, Aggregation Operations, Fuzzy Arithmetic: Fuzzy Numbers, Linguistic Variables, Arithmetic Operations on Intervals & Numbers, Lattice of Fuzzy Numbers, Fuzzy Equations, Introduction of Neuro-Fuzzy Systems, Architecture of Neuro Fuzzy Networks, Applications.

#### Unit 3

**Regression and Optimization:** Least-Squares Methods for System Identification -System Identification: An Introduction, Basics of Matrix Manipulation and Calculus, Least-Squares Estimator, Geometric Interpretation of LSE, Recursive Least-Squares Estimator, Recursive LSE for Time-Varying Systems, An introduction to LSE for Nonlinear Models, Derivativebased Optimization-Descent Methods, The Method of Steepest Descent, Newton's Methods, Step Size Determination, Conjugate Gradient Methods, Analysis of Quadratic Case, Nonlinear Least-squares Problems, Incorporation of Stochastic Mechanisms, Derivative-Free Optimization.

## Unit 4

Genetic Algorithm: An Overview of GA, GA operators, GA in problem solving, Implementation of GA.

#### Text Books:

1. "Introduction to the Theory of Neural Computation", Hertz J. Krogh, R.G. Palmer, Addison-Wesley, California, 1991.

- 2. "Fuzzy Sets & Fuzzy Logic", G.J. Klir& B. Yuan, PHI, 1995.
- 3. "Neuro-fuzzy and Soft Computing", by J.-S.R. Jang, C.-T. Sun, and E. Mizutani, PHI.
- 4. "An Introduction to Genetic Algorithm", Melanie Mitchell, PHI, 1998.

5. "Soft computing and Intelligent System Design", F. O. Karray and C. de Silva, Pearson, 2009.

#### Reference Books:

1. "Neural Networks-A Comprehensive Foundations", Prentice-Hall International, New Jersey, 1999.

2. "Neural Networks: Algorithms, Applications and Programming Techniques", Freeman J.A. & D.M. Skapura, Addison Wesley, Reading, Mass, (1992).

| MTCE-115  |              | Speech and Language Processing                                                                |                |                    |                     |               |       |  |  |  |  |
|-----------|--------------|-----------------------------------------------------------------------------------------------|----------------|--------------------|---------------------|---------------|-------|--|--|--|--|
| Lecture   | Tutorial     | Tutorial Practical Credit Major Test Minor Test Total Time                                    |                |                    |                     |               |       |  |  |  |  |
| 3         | 0            | 0                                                                                             | 3              | 60                 | 40                  | 100           | 3Hrs. |  |  |  |  |
| Program   | This subject | This subject covers the overview and description of automatic speech recognition system.      |                |                    |                     |               |       |  |  |  |  |
| Objective |              |                                                                                               |                |                    |                     |               |       |  |  |  |  |
| (PO)      |              |                                                                                               |                |                    |                     |               |       |  |  |  |  |
|           |              |                                                                                               | Course O       | utcomes (CO)       |                     |               |       |  |  |  |  |
| C01       | To learn the | concepts in me                                                                                | echanics of s  | peech              |                     |               |       |  |  |  |  |
| CO2       | To understar | nd the spectral                                                                               | analysis of th | ne speech signal a | ind noise reduction | methodology   | Ι.    |  |  |  |  |
| CO3       | To implemer  | o implement and use of the statistical approaches for the design and development of Automatic |                |                    |                     |               |       |  |  |  |  |
|           | Speech Reco  | peech Recognition (ASR).                                                                      |                |                    |                     |               |       |  |  |  |  |
| CO4       | Understand   | the formal lang                                                                               | uage theory    | of language proce  | ssing and complexi  | ity measures. | 1     |  |  |  |  |

#### Unit I

Mechanics of Speech: Speech Production Mechanism, Nature of Speech Signal, Discrete Time Modeling of Speech Production, Representation of Speech Signals, Classification of Speech Sounds, Phones, Phonemes, Phonetics, IPA and Phonetic Alphabets, Articulatory Features, Auditory Perceptions, Anatomical Pathways from Ear to the Perception of Sound Peripheral Auditory System.

### Unit II

Spectral Analysis of Speech Signal: Time Domain Parameter of Speech Signal, Methods of Extracting The Parameters: Energy Filter bank Analysis, Short Time Fourier analysis, Formant Extraction, Pitch Extraction; Noise Reduction Techniques, Spectral Estimation, Feature Analysis: MFCC, PLP, RASTA, PLP-RASTA; TRAP.

### Unit III

Statistical Framework of ASR: Probability, Bayes Theorem, Covariance and Correlation, Gaussian Mixture Model, ASR Framework: Feature Extraction, Acoustic Model, Pronunciation Model, Language Model, Decoder; Unit Selection, Limitation of Basic HMM and Applications, Advanced HMM, Refinement of HMM, Hybrid HMM/ANN.

## Unit IV

Language Processing: Formal Language Theory: Chomsky Hierarchy, Chart Parsing for Context Free Grammars, Stochastic Language Models: Probabilistic Context-Free Grammar, N-gram Language Models, Complexity measure of Language Models: N-Gram Smoothing, Deleted Interpolation Smoothing, Backoff Smoothing, Class n-grams, Performance of N-gram Smoothing, Adaptive Language Models: Cache Language Models, Topic-Adaptive Models, Maximum Entropy Models.

## References:

- 1. Speech and language processing, Daniel Jurafsky and James H. Martin, University of Colorado, Boulder.
- 2. Fundamentals of Speech Recognition, Lawrence Rabiner, Biing Hwang Juang and B.Yegnarayana, Pearson Edition
- 3. Speech Recognition Theory and C++ Implementation, Claudio Becchetti, KlucioPrinaRicotti, Fondazione Ugo Bordoni, Rome, Italy.
- 4. Spoken Language Processing A Guide to Theory, algorithm and system development, X.Huang, A. Acero, H. W. Hon.

| MTCE-117  |               |                                                                                       | Software        | Quality Models 8    | Testing Lab            |          |        |  |  |  |  |
|-----------|---------------|---------------------------------------------------------------------------------------|-----------------|---------------------|------------------------|----------|--------|--|--|--|--|
| Lecture   | Tutorial      | Practical                                                                             | Credit          | Practical           | Minor Test             | Total    | Time   |  |  |  |  |
| 0         | 0             | 4                                                                                     | 2               | 60                  | 40                     | 100      | 3 Hrs. |  |  |  |  |
| Program   |               |                                                                                       |                 |                     | eneration on test      |          |        |  |  |  |  |
| Objective | software an   | software and to provide the in-depth coverage of software quality models and software |                 |                     |                        |          |        |  |  |  |  |
| (PO)      | testing strat | testing strategies.                                                                   |                 |                     |                        |          |        |  |  |  |  |
|           |               |                                                                                       | Course O        | utcomes (CO)        |                        |          |        |  |  |  |  |
| C01       | To develop t  | est cases for a                                                                       | ny problem      |                     |                        |          |        |  |  |  |  |
| CO2       | To pursue te  | sting on any le                                                                       | vel of softwa   | re design by using  | g different testing st | rategies |        |  |  |  |  |
| CO3       | Create a test | t plan documer                                                                        | nt of real time | e applications.     |                        |          |        |  |  |  |  |
| CO4       | To apply tes  | ting tools for de                                                                     | esigning the t  | est case to test th | e real time applicat   | ion.     |        |  |  |  |  |
|           | ,             | ~                                                                                     | 2 0             |                     |                        |          |        |  |  |  |  |

## **CASE STUDY 1**

## Write the test cases for the largest of three number based on:

- Boundary value analysis test
- Robustness based testing
- Equivalence class partitioning test
- Decision table based test

## CASE STUDY 2

### **Cause Effect Graph Testing for a Triangle Program**

Perform cause effect graph testing to find a set of test cases for the following program specification: Write a program that takes three positive integers as input and determine if they represent three sides of a triangle, and if they do, indicate what type of triangle it is. To be more specific, it should read three integers and set a flag as follows:

If they represent a scalene triangle, set it to 1.

If they represent an isosceles triangle, set it to 2.

If they represent an equilateral triangle, set it to 3.

If they do not represent a triangle, set it to 4.

### CASE STUDY 3

#### **Boundary Value Analysis for a Software Unit**

The following is a specification for a software unit. The unit computes the average of 25 floating point numbers that lie on or between bounding values which are positive values from 1.0 (lowest allowed boundary value) to 5000.0 (highest allowed boundary value). The bounding values and the numbers to average are inputs to the unit. The upper bound must be greater than the lower bound. If an invalid set of values is input for the boundaries an error message appears and the user is reported. If the boundary values are valid the unit computes the sum and the average of the numbers on and within the bounds. The average and sum are output by the unit, as well as the total number of inputs that lie within the boundaries. Derive a set of equivalence classes for the averaging unit using the specification, and complement the classes using boundary value analysis. Be sure to identify valid and invalid classes.

Design a set of test cases for the unit using your equivalence classes and boundary values. For each test case, specify the equivalence classes covered, input values, expected outputs, and test case identifier. Show in tabular form that you have covered all the classes and boundaries. Implement this module in the programming language of your choice. Run the module with your test cases and record the actual outputs. Save an uncorrected version of the program for future use.

## Case Study 4:

Write the test cases for any known application (e.g. banking application) using I) Basis path testing II) Component testing III) Data flow analysis test

#### Case Study 5:

Create a test plan document for any application (e.g. Library Management System)

# CASE STUDY 6

#### Model Based Testing

Design and develop a scientific calculator program using various GUI components and events. Build the test model for the same. Determine the inputs that can be given to the model.

Calculate expected output for the model. Run the test cases. Compare the actual output with the expected output. Any model-based technique can be used for building the test model.

## MTCE-117(Contd...)

## CASE STUDY 7 Study and implementation of

- Mutation test
- Slice based test

## • CASE STUDY 8

### Introduction to any two open source testing tool:

- Study of any testing tool (e.g. Win runner)
- Study of any web testing tool (e.g. Selenium)
- Study of any bug tracking tool (e.g. Bugzilla, bugbit)
- Study of any test management tool (e.g. Test Director)
- Study of any open source-testing tool (e.g. Test Link)

## CASE STUDY 9

## Web Application Testing for Student Grade System

With educational organizations under increasing pressure to improve their performance to secure funding for future provision of programmes, it is vital that they have accurate, up-to-date information. For this reason, they have MIS systems to record and track student enrolment and results on completion of a learning programme. In this way they can monitor achievement statistics. All student assignment work is marked and recorded by individual module tutors using a spreadsheet, or similar, of their own design. In the computing department these results are input into a master spreadsheet to track a student's overall progress throughout their programme of study. This is then made available to students through the web portal used in college. Perform web application testing for this scenario.

.....

| MTCE-119       |                                                               | Advanced Computer Networks Lab                                                              |              |                   |                    |                 |            |             |  |  |  |  |  |
|----------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------|-------------------|--------------------|-----------------|------------|-------------|--|--|--|--|--|
| Lecture        | Tutorial                                                      | Practical                                                                                   | Credit       | Major Test        | Minor Test         | Practical       | Total      | Time        |  |  |  |  |  |
| 3              | 0                                                             | 0                                                                                           | 3            | 60                | 40                 | -               | 100        | 3 Hrs.      |  |  |  |  |  |
| Program        |                                                               |                                                                                             |              |                   | mputer commu       |                 |            |             |  |  |  |  |  |
| Objective (PO) |                                                               | reference models and architectures along with implemented wireless communication techniques |              |                   |                    |                 |            |             |  |  |  |  |  |
|                | and various security and privacy parameters are also studied. |                                                                                             |              |                   |                    |                 |            |             |  |  |  |  |  |
|                |                                                               |                                                                                             | Course Ou    | tcomes (CO)       |                    |                 |            |             |  |  |  |  |  |
| C01            |                                                               |                                                                                             |              |                   | ireless networking | g standards, co | ompare an  | d contrast  |  |  |  |  |  |
|                | various IEE                                                   | E wireless LA                                                                               | N and Ethe   | rnet standards.   |                    |                 |            |             |  |  |  |  |  |
| CO2            | To describe                                                   | cellular archit                                                                             | ecture and   | IPv4 and IPv6 he  | eader formats has  | to be discuss   | ed along w | ith mobile/ |  |  |  |  |  |
|                | IP.                                                           |                                                                                             |              |                   |                    |                 |            |             |  |  |  |  |  |
| CO3            | To deploy h                                                   | igh performar                                                                               | ce computi   | ng standards, VP  | N and routing pro  | otocols.        |            |             |  |  |  |  |  |
| CO4            | To get famil                                                  | iar with variou                                                                             | s security a | and privacy stand | ards/tools.        |                 |            |             |  |  |  |  |  |

- 1. Configuration and logging to a CISCO Router and introduction to the basic user Interfaces. Introduction to the basic router configuration and basic commands.
- 2. Configuration of IP addressing for a given scenario for a given set of topologies.
- 3. Configure a DHCP Server to serve contiguous IP addresses to a pool of four IP devices with a default gateway and a default DNS address. Integrate the DHCP server with a BOOTP demon to automatically serve Windows and Linux OS Binaries based on client MAC address.
- 4. Configure, implement and debug the following: Use open source tools for debugging and diagnostics.
- a. ARP/RARP protocols
- b. RIP routing protocols
- c. BGP routing
- d. OSPF routing protocols
- e. Static routes (check using netstat)
- 5. Configure DNS: Make a caching DNS client, and a DNS Proxy; implement reverse DNS and forward DNS, using TCP dump/Wireshark characterise traffic when the DNS server is up and when it is down.
- 6. Configure FTP Server on a Linux/Windows machine using a FTP client/SFTP client characterise file transfer rate for a cluster of small files 100k each and a video file of 700mb.Use a TFTP client and repeat the experiment.
- 7. Configure a mail server for IMAP/POP protocols and write a simple SMTP client in C/C++/Java client to send and receive mails.
- 8. Implement AODV routing protocol in MANET.
- 9. Implement DSDV routing protocol in MANET.
- 10. Implement DSR routing protocol in MANET.
- 11. Study the effect of different Routing protocols (RIP and OSPF) on network's performance through simulation.
- 12. Create a scenario and study the performance of MANET mobility models.

| MTCE-121                     | Distributed Operating System Lab                |                                                                                                                       |             |              |    |     |        |  |  |  |  |  |
|------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------|--------------|----|-----|--------|--|--|--|--|--|
| Lecture                      | Tutorial                                        | Tutorial Practical Credit Practical Minor Test Total Time                                                             |             |              |    |     |        |  |  |  |  |  |
| 0                            | 0                                               | 4                                                                                                                     | 2           | 60           | 40 | 100 | 3 Hrs. |  |  |  |  |  |
| Program<br>Objective<br>(PO) |                                                 | To get awareness of Distributed Operating System and getting knowledge of various design aspects of operating system. |             |              |    |     |        |  |  |  |  |  |
|                              |                                                 |                                                                                                                       | Course O    | utcomes (CO) |    |     |        |  |  |  |  |  |
| C01                          | Understand                                      | Understand the design aspects of operating system                                                                     |             |              |    |     |        |  |  |  |  |  |
| CO2                          | Exposure on usage of various operating systems. |                                                                                                                       |             |              |    |     |        |  |  |  |  |  |
| CO3                          | Design mode                                     | ern distributed                                                                                                       | system comp | onents.      |    |     |        |  |  |  |  |  |

1. Simulate the following CPU scheduling algorithms a) Round Robin b) SJF c) FCFS d) Priority

2. Simulate all file allocation strategies a) Sequential b) Indexed c) Linked

Implement process strategies: creation of Child, Zombie, and Orphan process
 Implement file organization strategies a) Single level b) Two level c) Hierarchical

5. Simulate Bankers Algorithm for Dead Lock Avoidance6. Simulate Bankers Algorithm for Dead Lock Prevention

7. Simulate all page replacement algorithms a) FIFO b) LRU c) LFU

8. Implement shared memory and semaphore concepts for Inter process communication

| MTCE-123  |                | Number Theory and Cryptography Lab                                                  |                |                    |                       |               |             |  |  |  |  |  |
|-----------|----------------|-------------------------------------------------------------------------------------|----------------|--------------------|-----------------------|---------------|-------------|--|--|--|--|--|
| Lecture   | Tutorial       | Practical                                                                           | Credit         | Practical          | Minor Test            | Total         | Time        |  |  |  |  |  |
| 0         | 0              | 4                                                                                   | 2              | 60                 | 40                    | 100           | 3 Hrs.      |  |  |  |  |  |
| Program   | To be able     | To be able to implement and analyze algorithms for different encryption techniques. |                |                    |                       |               |             |  |  |  |  |  |
| Objective |                | Applications to cryptography are explored including symmetric and public-key        |                |                    |                       |               |             |  |  |  |  |  |
| (PO)      | cryptosyste    | cryptosystems. To be able to implement different methods of attacks on data.        |                |                    |                       |               |             |  |  |  |  |  |
|           |                |                                                                                     | Course C       | outcomes (CO)      |                       |               |             |  |  |  |  |  |
| C01       | To understa    | nd mathematic                                                                       | s behind cry   | otography.         |                       |               |             |  |  |  |  |  |
| CO2       | Students wil   | I be able to im                                                                     | plement alg    | orithms of cryptog | raphy, including er   | ncryption/dec | ryption and |  |  |  |  |  |
|           | hash functio   | ns.                                                                                 | -              |                    | _                     |               |             |  |  |  |  |  |
| CO3       | Students will  | be able to imp                                                                      | element vario  | ous network securi | ty practice applicati | ons.          |             |  |  |  |  |  |
| CO4       | Identify vario | ous attacks and                                                                     | l formulate de | efense mechanisn   | ۱.                    |               |             |  |  |  |  |  |
|           |                |                                                                                     |                |                    |                       |               |             |  |  |  |  |  |

- 1. Write a program to implement encryption using binary/byte addition.
- Write a program to implement encryption using binary Exclusive-OR (XOR). Write a program to implement Triple DES with CBC mode and Weak DES keys. 2.
- 3.
- Write a program to implement RSA Encryption and Factorization Attacks. 4.
- Write a program to implement Attack on RSA encryption with short RSA modulus. 5.
- Write a program to implement hash generation and sensitivity of hash functions to plaintext modifications. 6.
- Write a program to implement Digital Signature Visualization. 7.
- Write a program to implement RSA Signature. 8.
- 9. Write a program to implement Attack on Digital Signature/Hash Collision.
- 10. Write a program to implement Firewalls and IDS.

| MTCE-125                     | Algorithm Analysis and Design Lab                                                                                                                                                |                                                                             |                |                     |                      |          |        |  |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------|---------------------|----------------------|----------|--------|--|--|--|--|
| Lecture                      | Tutorial                                                                                                                                                                         | Practical                                                                   | Credit         | Practical           | Minor Test           | Total    | Time   |  |  |  |  |
| 0                            | 0                                                                                                                                                                                | 4                                                                           | 2              | 60                  | 40                   | 100      | 3 Hrs. |  |  |  |  |
| Program<br>Objective<br>(PO) | The student will learn how to design the algorithm techniques, become familiar with the different algorithm design techniques and improve the efficiency of existing algorithms. |                                                                             |                |                     |                      |          |        |  |  |  |  |
|                              |                                                                                                                                                                                  |                                                                             | Course O       | utcomes (CO)        |                      |          |        |  |  |  |  |
| CO1                          | The student                                                                                                                                                                      | should be able                                                              | to Design al   | gorithms for real t | ime problems         |          |        |  |  |  |  |
| CO2                          | The student                                                                                                                                                                      | should be able                                                              | to Analyse t   | he time and space   | e complexity of algo | orithms. |        |  |  |  |  |
| CO3                          | Students will                                                                                                                                                                    | Students will be able to learn how to improve the efficiency of algorithms. |                |                     |                      |          |        |  |  |  |  |
| CO4                          | To apply test                                                                                                                                                                    | ting tools for de                                                           | esigning the t | est case to test th | e real time applica  | tion.    |        |  |  |  |  |

- 1. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.
- 2. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.
- **3.** Implement All-Pairs Shortest Paths Problem using Floyd's algorithm. Parallelize this algorithm, implement it using Open and determine the speed-up achieved.
- 4. Implement 0/1 Knapsack Problem using Dynamic Programming.
- 5. Print all the nodes reachable from a given starting node in a digraph using BFS method.
- 6. Implement Huffman code using Greedy approach.
- 7. Implement Naïve String matching technique to match the string.
- 8. Implement N Queen's problem using Back Tracking.
- 9. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.
- **10.** Implement longest common subsequence.

| MTCE-127  | Soft Computing Lab                                                                               |                                                           |               |                     |                       |               |            |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------|---------------------|-----------------------|---------------|------------|--|--|--|--|
| Lecture   | Tutorial                                                                                         | Tutorial Practical Credit Practical Minor Test Total Time |               |                     |                       |               |            |  |  |  |  |
| 0         | 0                                                                                                | 4                                                         | 2             | 60                  | 40                    | 100           | 3 Hrs.     |  |  |  |  |
| Program   | To get awareness of Neural Network based learning and training; and getting knowledge of various |                                                           |               |                     |                       |               |            |  |  |  |  |
| Objective |                                                                                                  |                                                           |               |                     | s. To explore th      |               | ge through |  |  |  |  |
| (PO)      | implementation the Evolutionary approaches like Genetic and Differential Evolution.              |                                                           |               |                     |                       |               |            |  |  |  |  |
|           | Course Outcomes (CO)                                                                             |                                                           |               |                     |                       |               |            |  |  |  |  |
| C01       | To be able to                                                                                    | o get basic con                                           | cepts of Neu  | ral Networks.       |                       |               |            |  |  |  |  |
| CO2       | To get under                                                                                     | standing of de                                            | signing and t | raining various Ne  | eural Networks like   | and, or, X·   | -OR Logic. |  |  |  |  |
| CO3       | Students are                                                                                     | e able to analy                                           | se and prov   | ide solutions for I | real world problem    | s using Soft  | Computing  |  |  |  |  |
|           | techniques.                                                                                      | _                                                         |               |                     | -                     |               | _          |  |  |  |  |
| CO4       | Implementat                                                                                      | ion of stochast                                           | ic population | -based Genetic ar   | nd Differential Evolu | utionary appr | oaches.    |  |  |  |  |

- 1. Study of different types of Neural Networks.
- 2. To design and train AND gate using neural network training.
- 3. To design and train OR gate using neural network training.
- 4. To design and train X-OR gate using neural network training.
- 5. To design and train AND gate using Back propagation (BPN).
- 6. To design and train OR gate using Back propagation.
- 7. To design and train X-OR gate using Back propagation.
- 8. To implement Genetic Algorithm using soft computing approach.
- 9. To implement Differential Evolutionary approach for solving stochastic problems.
- 10. To solve real-world problems using population-based Genetic and Differential Evolutionary approaches.

| MTCE-129  | Speech and Language Processing Lab                         |                                                                      |              |                   |                   |               |                |  |  |  |  |
|-----------|------------------------------------------------------------|----------------------------------------------------------------------|--------------|-------------------|-------------------|---------------|----------------|--|--|--|--|
| Lecture   | Tutorial                                                   | Practical                                                            | Credit       | Practical         | Minor Test        | Total         | Time           |  |  |  |  |
| 0         | 0                                                          | 4                                                                    | 2            | 60                | 40                | 100           | 3 Hrs.         |  |  |  |  |
| Program   | This Softwa                                                | are Laborator                                                        | y focuses o  | on study of spee  | ch and the proce  | ess of natura | al language in |  |  |  |  |
| Objective | forms of to                                                | ken and tag                                                          | some word    | Is to make mean   | ingful. This also | extracts inf  | formation and  |  |  |  |  |
| (PO)      | measure the semantic similarity of sentences.              |                                                                      |              |                   |                   |               |                |  |  |  |  |
|           |                                                            |                                                                      | Course       | Outcomes (CO)     |                   |               |                |  |  |  |  |
| C01       | To process                                                 | the basic text i                                                     | n form of To | kenization and St | temming           |               |                |  |  |  |  |
| CO2       | To study dis                                               | To study distributional properties in large samples of language data |              |                   |                   |               |                |  |  |  |  |
| CO3       | To implement and find semantics based on lexical semantics |                                                                      |              |                   |                   |               |                |  |  |  |  |
| CO4       | To extract information based on relation                   |                                                                      |              |                   |                   |               |                |  |  |  |  |
|           |                                                            |                                                                      |              |                   |                   |               |                |  |  |  |  |

## Case Study 1

Take a sample of sentences and process the text in form of tokenization and normalize this data using stemming

## Case Study 2

Take a file of size less than 50MB and then select some word and convert these words to N-grams.

### Case Study 3

A part-of-speech tagger, or POS-tagger, processes a sequence of words, and attaches a part of speech tag to each word. Take some adjective of English language and tag it.

#### Case Study 4

To Measure Semantic Similarity between sentences like sentence of "Harry is running fast" and "Harry is Sprinting"

#### **Case Study 5**

To associate each word with a word sense disambiguator to select the right meaning among all possible senses for each word.

## Case Study 6

Build a system that will extract structured data, such as tables, from unstructured text and use them for training and evaluating models?

#### Case Study 7

Develop a Model Building in which a machine learning model is trained on a labeled dataset and Improve Performance of Text Classifier

| MTRM-111              |                                             | Research Methodology and IPR                                                                |              |                  |                               |           |          |  |  |  |  |  |
|-----------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|--------------|------------------|-------------------------------|-----------|----------|--|--|--|--|--|
| Lecture               | Tutorial                                    | Tutorial Practical Credit Major Test Minor Test Total Time                                  |              |                  |                               |           |          |  |  |  |  |  |
| 2                     | 0                                           | 0                                                                                           | 2            | 60               | 40                            | 100       | 3 Hrs.   |  |  |  |  |  |
| Program               | To enable                                   | students to                                                                                 | Research     | Methodology ar   | nd IPR for further research w | ork and   |          |  |  |  |  |  |
| <b>Objective (PO)</b> | investmen                                   | investment in R & D, which leads to creation of new and better products, and in turn brings |              |                  |                               |           |          |  |  |  |  |  |
|                       | about, economic growth and social benefits. |                                                                                             |              |                  |                               |           |          |  |  |  |  |  |
| Course Outcomes (CO)  |                                             |                                                                                             |              |                  |                               |           |          |  |  |  |  |  |
| C01                   | Understan                                   | Understand research problem formulation.                                                    |              |                  |                               |           |          |  |  |  |  |  |
| CO2                   | Analyze re                                  | search relat                                                                                | ed informa   | ition            |                               |           |          |  |  |  |  |  |
| CO3                   | Understan                                   | d that today'                                                                               | s world is ( | controlled by Co | omputer, Information Techno   | logy, but | tomorrow |  |  |  |  |  |
|                       | world will b                                | be ruled by id                                                                              | leas, conc   | ept, and creativ | ity.                          |           |          |  |  |  |  |  |
| CO4                   | Understan                                   | ding that wh                                                                                | en IPR wo    | uld take such ir | nportant place in growth of   |           |          |  |  |  |  |  |
|                       | individuals                                 | & nation, it i                                                                              | s needles    | s to emphasis tl | ne need of information about  |           |          |  |  |  |  |  |
|                       | Intellectual                                | l Property Ri                                                                               | ght to be p  | promoted among   | g students in general & engir | neering   |          |  |  |  |  |  |
|                       | in particula                                | ar.                                                                                         |              |                  |                               |           |          |  |  |  |  |  |

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

# Unit 2

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

# Unit 3

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

# Unit 4

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems. Computer Software etc. Traditional knowledge Case Studies. IPR and IITs

Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'.
- 2. C.R. Kothari, "Research Methodology: Methods & Techniques, 2<sup>nd</sup> edition or above, New Age Publishers.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall , "Industrial Design", McGraw Hill, 1992.
- 6. Niebel , "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

| MTCE-102             |                                                                                                          |                                                                                                              |                | Social Netv          | vorks                 |                |                     |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------|----------------------|-----------------------|----------------|---------------------|--|--|--|
| Lecture              | Tutorial                                                                                                 | Practical                                                                                                    | Credit         | Major Test           | Minor Test            | Total          | Time                |  |  |  |
| 3                    | 0                                                                                                        | 0                                                                                                            | 3              | 60                   | 40                    | 100            | 3 Hrs.              |  |  |  |
| Program              | This emerging and innovative field will provide the insight into latest communication techniques used in |                                                                                                              |                |                      |                       |                |                     |  |  |  |
| Objective            |                                                                                                          |                                                                                                              |                |                      | ing the hidden rela   |                |                     |  |  |  |
| (PO)                 | information                                                                                              | information and to recognize data patterns in social networks by using graph, matrix, relationships,         |                |                      |                       |                |                     |  |  |  |
|                      | clustering, a                                                                                            | clustering, and equivalence between users.                                                                   |                |                      |                       |                |                     |  |  |  |
| Course Outcomes (CO) |                                                                                                          |                                                                                                              |                |                      |                       |                |                     |  |  |  |
| C01                  | To understa                                                                                              | To understand the essentials of social networks by learning different types of entities and relationships as |                |                      |                       |                |                     |  |  |  |
|                      | nodes, edge                                                                                              | s within the gr                                                                                              | aph and rep    | resent these infor   | mation as relationa   | I data to dete | ermine the relative |  |  |  |
|                      | importance of                                                                                            | of a vertex to fi                                                                                            | nd the desig   | jn levels            |                       |                |                     |  |  |  |
| CO2                  | To explore                                                                                               | the detailed                                                                                                 | explanation    | of data generali     | zation and mining     | from Twitte    | er, Facebook and    |  |  |  |
|                      | LinkedIn in v                                                                                            | vell informed a                                                                                              | nd efficient i | manner.              |                       |                |                     |  |  |  |
| CO3                  |                                                                                                          |                                                                                                              |                |                      | tions, correlations   |                |                     |  |  |  |
|                      | centrality, ec                                                                                           | quivalence rela                                                                                              | ation, centra  | lization, clustering | g coefficient and s   | tructural coh  | esion to generate   |  |  |  |
|                      | visualization                                                                                            | s and perform                                                                                                | empirical inv  | vestigations of net  | twork data.           |                |                     |  |  |  |
| CO4                  | To interpret                                                                                             | and synthesiz                                                                                                | e the results  | s with respect to a  | collated datasets by  | y using struc  | tural equivalence,  |  |  |  |
|                      | automorphic                                                                                              | equivalence                                                                                                  | and regular    | equivalence for in   | nterpreting quality f | factors and i  | mining of complex   |  |  |  |
|                      | type of data                                                                                             | to execute bet                                                                                               | ter recomme    | endation.            |                       |                |                     |  |  |  |
|                      | Unit: I: Social Natworks and Polated Concents                                                            |                                                                                                              |                |                      |                       |                |                     |  |  |  |

## **Unit: I: Social Networks and Related Concepts**

**Introduction to Social Networks**: Introduction, uses, examples and types of social networks, Social and economic networks, Opportunities and challenges in social networks, Social structure in social networks, Properties of social networks, algorithmic and economic aspects of social networks

**Social Network Data**: Nodes, Edges, Relationship, Graphs, Samples and Boundaries, Formal methods, Adjacency Matrix for undirected and directed networked graphs and using matrices to represent social relations, Random graphs, Properties of random graphs, Percolations, Branching processes, Growing spanning tree in random graphs.

Level in Social Networks: Ego networks, partial networks, complete or global networks, social networks methods including binary or valued, directed or undirected.

## Unit: II Mining the Social Web

**Mining Twitter**: Fundamental Twitter Terminology, creating a Twitter API Connection, Exploring Trending Topics, searching for Tweets, extracting Tweets entities, analyzing Tweets and Tweet entities with frequency analysis, computing the lexical diversity of Tweets, Examining patterns in Retweets, Visualizing frequency data with histograms.

**Mining Facebook**: Understanding the social graph API, Understanding the open graph protocol, Analyzing social graph connections

**Mining LinkedIn**: Making LinkedIn API requests, Downloading LinkedIn connections as a CSV file, Clustering, normalizing data for analysis, measuring similarity, and clustering algorithms.

## Unit: III Mining Web pages and Semantic Web

**Mining Web pages**: Scraping, Parsing and Crawling the Web, Discovering semantics by decoding syntax, Entity-Centric analysis: A paradigm shift, Quality of analytics for processing human language data.

**Mining the Semantically Marked-Up Web**: Microformats: Easy-to-implement Metadata, Semantics markup to semantic Web: A brief interlude, The semantic Web: An evolutionary revolution.

**Social Network Analysis**: Introduction, History, Metrics in social network analysis (Betweenness, Centrality, Equivalence relation, Centralization, Clustering coefficient and Structural cohesion).

#### Unit IV: Equivalence in Social Networks

Structural equivalence, Automorphic equivalence and Regular equivalence

#### Text Books:

- 1. Matthew A. Russell, "Mining the Social Web", O'Reilly and SPD, Second edition New Delhi, 2013.
- 2. Hanneman, R. A., & Riddle, M., "Introduction to social network methods, Riverside, California: University of California, Riverside. Available at: http://faculty.ucr.edu/~hanneman/nettext/.
- 3. "Social network analysis: Theory and applications". A free, Wiki Book available at: http://train.ed.psu.edu/WFED-543/SocNet\_TheoryApp.pdf.

#### **Reference Books:**

- 1. Lon Safko, "The Social Media Bible: Tactics, Tools, and Strategies for Business Success", Wiley 3rd Ed., 2012.
- 2. Peter K Ryan, "Social Networking", Rosen Publishing Group, 2011.

3. John Scott, Peter J. Carrington, "Social Network Analysis", SAGE Publishing Ltd., 2011.

| MTCE-104             | Advanced Database System Design                                                                 |                 |               |                     |                    |             |             |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------|-----------------|---------------|---------------------|--------------------|-------------|-------------|--|--|--|
| Lecture              | Tutorial                                                                                        | Practical       | Credit        | Major Test          | Minor Test         | Total       | Time        |  |  |  |
| 3                    | 0                                                                                               | 0               | 3             | 60                  | 40                 | 100         | 3 Hrs.      |  |  |  |
| Program              | This course is designed to recognize data storage in DBMS, data representation using ER and EER |                 |               |                     |                    |             |             |  |  |  |
| Objective            | modelling, query processing techniques, recovery management, data base security using firewall  |                 |               |                     |                    |             |             |  |  |  |
| (PO)                 | and digital signature                                                                           |                 |               |                     |                    |             |             |  |  |  |
| Course Outcomes (CO) |                                                                                                 |                 |               |                     |                    |             |             |  |  |  |
| C01                  | Understand                                                                                      | the basics of D | BMS archite   | cture and data sto  | rage mechanism     |             |             |  |  |  |
| CO2                  | Depiction of various levels in database designing and database representation mechanism.        |                 |               |                     |                    |             |             |  |  |  |
| CO3                  | To know the                                                                                     | concepts of qu  | iery process  | ing, transition mar | agement and reco   | very manage | ement       |  |  |  |
| CO4                  | Explanation signatures                                                                          | of database     | security tech | nniques such as     | Firewalls, proxy s | ervers, SSL | and digital |  |  |  |

**Introduction:** Overview of DBMS and its internal Architectural, Data Storage and representation in DBMS: Memory Hierarchy, Secondary storage mechanism and reliability improvement through mirroring and RAID, Recovery from disk crashes, Representing Relational data elements with records (fixed and variable) use of page and block formats, Heap, sorted and clustered file organization.

#### Unit 2

**Indexing in DBMS:** Clustered, primary, secondary, dense and Sparse indexing, Hash and Tree based index structures, ISA and B+ tree data structures, bit map indexing, R-indexing.

**Database Design:** Three steps of Conceptual, logical and Physical design, and methodology for design, Overview of E-R and Extended E-R Modeling and conversion to logical tables and normalization, Physical database design and tuning – overview of tasks involved and methodology, Guidelines for index selection, Clustering, Demoralization and view definitions, Tuning of Queries with Explain PLAN.

#### Unit 3

**Query Processing and Transaction management in DBMS:** Query processing architecture in DBMS, relational operations and implementation techniques, Algorithms for Selection, Projection and Join, Query optimization, Query tree and optimization using Relational equivalences, Transaction Management DBMS: Transaction and ACID Properties, schedules and serializability, Concurrency control techniques – locking timestamps and Optimistic Concurrency control, Concept of Recovery management, Buffer and Recovery management structures in DBMS, Deferred update and ARIES algorithm for recovery with an example.

#### Unit 4

**Database Security:** Access Control mechanisms in DBMS, GRANT and REVOKE of VIEWS, Security for Internet applications through Encryption Firewalls, proxy servers, SSL and digital signatures.

#### **Reference Books**

- 1. Gracia-Mlina, Ullman and Widom, "Database System Implementation",(2001)-Pearson Education.
- 2. Connolly & Begg, "Database Systems", Third Edition (2002)-Pearson Publication.
- 3. Raghu Ramkrishnan&Gehrke, "Database Management Systems", Third Edition McGraw Hill Publications (2003).

| MTCE-106     |                                                                                             | Mobile Ad-hoc and Wireless Sensor Networks                                                      |              |                |                   |                |           |        |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------|----------------|-------------------|----------------|-----------|--------|--|--|--|--|
| Lecture      | Tutorial                                                                                    | Practical                                                                                       | Credit       | Major          | Minor Test        | Practical      | Total     | Time   |  |  |  |  |
|              |                                                                                             |                                                                                                 |              | Test           |                   |                |           |        |  |  |  |  |
| 3            | 0                                                                                           | 0                                                                                               | 3            | 60             | 40                | -              | 100       | 3 Hrs. |  |  |  |  |
| Program      | To enable s                                                                                 | To enable students to describe and deal with computer communication and networking, various     |              |                |                   |                |           |        |  |  |  |  |
| Objective    | reference mo                                                                                | reference models and architectures along with implemented wireless communication techniques and |              |                |                   |                |           |        |  |  |  |  |
| (PO)         | various secur                                                                               | various security and privacy parameters are also studied.                                       |              |                |                   |                |           |        |  |  |  |  |
|              | Course Outcomes (CO)                                                                        |                                                                                                 |              |                |                   |                |           |        |  |  |  |  |
| After comple | tion of course                                                                              | students will b                                                                                 | be able to   |                |                   |                |           |        |  |  |  |  |
| CO1          | Classify tradit                                                                             | ional networks                                                                                  | and discuss  | various wirele | ess networking st | tandards, comp | are and   |        |  |  |  |  |
|              | contrast vario                                                                              | us IEEE wireles                                                                                 | s LAN and E  | Ethernet stand | lards.            |                |           |        |  |  |  |  |
| CO2          | Describe cellu                                                                              | ular architecture                                                                               | and IPv4 ar  | nd IPv6 heade  | er formats has to | be discussed a | long with |        |  |  |  |  |
|              | mobile IP.                                                                                  |                                                                                                 |              |                |                   |                | -         |        |  |  |  |  |
| CO3          | CO3 Recently deployed high performance computing standards, VPN, routing protocols as to be |                                                                                                 |              |                |                   |                |           |        |  |  |  |  |
|              | gone through                                                                                |                                                                                                 |              |                |                   |                |           |        |  |  |  |  |
| CO4          | Various secur                                                                               | ity and privacy                                                                                 | standards/to | ols to be desc | cribed.           |                |           |        |  |  |  |  |

Mobile Ad hoc Networks (MANET) – Mobility Management, modeling distributed applications for MANET, MAC mechanisms and protocols.

#### Unit 2

MANET Routing Protocols: Ad hoc network routing protocols, destination sequenced distance vector algorithm, cluster based gateway switch routing, global state routing, fish-eye state routing, dynamic source routing, ad hoc on-demand routing, OLSR & TORA routing, location aided routing, zonal routing algorithm.

#### Unit 3

Ad hoc network security – Link layer, Network layer, Trust and key management. Self policing MANET – Node Misbehaviour, secure routing, reputation systems. Wireless Sensor Networks (WSN) – Design Issues, Clustering, Applications of WSN.

### Unit 4

MAC layer and routing protocols in WSN

Data Retrieval Techniques in WSN – Sensor databases, distributed query processing, Data dissemination and aggregation schemes, Operating Systems for WSN, Security issues in WSN.

## Books and References:

- 1 C. Siva Ram Murthy & B.S. Manoj, Mobile Ad hoc Networks Architectures & Protocols, Pearson Education, New Delhi, 2004
- 2 C M Cordeiro& D.P. Agrawal, Adhoc & Sensor Networks Theory and Applications, ISBN 981256-682-1, World Scientific Singapore, 2006
- 3 C. S. Raghvendra, Wireless Sensor Networks, Springer-Verlag, 2006.

| MTCE-108                     | Information Theory and Coding                                                                                                                                                                                |                                                                                                                                                                                   |              |                                          |                            |              |             |  |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------|----------------------------|--------------|-------------|--|--|--|--|
| Lecture                      | Tutorial                                                                                                                                                                                                     | Practical                                                                                                                                                                         | Credit       | Major Test                               | Minor Test                 | Total        | Time        |  |  |  |  |
| 3                            | 0                                                                                                                                                                                                            | 0                                                                                                                                                                                 | 3            | 60                                       | 40                         | 100          | 3Hrs.       |  |  |  |  |
| Program<br>Objective<br>(PO) | The objective of this course is to introduce the basic concepts of information theory and coding, including information, source coding, channel model, channel capacity, channel coding in an exemplary way. |                                                                                                                                                                                   |              |                                          |                            |              |             |  |  |  |  |
|                              |                                                                                                                                                                                                              | •                                                                                                                                                                                 | Course C     | Outcomes (CO)                            |                            |              |             |  |  |  |  |
| C01                          |                                                                                                                                                                                                              |                                                                                                                                                                                   |              | oncepts of informa<br>relation among the | tion theory, source<br>em. | coding, cha  | nnel and    |  |  |  |  |
| CO2                          | To describe                                                                                                                                                                                                  | To describe the real life applications based on the fundamental theory and to apply convolution codes for performance analysis & cyclic codes for error detection and correction. |              |                                          |                            |              |             |  |  |  |  |
| CO3                          | To calculate                                                                                                                                                                                                 | entropy, char                                                                                                                                                                     | nel capacity | , bit error rate, cod                    | e rate and steady-         | state probab | oility.     |  |  |  |  |
| CO4                          | To implement language.                                                                                                                                                                                       | nt the encode                                                                                                                                                                     | and decode   | r of one block cod                       | e or convolutional (       | code using a | iny program |  |  |  |  |

Overview; Basic Concepts - Entropy and Mutual information; Lossless Source Coding – Source entropy rate; Kraft inequality; Huffman code; Asymptotic equipartition property; Universal coding; Noisy Channel Coding - Channel capacity; Random channel codes; Noisy channel coding theorem for discrete memory-less channels; Typical sequences; Error exponents; Feedback; Continuous and Gaussian channels; Lossy Source Coding - Rate- Distortion functions; Random source codes; Joint source-channel coding and the separation theorem.

## Unit 2

Source coding- Text, Audio and Speech: Adaptive Huffman Coding, Arithmetic Coding, LZW algorithm – Audio: Perceptual coding, Masking techniques, Psychoacoustic model, MEG Audio

layers I,II,III, Dolby AC3 - Speech: Channel V coder, Linear Predictive Coding Source coding- Image and Video: Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –Image compression: READ, JPEG – Video Compression: Principles-I,B,P frames, Motion estimation, Motion compensation, H.261, MPEG

## Unit 3

Standard Error control coding- Block codes: Definitions and Principles: Hamming weight, Hamming distance, Minimum distance decoding - Single parity codes, Hamming codes, Repetition codes - Linear block codes,

## Unit 4

Cyclic codes - Syndrome calculation, Encoder and decoder – CRC Error control coding- convolution codes: code tree, trellis, state diagram - Encoding – Decoding:

Sequential search and Viterbi algorithm – Principle of Turbo coding

#### **Text Books:**

1. Mark Kelbert(Author), Yuri Suhov, Information Theory and Coding by Example, Cambridge University Press, 2013. **Reference Books:** 

1. Simon Haykin and Michael Moher, Communication Systems, 5th Edition, Wiley, 2010

2. T.M. & Thomas, J.A. (2006). Elements of Information Theory. New York: Wiley.

3. Jiri Adamek, Foundations of coding, Wiley Interscience, 1991.

4. T. M. Cover and J. A. Thomas, Elements of information theory, Wiley, 1991.

| MTCE-110                     |                            | Agile Software Engineering                                                                                                        |               |                      |                     |                |        |  |  |  |
|------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|---------------------|----------------|--------|--|--|--|
| Lecture                      | Tutorial                   | Tutorial         Practical         Credit         Major Test         Minor Test         Total         Time                        |               |                      |                     |                |        |  |  |  |
| 4                            | 0                          | 0                                                                                                                                 | 4             | 60                   | 40                  | 100            | 3 Hrs. |  |  |  |
| Program<br>Objective<br>(PO) |                            | Introduces the business value of adopting Agile approaches and provide complete understanding of the Agile development practices. |               |                      |                     |                |        |  |  |  |
|                              |                            |                                                                                                                                   | Course C      | utcomes (CO)         |                     |                |        |  |  |  |
| C01                          | To understar<br>developmen | 0                                                                                                                                 | und and driv  | ing forces for takir | ng an Agile approac | ch to software | ;      |  |  |  |
| CO2                          | To explore the             | To explore the business value of adopting Agile approaches.                                                                       |               |                      |                     |                |        |  |  |  |
| CO3                          | To drive dev               | To drive development with unit tests using Test Driven Development.                                                               |               |                      |                     |                |        |  |  |  |
| CO4                          | To apply des               | sign principles                                                                                                                   | and refactori | ng to achieve Agili  | ity.                |                |        |  |  |  |

### Unit I: Fundamentals of Agile

The Genesis of Agile, Introduction and background, Agile Manifesto and Principles, Overview of Scrum, Extreme Programming, Feature Driven development, Lean Software Development, Agile project management, Design and development practices in Agile projects, Test Driven Development, Continuous Integration, Refactoring, Pair Programming, Simple Design, User Stories, Agile Testing, Agile Tools

### Unit II: Agile Scrum Framework

Introduction to Scrum, Project phases, Agile Estimation, Planning game, Product backlog, Sprint backlog, Iteration planning, User story definition, Characteristics and content of user stories, Acceptance tests and Verifying stories, Project velocity, Burn down chart, Sprint planning and retrospective, Daily scrum, Scrum roles – Product Owner, Scrum Master, Scrum Team, Scrum case study, Tools for Agile project management.

### **Unit III: Agile Testing**

The Agile lifecycle and its impact on testing, Test-Driven Development (TDD), xUnit framework and tools for TDD, Testing user stories - acceptance tests and scenarios, Planning and managing testing cycle, Exploratory testing, Risk based testing, Regression tests, Test Automation, Tools to support the Agile tester.

### Unit IV: Agile Software Design and Development

Agile design practices, Role of design Principles including Single Responsibility Principle, Open Closed Principle, Liskov Substitution Principle, Interface Segregation Principles, Dependency Inversion Principle in Agile Design, Need and significance of Refactoring, Refactoring Techniques, Continuous Integration, Automated build tools, Version control.

#### Text Books:

- 1. Ken Schawber, Mike Beedle, Agile Software Development with Scrum, Pearson publications.
- 2. Robert C. Martin, Agile Software Development, Principles, Patterns and Practices, Prentice Hall.
- 3. Lisa Crispin, Janet Gregory, Agile Testing: A Practical Guide for Testers and Agile Teams, Addison Wesley.

#### Reference books:

- 1. Alistair Cockburn, Agile Software Development: The Cooperative Game, Addison Wesley.
- 2. Mike Cohn, User Stories Applied: For Agile Software, Addison Wesley.

| MTCE-112                     |              | Security In Computing                                                                                                                          |                |                     |                      |              |         |  |  |  |  |
|------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|----------------------|--------------|---------|--|--|--|--|
| Lecture                      | Tutorial     | torial Practical Credit Major Test Minor Test Total Time                                                                                       |                |                     |                      |              |         |  |  |  |  |
| 3                            | 0            | 0                                                                                                                                              | 3              | 100                 | 50                   | 150          | 3 Hrs.  |  |  |  |  |
| Program<br>Objective<br>(PO) | To introduce | o introduce the detailed study of Probability, Random Variables and Stochastic Processes.                                                      |                |                     |                      |              |         |  |  |  |  |
|                              |              |                                                                                                                                                | Course C       | Outcomes (CO)       |                      |              |         |  |  |  |  |
| C01                          | To evaluate  | the risks and v                                                                                                                                | ulnerabilities | in protocols/Stan   | dards.               |              |         |  |  |  |  |
| CO2                          | To apply nur | nber theory an                                                                                                                                 | d algebra re   | quired for designir | ng cryptographic alg | gorithms.    |         |  |  |  |  |
| CO3                          |              | To Design symmetric key, asymmetric key encryption techniques, design authentication, message ntegrity and authenticated encryption protocols. |                |                     |                      |              |         |  |  |  |  |
| CO4                          | To design ar | nd security ana                                                                                                                                | lysis of syste | ems including distr | ibuted storage and   | Electronic v | voting. |  |  |  |  |

### UNIT – I

Computer Security Concept, Threats, Attacks and Assets, Security Functional Requirements, Security Architecture for Open System, Scope of Computer Security, Computer Security Trends and Strategy.

Cryptography: Terminology and Background, Substitution Ciphers, Transpositions, Cryptanalysis, Data Encryption Standard, DES & AES Algorithms and comparison, Public Key Encryption, Possible Attacks on RSA Malicious Software: Types of Malicious Software, Viruses, Virus countermeasures, Worms, Bots, Rootkits.

### UNIT – II

Protection in General-Purpose Operating Systems: Security Methods of Operating Systems, Memory and Address Protection.

Designing Trusted Operating Systems: Security Policies, Models of Security, Designing of Trusted Operating System. Linux Security: Linux Security Model, Linux Vulnerabilities, Linux System Hardening, Application Security, Mandatory Access Control

### UNIT – III

Database Security: Relational Database, Database Access Control, Inference, Statistical Databases, Database Encryption. Data Mining Security: Security Requirements, Reliability and Integrity, Sensitive data, Multilevel Databases, Proposal for Multilevel Security, Data Mining - Privacy and Sensitivity, Data Correctness and Integrity, Data Availability. Trusted Computing: Concept of Trusted System, Trusted Computing and Trusted Platform Module, Common Criteria for Information Technology Security Evaluation.

#### UNIT – IV

Security in Networks: Threats in networks, Network security controls, Firewall and Intrusion Prevention Systems: Need, Characteristics, Types of Firewalls, Firewall Basing, Intrusion Prevention Systems. Intrusion Detection Systems. Internet Security Protocols and Standards: Secure Socket Layer (SSL) and Transport Layer Security (TLS), IP4 and IP6 Security, Secure Email. Legal and Ethical Aspects: Cybercrime and Computer Crime, Intellectual Property, Copyrights, Patents, Trade Secrets, Privacy and Ethical Issues.

### Text Books:

1. Pfleeger C. & Pfleeger S.L., "Security in Computing", 4<sup>th</sup> Ed., Pearson Education.

2. Stalling W., Brown L., "Computer Security Principles and Practice", 3<sup>rd</sup> Ed., Pearson Education. **Reference Books:** 

1. Schneier B., "Applied Cryptography: Protocols, Algorithms and Source Code in C", 2<sup>nd</sup> Ed., Wiley India Pvt. Ltd.

| MTCE-114                  |                              | Embedded Systems                                                                                                                                                                                                                                                                                                                                                          |               |                   |                       |               |            |  |  |  |  |
|---------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|-----------------------|---------------|------------|--|--|--|--|
| Lecture                   | Tutorial                     | Practical                                                                                                                                                                                                                                                                                                                                                                 | Credit        | Major Test        | Minor Test            | Total         | Time       |  |  |  |  |
| 4                         | 0                            | 0                                                                                                                                                                                                                                                                                                                                                                         | 4             | 60                | 40                    | 100           | 3 Hrs.     |  |  |  |  |
| Program<br>Objective (PO) | hardware an<br>along with ar | To introduce the complete design of a modern embedded system with functional requirements for<br>hardware and software components including processor, networking components, and sensors,<br>along with applications, subsystem interfaces, networking, and middleware and to show how to<br>understand and program such systems using a concrete platform built around. |               |                   |                       |               |            |  |  |  |  |
|                           | •                            |                                                                                                                                                                                                                                                                                                                                                                           | Course O      | utcomes (CO)      |                       |               |            |  |  |  |  |
| C01                       |                              | key concepts of<br>cs of Embedde                                                                                                                                                                                                                                                                                                                                          |               | systems like Hist | ory, definition and ( | Classificatio | n, and     |  |  |  |  |
| CO2                       | Complete sy<br>and peripher  |                                                                                                                                                                                                                                                                                                                                                                           | oncepts of er | mbedded systems   | for Processor and     | Memory Or     | ganization |  |  |  |  |
| CO3                       |                              |                                                                                                                                                                                                                                                                                                                                                                           |               |                   |                       |               |            |  |  |  |  |
| CO4                       | Become awa<br>real-world ap  |                                                                                                                                                                                                                                                                                                                                                                           | s and deploy  | ment of embedde   | d processors and s    | supporting d  | evices in  |  |  |  |  |

**Introduction to embedded systems:** Background and History of Embedded Systems, definition and Classification, Programming languages for embedded systems: desirable characteristics of programming languages for embedded systems, low-level versus high-level languages, main language implementation issues: control, typing. Major programming languages for embedded Systems. Embedded Systems on a Chip (SoC) and the use of VLSI designed circuits.

### Unit 2

**Processor and Memory Organization:** Structural units in processor, Processor selection for an embedded system, Memory devices, Memory selection, Allocation for memory to program segments and blocks and memory map of a system, DMA, Interfacing processor. I/O Devices -Device I/O Types and Examples? Synchronous -iso-synchronous and Asynchronous Communications from Serial Devices -Examples of Internal Serial-Communication Devices -UART and HDLC -Parallel Port Devices -Sophisticated interfacing features in Devices/Ports-Timer and Counting Device.

### Unit 3

**Microcontroller:** Introduction to Microcontrollers, Evolution, Microprocessors vs. Microcontrollers, MCS-51 Family Overview, Important Features, Architecture.8051 Pin Functions, Architecture, Addressing Modes, Instruction Set, Instruction Types. **Programming:** Assembly Programming. Timer Registers, Timer Modes, Overflow Flags, Clocking Sources, Timer Counter Interrupts, Baud Rate Generation. Serial Port Register, Modes of Operation, Initialization, Accessing, Multiprocessor Communications, Serial Port Baud Rate.

### Unit 4

**Interrupts:** Interrupt Organization, Processing Interrupts, Serial Port Interrupts, External Interrupts, Interrupt Service Routines. Microcontroller Specification, Microcontroller Design, Testing, Timing Subroutines, Look-up Tables, Serial Data Transmission. **Applications:** Interfacing Keyboards, Interfacing Displays, Interfacing A/D and D/A Converters, Pulse Measurement, Loudspeaker Interface, Memory Interface.

#### **Books and References:**

- 1. John Catsoulis, "Designing Embedded Hardware", O'reilly
- 2. An Embedded Software Primer", David E. Simon, Pearson Education
- 3. Frank Vahid, Tony Givargis, "Embedded System Design", John Wiley & Sons, Inc
- 4. Karim Yaghmour, "Building Embedded Linux Systems", O'reilly
- 5. Michael Barr, "Programming Embedded Systems", O'reilly
- 6. Alan C. Shaw, "Real-time systems & software", John Wiley & sons, Inc.
- 7. Wayne Wolf, "Computers as Components", Harcourt India Pvt. Ltd.

| MTCE-116  |                |                                                                                                     |              | Data Mining        |                      |         |        |  |  |  |
|-----------|----------------|-----------------------------------------------------------------------------------------------------|--------------|--------------------|----------------------|---------|--------|--|--|--|
| Lecture   | Tutorial       | Practical                                                                                           | Credit       | Major Test         | Minor Test           | Total   | Time   |  |  |  |
| 4         | 0              | 0                                                                                                   |              | 60                 | 40                   | 100     | 3 Hrs. |  |  |  |
| Program   | To introduce   | To introduce the detailed study on data mining methodology.                                         |              |                    |                      |         |        |  |  |  |
| Objective |                |                                                                                                     |              |                    |                      |         |        |  |  |  |
| (PO)      |                |                                                                                                     |              |                    |                      |         |        |  |  |  |
|           |                |                                                                                                     | Course C     | Outcomes (CO)      |                      |         |        |  |  |  |
| C01       | Understand     | the basics of d                                                                                     | ata mining a | nd data warehous   | ing                  |         |        |  |  |  |
| CO2       | Understand     | the detailed ex                                                                                     | planation of | data generalizatio | n and statistical me | easures |        |  |  |  |
| CO3       |                | Description of mining associations, correlations, classification and prediction                     |              |                    |                      |         |        |  |  |  |
| CO4       | Description of | escription on cluster analysis and mining of complex type of data like world wide web and text data |              |                    |                      |         |        |  |  |  |
|           | base           |                                                                                                     |              |                    |                      |         |        |  |  |  |

### Introduction

Data Mining, Functionalities, Data Mining Systems classification, Integration with Data Warehouse System, Data summarization, data cleaning, data integration and transformation, data reduction.

### Data Warehouse

Need for Data Warehousing, Paradigm Shift, Business Problem Definition, Operational and Information Data Stores, Data Warehouse Definition and Characteristics, Data Warehouse Architecture and Implementation, OLAP.

### Unit 2

Data Mining Primitives, Query Language and System Architecture, Concept Description, Data generalization, Analysis of attribute relevance, Mining descriptive statistical measures in large databases.

### Unit 3

**Mining association rules in large databases:** Association rule mining, Mining single dimensional Boolean association rules from transactional databases, mining multilevel association rules from transaction databases, Relational databases and data warehouses, correlation analysis, classification and prediction.

#### Unit 4

Introduction to cluster analysis, Mining complex type of data: Multidimensional analysis and descriptive mining of complex data objects, Spatial databases, Multimedia databases, Mining time series and sequence data, Mining text databases, Mining the World Wide Web, Applications and trends in data mining.

#### **Books and References:**

- 1 Data Mining: Concepts and Techniques; Jiawei Han and Micheline Kamber; Elsevier.
- 2 "Mastering Data Mining: The Art and Science of Customer Relationship Management", by Berry and Lin off, John Wiley and Sons, 2001.
- **3** "Data Ware housing: Concepts, Techniques, Products and Applications", by C.S.R. Prabhu, Prentice Hall of India, 2001.
- 4 "Data Mining: Concepts and Techniques", J.Han, M.Kamber, Academic Press, Morgan Kanfman Publishers, 2001.
- 5 "Data Mining", by Pieter Adrians, DolfZantinge, Addison Wesley 2000.
- 6 "Data Mining with Microsoft SQL Server", by Seidman, Prentice Hall of India, 2001.

| MTCE-118     |              | Social Networks Lab                                                                       |                |                    |                 |     |        |  |  |  |  |
|--------------|--------------|-------------------------------------------------------------------------------------------|----------------|--------------------|-----------------|-----|--------|--|--|--|--|
| Lecture      | Tutorial     | Itorial Practical Credit Practical Minor Test Total Time                                  |                |                    |                 |     |        |  |  |  |  |
| 0            | 0            | 4                                                                                         | 2              | 60                 | 40              | 100 | 3 Hrs. |  |  |  |  |
| Program      | This Softwar | is Software Laboratory focuses on accessing the dataset from social networks and then     |                |                    |                 |     |        |  |  |  |  |
| Objective    | applying ma  | pplying machine learning techniques, data cleaning and visualization of data in real time |                |                    |                 |     |        |  |  |  |  |
| (PO)         | environment  | environments using Python programming and NLTK                                            |                |                    |                 |     |        |  |  |  |  |
| Course Outco | omes (CO)    |                                                                                           |                |                    |                 |     |        |  |  |  |  |
| CO1          | To access th | e data from so                                                                            | ocial network  | S                  |                 |     |        |  |  |  |  |
| CO2          | To deign ma  | chine learning                                                                            | modules for    | efficient system   | า               |     |        |  |  |  |  |
| CO3          | Create the a | Igorithms for a                                                                           | ccessing So    | cial Media and o   | lata cleaning   |     |        |  |  |  |  |
| CO4          | To apply tes | ting tools for v                                                                          | isualization o | f data in real tin | ne application. |     |        |  |  |  |  |

- 1. Write a python program to remove an item from tuple and merge three dictionaries.
- 2. Write a python program to construct pyramids of stars (\*) and numbers using nested for loop.
- 3. Write a python function to check whether a number is perfect or not and use filter function to print vowels from a given list.
- 4. Write a python program to estimate coefficients of an equation using linear regression model.
- 5. Write a python program to predict gender of a person if height, weight and shoe size are given using any four supervised learning algorithms.
- 6. Write a python program to find noun, verb and adjective in a given sentence.
- 7. Write a python program to calculate frequency of each word in a file after removing stopwords from it.
- 8. Write a program to for analyzing the behaviour (i.e. check whether a tweet is of positive, negative, or compound nature) of tweets and plot the results.
- 9. Write a program to sort the list of numbers using shell sort.
- 10. Write a python program to predict gender of a person from his/her name.
- 11. Write a python program to make a prediction about a movie from its review.
- 12. Write a program to plot the image in PNG format using matplotlib for average, max, and min of the data taken from a CSV file.
- 13. Write a program for classifying the text using NLTK.
- 14. Write a python program to guess behavior of a person.
- 15. Write a python program to print trending and common trends tweets in world, us and india.
- 16. Write a python program to use hashtag as basis of search query to fetch some tweets for further analysis.
- 17. Write a python program extract twitter entities such as hashtags, screen names.
- 18. Write a python program to clean any given dataset.
- 19 Write a python program to visualize a data using histogram, boxplot and scatter plot matrix.
- 20. Write a program for sentiment analysis of tweets (i.e. polarity and subjectivity).

| MTCE-122  |                                                           | Mobile Ad-hoc and Wireless Sensor Networks Lab                                                  |              |                     |                     |              |             |  |  |  |  |
|-----------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------|---------------------|---------------------|--------------|-------------|--|--|--|--|
| Lecture   | Tutorial                                                  | Tutorial Practical Credit Practical Minor Test Total Time                                       |              |                     |                     |              |             |  |  |  |  |
| 0         | 0 4 2 60 40 100 3                                         |                                                                                                 |              |                     |                     |              |             |  |  |  |  |
| Program   | To enable s                                               | tudents to de                                                                                   | scribe and d | leal with compute   | er communication a  | and networki | ng, various |  |  |  |  |
| Objective |                                                           | reference models and architectures along with implemented wireless communication techniques and |              |                     |                     |              |             |  |  |  |  |
| (PO)      | various security and privacy parameters are also studied. |                                                                                                 |              |                     |                     |              |             |  |  |  |  |
|           |                                                           |                                                                                                 | Course O     | utcomes (CO)        |                     |              |             |  |  |  |  |
| C01       | Classify trad                                             | itional network                                                                                 | s and discus | s various wireless  | networking standa   | rds, compare | and         |  |  |  |  |
|           | contrast vari                                             | ous IEEE wirel                                                                                  | ess LAN and  | Ethernet standar    | ds.                 |              |             |  |  |  |  |
| CO2       | Describe cel                                              | lular architectu                                                                                | re and IPv4  | and IPv6 header for | ormats has to be di | scussed alon | ig with     |  |  |  |  |
|           | mobile IP.                                                |                                                                                                 |              |                     |                     |              |             |  |  |  |  |
| CO3       | Recently dep                                              | ployed high per                                                                                 | formance co  | mputing standard    | s, MANET, routing   | protocols as | to be gone  |  |  |  |  |
|           | through.                                                  |                                                                                                 |              |                     |                     |              |             |  |  |  |  |

- 1. Create scenarios, simulate, and study the evolution of contention-oriented protocols (Aloha, Slotted Aloha, and Ethernet).
- 2. Implement ARP to find the medium access control address of the destination using the destination's internet protocol address.
- 3. Create scenarios, simulate, and study the variation of throughput and Mean Delay as the number of nodes increase.
- 4. Create scenarios and study the difference in performance (with respect to throughput and delay) between token ring and token bus protocols.
- 5. Write a program to correct error using hamming code in a data received from a network simulator, error is introduced during transmission through as simulator.
- 6. Simulate a network implementing X.25 protocol. Change the Automatic Repeat Request (ARQ) protocol and then compare the network's performance.
- 7. Create a scenario, simulate, and study the performance of the different congestion control algorithms .
- 8. Write a program for the flow control protocols i.e Stop and wait, Go back-N, selective repeat over UDP and verify through a simulator
- 9. Implement, and verify through a simulator, a program to create sub-network and assign addresses based on the number of hosts connected to the network.
- 10. Implement AODV routing protocol in MANET.
- 11. Implement DSDV routing protocol in MANET.
- 12. Implement DSR routing protocol in MANET.
- 13. Study the effect of different Routing protocols (RIP and OSPF) on network's performance through simulation.
- 14. Create a scenario and study the performance of MANET mobility models.

| MTCE-124  |                                                                                  |                                                                                  | Informa       | tion Theory and   | Coding Lab             |          |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------|-------------------|------------------------|----------|--|--|--|--|--|
| Lecture   | Tutorial                                                                         | utorial Practical Credit Practical Minor Test Total Time                         |               |                   |                        |          |  |  |  |  |  |
| 0         | 0                                                                                | 0 4 2 60 40 100 3 H                                                              |               |                   |                        |          |  |  |  |  |  |
| Program   | This Inforn                                                                      | This Information Theory and Coding Laboratory get exposure to emerging topics in |               |                   |                        |          |  |  |  |  |  |
| Objective | information                                                                      | information theory and coding.                                                   |               |                   |                        |          |  |  |  |  |  |
| (PO)      |                                                                                  |                                                                                  |               |                   |                        |          |  |  |  |  |  |
|           |                                                                                  |                                                                                  | Course O      | utcomes (CO)      |                        |          |  |  |  |  |  |
| C01       | Determine v                                                                      | arious entropie                                                                  | s and comp    | are channel capad | city of different char | nnels.   |  |  |  |  |  |
| CO2       | Understand                                                                       | techniques of c                                                                  | lesign &perfo | ormance evaluatio | n of error correcting  | g codes. |  |  |  |  |  |
| CO3       | Design and develop solutions for technical issues related to information coding. |                                                                                  |               |                   |                        |          |  |  |  |  |  |
| CO4       | Learn about                                                                      | syndrome calc                                                                    | ulation and c | lesign of encoder | and decoder.           |          |  |  |  |  |  |
|           |                                                                                  | 2                                                                                |               | 0                 |                        |          |  |  |  |  |  |

1. Write a program for determination of various entropies and mutual information of a given channel. Test various types of channel such as

- a) Noise free channel
- b) Error free channel
- c) Binary symmetric channel
- d) Noisy channel

Compare channel capacity of above channels.

2. Implement a program for generation and evaluation of variable length source coding using Huffman Coding and decoding (C/MATLAB).

- 3. Implement coding and decoding of Cyclic codes.
- 4. Implement coding and decoding of Linear block codes.
- 5. Implement coding and decoding of BCH and RS codes.
- 6. Implement coding and decoding of Convolutional codes.

7. Write a simulation program to implement source coding and channel coding for transmitting a text file.

8. Implement a program to study performance of a coded and uncoded communication system ( calculate the error probability).

| MTCE-126                     |                   | Agile Software Engineering Lab                                                                                                                         |              |                                        |                             |             |             |  |  |  |  |
|------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|-----------------------------|-------------|-------------|--|--|--|--|
| Lecture                      | Tutorial          | Practical                                                                                                                                              | Credit       | Practical                              | Minor Test                  | Total       | Time        |  |  |  |  |
| 0                            | 0                 | 0 4 2 60 40 100 3 Hrs.                                                                                                                                 |              |                                        |                             |             |             |  |  |  |  |
| Program<br>Objective<br>(PO) |                   | This Software Laboratory focuses on to analyze, design and provide optimal solution for Computer Science & Engineering and multidisciplinary problems. |              |                                        |                             |             |             |  |  |  |  |
| Course Outcomes (CO)         |                   |                                                                                                                                                        |              |                                        |                             |             |             |  |  |  |  |
| C01                          |                   |                                                                                                                                                        |              | ics, science, engi<br>engineering prob | ineering fundamen<br>Ilems. | tals and an | engineering |  |  |  |  |
| CO2                          | To Design so      | olutions for con                                                                                                                                       | nplex engine | ering problems                         |                             |             |             |  |  |  |  |
| CO3                          | To Create, stools | To Create, select, and apply appropriate techniques, resources, and modern engineering and IT                                                          |              |                                        |                             |             |             |  |  |  |  |
| CO4                          | To demonstr       | ate the knowle                                                                                                                                         | dge of and n | eed for sustainab                      | le development.             |             |             |  |  |  |  |

1. Understand the background and driving forces for taking an Agile Approach to Software Development. Study the Important Characteristics that make agile approach best suited for Software Development.

2. Understand the business value of adopting agile approach.

- 3. Study the Agile Process Examples

  a) SCRUM
  b) FDD
  c) Lean software development
  d) XP
- 3. Understand agile development practices using SCRUM
- 4. Drive Development with Unit Test using Test Driven Development.
- 5. Apply Design principle and Refactoring to achieve agility
- 6. To study automated build tool.
- 7. To study version control tool.
- 8. To study Continuous Integration tool.
- 9. Perform Testing activities within an agile project.

| MTCE-128                     |                             |                                                                                                                            | Sec           | urity in Computi    | ing Lab               |              |             |  |  |  |  |
|------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|-----------------------|--------------|-------------|--|--|--|--|
| Lecture                      | Tutorial                    | Tutorial         Practical         Credit         Practical         Minor Test         Total         Time                  |               |                     |                       |              |             |  |  |  |  |
| 0                            | 0                           | 0 4 2 60 40 100 3 Hrs.                                                                                                     |               |                     |                       |              |             |  |  |  |  |
| Program<br>Objective<br>(PO) |                             | This Security in computing laboratory provide an applied understanding of the principles of network and computer security. |               |                     |                       |              |             |  |  |  |  |
|                              |                             |                                                                                                                            | Course O      | utcomes (CO)        |                       |              |             |  |  |  |  |
| C01                          | Learn abou                  | t the encryption                                                                                                           | n and decryp  | tion using differer | nt algorithms.        |              |             |  |  |  |  |
| CO2                          | A hands-on                  | experience in a                                                                                                            | ittack execut | ion and the use of  | f tools in such attac | ks.          |             |  |  |  |  |
| CO3                          | Create virtua               | Create virtual private network to evaluate response time.                                                                  |               |                     |                       |              |             |  |  |  |  |
| CO4                          | The practical security asse | 0                                                                                                                          | o secure co   | omputers and ne     | twork including the   | e setup of p | olicies and |  |  |  |  |

1. Write a program for encryption and decryption using DES algorithm in Java.

2. Write a program for encryption and decryption using AES algorithm in Java.

3. Design and implementation of a simple client/server model and running application using sockets and TCP/IP.Eavespdropping attacks and it's prevention using SSH.

4. Create a virtual private network (VPN) WAN to evaluate application response time in the presence and absence of a firewall.

5. Isolate WLAN traffic using separate Firewall for VPN connection.

6. Implement a program to manage security in a small business network.

7. Implement security and networking policies settings across the company.

8. Demonstrate intrusion detection system (IDS) using any tool (snort or any other s/w).

9. Installation of rootkits and study about the variety of options.

10. Implement the simple substitution technique named Caesar cipher using C language.

| MTCE-130  |               | Embedded Systems Lab                                                                      |              |                    |                   |              |            |  |  |  |  |
|-----------|---------------|-------------------------------------------------------------------------------------------|--------------|--------------------|-------------------|--------------|------------|--|--|--|--|
| Lecture   | Tutorial      | Practical                                                                                 | Credit       | Practical          | Minor Test        | Total        | Time       |  |  |  |  |
| 0         | 0             | 4                                                                                         | 2            | 60                 | 40                | 100          | 3 Hrs.     |  |  |  |  |
| Program   | This labora   | tory will devel                                                                           | op the prog  | ramming skills ir  | n the embedded sy | ystems field | . Emphasis |  |  |  |  |
| Objective | is given to   | is given to interface handling; device driver and application development. Programming of |              |                    |                   |              |            |  |  |  |  |
| (PO)      | mobile devi   | mobile devices is included.                                                               |              |                    |                   |              |            |  |  |  |  |
|           |               |                                                                                           | Course O     | utcomes (CO)       |                   |              |            |  |  |  |  |
| CO1       | To Familiariz | ze with progran                                                                           | nming metho  | ds and tools for e | mbedded systems.  |              |            |  |  |  |  |
| CO2       | To Write effi | cient programs                                                                            | in C to deve | lop embedded sy    | stems.            |              |            |  |  |  |  |
| CO3       | To Program    | To Program Device Drivers for embedded systems.                                           |              |                    |                   |              |            |  |  |  |  |
| CO4       | To Program    | mobile devices                                                                            | <u>.</u>     |                    |                   |              |            |  |  |  |  |
|           | -             |                                                                                           |              |                    |                   |              |            |  |  |  |  |

- 1. Design an embedded system for traffic light controller using 8051 microcontroller.
- 2. Program for an embedded system in C using GNU development tools.
- 3. Program to demonstrate a simple interrupt handler and setting up a timer.
- 4. Program to create two tasks which trigger blinking of two LEDs at different timings.
- 5. Program to send messages to mailbox by one task and read from mailbox by another task.
- 6. Write an assembly program to configure and control General Purpose Input/Output (GPIO) port pins.
- 7. Program to imlement Buzzer interface on IDE environment.
- 8. To interface and convert Digital to Analog data using DAC in ARM processor.
- 9. To develop, code, configure and test a device driver.
- 10. To implement concurrency and resource management in mobile devices.

| MTCE-132  |                        | Data Mining Lab                                                                                       |                 |                     |                    |                |             |  |  |  |  |  |
|-----------|------------------------|-------------------------------------------------------------------------------------------------------|-----------------|---------------------|--------------------|----------------|-------------|--|--|--|--|--|
| Lecture   | Tutorial               | Tutorial Practical Credit Practical Minor Test Total Time                                             |                 |                     |                    |                |             |  |  |  |  |  |
| 0         | 0 4 2 60 40 100 3 Hrs. |                                                                                                       |                 |                     |                    |                |             |  |  |  |  |  |
| Program   |                        | To get awareness of data mining tools and getting knowledge of various performance metrics for        |                 |                     |                    |                |             |  |  |  |  |  |
| Objective | evaluation of          | evaluation of data mining techniques. To explore the different validation techniques on training data |                 |                     |                    |                |             |  |  |  |  |  |
| (PO)      | (PO) set.              |                                                                                                       |                 |                     |                    |                |             |  |  |  |  |  |
|           |                        |                                                                                                       | Course O        | utcomes (CO)        |                    |                |             |  |  |  |  |  |
| C01       | To be able to          | o get basic con                                                                                       | cepts of data   | a mining.           |                    |                |             |  |  |  |  |  |
| CO2       |                        |                                                                                                       |                 |                     | ion and data chara | cterization te | chniques to |  |  |  |  |  |
|           |                        |                                                                                                       |                 | a mining algorithm  |                    |                |             |  |  |  |  |  |
| CO3       | Students are           | able to analyze                                                                                       | ze and provid   | de solutions for re | al world problems  | using mining   | association |  |  |  |  |  |
|           | techniques.            |                                                                                                       |                 |                     |                    |                |             |  |  |  |  |  |
| CO4       | Examine the            | different class                                                                                       | ification & clu | ustering technique  | s in data mining.  |                |             |  |  |  |  |  |

- 1. Study of Data Mining tool.
- 2. Develop an application to extract association mining rule.
- 3. Develop an application for classification of data.
- 4. Develop an application for one clustering technique.
- 5. Develop an application for implementing Naive Bayes classifier.
- 6. Implementation of association mining rule Apriori algorithm.
- 7. Develop an application for decision tree.
- 8. To create a Decision tree by training data set.
- To create a Decision tree by cross validation training data set.
   To create a Decision tree by using Prune mode and Reduced error Pruning and show accuracy for cross validation trained data set.

| MTCE-201  |                |                                                                                                    | Object          | Oriented Softwa     | re System Design    | 1              |                      |  |  |  |  |
|-----------|----------------|----------------------------------------------------------------------------------------------------|-----------------|---------------------|---------------------|----------------|----------------------|--|--|--|--|
| Lecture   | Tutorial       | Practical                                                                                          | Credit          | Major Test          | Minor Test          | Total          | Time                 |  |  |  |  |
| 3         | 0              | 0                                                                                                  | 3               | 60                  | 40                  | 100            | 3 Hrs.               |  |  |  |  |
| Program   | To provide the | he thorough kr                                                                                     | nowledge to     | use the concepts    | and their design at | tributes for o | bject based system   |  |  |  |  |
| Objective |                |                                                                                                    |                 |                     |                     |                | n order to solve the |  |  |  |  |
| (PO)      | real time pr   | oblems by ap                                                                                       | plying the ol   | bject oriented pat  | tern and visual m   | odeling throu  | ughout the software  |  |  |  |  |
|           | developmen     | velopment life cycles.                                                                             |                 |                     |                     |                |                      |  |  |  |  |
|           |                | Course Outcomes (CO)                                                                               |                 |                     |                     |                |                      |  |  |  |  |
| C01       | To learn the   | learn the basic concepts of object oriented design and methods and also to get exposure of UML for |                 |                     |                     |                |                      |  |  |  |  |
|           | analyzing and  | designing qua                                                                                      | lity software   | systems.            |                     |                |                      |  |  |  |  |
| CO2       |                |                                                                                                    |                 |                     |                     |                | e cases, relations,  |  |  |  |  |
|           |                |                                                                                                    |                 |                     | ign and object-orie | nted method    | ologies for choosing |  |  |  |  |
|           | and designing  | effective and                                                                                      | time critical s | software systems.   |                     |                |                      |  |  |  |  |
| CO3       |                |                                                                                                    |                 |                     |                     |                | mponents, software   |  |  |  |  |
|           |                | 0,                                                                                                 |                 | ted Design (MOO     | D), and reusability | and Life Cy    | cle issues to create |  |  |  |  |
|           | naturalized ob | ject oriented d                                                                                    | esign.          |                     |                     |                |                      |  |  |  |  |
| CO4       |                |                                                                                                    | 0               |                     | 5                   |                | cess, configuration  |  |  |  |  |
|           | management     | and maintenar                                                                                      | ice models to   | o articulate better | software system fo  | r performing   | required tasks.      |  |  |  |  |

### Unit 1: Introduction, Methods and Concepts

Introduction: Object oriented concepts, Object-oriented domain analysis, software reuse, software life cycle models, unified modeling language (UML).

Object-oriented methods (OOM): Overview, Goals, Concepts: Object analysis model, Information model. Behavior model, Process model, Requirements definition model, benefits and weaknesses.

### Unit 2: Object-Oriented Software Development Methods and Methodologies

Object-oriented software development methods: ObjectOry: System development and analysis, use cases, entities, interface objects, services and system design, advantages, Introduction to Object-oriented structured design and application examples.

Object-oriented Methodologies: Classification, Rumbaugh methodology, Jacobson methodology, Booch methodology, Responsibility-Driven design, Pun and Winder methodology, Shlaer/Mellor methodology.

### Unit 3: Object-Oriented Design, Reusability and Life Cycle Issues

Object-Oriented Design: Representation of design model, Identification of components, classes, inheritance and objects, Identification of software behavior, Suitability of Methodology for Object-Oriented Design (MOOD), Context of MOOD, A CASE environment for MOOD, MOOD tools.

Reusability and Life Cycle Issues: Reusability during Object-Oriented design, Object-Oriented software life cycle model, Software life cycle issues.

#### Unit 4: Software Maintenance Concepts and Object-Oriented Programming Languages

Software Maintenance Concepts: Software maintenance process, Reverse engineering environment, Documentation for Software maintenance, Software configuration management and Software maintenance models.

Object-Oriented Programming Languages: Simula, SmallTalk, Ada95, Object COBOL.

### Text Books:

- 1. Jag Sodhi, Prince Sodhi, Object-Oriented Methods for Software Development, McGraw-Hill.
- 2. Luiz Fernando Capretz, Miriam Captrez, Object-Oriented Software: Design and Maintenance, World Scientific.
- Luiz Fernando Capretz, Object-Oriented Design Methodologies for Software Systems, Ph.D. Thesis, University of Newcastle upon Tyne, United Kingdom, November 1991. Available Online at: https://theses.ncl.ac.uk/dspace/bitstream/10443/1967/1/Capretz,%20L.F.%201991.pdf
- 4. Ali Bahrami, Object Oriented Systems Development: McGraw Hill, 1999.
- 5. Rumbaugh et al., Object Oriented Modeling and Design, PHI, 1997.
- 6. Wendy Boggs, Michael Boggs, Mastering UML with Rational Rose, Sybex BPB Publications, 2007.

#### **Reference Books:**

- 1 Object-Oriented Analysis and Design with Applications (3rd Edition) 3rd Edition, Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim Conallen, Kelli A. Houston, Addison-Wesley, 2007
- 2. Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, 1st Edition, Addison-Wesley, 2007
- 3. Refactoring: Improving the Design of Existing Code (Addison-Wesley Object Technology Series), Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts, Erich Gamma, Addison-Wesley, 2007
- 4. Object Oriented Analysis and Design: Understanding System Development with UML 2.0, Docherty, Wiley India, 2010.

**Note for paper setter:** Nine questions will be set in all. Question No. 1, which will be objective/ short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set section-wise, with two questions from

each unit. The candidate will be required to attempt FIVE questions in all with Q.1 (compulsory) and four other questions, selecting one question from each unit. A question paper template will also be provided.

| MTCE-203              |             |                                                                                                  |              | <b>Big Data Analy</b> | tics       |           |       |        |  |  |  |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------|--------------|-----------------------|------------|-----------|-------|--------|--|--|--|
| Lecture               | Tutorial    | Practical                                                                                        | Credit       | Major Test            | Minor Test | Practical | Total | Time   |  |  |  |
| 4                     | 0           | 0                                                                                                | 4            | 60                    | 40         |           | 100   | 3 Hrs. |  |  |  |
| Program               | Understand  | derstand big data for business intelligence. Learn business case studies for big data analytics. |              |                       |            |           |       |        |  |  |  |
| <b>Objective (PO)</b> | Understand  | nderstand NoSQL big data management. Perform map-reduce analytics using Hadoop and related       |              |                       |            |           |       |        |  |  |  |
|                       | tools       | Ū                                                                                                |              | -                     | ·          | 5         |       |        |  |  |  |
|                       |             |                                                                                                  | Course Ou    | tcomes (CO)           |            |           |       |        |  |  |  |
| C01                   | Understan   | d the basics of                                                                                  | of big data  |                       |            |           |       |        |  |  |  |
| CO2                   | Understan   | Understand the detailed explanation of NoSQL                                                     |              |                       |            |           |       |        |  |  |  |
| CO3                   | Analysing   | the data with                                                                                    | Hadoop ar    | nd learn the Map      | Reduce     |           |       |        |  |  |  |
| CO4                   | Description | n on Hbase, F                                                                                    | Pig and Hive | э                     |            |           |       |        |  |  |  |

#### Unit 1

What is big data, why big data, convergence of key trends, unstructured data, industry examples of big data, web analytics, big data and marketing, fraud and big data, risk and big data, credit risk management, big data and algorithmic trading, big data and healthcare, big data in medicine, advertising and big data, big data technologies, introduction to Hadoop, open source technologies, cloud and big data, mobile business intelligence, Crowd sourcing analytics, inter and trans firewall analytics.

#### Unit 2

Introduction to NoSQL, aggregate data models, aggregates, key-value and document data models, relationships, graph databases, schema less databases, materialized views, distribution models, sharding, master-slave replication, peer replication, sharding and replication, consistency, relaxing consistency, version stamps, map-reduce, partitioning and combining, composing map-reduce calculations.

#### Unit 3

Data format, analyzing data with Hadoop, scaling out, Hadoop streaming, Hadoop pipes, design of Hadoop distributed file system (HDFS), HDFS concepts, Java interface, data flow, Hadoop I/O, data integrity, compression, serialization, Avro, file-based data structures

MapReduce workflows, unit tests with MRUnit, test data and local tests, anatomy of MapReduce job run, classic Mapreduce, YARN, failures in classic Map-reduce and YARN, job scheduling, shuffle and sort, task execution, MapReduce types, input formats, output formats

#### Unit 4

Hbase, data model and implementations, Hbase clients, Hbase examples, praxis. Cassandra, Cassandra data model, Cassandra examples, Cassandra clients, Hadoop integration.

Pig, Grunt, pig data model, Pig Latin, developing and testing Pig Latin scripts.

Hive, data types and file formats, HiveQL data definition, HiveQL data manipulation, HiveQL queries.

#### References:

- 1. Michael Minelli, Michelle Chambers, and AmbigaDhiraj, "Big Data, Big Analytics: Emerging
- 2. Business Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013.
- 3. P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World of
- 4. Polyglot Persistence", Addison-Wesley Professional, 2012.
- 5. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- 6. Eric Sammer, "Hadoop Operations", O'Reilley, 2012.
- 7. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 8. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 9. Eben Hewitt, "Cassandra: The Definitive Guide", O'Reilley, 2010.
- 10. Alan Gates, "Programming Pig", O'Reilley, 2011.

| MTCE-205  |                                                              |                                                                                            | Di           | gital Image Proce | essing              |                |              |  |  |  |  |  |
|-----------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|-------------------|---------------------|----------------|--------------|--|--|--|--|--|
| Lecture   | Tutorial                                                     |                                                                                            |              |                   |                     |                |              |  |  |  |  |  |
| 4         | 0                                                            | 0                                                                                          | 4            | 60                | 40                  | 100            | 3Hrs.        |  |  |  |  |  |
| Program   | Introduces                                                   | the working k                                                                              | nowledge o   | f how digital ima | ge processing is    | implemente     | d by using   |  |  |  |  |  |
| Objective |                                                              | various algorithms and also the various techniques of transformation, enhancement,         |              |                   |                     |                |              |  |  |  |  |  |
| (PO)      | restoration, compression, segmentation and image morphology. |                                                                                            |              |                   |                     |                |              |  |  |  |  |  |
|           | Course Outcomes (CO)                                         |                                                                                            |              |                   |                     |                |              |  |  |  |  |  |
| C01       |                                                              | Knowledge in the science of images and image processing.                                   |              |                   |                     |                |              |  |  |  |  |  |
| CO2       | To apply kno                                                 | To apply knowledge of mathematics, science and engineering in the area of computer vision. |              |                   |                     |                |              |  |  |  |  |  |
| CO3       |                                                              |                                                                                            |              |                   | ing, including Imag |                | ment in the  |  |  |  |  |  |
|           |                                                              |                                                                                            |              |                   | y and Segmentatio   |                |              |  |  |  |  |  |
| CO4       |                                                              |                                                                                            | ge in analy  | zing image segm   | entation, represen  | itation, desci | ription, and |  |  |  |  |  |
|           | recognition t                                                | echniques.                                                                                 |              |                   |                     |                |              |  |  |  |  |  |
| CO5       | Design and                                                   | implement co                                                                               | mputer visio | n systems to det  | ect, localize and r | ecognize ob    | jects within |  |  |  |  |  |
|           | images.                                                      |                                                                                            |              |                   |                     |                |              |  |  |  |  |  |

**Introduction And Digital Image Fundamentals:** The origins of Digital Image Processing, Examples of Fields that Use Digital Image Processing, Fundamentals Steps in Image Processing, Elements of Digital Image Processing Systems, Image Sampling and Quantization, Some basic relationships like Neighbours, Connectivity, Distance Measures between pixels, Linear and Non Linear Operations.

#### Unit 2

**Image Enhancement in the Spatial Domain:** Some basic Gray Level Transformations, Histogram Processing, Enhancement Using Arithmetic and Logic operations, Basics of Spatial Filters, Smoothening and Sharpening Spatial Filters, Combining Spatial Enhancement Methods.

**Image Enhancement in the Frequency Domain:** Introduction to Fourier Transform and the frequency Domain, Smoothing and Sharpening Frequency Domain Filters, Homomorphic Filtering.

#### Unit 3

**Image Restoration:** A model of The Image Degradation / Restoration Process, Noise Models, Restoration in the presence of Noise Only Spatial Filtering, Pereodic Noise Reduction by Frequency Domain Filtering, Linear Position-InvarientDedradations, Estimation of Degradation Function, Inverse filtering, Wiener filtering, Constrained Least Square Filtering, Geometric Mean Filter, Geometric Transformations.

**Image Compression:** Coding, Interpixel and Psychovisual Redundancy, Image Compression models, Elements of Information Theory, Error free comparison, Lossy compression, Image compression standards.

#### Unit 4

**Image Segmentation:**Detection of Discontinuities, Edge linking and boundary detection, Thresholding, Region Oriented Segmentation, Motion based segmentation.

**Representation and Description:** Representation, Boundary Descriptors, Regional Descriptors, Use of Principal Components for Description, Introduction to Morphology, Some basic Morphological Algorithms.

**Object Recoginition:** Patterns and Pattern Classes, Decision-Theoretic Methods, Structural Methods.

#### Text Books:

- 1 Rafael C. Gonzalez & Richard E. Woods, "Digital Image Processing", 2<sup>nd</sup> edition, Pearson Education, 2004.
- 2 A.K. Jain, "Fundamental of Digital Image Processing", PHI, 2003.

#### **Reference Books:**

- 1. Rosefield, "Digital Picture Processing", 1999.
- 2. W.K. Pratt, "Digital Image Processing", 2000.

| MTOE-201              |                                           | Business Analytics                                                                      |             |                      |                      |                 |         |  |  |  |  |
|-----------------------|-------------------------------------------|-----------------------------------------------------------------------------------------|-------------|----------------------|----------------------|-----------------|---------|--|--|--|--|
| Lecture               | Tutorial                                  | utorial Practical Credit Major Test Minor Test Total Time                               |             |                      |                      |                 |         |  |  |  |  |
| 3                     | 0                                         | 0                                                                                       | 3           | 60                   | 40                   | 100             | 3 Hrs.  |  |  |  |  |
| Program               | The main o                                | e main objective of this course is to give the student a comprehensive understanding of |             |                      |                      |                 |         |  |  |  |  |
| <b>Objective (PO)</b> | bjective (PO) business analytics methods. |                                                                                         |             |                      |                      |                 |         |  |  |  |  |
|                       |                                           | C                                                                                       | ourse Ou    | tcomes (CO)          |                      |                 |         |  |  |  |  |
| C01                   | Able to ha                                | ve knowledg                                                                             | e of variou | is business analysis | s techniques.        |                 |         |  |  |  |  |
| CO2                   | Learn the                                 | requirement                                                                             | specificati | on and transforming  | g the requirement in | nto different n | nodels. |  |  |  |  |
| CO3                   | Learn the                                 | Learn the requirement representation and managing requirement assests.                  |             |                      |                      |                 |         |  |  |  |  |
| CO4                   | Learn the                                 | Recent Tren                                                                             | ds in Embe  | edded and collabor   | ative business       |                 |         |  |  |  |  |

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

## Unit 2

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents. Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

## Unit 3

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

## Unit 4

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

- 1. Business Analysis by James Cadle et al.
- 2. Project Management: The Managerial Process by Erik Larson and, Clifford Gray

| MTOE-203              |                                                                                | Industrial Safety                                         |             |              |      |  |  |  |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|-------------|--------------|------|--|--|--|--|--|--|--|
| Lecture               | Tutorial                                                                       | Itorial Practical Credit Major Test Minor Test Total Time |             |              |      |  |  |  |  |  |  |  |
| 3                     | 0                                                                              | ) 0 3 60 40 100 3 Hrs.                                    |             |              |      |  |  |  |  |  |  |  |
| Program               | To enable                                                                      | o enable students to aware about the industrial safety.   |             |              |      |  |  |  |  |  |  |  |
| <b>Objective (PO)</b> | Objective (PO)                                                                 |                                                           |             |              |      |  |  |  |  |  |  |  |
|                       | Course Outcomes (CO)                                                           |                                                           |             |              |      |  |  |  |  |  |  |  |
| C01                   | Understan                                                                      | d the industi                                             | ial safety. |              |      |  |  |  |  |  |  |  |
| CO2                   | Analyze fu                                                                     | ndamental c                                               | f maintena  | nce engineer | ing. |  |  |  |  |  |  |  |
| CO3                   | CO3 Understand the wear and corrosion and fault tracing.                       |                                                           |             |              |      |  |  |  |  |  |  |  |
| CO4                   | CO4 Understanding that when to do periodic inceptions and apply the preventing |                                                           |             |              |      |  |  |  |  |  |  |  |
|                       | maintenan                                                                      | ce.                                                       |             |              |      |  |  |  |  |  |  |  |

## Unit-1

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

## Unit-2

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricantstypes and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

## Unit-3

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic,automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

## Unit-4

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

| MTOE-205                                                                                         |                                                                                                        | Operations Research                                      |             |                  |                       |                |         |  |  |  |  |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|------------------|-----------------------|----------------|---------|--|--|--|--|
| Lecture                                                                                          | Tutorial                                                                                               | torial Practical Credit Major Test Minor Test Total Time |             |                  |                       |                |         |  |  |  |  |
| 3                                                                                                | 0                                                                                                      | 0                                                        | 3           | 60               | 40                    | 100            | 3 Hrs.  |  |  |  |  |
| Program                                                                                          | <b>Program</b> To enable students to aware about the dynamic programming to solve problems of discreet |                                                          |             |                  |                       |                |         |  |  |  |  |
| <b>Objective (PO)</b> and continuous variables and model the real world problem and simulate it. |                                                                                                        |                                                          |             |                  |                       |                |         |  |  |  |  |
|                                                                                                  | Course Outcomes (CO)                                                                                   |                                                          |             |                  |                       |                |         |  |  |  |  |
| C01                                                                                              | Students                                                                                               | should able                                              | to apply th | ne dynamic prog  | ramming to solve pro  | blems of discr | eet and |  |  |  |  |
|                                                                                                  | continuou                                                                                              | ıs variables.                                            |             |                  |                       |                |         |  |  |  |  |
| CO2                                                                                              | Students                                                                                               | should able                                              | to apply th | ne concept of no | on-linear programming | 1              |         |  |  |  |  |
| CO3                                                                                              | CO3 Students should able to carry out sensitivity analysis                                             |                                                          |             |                  |                       |                |         |  |  |  |  |
| CO4                                                                                              | Student s                                                                                              | hould able to                                            | o model th  | e real world pro | blem and simulate it. |                |         |  |  |  |  |

Unit -1

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit -2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

## Unit- 3

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

## Unit -4

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

| MTOE-207                                                                          |                                                                                        | Cost Management of Engineering Projects                  |              |                     |                     |           |        |  |  |  |  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|--------------|---------------------|---------------------|-----------|--------|--|--|--|--|
| Lecture                                                                           | Tutorial                                                                               | torial Practical Credit Major Test Minor Test Total Time |              |                     |                     |           |        |  |  |  |  |
| 3                                                                                 | 0                                                                                      | 0                                                        | 3            | 60                  | 40                  | 100       | 3 Hrs. |  |  |  |  |
| Program                                                                           | To enable students to make aware about the cost management for the engineering project |                                                          |              |                     |                     |           |        |  |  |  |  |
| <b>Objective (PO)</b> and apply cost models the real world projects.              |                                                                                        |                                                          |              |                     |                     |           |        |  |  |  |  |
|                                                                                   |                                                                                        | C                                                        | ourse Ou     | tcomes (CO)         |                     |           |        |  |  |  |  |
| C01                                                                               | Students                                                                               | should able                                              | to learn the | e strategic cost ma | anagement proces    | SS.       |        |  |  |  |  |
| CO2                                                                               | Students                                                                               | should able                                              | to types of  | f project and proje | ct team types       |           |        |  |  |  |  |
| CO3 Students should able to carry out Cost Behavior and Profit Planning analysis. |                                                                                        |                                                          |              |                     |                     |           |        |  |  |  |  |
| CO4                                                                               | Student s                                                                              | hould able to                                            | o learn the  | quantitative techr  | niques for cost mai | nagement. |        |  |  |  |  |

## Unit-1

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

### Unit-2

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

### Unit-3

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

### Unit-4

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

| MTOE-209              |           | Composite Materials                                                            |             |                   |                     |                |            |  |  |  |  |
|-----------------------|-----------|--------------------------------------------------------------------------------|-------------|-------------------|---------------------|----------------|------------|--|--|--|--|
| Lecture               | Tutorial  | torial Practical Credit Major Test Minor Test Total Time                       |             |                   |                     |                |            |  |  |  |  |
| 3                     | 0         | 0                                                                              | 3           | 60                | 40                  | 100            | 3 Hrs.     |  |  |  |  |
| Program               | To enable | o enable students to aware about the composite materials and their properties. |             |                   |                     |                |            |  |  |  |  |
| <b>Objective (PO)</b> |           |                                                                                |             |                   |                     |                |            |  |  |  |  |
|                       |           | C                                                                              | ourse Ou    | tcomes (CO)       |                     |                |            |  |  |  |  |
| C01                   | Students  | should able                                                                    | to learn th | e Classification  | and characteristic  | s of Composite | materials. |  |  |  |  |
| CO2                   | Students  | should able                                                                    | reinforcen  | nents Composit    | e materials.        |                |            |  |  |  |  |
| CO3                   | Students  | Students should able to carry out the preparation of compounds.                |             |                   |                     |                |            |  |  |  |  |
| CO4                   | Student s | hould able to                                                                  | o do the ar | nalysis of the co | omposite materials. |                |            |  |  |  |  |

## UNIT-1:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Iso-strain and Iso-stress conditions.

## UNIT – 2

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

# UNIT-3

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

# UNIT – 4

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

# **TEXT BOOKS**:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.
- 3. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

| MTOE-211              |           |                                                                                  |             | Waste to Ene     | rgy                 |     |        |  |  |  |  |
|-----------------------|-----------|----------------------------------------------------------------------------------|-------------|------------------|---------------------|-----|--------|--|--|--|--|
| Lecture               | Tutorial  | orial Practical Credit Major Test Minor Test Total Time                          |             |                  |                     |     |        |  |  |  |  |
| 3                     | 0         | 0                                                                                | 3           | 60               | 40                  | 100 | 3 Hrs. |  |  |  |  |
| Program               | To enable | nable students to aware about the generation of energy from the waste.           |             |                  |                     |     |        |  |  |  |  |
| <b>Objective (PO)</b> |           |                                                                                  |             |                  |                     |     |        |  |  |  |  |
|                       |           | C                                                                                | ourse Ou    | tcomes (CO)      |                     |     |        |  |  |  |  |
| C01                   | Students  | should able                                                                      | to learn th | e Classification | of waste as a fuel. |     |        |  |  |  |  |
| CO2                   | Students  | should able                                                                      | to learn th | e Manufacture o  | of charcoal.        |     |        |  |  |  |  |
| CO3                   | Students  | Students should able to carry out the designing of gasifiers and biomass stoves. |             |                  |                     |     |        |  |  |  |  |
| CO4                   | Student s | hould able to                                                                    | o learn the | Biogas plant te  | echnology.          |     |        |  |  |  |  |

### Unit-1

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

## Unit-2

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

### Unit-3

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

### Unit-4

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

| MTAD-101       |            | English For Research Paper Writing                                       |             |                      |                      |          |        |  |  |  |  |
|----------------|------------|--------------------------------------------------------------------------|-------------|----------------------|----------------------|----------|--------|--|--|--|--|
| Lecture        | Tutorial   | torial Practical Credit Major Test Minor Test Total Time                 |             |                      |                      |          |        |  |  |  |  |
| 2              | 0          | 0                                                                        | 0           | -                    | 100                  | 100      | 3 Hrs. |  |  |  |  |
| •              | Student wi | udent will able to understand the basic rules of research paper writing. |             |                      |                      |          |        |  |  |  |  |
| Objective (PO) |            |                                                                          |             |                      |                      |          |        |  |  |  |  |
|                |            | C                                                                        | ourse Ou    | tcomes (CO)          |                      |          |        |  |  |  |  |
| C01            | Understa   | and that how                                                             | to improve  | e your writing skil  | ls and level of read | dability |        |  |  |  |  |
| CO2            | Learn ab   | out what to                                                              | write in ea | ch section           |                      |          |        |  |  |  |  |
| CO3            | Understa   | Understand the skills needed when writing a Title                        |             |                      |                      |          |        |  |  |  |  |
| CO4            | Ensure th  | ne good qual                                                             | ity of pape | r at very first-time | submission           |          |        |  |  |  |  |

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

## Unit 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

## Unit 3

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

## Unit 4

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

| MTAD-103       |                      |                                                                                             | D            | isaster Manag      | ement                |                    |             |  |  |  |
|----------------|----------------------|---------------------------------------------------------------------------------------------|--------------|--------------------|----------------------|--------------------|-------------|--|--|--|
| Lecture        | Tutorial             | Practical                                                                                   | Credit       | Major Test         | Minor Test           | Total              | Time        |  |  |  |
| 2              | 0                    | 0                                                                                           | 0            | -                  | 100                  | 100                | 3 Hrs.      |  |  |  |
| Program        | Develop a            | n understand                                                                                | ding of disa | aster risk reduci  | tion and manageme    | ent                |             |  |  |  |
| Objective (PO) |                      |                                                                                             |              |                    |                      |                    |             |  |  |  |
|                | Course Outcomes (CO) |                                                                                             |              |                    |                      |                    |             |  |  |  |
| C01            | Learn to a           | earn to demonstrate a critical understanding of key concepts in disaster risk reduction and |              |                    |                      |                    |             |  |  |  |
|                | humanitari           | umanitarian response.                                                                       |              |                    |                      |                    |             |  |  |  |
| CO2            | Critically e         | evaluate disa                                                                               | ster risk re | eduction and hu    | imanitarian respons  | se policy and pr   | actice from |  |  |  |
|                | multiple pe          | erspectives.                                                                                |              |                    |                      |                    |             |  |  |  |
| CO3            | Develop a            | n understan                                                                                 | ding of sta  | andards of hum     | anitarian response   | and practical re   | elevance in |  |  |  |
|                | specific typ         | pes of disast                                                                               | ers and co   | onflict situations |                      |                    |             |  |  |  |
| CO4            | critically           | ritically understand the strengths and weaknesses of disaster management                    |              |                    |                      |                    |             |  |  |  |
|                |                      |                                                                                             | 1 0          | 0                  | rent countries, part | icularly their hor | ne          |  |  |  |
|                | country or           | the countrie                                                                                | s they wor   | k in               |                      |                    |             |  |  |  |

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

## Unit 2

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

## Unit 3

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

## Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi.

| MTAD-105                  |                                                                                        | Sanskrit for Technical Knowledge                          |              |                  |                          |                     |            |  |  |  |  |
|---------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------|------------------|--------------------------|---------------------|------------|--|--|--|--|
| Lecture                   | Tutorial                                                                               | utorial Practical Credit Major Test Minor Test Total Time |              |                  |                          |                     |            |  |  |  |  |
| 2                         | 0                                                                                      | 0                                                         | 0            | -                | 100                      | 100                 | 3 Hrs.     |  |  |  |  |
| Program                   | Students v                                                                             | vill be able to                                           | ) Understa   | nding basic Sa   | nskrit language and      | l Ancient Sanskrit  | literature |  |  |  |  |
| <b>Objective (PO)</b>     | about science & technology can be understood and Being a logical language will help to |                                                           |              |                  |                          |                     |            |  |  |  |  |
| develop logic in students |                                                                                        |                                                           |              |                  |                          |                     |            |  |  |  |  |
|                           | Course Outcomes (CO)                                                                   |                                                           |              |                  |                          |                     |            |  |  |  |  |
| C01                       | To get a v                                                                             | vorking knov                                              | vledge in i  | llustrious Sansk | crit, the scientific lar | nguage in the world | d          |  |  |  |  |
| CO2                       | Learning                                                                               | of Sanskrit t                                             | o improve    | brain functionin | g                        |                     |            |  |  |  |  |
| CO3                       | Learning                                                                               | of Sanskrit t                                             | o develop    | the logic in mat | hematics, science a      | & other subjects    |            |  |  |  |  |
|                           | enhancin                                                                               | g the memoi                                               | y power      |                  |                          |                     |            |  |  |  |  |
| CO4                       | 0                                                                                      | 0                                                         |              |                  | rit will be able to ex   | plore the huge      |            |  |  |  |  |
|                           | knowledg                                                                               | e from ancie                                              | nt literatur | re               |                          |                     |            |  |  |  |  |

## Unit –1

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

## Unit – 2

Order, Introduction of roots, Technical information about Sanskrit Literature

# Unit –3

Technical concepts of Engineering: Electrical, Mechanical

# Unit –4

Technical concepts of Engineering: Architecture, Mathematics

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

| MTAD-107              |            |                                                 | Value Ed    | ucation           |                  |                   |             |  |  |  |  |
|-----------------------|------------|-------------------------------------------------|-------------|-------------------|------------------|-------------------|-------------|--|--|--|--|
| Lecture               | Tutorial   | Practical                                       | Credit      | Major Test        | Minor Test       | Total             | Time        |  |  |  |  |
| 2                     | 0          | 0                                               | 0           | -                 | 100              | 100               | 3 Hrs.      |  |  |  |  |
| Program               | Understan  | d value of e                                    | ducation ar | nd self- developm | nent, Imbibe goo | d values in stude | nts and Let |  |  |  |  |
| <b>Objective (PO)</b> | the should | e should know about the importance of character |             |                   |                  |                   |             |  |  |  |  |
|                       |            |                                                 |             |                   |                  |                   |             |  |  |  |  |
|                       |            | C                                               | ourse Ou    | tcomes (CO)       |                  |                   |             |  |  |  |  |
| C01                   | Knowledge  | e of self-dev                                   | elopment    |                   |                  |                   |             |  |  |  |  |
| CO2                   | Learn the  | importance o                                    | of Human v  | /alues            |                  |                   |             |  |  |  |  |
| CO3                   | Developing | eveloping the overall personality               |             |                   |                  |                   |             |  |  |  |  |
| CO4                   | Know abo   | out the impo                                    | tance of c  | haracter          |                  |                   |             |  |  |  |  |

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements.

## Unit 2

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism.Love for nature, Discipline

### Unit 3

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

## Unit 4

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

## References

1.Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

| MTAD-102                                             |                                                                                              |                                                                                                | Constitut    | tion of India      |                       |                   |        |  |  |  |  |
|------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------|--------------------|-----------------------|-------------------|--------|--|--|--|--|
| Lecture                                              | Tutorial                                                                                     | Practical                                                                                      | Credit       | Major Test         | Minor Test            | Total             | Time   |  |  |  |  |
| 2                                                    | 0                                                                                            | 0                                                                                              | 0            | -                  | 100                   | 100               | 3 Hrs. |  |  |  |  |
| Program                                              | Understan                                                                                    | Understand the premises informing the twin themes of liberty and freedom from a civil rights   |              |                    |                       |                   |        |  |  |  |  |
| <b>Objective (PO)</b>                                | perspectiv                                                                                   | perspective and to address the growth of Indian opinion regarding modern Indian intellectuals' |              |                    |                       |                   |        |  |  |  |  |
|                                                      | constitutional role and entitlement to civil and economic rights as well as the emergence of |                                                                                                |              |                    |                       |                   |        |  |  |  |  |
| nationhood in the early years of Indian nationalism. |                                                                                              |                                                                                                |              |                    |                       |                   |        |  |  |  |  |
|                                                      | Course Outcomes (CO)                                                                         |                                                                                                |              |                    |                       |                   |        |  |  |  |  |
| C01                                                  | Discuss th                                                                                   | e growth of t                                                                                  | he deman     | d for civil rights | in India for the bulk | of Indians before | the    |  |  |  |  |
|                                                      | arrival of G                                                                                 | Gandhi in Ind                                                                                  | ian politics | 5.                 |                       |                   |        |  |  |  |  |
| CO2                                                  | Discuss th                                                                                   | e intellectua                                                                                  | l origins of | the framework      | of argument that info | ormed the         |        |  |  |  |  |
|                                                      | conceptua                                                                                    | lization of so                                                                                 | cial reform  | ns leading to rea  | volution in India.    |                   |        |  |  |  |  |
| CO3                                                  |                                                                                              |                                                                                                |              | 0                  | dation of the Congre  | ,                 |        |  |  |  |  |
|                                                      | under the l                                                                                  | leadership o                                                                                   | f Jawaharl   | al Nehru and th    | e eventual failure of | the proposal of d | irect  |  |  |  |  |
|                                                      | elections ti                                                                                 | hrough adult                                                                                   | suffrage i   | n the Indian Co    | nstitution.           |                   |        |  |  |  |  |
| CO4                                                  | Discuss th                                                                                   | e passage o                                                                                    | f the Hindu  | u Code Bill of 1   | 956.                  |                   |        |  |  |  |  |

### Unit I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

### Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

### Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

## Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

| MTAD-104              |                           |                                                                                            | Pedagog       | y Studies          |                   |                    |            |  |  |  |
|-----------------------|---------------------------|--------------------------------------------------------------------------------------------|---------------|--------------------|-------------------|--------------------|------------|--|--|--|
| Lecture               | Tutorial                  | Practical                                                                                  | Credit        | Major Test         | Minor Test        | Total              | Time       |  |  |  |
| 2                     | 0                         | 0                                                                                          | 0             | -                  | 100               | 100                | 3 Hrs.     |  |  |  |
| Program               | Review e                  | Review existing evidence on the review topic to inform programme design and policy making  |               |                    |                   |                    |            |  |  |  |
| <b>Objective (PO)</b> | undertak                  | undertaken by the DFID, other agencies and researchers and Identify critical evidence gaps |               |                    |                   |                    |            |  |  |  |
|                       | to guide the development. |                                                                                            |               |                    |                   |                    |            |  |  |  |
|                       | Course Outcomes (CO)      |                                                                                            |               |                    |                   |                    |            |  |  |  |
| C01                   | What peda                 | agogical pra                                                                               | ctices are    | being used by tea  | chers in formal a | nd informal class  | rooms in   |  |  |  |
|                       | developing                | g countries?                                                                               |               |                    |                   |                    |            |  |  |  |
| CO2                   | What is th                | e evidence d                                                                               | on the effe   | ctiveness of these | pedagogical pra   | ctices, in what co | onditions, |  |  |  |
|                       | and with w                | hat populati                                                                               | on of learn   | ers?               |                   |                    |            |  |  |  |
| CO3                   | How can                   | teacher ed                                                                                 | ucation (c    | urriculum and pr   | acticum) and th   | e school curricu   | ilum and   |  |  |  |
|                       | guidance r                | materials be:                                                                              | st support    | effective pedagogy | /?                |                    |            |  |  |  |
| CO4                   | What is the               | e importance                                                                               | e of identify | ving research gaps | ?                 |                    |            |  |  |  |

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

### Unit 2

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

### Unit 3

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

### Unit 4

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272– 282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

| MTAD-106       |            | Stress Management by Yoga                                      |             |                 |                        |       |      |  |  |  |  |  |
|----------------|------------|----------------------------------------------------------------|-------------|-----------------|------------------------|-------|------|--|--|--|--|--|
| Lecture        | Tutorial   | Practical                                                      | Credit      | Major Test      | Minor Test             | Total | Time |  |  |  |  |  |
| 2              | 0          | 0 0 0 - 100 100 3 Hrs.                                         |             |                 |                        |       |      |  |  |  |  |  |
| Program        | To achieve | achieve overall health of body and mind and to overcome stress |             |                 |                        |       |      |  |  |  |  |  |
| Objective (PO) |            |                                                                |             |                 |                        |       |      |  |  |  |  |  |
|                |            | C                                                              | ourse Ou    | tcomes (CO)     |                        |       |      |  |  |  |  |  |
| C01            | Develop l  | healthy mind                                                   | in a healtl | hy body thus im | proving social health. |       |      |  |  |  |  |  |
| CO2            | Improve e  | efficiency                                                     |             |                 |                        |       |      |  |  |  |  |  |
| CO3            | Learn the  | earn the Yog asan                                              |             |                 |                        |       |      |  |  |  |  |  |
| CO4            | Learn the  | e pranayama                                                    |             |                 |                        |       |      |  |  |  |  |  |

### Unit – 1

Definitions of Eight parts of yog (Ashtanga).

## Unit- 2

Yam and Niyam, Do`s and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

## Unit- 3

Asan and Pranayam, Various yog poses and their benefits for mind & body,

## Unit- 4

Regularization of breathing techniques and its effects-Types of pranayam.

- 1. 'Yogic Asanas for Group Tarining-Part-I" :Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

| MTAD-110       |            | Personality Development and Soft Skills                                                             |              |                 |            |           |       |      |  |  |  |  |
|----------------|------------|-----------------------------------------------------------------------------------------------------|--------------|-----------------|------------|-----------|-------|------|--|--|--|--|
| Lecture        | Tutorial   | Practical                                                                                           | Credit       | Major Test      | Minor Test | Practical | Total | Time |  |  |  |  |
| 2              | 0          | 0 0 0 100 - 100 3 Hrs.                                                                              |              |                 |            |           |       |      |  |  |  |  |
| Program        | To become  | To become a person with stable mind, pleasing personality and determination in order to achieve the |              |                 |            |           |       |      |  |  |  |  |
| Objective (PO) | highest go | highest goal.                                                                                       |              |                 |            |           |       |      |  |  |  |  |
|                |            |                                                                                                     | Course Ou    | tcomes (CO)     |            |           |       |      |  |  |  |  |
| C01            | Students b | become aware                                                                                        | e about lead | dership.        |            |           |       |      |  |  |  |  |
| CO2            | Students v | vill learn how                                                                                      | to improve   | communication s | skills     |           |       |      |  |  |  |  |
| CO3            | Understan  | Understand the team building and conflict                                                           |              |                 |            |           |       |      |  |  |  |  |
| CO4            | Student wi | ill learn how to                                                                                    | o manage tl  | ne time.        |            |           |       |      |  |  |  |  |

Leadership Introduction to Leadership, Leadership Power, Leadership Styles, Leadership in Administration. Interpersonal: Introduction to Interpersonal Relations, Analysis Relations of different ego states, Analysis of Transactions, Analysis of Strokes, Analysis of Life position

#### Unit II

Communication: Introduction to Communication, Flow of Communication, Listening, Barriers of Communication, How to overcome barriers of communication.

Stress Introduction to Stress, Causes of Stress, Impact Management Stress, Managing Stress

#### Unit III

Group Dynamics and team Building: Importance of groups in organization, Interactions in group, Group Decision Taking, Team Building, Interaction with the Team, How to build a good team?

Conflict: Introduction to Conflict, Causes of Conflict, Management Managing Conflict

#### Unit IV

Time Management: Time as a Resource, Identify Important Time Wasters, Individual Time Management Styles, Techniques for better Time Management.

Motivation: Introduction to Motivation, Relevance and types of Motivation, Motivating the subordinates, Analysis of Motivation

#### Suggested reading

- E.Berne, Games People Play, Grove Press Inc., 1964; Penguin, 1968.
- Hargreaves, G. Stress Management, Marshall Publishing, London 1998
- Barker D, TA and Training, Gower Publishing Company Ltd., 1982.
- Jongewardm D & Seyer P C, Choosing Success, John Wiley & Sons Inc. 1978
- Arnold, JHC Feldman, D.C. Organizational Behaviour IRWIN/McGRAW-HILL 1986
- Chandan, J.S., Organizational Behaviour. Vikas Publishing House PVT LTD 1994
- Statt, D.A. Using Psychology in Management Training, Taylor and Francis Inc.2000
- Luthans F., Organisational Behaviour, IRWIN/McGRAW-HILL 1998

|     | Dissertation Part-I (MTCE-207) and Dissertation Part-II (MTCE-202)                                           |  |  |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|     | Course Outcomes (CO)                                                                                         |  |  |  |  |  |  |  |  |  |  |
| C01 | <b>CO1</b> Ability to synthesize knowledge and skills previously gained and applied to an in depth study and |  |  |  |  |  |  |  |  |  |  |
|     | execution of new technical problem.                                                                          |  |  |  |  |  |  |  |  |  |  |
| CO2 | Capable to select from different methodologies, methods and forms of analysis to produce a suitable          |  |  |  |  |  |  |  |  |  |  |
|     | research design, and justify their design.                                                                   |  |  |  |  |  |  |  |  |  |  |
| CO3 | Ability to present the findings of their technical solution in a written report.                             |  |  |  |  |  |  |  |  |  |  |
| CO4 | Presenting the work in International/ National conference or reputed journals.                               |  |  |  |  |  |  |  |  |  |  |

### Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following:

Relevance to social needs of society

Relevance to value addition to existing facilities in the institute

Relevance to industry need

Problems of national importance

Research and development in various domain.

### The student should complete the following:

Literature survey Problem Definition

Motivation for study and Objectives

Preliminary design / feasibility / modular approaches

Implementation and Verification

Report and presentation

The dissertation part- II is based on a report prepared by the students on dissertation allotted to them. It may be based on: Experimental verification / Proof of concept.

The viva-voce examination will be based on the above report and work.

### Guidelines for Dissertation Part – I and Dissertation Part-II

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two parts i.e. Part– I: July to December and Part– II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives.

The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing Engineering and any other related domain. In case of Industry sponsored projects, the relevant application notes, white papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Part-I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper, proof of concept/functionality, part results, and record of continuous progress.

Part–I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Part-I work.

During Part– II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Part–II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, and record of continuous progress.

Part-II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the Part-I work.

### SCHEME & SYLLABUS FOR MASTER OF TECHNOLOGY (M.TECH.) IN SOFTWARE ENGINEERING (SE) PROGRAM AT U.I.E.T. As per AICTE Model curriculum (Applicable w.e.f. session 2018-2019 in Phased Manner)



| -         | -             |                                          | I |              |   |            | nester-i   |                       |           |                               |        |    |
|-----------|---------------|------------------------------------------|---|--------------|---|------------|------------|-----------------------|-----------|-------------------------------|--------|----|
| S.<br>No. | Course<br>No. | Subject                                  |   | achi<br>hedu |   | Hours/Week |            | ination S<br>entage D |           | Duration<br>of Exam<br>(Hrs.) | Credit |    |
|           |               |                                          | L | Т            | Р |            | Major Test | Minor<br>Test         | Practical | Total                         |        |    |
| 1         | MTSE-<br>101  | Essentials of<br>Software<br>Engineering | 3 | 0            | 0 | 3          | 60         | 40                    |           | 100                           | 3      | 3  |
| 2         | MTSE-<br>103  | Modeling<br>and<br>Simulation            | 3 | 0            | 0 | 3          | 60         | 40                    |           | 100                           | 3      | 3  |
| 3         | *             | Program<br>Elective-I                    | 3 | 0            | 0 | 3          | 60         | 40                    |           | 100                           | 3      | 3  |
| 4         | **            | Program<br>Elective-II                   | 3 | 0            | 0 | 3          | 60         | 40                    |           | 100                           | 3      | 3  |
| 5         | MTSE-<br>117  | Software<br>Engineering<br>Lab           | 0 | 0            | 4 | 4          |            | 40                    | 60        | 100                           | 2      | 2  |
| 6         | MTSE-<br>119  | Agile<br>Software<br>Engineering<br>Lab  | 0 | 0            | 4 | 4          |            | 40                    | 60        | 100                           | 2      | 2  |
| 7         | MTRM-<br>111  | Research<br>Methodology<br>and IPR       | 2 | 0            | 0 | 2          | 60         | 40                    |           | 100                           |        | 2  |
| 8         | ***           | Audit course-                            | 2 | 0            | 0 | 2          |            | 100                   |           | 100                           | 3      |    |
|           |               | Total                                    |   |              |   | 24         | 300        | 280                   | 120       | 700                           | -      | 18 |

#### Scheme for the course of Master of Technology (M.Tech.) in Software Engineering (Credit Based) (Applicable from session 2018-2019) Semester-I

| *          | Programme Elective-I            | **Programme Elective-II |                               |  |  |  |
|------------|---------------------------------|-------------------------|-------------------------------|--|--|--|
| Course No. | Subject                         | Course No.              | Subject                       |  |  |  |
| MTSE-105   | Software Project Management     | MTSE-111                | Software Reliability          |  |  |  |
| MTSE-107   | Agile Software Process          | MTSE-113                | Software Agents               |  |  |  |
| MTSE-109   | Software Process Maturity Model | MTSE-115                | Human Interface System Design |  |  |  |

|            | ***Audit Course-I                  |  |  |  |  |  |  |  |  |  |
|------------|------------------------------------|--|--|--|--|--|--|--|--|--|
| Course No. | Course No. Subject                 |  |  |  |  |  |  |  |  |  |
| MTAD-101   | English for Research Paper Writing |  |  |  |  |  |  |  |  |  |
| MTAD-103   | Disaster Management                |  |  |  |  |  |  |  |  |  |
| MTAD-105   | Sanskrit for Technical Knowledge   |  |  |  |  |  |  |  |  |  |
| MTAD-107   | Value Education                    |  |  |  |  |  |  |  |  |  |

**Note:** 1. The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

2. \*\*\*Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

|           |               |                                                |                      |   |    | Seme       | ster-II                                           |               |           |       |                               |        |
|-----------|---------------|------------------------------------------------|----------------------|---|----|------------|---------------------------------------------------|---------------|-----------|-------|-------------------------------|--------|
| S.<br>No. | Course<br>No. | Subject                                        | Teaching<br>Schedule |   |    | Hours/Week | Examination Schedule &<br>Percentage Distribution |               |           |       | Duration<br>of Exam<br>(Hrs.) | Credit |
|           |               |                                                | L                    | Т | Р  |            | Major Test                                        | Minor<br>Test | Practical | Total |                               |        |
| 1         | MTSE-102      | Software Risk<br>Management                    | 3                    | 0 | 0  | 3          | 60                                                | 40            |           | 100   | 3                             | 3      |
| 2         | MTSE-104      | Social<br>Networks                             | 3                    | 0 | 0  | 3          | 60                                                | 40            |           | 100   | 3                             | 3      |
| 3         | *             | Program<br>Elective-III                        | 3                    | 0 | 0  | 3          | 60                                                | 40            |           | 100   | 3                             | 3      |
| 4         | **            | Program<br>Elective-IV                         | 3                    | 0 | 0  | 3          | 60                                                | 40            |           | 100   | 3                             | 3      |
| 5         | MTSE-118      | Software<br>Quality<br>Models &<br>Testing Lab | 0                    |   | 4  | 4          |                                                   | 40            | 60        | 100   | 3                             | 2      |
| 6         | MTSE-120      | Social<br>Networks Lab                         | 0                    |   | 4  | 4          |                                                   | 40            | 60        | 100   | 3                             | 2      |
| 7         | #MTSE-<br>122 | Mini Project                                   | 0                    | 0 | 4  | 4          |                                                   | 100           |           | 100   |                               | 2      |
| 8         | ***           | Audit course-                                  | 2                    | 0 | 0  | 2          |                                                   | 100           |           | 100   | 3                             |        |
|           | Total         |                                                |                      |   | 26 | 240        | 340                                               | 120           | 700       | -     | 18                            |        |

# Scheme for the course of Master of Technology (M.Tech.) in Software Engineering

| *Progra    | amme Elective -III         | **Programme Elective-IV |                             |
|------------|----------------------------|-------------------------|-----------------------------|
| Course No. | Subject                    | Course No.              | Subject                     |
| MTSE-106   | Cloud Computing            | MTSE-112                | Object Oriented Programming |
| MTSE-108   | Software Testing & Quality | MTSE-114                | Pattern Oriented Software   |
|            | Assurance                  |                         | Architecture                |
| MTSE-110   | Data Warehousing and Data  | MTSE-116                | Software Measurement and    |
|            | mining                     |                         | Metrics                     |

|            | List of Audit Course-II (AC-II) for Second Semester        |  |  |  |  |  |  |  |
|------------|------------------------------------------------------------|--|--|--|--|--|--|--|
| Course No. | Subject                                                    |  |  |  |  |  |  |  |
| MTAD-102   | Constitution of India                                      |  |  |  |  |  |  |  |
| MTAD-104   | Pedagogy Studies                                           |  |  |  |  |  |  |  |
| MTAD-106   | Stress Management by Yoga                                  |  |  |  |  |  |  |  |
| MTAD-108   | Personality Development through Life Enlightenment Skills. |  |  |  |  |  |  |  |

**Note 1:** After the second semester exams, the students are encouraged to go to Industrial Training/Internship for at least 6-8 weeks during the summer break with a specific objective for Dissertation Part–I (MTSE-207). The industrial Training/Internship would be evaluated as the part of the Dissertation–I (with the marks distribution as 40 marks for Industrial Training/Internship and 60 marks for Dissertation Part–I).

**Note 2:** The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

**\*\*\*Note 3:** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

**#Note 4: Mini project:** During this course the student will be able to understand the contemporary/emerging technologies for various processes and systems. During the semester, the students are required to search/gather the material/information on a specific topic, comprehend it and present/discuss the same in the class. He/she will be acquainted to share knowledge effectively in oral (seminar) and written form (formulate documents) in the form of report. The student will be evaluated on the basis of viva/ seminar (40 marks) and report (60 marks).

### Semester: III

| S.<br>No. | Course<br>No. | Subject                |   | ach<br>hed | ing<br>Iule | Hours<br>/Week |            | amination S<br>rcentage Di |           | Duration<br>of Exam<br>(Hrs.) | Credit |    |
|-----------|---------------|------------------------|---|------------|-------------|----------------|------------|----------------------------|-----------|-------------------------------|--------|----|
|           |               |                        | L | T          | Р           |                | Major Test | Minor<br>Test              | Practical | Total                         |        |    |
|           | *             | Program<br>Elective -V | 3 | 0          | 0           | 3              | 60         | 40                         |           | 100                           | 3      | 3  |
| 1         | **            | Open<br>Elective       | 3 | 0          | 0           | 3              | 60         | 40                         |           | 100                           | 3      | 3  |
| 2         | MTSE-<br>207  | Dissertation<br>Part-I | 0 | 0          | 20          | 20             |            |                            | 100       | 100                           | 3      | 10 |
|           | Total         |                        |   |            |             | 120            | 80         | 100                        | 300       |                               | 16     |    |

| Programme Electives -V |                             |
|------------------------|-----------------------------|
| Course No.             | Subject                     |
| MTSE-201               | Software Quality Management |
| MTSE-203               | Language Technologies       |
| MTSE-205               | Personal Software Process   |

|    | **Open Elective |                                         |  |  |  |  |  |  |
|----|-----------------|-----------------------------------------|--|--|--|--|--|--|
| 1. | MTOE-201        | Business Analytics                      |  |  |  |  |  |  |
| 2. | MTOE-203        | Industrial Safety                       |  |  |  |  |  |  |
| 3. | MTOE-205        | Operations Research                     |  |  |  |  |  |  |
| 4. | MTOE-207        | Cost Management of Engineering Projects |  |  |  |  |  |  |
| 5. | MTOE-209        | Composite Materials                     |  |  |  |  |  |  |
| 6. | MTOE-211        | Waste to Energy                         |  |  |  |  |  |  |

Semester: IV

| S.<br>No. | Course<br>No. | Subject                 |   | eachi<br>ched |    | Hours/Week | Examination Schedule &<br>Percentage Distribution |               |           |       | Duration<br>of Exam<br>(Hrs.) | Credit |
|-----------|---------------|-------------------------|---|---------------|----|------------|---------------------------------------------------|---------------|-----------|-------|-------------------------------|--------|
|           |               |                         | L | Т             | Р  |            | Major test                                        | Minor<br>test | Practical | Total |                               |        |
| 1         | MTSE-<br>202  | Dissertation<br>Part-II | 0 | 0             | 32 | 16         | 0                                                 | 100           | 200       | 300   | 3                             | 16     |
|           |               | Total                   |   |               |    | 16         |                                                   | 100           | 200       | 300   |                               | 16     |

Total Credits – 68

- **Note 1**: At the end of the second semester each student is required to do his/her Dissertation work in the identified area in consent of the Guide/Supervisor. Synopsis for the Dissertation Part-I is to be submitted within three weeks of the beginning of the Third Semester.
- **Note 2**: Each admitted student is required to submit the report of his/her Dissertation Part-I as per the schedule mentioned in Academic calendar for the corresponding academic session otherwise the Dissertation Part-II cannot be continued at any level.
- **Note 3**: Each admitted student is required to submit his/her final Dissertation Part-II as per the schedule mentioned in Academic calendar for the corresponding academic session only after the publication of two papers in a journal/International/National conference of repute like IEEE, Springer, Elsevier, ACM etc.
- **Note 4:** The course of program/open elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

| MTSE-101                                            |                                                                                                           | Essentials of Software Engineering                           |             |                   |           |           |       |        |  |  |  |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|-------------------|-----------|-----------|-------|--------|--|--|--|--|
| Lecture                                             | Tutorial                                                                                                  | Practical                                                    | Credit      | Theory            | Sessional | Practical | Total | Time   |  |  |  |  |
| 3                                                   | 0                                                                                                         | 0                                                            | 3           | 60                | 40        | -         | 100   | 3 Hrs. |  |  |  |  |
| Program                                             | <b>Program</b> The main purpose of this course is to impart knowledge on the basic principles of software |                                                              |             |                   |           |           |       |        |  |  |  |  |
| <b>Objective (PO)</b>                               | developme                                                                                                 | nt life cycle.                                               |             | -                 |           | -         |       |        |  |  |  |  |
| Course Outcomes (CO)                                |                                                                                                           |                                                              |             |                   |           |           |       |        |  |  |  |  |
| After completion of course students will be able to |                                                                                                           |                                                              |             |                   |           |           |       |        |  |  |  |  |
| <b>CO1</b>                                          | To understand the software life cycle models                                                              |                                                              |             |                   |           |           |       |        |  |  |  |  |
| CO2 T                                               | To understand the importance of the software development process                                          |                                                              |             |                   |           |           |       |        |  |  |  |  |
| <b>CO3</b> T                                        | o understan                                                                                               | understand the importance of modeling and modeling languages |             |                   |           |           |       |        |  |  |  |  |
| <b>CO4</b> T                                        | o design an                                                                                               | d develop corr                                               | ect and rob | ust software prod | ucts      |           |       |        |  |  |  |  |

**Note for paper setter:** Nine questions will be set in all. Question No. 1, which will be objective/ short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set section-wise, with two questions from each unit. The candidate will be required to attempt FIVE questions in all with Q.1 (compulsory) and four other questions, selecting one question from each unit.

Unit-1

**Principles and motivation:** History, Definitions, why engineered approach to software development, Software Development Process Models from the point of view of technical development and project management: Waterfall, Rapid Prototyping, Incremental Development, Spiral Model, Emphasis on computer assisted environment.

**Software development methods:** Formal, semi-formal and informal methods, Requirements elicitation, Requirement specification, Data, functions and event based modeling, Some of the popular methodologies such as Yourdon's SAD, SSADM etc., CASE tools classification, features, strengths and weaknesses, CASE: CASE standards.

#### Unit-2

**Software Project Management:** Principles of Software Project Management, Organizational and team structure, Project planning, Project Initiation and Project Termination, Technical, Quality and Management plans, Project Control, Project Estimation methods, Function points and COCOMO.

#### Unit-3

**Software Quality Management:** Quality Control, Quality Assurance and Quality Standards with emphasis on ISO 9000, Functions of Software QA organization dose in Project, Interaction with developers, Quality plans, Quality assurance towards quality improvement, Role of independent Verification and Validation, Total Quality Management, SEI maturity model, Software metrics.

#### Unit-4

**Configuration Management:** Need for Configuration Management, Configuration Management functions and activities, Configuration Management Techniques, Examples and Case studies.

**Software Engineering Standards:** Government Standards, IEEE (and other professional bodies) standards, Corporate Standards.

#### Reference books:

- 1. Eisner Howard, Computer Aided System Engineering, Prentice Hall, New Jersy.
- 2. Richard Fairly, Software Engineering Concept, Mc-Graw Hill, New York.
- 3. Pankaj Jalote, An Integrated Approach to Software Engineering, Narosa Pub. House, New Delhi.
- 4. Roger Pressmen, Software Engineering: A Practitioner's Approach McGraw Hill, New York.
- 5. Carlo Ghezzi, Mehdi Jazayeri, Dino Manlrioli, Fundamentals of Software Engineering Prentice Hall New Jersy.
- 6. Dong Bell, Ian Morrey, and Pugh, Software Engineering: A programming Approach Prentice Hall, New Jersy.
- 7. Kenneth Shere, Software Engineering and Management, Prentice-Hall, New Jersy.

| MTSE-103                                                                                  |                                                                                                | Modelling and Simulation |              |             |    |   |     |        |  |  |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------|--------------|-------------|----|---|-----|--------|--|--|
| Lecture                                                                                   | Tutorial Practical Credit Theory Sessional Practical Total                                     |                          |              |             |    |   |     |        |  |  |
| 3                                                                                         | 0                                                                                              | 0                        | 3            | 60          | 40 | - | 100 | 3 Hrs. |  |  |
| Program This course will look at professional techniques for understanding, assessing and |                                                                                                |                          |              |             |    |   |     |        |  |  |
| <b>Objective (PO)</b>                                                                     | <b>Dbjective (PO)</b> applying the software simulation models in software development systems. |                          |              |             |    |   |     |        |  |  |
|                                                                                           | Course Outcomes (CO)                                                                           |                          |              |             |    |   |     |        |  |  |
| After completion                                                                          | n of course s                                                                                  | students will            | be able to   |             |    |   |     |        |  |  |
| CO1 To appreciate and understand scientific concepts of Software and Hardware design.     |                                                                                                |                          |              |             |    |   |     |        |  |  |
| CO2                                                                                       | CO2 To apply different simulation Models in Software Development                               |                          |              |             |    |   |     |        |  |  |
| CO3                                                                                       | To emphasize                                                                                   | e the Applicati          | on of Simula | tion Models |    |   |     |        |  |  |

**Note for paper setter:** Nine questions will be set in all. Question No. 1, which will be objective/ short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set section-wise, with two questions from each unit. The candidate will be required to attempt FIVE questions in all with Q.1 (compulsory) and four other questions, selecting one question from each unit.

#### UNIT-1

Systems: Models types, principles used in modelling, system studies, interacting subsystems and example, simulation definition, examples, steps in computer simulation, advantages and disadvantages of simulation, simulation study, classification of simulation languages.

#### System Simulation:

Techniques of simulation, monte carlo method, comparision of simulation and analytical methods, numerical computation techniques for continuous and discrete models, distributed leg models, cobweb models.

#### UNIT-II

#### Continuous system simulation:

Continuous system models, differential equation, analog computer analog methods, digital analog simulators, CSSLS, CSMPIII language.

**System Dynamics**: Historical background, exponential, Growth and decay models, modified exponential growth models, logistic curves and generalization of growth models, system dynamics diagrams, dynamo language.

#### UNIT-III

#### Probability concepts in simulation:

Stochastic variables, discrete and continuous probability function, continuous uniform distributed and computer generation of random numbers, uniform random number generator, non uniform continuously distributed random numbers, rejection method.

Discrete system simulation: Discrete events, representation of time, generation of arrival patterns, simulation of telephone system, delayed calls, simulation programming tasks, gathering statistics, discrete simulation languages.

#### UNIT-IV

Object Oriented approach in simulation, simulation in C++, Introduction to GPSS, general description, action times, choice of paths, simulation of a manufacturing shop, facilities andstorage, program control statements, priorities and parameters, numerical attributes, functions, simulation of a supermarket transfer models, GPSS model applied to any application, simulationprogramming techniques like entry types. **Reference books** 

- 1. G.Gordan "System Simulation", 2ndEd, 2002 PHI.
- 2. T.A. Payer "Introduction to Simulation", McGraw Hill.
- 3. W.A. Spriet "Computer Oriented Modeling and Simulation".
- 4. Narsingh Deo "System Simulation with Digital Computers", PHI.
- 5. V. Rajaraman "Analog Simulation", PHI

6. Law & Kelton "Simulation Modelling and Analysis" 3 rd Ed., 2000, McGraw Hill.

| MTSE-105              |                                                                                                       | Software Project Management |            |            |           |           |       |        |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|------------|------------|-----------|-----------|-------|--------|--|--|--|
| Lecture               | Tutorial                                                                                              | Practical                   | Credit     | Theory     | Sessional | Practical | Total | Time   |  |  |  |
| 3                     | 0                                                                                                     | 0                           | 3          | 60         | 40        | -         | 100   | 3 Hrs. |  |  |  |
| Program               | <b>Program</b> The course gives an insight of the most commonly used software architecture and design |                             |            |            |           |           |       |        |  |  |  |
| <b>Objective (PO)</b> | patterns an                                                                                           | d their applica             | tions      | _          |           |           | _     |        |  |  |  |
|                       |                                                                                                       | (                           | Course Out | comes (CO) |           |           |       |        |  |  |  |
| After completion      | of course                                                                                             | students will               | be able to |            |           |           |       |        |  |  |  |
| C01 To                |                                                                                                       |                             |            |            |           |           |       |        |  |  |  |
| <b>CO2</b> To         | o understand the various methods of Cost Estimation.                                                  |                             |            |            |           |           |       |        |  |  |  |
| <b>CO3</b> TO         | o Study about Software Quality Management.                                                            |                             |            |            |           |           |       |        |  |  |  |
| CO4 To                | o understan                                                                                           | d Project Eval              | uation.    |            |           |           |       |        |  |  |  |

**Note for paper setter:** Nine questions will be set in all. Question No. 1, which will be objective/ short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set section-wise, with two questions from each unit. The candidate will be required to attempt FIVE questions in all with Q.1 (compulsory) and four other questions, selecting one question from each unit.

### **UNIT I - PROJECT CONCEPTS AND ITS MANAGEMENT**

Project life cycle models-ISO 9001 model-Capability Maturity Model-Project Planning-Project tracking-Project closure. Evolution of Software Economics – Software Management Process Framework: Phases, Artifacts, Workflows, Checkpoints – Software Management Disciplines: Planning / Project Organization and Responsibilities / Automation / Project Control – Modern Project Profiles.

### **UNIT II - COST ESTIMATION**

Problems in Software Estimation – Algorithmic Cost Estimation Process, Function Points, SLIM (Software Life cycle Management), COCOMO II (Constructive Cost Model) – Estimating Web Application Development – Concepts of Finance, Activity Based Costing and Economic Value Added (EVA) – Balanced Score Card.

### UNIT III - OFTWARE QUALITY MANAGEMENT

Software Quality Factors – Software Quality Components – Software Quality Plan – Software Quality Metrics – Software Quality Costs – Software Quality Assurance Standard – Certification – Assessment.

### **UNIT IV - PROJECT EVALUATION AND EMERGING TRENDS**

Strategic Assessment–Technical Assessment–Cost Benefit Analysis–Cash Flow Forecasting–Cost Benefit Evaluation Technique–Risk Evaluation–Software Effort Estimation. Emerging Trends: Import of the internet on project Management – people Focused Process Models.

### REFERENCES

1. Ramesh Gopalaswamy, "Managing and global Software Projects", Tata McGraw Hill Tenth Reprint, 2011.

2. Roger S.Pressman, "Software Engineering- A Practitioner's Approach", 7th Edition ,McGraw Hill, 2010.

3. Daniel Galin, "Software Quality Assurance: from Theory to Implementation", Addison-Wesley, 2003.

4. Bob hughes and Mike Cotterell, "Software Project Management" second edition, 1999.

5. Royce, W. "Software Project Management: A Unified Framework", Addison- Wesley, 1998.

6. Demarco, T. and Lister, T. "Peopleware: Productive Projects and Teams, 2<sup>nd</sup> Ed.", Dorset House, 1999.

7. Fenton, N.E., and Pfleeger, S.L.. "Software Metrics: A Rigorous and Practical Approach. Revised" Brooks Cole, 1998.

8. Kaplan, R.S., Norton, D.P. "The Balanced Scorecard: Translating Strategy into Action", Harvard Business School Press, 1996.

9. Boehm, B. W. "Software Risk Management: Principles and Practices" in IEEE Software, January 1991, pp32-41.

10. Grant, J.L. "Foundations of Economic Value Added", John Wiley & Sons,

1997.

11. Cooper, R., "The Rise of Activity-Based Costing- PartOne: What is an Activity-Based Cost System" Journal of Cost Management, Vol.2, No.2(Summer 1988), pp.45 – 54.

| MTSE-107              |              |                 | Ag            | ile Software Pro  | cess              |               |          |        |
|-----------------------|--------------|-----------------|---------------|-------------------|-------------------|---------------|----------|--------|
| Lecture               | Tutorial     | Practical       | Credit        | Theory            | Sessional         | Practical     | Total    | Time   |
|                       | 0            | 0               | 3             | 60                | 40                | -             | 100      | 3 Hrs. |
| Program               |              |                 |               | udents in the bas | ic concepts of Ag | jile Software | Process, | ,      |
| <b>Objective (PO)</b> | methodolog   | gy and its deve | elopment.     |                   |                   |               |          |        |
|                       |              | (               | Course Out    | comes (CO)        |                   |               |          |        |
| After completior      | of course s  | students will   | be able to    |                   |                   |               |          |        |
| C01                   | o understan  | d the basic co  | ncepts of Aq  | gile Software Pro | cess.             |               |          |        |
| CO2                   | o gain know  | ledge in the a  | rea of variou | is Agile Methodo  | logies.           |               |          |        |
| CO3                   | To develop A | gile Software   | Process.      |                   |                   |               |          |        |
| CO4                   | o know the   | orinciples of A | gile Testing. |                   |                   |               |          |        |

#### **UNIT I-INTRODUCTION**

Software is new product development – Iterative development – Risk-Driven and Client-Driven iterative planning – Time boxed iterative development – During the iteration, No changes from external stakeholders – Evolutionary and adaptive development - Evolutionary requirements analysis – Early "Top Ten" high-level requirements and skilful analysis – Evolutionary and adaptive planning – Incremental delivery – Evolutionary delivery – The most common mistake – Specific iterative and Evolutionary methods.

#### **UNIT II-AGILE AND ITS SIGNIFICANCE**

Agile development – Classification of methods – The agile manifesto and principles – Agile project management – Embrace communication and feedback – Simple practices and project tools – Empirical Vs defined and prescriptive process – Principle-based versus Rule-Based – Sustainable discipline: The human touch – Team as a complex adaptive system – Agile hype – Specific agile methods. The facts of change on software projects – Key motivations for iterative development – Meeting the requirements challenge iteratively – Problems with the waterfall. Research evidence – Early historical project evidence – Standards-Body evidence – Expert and thought leader evidence – A Business case for iterative development – The historical accident of waterfall validity.

## UNIT III-AGILE METHODOLOGY

Method overview – Lifecycle – Work products, Roles and Practices values – Common mistakes and misunderstandings – Sample projects – Process mixtures – Adoption strategies – Fact versus fantasy – Strengths versus "Other" history.

#### UNIT IV-AGILE PRACTICING AND TESTING

Project management – Environment – Requirements – Test – The agile alliances – The manifesto – Supporting the values – Agile testing – Nine principles and six concrete practices for testing on agile teams.

#### REFERENCES

1. Elisabeth Hendrickson, "Agile Testing" Quality Tree Software Inc 2008.

2. Craig Larman "Agile and Iterative Development - A Manager's Guide"

Pearson Education - 2004.

3. Alistair "Agile Software Development series" Cockburn - 2001.

| MTSE-109              |              |                                                                     | Softwar      | e Process Matur   | rity Model |           |       |        |  |  |
|-----------------------|--------------|---------------------------------------------------------------------|--------------|-------------------|------------|-----------|-------|--------|--|--|
| Lecture               | Tutorial     | Practical                                                           | Credit       | Theory            | Sessional  | Practical | Total | Time   |  |  |
| 3                     | 0            | 0                                                                   | 3            | 60                | 40         | -         | 100   | 3 Hrs. |  |  |
| Program               | To know ab   | now about the software process and Software Process Maturity Models |              |                   |            |           |       |        |  |  |
| <b>Objective (PO)</b> |              |                                                                     |              |                   |            |           |       |        |  |  |
| Course Outcomes (CO)  |              |                                                                     |              |                   |            |           |       |        |  |  |
| After completior      | of course s  | students will                                                       | be able to   |                   |            |           |       |        |  |  |
| C01                   | o study abo  | ut various Sof                                                      | ware proces  | ss maturity model | S          |           |       |        |  |  |
| CO2                   | To study abo | out how to asso                                                     | ess software | eprocess          |            |           |       |        |  |  |
| CO3                   | To know abo  | know about the key process areas of the software process            |              |                   |            |           |       |        |  |  |
| CO4                   | o study abo  | ut software im                                                      | provement s  | sequences         |            |           |       |        |  |  |

#### **UNIT I - INTRODUCTION**

Software Process - Software Maturity Framework – Software process Improvement – Process Maturity levels – Principles of Software process Change – Software Process Assessment

#### UNIT II - CMM

CMM Introduction – CMM Maturity Levels - Initial process- Repeatable Process – Defined Process – Managed Process – Optimizing Process.

#### UNIT III - TMM

Introduction to TMM – Structure of the TMM – Components of TMMi – Generic Goals and Generic Practices – Process areas for Generic practices – TMMi Maturity Levels – Initial – Managed – Defined – Management and Measurement – Optimization.

#### **UNIT IV - AGILE MATURITY MODEL**

Agile Software Development – Process Improvement framework for Agile Software Development – Intial Level – Explored Level – Defined level – Improved Level – Sustained Level - Software Process Improvement for Agile Software Development Practices.

#### REFERENCES

1. Watts S. Humphrey "Managing the Software Process", Pearson Education, 2008

2. Marry Beth Chrissis, Mike Konnard and Sandy Shrum, "CMMI : guidelines for Process Integration and Product Improvement", Addison Wesley, 3rd Edition, 2011.

3. Mark. C. Paulk, "CMM: Guidelines for Improving the Software Process" Addison-Wesley, 2011.

| MTSE-111                  |                   |                                                                                                                                                             | S              | oftware Reliab    | ility            |                 |       |      |  |  |  |
|---------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|------------------|-----------------|-------|------|--|--|--|
| Lecture                   | Tutorial          | Practical                                                                                                                                                   | Credit         | Theory            | Sessional        | Practical       | Total | Time |  |  |  |
| 3                         | 0 0 3 60 40 - 100 |                                                                                                                                                             |                |                   |                  |                 |       |      |  |  |  |
| Program<br>Objective (PO) |                   | This course will look at professional techniques for understanding, assessing and applying the software reliability models in software development systems. |                |                   |                  |                 |       |      |  |  |  |
|                           |                   |                                                                                                                                                             | Course Outo    |                   | <u>,</u>         |                 |       |      |  |  |  |
| After completion          | n of course :     | students will                                                                                                                                               | be able to     |                   |                  |                 |       |      |  |  |  |
| C01                       | To appreciate     | e and understa                                                                                                                                              | and scientific | concepts of So    | ftware and Hardw | are Reliability | Ι.    |      |  |  |  |
| CO2                       | To apply Soft     | ware Reliabili                                                                                                                                              | y Growth Mo    | dels in Softwar   | e Development    |                 |       |      |  |  |  |
| CO3                       | To emphasiz       | e the Applicati                                                                                                                                             | on of Softwa   | re Reliability Mo | odels            |                 |       |      |  |  |  |

#### UNIT I-SOFTWARE RELIABILITY MODELS

Introduction - Historical Perspective and Implementation, classification, limitations and issues, Exponential Failure Models – Jelinski-moranda model, Poisson, Musa, Exponential models, Weibull Model, Musa-okumoto Model, Bayseian Model – Littlewood verral Model, Phase Based Model

#### **UNIT II-PREDICTION ANALYSIS**

Model Disagreement and Inaccuracy – Short & Long Term Prediction, Model Accuracy, Analyzing Predictive Accuracy – Outcomes, PLR, U & Y Plot, Errors and Inaccuracy, Recalibration – Detecting Bias, Techniques, Power of Recalibration, Limitations in Present Techniques, Improvements.

#### UNIT III-THE OPERATIONAL PROFILE

Concepts and Development Procedures – Customer Type, User Type, System Mode, Functional and Operational Profile, Test Selection - Selecting Operations, Regression Test, Special Issues – Indirect Input Variables, Updating, Distributed system.

## UNIT IV-TESTING FOR RELIABILITY MEASUREMENT

Software Testing – Types, White and Black Box, Operational Profiles – Difficulties, Estimating Reliability, Time/Structure based software reliability – Assumptions, Testing methods, Limits, Starvation, Coverage, Filtering, Microscopic Model of Software Risk.

#### REFERENCES

1. Patric D. T.O connor, "Practical Reliability Engineering", 4th Edition, John Wesley & sons, 2003.

2. John D. Musa, "Software Reliability Engineering", Tata McGraw Hill, 1999.

3. Michael Lyu, "Handbook of Software Reliability Engineering", IEEE Computer Society Press, ISBN: 0-07-039400- 8, 1996.

| MTSE-113              |                                       |                 |               | Software Agent    | s                  |              |       |        |  |  |
|-----------------------|---------------------------------------|-----------------|---------------|-------------------|--------------------|--------------|-------|--------|--|--|
| Lecture               | Tutorial                              | Practical       | Credit        | Theory            | Sessional          | Practical    | Total | Time   |  |  |
| 3                     | 0                                     | 0               | 3             | 60                | 40                 | -            | 100   | 3 Hrs. |  |  |
| Program               | This course                           | e provides a th | orough und    | erstanding of age | ent related system | n developmer | nt    |        |  |  |
| <b>Objective (PO)</b> |                                       |                 | -             |                   | -                  |              |       |        |  |  |
| Course Outcomes (CO)  |                                       |                 |               |                   |                    |              |       |        |  |  |
| After completior      | of course                             | students will   | be able to    |                   |                    |              |       |        |  |  |
| C01                   | o understan                           | d Agent devel   | opment        |                   |                    |              |       |        |  |  |
| CO2 (                 | Gain Knowle                           | dge in Multi aç | jent and Inte | elligent agents   |                    |              |       |        |  |  |
| CO3                   | CO3 To Understand Agents and security |                 |               |                   |                    |              |       |        |  |  |
| CO4                   | Gain Knowle                           | edge in Agent   | Applications  |                   |                    |              |       |        |  |  |

## **UNIT I-INTRODUCTION**

The agent landscape – The smart agent framework: Introduction – Initial concepts – Entities-Objects – Agents – Autonomy – Tropistic agent – Specification structure of SMART. – Agent relationships – An operational analysis of Agent relationships.

#### **UNIT II-SOCIOLOGICAL AGENTS**

Sociological Agents - Autonomous Interaction - Contract Net as a global directed system – Computational Architecture for BDI agents – Evaluating social dependence networks – Normative agents.

#### UNIT III-INTELLIGENT AUTONOMOUS AGENTS AND COMMUNICATION

Intelligent Agents – Deductive Reasoning Agents – Practical reasoning agents - Reactive agents – Hybrid Agents – Understanding Each other – Communicating – Methodologies

#### **UNIT IV-APPLICATIONS OF AGENTS**

Multi Agent system: Theory approaches and NASA applications – Agent based control for multi-UAV information collection-Agent based decision support system for Glider pilots – Multi agent system in E- Health Territorial Emergencies – Software Agents for computer network security- Multi-Agent Systems, Ontologies and Negotiation for Dynamic Service Composition in Multi- Organizational Environmental Management.

## REFERENCES

1. Mohammad Essaaidi, Maria Ganzha, and Marcin Paprzycki, "Software Agents, Agent Systems and Their Applications", IOS Press, 2012.

2. Mark d Inverno and Michael Luck, "Understanding Agent Systems", Springer, 2010.

3. Michael Wooldridge, "An Introduction to Multi Agent Systems", John Wiley & Sons Ltd., 2009.

4. Lin Padgham, Michael Winikoff, "Developing Intelligent Agent Systems: A Practical Guide", John Wiley & Sons Ltd., 2004.

5. Bradshaw, "Software Agents", MIT Press, 1997.

6. Richard Murch, Tony Johnson, "Intelligent Software Agents", Prentice Hall, 2000.

| MTSE-115              |                                                                |                                                                                           | Human        | Interface Syste | m Design  |           |       |        |  |  |  |
|-----------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------|-----------------|-----------|-----------|-------|--------|--|--|--|
| Lecture               | Tutorial                                                       | Practical                                                                                 | Credit       | Theory          | Sessional | Practical | Total | Time   |  |  |  |
| 3                     | 0                                                              | 0                                                                                         | 3            | 60              | 40        | -         | 100   | 3 Hrs. |  |  |  |
| Program               | This course                                                    | is course on user Interface Design provides a basic understanding of interface design and |              |                 |           |           |       |        |  |  |  |
| <b>Objective (PO)</b> | principles.                                                    |                                                                                           |              |                 |           |           |       |        |  |  |  |
|                       |                                                                |                                                                                           | Course Out   | comes (CO)      |           |           |       |        |  |  |  |
| After completion      | n of course s                                                  | students will                                                                             | be able to   |                 |           |           |       |        |  |  |  |
| C01 5                 | Students lear                                                  | n about the de                                                                            | esign proces | s management    |           |           |       |        |  |  |  |
| CO2                   | To understand about Interaction devices and windows strategies |                                                                                           |              |                 |           |           |       |        |  |  |  |
| CO3                   | Fo understan                                                   | d about how to                                                                            | o Manage Vi  | rtual Environme | nts       |           |       |        |  |  |  |

## **UNIT I-INTRODUCTION**

Goals of System Engineering – Goals of User Interface Design – Motivations of Human factors in Design – High Level Theories –Object-Action Interface Design - Three Principles – Guidelines for Data Display and Data Entry

#### **UNIT II-MANAGING DESIGN PROCESS**

Introduction- Organizational Design to Support Usability – The Three Pillars of Design- Development Methodologies-Ethnographic Observation – Participating Design- Scenario Development- Social Impact Statement for Early Design – Legal Issues- Reviews – Usability Testing and laboratories- Surveys- Acceptance tests – Evaluation during Active use-Specification Methods- Interface – Building Tools- Evaluation and Critiquing tools

#### UNIT III-MANIPULATION AND VIRTUAL ENVIRONMENTS

Introduction-Examples of Direct Manipulation Systems –Explanation of Direct Manipulation- Visual Thinking and Icons – Direct manipulation Programming – Home Automation- Remote Direct manipulation- Virtual Environments- Task

## UNIT IV-WINDOWS STRATEGIES AND INFORMATION SEARCH

Introduction- Individual Widow Design- Multiple Window Design- Coordination by Tightly – Coupled Widow- Image Browsing- Personal Role Management and Elastic Windows – Goals of Cooperation – Asynchronous Interaction –

Synchronous Distributed – Face to Face- Applying Computer Supported Cooperative Work to Education – Database query and phrase search in Textual documents – Multimedia Documents Searches – Information Visualization –

Advance Filtering Hypertext and Hypermedia – World Wide Web- Genres and Goals and Designers – Users and their tasks – Object Action Interface Model for Web site Design

#### REFERENCE

1. Alan Dix et al, " Human - Computer Interaction ", Pearson , 2010.

2. Ben Shneiderman, "*Designing the User Interface*", 4th Edition, Pearson, 2010.

3. Dr. Jonathan Lazar, Dr. Jinjuan Heidi Feng, Dr. Harry Hochheiser, "Research

Methods in Human Computer Interaction" – John Wiley 2010.

4. Wilbert O. Galiz , "The Essential guide to User Interface Design", Wiley

Dreamtech, 2009.

5. Jef Raskin , "The Human Interface ", Addison - Wesley

- 2008.

| MTRM-111                 |               |                 | Rese           | arch Methodolog    | y and IPR            |                 |          |
|--------------------------|---------------|-----------------|----------------|--------------------|----------------------|-----------------|----------|
| Lecture                  | Tutorial      | Practical       | Credit         | Major Test         | Minor Test           | Practical       | Total    |
| 2                        | 0             | 0               | 2              | 60                 | 40                   | -               | 100      |
| <b>Program Objective</b> |               |                 |                |                    |                      |                 |          |
| (PO)                     | R & D whic    | h leads to cro  | eation of ne   | w and better pro   | ducts, and in turn   | brings about,   | economic |
|                          | growth and s  | social benefits |                |                    |                      |                 |          |
|                          | -             |                 | Course Ou      | tcomes (CO)        |                      |                 |          |
| C01                      | Understand    | research prob   | lem formulat   | tion.              |                      |                 |          |
| CO2                      | Analyze rese  | earch related i | nformation     |                    |                      |                 |          |
| CO3                      | Understand    | that today's w  | orld is contro | olled by Computer  | , Information Tech   | nology, but tom | norrow   |
|                          | world will be | ruled by idea   | s, concept, a  | ind creativity.    |                      |                 |          |
|                          |               |                 |                |                    | t place in growth of |                 |          |
|                          | needless to   | emphasise the   | e need of inf  | ormation about Int | tellectual Property  | Right to be pro | omoted   |
|                          | among stude   | ents in genera  | l & engineer   | ing in particular. |                      |                 |          |

### Unit 1:

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem.

Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

#### Unit 2:

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.

Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

#### Unit 3:

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

#### Unit 4:

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

#### References:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 ndEdition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall , "Industrial Design", McGraw Hill, 1992.
- 6. Niebel , "Product Design", McGraw Hill, 1974.
- 7. Asimov , "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

| MTSE-117             |                                                                                                                                                                                                    |                 | Sof          | ftware Engineeri | ng Lab     |              | Software Engineering Lab |  |  |  |  |  |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------|------------|--------------|--------------------------|--|--|--|--|--|--|--|--|--|--|
| Lecture              | Tutorial                                                                                                                                                                                           | Practical       | Credit       | Practical        | Minor Test | Total        | Time                     |  |  |  |  |  |  |  |  |  |  |
| 0                    | 0                                                                                                                                                                                                  | 4               | 2            | 60               | 40         | 100          | 3 Hrs.                   |  |  |  |  |  |  |  |  |  |  |
| Program<br>Objective | This Software Laboratory focuses on the software engineering methodologies for project de-<br>velopment and to gain knowledge about open source tools for Computer Aided Software En-<br>gineering |                 |              |                  |            |              |                          |  |  |  |  |  |  |  |  |  |  |
| (PO)                 | gineering.                                                                                                                                                                                         | and to gain ki  | iowiedye abi | out open source  |            | ei Alueu Sui | IWare En-                |  |  |  |  |  |  |  |  |  |  |
|                      | •                                                                                                                                                                                                  | anu to gain kii | Ū            | utcomes (CO)     |            |              |                          |  |  |  |  |  |  |  |  |  |  |
|                      | gineering.                                                                                                                                                                                         | est cases for a | Course O     | •                |            |              |                          |  |  |  |  |  |  |  |  |  |  |
| (PO)                 | <b>gineering</b> .<br>To develop t                                                                                                                                                                 | •               | Course O     | utcomes (CO)     |            |              |                          |  |  |  |  |  |  |  |  |  |  |

## List of Practical

#### SOFTWARE REQUIRED: Open source Tools: StarUML / UMLGraph / Topcased/ Argo UML

Prepare the following documents for each experiment and develop the software using software engineering methodology.

- 1. **Problem Analysis and Project Planning** -Thorough study of the problem –Identify Project scope, Objectives and Infrastructure.
- 2. **Software Requirement Analysis -** Describe the individual Phases/modules of the project and Identify deliverables.
- 3. **Data Modeling -** Use work products data dictionary, use case diagrams and activity diagrams, build and test class diagrams, sequence diagrams and add interface to class diagrams.
- 4. **Software Development and Debugging** implement the design by coding
- 5. **Software Testing** Prepare test plan, perform validation testing, coverage analysis, memory leaks, develop test case hierarchy, Site check and site monitor.

## Case Studies:

## Academic domain

- 1. Course Registration System
- 2. Student marks analysing system

## Railway domain

- 3. Online ticket reservation system
- 4. Platform assignment system for the trains in a railway station

#### Medicine domain

- 5. Expert system to prescribe the medicines for the given symptoms
- 6. Remote computer monitoring

## Finance domain

- 7. ATM system
- 8. Stock maintenance

## Human Resource management

- 9. Quiz System
- 10. E-mail Client system.

| MTSE-119                     |                       |                  | Agile        | Software Engine                        | ering Lab                               |              |             |
|------------------------------|-----------------------|------------------|--------------|----------------------------------------|-----------------------------------------|--------------|-------------|
| Lecture                      | Tutorial              | Practical        | Credit       | Practical                              | Minor Test                              | Total        | Time        |
| 0                            | 0                     | 4                | 2            | 60                                     | 40                                      | 100          | 3 Hrs.      |
| Program<br>Objective<br>(PO) |                       |                  |              | on to analyze, d<br>d multidisciplina  | lesign and provid<br>ry problems.       | e optimal s  | olution for |
|                              |                       |                  | Course O     | utcomes (CO)                           |                                         |              |             |
| C01                          |                       | 0                |              | ics, science, engi<br>engineering prob | ineering fundamen <sup>.</sup><br>Iems. | tals and an  | engineering |
| CO2                          | To Design so          | olutions for con | nplex engine | ering problems                         |                                         |              |             |
| CO3                          | To Create, s<br>tools | select, and ap   | ply appropri | ate techniques, re                     | esources, and mod                       | dern enginee | ring and IT |
| CO4                          | To demonstr           | ate the knowle   | dge of and n | eed for sustainab                      | le development.                         |              |             |

## List of practical

1. Understand the background and driving forces for taking an Agile Approach to Software Development. Study the Important Characteristics that make agile approach best suited for Software Development.

2. Understand the business value of adopting agile approach.

- 3. Study the Agile Process Examples
  - a) SCRUM
  - b) FDD
  - c) Lean software development
  - d) XP
- 3. Understand agile development practices using SCRUM
- 4. Drive Development with Unit Test using Test Driven Development.
- 5. Apply Design principle and Refactoring to achieve agility
- 6. To study automated build tool.
- 7. To study version control tool.
- 8. To study Continuous Integration tool.
- 9. Perform Testing activities within an agile project.

| MTSE-102              |                                                                                             |                 | Softv         | vare Risk Mana | gement           |           |       |        |  |
|-----------------------|---------------------------------------------------------------------------------------------|-----------------|---------------|----------------|------------------|-----------|-------|--------|--|
| Lecture               | Tutorial                                                                                    | Practical       | Credit        | Theory         | Sessional        | Practical | Total | Time   |  |
| 3                     | 0                                                                                           | 0               | 3             | 60             | 40               | -         | 100   | 3 Hrs. |  |
| Program               |                                                                                             |                 |               |                | active discovery |           |       |        |  |
| <b>Objective (PO)</b> | ve (PO) principles and the process of designing and implementing a risk management program. |                 |               |                |                  |           |       |        |  |
| Course Outcomes (CO)  |                                                                                             |                 |               |                |                  |           |       |        |  |
| After completio       | n of course s                                                                               | students will   | be able to    |                |                  |           |       |        |  |
| C01                   | Fo understan                                                                                | ds fundament    | als of Risk N | lanagement Pro | cess.            |           |       |        |  |
| CO2                   | To learn Risk Management Infrastructure process.                                            |                 |               |                |                  |           |       |        |  |
| CO3                   | Fo learn appl                                                                               | ications of Ris | k Managem     | ent.           |                  |           |       |        |  |

#### UNIT-1

**Introduction to Software Risk Management**: P212 Success Formula: Major Factors in Risk Management Capability, People, Process, Infrastructure, Implementation, Risk Management Roadmap.

#### UNIT-2

Risk Management Process: Identity Risk, Analyze Risk, Plan Risk, Resolve Risk.

#### UNIT-3

**Risk Management Infrastructure**: Develop policy, Define standard process, Train Risk Technology, Verify Compliance, Improve Practice.

#### UNIT-4

**Risk Management Implementation**: Establish Initiative, Develop Plan, Tailor Standard Process, Assess Risk, Control Risk. People in Crisis and Control Problem, Mitigation, Prevention, Anticipation, Opportuninty.

#### **Reference Books:**

- 1. Elaine M. Hall, Managing Risk: Methods for Software Systems Development, The SEI Series in Software Engineering, Addison Welsey, Masschachusetts.
- 2. Down. Alex, Michael Coleman. And Peter Absolon. Risk Management For Software Projects, McGraw-Hill, New York.
- 3. Charette. Robert N, Application Strategies for Risk Analysis, McGraw Hill, New York.
- 4. Grey. Stephen, Practical Risk Assessment for Project Management. Chichester, John Wiley & Sons. New York.
- 5. Glendon. A and Alan Waring, Managing Risk. International Thomson Business & COMPUTER Press, New York.
- 6. Jones.Capres. Assessment and Control of Software, Prentice HII Press, New Jersey.

| MTSE-104  |                       |                                                                                                          | Social              | Networks                    |                          |          |  |  |  |  |
|-----------|-----------------------|----------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|--------------------------|----------|--|--|--|--|
| Lecture   | Tutorial              | Practical                                                                                                | Credit              | Major Test                  | Minor Test               | Total    |  |  |  |  |
| 3         | 0                     | 0                                                                                                        | 3                   | 60                          | 40                       | 100      |  |  |  |  |
| Program   |                       | nis emerging and innovative field will provide the insight into latest communication techniques used in  |                     |                             |                          |          |  |  |  |  |
| Objective |                       | e online social networks for identifying and representing the hidden relationships, tracking the flow of |                     |                             |                          |          |  |  |  |  |
| (PO)      |                       |                                                                                                          |                     | ocial networks by using     | graph, matrix, relation  | onships, |  |  |  |  |
|           | clustering, and equi  | valence betwe                                                                                            | en users.           |                             |                          |          |  |  |  |  |
|           |                       | Co                                                                                                       | urse Outcomes       | (CO)                        |                          |          |  |  |  |  |
| C01       | To understand the e   | essentials of s                                                                                          | ocial networks b    | y learning different types  | s of entities and relati | onships  |  |  |  |  |
|           | as nodes, edges w     | ithin the graph                                                                                          | and represent       | these information as rela   | ational data to determ   | nine the |  |  |  |  |
|           | relative importance   | of a vertex to f                                                                                         | ind the design le   | evels                       |                          |          |  |  |  |  |
| CO2       | To explore the det    | ailed explanat                                                                                           | ion of data gei     | neralization and mining     | from Twitter, Facebo     | ok and   |  |  |  |  |
|           | LinkedIn in well info | rmed and effic                                                                                           | ient manner.        |                             |                          |          |  |  |  |  |
| CO3       | To describe the se    | mantic web u                                                                                             | ising mining as     | sociations, correlations,   | classification, betwe    | enness,  |  |  |  |  |
|           | centrality, equivalen | ce relation, ce                                                                                          | entralization, clus | stering coefficient and str | uctural cohesion to g    | jenerate |  |  |  |  |
|           | visualizations and p  | erform empiric                                                                                           | al investigations   | of network data.            | _                        |          |  |  |  |  |
| CO4       |                       |                                                                                                          |                     | t to collated datasets by   |                          |          |  |  |  |  |
|           | automorphic equiva    | lence and reg                                                                                            | ular equivalence    | for interpreting quality fa | actors and mining of a   | complex  |  |  |  |  |
|           | type of data to exec  | ute better reco                                                                                          | mmendation.         |                             | _                        |          |  |  |  |  |

## Unit: I: Social Networks and Related Concepts

**Introduction to Social Networks**: Introduction, uses, examples and types of social networks, Social and economic networks, Opportunities and challenges in social networks, Social structure in social networks, Properties of social networks, algorithmic and economic aspects of social networks

**Social Network Data**: Nodes, Edges, Relationship, Graphs, Samples and Boundaries, Formal methods, Adjacency Matrix for undirected and directed networked graphs and using matrices to represent social relations, Random graphs, Properties of random graphs, Percolations, Branching processes, Growing spanning tree in random graphs.

Level in Social Networks: Ego networks, partial networks, complete or global networks, social networks methods including binary or valued, directed or undirected.

## Unit: II Mining the Social Web

**Mining Twitter**: Fundamental Twitter Terminology, creating a Twitter API Connection, Exploring Trending Topics, searching for Tweets, extracting Tweets entities, analyzing Tweets and Tweet entities with frequency analysis, computing the lexical diversity of Tweets, Examining patterns in Retweets, Visualizing frequency data with histograms.

**Mining Facebook**: Understanding the social graph API, Understanding the open graph protocol, Analyzing social graph connections

**Mining LinkedIn**: Making LinkedIn API requests, Downloading LinkedIn connections as a CSV file, Clustering, normalizing data for analysis, measuring similarity, and clustering algorithms.

## Unit: III Mining Web pages and Semantic Web

**Mining Web pages**: Scraping, Parsing and Crawling the Web, Discovering semantics by decoding syntax, Entity-Centric analysis: A paradigm shift, Quality of analytics for processing human language data.

**Mining the Semantically Marked-Up Web**: Microformats: Easy-to-implement Metadata, Semantics markup to semantic Web: A brief interlude, The semantic Web: An evolutionary revolution.

**Social Network Analysis:** Introduction, History, Metrics in social network analysis (Betweenness, Centrality, Equivalence relation, Centralization, Clustering coefficient and Structural cohesion).

#### Unit IV: Equivalence in Social Networks

Structural equivalence, Automorphic equivalence and Regular equivalence **Text Books**:

- 1. Matthew A. Russell, "Mining the Social Web", O'Reilly and SPD, Second edition New Delhi, 2013.
- 2. Hanneman, R. A., & Riddle, M., "Introduction to social network methods, Riverside, California: University of California, Riverside. Available at: http://faculty.ucr.edu/~hanneman/nettext/.
- 3. "Social network analysis: Theory and applications". A free, Wiki Book available at: http://train.ed.psu.edu/WFED-543/SocNet\_TheoryApp.pdf.

#### **Reference Books:**

- 1. Lon Safko, "The Social Media Bible: Tactics, Tools, and Strategies for Business Success", Wiley 3rd Ed., 2012.
- 2. Peter K Ryan, "Social Networking", Rosen Publishing Group, 2011.
- 3. John Scott, Peter J. Carrington, "Social Network Analysis", SAGE Publishing Ltd., 2011.

| MTSE-106              |              |                                                                       |               | <b>Cloud Computir</b> | ng        |           |       |        |  |  |
|-----------------------|--------------|-----------------------------------------------------------------------|---------------|-----------------------|-----------|-----------|-------|--------|--|--|
| Lecture               | Tutorial     | Practical                                                             | Credit        | Theory                | Sessional | Practical | Total | Time   |  |  |
| 3                     | 0            | 0                                                                     | 3             | 60                    | 40        | -         | 100   | 3 Hrs. |  |  |
| Program               | To provide   | ovide a comprehensive introduction to cloud computing and about cloud |               |                       |           |           |       |        |  |  |
| <b>Objective (PO)</b> | Services     | -                                                                     |               |                       |           |           |       |        |  |  |
| Course Outcomes (CO)  |              |                                                                       |               |                       |           |           |       |        |  |  |
| After completion      | of course    | students will                                                         | be able to    |                       |           |           |       |        |  |  |
| C01                   | o understan  | d Cloud Comp                                                          | outing basics | s and its models.     |           |           |       |        |  |  |
| CO2                   | To learn the | fundamentals                                                          | of Data Cer   | nters.                |           |           |       |        |  |  |
| CO3                   | To understar | understand the Architecture of Data Centers and Design Principles     |               |                       |           |           |       |        |  |  |
| CO4                   | To understar | nd the Security                                                       | aspects an    | d security framev     | vork.     |           |       |        |  |  |

## **UNIT I-INTRODUCTION**

Cloud Computing Introduction, From, Collaboration to cloud, Working of cloud computing, pros and cons, benefits, developing cloud computing services, Cloud service development, discovering cloud services.

#### UNIT II-CLOUD COMPUTING FOR EVERYONE

Centralizing email communications, cloud computing for community, collaborating on schedules, collaborating on group projects and events, cloud computing for corporation, mapping schedules managing projects, presenting on road.

#### UNIT III-USING CLOUD SERVICES

Collaborating on calendars, Schedules and task management, exploring on line scheduling and planning, collaborating on event management, collaborating on contact management, collaborating on project management, collaborating on word processing, spreadsheets, and databases.

#### UNIT IV-OUTSIDE THE CLOUD

Evaluating web mail services, Evaluating instant messaging, Evaluating web conference tools, creating groups on social networks, Evaluating on line groupware, collaborating via blogs and wikis

Storing and Sharing: Understanding cloud storage, evaluating on line file storage, exploring on line book marking services, exploring on line photo editing applications, exploring photo sharing communities, controlling it with web based desktops. **REFERENCES** 

1. Michael Miller, "Cloud Computing", Pearson Education, New Delhi, 2009.

2. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing: A Practical Approach", McGraw Hill, 2009.

3. Mauricio Arregoces, Maurizio Portolani, "Data Center Fundamentals", Cisco Press, 2004.

4. Scott Lowe, Jason W, Mc. Carty and Mathew K. Johnson, "VMware, Vsphere 4 Administration, Instant Reference", Published by Sybex, 2009.

5. George Reese, "Cloud Application Architectures Building Applications and Infrastructure in the Cloud", O'Reilly Media, 2009.

6. Grantt Sauls "Introduction to Data Centers", Certified Data Centers Specialist, Tutorial.

7. Brendan O'Brien, Alberto Rodriguez, Stephen Sutherland and Mark Wheatley, "Server Virtualization Software", Tutorial, 2009.

| MTSE-108                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Software 1     | Festing & Quality  | Assurance            |           |       |        |  |
|---------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|----------------------|-----------|-------|--------|--|
| Lecture                   | Tutorial                                                               | Practical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Credit         | Theory             | Sessional            | Practical | Total | Time   |  |
| 3                         | 0                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3              | 60                 | 40                   | -         | 100   | 3 Hrs. |  |
| Program<br>Objective (PO) | introduction<br>realities of<br>fundamenta<br>testing, Co<br>documenta | The purpose of this course is to presents the knowledge about Testing background such<br>ntroduction of Bug, cause of Bug, how it effect on cost of project, role of STLC cycle<br>realities of software testing. This subject also gives the knowledge software testing<br>fundamentals, under the study of types of testing this subject enlighten the Configuration<br>testing, Compatibility testing, Foreign language testing, Usability testing, Testing the<br>documentation, Testing for software security, Web site testing and more. At the end this<br>subject focuses on the test planning and quality assurance. |                |                    |                      |           |       |        |  |
|                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Course Out     | comes (CO)         |                      |           |       |        |  |
| After completion          | n of course s                                                          | students will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | be able to     |                    |                      |           |       |        |  |
| C01                       | Fo discuss so                                                          | oftware testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | background     | J.                 |                      |           |       |        |  |
| CO2                       | To introduce                                                           | software testir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ig technique   | es.                |                      |           |       |        |  |
| CO3                       | Fo explain dif                                                         | ferent types o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f testing to u | inderstand realist | ic problem.          |           |       |        |  |
| CO4                       | To create awa                                                          | areness about                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the process    | s part as per as s | oftware testing is o | concern.  |       |        |  |

## UNIT I-INTRODUCTION TO SOFTWARE TESTING

Introduction – s/w testing background - What is a bug? Why do bugs occur? The cost of bugs. Goals of a software tester. Characteristics of s/w tester. Software development process- product component, software project staff, software development lifecycle model. The realities of s/w testing – testing axioms, s/w testing terms and definitions, Software Testing Life Cycle(STLC).

## UNIT II- S/W TESTING FUNDAMENTALS

S/w testing fundamentals- Examining the specifications - Black box and white box testing, Static and dynamic testing, Static black box testing, Performing a high level review of the specification, low level specification test techniques. Testing the s/w with blinders on – Dynamic black box testing, Test to pass and test to fail, Equivalence partitioning, data testing, State testing, Other black box test techniques. Examining the code – Static white box testing, Formal review, Coding standards and guidelines, Generic code review checklist. Testing the software with X-ray glasses – Dynamic white box testing, Verses debugging testing the pieces

## **UNIT III TYPES OF TESTING**

Configuration testing, Compatibility testing, Foreign language testing, Usability testing, Testing the documentation, Testing for software security. Web site testing, Automated testing and test tools- Benefits of automation and tools, various test tools, Software test automation, Random testing. Bug bashes and beta testing – Having other people test your s/w, Test sharing, Beta testing, Outsourcing your testing.

Performance Testing – Introduction, Benefits of performance testing. Types of performance testing Tools for performance Testing, Process for performance testing, challenges.

## UNIT IV-TEST PLANNING AND QUALITY ASSURANCE

Planning the test – Goal of test planning, Various test planning topics, Writing and tracking test cases- Goal of test case planning, Test case planning overview, Test case organization and tracking, Reporting what you find - Getting the bug fixed, Isolating and replacing bugs, Bug's lifecycle, Bug tracking system, Measuring the success, Software quality assurance- Quality is free, Testing and quality assurance in the work place, Test management and organizational structures, capability maturity model (CMM), ISO 9000 Test Metrics and Measurement – Test Defect Metrics.

## TEXT BOOKS:

- 1. Ron Patton, "Software Testing" SAMS Publishing
- 2. Marnei L. Hutcheson "Software Testing Fundamentals: Methods and Metrics" WILEY Pub.

#### **REFERENCE BOOKS:**

- 1. Pressman "Software Engineering" McGraw-Hill publications.
- 2. Strinivasan Desikan and Gopal swami Ramesh, Software Testing Principles and Practices, Pearsons.

| MTSE-110         |               |                                                                                | Data War      | ehousing and D    | ata Mining         |              |           |        |  |  |
|------------------|---------------|--------------------------------------------------------------------------------|---------------|-------------------|--------------------|--------------|-----------|--------|--|--|
| Lecture          | Tutorial      | Practical                                                                      | Credit        | Theory            | Sessional          | Practical    | Total     | Time   |  |  |
| 3                | 0             | 0                                                                              | 3             | 60                | 40                 | -            | 100       | 3 Hrs. |  |  |
| Program          | This course   | course enables to understand the concepts of Data Warehousing and Data Mining. |               |                   |                    |              |           |        |  |  |
| Objective (PO)   |               |                                                                                |               |                   |                    |              |           |        |  |  |
|                  |               | (                                                                              | Course Out    | comes (CO)        |                    |              |           |        |  |  |
| After completion | of course s   | students will                                                                  | be able to    |                   |                    |              |           |        |  |  |
| <b>CO1</b> To    | o learn the f | undamentals                                                                    | of designing  | a large-scale da  | ta warehouse usin  | g relational | technolog | gies   |  |  |
| <b>CO2</b> T     | o understar   | nd the Data W                                                                  | arehouse ar   | nd OLAP Technol   | ogy in Data Mining | )            |           |        |  |  |
| <b>CO3</b> T     | o study the   | study the Mining Association Rules in Large Databases, Classification          |               |                   |                    |              |           |        |  |  |
| CO4 To           | o know Clus   | ster Analysis a                                                                | nd its Applic | ation Trends in D | ata Mining.        |              |           |        |  |  |

## UNIT I-DATA WAREHOUSING AND BUSINESS ANALYSIS

Data Warehousing and Business Analysis: - Data warehousing Components – Building a Data warehouse – Mapping the Data Warehouse to a Multiprocessor Architecture – DBMS Schemas for Decision Support – Data Extraction, Cleanup, and Transformation Tools –Metadata – reporting – Query tools and Applications – Online Analytical Processing (OLAP) – OLAP and Multidimensional Data Analysis.

## **UNIT II-DATA MINING**

Data Mining: - Data Mining Functionalities – Data Preprocessing – Data Cleaning – Data Integration and Transformation – Data Reduction – Data Discretization and Concept Hierarchy Generation. Association Rule Mining: - Efficient and Scalable Frequent Item set Mining Methods – Mining Various Kinds of Association Rules – Association Mining to Correlation Analysis – Constraint-Based Association Mining.

## UNIT III-CLASSIFICATION AND PREDICTION

Classification and Prediction: - Issues Regarding Classification and Prediction – Classification by Decision Tree Introduction – Bayesian Classification – Rule Based Classification – Classification by Back propagation – Support Vector Machines – Associative Classification – Lazy Learners – Other Classification Methods – Prediction – Accuracy and Error Measures – Evaluating the Accuracy of a Classifier or Predictor – Ensemble Methods – Model Section.

## UNIT IV-APPLICATIONS OF DATA MINING

Mining Object, Spatial, Multimedia, Text and Web Data: Multidimensional Analysis and Descriptive Mining of Complex Data Objects – Spatial Data Mining – Multimedia Data Mining – Text Mining – Mining the World Wide Web. **REFERENCES** 

1. Jiawei Han and Micheline Kamber "Data Mining Concepts and Techniques" Second Edition, Elsevier, Reprinted 2008.

2. Sam Anahory & Dennis Murray, "Data Warehousing in the real world", Pearson Education Ltd, 2011.

3. Alex Berson and Stephen J. Smith "Data Warehousing, Data Mining & OLAP", Tata McGraw – Hill Edition, Tenth Reprint 2007.

4. K.P. Soman, Shyam Diwakar and V. Ajay "Insight into Data mining Theory and Practice", Easter Economy Edition, Prentice Hall of India, 2006.

5. Gupta G. K. "Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice Hall of India, 2006.

6. Pang-Ning Tan, Michael Steinbach and Vipin Kumar "Introduction to Data Mining", Pearson Education, 2007.

7. Jiawei Han & Micheline Kamber "Data Mining Concepts and Techniques", Morgan Kaufmann Publishers, Elsevier, 2nd Edition, 2006.

| MTSE-112                  |               |                                                                            | Object        | t Oriented Progr | amming           |           |       |        |  |  |
|---------------------------|---------------|----------------------------------------------------------------------------|---------------|------------------|------------------|-----------|-------|--------|--|--|
| Lecture                   | Tutorial      | Practical                                                                  | Credit        | Theory           | Sessional        | Practical | Total | Time   |  |  |
| 3                         | 0             | 0                                                                          | 3             | 60               | 40               | -         | 100   | 3 Hrs. |  |  |
| Program<br>Objective (PO) | The course    | course provide insight knowledge about programming language (C++ and JAVA) |               |                  |                  |           |       |        |  |  |
|                           |               | (                                                                          | Course Out    | comes (CO)       |                  |           |       |        |  |  |
| After completion          | of course     | students will                                                              | be able to    |                  |                  |           |       |        |  |  |
| <b>CO1</b> ⊺              | o learn the f | undamentals (                                                              | of Object Or  | iented Programm  | ning             |           |       |        |  |  |
| <b>CO2</b> T              | o understan   | d the concept                                                              | s of Classes  | & Objects in C+  | + and Java       |           |       |        |  |  |
| <b>CO3</b> T              | o understan   | d the concept                                                              | of static and | dynamic polym    | orphism in C++an | d Java.   |       |        |  |  |
| <b>CO4</b> T              | o understan   | d the concept                                                              | of streams i  | n C++ and Java.  |                  |           |       |        |  |  |

#### UNIT I-INTRODUCTION TO OOP

Overview of C++ - classes - structures - union - friend function - friend class -inline function - constructors - static members - scope resolution operator - passing objects to functions - function returning objects - Arrays - pointers - this pointer - references - dynamic memory allocation

#### **UNIT II-OVERLOADING & INHERITANCE**

Function overloading - default arguments - overloading constructors - pointers to functions Operator overloading - member operator function - friend operator function - type conversion - inheritance - types of inheritance - virtual base class polymorphism - virtual function.

#### **UNIT III-TEMPLATES & EXCEPTION**

Class templates and generic classes - function templates and generic functions -- exception handling - derived class exception - exception handling functions - Streams - formatted I/O with its class functions and manipulators - creating own manipulators - file I/O - conversion functions- standard template library.

## UNIT IV-INTRODUCTION FOR JAVA

JAVA Basics: Importance and features of java- Modifiers- Access Controls-Data types- Expressions-Declarations-Statements- classes and objects and Control Structures-Program Structures-String handling-Packages-Interfaces-Working with java.util Package- Garbage Collection-Object Class - Exception Handling, I/O and JDBC: Exception Handling: Fundamentals exception types- uncaught exceptions throw- throw final- built in exception- creating your own exceptions. REFERENCES

- 1. Balagurusamy E, "Object Oriented Programming with C++", 4/E, TMG, 2011.
- 2. Hubbard, "Programming with C++", 3/e, Schaum Outline Series, TMH, 2010.
- 3. Thomas Wu- "An Introduction to Object Oriented Programming with Java Special" Indian Edition 5th 2010.
- 4. Balagurusamy E, "Programming with Java: A Primer", 4th Edition, Tata Mcgraw Hill, 2009.

| MTSE-114                  |               |                                                                                                                      | Pattern Ori    | ented Software   | Architecture        |           |       |        |  |  |  |
|---------------------------|---------------|----------------------------------------------------------------------------------------------------------------------|----------------|------------------|---------------------|-----------|-------|--------|--|--|--|
| Lecture                   | Tutorial      | Practical                                                                                                            | Credit         | Theory           | Sessional           | Practical | Total | Time   |  |  |  |
| 3                         | 0             | 0                                                                                                                    | 3              | 60               | 40                  | -         | 100   | 3 Hrs. |  |  |  |
| Program<br>Objective (PO) |               | he course gives an insight of the most commonly used software architecture and design atterns and their applications |                |                  |                     |           |       |        |  |  |  |
| Course Outcomes (CO)      |               |                                                                                                                      |                |                  |                     |           |       |        |  |  |  |
| After completior          | n of course : | students will                                                                                                        | be able to     |                  |                     |           |       |        |  |  |  |
| C01                       | The students  | get basic kno                                                                                                        | wledge of pa   | atterns and desc | ription of patterns |           |       |        |  |  |  |
| CO2                       | o understan   | d basic archite                                                                                                      | ectural patter | rns.             |                     |           |       |        |  |  |  |
| CO3                       | o get an ins  | ight on the de                                                                                                       | sign patterns  | and mining.      |                     |           |       |        |  |  |  |

## UNIT I-INTRODUCTION TO SOFTWARE ARCHITECTURE

Introduction – Software architecture – An engineering discipline for software - Architectural Styles – Pipes and filters – Layered Systems - Black board – Repositories - Process control - Distributed system – Interactive system – Adaptive system

#### UNIT II-DESIGN PATTERNS & PATTERN SYSTEM

Introduction to patterns – Pattern category – Relationship between patterns –Pattern Description – Patterns software architecture -Structural decomposition Organization of work – Access control – Management and Communication –Idioms, Pattern system – Pattern Classification – Pattern Selection –implementation – Evolution – Patterns in Software architecture – Non –functionalproperties – Techniques of Software architecture.

#### **UNIT III-COMMUNITY, MINING, CONCURRENT & NETWORKED**

Roots – Community – Pattern Mining - Organizing and Indexing – Methods andtools – Algorithm – Data Structures and Patterns – Formalizing Patterns, Concurrent and Networked Objects, Service Access and Configuration Patterns

#### **UNIT IV-EVENT HANDLING & SYNCHRONIZATION PATTERNS**

Event Handling Patterns – Reactor, Proactor, Asyn Completion Tokens, Acceptor- Connector, Synchronization Patterns – Locking – Scoped, Strategized, Thread - safe Interface, Double-Checked Locking Optimization.

#### REFERENCES

1. Frank Buschmann, Kelvin Henney & Douglas Schimdt, "Pattern-Oriented Software Architecture - A System of Patterns", Volume 1, Wiley, 2007.

2. Frank Buschmann, Kelvin Henney & Douglas Schimdt, "Pattern-Oriented Software Architecture – Pattern for Concurrent and Networked Objects", Volume 2, Wiley, 2000.

3. Mary Shaw, David Garlan, "Software architecture perspectives on a Emerging Dicipline", EEE, PH1, 1996.

| MTSE-116                  |              |                                                                                                                                                      | Software    | Measurement a    | and Metrics |           |       |        |  |  |
|---------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|-------------|-----------|-------|--------|--|--|
| Lecture                   | Tutorial     | Practical                                                                                                                                            | Credit      | Theory           | Sessional   | Practical | Total | Time   |  |  |
| 3                         | 0            | 0                                                                                                                                                    | 3           | 60               | 40          | -         | 100   | 3 Hrs. |  |  |
| Program<br>Objective (PO) |              | e purpose of this course is to provide the knowledge about Software Metrics, Essentials of tware metrics and practical knowledge to assess software. |             |                  |             |           |       |        |  |  |
| Course Outcomes (CO)      |              |                                                                                                                                                      |             |                  |             |           |       |        |  |  |
| After completior          | of course    | students will                                                                                                                                        | be able to  |                  |             |           |       |        |  |  |
| C01                       | ō provide a  | solid backgrou                                                                                                                                       | und knowled | ge about softwar | e Metrics.  |           |       |        |  |  |
| CO2                       | o educate v  | arious metrics                                                                                                                                       | and models  | to assess softw  | are.        |           |       |        |  |  |
| CO3                       | o provide ha | ands on experi                                                                                                                                       | ence to use | and implement r  | metrics.    |           |       |        |  |  |

## UNIT I-THE HISTORY AND EVOLUTION OF SOFTWARE METRICS

Evolution of the software industry and evolution of software measurements – The cost of counting function point metrics – The paradox of reversed productivity for high-Level languages- The Varieties of functional metrics – Variations in application size and productivity rates – Future Technical Developments in Functional Metrics- Software measures and metrics not based on function points.

## UNIT II-MEASURING SOFTWARE QUALITY

Quality control and international competition – Defining quality for measurement and estimation – Five steps to software quality control- Measuring software defect removal - Measuring Defect removal efficiency – Measuring the costs of defect removal – Evaluating defect prevention methods – Measuring customer reported defects- Measuring invalid defects, Duplicate defects and special cases-Reliability Models - The Rayleigh Model- Reliability Growth Models.

## **UNIT III-PROCESS METRICS**

In-Process Metrics for Software Testing - Test Progress S Curve - Testing Defect Arrivals Over Time - Product Size Over Time - CPU Utilization - Effort/Outcome Model. Complexity Metrics and Models - Lines of Code - Halstead's Software Science - Cyclomatic Complexity. - Syntactic Constructs - Structure Metrics.

Metrics for Object-Oriented Projects - Concepts and Constructs - Design and Complexity Metrics - Lorenz Metrics and Rules of Thumb - CK OO Metrics Suite - Productivity Metrics.

## UNIT IV-MECHANICS OF MEASUREMENT

Software Assessments – Software Baselines – Software Benchmarks- What a Baseline analysis covers – Developing or Acquiring a baseline data collection Instrument – Administering the data collection questionnaire – Analysis and aggregation of the Baseline data. Measuring and Analyzing Customer Satisfaction - Surveys - Data Collection - Sampling Methods - Analyzing Satisfaction Data. Conducting In-Process Quality Assessments - Preparation - Evaluation - Quantitative Data - Qualitative Data - Evaluation Criteria - Overall Assessment.

## REFERENCES

1. Caper Jones, "Applied Software Measurement: Global Analysis of Productivity and Quality", Third Edition, McGraw Hill Companies, 2008.

2. Stephen H. Kan, "Metrics and Models in Software Quality Engineering", Addison Wesley, 2011.

3. Mark Lorenz, Jeff Kidd, "Object-Oriented Software Metrics", Prentice Hall, 2000.

4. Naresh Chauhan, "Software Testing Principles and Practices", Oxford University Press, 2010.

5. Ravindranath Pandian C., "Software Metrics A Guide to planning, Analysis, and Application", Auerbach, First Indian Reprint, 2011.

| MTSE-118     |               |                                                                                                 | Softwa        | re Quality Model     | s & Testing Lab         |           |        |  |  |  |
|--------------|---------------|-------------------------------------------------------------------------------------------------|---------------|----------------------|-------------------------|-----------|--------|--|--|--|
| Lecture      | Tutorial      | Practical                                                                                       | Credit        | Practical            | Minor Test              | Total     | Time   |  |  |  |
| 0            | 0             | 4                                                                                               | 2             | 60                   | 40                      | 100       | 3 Hrs. |  |  |  |
| Program Ob-  | This Softwa   | is Software Laboratory focuses on test case generation on testing different kinds of software   |               |                      |                         |           |        |  |  |  |
| jective (PO) | and to provi  | nd to provide the in-depth coverage of software quality models and software testing strategies. |               |                      |                         |           |        |  |  |  |
|              |               |                                                                                                 | Course        | Outcomes (CO)        |                         |           |        |  |  |  |
| C01          | To develop to | est cases for a                                                                                 | ny problem    |                      |                         |           |        |  |  |  |
| CO2          | To pursue te  | sting on any le                                                                                 | vel of softwa | re design by using   | g different testing s   | trategies |        |  |  |  |
| CO3          | Create a test | Create a test plan document of real time applications.                                          |               |                      |                         |           |        |  |  |  |
| CO4          | To apply test | ting tools for de                                                                               | esigning the  | test case to test th | e real time application | tion.     |        |  |  |  |
|              |               | <b>6</b> 11                                                                                     | 1             |                      | a al la sa              |           |        |  |  |  |

Case Study 1: Write the test cases for the largest of three number based on:

- Boundary value analysis test
- Robustness based testing
- Equivalence class partitioning test
- Decision table based test

**Case Study 2: Cause Effect Graph Testing for a Triangle Program**-Perform cause effect graph testing to find a set of test cases for the following program specification: Write a program that takes three positive integers as input and determine if they represent three sides of a triangle, and if they do, indicate what type of triangle it is. To be more specific, it should read three integers and set a flag as follows:

If they represent a scalene triangle, set it to 1.

If they represent an isosceles triangle, set it to 2.

If they represent an equilateral triangle, set it to 3.

If they do not represent a triangle, set it to 4.

**Case Study 3: Boundary Value Analysis for a Software Unit-**The following is a specification for a software unit. The unit computes the average of 25 floating point numbers that lie on or between bounding values which are positive values from 1.0 (lowest allowed boundary value) to 5000.0 (highest allowed boundary value). The bounding values and the numbers to average are inputs to the unit. The upper bound must be greater than the lower bound. If an invalid set of values is input for the boundaries an error message appears and the user is reported. If the boundary values are valid the unit computes the sum and the average of the numbers on and within the bounds. The average and sum are output by the unit, as well as the total number of inputs that lie within the boundaries. Derive a set of equivalence classes for the averaging unit using the specification, and complement the classes using boundary value analysis. Be sure to identify valid and invalid classes. Design a set of test cases for the unit using your equivalence classes and boundary values. For each test case, specify the equivalence classes covered, input values, expected outputs, and test case identifier. Show in tabular form that you have covered all the classes and boundaries. Implement this module in the programming language of your choice. Run the module with your test cases and record the actual outputs. Save an uncorrected version of the program for future use. **Case Study 4:** Write the test cases for any known application (e.g. banking application) using

I) Basis path testing

II) Component testing

III) Data flow analysis test

**Case Study 5:** Create a test plan document for any application (e.g. Library Management System)

**Case Study 6: Model Based Testing-**Design and develop a scientific calculator program using various GUI components and events. Build the test model for the same. Determine the inputs that can be given to the model.

Calculate expected output for the model. Run the test cases. Compare the actual output with the expected output. Any model-based technique can be used for building the test model.

## Case Study 7: Study and implementation of

- Mutation test
- Slice based test

Case Study 8: Introduction to any two open source testing tool:

- Study of any testing tool (e.g. Win runner)
- Study of any web testing tool (e.g. Selenium)
- Study of any bug tracking tool (e.g. Bugzilla, bugbit)
- Study of any test management tool (e.g. Test Director)
- Study of any open source-testing tool (e.g. Test Link)

**Case Study 9: Web Application Testing for Student Grade System-**With educational organizations under increasing pressure to improve their performance to secure funding for future provision of programmes, it is vital that they have accurate, up-to-date information. For this reason, they have MIS systems to record and track student enrolment and results on completion of a learning programme. In this way they can monitor achievement statistics. All student assignment work is marked and recorded by individual module tutors using a spreadsheet, or similar, of their own design. In the computing

department these results are input into a master spreadsheet to track a student's overall progress throughout their programme of study. This is then made available to students through the web portal used in college. Perform web application testing for this scenario.

| MTSE-120                     |                         |                                                                                                                                                                                                                                             |              | Social Network      | s Lab           |       |        |  |  |  |  |
|------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|-----------------|-------|--------|--|--|--|--|
| Lecture                      | Tutorial                | Practical                                                                                                                                                                                                                                   | Credit       | Practical           | Minor Test      | Total | Time   |  |  |  |  |
| 0                            | 0                       | 4                                                                                                                                                                                                                                           | 2            | 60                  | 40              | 100   | 3 Hrs. |  |  |  |  |
| Program<br>Objective<br>(PO) | ing machine ments using | This Software Laboratory focuses on accessing the dataset from social networks and then apply-<br>ing machine learning techniques, data cleaning and visualization of data in real time environ-<br>ments using Python programming and NLTK |              |                     |                 |       |        |  |  |  |  |
| Course Outco                 | omes (CO)               |                                                                                                                                                                                                                                             |              |                     |                 |       |        |  |  |  |  |
| C01                          | To access the           | ne data from s                                                                                                                                                                                                                              | ocial networ | ks                  |                 |       |        |  |  |  |  |
| CO2                          | To deign ma             | achine learning                                                                                                                                                                                                                             | j modules fo | r efficient syster  | n               |       |        |  |  |  |  |
| CO3                          | Create the a            | Igorithms for a                                                                                                                                                                                                                             | accessing So | ocial Media and     | data cleaning   |       |        |  |  |  |  |
| CO4                          | To apply tes            | ting tools for v                                                                                                                                                                                                                            | isualization | of data in real tir | me application. |       |        |  |  |  |  |

## List of practical

- 1. Write a python program to remove an item from tuple and merge three dictionaries.
- 2. Write a python program to construct pyramids of stars (\*) and numbers using nested for loop.
- 3. Write a python function to check whether a number is perfect or not and use filter function to print vowels from a given list.
- 4. Write a python program to estimate coefficients of an equation using linear regression model.
- 5. Write a python program to predict gender of a person if height, weight and shoe size are given using any four supervised learning algorithms.
- 6. Write a python program to find noun, verb and adjective in a given sentence.
- 7. Write a python program to calculate frequency of each word in a file after removing stopwords from it.
- 8. Write a program to for analyzing the behaviour (i.e. check whether a tweet is of positive, negative, or compound nature) of tweets and plot the results.
- 9. Write a program to sort the list of numbers using shell sort.
- 10. Write a python program to predict gender of a person from his/her name.
- 11. Write a python program to make a prediction about a movie from its review.
- 12. Write a program to plot the image in PNG format using matplotlib for average, max, and min of the data taken from a CSV file.
- 13. Write a program for classifying the text using NLTK.
- 14. Write a python program to guess behavior of a person.
- 15. Write a python program to print trending and common trends tweets in world, us and india.
- 16. Write a python program to use hashtag as basis of search query to fetch some tweets for further analysis.
- 17. Write a python program extract twitter entities such as hashtags, screen names.
- 18. Write a python program to clean any given dataset.
- 19 Write a python program to visualize a data using histogram, boxplot and scatter plot matrix.
- 20. Write a program for sentiment analysis of tweets (i.e. polarity and subjectivity).

| MTSE-201                  |              |                                                                                                                | Softwa         | are Quality Mana  | agement             |           |       |        |  |  |  |
|---------------------------|--------------|----------------------------------------------------------------------------------------------------------------|----------------|-------------------|---------------------|-----------|-------|--------|--|--|--|
| Lecture                   | Tutorial     | Practical                                                                                                      | Credit         | Theory            | Sessional           | Practical | Total | Time   |  |  |  |
| 3                         | 0            | 0                                                                                                              | 3              | 60                | 40                  | -         | 100   | 3 Hrs. |  |  |  |
| Program<br>Objective (PO) |              | s course covers the principles of software development emphasizing cesses and activities of quality assurance. |                |                   |                     |           |       |        |  |  |  |
| Course Outcomes (CO)      |              |                                                                                                                |                |                   |                     |           |       |        |  |  |  |
| After completior          | of course    | students will                                                                                                  | be able to     |                   |                     |           |       |        |  |  |  |
| C01                       | he student i | must relate to                                                                                                 | quality assu   | rance plan        |                     |           |       |        |  |  |  |
| CO2                       | The students | s must apply q                                                                                                 | uality assura  | ance tools & tech | niques in their pro | oject     |       |        |  |  |  |
| <b>CO</b> 3               | o learn abou | ut standards a                                                                                                 | nd certificati | ons               |                     |           |       |        |  |  |  |
| CO4                       | To describe  | procedures an                                                                                                  | d work instr   | uctions in softwa | re organizations    |           |       |        |  |  |  |

## **UNIT I-INTRODUCTION**

The Software Quality Challenge - Software Quality Factors - Components of the Software Quality Assurance System. Pre-Project Software Quality Components - Contract Review - Development and Quality Plans

#### UNIT II-SOFTWARE QUALITY ASSURANCE COMPONENTS IN THE PROJECT LIFE CYCLE

Integrating Quality Activities in the Project Life Cycle – Reviews - Software Testing – Strategies - Software Testing – Implementation - Assuring the Quality of Software Maintenance - Assuring The Quality of External Participants' Parts – Case Tools and their Affect on Software Quality.

#### UNIT III-SOFTWARE QUALITY INFRASTRUCTURE COMPONENTS

Procedures and Work Instructions - Supporting Quality Devices - Staff Training, Instructing and Certification - Preventive and Corrective Actions – Configuration Management - Documentation and Quality Records Controls

#### UNIT IV-SOFTWARE QUALITY MANAGEMENT COMPONENTS

Project Progress Control- Components, Internal & External Participants, Progress control regimes, Computerized tools, Software Quality Metrics – Objective, Classification, Process & Product Metrics, Implementation & Limitation of Software Metrics - Software Quality Costs – Objective, Classification Model of cost, Extended Model and Applications.

#### REFERENCES

1. Daniel Galin, "Software Quality Assurance: From Theory to Implementation", Pearson Addison-Wesley, 2012.

- 2. Roger S. Pressman, "Software Engineering-A Practitioner's Approach", McGraw Hill pub.2010.
- 3. Allen Gilles "Software quality: Theory and management", International Thomson, Computer press 1997.
- 4. Stephen H.Kan, "Metrics and models in software quality Engineering", Addison Wesley 2003.
- 5. Humphrey Watts, "Managing the Software Process" Addison Wesley, 1986.

| MTSE-203              |               |                                                                                        | Lar           | nguage Technol      | ogies        |           |       |        |  |  |
|-----------------------|---------------|----------------------------------------------------------------------------------------|---------------|---------------------|--------------|-----------|-------|--------|--|--|
| Lecture               | Tutorial      | Practical                                                                              | Credit        | Theory              | Sessional    | Practical | Total | Time   |  |  |
| 3                     | 0             | 0                                                                                      | 3             | 60                  | 40           | -         | 100   | 3 Hrs. |  |  |
| Program               | This course   | course enables to understand the importance and the benefits of software configuration |               |                     |              |           |       |        |  |  |
| <b>Objective (PO)</b> | and change    | e managemen                                                                            | t.            | -                   |              |           | -     |        |  |  |
| Course Outcomes (CO)  |               |                                                                                        |               |                     |              |           |       |        |  |  |
| After completion      | of course     | students will                                                                          | be able to    |                     |              |           |       |        |  |  |
| C01                   | o learn the t | pasic concepts                                                                         | of natural l  | anguage process     | ing          |           |       |        |  |  |
| CO2                   | o study the   | different techn                                                                        | iques involv  | ed with information | on retrieval |           |       |        |  |  |
| CO3                   | o learn abou  | ut text mining                                                                         |               |                     |              |           |       |        |  |  |
| CO4                   | o study the   | different scena                                                                        | arios and fut | ure directions      |              |           |       |        |  |  |

#### **UNIT I-INTRODUCTION**

Natural Language Processing – Linguistic Background- Spoken language input and output Technologies – Written language Input - Mathematical Methods - Statistical Modeling and Classification Finite State methods

#### UNIT II-INFORMATION RETRIEVAL

Information Retrieval architecture - Indexing- Storage – Compression Techniques – Retrieval Approaches – Evaluation - Search engines- commercial search engine features- comparison- performance measures – Document Processing – NLP based Information Retrieval – Information Extraction.

#### **UNIT III-TEXT MINING**

Categorization – Extraction based Categorization- Clustering- Hierarchical Clustering- Document Classification and routing- finding and organizing answers from Text search – use of categories and clusters for organizing retrieval results – Text Categorization and efficient Summarization using Lexical Chains – Pattern Extraction.

#### **UNIT IV-APPLICATIONS**

Machine Translation – Transfer Metaphor - Interlingua and Statistical Approaches - Discourse Processing – Dialog and Conversational Agents – Natural Language Generation – Surface Realization and Discourse Planning.

**Note for paper setter:** Nine questions will be set in all. Question No. 1, which will be objective/ short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set section-wise, with two questions from each unit. The candidate will be required to attempt FIVE questions in all with Q.1 (compulsory) and four other questions, selecting one question from each unit.

#### REFERENCES

1. Daniel Jurafsky and James H. martin, "Speech and Language Processing", Pearson Prentice Hall; 2 edition, 2008.

2. Ron Cole, J.Mariani, et.al "Survey of the State of the Art in Human Language Technology", Cambridge University Press, 2007.

3. Michael W. Berry "Survey of Text Mining: Culstering, Classification and Retrieval", Springer Verlag, 2003.

4. Christopher D.Manning and Hinrich Schutze, "Foundations of Statistical Natural Language Processing ", MIT Press, 2000.

| MTSE-205                  |               |                | Per          | sonal Software     | Process     |           |       |        |  |  |  |  |
|---------------------------|---------------|----------------|--------------|--------------------|-------------|-----------|-------|--------|--|--|--|--|
| Lecture                   | Tutorial      | Practical      | Credit       | Theory             | Sessional   | Practical | Total | Time   |  |  |  |  |
| 3                         | 0             | 0              | 3            | 60                 | 40          | -         | 100   | 3 Hrs. |  |  |  |  |
| Program<br>Objective (PO) |               |                |              |                    |             |           |       |        |  |  |  |  |
|                           |               |                | Course Out   | comes (CO)         |             |           |       |        |  |  |  |  |
| After completion          | n of course   | students will  | be able to   |                    |             |           |       |        |  |  |  |  |
| C01                       | o study how   | to manage ar   | nd track the | time for software  | processes.  |           |       |        |  |  |  |  |
| CO2                       | o learn how   | to schedule th | ne process a | and manage the c   | commitment. |           |       |        |  |  |  |  |
| CO3                       | To learn abou | ut software De | velopment p  | process            |             |           |       |        |  |  |  |  |
| CO4                       | o learn how   | to estimate th | e product ar | nd process quality | у.          |           |       |        |  |  |  |  |

#### UNIT I-INTRODUCTION AND TIME MANAGEMENT

Software Engineering – Personal Software Process – Improvement Process – Time Management – Logic of Time Management - Elements of Time Management – Categorizing your Activities – Gather Data on time spent by Activity – Evaluating your Time Distribution – Setting Ground rules – Prioritizing your time – Track Time – Recording your Time Data – Tracking your time – Handling Interruptions – Tracking Completed tasks.

#### UNIT II-MANAGING COMMITMENTS AND SCHEDULES

Defining Commitment – Responsibly made Commitment – Handling Missed Commitments – Importance of Managing Commitments – Consequences of not Managing Commitments – Way to Manage Commitments – Need for Schedules – Gantt Chart – Making a Project Schedule – Checkpoints – Tracking Project Plans – Tracking Earned Value

#### UNIT III-SOFTWARE PROCESSES AND QUALITY

Need for Processes – Process Script – Checkpoints and phases – Updated Project Plan Summary Form - Defects – Software Quality – Defects and Quality – Defects Versus Bugs – Defect Types – Understanding Defects – Defect Recording Log – Steps in Finding Defects – Ways to Find and Fix Defects.

## UNIT IV-PRODUCT AND PROCESS QUALITY

Product Quality – Testing – The Filter view of Testing - Calculating yield values – Estimating the Ultimate Yield – Prototyping – Process Quality – Process Measures – Defect Removal Paradox – Defect Removal strategy – Appraisal/Failure ratio.

#### REFERENCES

- 1. Watts.S.Humphery, "PSP: A Self-Improvement Process for Software Engineers", Addison Wesley, 2005.
- 2. Watts S. Humphery, "Introduction to the Personal Software Process", Addison Wesley, 1997.
- 3. http://www.sei.cmu.edu/library/abstracts/reports/00tr022.cfm
- 4. http://repository.cmu.edu/cgi/viewcontent.cgi

5. http://dl.acm.org/citation.cfm?id=650271

| MTOE-201              |             |                                                                                       | I           | Business Analytics   | 6                    |                |        |  |  |  |  |
|-----------------------|-------------|---------------------------------------------------------------------------------------|-------------|----------------------|----------------------|----------------|--------|--|--|--|--|
| Lecture               | Tutorial    | Practical                                                                             | Credit      | Major Test           | Minor Test           | Total          | Time   |  |  |  |  |
| 3                     | 0           | 0 0 3 60 40 100 3 H                                                                   |             |                      |                      |                |        |  |  |  |  |
| Program               | The main o  | main objective of this course is to give the student a comprehensive understanding of |             |                      |                      |                |        |  |  |  |  |
| <b>Objective (PO)</b> | business a  | usiness analytics methods.                                                            |             |                      |                      |                |        |  |  |  |  |
|                       |             | C                                                                                     | ourse Ou    | tcomes (CO)          |                      |                |        |  |  |  |  |
| C01                   | Able to ha  | ve knowledg                                                                           | e of variou | is business analysis | s techniques.        |                |        |  |  |  |  |
| CO2                   | Learn the l | requirement                                                                           | specificati | on and transforming  | g the requirement in | to different m | odels. |  |  |  |  |
| CO3                   | Learn the   | requirement                                                                           | representa  | ation and managing   | requirement asses    | ts.            |        |  |  |  |  |
| CO4                   | Learn the   | Recent Tren                                                                           | ds in Embe  | edded and collabora  | ative business       |                |        |  |  |  |  |

## Unit 1

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

## Unit 2

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents. Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

## Unit 3

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

## Unit 4

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

- 1. Business Analysis by James Cadle et al.
- 2. Project Management: The Managerial Process by Erik Larson and, Clifford Gray

| MTOE-203              |                      |                                                      |              | Industrial S    | Safety         |           |            |        |  |  |  |
|-----------------------|----------------------|------------------------------------------------------|--------------|-----------------|----------------|-----------|------------|--------|--|--|--|
| Lecture               | Tutorial             | al Practical Credit Major Test Minor Test Total Time |              |                 |                |           |            |        |  |  |  |
| 3                     | 0                    | 0                                                    | 3            | 60              | 40             | 10        | )0         | 3 Hrs. |  |  |  |
| Program               | To enable            | students to                                          | aware abol   | ut the industri | ial safety.    |           |            |        |  |  |  |
| <b>Objective (PO)</b> |                      |                                                      |              |                 |                |           |            |        |  |  |  |
|                       | Course Outcomes (CO) |                                                      |              |                 |                |           |            |        |  |  |  |
| C01                   | Understan            | d the indust                                         | rial safety. |                 |                |           |            |        |  |  |  |
| CO2                   | Analyze fu           | Indamental o                                         | of maintena  | ance enginee    | ring.          |           |            |        |  |  |  |
| CO3                   | Understan            | d the wear a                                         | and corrosi  | on and fault t  | tracing.       |           |            |        |  |  |  |
| CO4                   | Understan            | ding that u                                          | when to a    | do periodic     | inceptions and | apply the | preventing |        |  |  |  |
|                       | maintenan            | ice.                                                 |              |                 |                |           |            |        |  |  |  |

#### Unit-1

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

#### Unit-2

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricantstypes and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

## Unit-3

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

## Unit-4

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

| MTOE-205                                                                                         |                      |                                                                                   | 0           | perations Res      | earch                  |                 |         |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------|-------------|--------------------|------------------------|-----------------|---------|--|--|--|
| Lecture                                                                                          | Tutorial             | Practical                                                                         | Credit      | Major Test         | Minor Test             | Total           | Time    |  |  |  |
| 3                                                                                                | 0                    | 0                                                                                 | 3           | 60                 | 40                     | 100             | 3 Hrs.  |  |  |  |
| Program                                                                                          | To enable            | ble students to aware about the dynamic programming to solve problems of discreet |             |                    |                        |                 |         |  |  |  |
| <b>Objective (PO)</b> and continuous variables and model the real world problem and simulate it. |                      |                                                                                   |             |                    |                        |                 |         |  |  |  |
|                                                                                                  | Course Outcomes (CO) |                                                                                   |             |                    |                        |                 |         |  |  |  |
| C01                                                                                              | Students             | should able                                                                       | to apply th | ne dynamic prog    | gramming to solve prol | blems of discre | eet and |  |  |  |
|                                                                                                  | continuou            | ıs variables.                                                                     |             |                    |                        |                 |         |  |  |  |
| CO2                                                                                              | Students             | should able                                                                       | to apply th | ne concept of no   | on-linear programming  | 1               |         |  |  |  |
| CO3                                                                                              | Students             | should able                                                                       | to carry οι | it sensitivity and | alysis                 |                 |         |  |  |  |
| CO4                                                                                              | Student s            | hould able to                                                                     | o model th  | e real world pro   | blem and simulate it.  |                 |         |  |  |  |

Unit -1

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit -2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

## Unit- 3

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

## Unit -4

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

| MTOE-207              |                                                                                                       | Cost Management of Engineering Projects                 |             |                     |                    |           |        |  |
|-----------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|---------------------|--------------------|-----------|--------|--|
| Lecture               | Tutorial                                                                                              | orial Practical Credit Major Test Minor Test Total Time |             |                     |                    |           |        |  |
| 3                     | 0                                                                                                     | 0                                                       | 3           | 60                  | 40                 | 100       | 3 Hrs. |  |
| Program               | <b>Program</b> To enable students to make aware about the cost management for the engineering project |                                                         |             |                     |                    |           |        |  |
| <b>Objective (PO)</b> | bjective (PO) and apply cost models the real world projects.                                          |                                                         |             |                     |                    |           |        |  |
|                       |                                                                                                       | C                                                       | ourse Ou    | tcomes (CO)         |                    |           |        |  |
| C01                   | Students                                                                                              | should able                                             | to learn th | e strategic cost ma | anagement proce    | SS.       |        |  |
| CO2                   | Students should able to types of project and project team types                                       |                                                         |             |                     |                    |           |        |  |
| CO3                   | Students should able to carry out Cost Behavior and Profit Planning analysis.                         |                                                         |             |                     |                    |           |        |  |
| CO4                   | Student s                                                                                             | should able to                                          | o learn the | quantitative techn  | niques for cost ma | nagement. |        |  |

## Unit-1

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost.Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

## Unit-2

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities.Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts.Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

## Unit-3

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

## Unit-4

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

| MTOE-209                                                                                       |                                                                 | Composite Materials                                      |             |                   |                     |                |            |  |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|-------------|-------------------|---------------------|----------------|------------|--|
| Lecture                                                                                        | Tutorial                                                        | Practical                                                | Credit      | Major Test        | Minor Test          | Total          | Time       |  |
| 3                                                                                              | 0                                                               | 0                                                        | 3           | 60                | 40                  | 100            | 3 Hrs.     |  |
| <b>Program</b> To enable students to aware about the composite materials and their properties. |                                                                 |                                                          |             |                   |                     |                |            |  |
| <b>Objective (PO)</b>                                                                          |                                                                 |                                                          |             |                   |                     |                |            |  |
|                                                                                                |                                                                 | C                                                        | ourse Ou    | tcomes (CO)       |                     |                |            |  |
| C01                                                                                            | Students                                                        | should able                                              | to learn th | e Classification  | and characteristic  | s of Composite | materials. |  |
| CO2                                                                                            | Students                                                        | Students should able reinforcements Composite materials. |             |                   |                     |                |            |  |
| CO3                                                                                            | Students should able to carry out the preparation of compounds. |                                                          |             |                   |                     |                |            |  |
| CO4                                                                                            | Student s                                                       | hould able to                                            | o do the ai | nalysis of the co | omposite materials. |                |            |  |

## UNIT-1:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites.Functional requirements of reinforcement and matrix.Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Iso-strain and Iso-stress conditions.

## UNIT – 2

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostaticpressing.Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

## UNIT-3

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

## UNIT – 4

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

## TEXT BOOKS:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.
- Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

## **References:**

3.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

| MTOE-211                                                                                  |                                                                                  | Waste to Energy                                            |             |                  |                     |       |        |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|-------------|------------------|---------------------|-------|--------|--|
| Lecture                                                                                   | Tutorial                                                                         | Practical                                                  | Credit      | Major Test       | Minor Test          | Total | Time   |  |
| 3                                                                                         | 0                                                                                | 0                                                          | 3           | 60               | 40                  | 100   | 3 Hrs. |  |
| <b>Program</b> To enable students to aware about the generation of energy from the waste. |                                                                                  |                                                            |             |                  |                     |       |        |  |
| <b>Objective (PO)</b>                                                                     |                                                                                  |                                                            |             |                  |                     |       |        |  |
|                                                                                           |                                                                                  | C                                                          | ourse Ou    | tcomes (CO)      |                     |       |        |  |
| C01                                                                                       | Students                                                                         | should able                                                | to learn th | e Classification | of waste as a fuel. |       |        |  |
| CO2                                                                                       | Students                                                                         | Students should able to learn the Manufacture of charcoal. |             |                  |                     |       |        |  |
| CO3                                                                                       | Students should able to carry out the designing of gasifiers and biomass stoves. |                                                            |             |                  |                     |       |        |  |
| CO4                                                                                       | Student s                                                                        | should able to                                             | o learn the | Biogas plant te  | echnology.          |       |        |  |

## Unit-1

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

## Unit-2

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

## Unit-3

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

## Unit-4

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

| MTAD-101                                                                           |           | English For Research Paper Writing                     |             |                      |                      |          |        |  |
|------------------------------------------------------------------------------------|-----------|--------------------------------------------------------|-------------|----------------------|----------------------|----------|--------|--|
| Lecture                                                                            | Tutorial  | rial Practical Credit Major Test Minor Test Total Time |             |                      |                      |          |        |  |
| 2                                                                                  | 0         | 0                                                      | 0           | -                    | 100                  | 100      | 3 Hrs. |  |
| Program Student will able to understand the basic rules of research paper writing. |           |                                                        |             |                      |                      |          |        |  |
| <b>Objective (PO)</b>                                                              |           |                                                        |             |                      |                      |          |        |  |
|                                                                                    |           | C                                                      | ourse Out   | tcomes (CO)          |                      |          |        |  |
| C01                                                                                | Understa  | and that how                                           | to improv   | e your writing skil  | ls and level of read | dability |        |  |
| CO2                                                                                | Learn ab  | Learn about what to write in each section              |             |                      |                      |          |        |  |
| CO3                                                                                | Understa  | Understand the skills needed when writing a Title      |             |                      |                      |          |        |  |
| CO4                                                                                | Ensure th | ne good qual                                           | ity of pape | r at very first-time | submission           |          |        |  |

## Unit 1

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

## Unit 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

## Unit 3

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

## Unit4

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

| MTAD-103              |            |                                                                                                                                                  | D            | isaster Manag    | ement                 |                   |             |
|-----------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-----------------------|-------------------|-------------|
| Lecture               | Tutorial   | Practical                                                                                                                                        | Credit       | Major Test       | Minor Test            | Total             | Time        |
| 2                     | 0          | 0                                                                                                                                                | 0            | -                | 100                   | 100               | 3 Hrs.      |
| Program               | Develop a  | n understand                                                                                                                                     | ling of disa | aster risk reduc | tion and manageme     | ent               |             |
| <b>Objective (PO)</b> |            |                                                                                                                                                  |              |                  |                       |                   |             |
|                       |            | Course Outcomes (CO)                                                                                                                             |              |                  |                       |                   |             |
| C01                   | Learn to a | lemonstrate                                                                                                                                      | a critical u | understanding of | of key concepts in (  | disaster risk red | duction and |
|                       | humanitari | umanitarian response.                                                                                                                            |              |                  |                       |                   |             |
|                       |            | valuate disa<br>erspectives.                                                                                                                     | ster risk re | eduction and hu  | imanitarian respons   | se policy and pr  | actice from |
|                       |            |                                                                                                                                                  | ding of ct   | andarda of hum   | onitarian rachanca    | and practical r   | olovanco in |
|                       |            | Develop an understanding of standards of humanitarian response and practical relevance in<br>pecific types of disasters and conflict situations. |              |                  |                       |                   | elevance in |
| CO4                   |            | ritically understand the strengths and weaknesses of disaster management                                                                         |              |                  |                       |                   |             |
|                       |            |                                                                                                                                                  |              |                  | rent countries, parti | cularly their hor | ne          |
|                       | country or | the countrie                                                                                                                                     | s they wor   | k in             |                       |                   |             |

## Unit 1

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

## Unit 2

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

## Unit 3

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

## Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment.Strategies for Survival.Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation.Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep&Deep Publication Pvt. Ltd., New Delhi.

| MTAD-105              |                                                                                                               |                                                                                 | Sanskrit      | for Technical H  | Knowledge               |                     |        |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------|------------------|-------------------------|---------------------|--------|--|
| Lecture               | Tutorial                                                                                                      | Practical                                                                       | Credit        | Major Test       | Minor Test              | Total               | Time   |  |
| 2                     | 0                                                                                                             | 0                                                                               | 0             | -                | 100                     | 100                 | 3 Hrs. |  |
| Program               | <b>Program</b> Students will be able to Understanding basic Sanskrit language and Ancient Sanskrit literature |                                                                                 |               |                  |                         |                     |        |  |
| <b>Objective (PO)</b> | about scie                                                                                                    | nce & techn                                                                     | ology can l   | be understood a  | and Being a logical     | language will help  | to     |  |
|                       | develop logic in students                                                                                     |                                                                                 |               |                  |                         |                     |        |  |
|                       | Course Outcomes (CO)                                                                                          |                                                                                 |               |                  |                         |                     |        |  |
| C01                   | To get a v                                                                                                    | vorking knov                                                                    | vledge in il  | lustrious Sansk  | rit, the scientific lar | iguage in the world | d      |  |
| CO2                   | Learning                                                                                                      | of Sanskrit t                                                                   | o improve     | brain functionin | g                       |                     |        |  |
| CO3                   | Learning                                                                                                      | of Sanskrit t                                                                   | o develop     | the logic in mat | hematics, science a     | & other subjects    |        |  |
|                       | enhancing the memory power                                                                                    |                                                                                 |               |                  |                         |                     |        |  |
| CO4                   |                                                                                                               | he engineering scholars equipped with Sanskrit will be able to explore the huge |               |                  |                         |                     |        |  |
|                       | knowledg                                                                                                      | e from ancie                                                                    | ent literatui | re               |                         | -                   |        |  |

## Unit –1

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

## Unit – 2

Order, Introduction of roots, Technical information about Sanskrit Literature

## Unit –3

Technical concepts of Engineering: Electrical, Mechanical

## Unit –4

Technical concepts of Engineering: Architecture, Mathematics

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" PrathamaDeeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

| MTAD-107 |           | Value Education                                                                                                                            |             |             |            |       |        |  |  |
|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------|-------|--------|--|--|
| Lecture  | Tutorial  | Practical                                                                                                                                  | Credit      | Major Test  | Minor Test | Total | Time   |  |  |
| 2        | 0         | 0                                                                                                                                          | 0           | -           | 100        | 100   | 3 Hrs. |  |  |
|          |           | derstand value of education and self- development, Imbibe good values in students and Let<br>should know about the importance of character |             |             |            |       |        |  |  |
|          |           | C                                                                                                                                          | ourse Ou    | tcomes (CO) |            |       |        |  |  |
| C01      | Knowledge | e of self-dev                                                                                                                              | elopment    |             |            |       |        |  |  |
| CO2      | Learn the | earn the importance of Human values                                                                                                        |             |             |            |       |        |  |  |
| CO3      | Developin | eveloping the overall personality                                                                                                          |             |             |            |       |        |  |  |
| CO4      | Know abo  | out the impo                                                                                                                               | rtance of c | haracter    |            |       |        |  |  |

#### Unit 1

Values and self-development –Social values and individual attitudes.Work ethics, Indian vision of humanism.Moral and non- moral valuation.Standards and principles.Value judgements.

#### Unit 2

Importance of cultivation of values.Sense of duty.Devotion, Self-reliance.Confidence, Concentration.Truthfulness, Cleanliness.Honesty, Humanity.Power of faith, National Unity.Patriotism.Love for nature,Discipline

## Unit 3

Personality and Behavior Development - Soul and Scientific attitude.Positive Thinking.Integrity and discipline.Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance.True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits.Association and Cooperation. Doing best for saving nature

## Unit 4

Character and Competence –Holy books vs Blind faith.Self-management and Good health.Science of reincarnation. Equality, Nonviolence,Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

## References

1.Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

| MTAD-102             |              |                                                                                             | Constitut    | tion of India      |                       |                   |             |
|----------------------|--------------|---------------------------------------------------------------------------------------------|--------------|--------------------|-----------------------|-------------------|-------------|
| Lecture              | Tutorial     | Practical                                                                                   | Credit       | Major Test         | Minor Test            | Total             | Time        |
| 2                    | 0            | 0                                                                                           | 0            | -                  | 100                   | 100               | 3 Hrs.      |
| Program              | Understan    | d the premis                                                                                | ses inform   | ing the twin the   | emes of liberty and t | freedom from a cl | ivil rights |
|                      |              |                                                                                             |              |                    | opinion regarding n   |                   |             |
|                      |              |                                                                                             |              |                    | economic rights as    | well as the emer  | gence of    |
|                      | nationhood   | d in the early                                                                              | years of I   | ndian nationalis   | sm.                   |                   |             |
| Course Outcomes (CO) |              |                                                                                             |              |                    |                       |                   |             |
| C01                  | Discuss th   | e growth of t                                                                               | he deman     | d for civil rights | in India for the bulk | of Indians before | the         |
|                      | arrival of G | Gandhi in Ind                                                                               | ian politics | <u>).</u>          |                       |                   |             |
| CO2                  | Discuss th   | e intellectua                                                                               | l origins of | the framework      | of argument that info | ormed the         |             |
|                      | conceptua    | lization of so                                                                              | cial reforn  | ns leading to re   | volution in India.    |                   |             |
|                      |              |                                                                                             |              |                    | dation of the Congre  |                   |             |
|                      | under the l  | inder the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct |              |                    |                       |                   |             |
|                      | elections ti | hrough adult                                                                                | suffrage i   | n the Indian Co    | nstitution.           |                   |             |
| CO4                  | Discuss th   | e passage o                                                                                 | f the Hindu  | u Code Bill of 1   | 956.                  |                   |             |

## Unit I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

## Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

## Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

## Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

| MTAD-104              |             |                                                                                   | Pedagog       | y Studies            |                   |                      |            |
|-----------------------|-------------|-----------------------------------------------------------------------------------|---------------|----------------------|-------------------|----------------------|------------|
| Lecture               | Tutorial    | torial Practical Credit Major Test Minor Test Total Time                          |               |                      |                   |                      |            |
| 2                     | 0           | 0                                                                                 | 0             | -                    | 100               | 100                  | 3 Hrs.     |
| Program               |             |                                                                                   |               | e review topic to in |                   |                      |            |
| <b>Objective (PO)</b> |             |                                                                                   |               | agencies and rese    | earchers and Ide  | ntify critical evide | nce gaps   |
|                       | to guide    | the developi                                                                      | ment.         |                      |                   |                      |            |
| Course Outcomes (CO)  |             |                                                                                   |               |                      |                   |                      |            |
| C01                   | What peda   | agogical pra                                                                      | ctices are    | being used by tea    | chers in formal a | and informal class   | rooms in   |
|                       | developing  | countries?                                                                        |               |                      |                   |                      |            |
| CO2                   | What is th  | e evidence o                                                                      | on the effe   | ctiveness of these   | pedagogical pra   | actices, in what co  | onditions, |
|                       | and with w  | hat populati                                                                      | on of learn   | ers?                 |                   |                      |            |
|                       |             | by can teacher education (curriculum and practicum) and the school curriculum and |               |                      |                   |                      |            |
|                       | 0           |                                                                                   |               | effective pedagogy   |                   |                      |            |
| CO4                   | What is the | e importance                                                                      | e of identify | ving research gaps   | ?                 |                      |            |

## Unit 1

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

## Unit 2

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change.Strength and nature of the body of evidence for effective pedagogical practices.Pedagogic theory and pedagogical approaches.Teachers' attitudes and beliefs and Pedagogic strategies.

## Unit 3

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

## Unit 4

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272– 282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

| MTAD-106              |                                                                           | Stress Management by Yoga                             |             |                 |                        |     |        |  |  |
|-----------------------|---------------------------------------------------------------------------|-------------------------------------------------------|-------------|-----------------|------------------------|-----|--------|--|--|
| Lecture               | Tutorial                                                                  | ial Practical Credit Major Test Minor Test Total Time |             |                 |                        |     |        |  |  |
| 2                     | 0                                                                         | 0                                                     | 0           | -               | 100                    | 100 | 3 Hrs. |  |  |
| Program               | Program To achieve overall health of body and mind and to overcome stress |                                                       |             |                 |                        |     |        |  |  |
| <b>Objective (PO)</b> |                                                                           |                                                       |             |                 |                        |     |        |  |  |
|                       |                                                                           | C                                                     | ourse Ou    | tcomes (CO)     |                        |     |        |  |  |
| C01                   | Develop l                                                                 | healthy mind                                          | in a healti | hy body thus im | proving social health. |     |        |  |  |
| CO2                   | Improve e                                                                 | Improve efficiency                                    |             |                 |                        |     |        |  |  |
| CO3                   | Learn the                                                                 | Learn the Yogasan                                     |             |                 |                        |     |        |  |  |
| CO4                   | Learn the                                                                 | e pranayama                                           |             |                 |                        |     |        |  |  |

## Unit – 1

Definitions of Eight parts of yog (Ashtanga).

## Unit- 2

Yam and Niyam, Do`s and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

# Unit- 3

Asan and Pranayam, Various yog poses and their benefits for mind & body,

# Unit- 4

Regularization of breathing techniques and its effects-Types of pranayam.

- 1. 'Yogic Asanas for Group Tarining-Part-I" :Janardan Swami YogabhyasiMandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

| MTAD-108              |           | Personality Development through Life Enlightenment Skills                |             |                 |                |     |        |  |  |
|-----------------------|-----------|--------------------------------------------------------------------------|-------------|-----------------|----------------|-----|--------|--|--|
| Lecture               | Tutorial  | rial Practical Credit Major Test Minor Test Total Time                   |             |                 |                |     |        |  |  |
| 2                     | 0         | 0                                                                        | 0           | -               | 100            | 100 | 3 Hrs. |  |  |
| Program               |           | earn to achieve the highest goal happily                                 |             |                 |                |     |        |  |  |
| <b>Objective (PO)</b> |           | become a person with stable mind, pleasing personality and determination |             |                 |                |     |        |  |  |
|                       | To awake  | n wisdom in                                                              | students    |                 |                |     |        |  |  |
|                       |           | C                                                                        | ourse Ou    | tcomes (CO)     |                |     |        |  |  |
| C01                   | Students  | become awa                                                               | are about l | eadership.      |                |     |        |  |  |
| CO2                   | Students  | Students will learn how to perform his/her duties in day to day work.    |             |                 |                |     |        |  |  |
| CO3                   | Understa  | Inderstand the team building and conflict                                |             |                 |                |     |        |  |  |
| CO4                   | Student v | vill learn how                                                           | to becom    | e role model fo | r the society. |     |        |  |  |

## Unit – 1

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

Unit – 2

Approach to day to day work and duties; ShrimadBhagwadGeeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

# Unit - 3

Statements of basic knowledge; ShrimadBhagwadGeeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

## Unit – 4

Personality of Role model; ShrimadBhagwadGeeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1. Srimad Bhagavad Gita, Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

|     | Dissertation Part-I (MTSE-207) and Dissertation Part-II (MTSE-202)                                |
|-----|---------------------------------------------------------------------------------------------------|
|     | Course Outcomes (CO)                                                                              |
| C01 | Ability to synthesize knowledge and skills previously gained and applied to an in depth study and |
|     | execution of new technical problem.                                                               |
| CO2 | Capable to select from different methodologies, methods and forms of analysis to produce a        |
|     | suitable research design, and justify their design.                                               |
| CO3 | Ability to present the findings of their technical solution in a written report.                  |
| CO4 | Presenting the work in International/ National conference or reputed journals.                    |

## Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following:

Relevance to social needs of society

Relevance to value addition to existing facilities in the institute

Relevance to industry need

Problems of national importance

Research and development in various domain

## The student should complete the following:

Literature survey Problem Definition

Motivation for study and Objectives

Preliminary design / feasibility / modular approaches

Implementation and Verification

Report and presentation

The dissertation part- II is based on a report prepared by the students on dissertation allotted to them. It may be based on: Experimental verification / Proof of concept.

The viva-voce examination will be based on the above report and work.

## Guidelines for Dissertation Part – I and Dissertation Part - II

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two parts i.e. Part–I: July to December and Part–II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives.

The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing Engineering and any other related domain. In case of Industry sponsored projects, the relevant application notes, white papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Part–I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper, proof of concept/functionality, part results, and record of continuous progress.

Part–I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Part-I work.

During Part– II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Part–II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, and record of continuous progress.

Part-II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the Part-I work.

### UNIVERSITY INSTITUTE OF ENGINEERING AND TECHNOLOGY Kurukshetra University, Kurukshetra

# M.Tech. (Material Science and Technology) – Scheme

(w.e.f. session: 2018-2019 onwards)

| Paper    | Subject                                    | Teach | ing Sch | edule | Marks Allocation |               |       | Credit |
|----------|--------------------------------------------|-------|---------|-------|------------------|---------------|-------|--------|
| code     |                                            | L     | Р       | Total | Minor<br>Test    | Major<br>Test | Total |        |
| MMST-101 | Introduction to Materials                  | 3     | -       | 3     | 40               | 60            | 100   | 3      |
| MMST-103 | Characterization Techniques                | 3     | -       | 3     | 40               | 60            | 100   | 3      |
| *        | Program Elective –I                        | 3     | -       | 3     | 40               | 60            | 100   | 3      |
| MMST-113 | Thermodynamics of<br>Materials             | 3     | -       | 3     | 40               | 60            | 100   | 3      |
| MMST-115 | Material Science and<br>Technology Lab - I | -     | 8       | 8     | 40               | 60            | 100   | 4      |
| MTRM-111 | Research Methodology and IPR               | 2     | -       | 2     | 40               | 60            | 100   | 2      |
| **       | Audit Course-I                             | 2     | -       | 2     | 100              | -             | 100   | 0      |
|          | Total                                      | 16    | 8       | 24    | 240              | 360           | 600   | 18     |

#### Semester - I

|                                             | **Audit Course-I                 |  |  |  |  |  |  |  |  |
|---------------------------------------------|----------------------------------|--|--|--|--|--|--|--|--|
| MTAD-101 English for Research Paper Writing |                                  |  |  |  |  |  |  |  |  |
| MTAD-103                                    | Disaster Management              |  |  |  |  |  |  |  |  |
| MTAD-105                                    | Sanskrit for Technical Knowledge |  |  |  |  |  |  |  |  |
| MTAD-107                                    | Value Education                  |  |  |  |  |  |  |  |  |

| *Program Elective –I |                                           |  |  |  |  |  |  |  |
|----------------------|-------------------------------------------|--|--|--|--|--|--|--|
| MMST-105             | Ceramic and Composite Material            |  |  |  |  |  |  |  |
|                      | Technology                                |  |  |  |  |  |  |  |
| MMST - 107           | Ion Beams in Materials Processing         |  |  |  |  |  |  |  |
| MMST - 109           | Thin Film Technology and its Applications |  |  |  |  |  |  |  |
| MMST - 111           | Flame Retardant Polymers                  |  |  |  |  |  |  |  |

\*Note1: The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

\*\* **Note2:** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

| Semester - |  |
|------------|--|
|------------|--|

| Paper         |                                               |    |    | edule | Mar           | Credit        |       |    |
|---------------|-----------------------------------------------|----|----|-------|---------------|---------------|-------|----|
| code          |                                               | L  | Р  | Total | Minor<br>Test | Major<br>Test | Total |    |
| MMST-102      | Ion Beam Based<br>Characterization Techniques | 3  | -  | 3     | 40            | 60            | 100   | 3  |
| MMST-104      | Statistical Methods for Data<br>Analysis      | 3  | -  | 3     | 40            | 60            | 100   | 3  |
| MMST-106      | Nanomaterials                                 | 3  | -  | 3     | 40            | 60            | 100   | 3  |
| MMST-108      | Environmental Law &<br>Materials              | 3  | -  | 3     | 40            | 60            | 100   | 3  |
| MMST-110      | Material Science and<br>Technology Lab – II   | -  | 8  | 8     | 40            | 60            | 100   | 4  |
| #MMST-<br>112 | Mini Project                                  | -  | 4  | 4     | 40            | 60            | 100   | 2  |
| *             | Audit Course-II                               | 2  | -  | 2     | 100           | -             | 100   | 0  |
|               | Total                                         | 14 | 12 | 26    | 240           | 460           | 700   | 18 |

|                           | * Audit Course - II                                        |  |  |  |  |  |  |  |
|---------------------------|------------------------------------------------------------|--|--|--|--|--|--|--|
| MTAD-102                  | Constitution of India                                      |  |  |  |  |  |  |  |
| MTAD-104 Pedagogy Studies |                                                            |  |  |  |  |  |  |  |
| MTAD-106                  | Stress Management by Yoga                                  |  |  |  |  |  |  |  |
| MTAD-108                  | Personality Development through Life Enlightenment Skills. |  |  |  |  |  |  |  |

**Note:** 1.#. **Mini project:** During this course the student will be able to understand the contemporary/emerging technologies for various processes and systems. During the semester, the students are required to search/gather the material/information on a specific topic, comprehend it and present/discuss the same in the class. He/she will be acquainted to share knowledge effectively in oral (seminar) and written form (formulate documents) in the form of report. The student will be evaluated on the basis of viva/ seminar (40 marks) and report (60 marks).

2. \* Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

3. Students be encouraged to go to Industrial Training/Internship for at least 6-8 weeks during the summer break with a specific objective for Dissertation Part–I (MMST-207). The industrial Training/Internship would be evaluated as the part of the Dissertation Part–I (with the marks distribution as 40 marks for Industrial Training/Internship and 60 marks for Dissertation work).

### Semester - III

| Paper    | Subject              | Teaching Schedule |    |       | Mar           | Credit        |       |    |
|----------|----------------------|-------------------|----|-------|---------------|---------------|-------|----|
| code     |                      | L                 | D  | Total | Minor<br>Test | Major<br>Test | Total |    |
| *        | Program Elective –II | 3                 | -  | 3     | 40            | 60            | 100   | 3  |
| **       | Open Elective        | 3                 | -  | 3     | 40            | 60            | 100   | 3  |
| MMST-207 | Dissertation Part-I  | -                 | 20 | 20    | 40            | 60            | 100   | 10 |
|          | Total                | 6                 | 20 | 26    | 120           | 180           | 300   | 16 |

\*Program Elective –II:

1.Polymer Science and Technology (MMST - 201)

2. Intelligent Macromolecules (MMST - 203)

3. Green Chemistry (MMST -205)

|          | **Open Elective                         |  |  |  |  |  |  |  |
|----------|-----------------------------------------|--|--|--|--|--|--|--|
| MTOE-201 | Business Analytics                      |  |  |  |  |  |  |  |
| MTOE-203 | Industrial Safety                       |  |  |  |  |  |  |  |
| MTOE-205 | Operations Research                     |  |  |  |  |  |  |  |
| MTOE-207 | Cost Management of Engineering Projects |  |  |  |  |  |  |  |
| MTOE-209 | Composite Materials                     |  |  |  |  |  |  |  |
| MTOE-211 | Waste to Energy                         |  |  |  |  |  |  |  |

### Semester - IV

| Paper    | Subject              | Teaching Schedule |    |       | Mar           | Credit        |       |    |
|----------|----------------------|-------------------|----|-------|---------------|---------------|-------|----|
| code     |                      | L                 | D  | Total | Minor<br>Test | Major<br>Test | Total |    |
| MMST-202 | Dissertation Part-II | -                 | 32 | 32    | 100           | 200           | 300   | 16 |
|          | Total                | -                 | 32 | 32    | 100           | 200           | 300   | 16 |

Total credits of all four semesters – 68

- **Note 1**: At the end of the second semester each student is required to do his/her Dissertation work in the identified area in consent of the Guide/Supervisor. Synopsis for the Dissertation Part-I is to be submitted within three weeks of the beginning of the Third Semester.
- **Note 2**: Each admitted student is required to submit the report of his/her Dissertation Part-I as per the schedule mentioned in Academic calendar for the corresponding academic session otherwise the Dissertation Part-II cannot be continued at any level.
- **Note 3**: Each admitted student is required to submit his/her final Dissertation Part-II as per the schedule mentioned in Academic calendar for the corresponding academic session only after the publication of two papers in a journal/International/National conference of repute like IEEE, Springer, Elsevier, ACM etc.
- **Note 4:** The course of program/open elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

L P 3 0 Major Test: 60 marks Minor Test: 40 marks Total: 100 marks Time: 3hrs

### Unit - I

**Introduction:** Historical perspective of materials, Material science and technology, Classification of materials, Advanced materials, Materials of the future, Modern materials' needs.

**Metallic Materials**: Ferrous alloys: Steels, Cast irons; Non-ferrous alloys: Copper, Aluminum, Magnesium, Titanium and its alloys, refractory metals, super alloys, noble metals; Fabrication of metals: forming operations, casting, miscellaneous techniques; Thermal processing of metals: annealing processes, heat treatment of steels, precipitation hardening.

#### Unit - II

**Crystalline Materials**: Crystalline and non-crystalline materials; Fundamental concepts: lattice translational vector, symmetry operation, space lattice, basis, crystal structure, unit and primitive cell, two and three-dimensional lattice types; Metallic crystal structures: FCC, BCC, HCP and their unit cell characteristics; Some simple crystal structures: Sodium chloride, Cesium Chloride, Diamond and cubic Zinc sulfide; Crystallographic points, directions and planes.

### Unit - III

**Dielectric Materials:** Introduction, Types of dielectric materials, Different types of polarizations, Local or internal field, Clausius - Mosotti equation, Dielectric loss, Dielectric breakdown, Ferroelectric materials, Dielectric properties, Frequency and temperature dependence of dielectric properties, Applications of dielectrics.

**Superconducting Materials:** Introduction, Types of superconductors, Properties and applications of superconducting materials.

### Unit - IV

**Magnetic Materials:** Basic terminology, Classification of magnetic materials, Langevin theory of diamagnetism and paramagnetism, Weiss theory of paramagnetism and Ferromagnetism, Ferrimagnetic materials: structure and applications; Hard and Soft magnetic materials; Energy product of magnetic material, Magnetic recording materials, Magnetic principle of analog recording and reading, Magnetic bubble memory, Magnetic principle in computer data storage, Magnetic tape, Floppy disk, Magnetic hard disk, Computer aided tomography.

**Biomaterials:** Introduction, Classification of biomaterials, Applications.

- 1. Material Science and Engineering: An Introduction, W.D. Callister, Wiley- India Pvt. Ltd., New Delhi.
- 2. Introduction to Solid State Physics, C. Kittel, John Wiley & Sons (ASIA) Pte. Ltd. Singapore.
- 3. Material Science and Engineering, V. Raghavan, PHI Learning Private Limited, New Delhi.
- 4. Material Science, V. Rajendran, A. Marikani, Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 5. Engineering Materials: Properties and Applications of Metals and Alloys, C.P. Sharma, *Prentice-Hall of India Private Limited, New Delhi.*
- 6. Biomaterials: The intersection of Biology and Materials Science, J.S. Temenoff, A.G. Mikos, *Pearson, New Delhi*.

Major Test: 60 marks Minor Test: 40 marks Total: 100 marks Time: 3hrs

### Unit - I

**Hardness Testing Techniques:** Introduction, Brinell hardness test: technique, precautions, advantages and applications, disadvantages; Vickers hardness test: process, derivation of Vickers formula, sources of errors, advantages and applications, disadvantages; Rockwell hardness test: introduction, dial reading, principle of operation, advantages, precautions; Superficial Rockwell hardness test: method, precautions; Microhardness test: method, precautions, applications; Comparison of Macrohardness and Microhardness tests.

#### Unit - II

**Thermal Analysis Techniques:** Introduction, Factors affecting thermal analysis results, Thermo-gravimetric Analysis (TGA) technique: components, kinetics of reactions, applications; Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC) Techniques: components, applications; Simultaneous TG-DTA and TG-DSC: techniques and applications.

#### Unit - III

**Microscopic Analysis Techniques:** Light Microscopy: elementary geometrical optics, limits of resolution, different types of microscopy; Electron Microscopy: introduction, electron optics; Principle, instrumentation, methodology and applications of Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and Atomic Force Microscope (AFM).

#### Unit - IV

**Spectroscopy Techniques:** Infrared Spectroscopy: introduction, molecular vibrations, instrumentation, modes of operations, sampling techniques and applications; Ultraviolet and Visible Spectroscopy: introduction, colour and light absorption- the chromophore concept, theory of electronic spectroscopy, instrumentation and sampling, solvent effects and applications.

- 1. Mechanical Behaviour and Testing of Materials, A.K. Bhargava, C.P. Sharma, *PHI Learning Private Limited, New Delhi.*
- 2. Instrumental Methods of Analysis, H.W. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, CBS Publishers & Distributers, New Delhi.
- 3. Thermal Methods of Analysis: Principles, Applications and Problems, P.J. Haines, Blackie Academic & Professional, London.
- 4. Biophysics, V. Pattabhi, N. Gautham, Narosa Publishing House, Kolkata.
- 5. Organic Spectroscopy, W. Kamp, Replika Press Pvt. Ltd. India.

L P 3 0

#### Major Test: 60 marks Minor Test: 40 marks Total: 100 marks Time: 3hrs

### Unit - I

**Ceramic Materials:** Introduction, Ceramic structure: basic crystal structures; Silicate ceramics: silica, silica glasses, silicates (simple, layered); Carbon: diamond, graphite, fullerenes, material of importance (carbon nanotubes); Imperfections in ceramics: brief introduction to atomic point defects, impurities in ceramics, diffusion in ionic materials; Mechanical properties of ceramics: brittle fracture (fractography of ceramics); Stress-strain behavior: flexural strength, elastic behavior; Mechanism of plastic deformation: crystalline and non-crystalline ceramics.

#### Unit - II

**Applications and Processing of Ceramics:** Type and applications of ceramics: glasses, glass-ceramics, clay products, refractories (fireclay refractory, silica refractory, basic refractory, special refractory), abrasives, cements, advanced ceramics (MEMS, optical fibres, ceramic ball bearings, piezoelectric ceramics); Fabrication and processing: glasses, glass-ceramics (glass properties, glass forming, annealing, glass tempering etc.), clay products (characteristics of clay, composition of clay products); Fabrication tech niques: hydroplastic forming and slip casting, drying, firing, power pressing, tape casting.

#### Unit - III

**Composites Structure and Processing:** Introduction, Types of composites: particle reinforced (large particle composites, dispersion strengthened), fiber reinforced composites (fibre phase, matrix phase), polymer-matrix composites (GFRP, CFRP, aramid fibre-reinforced polymeric composite), metal-matrix composites, carbon-carbon composites, ceramic-matrix composites, cement-matrix composites (properties of each type of composite); Processing of fiber reinforced composites, Structural composite: laminar and sandwich panel composite.

### Unit - IV

**Application of composites:** Composite material for various types of applications: thermal, electrical, electromagnetic, thermoelectric, dielectric, electromagnetic windows, optical (optical wave guides, LASER), magnetic, electrochemical, multiple functions, biomedical.

- 1. Material Science and Engineering: An Introduction, W.D. William Callister, *John Wiley and Sons, New York*.
- 2. Chemical Synthesis of Advanced Ceramic Materials, D. Segal, *Cambridge University Press, New York*.
- 3. Composite Materials: Engineering and Science, F.L. Mathews, R. D. Rawlings, *Woodhad Publishing limited and CRC Press, USA*.

L P 3 0

Major Test: 60 marks Minor Test: 40 marks Total: 100 marks Time: 3hrs

### Unit - I

**Ion-Solid Interactions:** Fundamental principles, Binary elastic collisions, Ion stopping, Ion channeling, Ion induced target modification: ion implantation, ion mixing, ion sputtering.

### Unit - II

**Materials Processing-I:** Introduction, Ion irradiation effects in crystalline materials: depth profiles and ion channeling, implantation-induced crystal damage, sputtering effects and implanted profile change, radiation damage annealing; Ion implantation into semiconductors: ion implantation into Silicon, ion implantation into Germanium, ion implantation into compound semiconductors.

### Unit - III

**Materials Processing-II:** Ion beam synthesis of new phases in solids: introduction, buried insulating layers in silicon, ion beam-synthesized silicide layers, ion beam synthesis of nano-crystals in insulators; Ion beam mixing of interfaces, Ion beam slicing of thin layers, Ion beam shaping of Nanomaterials, Ion beam processing of other materials: ion implantation into metals, polymers and insulating optical materials.

### Unit – IV

**Ion Beam Preparation of Materials:** Removal of target atoms by sputtering, Effect on sputtering yield: ion energy and ion atomic number, ion incident direction, selective sputtering due to ion channeling, target material, preferential sputtering; Preparation steps by ion beam irradiation: ion beam-induced cleaning and etching, ion beam-induced material deposition, ion beam-induced depth profiling, ion beam cutting, ion beam thinning.

- 1. Ion Beams in Materials Processing and Analysis, B. Schmidt, K. Wetzig, *Springer Wien Heidelberg, New York.*
- 2. Ion Implantation and Synthesis of Materials, M. Nastasi, J.W. Mayer, *Springer Berlin Heidelberg, New York*.
- 3. Materials Science with Ion Beams, H. Bernas, Springer-Verlag Berlin, Heidelberg, New York.
- 4. Ion-Solid Interactions: Fundamentals and Applications, M. Nastasi, J.W. Mayer, J.K. Hirvonen, *Cambridge University Press.*

L P 3 0

#### Major Test: 60 marks Minor Test: 40 marks Total: 100 marks Time: 3hrs

### Unit - I

**Thin Film Technology:** Introduction, Thin film growth process: structural consequences of the growth process; Physical Vapor Deposition (PVD): introduction, vacuum evaporation, sputtering, PVD setup; Chemical Vapor Deposition (CVD), Chemical Solution Deposition (CSD), Electrochemical Deposition (ECD), Monitoring and analytical techniques: deposition rate and thickness measurement, structure analysis, composition analysis, Micro-fabrication techniques.

#### Unit - II

**Thin Film in Optics:** Optics of thin films, Antireflection (AR) coating, Multilayer and inhomogeneous AR coatings, Reflection coatings, Interference filters, Thin film polarizers, Beam Splitters, Integrated optics: waveguides, thin film optical components, passive devices; Active devices.

#### Unit - III

**Quantum Engineering Applications:** Introduction, Basic concepts, Superconductivity in thin films, S-N transition devices: switching devices, cryotron amplifiers, computer memory devices; Superconductive tunneling devices: quasiparticle tunneling, pair tunneling, SQUIDs, Applications of SQUIDs, Superconducting electronics.

#### Unit - IV

**Surface Engineering Applications:** Introduction, Surface passivation applications: coating of reaction product, metallic coatings, inorganic coatings, organic coatings; Tribological applications: we ar-resistant coatings, lubricating coatings; Decorative applications, Miscellaneous applications: adhesion-promoting coatings, preparation of heterogeneous catalysts, preparation of nuclear fuels, fabrication of structure forms, biomedical applications.

- 1. Thin Film Devices Applications, K.L. Chopra, I. Kaur, Plenum Press, New York.
- 2. Handbook of Thin Film Technology, Edited by L.I. Maissel, R. Glang, *McGraw-Hills Book Company*, *New York*.

Major Test: 60 marks Minor Test: 40 marks Total: 100 marks Time: 3hrs

#### Unit - I

**Flame Retardant Polymers:** Polymers: introduction, classification of polymers, polymer flames, flame retardation; Condensed-phase processes: bond dissociation, chemistry of polymer degradation, char forming polymers; Smoke: introduction, smoke measurement, effect of polymer structure on smoke formation, smoke suppressants for polymers.

#### Unit - II

**Mechanisms and Modes of Action in Flame Retardancy of Polymers:** Introduction, General considerations, Gas-phase mechanisms, Condensed-phase mechanism, Modes of action of halogen, phosphorus, borates, metal hydroxides and other hydrated inorganic additives-based flame retardants.

#### Unit - III

**Flame Retardant Polymer Composites:** Introduction, Properties of the constituents of composites, Flammability of composite structures, Methods of imparting flame retardancy to composites.

**Flame Retardant Polymer Nanocomposites:** Introduction, Structure and properties of layered silicates, Structure of Nanocomposites, Synthesis methods, Flame-retardant properties of Nanocomposites, Mechanism of flame retardancy in Nanocomposites.

#### Unit - IV

**Recent Developments in Flame-retarding Thermoplastics and Thermosets:** Introduction, Factors affecting flammability and its reduction, Testing procedures and hazard assessments: general aspects, Flame-retardant thermoplastics: Polyolefins, Polystyrenes, Acrylics, PVC, Saturated polyesters, Polyamides, Polycarbonate and Poly(phenylene oxide); Flame-retardant elastomers, Flame-retardant Thermosets, Inherently flame-retardant polymers.

- 1. Fire Retardant Materials, Edited by A.R. Horrocks, D. Price, CRC Press, *Woodhead Publishing Limited*, *Cambridge, England*.
- 2. Handbook of Building Materials for Fire Protection, Edited by C.A. Harper, McGraw-Hill, New York.
- 3. Fire Retardancy of Polymers: New Applications of Mineral Fillers, Edited by M.L. Bras, C.A. Wilkie, S. Bourbigot, *Published by the Royal Society of Chemistry, Cambridge, UK*.
- 4. Flame Retardant Polymeric Materials, Edited by M. Lewin, S.M. Atlas, E.M. Pearce, *Plenum Press, New York*.
- 5. Polymer Science and Technology, R.O. Ebewele, CRC Press, New York.
- 6. Plastics Technology Handbook, M. Chanda, S.K. Roy, CRC Press, Taylor & Francis Group, New York.
- 7. Fire Retardancy of Polymeric Materials, Edited by C.A. Wilkie, A.B. Morgan, *CRC Press, Taylor & Francis Group, New York*.
- 8. Flame Retardant Polymer Nanocomposites, Edited by A.B. Morgan, C.A. Wilkie, *Wiley-Interscience, A John Wiley & Sons, New Jersey.*

L P 3 0 Major Test: 60 marks Minor Test: 40 marks Total: 100 marks Time: 3hrs

### Unit - I

**Basic Concepts of Classical Thermodynamics:** Methodology and scope of thermodynamics, Thermodynamics system, State and phase, Equilibrium and non-equilibrium systems, Reversible, Irreversible and Quasistatic processes, State parameters and functions, The zeroth and first laws of thermodynamics and their consequences.

**Thermodynamics Potentials:** Definitions, Physical meaning and transformations of thermodynamics potentials, Maxwell relations and transformations of thermodynamic parameters, Chemical potential as natural variable.

Laws and Equations of Thermodynamics: The second law of thermodynamics, The third law of thermodynamics, Extremum principles in equilibrium thermodynamics, Equations of state.

Unit - II

**Entropy:** Entropy as state functions, Entropy differentials, Entropy as a measure of energy quality, Balance of entropy in isolated, closed and open systems, Micro- and macro-states molecular interpretation of entropy and increase of disorder.

**Chosen Elements of Statistical Thermodynamics:** Distribution function, Boltzmann probability distribution, Canonical Ensemble, Entropy of mixing.

**Chosen Applications of Classical Thermodynamics:** Ideal and real gases, Thermo- dynamical quantities for pure liquids and solids, Many component solutions: ideal, non-ideal, dilute, regular; Thermodynamics functions of mixing.

#### Unit - III

**Thermodynamics of Chemical Transformations:** Energy conservation in chemical reactions, Thermal effects of chemical reactions, Hess law, Kirchoff law, Chemical reaction rate, Chemical equilibrium and the law of mass action, Entropy production in chemical reaction, Coupled reactions, Le Chatelier-Braun principle.

**Stationary States:** Entropy production in the stationary state, Stability of stationary state, Stationary state with chemical reactions, Coupling of stationary states.

### Unit - IV

**Thermodynamics of Phase Changes:** Phase equilibrium and the Gibbs phase rules, Phase diagram, Phase transitions: thermodynamics, classification and free energy at the phase transition, Gibb theory of crystallisation, Crystallisation rate, Avrami equation.

Fundamentals of Non-equilibrium Thermodynamics: Characteristic of the non-equilibrium systems, Entropy production in irreversible processes.

**Local Equilibrium and Local Formulation of the Second Law:** Maximum and minimum of entropy production, Minimisation of energy dissipation, Negentropy.

- 1. Introduction to Modern Thermodynamics, D. Kondepudi, *John Wiley & Sons, New York*.
- 2. Modern Thermodynamics: From Heat Engine to Dissipative Structures, D. Kondepudi, Ilya Prigogine, John Wiley & Sons, New York.
- 3. Thermodynamics of Materials: Tom 1, D.V. Ragone, John Wiley & Sons, New York.
- 4. Thermodynamics of Materials: Tom 2, D.V. Ragone, John Wiley & Sons, New York.
- 5. Introduction to the Thermodynamics of Materials, D.R. Gaskell, Taylor & Francis, New York.
- 6. Physical Ceramics: Principles for Ceramic Science and Engineering, Y. Ming, D.P. Birnie, W.D. Kingery, John Wiley & Sons, New York.

#### Material Science and Technology Lab- I MMST-115

L O Р

8

Major Test: 60 marks Minor Test: 40 marks Total : 100 marks Time : 3hrs

- 1. To characterize the thermo-gram and differential thermo-grams of some compounds.
- 2. To determine the molecular weight of polystyrene sample using viscometric method.
- 3. To prepare phenol-formaldehyde resin (Resole) and then convert it into phenolic laminate.
- 4. To prepare Hexamethylene –diamine and Adipic acid (Nylon 66) polymer.
- 5. To determine the amount of sodium and potassium in different water samples by flame photometer.
- 6. To find the band gap of semiconductor using four probe method.
- 7. To study the hysteresis loss by tracing a BH curve.
- 8. To study the hardness of materials by Brinell hardness testing machine.
- 9. To study the hardness of materials by Rockwell hardness testing machine.
- 10. To study the hardness of materials by Vicker hardness testing machine.

**Note:** At least eight experiments should be performed by the students. The experiments may be included or excluded depending upon lab facility.

| MTRM-111             |                                             |                                                           | Resear     | ch Methodolo   | gy and IPR                   |            |        |  |  |  |
|----------------------|---------------------------------------------|-----------------------------------------------------------|------------|----------------|------------------------------|------------|--------|--|--|--|
| Lecture              | Tutorial                                    | utorial Practical Credit Major Test Minor Test Total Time |            |                |                              |            |        |  |  |  |
| 2                    | 0                                           | 0                                                         | 2          | 60             | 40                           | 100        | 3 Hrs. |  |  |  |
| Program              | To enable                                   | students to                                               | Research   | Methodology a  | and IPR for further research | work and   | 1      |  |  |  |
|                      |                                             |                                                           |            |                | new and better products, an  | nd in turn | brings |  |  |  |
|                      | about, economic growth and social benefits. |                                                           |            |                |                              |            |        |  |  |  |
| Course Outcomes (CO) |                                             |                                                           |            |                |                              |            |        |  |  |  |
| C01                  | Understan                                   | d research                                                | oroblem fo | rmulation.     |                              |            |        |  |  |  |
| CO2                  | Analyze re                                  | esearch relat                                             | ed informa | ation          |                              |            |        |  |  |  |
|                      |                                             |                                                           |            |                | Computer, Information Tech   | nology, b  | ut     |  |  |  |
|                      |                                             |                                                           |            | deas, concept, |                              |            |        |  |  |  |
| CO4                  |                                             |                                                           |            |                | important place in growth of |            |        |  |  |  |
|                      |                                             |                                                           |            |                | the need of information abo  |            |        |  |  |  |
|                      |                                             |                                                           | ght to be  | promoted amor  | ng students in general & eng | gineering  |        |  |  |  |
|                      | in particula                                | ar.                                                       |            |                |                              |            |        |  |  |  |

### Unit 1

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

### Unit 2

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

#### Unit 3

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

### Unit 4

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'.
- 2. C.R. Kothari, "Research Methodology: Methods & Techniques, 2<sup>nd</sup> edition or above, New Age Publishers.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall , "Industrial Design", McGraw Hill, 1992.
- 6. Niebel , "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

L P 3 0

### Major Test: 60 marks Minor Test: 40 marks Total:100 marks Time: 3hrs

#### Unit - I

**Rutherford Backscattering Spectroscopy:** Introduction, Scattering fundamentals: kinematic factor, stopping cross-section, Rutherford scattering cross-section; Principle of Rutherford Backscattering Spectroscopy, Fundamental of RBS techniques and its characteristics, Deviations from Rutherford formula, Instrumentation/Experimental, RBS spectra from thin and thick layer, Spectrum Analysis/Simulation, Applications and limitations of RBS.

### Unit - II

**Elastic Recoil Detection Technique:** Introduction, Fundamentals of the ERDA technique, Principle and characteristics of ERDA, ERDA using E-detection, ERDA with particle identification and depth resolution: ERD using transmission telescope, position-sensitive detector, Time-of-flight spectrometry; Heavy ion ERDA, Data analysis, Advantages and limitations of ERDA.

### Unit - III

**Accelerator Mass Spectrometry (AMS):** Introduction, Principle, Experimental, AMS using low-energy accelerators, Sample preparation for AMS, Time-of-Flight Spectrometry (TOF-MS), Detection limits of particle analyzed by AMS, Applications of AMS, Advantages and limitations of AMS.

### Unit - IV

**XRF and PIXE Techniques:** Introduction, Principle of XRF and PIXE techniques, Theory and concept, Instrumentation/Experimentation: modes of excitation for XRF analysis, x-ray detection and analysis in XRF, Source of excitation and x-ray detection in PIXE analysis: ion sources, choice of beam/PIXE using heavy ion beams, Qualitative and Quantitative analysis, Sources of background, Applications of XRF and PIXE techniques.

- 1. Atomic and Nuclear Analytical Methods, H.R. Verma, Springer Berlin Heidelberg, New York.
- 2. Fundamentals of Surface and Thin Film Analysis, L.C. Feldman, J.W. Mayer, *North Holland, New York*.

Major Test: 60 marks Minor Test: 40 marks Total: 100 marks Time: 3hrs

#### Unit - I

### Statistical Methods: Introduction, Functions and Importance.

**Measures of Central Tendency:** Measure of average value: introduction, objectives, requisites of good average and types; Simple Arithmetic Mean: method- individual observations, discrete series, continuous series, openend classes, properties, merits and demerits; Weighted Arithmetic Mean, Median: method-individual observations, discrete series, continuous series, property, merits and demerits, usefulness; Mode: methodindividual observations, discrete series, continuous series, merits, demerits and usefulness; Relation between Mean, Median and Mode, Geometric Mean: properties, methods-individual observations, discrete series, continuous series; Harmonic mean: methods, usefulness, merits and demerits; Relationship between AM, GM and HM.

### Unit - II

**Measures of Dispersion:** Introduction, Significance, Properties and methods, Range: method, merits, demerits and uses; The Interquartile Range or the Quartile deviation: method, merits, demerits; Mean Deviation: method in discrete and continuous series, merits, demerits and usefulness; The Standard Deviation: method in discrete and continuous series, properties, coefficient of variation, variance, merits and demerits.

**Skewness and Kurtosis**: Skewness: introduction, tests, methods, moments, moments about arbitrary origin, Sheppard's correction for grouping errors, measure of Skewness based on moments; Measures of Kurtosis.

### Unit - III

**Theoretical Distribution:** Introduction, Binomial Distribution: introduction, properties, constants, standard deviation, importance, fitting; Poisson Distribution: introduction, constants, role, fitting; Normal Distribution: introduction, graph, importance, properties, condition for normality, area under the curve, significance, methods of fitting- ordinates and areas.

### Unit - IV

Propagation of Errors: Standard error of a sum, difference, product and compound quantity.

**Empirical Laws and Curve fitting:** Introduction, Graphical method, Law Reducible to Linear Law, Principle of least squares, Working procedure to fit the straight line, parabola and other curves;  $\chi^2$  test and goodness of fit.

- 1. Statistical Methods, S.P. Gupta, Sultan Chand & Sons Educational Publishers, New Delhi.
- 2. Theory of Error, J. Topping, Unwin Brothers Limited, London.
- 3. Higher Engineering Mathematics, B.S. Garewal, Khanna Publications, New Delhi.
- 4. An Introduction to Probability: Theory and its Applications, Vol.-I, W. Feller, Wiley India.

Major Test: 60 marks Minor Test: 40 marks Total: 100 marks Time: 3hrs

### Unit - I

**Material Science at Nanoscale:** Introduction, Lesson from nature, Nanoworld is uniquely different, Classification of nanomaterials, Applications in various fields.

**Nanoparticle Synthesis**: Introduction, Classification of nanoparticles synthesis techniques, Solid-state synthesis of nanoparticles, Vapor phase synthesis of nanoparticles: inert gas condensation, plasma based, flame based, spray pyrolysis; Solution processing of nanoparticles: sol-gel, solution precipitation, water-oil microemulsion.

#### Unit - II

**Carbon Nanotubes:** Introduction, Structure of carbon nanotubes : single-wall, multiwall; Synthesis of carbon nanotubes, Solid carbon source-based production techniques: laser ablation, electric arc, three phase ac arc plasma; Gaseous carbon source-based production techniques: heterogeneous process, homogeneous process; Synthesis of carbon nanotubes with controlled orientation, Growth mechanism of carbon nanotubes: catalyst-free growth, catalytically activated growth, low and high temperature conditions; Properties of carbon nanotubes, Applications of carbon nanotubes.

#### Unit - III

**Metal Oxide Nanoparticles:** Introduction, Synthesis Methods: Hot-injection, Heating-up, Solvothermal, Seed-Mediated growth, Self-Assembled nanoparticles; Organic-Inorganic Hybrid Materials: introduction, rare earth oxide based hybrid nanoparticles, tungsten oxide based hybrid materials, hybrid materials synthesized in other solvents; Properties and Applications.

### Unit - IV

**Polymer Nanocomposites:** Introduction, Polymer matrices, Synthesis methods, Solution intercalation, Melt intercalation, Roll milling, In-situ polymerization, Emulsion polymerization, High shear mixing, Properties of polymer nanocomposites, Applications of polymer nanocomposites,

- 1. Nanomaterials Handbook, edited by Y. Gogotsi, *Taylor & Francis Group, New York*.
- 2. Springer Handbook of Nano-technology, edited by B. Bhushan, Springer.
- 3. Carbon Nanotubes: Properties and Applications, edited by M.J. O'Connell, *Taylor & Francis Group, New York*
- 4. Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Applications, M. Niederberger, N.Pinna, *Springer, New York*.
- 5. Polymer Nanocomposites: Processing, Characterization and Applications, J.H. Koo, *McGraw Hill, New York*.
- 6. Principles of Polymer Science, P. Bahadur, N.V. Sastry, Narosa Publishing House, New Delhi.
- 7. Nanotechnology: Basic Science and Emerging Technologies, M. Wilson, M. Simmons, B. Raguse, *Overseas Press, New Delhi.*
- 8. Nano Science and Technology, Edited by R.W. Kelsall, I.W. Hamley, M. Geoghegan, John Wiley & Sons Ltd, India.

Major Test: 60 marks Minor Test: 40 marks Total:100 marks Time: 3hrs

### Unit-I

**Environmental Law:** Environmental protection under constitution, Fundamental duty of citizens to protect environment; Environmental protection as principle of State Policy; Environment and fundamental rights, The U.N. conference on Human Environmental, Stockholm, 1972.

### Unit - II

**Environmental Materials:** Introduction, Approaches/Methods of considering environmental impact of a material or product: life cycle analysis.

**Raw Material Extraction:** Introduction, Extraction of Aluminum and Iron, Environmental impact of extraction metallurgy, Energy consumption in extraction of material and in recycling of a product: in case of Aluminum and Steel.

#### Unit - III

**Design of Materials:** Proper material selection, Process selection and product design for successful recycling, Waste minimization, Energy efficiency and increased lifetime.

**Impact of Processing of Materials:** Environmental problems associated with processing of metals, polymers, ceramics, composites, food and methods to overcome these problems.

### Unit - IV

**Sustainable Materials**: Introduction, Uses of sustainable materials generally plant- based materials: wood, natural fiber composites, natural polymers; Recycled materials like polymers, composites, aluminium and steel.

**Materials for Green Energy:** Need of renewable energy, Brief description of bio-fuel, biomass, hydroelectricity, geothermal, solar energy, tidal power, wind power, wave power as resources for renewable energy, Production of green energy: solar cell materials, fuel cell technology and catalytic pollution control.

- 1. Materials and Environment -Eco Informed Material Choice, M.F. Ashby, *Elsevier*.
- 2. Sustainable Energy without Hot Air, J.C. Mackay, UIT Cambridge, England.
- 3. Environmental Laws, Cases and Materials, P. Weinberg, University Press of America.
- 4. Fundamentals of Materials for Energy and Environmental Sustainability, D.S. Ginley, D. Cahen (Edited book), *Cambridge University Press*.
- 5. Environmental Ethics and Policy Book: Philosophy, Ecology, Economics, D.V. De Veer, Wadsworth publisher.

 $\begin{array}{cc} L & P \\ 0 & 8 \end{array}$ 

Major Test: 60 marks Minor Test: 40 marks Total: 100 marks Time: 3hrs

- 1. To determine the melting point of metals through Differential Thermal Analysis (DTA).
- 2. To study the thermal decomposition of calcium oxalate (CaC<sub>2</sub>O<sub>4</sub>.H<sub>2</sub>O) with the help of Thermogravimetry analysis (TGA) technique.
- 3. Estimate the purity of potassium chloride (KCl) and potassium sulphate (K<sub>2</sub>SO<sub>4</sub>) through Differential Thermal Analysis (DTA).
- 4. Determine the glass transition, crystallization and melting temperatures of Soda-lime glass.
- 5. To study the complete thermal profile of polymeric materials.
- 6. To study the optical properties of Potassium Permanganate (KMnO<sub>4</sub>) Solutions through UV-visible spectroscopy.
- 7. Estimate the band gap of semi-conductors with the help of UV-visible spectroscopy.
- 8. Investigate thermal kinetics involved during the pyrolysis of biomass by using single heating rate kinetic model.
- 9. To separate the organic compounds from a given mixture by Colum Chromatography.
- 10. To determine the relative viscosity and specific viscosity of a given polymeric solution by using Ubbelohde viscometer.

Note: At least eight experiments will be performed by the students.

Major Test: 60 marks Minor Test: 40 marks Total: 100 marks Time: 3hrs

### Unit - I

**Basic Concepts:** Specific features of polymer structure: regular, irregular polymers, chemical heterogenity, polydisperity, polar and non polar polymers; Classification of polymers, Polymerization mechanisms, Molecular weight of polymers: number-average, weight-average, Z-average and viscosity average; Chemical transformation of polymers: degradation, effect of high temperature, mechanical transformations, light and ionizing radiations, chemical degradation.

#### Unit - II

**Glass Transition Temperature:** Definition, Glassy solids and glass transition, Transition and associated properties, Factors affecting glass transition temperature, Glass transition temperature and molecular weight, Glass transition temperature and plasticizers, Glass transition temperature of co-polymers, Glass transition temperature, Determination of glass transition temperature.

#### Unit - III

**Crystallinty in Polymers:** Crystalline solids and their behaviour towards x-rays polymers and x-ray diffraction, Degree of crystallinity, Crystallisability, Crystallites, Helix structures, Spherulites, Polymer single crystals, Effect of crystallinity on preparation of polymers.

### Unit - IV

**Ceramics:** Clays, Silica, Feldspars, Methods for fabrication of ceramic ware, Ceramic products, Glazes procelain and Vitreous enamels.

**Composite Materials:** Introduction, Constitution, Classification: particle-reinforced composites, fibre-reinforced composites, structural composites, hybrid composites; Processing of Fibre: reinforced composites, Applications of composite materials.

- 1. Physical Chemistry of Polymers, A. Tager, Mir Publishers.
- 2. A Text book of engineering Chemistry, S.S. Dara, S. Chand & Company Ltd.
- 3. Industrial Chemistry, O.P. Vermani, A.K. Narula, Galgotia Publications Pvt. Ltd.

L P 3 0

### Major Test: 60 marks Minor Test: 40 marks Total:100 marks

Time: 3hrs

### Unit - I

**Concepts of Intelligent Macromolecules:** Introduction, Synthetic macromolecules: chain structure, classification, synthesis, chain confirmation, macromolecular structure in solution, primary, secondary, tertiary and quaternary structures; Biological macromolecules: brief description of structure of DNA, proteins, polysaccharides; Carbon nanomaterials, Intelligent macromolecules.

#### Unit - II

**Conducting Polymers:** Introduction, Conjugated conducting polymers: structure, synthesis (soluble conjugated polymers, conjugated polymer films) and properties; Charge transfer polymers: organic charge transfer complexes, polymer charge transfer complexes, charge transfer between fullerene and polymers.

**Dendrimers and Fullerene:** Introduction, Dendrimers, Synthesis: divergent approach, convergent growth approach; Structure: dendrimer with a metal core, hollow core, hydrophobic interior and hydrophilic exterior layer, guest molecules trapped in their cavities; Fullerene: chemistry of  $C_{60}$  (addition reaction, dimerisation and polymerization), polymeric derivatives of  $C_{60}$  (fullerene charm bracelets, fullerene pearl necklace).

### Unit - III

**Carbon Nanotubes:** Introduction, Structure, Properties, Synthesis: multi-wall, single wall; Purification, Microfabrication, Chemical modification: end-functionalisation (oxidation of carbon nanotubes, covalent coupling via oxidized nanotubes end), modification of nanotube outerwall, fuctionalisation of nanotube innerwall; Non-covalent chemistry of carbon nanotubes.

### Unit - IV

**Intelligent Macromolecules Applications:** C<sub>60</sub> superconductivity, Carbon nanotube Super-capacitors, Conducting polymer batteries, Carbon nanotube nano electronics: nano wires, super conductors, rings, nano circuits; Conjugated polymer sensors with electrical transducers: conductometric, potentiometric, ampermetric, volumetric.

- 1. Intelligent Macromolecules for Smart Devices from Material Synthesis to Device Applications, L. Dia, *Springer, USA*.
- 2. Dendrimer Chemistry, F. Vögtle, G. Richardt, N. Werner, John Wiley and Sons, Germany.
- 3. Fullerenes: Principles and Applications, Edited by F. Langa, J.F. Nierengarten, *RSC publication*, *England*.

Major Test: 60 marks Minor Test: 40 marks Total: 100 marks Time: 3hrs

### Unit - I

**Green Chemistry:** Introduction, Need for green chemistry: pesticides, chlorofluorocarbons, acid rain, global warming; Goals of green chemistry, Limitations in the pursuit of goals of green chemistry, Progress of green chemistry, Importance of green chemistry in daily life.

### Unit -II

**Principles of Green Chemistry and Designing of Chemical Synthesis:** Twelve principles of green chemistry, Designing of green synthesis using these principles, Prevention of waste/byproducts, Atom economy: rearrangement reactions, addition reactions, substitution reactions, elimination reactions; Prevention/minimization of toxic products, Designing safer chemicals: selection of appropriate auxiliary substances (solvents, separation agents), green solvents, immobilized solvents, ionic liquids.

### Unit - III

**Green Synthesis Methods and Conversions:** Microwave synthesis, Electro-organic synthesis, Thermochemical conversion: direct combustion, gasification; Biochemical conversion: anaerobic digestion, alcohol production from biomass.

### Unit - IV

**Green Synthesis/Reactions:** Green synthesis of compounds: adipic acid, catechol, methyl acrylate, urethane, acetaldehyde, benzyl bromide, paracetamol.

- 1. Green Reaction Media in Organic Synthesis, M. Koichi, Wiley-Blackwell, USA.
- 2. Introduction to Green Chemistry, V. Kumar, Vishal Publishing Co., Jalandhar.
- 3. Green Chemistry, R. Sanghi and M.M. Srivastava, Narosa Publishing House, New Delhi.

| MTOE-201              |             | Business Analytics                                   |              |                      |                      |                |         |  |  |  |  |  |
|-----------------------|-------------|------------------------------------------------------|--------------|----------------------|----------------------|----------------|---------|--|--|--|--|--|
| Lecture               | Tutorial    | utorial Practical Credit Major Test Minor Test Total |              |                      |                      |                |         |  |  |  |  |  |
| 3                     | 0           | 0                                                    | 3            | 60                   | 40                   | 100            | 3 Hrs.  |  |  |  |  |  |
| Program               | The main of | objective of t                                       | his course   | is to give the stude | ent a comprehensive  | e understandi  | ing of  |  |  |  |  |  |
| <b>Objective (PO)</b> | business a  | inalytics met                                        | hods.        | -                    | ·                    |                | •       |  |  |  |  |  |
|                       |             | C                                                    | ourse Out    | tcomes (CO)          |                      |                |         |  |  |  |  |  |
| C01                   | Able to ha  | ve knowledg                                          | e of variou  | s business analysis  | s techniques.        |                |         |  |  |  |  |  |
| CO2                   | Learn the i | requirement                                          | specificatio | on and transforming  | g the requirement in | to different m | nodels. |  |  |  |  |  |
| CO3                   | Learn the I | requirement                                          | representa   | ation and managing   | requirement asses    | ts.            |         |  |  |  |  |  |
| CO4                   | Learn the   | Recent Tren                                          | ds in Embe   | edded and collabor   | ative business       |                |         |  |  |  |  |  |

### Unit 1

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

### Unit 2

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents. Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

### Unit 3

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

### Unit 4

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

- 1. Business Analysis by James Cadle et al.
- 2. Project Management: The Managerial Process by Erik Larson and, Clifford Gray

| MTOE-203              |            | Industrial Safety                                         |             |                |             |   |    |        |  |  |  |
|-----------------------|------------|-----------------------------------------------------------|-------------|----------------|-------------|---|----|--------|--|--|--|
| Lecture               | Tutorial   | Itorial Practical Credit Major Test Minor Test Total Time |             |                |             |   |    |        |  |  |  |
| 3                     | 0          | 0                                                         | 3           | 60             | 40          | 1 | 00 | 3 Hrs. |  |  |  |
| Program               | To enable  | students to                                               | aware abo   | ut the industr | ial safety. |   |    |        |  |  |  |
| <b>Objective (PO)</b> |            |                                                           |             |                | -           |   |    |        |  |  |  |
|                       |            | C                                                         | course Ou   | tcomes (CO)    |             |   |    |        |  |  |  |
| C01                   | Understan  | d the industr                                             | ial safety. |                |             |   |    |        |  |  |  |
| CO2                   | Analyze fu | ndamental c                                               | f maintena  | ince enginee   | ring.       |   |    |        |  |  |  |
| CO3                   | Understan  | d the wear a                                              | nd corrosi  | on and fault t | racing.     |   |    |        |  |  |  |
| CO4                   |            |                                                           |             |                |             |   |    |        |  |  |  |
|                       | maintenan  | ce.                                                       |             |                |             |   | -  |        |  |  |  |

### Unit-1

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

### Unit-2

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

### Unit-3

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

### Unit-4

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

| MTOE-205                                                                                         |           | Operations Research                                                                  |             |                  |                        |                 |        |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------|-------------|------------------|------------------------|-----------------|--------|--|--|--|--|
| Lecture                                                                                          | Tutorial  | Practical                                                                            | Credit      | Major Test       | Minor Test             | Total           | Time   |  |  |  |  |
| 3                                                                                                | 0         | 0                                                                                    | 3           | 60               | 40                     | 100             | 3 Hrs. |  |  |  |  |
| Program                                                                                          | To enable | enable students to aware about the dynamic programming to solve problems of discreet |             |                  |                        |                 |        |  |  |  |  |
| <b>Objective (PO)</b> and continuous variables and model the real world problem and simulate it. |           |                                                                                      |             |                  |                        |                 |        |  |  |  |  |
| Course Outcomes (CO)                                                                             |           |                                                                                      |             |                  |                        |                 |        |  |  |  |  |
| C01                                                                                              | Students  | should able                                                                          | to apply th | ne dynamic prog  | gramming to solve prol | blems of discre | et and |  |  |  |  |
|                                                                                                  | continuou | ıs variables.                                                                        |             |                  |                        |                 |        |  |  |  |  |
| CO2                                                                                              | Students  | should able                                                                          | to apply th | e concept of no  | on-linear programming  |                 |        |  |  |  |  |
| CO3                                                                                              | Students  | Students should able to carry out sensitivity analysis                               |             |                  |                        |                 |        |  |  |  |  |
| CO4                                                                                              | Student s | hould able to                                                                        | o model th  | e real world pro | blem and simulate it.  |                 |        |  |  |  |  |

### Unit -1

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

### Unit -2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

#### Unit- 3

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

### Unit -4

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

| MTOE-207                                                             |           | Cost Management of Engineering Projects                                               |              |                                  |                   |           |        |  |  |  |  |
|----------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------|--------------|----------------------------------|-------------------|-----------|--------|--|--|--|--|
| Lecture                                                              | Tutorial  | utorial Practical Credit Major Test Minor Test Total Time                             |              |                                  |                   |           |        |  |  |  |  |
| 3                                                                    | 0         | 0                                                                                     | 3            | 60                               | 40                | 100       | 3 Hrs. |  |  |  |  |
| Program                                                              | To enable | o enable students to make aware about the cost management for the engineering project |              |                                  |                   |           |        |  |  |  |  |
| <b>Objective (PO)</b> and apply cost models the real world projects. |           |                                                                                       |              |                                  |                   |           |        |  |  |  |  |
|                                                                      |           | C                                                                                     | ourse Ou     | tcomes (CO)                      |                   |           |        |  |  |  |  |
| C01                                                                  | Students  | should able                                                                           | to learn the | e strategic cost ma              | anagement proces  | SS.       |        |  |  |  |  |
| CO2                                                                  | Students  | should able                                                                           | to types of  | <sup>f</sup> project and project | ct team types     |           |        |  |  |  |  |
| CO3                                                                  | Students  | Students should able to carry out Cost Behavior and Profit Planning analysis.         |              |                                  |                   |           |        |  |  |  |  |
| CO4                                                                  | Student s | hould able to                                                                         | o learn the  | quantitative techn               | iques for cost ma | nagement. |        |  |  |  |  |

### Unit-1

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

### Unit-2

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

#### Unit-3

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

### Unit-4

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

| MTOE-209              |           | Composite Materials                                                            |             |                   |                     |                  |            |  |  |  |  |
|-----------------------|-----------|--------------------------------------------------------------------------------|-------------|-------------------|---------------------|------------------|------------|--|--|--|--|
| Lecture               | Tutorial  | Practical                                                                      | Credit      | Major Test        | Minor Test          | Total            | Time       |  |  |  |  |
| 3                     | 0         | 0                                                                              | 3           | 60                | 40                  | 100              | 3 Hrs.     |  |  |  |  |
|                       | To enable | o enable students to aware about the composite materials and their properties. |             |                   |                     |                  |            |  |  |  |  |
| <b>Objective (PO)</b> |           |                                                                                |             |                   |                     |                  |            |  |  |  |  |
|                       |           | C                                                                              | ourse Ou    | tcomes (CO)       |                     |                  |            |  |  |  |  |
| C01                   | Students  | should able                                                                    | to learn th | e Classification  | and characteristics | s of Composite I | materials. |  |  |  |  |
| CO2                   | Students  | should able                                                                    | reinforcen  | nents Composit    | e materials.        |                  |            |  |  |  |  |
| CO3                   | Students  | Students should able to carry out the preparation of compounds.                |             |                   |                     |                  |            |  |  |  |  |
| CO4                   | Student s | hould able to                                                                  | o do the ar | nalysis of the co | omposite materials. |                  |            |  |  |  |  |

### UNIT-1:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Iso-strain and Iso-stress conditions.

### UNIT – 2

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

### UNIT-3

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

### UNIT – 4

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

### TEXT BOOKS:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.
- Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

### **References:**

3.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

| MTOE-211              |           | Waste to Energy                                                        |             |                  |                       |              |        |  |  |  |
|-----------------------|-----------|------------------------------------------------------------------------|-------------|------------------|-----------------------|--------------|--------|--|--|--|
| Lecture               | Tutorial  | rial Practical Credit Major Test Minor Test Total Time                 |             |                  |                       |              |        |  |  |  |
| 3                     | 0         | 0                                                                      | 3           | 60               | 40                    | 100          | 3 Hrs. |  |  |  |
| Program               | To enable | nable students to aware about the generation of energy from the waste. |             |                  |                       |              |        |  |  |  |
| <b>Objective (PO)</b> |           |                                                                        |             |                  |                       |              |        |  |  |  |
|                       |           | C                                                                      | ourse Ou    | tcomes (CO)      |                       |              |        |  |  |  |
| C01                   | Students  | should able                                                            | to learn th | e Classification | of waste as a fuel.   |              |        |  |  |  |
| CO2                   | Students  | should able                                                            | to learn th | e Manufacture o  | of charcoal.          |              |        |  |  |  |
| CO3                   | Students  | should able                                                            | to carry οι | It the designing | of gasifiers and bion | nass stoves. |        |  |  |  |
| CO4                   | Student s | hould able to                                                          | o learn the | Biogas plant te  | chnology.             |              |        |  |  |  |

### Unit-1

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

### Unit-2

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

### Unit-3

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

#### Unit-4

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

| MTAD-101       |                                                                            | English For Research Paper Writing                      |              |                      |                     |          |        |  |  |  |
|----------------|----------------------------------------------------------------------------|---------------------------------------------------------|--------------|----------------------|---------------------|----------|--------|--|--|--|
| Lecture        | Tutorial                                                                   | orial Practical Credit Major Test Minor Test Total Time |              |                      |                     |          |        |  |  |  |
| 2              | 0                                                                          | 0                                                       | 0            | -                    | 100                 | 100      | 3 Hrs. |  |  |  |
|                | Student will able to understand the basic rules of research paper writing. |                                                         |              |                      |                     |          |        |  |  |  |
| Objective (PO) |                                                                            |                                                         |              |                      |                     |          |        |  |  |  |
|                |                                                                            | C                                                       | ourse Ou     | tcomes (CO)          |                     |          |        |  |  |  |
| C01            | Underst                                                                    | and that how                                            | to improv    | e your writing skil  | ls and level of rea | dability |        |  |  |  |
| CO2            | Learn at                                                                   | bout what to                                            | write in ea  | ch section           |                     |          |        |  |  |  |
| CO3            | Underst                                                                    | Inderstand the skills needed when writing a Title       |              |                      |                     |          |        |  |  |  |
| CO4            | Ensure th                                                                  | ne good qual                                            | ity of papel | r at very first-time | submission          |          |        |  |  |  |

### Unit 1

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

### Unit 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

### Unit 3

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

### Unit 4

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

| MTAD-103              |              |                                                                                           | D            | isaster Manag      | ement                 |                   |             |  |  |  |
|-----------------------|--------------|-------------------------------------------------------------------------------------------|--------------|--------------------|-----------------------|-------------------|-------------|--|--|--|
| Lecture               | Tutorial     | Practical                                                                                 | Credit       | Major Test         | Minor Test            | Total             | Time        |  |  |  |
| 2                     | 0            | 0                                                                                         | 0            | -                  | 100                   | 100               | 3 Hrs.      |  |  |  |
| Program               | Develop al   | n understand                                                                              | ding of disa | aster risk reduci  | tion and manageme     | nt                |             |  |  |  |
| <b>Objective (PO)</b> |              |                                                                                           |              |                    |                       |                   |             |  |  |  |
|                       |              | Course Outcomes (CO)                                                                      |              |                    |                       |                   |             |  |  |  |
| C01                   | Learn to a   | rn to demonstrate a critical understanding of key concepts in disaster risk reduction and |              |                    |                       |                   |             |  |  |  |
|                       | humanitari   | imanitarian response.                                                                     |              |                    |                       |                   |             |  |  |  |
| CO2                   | Critically e | valuate disa                                                                              | ster risk re | eduction and hu    | imanitarian respons   | se policy and pr  | actice from |  |  |  |
|                       | multiple pe  | erspectives.                                                                              |              |                    |                       |                   |             |  |  |  |
| CO3                   |              |                                                                                           |              |                    | anitarian response    | and practical re  | elevance in |  |  |  |
|                       | specific typ | pes of disast                                                                             | ers and co   | nflict situations. |                       |                   |             |  |  |  |
| CO4                   | critically   | cally understand the strengths and weaknesses of disaster management                      |              |                    |                       |                   |             |  |  |  |
|                       |              |                                                                                           |              |                    | rent countries, parti | cularly their hor | ne          |  |  |  |
|                       | country or   | the countries                                                                             | s they wor   | k in               |                       |                   |             |  |  |  |

### Unit 1

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

### Unit 2

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

### Unit 3

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

### Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi.

| MTAD-105                  |                            | Sanskrit for Technical Knowledge                                                     |               |                   |                         |                    |           |  |  |  |
|---------------------------|----------------------------|--------------------------------------------------------------------------------------|---------------|-------------------|-------------------------|--------------------|-----------|--|--|--|
| Lecture                   | Tutorial                   | torial Practical Credit Major Test Minor Test Total Time                             |               |                   |                         |                    |           |  |  |  |
| 2                         | 0                          | 0                                                                                    | 0             | -                 | 100                     | 100                | 3 Hrs.    |  |  |  |
| Program                   | Students v                 | vill be able to                                                                      | ) Understa    | nding basic Sar   | nskrit language and     | Ancient Sanskrit I | iterature |  |  |  |
| <b>Objective (PO)</b>     | about scie                 | put science & technology can be understood and Being a logical language will help to |               |                   |                         |                    |           |  |  |  |
| develop logic in students |                            |                                                                                      |               |                   |                         |                    |           |  |  |  |
| Course Outcomes (CO)      |                            |                                                                                      |               |                   |                         |                    |           |  |  |  |
| C01                       | To get a v                 | vorking know                                                                         | vledge in i   | llustrious Sansk  | rit, the scientific lan | guage in the world | 1         |  |  |  |
| CO2                       | Learning                   | of Sanskrit t                                                                        | o improve     | brain functionin  | g                       |                    |           |  |  |  |
| CO3                       | Learning                   | of Sanskrit t                                                                        | o develop     | the logic in mati | hematics, science &     | & other subjects   |           |  |  |  |
|                           | enhancing the memory power |                                                                                      |               |                   |                         |                    |           |  |  |  |
| CO4                       | The engi                   | neering scho                                                                         | lars equip    | ped with Sanski   | rit will be able to exp | plore the huge     |           |  |  |  |
|                           | knowledg                   | e from ancie                                                                         | ent literatur | re                | -                       | -                  |           |  |  |  |

### Unit -1

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit – 2

Order, Introduction of roots, Technical information about Sanskrit Literature

### Unit –3

Technical concepts of Engineering: Electrical, Mechanical

### Unit -4

Technical concepts of Engineering: Architecture, Mathematics

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

| MTAD-107                  |             |                                                                                                                                                 | Value E    | ducation    |            |       |        |  |  |  |  |
|---------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|------------|-------|--------|--|--|--|--|
| Lecture                   | Tutorial    | Practical                                                                                                                                       | Credit     | Major Test  | Minor Test | Total | Time   |  |  |  |  |
| 2                         | 0           | 0                                                                                                                                               | 0          | -           | 100        | 100   | 3 Hrs. |  |  |  |  |
| Program<br>Objective (PO) |             | Inderstand value of education and self- development, Imbibe good values in students and Let<br>ne should know about the importance of character |            |             |            |       |        |  |  |  |  |
|                           |             | C                                                                                                                                               | ourse Ou   | tcomes (CO) |            |       |        |  |  |  |  |
| C01                       | Knowledge   | e of self-deve                                                                                                                                  | elopment   |             |            |       |        |  |  |  |  |
| CO2                       | Learn the i | importance c                                                                                                                                    | of Human v | /alues      |            |       |        |  |  |  |  |
| CO3                       | Developing  | Developing the overall personality                                                                                                              |            |             |            |       |        |  |  |  |  |
| CO4                       | Know abo    | out the impoi                                                                                                                                   | tance of c | haracter    |            |       |        |  |  |  |  |

#### Unit 1

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements.

#### Unit 2

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism.Love for nature, Discipline

### Unit 3

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

### Unit 4

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

#### References

1.Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

| MTAD-102              |                                                      |                                                                                            | Consti       | ution of India     |                       |                   |             |  |  |  |
|-----------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|--------------------|-----------------------|-------------------|-------------|--|--|--|
| Lecture               | Tutorial                                             | Practical                                                                                  | Credit       | Major Test         | Minor Test            | Total             | Time        |  |  |  |
| 2                     | 0                                                    | 0                                                                                          | 0            | -                  | 100                   | 100               | 3 Hrs.      |  |  |  |
| Program               | Understan                                            | d the premis                                                                               | ses inform   | ing the twin the   | mes of liberty and f  | freedom from a cl | ivil rights |  |  |  |
| <b>Objective (PO)</b> |                                                      |                                                                                            |              |                    | opinion regarding m   |                   |             |  |  |  |
|                       | constitutio                                          | nstitutional role and entitlement to civil and economic rights as well as the emergence of |              |                    |                       |                   |             |  |  |  |
|                       | nationhood in the early years of Indian nationalism. |                                                                                            |              |                    |                       |                   |             |  |  |  |
| Course Outcomes (CO)  |                                                      |                                                                                            |              |                    |                       |                   |             |  |  |  |
| C01                   | Discuss th                                           | e growth of t                                                                              | he deman     | d for civil rights | in India for the bulk | of Indians before | the         |  |  |  |
|                       | arrival of G                                         | Gandhi in Ind                                                                              | ian politics |                    |                       |                   |             |  |  |  |
| CO2                   | Discuss th                                           | e intellectua                                                                              | l origins of | the framework      | of argument that info | ormed the         |             |  |  |  |
|                       | conceptua                                            | lization of so                                                                             | cial reform  | ns leading to rev  | olution in India.     |                   |             |  |  |  |
| CO3                   |                                                      |                                                                                            |              |                    | dation of the Congre  |                   |             |  |  |  |
|                       |                                                      | nder the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct |              |                    |                       |                   |             |  |  |  |
|                       | elections tl                                         | hrough adult                                                                               | suffrage in  | n the Indian Col   | nstitution.           |                   |             |  |  |  |
| CO4                   | Discuss th                                           | e passage o                                                                                | f the Hindu  | I Code Bill of 19  | 956.                  |                   |             |  |  |  |

### Unit I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

### Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights , Right to Equality , Right to Freedom , Right against Exploitation , Right to Freedom of Religion, Cultural and Educational Rights , Right to Constitutional Remedies , Directive Principles of State Policy , Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

### Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

### Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

| MTAD-104             |                           |                                                                                           | Pedago       | ogy Studies          |                 |                     |            |  |  |  |
|----------------------|---------------------------|-------------------------------------------------------------------------------------------|--------------|----------------------|-----------------|---------------------|------------|--|--|--|
| Lecture              | Tutorial                  | Practical                                                                                 | Credit       | Major Test           | Minor Test      | Total               | Time       |  |  |  |
| 2                    | 0                         | 0                                                                                         | 0            | -                    | 100             | 100                 | 3 Hrs.     |  |  |  |
| Program              | Review e                  | existing evid                                                                             | ence on th   | e review topic to in | form programme  | e design and polic  | y making   |  |  |  |
| Objective (PO)       |                           | ndertaken by the DFID, other agencies and researchers and Identify critical evidence gaps |              |                      |                 |                     |            |  |  |  |
|                      | to guide the development. |                                                                                           |              |                      |                 |                     |            |  |  |  |
| Course Outcomes (CO) |                           |                                                                                           |              |                      |                 |                     |            |  |  |  |
| C01                  | What peda                 | hat pedagogical practices are being used by teachers in formal and informal classrooms in |              |                      |                 |                     |            |  |  |  |
|                      | developing                | countries?                                                                                |              |                      |                 |                     |            |  |  |  |
| CO2                  | What is th                | e evidence (                                                                              | on the effe  | ctiveness of these   | pedagogical pra | nctices, in what co | onditions, |  |  |  |
|                      | and with w                | hat populatio                                                                             | on of learn  | ers?                 |                 |                     |            |  |  |  |
| CO3                  |                           |                                                                                           |              | curriculum and pr    |                 | e school curricu    | lum and    |  |  |  |
|                      | guidance r                | materials bes                                                                             | t support of | effective pedagogy   | ?               |                     |            |  |  |  |
| CO4                  | What is the               | e importance                                                                              | of identify  | ving research gaps   | ?               |                     |            |  |  |  |

### Unit 1

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

### Unit 2

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

### Unit 3

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

### Unit 4

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272– 282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

| MTAD-106       |           | Stress Management by Yoga |             |                 |                        |       |        |  |  |  |  |
|----------------|-----------|---------------------------|-------------|-----------------|------------------------|-------|--------|--|--|--|--|
| Lecture        | Tutorial  | Practical                 | Credit      | Major Test      | Minor Test             | Total | Time   |  |  |  |  |
| 2              | 0         | 0                         | 0           | -               | 100                    | 100   | 3 Hrs. |  |  |  |  |
|                |           |                           |             |                 |                        |       |        |  |  |  |  |
| Objective (PO) |           |                           |             |                 |                        |       |        |  |  |  |  |
|                |           | C                         | ourse Ou    | tcomes (CO)     |                        |       |        |  |  |  |  |
| C01            | Develop I | healthy mind              | in a healtl | hy body thus im | proving social health. |       |        |  |  |  |  |
| CO2            | Improve e | efficiency                |             |                 |                        |       |        |  |  |  |  |
| CO3            | Learn the | e Yog asan                |             |                 |                        |       |        |  |  |  |  |
| CO4            | Learn the | e pranayama               |             |                 |                        |       |        |  |  |  |  |

### Unit – 1

Definitions of Eight parts of yog (Ashtanga).

### Unit- 2

Yam and Niyam, Do's and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

### Unit- 3

Asan and Pranayam, Various yog poses and their benefits for mind & body,

### Unit-4

Regularization of breathing techniques and its effects-Types of pranayam.

- 1. 'Yogic Asanas for Group Tarining-Part-I" :Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

| MTAD-108              |            | Personality Development through Life Enlightenment Skills                |             |                  |                       |     |        |  |  |  |  |  |
|-----------------------|------------|--------------------------------------------------------------------------|-------------|------------------|-----------------------|-----|--------|--|--|--|--|--|
| Lecture               | Tutorial   | orial Practical Credit Major Test Minor Test Total Time                  |             |                  |                       |     |        |  |  |  |  |  |
| 2                     | 0          | 0                                                                        | 0           | -                | 100                   | 100 | 3 Hrs. |  |  |  |  |  |
| Program               | To learn t | learn to achieve the highest goal happily                                |             |                  |                       |     |        |  |  |  |  |  |
| <b>Objective (PO)</b> |            | become a person with stable mind, pleasing personality and determination |             |                  |                       |     |        |  |  |  |  |  |
|                       | To awake   | o awaken wisdom in students                                              |             |                  |                       |     |        |  |  |  |  |  |
|                       |            | C                                                                        | ourse Ou    | tcomes (CO)      |                       |     |        |  |  |  |  |  |
| C01                   | Students   | become awa                                                               | are about l | eadership.       |                       |     |        |  |  |  |  |  |
| CO2                   | Students   | will learn ho                                                            | w to perfo  | rm his/her dutie | s in day to day work. |     |        |  |  |  |  |  |
| CO3                   | Understa   | Inderstand the team building and conflict                                |             |                  |                       |     |        |  |  |  |  |  |
| CO4                   | Student v  | vill learn how                                                           | to becom    | e role model fo  | r the society.        |     |        |  |  |  |  |  |

### Unit – 1

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

### Unit – 2

Approach to day to day work and duties; Shrimad Bhagwad Geeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

### Unit - 3

Statements of basic knowledge; Shrimad Bhagwad Geeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

### Unit – 4

Personality of Role model; Shrimad Bhagwad Geeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1. Srimad Bhagavad Gita, Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

### Dissertation Part – I and Dissertation Part - II

|                      | Dissertation Part-I (MMST-207) and Dissertation Part-II (MMST-202)                                |  |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Course Outcomes (CO) |                                                                                                   |  |  |  |  |  |  |  |
| C01                  | Ability to synthesize knowledge and skills previously gained and applied to an in depth study and |  |  |  |  |  |  |  |
|                      | execution of new technical problem.                                                               |  |  |  |  |  |  |  |
| CO2                  | Capable to select from different methodologies, methods and forms of analysis to produce a        |  |  |  |  |  |  |  |
|                      | suitable research design, and justify their design.                                               |  |  |  |  |  |  |  |
| CO3                  | Ability to present the findings of their technical solution in a written report.                  |  |  |  |  |  |  |  |
| CO4                  | Presenting the work in International/ National conference or reputed journals.                    |  |  |  |  |  |  |  |

### Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following:

Relevance to social needs of society

Relevance to value addition to existing facilities in the institute

Relevance to industry need

Problems of national importance

Research and development in various domain

### The student should complete the following:

Literature survey Problem Definition

Motivation for study and Objectives

Preliminary design / feasibility / modular approaches

Implementation and Verification

Report and presentation

The dissertation part- II is based on a report prepared by the students on dissertation allotted to them. It may be based on:

Experimental verification / Proof of concept.

The viva-voce examination will be based on the above report and work.

### Guidelines for Dissertation Part – I and Dissertation Part - I

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two parts i.e. Part– I: July to December and Part– II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives.

The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing Engineering and any other related domain. In case of Industry sponsored projects, the relevant application notes, white papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Part–I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper, proof of concept/functionality, part results, and record of continuous progress.

Part–I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Part-I work.

During Part– II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Part–II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, and record of continuous progress.

Part-II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the Part-I work.

# **UNIVERSITY INSTITUTE OF ENGINEERING & TECHNOLOGY**

## SCHEME OF EXAMINATIONS FOR MASTER OF TECHNOLOGY IN BIOTECHNOLOGY (W. E. F. SESSION: 2018-19)

# **SEMESTER-I**

| S. No. | Course<br>Code | SUBJECT                               | L  | Т | Р | Tot<br>al | Minor Test | Major Test | Practical | Cr. | Duration<br>of Exam<br>(Hrs.) |
|--------|----------------|---------------------------------------|----|---|---|-----------|------------|------------|-----------|-----|-------------------------------|
| 1      | MTBT-101       | Genomics and<br>Proteomics            | 3  | - | - | 3         | 40         | 60         |           | 3   | 3                             |
| 2      | MTBT-103       | Advances in<br>Bioprocess Engineering | 3  | - | - | 3         | 40         | 60         |           | 3   | 3                             |
| 3      | *              | Program Elective –I                   | 3  | - | - | 3         | 40         | 60         |           | 3   | 3                             |
| 4      | **             | Program Elective-II                   | 3  | - | - | 3         | 40         | 60         |           | 3   | 3                             |
| 5      | MTBT-117       | Bio-analytical<br>Techniques Lab      | -  | - | 4 | 4         | 40         |            | 60        | 2   | 3                             |
| 6      | MTBT-119       | Fermentation<br>Technology Lab        | -  | - | 4 | 4         | 40         |            | 60        | 2   | 3                             |
| 7      | MTRM-111       | Research Methodology<br>and IPR       | 2  | - | - | 2         | 40         | 60         |           | 2   | 3                             |
| 8      | ***            | Audit Course-I                        | 2  |   |   | 2         | 100        |            |           | 0   | 3                             |
|        |                | Total                                 | 16 |   | 8 | 24        | 280        | 300        | 120       | 18  |                               |
|        |                |                                       |    |   |   |           | 700        |            |           |     |                               |

| *Pr               | ogram Elective-I     | **Program Elective -II             |                        |  |  |  |  |  |  |
|-------------------|----------------------|------------------------------------|------------------------|--|--|--|--|--|--|
| Course No.        | Subject              | Course No.                         | Subject                |  |  |  |  |  |  |
| MTBT-105          | Phytomedicine        | MTBT-111                           | Biomaterial Technology |  |  |  |  |  |  |
| MTBT-107          | Microbial Diversity  | MTBT-113                           | Biosensor Technology   |  |  |  |  |  |  |
| MTBT-109          | Fungal Biotechnology | MTBT-115                           | Protein Engineering    |  |  |  |  |  |  |
| ***Audit Course-I |                      |                                    |                        |  |  |  |  |  |  |
| Course No.        | Subject              |                                    |                        |  |  |  |  |  |  |
| MTAD-101          | English              | English for Research Paper Writing |                        |  |  |  |  |  |  |
| MTAD-103          | Disaste              | Disaster Management                |                        |  |  |  |  |  |  |
| MTAD-105          | Sanskri              | Sanskrit for Technical Knowledge   |                        |  |  |  |  |  |  |
| MTAD-107          | Value E              | Value Education                    |                        |  |  |  |  |  |  |

**Note:** 1. The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

2. \*\*\* Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

# SEMESTER- II

| S. No. | Course Code | Subject                               | L  | T | Ρ  | Tota<br>I | Minor*<br>Test | Major Test | Practical | Cr. | Duration of<br>Exam<br>(Hrs.) |
|--------|-------------|---------------------------------------|----|---|----|-----------|----------------|------------|-----------|-----|-------------------------------|
| 1      |             | Drug Discovery and<br>Development     | 3  | - | -  | 3         | 40             | 60         |           | 3   | 3                             |
| 2      | MTBT-104    | Medical Biotechnology                 | 3  | - | -  | 3         | 40             | 60         |           | 3   | 3                             |
| 3      | *           | Program Elective-III                  | 3  | - | -  | 3         | 40             | 60         |           | 3   | 3                             |
| 4      | **          | Program Elective-IV                   | 3  | - | -  | 3         | 40             | 60         |           | 3   | 3                             |
| 5      | MTBT-118    | Molecular Techniques<br>Lab           |    | - | 4  | 4         | 40             |            | 60        | 2   | 3                             |
| 6      | MTBT-120    | Advanced Molecular<br>Techniques. Lab | -  | - | 4  | 4         | 40             |            | 60        | 2   | 3                             |
| 7      | # MTBT-122  | Mini Project                          | -  | - | 4  | 2         | 40             | 60         |           | 2   | 3                             |
| 8      | ***         | Audit Course-II                       | 2  |   |    | 2         | 100            |            |           | 0   | 3                             |
|        | Total       |                                       | 14 |   | 12 | 24        | 280            | 300        | 120       | 18  | 3                             |
|        |             |                                       |    |   |    |           |                | 700        |           |     |                               |

|            | *Program Elective -III            | **Program Elective -IV |                                  |  |  |  |
|------------|-----------------------------------|------------------------|----------------------------------|--|--|--|
| Course No. | Subject                           | Course No.             | Subject                          |  |  |  |
| MTBT-106   | Metabolic Engineering             | MTBT-112               | Biomedical Equipments            |  |  |  |
| MTBT-108   | Biofuel Technology                | MTBT-114               | Gene Therapy and Gene<br>Editing |  |  |  |
| MTBT-110   | Advanced Industrial Biotechnology | MTBT-116               | Metagenomics                     |  |  |  |

|                           | *** Audit Course - II                                      |  |  |  |  |  |
|---------------------------|------------------------------------------------------------|--|--|--|--|--|
| MTAD-102                  | Constitution of India                                      |  |  |  |  |  |
| MTAD-104 Pedagogy Studies |                                                            |  |  |  |  |  |
| MTAD-106                  | Stress Management by Yoga                                  |  |  |  |  |  |
| MTAD-108                  | Personality Development through Life Enlightenment Skills. |  |  |  |  |  |

**Note:** 1. The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

2. \*\*\* Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

3. Students be encouraged to go to Industrial Training/Internship for at least 6-8 weeks during the summer break with a specific objective for Dissertation Part–I (MTBT-203). The industrial Training/Internship would be evaluated as the part of the Dissertation Part–I (with the marks distribution as 40 marks for Industrial Training/Internship and 60 marks for Dissertation work).

#4. Mini project: During this course the student will be able to understand the contemporary/emerging technologies for various processes and systems. During the semester, the students are required to search/gather the material/information on a specific topic, comprehend it and present/discuss the same in the class. He/she will be acquainted to share knowledge effectively in oral (seminar) and written form (formulate documents) in the form of report. The student will be evaluated on the basis of viva/ seminar (40 marks) and report (60 marks).

# **SEMESTER -III**

| S. No. | Course<br>Code | Subject                        | L | Т | Р  | Total | Minor<br>Test | Major Test | Cr. | Duration of Exam<br>(Hrs.) |
|--------|----------------|--------------------------------|---|---|----|-------|---------------|------------|-----|----------------------------|
| 1      | MTBT-201       | Advanced Food<br>Biotechnology | 3 | - | -  | 3     | 40            | 60         | 3   | 3                          |
| 2      | *              | Open Elective                  | 3 | - | -  | 3     | 40            | 60         | 3   | 3                          |
| 3      | MTBT-203       | Dissertation Part-I            | - | - | 20 | -     | 100           | -          | 10  | -                          |
|        |                | Total                          | 6 |   | 20 | 6     | 180           | 120        | 16  | -                          |
|        | Total          |                                |   |   |    | 300   |               |            |     |                            |

|    |                                 | *Open Elective                          |  |  |  |  |
|----|---------------------------------|-----------------------------------------|--|--|--|--|
| 1. | MTOE-201                        | Business Analytics                      |  |  |  |  |
| 2. | MTOE-203                        | Industrial Safety                       |  |  |  |  |
| 3. | 3. MTOE-205 Operations Research |                                         |  |  |  |  |
| 4. | MTOE-207                        | Cost Management of Engineering Projects |  |  |  |  |
| 5. | MTOE-209                        | Composite Materials                     |  |  |  |  |
| 6. | MTOE-211                        | Waste to Energy                         |  |  |  |  |

### SEMESTER-ĨV

| Sr. No. | Course Code |                          | L | Т | Ρ  | Total | Minor<br>Test | Major Test | Cr. | Duration of<br>Exam (Hrs.) |
|---------|-------------|--------------------------|---|---|----|-------|---------------|------------|-----|----------------------------|
| 1       | MTBT-202    | Dissertation<br>Part- II | - | - | 32 | -     | 100           | 200        | 16  | 3                          |
|         | Total       |                          |   |   | 32 |       | 100           | 200        | 16  | -                          |
|         | 300         |                          |   |   |    |       |               | 16         |     |                            |

### Total credits of all four semesters - 68

- Note 1: At the end of the second semester each student is required to do his/her Dissertation work in the identified area in consent of the Guide/Supervisor. Synopsis for the Dissertation Part-I is to be submitted within three weeks of the beginning of the Third Semester.
- **Note 2**: Each admitted student is required to submit the report of his/her Dissertation Part-I as per the schedule mentioned in Academic calendar for the corresponding academic session otherwise the Dissertation Part-II cannot be continued at any level.
- **Note 3**: Each admitted student is required to submit his/her final Dissertation Part-II as per the schedule mentioned in Academic calendar for the corresponding academic session only after the publication of two papers in a journal/International/National conference of repute like IEEE, Springer, Elsevier, ACM or equivalent etc.
- **Note 4:** The course of program/open elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

| MTBT-<br>101                 |                                                                       | GENOMICS AND PROTEOMICS                                                                 |              |                   |                      |                   |        |  |  |  |  |  |  |
|------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------|-------------------|----------------------|-------------------|--------|--|--|--|--|--|--|
| Lecture                      | Tutorial                                                              | Practical                                                                               | Credit       | Major Test        | Minor Test           | Total             | Time   |  |  |  |  |  |  |
| 3                            | 0                                                                     | 0                                                                                       | 3            | 60                | 40                   | 100               | 3 Hrs. |  |  |  |  |  |  |
| Program<br>Objective<br>(PO) | To enlighten the knowle                                               | o enlighten the knowledge of the Students on different areas of genomics and proteomics |              |                   |                      |                   |        |  |  |  |  |  |  |
|                              |                                                                       |                                                                                         | Cours        | e Outcomes (C     | D)                   |                   |        |  |  |  |  |  |  |
| C01                          | Students will                                                         | be able to kn                                                                           | now structur | al organization a | nd different tools u | sed for analysis. |        |  |  |  |  |  |  |
| CO2                          | Students will                                                         | Students will be able to gain knowledge about Genome sequencing                         |              |                   |                      |                   |        |  |  |  |  |  |  |
| CO3                          | Students will                                                         | Students will be able to know about techniques used in protein analysis.                |              |                   |                      |                   |        |  |  |  |  |  |  |
| CO4                          | CO4 Students will be able to study analysis of Genomic and Proteomics |                                                                                         |              |                   |                      |                   |        |  |  |  |  |  |  |

**Introduction**: Structural organization of genome in Prokaryotes and Eukaryotes; Organelle DNA-mitochondrial, chloroplast; DNA sequencing principles and translation to large scale projects; Next-Gen sequence technology and applications. Recognition of coding and non-coding sequences and gene annotation; Tools for genome analysis- RFLP, DNA fingerprinting, RAPD, PCR,. DNA chips and their use in transcriptome analysis; Mutants and RNAi in functional genomics.

### Unit II

**Genome sequencing projects**: Human, microbes, plants and animals; Accessing and retrieving genome project information from web; Identification and classification using molecular markers-16SrRNAtyping/sequencing, EST and SNP's contigs; allele/gene mining; synteny and comparative genomics. Dart

#### Unit III

**Proteomics**: Protein analysis (includes measurement of concentration, amino acid composition, N-terminal sequencing);2 Delectrophoresis of proteins; Microscale solution isoelectric focusing; Peptide fingerprinting; Protein-protein interactions, Yeast two hybrid system. SAGE.

#### Unit IV

**Genomic and Proteomic analysis**: Metabolomics for elucidating metabolic pathways, Analysis of microarray data; Protein and peptide microarray-based technology; PCR-directed protein *insitu* arrays; Structural proteomics. Real Time PCR, Platform technologies for screening.

- 1. Voet D, Voet JG & PrattCW, Fundamentals of Biochemistry, 2<sup>ndEdition.Wiley2006</sup>
- 2. Brown TA, Genomes, 3rd Edition. Garland Science2006
- 3. Campbell AM & Heyer LJ, Discovering Genomics, Proteomics and Bioinformatics, 2nd Edition...
- 4. PrimroseS & TwymanR, Principles of Gene Manipulation and Genomics, 7<sup>thEdition, Blackwell,2006.</sup>
- 5. Glick BR & Pasternak JJ, Molecular Biotechnology, 3rdEdition, ASM Press, 1998.
- 6. Specific journals and published references.

| MTBT-103 | Advances in     | Bioprocess E                                                                          | ngineering  |              |                 |            |           |  |  |  |  |
|----------|-----------------|---------------------------------------------------------------------------------------|-------------|--------------|-----------------|------------|-----------|--|--|--|--|
| Lecture  | Tutorial        | Practical                                                                             | Credit      | Major        | Minor           | Total      | Time      |  |  |  |  |
| 3        | 0               | -                                                                                     | 3           | 60           | 40              | 100        | 3         |  |  |  |  |
| PURPOSE  | To sensitize th | o sensitize the students about Advances in Bioprocess Engineering                     |             |              |                 |            |           |  |  |  |  |
| COUSE    |                 | · · · · ·                                                                             |             |              |                 |            |           |  |  |  |  |
| OUTCOMES |                 |                                                                                       |             |              |                 |            |           |  |  |  |  |
|          |                 |                                                                                       |             |              |                 |            |           |  |  |  |  |
| CO 1     | To sensitize    | To sensitize students about basic concept of Bioprocess and its historical            |             |              |                 |            |           |  |  |  |  |
|          | development.    |                                                                                       |             |              |                 |            |           |  |  |  |  |
| CO2      | The students    | will be able                                                                          | to unders   | tand about   | ideal reactor   | 's for kin | etic data |  |  |  |  |
|          | measurement     | and industrial                                                                        | bioreactor. |              |                 |            |           |  |  |  |  |
| CO3      | The students v  | The students will be able to learn about techniques used for recovery of fermentation |             |              |                 |            |           |  |  |  |  |
|          | product.        |                                                                                       |             | -            |                 |            |           |  |  |  |  |
| CO4      | The students w  | vill be able to ι                                                                     | understand  | the basic co | ncepts in proce | ess optimi | zation.   |  |  |  |  |

**Introduction to Bioprocess Engineering: Historical development of bioprocessing technology**, processing and production of recombinant products. Batch and chemostat cultures; Computer simulations; Fed-batch and mixed cultures; Scale-up principles. Transport phenomenon in bioprocess systems.

Unit II

Kinetics of substrate utilization and product formation. Ideal reactors for kinetics measurements. High performing reactors and industrial reactors. Kinetics of balanced growth.. Structured kinetic models. Product formation kinetics. Segregated kinetic models of growth and product formation.

### Unit III

Recovery and purification of fermentation products: Liquid-liquid extraction, cell disruption and isolation of non- secreted products, Lyophilization and Spray drying. Membrane based affinity separations; two-phase affinity partitioning; use of reverse micelles in protein separation; chiral separations; molecular imprinting.

#### Unit IV

**Fermentation Technology**: Case studies on production of lactic acid, glutamic acid, penicillin, microbial lipase and protease, recombinant insulin. Case studies should deal with strain improvement, medium designs, and process optimization. **References**-

1. Biochemical Engineering fundamentals" by J E Bailey and D F Ollis, 2nd ed, McGraw-Hill .

- 2. "Principles of fermentation technology" by P F Stanbury and A Whitaker, Pergamon press.
- 3. "Principles of Cell Energetics" : BIOTOL series, Butterworth Heinemann.
- 4. "Bioprocess Technology Kinetics & Reactors" by A Moser, Springer-Verlag.
- 5. "Biotechnology" Vol.4 Meanning Modeling and Control Ed. K.Schugerl, VCH (1991).
- 6 "Biotechnology" Vol.3 Bioprocessing Ed.G. Stephanopoulos, VCH (1991).
- 7. "Biochemical Engineering and Biotechnology Handbook" by B.Atkinson&F.Mavituna, 2nd Ed. Stockton Press (1991).
- 7. Specific journals and published references.

| MTBT-105                                                                                              |                        |                                                                                                                                                              | Phyte        | omedicine        |                    |                      |              |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|--------------------|----------------------|--------------|--|--|--|--|--|
| Lecture                                                                                               | Tutorial               | Practical Credit                                                                                                                                             |              | Major Test       | Minor Test         | Total                | Time         |  |  |  |  |  |
| 3                                                                                                     | 0                      | 0                                                                                                                                                            | 3            | 60               | 40                 | 100                  | 3 Hrs.       |  |  |  |  |  |
| Program<br>Objective<br>(PO)                                                                          |                        | udents will have knowledge about various strategies for the development of phytomedicine and mode of action bioactive compound for the treatment of diseases |              |                  |                    |                      |              |  |  |  |  |  |
|                                                                                                       |                        |                                                                                                                                                              | Course Ou    | tcomes (CO)      |                    |                      |              |  |  |  |  |  |
| C01                                                                                                   | Students will          | learn about b                                                                                                                                                | asics of Phy | ytomedicine and  | quality issue asso | ociated with current | tmedicine    |  |  |  |  |  |
| CO2                                                                                                   | Students w phytomedici |                                                                                                                                                              | ut selectior | n of plant for   | medicine develo    | pment and curre      | nt status of |  |  |  |  |  |
| CO3 Students will have knowledge about various steps and strategies involved in phytom<br>development |                        |                                                                                                                                                              |              |                  |                    |                      |              |  |  |  |  |  |
| CO4                                                                                                   |                        | I have knowl<br>on of various                                                                                                                                |              | phytomedicine in | treatment of seve  | ere diseases,        |              |  |  |  |  |  |

What is phytomedicine? History of phytomedicine. Taxonomy, Morphology and Ecology of Medicinal plants: a botanical perspective. Economic value of phytomedicne. Bioactive compounds in phytomedicine. Role of plant-derived compounds in drug development. Different classes of plant Secondary metabolites as a source of phytomedicine. Medicinal plant: molecular biology and Biotechnology approaches. Breeding and cultivation of medicinal plants, quality issues of current herbal medicines

## Unit II

Selecting medicinal plants for development of phytomedicine and use in primary health care; bioactive phytocompounds and products traditionally used in India and Asia. Recent developments in drug discovery from plants. Examples of plant-derived compounds currently involved in clinical trials Phytomedicine: India's contribution.

### Unit III

Development of phytomedicine; extraction, sample preparation, application of all available modern, high-tech methods to standardize phytomedicines before going for systematic pharmacological investigations and clinical studies. Quality control, screening, toxicity, and regulation of herbal drugs.

#### Unit IV

Application of phytomedicine in modern drug development. Molecular modes of action of some successful molecules used in phytomedicine, phyto-complexes versus single-entity drug, bioavailability issue. Drug delivery system for herbal-based therapeutics Methods for testing the anti-microbial, anti-cancer, anti-HIV, anti-diabetic, and neuroprotective activities of plant extracts. Reverse pharmacology approach for Phytomedicine development.

#### References:

1. Iqbal Ahmad, Farrukh Aqil, Mohammad Owais: Modern Phytomedicine: Turning Medicinal Plants into Drugs. (Wiley) 2006.

2. Leland J. Cseke; Ara Kirakosyan, Peter B. Kaufman, Sara Warber; James A. Duke; Harry L. Brielmann: Natural Products from Plants, 2ndedition; (CRC Press)2006.

3. Naturally Occurring Bioactive Compounds, 1st Edition (Advances in Phytomedicine vol 3). Edited by Rai & Carpinella. Publisher: ElsevierScience; 1 edition (December 2, 2006).

4. Stephen Neidle, Antony D Buss, Mark S Butler: Natural Product Chemistry for Drug Discovery; 1st Edition; (Royal Society of Chemistry).2009

5 Chemistry and Pharmacology of Naturally Occurring BioactiveCompounds. Editor, Goutam Brahmachari . Publisher: CRC Press; 1edition (February 20, 2013) 2013.

| MTBT-107                     |                                                                                                           |                                                                                                               |                   | MICROBIAL DIVE    | RSITY             |                  |        |  |  |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|------------------|--------|--|--|--|--|--|
| Lecture                      | Tutorial                                                                                                  | Practical                                                                                                     | Credit            | Major Test        | Minor Test        | Total            | Time   |  |  |  |  |  |
| 3                            | -                                                                                                         | -                                                                                                             | 3                 | 60                | 40                | 100              | 3 Hrs. |  |  |  |  |  |
| Program<br>Objective<br>(PO) | To familiarize the students with the diversity of microorganisms on the Earth and concept of metagenomics |                                                                                                               |                   |                   |                   |                  |        |  |  |  |  |  |
|                              |                                                                                                           |                                                                                                               | Cours             | se Outcomes       |                   |                  |        |  |  |  |  |  |
| C01                          | Learner will                                                                                              | know about mic                                                                                                | crobial evolution | n and systematics | s and overview of | f bacterial dive | ersity |  |  |  |  |  |
| CO2                          | Students w                                                                                                | Students will be able to learn about diversity of Gram-positive bacteria                                      |                   |                   |                   |                  |        |  |  |  |  |  |
| CO3                          | This unit will enable the students to understand the archaeal diversity                                   |                                                                                                               |                   |                   |                   |                  |        |  |  |  |  |  |
| CO4                          | Students w                                                                                                | Students will be able to learn eukaryotic and viral diversity and will also learn the concept of metagenomics |                   |                   |                   |                  |        |  |  |  |  |  |

**Microbial Evolution and Systematics.** Early Earth and the origin and diversification of life. Microbial evolution and systematic. Bergey's Manual of Systematic Bacteriology. Archaea and Bacterial Domains.

**Overview. Bacterial Diversity**: The phylogeny of bacteria. Phototrophic, Chemolithotrophic and MethanotrophicProteobacteria. Aerobic and Facultatively Aerobic Chemoorganotrophic Proteobacteria. Morphologically unusual Proteobacteria. Delta and Epsilonproteobacteria.

### unit II

**Overview of Gram positive and other bacteria**. Actinobacteria.Cyanobacteria and Prochlorophytes. Chlamydia. Planctomyces/ Pirellula. Verrucomicrobia. Flavobacteria. Cytophaga Group. Green Sulphur and Non-Sulphur Bacteria. Spirochetes. Dienococci. Hyperthermophilic Bacteria- Nitrospira and Deferribacter.

#### unit III

Archaeal Diversity. Phylogeny and general metabolism. Euryarchaeota. Crenarchaeota. Evolution and life at hightemperature.

#### UNIT-IV

**Eukaryotic and Viral Diversity.** Phylogeny of Eukarya. Protists, Fungi, Unicellular Red and Green Algae. ViralDiversity. Viruses of Bacteria and Archaea. RNA and DNA viruses of Eukaryotes. Retroviruses and Hepadnaviruses.

**Culture independent studies of microorganisms** – metagenomics: principles and applications – steps in construction of a metagenomes – examples of metagenomic studies – metagenomics as a tool to reveal the vast microbial diversity.

- 1. Madigan. M. T. 2008. Brock: Biology of Microorganisms. 12<sup>th</sup> Edition. Benjamin Cummings. California, USA.
- 2. Prescott, L. M., Harley, J. P. and Klein, D. A. 2007. Microbiology. 7th Edition. McGraw Hill, USA.
- 3. Atlas, R. M. and Bartha, R. 1997. Microbial Ecology: Fundamentals and Applications. Benjamin Cummings, California, USA.
- 4. Specific Journals and Published References

| MTBT-109 | FUNGAL BIOTECHNOLOGY                                                                      |                                                                          |                 |                    |                    |               |        |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------|--------------------|--------------------|---------------|--------|--|--|--|--|--|
| Lecture  | Tutorial                                                                                  | Practical                                                                | Credit          | Major Test         | Minor Test         | Total         | Time   |  |  |  |  |  |
| 3        | -                                                                                         | -                                                                        | 3.0             | 60                 | 40                 | 100           | 3 Hrs. |  |  |  |  |  |
| Purpose  |                                                                                           | To familiarize the students with the concepts of Fungal Biotechnology    |                 |                    |                    |               |        |  |  |  |  |  |
| 1        |                                                                                           |                                                                          | Course          | Outcomes           |                    |               |        |  |  |  |  |  |
| C01      |                                                                                           | Learner will kn                                                          | ow about basi   | cs of fungal biote | chnology and fun   | gal diversity |        |  |  |  |  |  |
| CO2      |                                                                                           | Students                                                                 | will be able to | understand the di  | versity of protozo | oal fungi     |        |  |  |  |  |  |
| CO3      | This unit will enable the students to understand applications of fungi in various sectors |                                                                          |                 |                    |                    |               |        |  |  |  |  |  |
| CO4      |                                                                                           | Students will be able to learn about keratonophilic and endophytic fungi |                 |                    |                    |               |        |  |  |  |  |  |

#### UNIT-I

Fungal biotechnology : Fungi and Fungus-like Organisms—Introduction and Classification. Historical Development of Mycology.

Fungal Diversity—Kingdom Fungi. Phylum *Chytridiomycota* Phylum *Zygomycota* Phylum *Zygomycota* Class *Trichomycetes*. Phylum *Ascomycota* Introduction. Phylum *Basidiomycota* Introduction. Anamorphic Fungi (Deuteromycetes). Fungi as symbionts-Lichens.

#### UNIT-II

Fungal Diversity- Kingdom Straminipila (Heterokont Zoosporic Organisms). Phylum Oomycota, Hyphochytriomycota, Labyrinthulomycota (Net Slime Molds). Plasmodiophoromycota (Endoparasitic Slime Molds), Dictyosteliomycota. (Dictyostelid Cellular Slime Molds, Acrasiomycota (Acrasid Cellular Slime Molds). Myxomycota (Plasmodial or True Slime Molds).

#### UNIT-III

Fungi as Saprotrophs and their Role in Nutrient Cycling and Bioremediation. Fungal Biotechnology–Introduction and Applications in agriculture, food, medicine and industry.

Opportunities of fungal applications in pulp and paper manufacturing. Role of fungi in bioremediation. Fungi in bioremediation of toxic metals from waste water. Recycling of agro-wastes for protein production through mushroom cultivation. *Curvularia lunata* : A versatile organism for biotransformation of organic compounds

#### UNIT-IV

Fungi in enzyme industries. Starch hydrolysing enzymes of thermophilic moulds. Production and application of fungal Xylanases.

Keratinophilic fungi : Diversity and sensitivity to some medicinal plants Current trends in aeromycological research

Endophytic Fungal Biology- Present Status and Future prospective in Biotechnology.

- 1. Rai, M. K. and Deshmukh S. K. Fungi: Diversity and Biotechnology. Scientific Publishers.
- 2. Aneja, K. R. and Mehrotra, R.S. Fungal Diversity and Biotechnology

| MTBT-111                                                                                                                              |                              | В                                                                                         | IOMATERI    | AL TECHNOLO     | GY                                           |                   |            |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------|-------------|-----------------|----------------------------------------------|-------------------|------------|--|--|--|--|--|--|
| Lecture                                                                                                                               | Tutorial                     | Practical Cred                                                                            |             | Major Test      | Minor Test                                   | Total             | Time       |  |  |  |  |  |  |
| 3                                                                                                                                     | 0                            | 0                                                                                         | 3           | 60              | 40                                           | 100               | 3 Hrs.     |  |  |  |  |  |  |
| Program<br>Objective<br>(PO)                                                                                                          | To enable students to u      | o enable students to understand the role of gene therapy in treatment of severe diseases. |             |                 |                                              |                   |            |  |  |  |  |  |  |
| Course Outco                                                                                                                          | mes (CO)                     |                                                                                           |             |                 |                                              |                   |            |  |  |  |  |  |  |
| C01                                                                                                                                   |                              |                                                                                           |             | •               | need of biomateria<br>neir potential applica |                   | materials, |  |  |  |  |  |  |
| CO2                                                                                                                                   | Students wil<br>improve bioc |                                                                                           | biomaterial | degradation, ce | ell interaction with b                       | piomaterial and p | process to |  |  |  |  |  |  |
| CO3 Students will have knowledge about Biomaterial implantation, imuune and infalammatory to biomaterial, tests for hemocompatibility |                              |                                                                                           |             |                 |                                              |                   | response   |  |  |  |  |  |  |
| CO4 Students will have learn about the risk of Infection, tumorigenesis and calcification Associated biomaterials                     |                              |                                                                                           |             |                 |                                              |                   |            |  |  |  |  |  |  |

Introduction to biomaterials: Definition of biomaterials, History and current status of the field, Types of biomaterials, Important properties of biomaterials. Characterization techniques (X-ray diffraction, UV-VIS, IR and NMR Spectroscopy, Mass spectrometry, HPLC- Size exclusion chromatography).

#### unit II

Biomaterial degradation in Biological environment; Biodegadable materials: Ceramics and polymers; Processing to improve biocompatibility: sterilization and fixation. Cell interactions with biomaterials: Introduction: Cell-surface interactions and cellular functions. Techniques: Assays to determine effects of cell-material interactions: Cytotoxicity assays, DNA and RNA assays and Protein production assays- Immunostaining.

#### UNIT III

Biomaterial implantation and Immune response to biomaterials. Undesired immune responses to biomaterials: innate vs. acquired responses to biomaterials and hypersensitivity reactions. Clinical signs of acute inflammation against biomaterials. In vitro assays for inflammatory response. Biomaterials and thrombosis: Tests for hemocompatability.

#### UNIT IV

Infection, tumorigenesis and calcification of biomaterials. Overview of potential problems with biomaterial implantation, steps to infection, techniques for infection experiments. Biomaterial related tumorigenesis, In vitro and in vivo models for tumorigenesis experiments, pathologic calcification of biomaterials and techniques for pathologic calcification experiments.

#### Text/References:

1. Temenoff, I.S. and Mikos, A.G. Biomaterials: The Intersection of Biology and Material Science. Pearson Education, India. 2009 Indian ed.

2. Ratledge C and Kristiansen B, Basic Biotechnology, Cambridge University Press, 2nd Edition, 2001.

3. J B Park, Biomaterials - Science and Engineering, Plenum Press, 1984.

4. Sujata V. Bhat, Biomaterials, Narosa Publishing House, 2002.

5. C.P.Sharma & M.Szycher, Blood compatible materials and devices, Technomic Publishing Co. Ltd., 1991.

6. Piskin and A S Hoffmann, Polymeric Biomaterials (Eds), Martinus Nijhoff Publishers. (Dordrecht. 1986)

7. Eugene D. Goldbera, Biomedical Ploymers. 8. Specific journals and published references.

| MTBT-        | 113                            |                                                                                                                             | BIOSENSOR          |               |                     |                    |                     |          |  |  |  |  |  |
|--------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|---------------------|--------------------|---------------------|----------|--|--|--|--|--|
| Lectu        | ıre                            | Tutorial                                                                                                                    | Practical          | Credit        | Major Test          | Minor Test         | Total               | Time     |  |  |  |  |  |
| 3            |                                | -                                                                                                                           | 3 60 40 100 3 Hrs. |               |                     |                    |                     |          |  |  |  |  |  |
| Progr        | am                             | To enable students to formulate project, set up a business in field of biotechnology and will be able to understand ethical |                    |               |                     |                    |                     |          |  |  |  |  |  |
| Object       | Objective issue associated it. |                                                                                                                             |                    |               |                     |                    |                     |          |  |  |  |  |  |
|              |                                |                                                                                                                             |                    | Course        | Outcomes (CO)       |                    |                     |          |  |  |  |  |  |
| <b>CO1</b> ⊺ | o fami                         | iliarize with basic concep                                                                                                  | ots of general     | properties of | of transducers an   | d other analytical | instruments         |          |  |  |  |  |  |
| <b>CO2</b> S | Studen                         | ts will come to know abo                                                                                                    | out bioassay d     | esign and i   | mplementation a     | nd basic concepts  | of automation and i | robotics |  |  |  |  |  |
| <b>CO3</b> T |                                |                                                                                                                             |                    |               |                     |                    |                     |          |  |  |  |  |  |
| С            | cardiac and vascular system    |                                                                                                                             |                    |               |                     |                    |                     |          |  |  |  |  |  |
| <b>CO4</b> S | Studen                         | ts will be able to know th                                                                                                  | ne basic conce     | pts and ap    | plications of vario | ous types of biose | nsors               |          |  |  |  |  |  |

#### UNIT-I

Introduction: Electrical quantities and units, functional elements of an instrumentation system, static and dynamic characteristics, principle of analog and digital meters, CRO, energy meters, time and frequency meters, multimeters.

Transducers: Classification, resistive strain gauges, RTD, LVDT, Piezoelectric transducers, Electromagnetic transducers, Optical transducers, Transducers for biomedical science and their applications.

Analytical Instruments: pH meters, radiometric devices, fluorescence spectrophotometers, chromatology (chromatographic techniques- GC and HPLC), electrophoresis, lab on a chip – related instrumentation, Validation, commissioning and maintenance of the above equipments.

#### UNIT II

Assay Technologies and Detection methods: Introduction, bioassay design and implementation, radiometric assay, scintillation proximity assay, fluorescence methodology to cover all types of fluorescence measurements and instrumentation, Reporter gene assay applications. Bio-analytical applications.

Automation and Robotics: Introduction: management and services issues of a centralized robotics HTS (high throughput screening) core, flexible use of people and machines, Bar-code technology and a centralized database, factors for the successful integration of assays, equipment, robotics and software. Perspectives on scheduling.

### UNIT III

Data retrival, handling and integration: Database systems, systems integration, data management and tracking

Cardiac and Vascular system: Overview of cardiovascular system, types of blood pressure sensors, Lumped parameters modeling of a catheter- sensor/system, heart sounds, cardiac catheterization, indirect measurement of blood pressure, measuring blood flow rate, measuring blood volume, pacemakers, defibrillators, cardiac-assist devices and heart valves- related instrumentation of equipments and involved sensors.

Respiratory system: Modeling the respiratory system, measuring gas flow rate and lung volume, tests of respiratory mechanics, measuring gas concentration, tests of gas transport, ventilators, anesthesia machines- related instrumentation of equipments and involved sensors.

### UNIT IV

Biosensors: Introduction to biosensors: concepts and applications, biosensors for personal diabetes management, micro fabricated sensors and the commercial development of biosensors, electrochemical sensors, chemical fibrosensors, Ion-selective FETs, noninvasive blood-gas monitoring, blood-glucose sensors. Noninvasive biosensors in clinical analysis, Applications of biosensors based instruments to the bioprocess industry. Applications of biosensors to the environmental samples, Introduction to biochips and their application to genomics, BIA core- an optical biosensors

### Text Books:

1. Introduction to Bio-analytical Sensors by Alice J Cunningham New York, John Wiley, 1998.

2. Applied Biosensors by DolandL.Wise, 1989

3. Advances in Laboratory Automation – Robotics, Eds. J.R.Strimataitis and J.N. Little, Zymark Corporation, Hopkinton, MA 1991.

## Reference Books-

1. Instrument methods of analysis by H W Willard, L LMerrit, J A Dean and F A Sttle. VI edition, East- West publishers. 1992.

- 2. Biosensors and their applications by C Yang Victor & TNgo That, Plenum Press NY, 2000.
- 3. Biosensors- An Introduction by R.Eggins Brain.
- 4. Automation technologies for genome characterization, edited by Tony J Beugelsdijk, John Wiley & Sons, Inc.2002.
- 5. Transducers and instrumentation by D V S Murthy, Prentice Hall, 1995.
- 6. Commercial sensors by Graham Ramasay, John Wiley & Son, INC, 1998.
- 7. Biosensors by Jon Cooper and Tony Cass, Oxford university Press, 2004.

| MTBT-115                                                                           |               | PROTEIN ENGINEERING                                                                                                                                                |               |                   |                    |                   |      |  |  |  |  |  |
|------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|--------------------|-------------------|------|--|--|--|--|--|
| Lecture                                                                            | Tutorial      | Tutorial         Practical         Credit         Major Test         Minor Test         Total                                                                      |               |                   |                    |                   |      |  |  |  |  |  |
| 3                                                                                  | 3 60 40 100   |                                                                                                                                                                    |               |                   |                    |                   |      |  |  |  |  |  |
| Program<br>Objective<br>(PO)                                                       |               | he course aims at imparting knowledge on protein structure characterization, structure prediction and strategies design the novel protein of industrial importance |               |                   |                    |                   |      |  |  |  |  |  |
|                                                                                    |               |                                                                                                                                                                    | Course Ou     | tcomes (CO)       |                    |                   |      |  |  |  |  |  |
| C01                                                                                | Students wi   | ll learn about b                                                                                                                                                   | basics of pro | otein engineering | and various charac | terization techni | ques |  |  |  |  |  |
| CO2                                                                                | 2 Students wi | Il be able to pr                                                                                                                                                   | edict and de  | esign novel prote | in structure       |                   |      |  |  |  |  |  |
| CO3                                                                                | Students wi   | Students will learn about various protein engineering strategies                                                                                                   |               |                   |                    |                   |      |  |  |  |  |  |
| CO4         Students will have idea about applications of novel engineered protein |               |                                                                                                                                                                    |               |                   |                    |                   |      |  |  |  |  |  |

Protein Structure Characterization: Introduction to protein engineering, structure and properties of amino acids, primary, secondary, tertiary and quaternary structure of proteins, analysis of protein structure by CD spectroscopy, NMR, X ray diffraction crystallography,

### UNIT II

**Protein Structure Prediction:** Protein prediction of protein structure using bioinformatics approach, protein sequence and structure relationship, predicting the conformation of proteins from sequence data Protein Folding – Molecular Energy and Forces, Strategies for design of novel proteins-strategies for the design of structure and function, computer methods in protein modeling, mutations and their effects on protein folding,

### UNIT III

**Protein Engineering Strategies and Techniques:** protein engineering - methodology, application and interpretation, Directed evolution and Rational design (Computer modeling).

Protein Evolution - Cell surface and phage display technologies, Cell-free protein engineering technologies

### UNIT IV

**Engineering the Proteins and Their Application**: Effect of amino acids on structure of proteins, prediction of structure function relations of enzymes and other proteins, gene shuffling methods such as RACHITT, ITCHY, SCRATCHY

**Examples of engineered proteins:**, Engineering fluorescent proteins/molecular probes, Engineering multi-functional proteins, Antibody engineering

Text Books: 1. Cleland JL and Craik CS, Protein Engineering: Principles and Practice, WileyLiss. (1996).

2. Lutz S and Bornscheuer U T, Protein Engineering Handbook, Wiley-VCH (2009)

3. Paul R. Carey, Protein engineering and design, academic press, 1996, 361 pages.

Reference Books: 1. Primrose SB and Twyman RM, Principles of Gene Manipulation and Genomics, Blackwell Publishing (2006).

| MTBT-117                     |                          | BIOANALYTICAL TECHNIQUES LAB                                                                                                 |                  |                     |                  |               |           |  |  |  |  |  |
|------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|------------------|---------------|-----------|--|--|--|--|--|
| Lecture                      | Tutorial                 | Practical                                                                                                                    | Credit           | Major Test          | Minor Test       | Total         | Time      |  |  |  |  |  |
| -                            | -                        | 4                                                                                                                            | 2                | 60                  | 40               | 100           | 3 Hrs.    |  |  |  |  |  |
| Program<br>Objective<br>(PO) |                          | To familiarize the students with various biophysical and bioanalytical techniques and their applications in<br>Biotechnology |                  |                     |                  |               |           |  |  |  |  |  |
|                              | •                        |                                                                                                                              | Cours            | se Outcomes         |                  |               |           |  |  |  |  |  |
| CO1                          | Learner will             | know about cor                                                                                                               | ncept of pH, pre | paration of buffer  | rs and measurem  | ent of pH.    |           |  |  |  |  |  |
| CO2                          | Students w<br>techniques |                                                                                                                              | rn about conce   | pt of centrifugatio | n and various ki | nds of chroma | tographic |  |  |  |  |  |
| CO3                          | Students w               | ill understand th                                                                                                            | e concept of ele | ectrophoresis and   | l Immunochemic   | al techniques |           |  |  |  |  |  |
| CO4                          | Students wi              | Students will be able to learn about spectroscopy and biosensors                                                             |                  |                     |                  |               |           |  |  |  |  |  |

## LIST OF EXPERIMENTS

- 1. Concept of pH, preparation of buffers, measurement of pH.
- 2. Centrifugation: Principle and technique.
- 3. Chromatographic techniques: TLC, Gel Filtration Chromatography, Ion exchange Chromatography, Affinity Chromatography.
- 4. Electrophoretic techniques Agarose and PAGE (nucleic acids and proteins).
- 5. Immunochemical techniques general principles and applications of immunodiffusion, immunoelectrophoresis, radioimmunoassay, enzyme linked immunosorbent assay, fluorescence immunoassay.
- 6. Spectroscopy Concepts of spectroscopy, Visible and UV spectroscopy, Laws of photometry. Beer-Lamberts law, Principles and applications of colorimetry.
- 7. Biosensors and their applications.

### Text/ References-

- 1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA & Struhl K. 2002. Short Protocols inMolecular Biology. John Wiley.
- 2. Sambrook J, Russel DW & Maniatis T. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbour Laboratory Press.

| MTBT-119                     |                                                                                                                 | FERMENTATION TECHNOLOGY LAB |                |                                         |                                    |                 |              |  |  |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|-----------------------------------------|------------------------------------|-----------------|--------------|--|--|--|--|--|
| Lecture                      | Tutorial                                                                                                        | Practical                   | Credit         | Major Test                              | Minor Test                         | Total           | Time         |  |  |  |  |  |
| -                            | -                                                                                                               | 4                           | 2              | 60                                      | 40                                 | 100             | 3 Hrs.       |  |  |  |  |  |
| Program<br>Objective<br>(PO) | To familiarize the students with various experiments on microbial fermentation processes                        |                             |                |                                         |                                    |                 |              |  |  |  |  |  |
|                              |                                                                                                                 |                             | Course         | Outcomes                                |                                    |                 |              |  |  |  |  |  |
| C01                          |                                                                                                                 | Learner                     | will know abou | t concept of biore                      | eactor and its ope                 | ration.         |              |  |  |  |  |  |
| CO2                          | Students will                                                                                                   | be able to learn            |                | ues of isolation a<br>condary metabolit | nd screening of b<br>e production. | acteria, actino | omycetes and |  |  |  |  |  |
| CO3                          | To understand the effect of pH, temperature, Carbon and Nitrogen Sources on secondary metabolite<br>production. |                             |                |                                         |                                    |                 |              |  |  |  |  |  |
| CO4                          | Students will be able to learn the use of statistical tools in fermentation technology                          |                             |                |                                         |                                    |                 |              |  |  |  |  |  |

## LIST OF EXPERIMENTS

- 1. Study of bioreactor and its operations.
- 2. Isolation and screening of bacteria, actinomycetes and fungi for secondary metabolite production such as antimicrobial metabolites and enzymes.
- 3. Studying the effect of pH, temperature, C and N Sources on secondary metabolite production by microorganisms.
- 4. Partial Purification of secondary metabolite production by microorganisms.
- 5. Studying the statistical analysis of fermentation experiments by using various tools.
- 6. Isolation of genomic DNA of bacteria, fungi and actinomycetes.

### Text/Reference Books-

- 1. Kun LY. 2006. *Microbial Biotechnology*. World Scientific.
- 2. Demain L. Manual of Industrial Microbiology and Biotechnology. ASM Press

| MTRM-111       |                  | Research Methodology and IPR                                                                        |              |                   |                                   |             |         |  |  |  |  |  |
|----------------|------------------|-----------------------------------------------------------------------------------------------------|--------------|-------------------|-----------------------------------|-------------|---------|--|--|--|--|--|
| Lecture        | Tutorial         |                                                                                                     |              |                   |                                   |             |         |  |  |  |  |  |
| 2              | 0                | 0 0 2 60 40 100 3 Hr                                                                                |              |                   |                                   |             |         |  |  |  |  |  |
| Program        | To enable s      | o enable students to Research Methodology and IPR for further research work and investment in R &   |              |                   |                                   |             |         |  |  |  |  |  |
| Objective (PO) | D, which lea     | , which leads to creation of new and better products, and in turn brings about, economic growth and |              |                   |                                   |             |         |  |  |  |  |  |
|                | social benefits. |                                                                                                     |              |                   |                                   |             |         |  |  |  |  |  |
|                |                  |                                                                                                     | Course Ou    | tcomes (CO)       |                                   |             |         |  |  |  |  |  |
| C01            | Understand       | research pro                                                                                        | blem formu   | llation.          |                                   |             |         |  |  |  |  |  |
| CO2            | Analyze res      | earch related                                                                                       | information  | า                 |                                   |             |         |  |  |  |  |  |
| CO3            | Understand       | l that today's v                                                                                    | world is cor | trolled by Comp   | uter, Information Technology, b   | out tomorro | w world |  |  |  |  |  |
|                | will be ruled    | l by ideas, co                                                                                      | ncept, and ( | creativity.       |                                   |             |         |  |  |  |  |  |
| CO4            |                  |                                                                                                     |              |                   | tant place in growth of individua |             |         |  |  |  |  |  |
|                | nation, it is    | needless to e                                                                                       | mphasis the  | e need of informa | ation about Intellectual Property | y Right to  |         |  |  |  |  |  |
|                | be promote       | d among stud                                                                                        | ents in gen  | eral & engineerir | ng in particular.                 | -           |         |  |  |  |  |  |

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

## Unit 2

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

## Unit 3

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

## Unit 4

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems,

Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'.
- 2. C.R. Kothari, "Research Methodology: Methods & Techniques, 2<sup>nd</sup> edition or above, New Age Publishers.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall , "Industrial Design", McGraw Hill, 1992.
- 6. Niebel , "Product Design", McGraw Hill, 1974.
- 7. Asimov , "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

| MTBT-102                     |          | DRUG DISCOVERY AND DEVELOPMENT                                                 |                  |                    |                  |                 |      |  |  |  |  |  |
|------------------------------|----------|--------------------------------------------------------------------------------|------------------|--------------------|------------------|-----------------|------|--|--|--|--|--|
| Lecture                      | Tutorial | Practical                                                                      | Credit           | Major Test         | Minor Test       | Total           | Time |  |  |  |  |  |
| 3                            | -        | 3 60 40 100 3 Hrs                                                              |                  |                    |                  |                 |      |  |  |  |  |  |
| Program<br>Objective<br>(PO) |          | To familiarize the students with the concept of drug discovery and development |                  |                    |                  |                 |      |  |  |  |  |  |
|                              |          |                                                                                | Course           | Outcomes           |                  |                 |      |  |  |  |  |  |
| C01                          | Т        | o understand th                                                                | e mechanism o    | of action of drugs | and lead optimiz | ation strategie | es   |  |  |  |  |  |
| CO2                          |          | T                                                                              | o understand t   | he concept of rati | onal drug design |                 |      |  |  |  |  |  |
| CO3                          |          |                                                                                | To learn the     | e concept of clini | cal research     |                 |      |  |  |  |  |  |
| CO4                          |          | Students wil                                                                   | l be able to lea | rn about assisted  | reproductive tec | hnologies.      |      |  |  |  |  |  |

Introduction to Drug Discovery and Development. Lead Optimization and validation strategies.

Mechanism of Drug Actions: Inter and intramolecular interactions: Weak interactions in drug molecules; Chirality and drug action; Covalent, ion, ion-dipole, hydrogen bonding, C-H hydrogen bonding, dihydrogen bonding, van der waals interactions and the associated energies. Cation-and OH- interactions. Drug-receptor interactions: Occupancy theory, rate theory, induced fit theory, macromolecular perturbation theory, activation-aggregation theory. Topological and stereochemical consideration.

#### unit II

Rational Drug Design: Structure activity relationships in drug design, Molecular modeling, Molecular docking and dynamics, Electronic structure methods and quantum chemical methods, De novo drug design techniques and Informatics methods in drug design. Optmization of ADME characteristics and physicochemical properties. Xenobiotic Drug Metabolism.

### UNIT III

Clinical Research- definition and basic concept. Pharmacological Screening and Assays : General principles of screening, correlations between various animal models and human situations. Pharmacological screening models for therapeutic areas. Correlation between in-vitro and in-vivo screens; Special emphasis on cell-based assays, high through put screening, specific use of reference drugs and interpretation of results. Clinical trials and their regulations.

#### UNIT IV

Concept of Assisted Reproductive Technologies (Artificial Insemination, *In Vitro*Fertilziation, Gamete Intrafallopian Transfer and Zygote Intrafallopian Transfer), Gene Therapy- Concept and Applications. Concept of Eugenics.

#### Texts/References-

- 1. Hill, R. (2012). Drug Discovery and Development- Technology in Transition. 2<sup>nd</sup> Edition. Churchill Livingstone, London, UK.
- 2. Hinchliffe, A.(2003). Molecular Modelling for Beginners. John Wiley & Sons
- 3. Leach, AR (1996). Molecular Modelling: Principles and Applications. Longman.

| MTBT-104                                                                              |                                                                                                         |                                                                                                                                                                                                    | Medical I   | Biotechnology    |                  |                      |          |  |  |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|------------------|----------------------|----------|--|--|--|--|
| Lecture                                                                               | Tutorial                                                                                                | Practical                                                                                                                                                                                          | Credit      | Major Test       | Minor Test       | Total                | Time     |  |  |  |  |
| 3                                                                                     | 0                                                                                                       | 0                                                                                                                                                                                                  | 3           | 60               | 40               | 100                  | 3 Hrs.   |  |  |  |  |
| Program<br>Objective<br>(PO)                                                          |                                                                                                         | enlighten the knowledge of the Students on different areas of Medical Biotechnology. To train the Students in a spital based setup and familiarize them with the clinical diagnostics of diseases. |             |                  |                  |                      |          |  |  |  |  |
|                                                                                       |                                                                                                         | Co                                                                                                                                                                                                 | ourse Outc  | omes (CO)        |                  |                      |          |  |  |  |  |
| C01                                                                                   |                                                                                                         | I be able to<br>ed to human                                                                                                                                                                        |             | ights about gen  | etic diseases ar | nd also about the m  | olecular |  |  |  |  |
| CO2                                                                                   | Students wil therapy                                                                                    | l be able to g                                                                                                                                                                                     | gain new in | sights into mole | cular mechanisr  | ns of nucleic acid a | nd gene  |  |  |  |  |
| CO3                                                                                   | CO3 Students will be able to gain knowledge about therapeutic recombinant proteins and<br>immunotherapy |                                                                                                                                                                                                    |             |                  |                  |                      |          |  |  |  |  |
| CO4         Students will be able to study processes of treatment of Biomedical waste |                                                                                                         |                                                                                                                                                                                                    |             |                  |                  |                      |          |  |  |  |  |

Introduction: Classification of genetic diseases: Chromosomal disorders – Chromosomal instability syndromes. Gene controlled diseases – Autosomal and X-linked disorders, Mitochondrial disorders. Molecular basis of human diseases: - Pathogenic mutations Gain of function mutations: Oncogenes, Huntingtons Disease, Pittsburg variant of alpha 1 antitrypsin. Loss of function - Tumour Suppressor. Genomic. Dynamic Mutations - Fragile- X syndrome, Myotonic dystrophy. Mitochondrial diseases

#### Unit 2

Gene therapy: Ex-vivo, In vivo, In situ gene therapy, Strategies of gene therapy: gene augmentation Vectors used in gene therapy Biological vectors – retrovirus, adenoviruses, Herpes Synthetic vectors– liposomes, receptor mediated gene transfer. Gene therapy trials – Familial Hypercholesterolemia, ADA, AIDS, Cystic Fibrosis, Solid tumors. Artificial organs and biocompatibility-Overview design consideration and evaluation process.

#### Unit 3

Recombinant & Immunotherapy; Clinical applications of recombinant technology; Erythropoietin; Insulin analogs and its role in diabetes; Recombinant human growth hormone; Streptokinase and urokinase in thrombosis; Recombinant coagulation factors, Monoclonal antibodies and their role in cancer; Role of recombinant interferons; Immunostimulants; Immunosupressors in organ transplants; Role of cytokine therapy in cancers; Clinical management and Metabolic syndrome: – PKU, Familial Hypercholesterolemia, Rickets, ADA, Congenital hypothyroidism.

#### Unit 4

Hazards of biomedical waste-Need for disposal specifically communicable diseases, Disease Epidemiology and mode of transmission of disease. Environment pollution by waste-CAUSES, Consequences, Mitigation and remedies. Treatment-Mechanical and chemical disinfection, Conventional treatments-Incineration, Microwave technology, Autoclave tech, Hydroclave system, Electro thermal reactivation- Pyrolysis/gasification WHO guidelines on management and disposal of biomedical waste from hospitals.

**Text books** 1. Diagnostic and Therapeutic Antibodies (Methods in Molecular Medicine by Andrew J.T. George (Editor), Catherine E. Urch (Editor) Publisher: Humana Press; edition (2000)

2. Molecular Diagnosis of Infectious Diseases (Methods in Molecular Medicine) by Jochen Decker, U. Reischl Amazon **Reference Book** 1 Human Molecular Genetics by T. Strachan, Andrew

| MTBT-106                                                                                                         |                                                                                  | Ι                                                                                                        | METABOLI     | C ENGINEERIN    | G                  |                   |               |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------|-----------------|--------------------|-------------------|---------------|--|--|--|--|
| Lecture                                                                                                          | Tutorial                                                                         | Practical                                                                                                | Credit       | Major Test      | Minor Test         | Total             | Time          |  |  |  |  |
| 3                                                                                                                | -                                                                                |                                                                                                          |              |                 |                    |                   |               |  |  |  |  |
| Program                                                                                                          | To enable students to d                                                          | enable students to describe the improvement of primary and secondary metabolites production with various |              |                 |                    |                   |               |  |  |  |  |
| Objective                                                                                                        | application of metabolic                                                         | engineering                                                                                              |              |                 | -                  |                   |               |  |  |  |  |
| (PO)                                                                                                             |                                                                                  |                                                                                                          |              |                 |                    |                   |               |  |  |  |  |
|                                                                                                                  | Course Outcomes (CO)                                                             |                                                                                                          |              |                 |                    |                   |               |  |  |  |  |
| C01                                                                                                              | Students wi<br>metabolites                                                       | l learn abou                                                                                             | t the Basi   | c concepts of N | Metabolic engine   | ering and synthes | is of primary |  |  |  |  |
| CO2                                                                                                              | Students will                                                                    | learn about s                                                                                            | synthesis of | secondary meta  | bolites and biocor | nversion          |               |  |  |  |  |
| CO3                                                                                                              | CO3 Students will learn about Regulation of Enzyme Production and Metabolic flux |                                                                                                          |              |                 |                    |                   |               |  |  |  |  |
| CO4 Students will learn about Metabolic engineering with Bioinformatics and Applications of Metab<br>Engineering |                                                                                  |                                                                                                          |              |                 |                    |                   |               |  |  |  |  |

**Introduction:** Identification of metabolic regulation. Basic concepts of Metabolic Engineering – Overview of cellular metabolism – Different models for cellular reactions, induction – Jacob Monod model and its regulation, Feedback regulation. Synthesis of Primary metabolites. Amino acid synthesis pathways and its regulation at enzyme level and whole cell level, Alteration of feedback regulation, Limiting accumulation of end products.

### unit II

**Biosynthesis of Secondary Metabolites.** Regulation of secondary metabolite pathways, precursor effects, prophase, idiophase relationship, Catabolite regulation by passing control of secondary metabolism, producers and applications of secondary metabolites. **Bioconversions**: Applications of Bioconversions, Factors affecting bioconversions, Specificity, Yields, Cometabolism, Mixed or sequential bioconversions, Conversion of insoluble substances.

### UNIT III

**Regulation of Enzyme Production**. Strain selection, Genetic improvement of strains, Gene dosage, metabolic pathway manipulations to improve fermentation, the modification of existing - or the introduction of entirely new metabolic pathways **Metabolic flux.** Integration of anabolism and catabolism, metabolic flux analysis and its applications, Experimental determination method of flux distribution,

#### UNIT IV

Metabolic engineering with Bioinformatics. Metabolic pathway modeling, Analysis of metabolic control and the structure metabolic networks,

**Applications of Metabolic Engineering**. Application in pharmaceuticals, chemical bioprocess, food technology, agriculture, bioremediation and biomass conversion.

### Text/References-

1. Wang.D.I.C Cooney C.L., Demain A.L., Dunnil.P. Humphrey A.E. Lilly M.D., Fermentation and Enzyme Technology, John Wiley and sons 1980.

2.Stanbury P.F., and Whitaker A., Principles of Ferment Technology, Pergamon Press 1984.

3. Specific journals and published references.

| MTBT-108                     |                                                                                                                             |                                                                             | Biofue        | l Technology       |                    |                    |       |  |  |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------|--------------------|--------------------|--------------------|-------|--|--|--|--|--|
| Lecture                      | Tutorial                                                                                                                    | Tutorial Practical Credit Major Test Minor Test Total                       |               |                    |                    |                    |       |  |  |  |  |  |
| 3                            | -                                                                                                                           |                                                                             |               |                    |                    |                    |       |  |  |  |  |  |
| Program<br>Objective<br>(PO) | To enable students to d                                                                                                     | enable students to describe the role of biotechnology in biofuel technology |               |                    |                    |                    |       |  |  |  |  |  |
|                              |                                                                                                                             |                                                                             | Course Ou     | itcomes (CO)       |                    |                    |       |  |  |  |  |  |
| C01                          | Student will I                                                                                                              | earn about H                                                                | istorical Dev | elopment of Bio    | ethanol and Chemis | stry of Lignocellu | loses |  |  |  |  |  |
| CO2                          | Student will I                                                                                                              | earn about th                                                               | e degradati   | on of lignocellulo | ses by enzymes     |                    |       |  |  |  |  |  |
| CO3                          | CO3 Student will learn about Biochemical Engineering and Bioprocess Management for biofuel and their downstream processing. |                                                                             |               |                    |                    |                    |       |  |  |  |  |  |
| CO4                          | CO4 Student will learn about the improvement of biofuel production by genetic manipulations                                 |                                                                             |               |                    |                    |                    |       |  |  |  |  |  |

Historical Development of Bioethanol as a Fuel, Starch as a Carbon Substrate for Bioethanol Production, The Promise of Lignocellulosic Biomass, Thermodynamic and Environmental Aspects of Ethanol as a Biofuel, Effects on emissions of greenhouse gases and other pollutants, Ethanol as a First-Generation Biofuel: Present Status and Future Prospects. Lignocellulosic Biomass, Biomass as an Energy Source: Chemistry of Lignocellulosic Biomass, Lignocellulose as a chemical resource, Physical and chemical pretreatment of lignocellulosic biomass, Biological pretreatments, Acid hydrolysis to saccharify pretreated lignocellulosic biomass

#### Unit II

Enzymology of cellulose degradation, Cellulases in lignocellulosic feedstock processing, biotechnology of cellulase production, Hemicellulases and Lignin-Degrading Commercial Choices of Lignocellulosic Feedstocks for Bioethanol Production. Biotechnology of Bioethanol Production, Traditional Ethanologenic Microbes, Yeasts, Bacteria, Metabolic Engineering of Novel Ethanologens

Comparison of industrial and laboratory yeast strains for ethanol production, Improved ethanol production by naturally pentoseutilizing yeasts, Assembling Gene Arrays in Bacteria for Ethanol Production, Genetic and metabolic engineering of bacteria for bioethanol production, Candidate bacterial strains for commercial ethanol production, Trends for Research with Yeasts and Bacteria for Bioethanol Production, "Traditional" microbial ethanologens, "Designer" cells and synthetic organisms

#### UNIT III

Biochemical Engineering and Bioprocess Management for Fuel Ethanol, Biomass Substrate Provision and Pretreatment, Wheat straw — new approaches to complete saccharification, Switchgrass, Corn stover, Softwoods, Sugarcane bagasse, Other large-scale agricultural and forestry, Fermentation Media, Highly concentrated media developed for alcohol fermentations, Fermentor Design and Novel Fermentor Technologies, Continuous fermentations for ethanol production, Fed-batch fermentations, Immobilized yeast and bacterial cell production designs, Contamination events and buildup in fuel ethanol plants, Simultaneous Saccharification and Fermentation and Direct Microbial Conversion, Downstream Processing and By-Products, Ethanol recovery from fermented broths, Solid by-products from ethanol fermentations

#### UNIT IV

Genetic Manipulation of Plants for Bioethanol Production, Engineering resistance traits for biotic and abiotic stresses, Bioengineering increased crop yield, Optimizing traits for energy crops intended for biofuel production. Vegetable oils and chemically processed biofuels, Biodiesel composition and production processes, Biodiesel economics, Energetics of biodiesel production, Issues of ecotoxicity and sustainability with expanding biodiesel production, Biodiesel from Microalgae and Microbes, Biohydrogen, The hydrogen economy and fuel cell technologies, Bioproduction of gases, Microbial Fuel Cells

### References:

1. David M. Mousdale, Biofuel-Biotechnology, Chemistry, and sustainable Development, 1st Ed., CRC Press Taylor & Francis Group, 2008.

2. Ayhan Demirbas, Green Energy and Technology, Biofuels, Securing the Planet's Future Energy Needs, 1st edition, Springer, 2009.

| MTBT-110                                                                                                            |                                                                                                                      | ADVANC                                                                                             | ED INDUS      | TRIAL BIOTECH      | INOLOGY          |     |        |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------|--------------------|------------------|-----|--------|--|--|--|--|
| Lecture                                                                                                             | Tutorial                                                                                                             | Tutorial         Practical         Credit         Major Test         Minor Test         Total      |               |                    |                  |     |        |  |  |  |  |
| 3                                                                                                                   | -                                                                                                                    | -                                                                                                  | 3             | 60                 | 40               | 100 | 3 Hrs. |  |  |  |  |
| Program<br>Objective<br>(PO)                                                                                        | To enable students to d                                                                                              | able students to describe the various advance industrial application for the benefit of human life |               |                    |                  |     |        |  |  |  |  |
|                                                                                                                     |                                                                                                                      |                                                                                                    | Course Ou     | tcomes (CO)        |                  |     |        |  |  |  |  |
| C01                                                                                                                 | Students will                                                                                                        | learn about r                                                                                      | nicrobial div | ersity and scree   | ning of microbes |     |        |  |  |  |  |
| CO2                                                                                                                 | Students will                                                                                                        | learn about t                                                                                      | he fermenta   | ition and its impr | ovement          |     |        |  |  |  |  |
| CO3                                                                                                                 | CO3 Students will learn about genetic analysis by using tools of recombinant DNA technology and various applications |                                                                                                    |               |                    |                  |     |        |  |  |  |  |
| CO4 Students will learn about Novel industrial applications, tracking of microbes and monitor their gene expression |                                                                                                                      |                                                                                                    |               |                    |                  |     |        |  |  |  |  |

Microbial diversity and strategies for its recovery. Bioprospecting for novel compounds. Screening of microbial isolates for bioactivity. Cultivation of hyperthermophilic and extremely thermo acidophilic microorganisms. Instrumentation and monitoring of bioreactors. Culture and analysis using gel microdrops.

### unit II

Experimental design for improvement in fermentation processes. Software applications in fermentation processes. Methods for biocatalysis. Downstream processing. Introduction to bioprocess simulation. Quality assurance and quality control. Concepts of anaerobic fermentation and contract fermentations.

#### UNIT III

Introduction to genetic analysis of *Streptomyces* and *Bacillus* spp. using tools of recombinant DNA technology. Applications of rDNA technology in thermophiles. Design and assembly of polycistronic operons in *Escherichiacoli. In vivo* folding of recombinant proteins in *E. coli.* Expression of G protein coupled receptors inmicroorganisms. Selection of suitable hosts for *E. coli* optimized for expression of proteins. Mechanism of mRNA degradation in bacteria and their implication for stabilization of heterologous transcripts. Filamentous fungi in industrial biotechnology. Genetics and genomics of *Saccharomyces cerevisiae*.

### UNIT IV

Methods for optimizing industrial enzymes. Cloning and analysis of genes for the biosynthesis of microbial secondary metabolites. Antibiotic resistance mechanisms of bacterial pathogens. Genetics of bacteriocins produced by Lactic acid bacteria and their use in novel industrial applications. Biomarkers and bioreporters to track microbes and monitor their gene expression. Biofilms. Future perspectives in industrial microbial technology.

### Textbooks and Reference Books

1. Industrial Microbiology. Casida Jr., L.E. (1968) New Age International (P)Ltd. New D elhi .

2. Prescott & Dunn's Industrial Microbiology. Ed. E. G. Reed (1987). CBS Publishers, New Delhi .

3. Biotechnology: A Textbook of Industrial Microbiology 2<sup>nd</sup> Edition. Crueger, W. and Crueger, A. (2000) Panima Publishing Corporation, New Delhi.

4. Demain, A.L. and Davies, 1.E. Manual ofIndustrial Microbiology and Biotechnology 2<sup>nd</sup> Ed. ASM Press, Washington DC.

| MTBT-112                                                                   |                                                                                                 |                                                                                   | Biomedic      | al Equipments      |                |     |        |  |  |  |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------|--------------------|----------------|-----|--------|--|--|--|--|
| Lecture                                                                    | Tutorial                                                                                        | Tutorial Practical Credit Major Test Minor Test Total                             |               |                    |                |     |        |  |  |  |  |
| 3                                                                          | -                                                                                               | -                                                                                 | 3             | 60                 | 40             | 100 | 3 Hrs. |  |  |  |  |
| Program<br>Objective<br>(PO)                                               | To enlighten student's k                                                                        | enlighten student's knowledge about biomedical equipments and techniques involved |               |                    |                |     |        |  |  |  |  |
|                                                                            |                                                                                                 |                                                                                   | Course Ou     | tcomes (CO)        |                |     |        |  |  |  |  |
| C01                                                                        | Students wil                                                                                    | learn about b                                                                     | basics of bio | electric signals a | and electrodes |     |        |  |  |  |  |
| CO2                                                                        | Students wil                                                                                    | learn about v                                                                     | arious equi   | pments involved    | in diagnostic  |     |        |  |  |  |  |
| CO3                                                                        | CO3 Students will be able to understand the working principle of various therapeutic equipments |                                                                                   |               |                    |                |     |        |  |  |  |  |
| CO4         Students will have learn calibration and testing of equipments |                                                                                                 |                                                                                   |               |                    |                |     |        |  |  |  |  |

**Bioelectric Signals and Electrodes**: Bio-potentials and their origin: ECG, EEG, EMG, ENG, ERG, EOG, MEG. Bio-potential electrodes, generalized medical instrumentation system-Man machine interface.

### UNIT II

**Diagnostic Equipments**: ECG: normal and abnormal waveform, diagnosis interpretation, ECG leads connections, Einthoven triangle, Plethysmography, Blood pressure measurement: direct and indirect methods, Cardiac output measurements, Respiratory volume measurement, Impedance pneumograph, Spirometers, Pneumotachometers. EEG: signal amplitudes and frequency bands, EEG machine. Blood cell counter, Endoscopes, Laparoscopes and Camera pill.

#### UNIT III

**Therapeutic Equipments**: Heart lung machine, Dialyzers: basic principle of dialysis, different types of dialyzer, membranes, portable type. Cardiac pacemakers: external and Implantable pacemaker. Cardiac defibrillator: DC defibrillator, implantable defibrillator and defibrillator analyzer. Ventilators, Anesthesia machine, Short wave diathermy, microwave diathermy, ultrasonic therapy unit, electrotherapy

### UNIT IV

**Patient Safety**: Electric shock hazards, leakage currents, electrical safety analyzer, testing of biomedical equipments. Calibration and testing of biomedical equipments. Modern biomedical equipments and systems: Market scenario.

### Books Recommended:

1. John G. Webster, "Medical Instrumentation Application and Design" 4th Ed, Wiley, 2011.

2. Joseph J Carr, John M Brown, "Introduction to Biomedical Equipment Technology", Pearson Education, NewDelhi, 2011.

3. L. J. Street, "Introduction to Biomedical Engineering Technology", 2 nd Ed, CRC Press, 2011

4. Khandpur R S, "Medical Instrumentation: Application and Design", 3Rd Ed, John Wiley & Sons, 2009.

| MTBT-114                     |                         | GENE THERAPY AND GENE EDITING                                                             |              |                   |  |  |  |  |  |  |  |  |
|------------------------------|-------------------------|-------------------------------------------------------------------------------------------|--------------|-------------------|--|--|--|--|--|--|--|--|
| Lecture                      | Tutorial                | Tutorial Practical Credit Major Test Minor Test Total                                     |              |                   |  |  |  |  |  |  |  |  |
| 3                            | -                       | 3 60 40 100                                                                               |              |                   |  |  |  |  |  |  |  |  |
| Program<br>Objective<br>(PO) | To enable students to   | o enable students to understand the role of gene therapy in treatment of severe diseases. |              |                   |  |  |  |  |  |  |  |  |
|                              |                         |                                                                                           | Course Ou    | tcomes (CO)       |  |  |  |  |  |  |  |  |
| C01                          | Students will learn abo | out basics of g                                                                           | ene therapy  | 1                 |  |  |  |  |  |  |  |  |
| CO2                          | Students will learn abo | out viral vector                                                                          | s used in ge | ene therapy       |  |  |  |  |  |  |  |  |
| CO3                          | Students will have kno  | udents will have knowledge about role of gene therapy in curing of diseases treatment     |              |                   |  |  |  |  |  |  |  |  |
| CO4                          | Students will have lea  | rn about gene                                                                             | editing and  | l its application |  |  |  |  |  |  |  |  |

**Introduction**: Basic concept of gene therapy. Somatic and germ line gene therapy. Gene replacement and gene addition. In vivo, ex vivo and in vitro gene therapy. Transgenic animal models. Vichels for gene transferviral vectors, reterovirus, adenovirus and adenoassociated virus.

### UNIT II

Viral Vectors: Lentivirus, Recombinant SV40 Virus, Non viral vectors, Naked DNA and Transposons., RNADNA chimera, Gene therapies for Crigler Najjar syndrome.

#### UNIT III

Gene Therapy and disease: Cystic fibrosis, Duchmne muscular dystrophy, Bleeding disorder, Tryosenemia. Cancer gene therapy

#### **UNIT IV**

**Genome and Gene Editing**: Introduction to Genome and Gene Editing, History of CRISPR, Components of CRISPR/CAS9 system, Editing with homology directed repair, Genome-wide Screening and Regulation of Gene Expression using Crispr/Cas9, CRISPR Purification, and Multiplexible Crispr Expression Systems

#### Text Books:

Gene therapy: TwentyFirst Century Medicine. Annu. Rev. Biochem. 2005. 74:71138
 Gene therapy: Promises and Problems. Annu. Rev. Genomics Hum. Genet. 2001. 2:177211
 Reference Books:

1. Primrose SB and Twyman RM, Principles of Gene Manipulation and Genomics, Blackwell Publishing (2006). Reference Books:

2. Friedman T. 1999. The Development of Human Gene Therapy . Cold Spring

Harbor,NY: Cold Spring Harbor Lab. Press.

3. Knipe DM, Howley PM, eds. 2001. *Fields Virology.* Philadelphia, PA: Lippincott Williams & Wilkins.

4. Hackett NR, Crystal RG. 2000. Adenovirus vectors for gene therapy. In Gene

Therapy, ed. NS Templeton, DD Lasic, pp.1739.

New York: Marcel Dekker

5. http://www.liebertpub.com/hum .

6. www.nature.com/gt/index.html

| MTBT-116                     |              |                                                                                                                                                                                                         | META         | GENOMICS         |                    |                  |      |  |  |  |  |  |
|------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|--------------------|------------------|------|--|--|--|--|--|
| Lecture                      | Tutorial     | Practical                                                                                                                                                                                               | Credit       | Major Test       | Minor Test         | Total            | Time |  |  |  |  |  |
| 3                            | -            | 3 60 40 100                                                                                                                                                                                             |              |                  |                    |                  |      |  |  |  |  |  |
| Program<br>Objective<br>(PO) |              | ne purpose of this course is to provide knowledge about how the metabolic functions, taxonomic distribution, versity, evenness and species richness of microbial communities varies across environment. |              |                  |                    |                  |      |  |  |  |  |  |
|                              |              |                                                                                                                                                                                                         | Course Ou    | itcomes (CO)     |                    |                  |      |  |  |  |  |  |
| C01                          | Students wil | learn about b                                                                                                                                                                                           | basics of me | etagenomics and  | different approac  | hes to metagenom | nics |  |  |  |  |  |
| CO2                          | Students wil | learn about p                                                                                                                                                                                           | probing of b | iomarkers and ol | igonucleotide mici | oarrays          |      |  |  |  |  |  |
| CO3                          | Students wil | Students will learn about construction and analysis of metagenomic libraries                                                                                                                            |              |                  |                    |                  |      |  |  |  |  |  |
| CO4                          | Students wil | Students will learn about industrial application of metagenomics with case studies                                                                                                                      |              |                  |                    |                  |      |  |  |  |  |  |

**Environmental Metagenomics** – Introduction; Pure culture and in consortium ; Cultivable and Non-cultivable microbial analysis; Molecular fingerprinting techniques (RFLP, T-RFLP, ARISA, DGGE, rDNA library, and FISH); Stable isotope probing (SIP); Suppressive subtractive hybridization (SSH); Differential expression analysis (DEA); Microarrays & Metagenome sequencing; Next-generation sequencing approaches to metagenomics

### UNIT II

**Stable isotope probing and oligonucleotide microarrays:** Direct linking of microbial populations to specific biodegradation and biotransformation processes by stable isotope probing of biomarkers- PhyloChip & GeoChip-Detection of xenobiotic-degrading bacteria by using oligonucleotide microarrays.

#### unit III

Library construction and analysis of metagenomic Libraries: Library Cataloging microbes: phylogenetic tree and construction - Construction of a metagenomic library; Analysis of Metagenomic Libraries; Sequence-based Metagenomics Analysis; Function based Metagenomics Analysis; Phylogenetic analysis and Comparative genomics Softwares & Tools

#### Unit IV

**Metagenomics case studies:** Metagenomic analysis of soil microbial communities; marine microbial communities; Microbial Community in Acid Mine Drainage; Bacteriophage; Archaeal Metagenomics: Bioprospecting Novel Genes and Exploring New Concepts; Metagenomics and Its Applications to the Study of the Human Microbiome; Applications of Metagenomics for Industrial Bioproducts

#### References

1. Diana Marco Universidad Nacional de Cordoba, Argentina, "Metagenomics: Theory, Methods and Applications", Caister Academic Press, 2010.

2. Diana Marco Universidad Nacional de Cordoba, Argentina "Metagenomics: Current Innovations and Future Trends", Caister Academic Press, 2011.

3. Joanna R. Freeland, Heather Kirk, Stephen Petersen, "Molecular Ecology", Mc Graw Hill, 2nd Edition "2012.

4. Beebee T.J.C., D G. Rowe," An Introduction to Molecular Ecology", Mc Graw Hill, 2004.

| MTBT-118                     |               | Molecular Technique Lab                                                 |           |             |  |  |  |  |  |  |  |  |
|------------------------------|---------------|-------------------------------------------------------------------------|-----------|-------------|--|--|--|--|--|--|--|--|
| Lecture                      | Tutorial      | utorial Practical Credit Major Test Minor Test Total                    |           |             |  |  |  |  |  |  |  |  |
| -                            | -             | - 4 4 <b>60 40 100</b>                                                  |           |             |  |  |  |  |  |  |  |  |
| Program<br>Objective<br>(PO) | To provide ha | To provide hands on training on basic techniques.                       |           |             |  |  |  |  |  |  |  |  |
|                              |               |                                                                         | Course Ou | tcomes (CO) |  |  |  |  |  |  |  |  |
| C01                          | Student will  | Student will learn the basic techniques used in molecular biology       |           |             |  |  |  |  |  |  |  |  |
| CO2                          | Student will  | Student will learn PCR and detection of food borne pathogenic organisms |           |             |  |  |  |  |  |  |  |  |

**Note:** A college must offer 4 of the below listed experiments. The remaining 2 experiments may be Modified by College according to facilities available.

### **Practical Exercises**

- 1. Extraction of DNA from clinical samples followed by agarose gel electrophoresis.
- 2. Extraction of double stranded genomic RNA from viral samples.
- 3. Polyacrylamide gel electrophoresis (PAGE) for detection of segmented genomic RNA.
- 4. Polymerase chain reaction for detection of pathogens in blood/and other clinical samples.
- 5. RT-PCR for detection of RNA.
- 6. Detection of food borne pathogenic organisms from food samples using PCR technology.

### Text/ References-

- 1. Kun LY. 2006. *Microbial Biotechnology*. World Scientific.
- 2. Sambrook J & Russel DW. 2001. *Molecular Cloning: a Laboratory Manual*. Cold Spring Harbour Lab. Press.
- 3. Twyman RM. 2003. Advanced Molecular Biology. Bios Scientific.
- 4. Specific journals and published references.

| MTBT-120                     |              |                                                                     |        |               |  |  |  |  |  |  |  |
|------------------------------|--------------|---------------------------------------------------------------------|--------|---------------|--|--|--|--|--|--|--|
| Lecture                      | Tutorial     |                                                                     |        |               |  |  |  |  |  |  |  |
| -                            | 0            | 0 4 4 60 40 100                                                     |        |               |  |  |  |  |  |  |  |
| Program<br>Objective<br>(PO) | To provide h | To provide hands on training on advanced techniques.                |        |               |  |  |  |  |  |  |  |
|                              |              |                                                                     | Course | Outcomes (CO) |  |  |  |  |  |  |  |
| C01                          | Student wi   | Student will learn the advance techniques used in molecular biology |        |               |  |  |  |  |  |  |  |
| CO2                          | Student wi   | Student will learn the hybridization and microarray                 |        |               |  |  |  |  |  |  |  |

**Note:** A college must offer 5 of the below listed experiments. The remaining 2 experiments may be modified by College according to facilities available.

### **Practical Exercises**

- 1. Restriction endonuclease profile analysis.
- 2. Isolation of plasmid DNA from bacteria.
- 3. Cloning of PCR products followed by nucleic acid sequencing.
- 4. Analysis of sequenced data.
- 5. RFLP and RAPD.
- 6. Southern hybridization/ Northern hybridization.
- 7. Microarray.

#### Text/ References-

- 1. Kun LY. 2006. *Microbial Biotechnology*. World Scientific.
- 2. Sambrook J & Russel DW. 2001. *Molecular Cloning: a Laboratory Manual*. Cold Spring Harbour Lab. Press.
- 3. Twyman RM. 2003. Advanced Molecular Biology. Bios Scientific.
- 4. Specific journals and published references.

| MTBT-201  |                            | Advanced Food Biotechnology                                                                                                                                           |                    |                    |                    |              |                  |  |  |  |  |  |
|-----------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------|------------------|--|--|--|--|--|
| Lecture   | Tutorial                   | Practical                                                                                                                                                             | Credit             | Major Test         | Minor Test         | Total        | Time             |  |  |  |  |  |
| 3         | -                          | -                                                                                                                                                                     | 3                  | 60                 | 40                 | 100          | 3 Hrs.           |  |  |  |  |  |
| Objective | relation to ray            | To acquaint with the fundamentals and application of biotechnology in relation to raw materials for food processing, nutrition, food fermentations, waste utilization |                    |                    |                    |              |                  |  |  |  |  |  |
|           |                            |                                                                                                                                                                       | Course ou          | itcomes            |                    |              |                  |  |  |  |  |  |
| CO1       | To acquaint v              | with principles of                                                                                                                                                    | of different techr | niques used in pr  | ocessing and pre   | servation of | f food           |  |  |  |  |  |
| CO2       | To acquaint                | the students w                                                                                                                                                        | ith packaging m    | ethods, packagii   | ng materials, mode | ern packag   | ing techniques   |  |  |  |  |  |
| CO3       | To acquaint specifications |                                                                                                                                                                       | quality paramet    | ers and contro     | ol systems, food   | l standard   | ls, regulations, |  |  |  |  |  |
| CO4       | To develop a               | an understandii                                                                                                                                                       | ng of enzymes ι    | iseful in food pro | duct technology a  | nd food pro  | ocessing         |  |  |  |  |  |

**Preservation and Processing**: Scope of food processing; historical developments; principles of food processing and preservation. Processing and preservation by drying, concentration and evaporation-types of dryers and their suitability for different food products; ultra-filtration, reverse osmosis, convectional and adiabatic drying. Fruit powders using spray drying.

Processing and preservation by non-thermal methods, irradiation, high pressure, pulsed electric field, hurdle technology. Use and application of enzymes and microorganisms in processing and preservation of foods; food fermentations, pickling, smoking etc.

### UNIT II

**Food packaging systems:** Different forms of packaging such as rigid, semirigid, flexible forms and different packaging system for (a) dehydrated foods (b) frozen foods (c) dairy products (d) fresh fruits and vegetables (e) meat, poultry and sea foods.

### UNIT III

**Quality management :** Concept of quality, instrumental methods for testing quality.Concepts of quality management: Objectives, importance and functions of quality control; Quality management systems in India; Sampling procedures and plans; Food adulteration. Food Safety and Standards Act, 2006; Domestic regulations; Global Food safety Initiative; Indian & International quality systems and standards like ISO and Food Codex. Various organizations dealing with inspection, traceability and authentication, certification and quality assurance (PFA, FPO, MMPO, MPO, AGMARK, BIS); Labeling issues.International scenario, International food standards. Quality assurance.

#### UNIT IV

**Enzymes as processing aids**: Role of enzymes in cheese making and whey processing; fruit juices (cell wall degrading enzymes for liquefaction, clarification, peeling, debittering, decolourization of very dark coloured juices such as anthocyanases); baking (fungal α-amylase for bread making; maltogenic α-amylases for anti-staling; xylanses and pentosanases as dough conditioners; lipases or dough conditioning; oxidases as replacers of chemical oxidants; synergistic effect of enzymes).

#### Text & References:

- 1. Microbiology 5th Edition. Prescott, L.M.; Harley, J.P. and Klein, D.A. (2003) McGraw Hill, USA
- 2. Food Microbiology: Fundamentals and Frontier 2nd Eds. Ed. Beuchat, Doyle & Montville. (2001). Blackwell Synergy.
- 3. Food Microbiology. Frazier, W.C. and Westhoff, D.C. (2010) Tata Mc-Graw Hill, New Delhi.
- 4. Modern Food Microbiology. Jay, J.M. (1996) CBS Publishers and Distributors, New Delhi.
- 5. Foods: Facts and Principles. (2012) N. Shakuntala Manay and M. Swami. New Age International (P) Ltd, Publishers
- 6. Biotechnology: Food Fermentation Vol. I & II. Eds. Joshi, V.K. & Pandey, A. (1999) Educational Publishers, Kerala.
- 7. Biotechnological Strategies in Agroprocessing. Eds. Marwaha S.S & Arora, J.K. (2003)
- 8. Ray, Bibek (1996). Fundamental Food Microbiology .CRC Press.
- 9. Food Microbiology 2nd ed, Adam, M. R. and Moss (2003) Panima Pub., New Delhi.

| MTOE-201       |              |                                                                                                            |               | <b>Business Analytics</b> |                        |                 |         |  |  |  |  |
|----------------|--------------|------------------------------------------------------------------------------------------------------------|---------------|---------------------------|------------------------|-----------------|---------|--|--|--|--|
| Lecture        | Tutorial     | Tutorial         Practical         Credit         Major Test         Minor Test         Total         Time |               |                           |                        |                 |         |  |  |  |  |
| 3              | 0            | 0 0 3 60 40 100 3 Hrs.                                                                                     |               |                           |                        |                 |         |  |  |  |  |
| Program        | The main o   | bjective of thi                                                                                            | s course is t | to give the student a     | comprehensive under    | rstanding of bu | usiness |  |  |  |  |
| Objective (PO) | analytics m  | nalytics methods.                                                                                          |               |                           |                        |                 |         |  |  |  |  |
|                |              |                                                                                                            | Course Ou     | tcomes (CO)               |                        |                 |         |  |  |  |  |
| C01            | Able to hav  | e knowledge                                                                                                | of various b  | ousiness analysis tecl    | hniques.               |                 |         |  |  |  |  |
| CO2            | Learn the re | equirement sp                                                                                              | pecification  | and transforming the      | requirement into diffe | erent models.   |         |  |  |  |  |
| CO3            | Learn the re | equirement re                                                                                              | presentatio   | n and managing requ       | irement assests.       |                 |         |  |  |  |  |
| CO4            | Learn the R  | Recent Trends                                                                                              | in Embeda     | led and collaborative     | business               |                 |         |  |  |  |  |

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

## Unit 2

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents.

Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

## Unit 3

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

## Unit 4

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

- 1. Business Analysis by James Cadle et al.
- 2. Project Management: The Managerial Process by Erik Larson and, Clifford Gray

| MTOE-203              |             | Industrial Safety                                        |              |                    |                      |                  |        |  |  |  |  |  |
|-----------------------|-------------|----------------------------------------------------------|--------------|--------------------|----------------------|------------------|--------|--|--|--|--|--|
| Lecture               | Tutorial    | torial Practical Credit Major Test Minor Test Total Time |              |                    |                      |                  |        |  |  |  |  |  |
| 3                     | 0           | 0                                                        | 3            | 60                 | 40                   | 100              | 3 Hrs. |  |  |  |  |  |
| Program               | To enable s | students to av                                           | vare about t | he industrial safe | ety.                 |                  |        |  |  |  |  |  |
| <b>Objective (PO)</b> |             |                                                          |              |                    |                      |                  |        |  |  |  |  |  |
|                       |             |                                                          | Course Ou    | tcomes (CO)        |                      |                  |        |  |  |  |  |  |
| C01                   | Understand  | l the industria                                          | l safety.    |                    |                      |                  |        |  |  |  |  |  |
| CO2                   | Analyze fur | alyze fundamental of maintenance engineering.            |              |                    |                      |                  |        |  |  |  |  |  |
| CO3                   | Understand  | lerstand the wear and corrosion and fault tracing.       |              |                    |                      |                  |        |  |  |  |  |  |
| CO4                   | Understand  | ling that when                                           | to do perio  | dic inceptions a   | nd apply the prevent | ing maintenance. |        |  |  |  |  |  |

## Unit-1

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

## Unit-2

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

### Unit-3

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

### Unit-4

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

## Reference:

1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.

- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

| MTOE-205       |                                                        | Operations Research                                                                      |              |                    |                        |                 |            |  |  |  |  |  |
|----------------|--------------------------------------------------------|------------------------------------------------------------------------------------------|--------------|--------------------|------------------------|-----------------|------------|--|--|--|--|--|
| Lecture        | Tutorial                                               |                                                                                          |              |                    |                        |                 |            |  |  |  |  |  |
| 3              | 0                                                      | 0 0 3 60 40 100 3 Hrs.                                                                   |              |                    |                        |                 |            |  |  |  |  |  |
| Program        |                                                        | enable students to aware about the dynamic programming to solve problems of discreet and |              |                    |                        |                 |            |  |  |  |  |  |
| Objective (PO) |                                                        |                                                                                          |              |                    |                        |                 |            |  |  |  |  |  |
|                |                                                        |                                                                                          | Course Ou    | tcomes (CO)        |                        |                 |            |  |  |  |  |  |
| C01            | Students s                                             | should able to                                                                           | apply the c  | lynamic program    | ming to solve problems | of discreet and | continuous |  |  |  |  |  |
|                | variables.                                             |                                                                                          |              |                    |                        |                 |            |  |  |  |  |  |
| CO2            | Students s                                             | should able to                                                                           | apply the c  | concept of non-lir | near programming       |                 |            |  |  |  |  |  |
| CO3            | Students should able to carry out sensitivity analysis |                                                                                          |              |                    |                        |                 |            |  |  |  |  |  |
| CO4            | Student sh                                             | nould able to r                                                                          | nodel the re | eal world problen  | n and simulate it.     |                 |            |  |  |  |  |  |

Unit -1

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

## Unit -2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit-3

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

## Unit -4

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

| MTOE-207       |             | Cost Management of Engineering Projects                                       |              |                       |                      |                 |           |  |  |  |  |
|----------------|-------------|-------------------------------------------------------------------------------|--------------|-----------------------|----------------------|-----------------|-----------|--|--|--|--|
| Lecture        | Tutorial    | utorial Practical Credit Major Test Minor Test Total Time                     |              |                       |                      |                 |           |  |  |  |  |
| 3              | 0           | 0 0 3 60 40 100 3 Hrs.                                                        |              |                       |                      |                 |           |  |  |  |  |
| Program        | To enable s | students to ma                                                                | ake aware a  | bout the cost mana    | agement for the engi | neering project | and apply |  |  |  |  |
| Objective (PO) | cost models | ost models the real world projects.                                           |              |                       |                      |                 |           |  |  |  |  |
|                |             |                                                                               | Course Out   | tcomes (CO)           |                      |                 |           |  |  |  |  |
| C01            | Students s  | should able to                                                                | learn the st | trategic cost manag   | ement process.       |                 |           |  |  |  |  |
| CO2            | Students s  | should able to                                                                | types of pro | oject and project tea | am types             |                 |           |  |  |  |  |
| CO3            | Students s  | Students should able to carry out Cost Behavior and Profit Planning analysis. |              |                       |                      |                 |           |  |  |  |  |
| CO4            | Student sh  | nould able to l                                                               | earn the qu  | antitative technique  | s for cost managem   | ent.            |           |  |  |  |  |

## Unit-1

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

## Unit-2

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

### Unit-3

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Breakeven Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

## Unit-4

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

| MTOE-209       |             | Composite Materials                                                         |              |                    |                         |                     |      |  |  |  |  |  |
|----------------|-------------|-----------------------------------------------------------------------------|--------------|--------------------|-------------------------|---------------------|------|--|--|--|--|--|
| Lecture        | Tutorial    | Practical                                                                   | Credit       | Major Test         | Minor Test              | Total               | Time |  |  |  |  |  |
| 3              | 0           | 0 3 60 40 100 3 Hrs.                                                        |              |                    |                         |                     |      |  |  |  |  |  |
| Program        | To enable s | nable students to aware about the composite materials and their properties. |              |                    |                         |                     |      |  |  |  |  |  |
| Objective (PO) |             |                                                                             |              |                    |                         |                     |      |  |  |  |  |  |
|                |             |                                                                             | Course Ou    | tcomes (CO)        |                         |                     |      |  |  |  |  |  |
| C01            | Students s  | should able to                                                              | learn the C  | Classification and | I characteristics of Co | omposite materials. |      |  |  |  |  |  |
| CO2            | Students s  | should able re                                                              | inforcemen   | ts Composite ma    | aterials.               |                     |      |  |  |  |  |  |
| CO3            | Students s  | dents should able to carry out the preparation of compounds.                |              |                    |                         |                     |      |  |  |  |  |  |
| CO4            | Student sh  | nould able to d                                                             | to the analy | sis of the compo   | osite materials.        |                     |      |  |  |  |  |  |

## UNIT-1:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Iso-strain and Iso-stress conditions.

## UNIT – 2

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

## UNIT-3

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

## UNIT – 4

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

## **TEXT BOOKS:**

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.
- Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

## **References:**

3.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

| MTOE-211              |             | Waste to Energy                                                                |              |                     |                       |    |  |  |  |  |  |
|-----------------------|-------------|--------------------------------------------------------------------------------|--------------|---------------------|-----------------------|----|--|--|--|--|--|
| Lecture               | Tutorial    | orial Practical Credit Major Test Minor Test Total Time                        |              |                     |                       |    |  |  |  |  |  |
| 3                     | 0           | 0 0 3 60 40 100 3 Hrs.                                                         |              |                     |                       |    |  |  |  |  |  |
| Program               | To enable s | students to av                                                                 | /are about t | he generation of    | energy from the waste | þ. |  |  |  |  |  |
| <b>Objective (PO)</b> |             |                                                                                |              |                     |                       |    |  |  |  |  |  |
|                       |             |                                                                                | Course Ou    | tcomes (CO)         |                       |    |  |  |  |  |  |
| C01                   | Students s  | should able to                                                                 | learn the C  | Classification of w | /aste as a fuel.      |    |  |  |  |  |  |
| CO2                   | Students s  | should able to                                                                 | learn the N  | lanufacture of ch   | narcoal.              |    |  |  |  |  |  |
| CO3                   | Students s  | udents should able to carry out the designing of gasifiers and biomass stoves. |              |                     |                       |    |  |  |  |  |  |
| CO4                   | Student sh  | nould able to l                                                                | earn the Bio | ogas plant techni   | ology.                |    |  |  |  |  |  |

## Unit-1

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

## Unit-2

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

## Unit-3

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

### Unit-4

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system -Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production -Urban waste to energy conversion - Biomass energy programme in India.

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

| MTAD-101       |              | English For Research Paper Writing                                                                        |               |                       |                        |  |  |  |  |  |  |
|----------------|--------------|-----------------------------------------------------------------------------------------------------------|---------------|-----------------------|------------------------|--|--|--|--|--|--|
| Lecture        | Tutorial     | utorial         Practical         Credit         Major Test         Minor Test         Total         Time |               |                       |                        |  |  |  |  |  |  |
| 2              | 0            | 0 0 0 - 100 100 3 Hrs.                                                                                    |               |                       |                        |  |  |  |  |  |  |
| Program        | Student will | l able to unde                                                                                            | rstand the b  | asic rules of resea   | arch paper writing.    |  |  |  |  |  |  |
| Objective (PO) |              |                                                                                                           |               |                       |                        |  |  |  |  |  |  |
|                |              |                                                                                                           | Course Out    | tcomes (CO)           |                        |  |  |  |  |  |  |
| C01            | Understa     | nd that how to                                                                                            | o improve yo  | our writing skills an | d level of readability |  |  |  |  |  |  |
| CO2            | Learn abo    | out what to wr                                                                                            | ite in each s | section               |                        |  |  |  |  |  |  |
| CO3            | Understa     | Understand the skills needed when writing a Title                                                         |               |                       |                        |  |  |  |  |  |  |
| CO4            | Ensure the   | e good quality                                                                                            | of paper at   | very first-time sub   | mission                |  |  |  |  |  |  |

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

## Unit 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

### Unit 3

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

### Unit 4

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

| MTAD-103              |               |                      | 0              | Disaster Manage   | ement                  |                     |               |  |  |  |  |  |
|-----------------------|---------------|----------------------|----------------|-------------------|------------------------|---------------------|---------------|--|--|--|--|--|
| Lecture               | Tutorial      | Practical            | Credit         | Major Test        | Minor Test             | Total               | Time          |  |  |  |  |  |
| 2                     | 0             | 0                    | 0              | -                 | 100                    | 100                 | 3 Hrs.        |  |  |  |  |  |
| Program               | Develop an    | understandin         | ng of disaste  | er risk reduction | and management         |                     |               |  |  |  |  |  |
| <b>Objective (PO)</b> |               |                      | -              |                   | -                      |                     |               |  |  |  |  |  |
|                       |               | Course Outcomes (CO) |                |                   |                        |                     |               |  |  |  |  |  |
| C01                   | Learn to d    | demonstrate          | a critical i   | understanding d   | f key concepts in      | disaster risk red   | duction and   |  |  |  |  |  |
|                       | humanitaria   | an response.         |                |                   |                        |                     |               |  |  |  |  |  |
| CO2                   | Critically ev | valuate disast       | er risk redu   | iction and humai  | nitarian response poli | icy and practice fr | rom multiple  |  |  |  |  |  |
|                       | perspective   | S.                   |                |                   |                        |                     |               |  |  |  |  |  |
| CO3                   | Develop an    | n understandii       | ng of stand    | lards of humanita | arian response and p   | practical relevance | e in specific |  |  |  |  |  |
|                       | types of dis  | asters and co        | nflict situati | ions.             |                        |                     |               |  |  |  |  |  |
| CO4                   | critically u  | nderstand the        | e strengths    | and weaknesse     | es of disaster manag   | ement approache     | es,           |  |  |  |  |  |
|                       | planning a    | nd programm          | ning in diff   | erent countries,  | particularly their ho  | me country or t     | he            |  |  |  |  |  |
|                       | countries th  | iey work in          |                |                   |                        |                     |               |  |  |  |  |  |

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

## Unit 2

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

### Unit 3

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

### Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

| MTAD-105              | Sanskrit for Technical Knowledge                                                                    |                                                                                                      |        |                    |                          |         |        |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------|--------------------|--------------------------|---------|--------|--|--|
| Lecture               | Tutorial                                                                                            | Practical                                                                                            | Credit | Major Test         | Minor Test               | Total   | Time   |  |  |
| 2                     | 0                                                                                                   | 0                                                                                                    | 0      | -                  | 100                      | 100     | 3 Hrs. |  |  |
| Program               |                                                                                                     | Students will be able to Understanding basic Sanskrit language and Ancient Sanskrit literature about |        |                    |                          |         |        |  |  |
| <b>Objective (PO)</b> | science & te                                                                                        | science & technology can be understood and Being a logical language will help to develop logic in    |        |                    |                          |         |        |  |  |
|                       | students                                                                                            |                                                                                                      |        |                    |                          |         |        |  |  |
| Course Outcomes (CO)  |                                                                                                     |                                                                                                      |        |                    |                          |         |        |  |  |
| C01                   | <b>CO1</b> To get a working knowledge in illustrious Sanskrit, the scientific language in the world |                                                                                                      |        |                    |                          |         |        |  |  |
| CO2                   | Learning of Sanskrit to improve brain functioning                                                   |                                                                                                      |        |                    |                          |         |        |  |  |
| CO3                   | Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the    |                                                                                                      |        |                    |                          |         |        |  |  |
|                       | memory p                                                                                            | memory power                                                                                         |        |                    |                          |         |        |  |  |
| CO4                   |                                                                                                     |                                                                                                      |        | l with Sanskrit wi | ill be able to explore t | he huge |        |  |  |
|                       | knowledge from ancient literature                                                                   |                                                                                                      |        |                    |                          |         |        |  |  |

Unit —1

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

## Unit – 2

Order, Introduction of roots, Technical information about Sanskrit Literature

## Unit –3

Technical concepts of Engineering: Electrical, Mechanical

## Unit –4

Technical concepts of Engineering: Architecture, Mathematics

- 1. "Abhyaspustakam" Dr.Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

| MTAD-107                  | Value Education                                                                                                                               |           |        |            |            |       |        |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|------------|------------|-------|--------|--|--|
| Lecture                   | Tutorial                                                                                                                                      | Practical | Credit | Major Test | Minor Test | Total | Time   |  |  |
| 2                         | 0                                                                                                                                             | 0         | 0      | -          | 100        | 100   | 3 Hrs. |  |  |
| Program<br>Objective (PO) | Understand value of education and self- development, Imbibe good values in students and Let the should know about the importance of character |           |        |            |            |       |        |  |  |
| Course Outcomes (CO)      |                                                                                                                                               |           |        |            |            |       |        |  |  |
| C01                       | Knowledge of self-development                                                                                                                 |           |        |            |            |       |        |  |  |
| CO2                       | Learn the importance of Human values                                                                                                          |           |        |            |            |       |        |  |  |
| CO3                       | Developing the overall personality                                                                                                            |           |        |            |            |       |        |  |  |
| CO4                       | Know about the importance of character                                                                                                        |           |        |            |            |       |        |  |  |

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non-moral valuation. Standards and principles. Value judgements.

### Unit 2

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism.Love for nature, Discipline

## Unit 3

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

### Unit 4

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

### References

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

| MTAD-102              | Constitution of India                                                                                     |                                                                                                          |                          |                   |                      |                  |             |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------|-------------------|----------------------|------------------|-------------|--|--|
| Lecture               | Tutorial                                                                                                  | Practical                                                                                                | Credit                   | Major Test        | Minor Test           | Total            | Time        |  |  |
| 2                     | 0                                                                                                         | 0                                                                                                        | 0                        | -                 | 100                  | 100              | 3 Hrs.      |  |  |
| Program               | Understand                                                                                                | the premis                                                                                               | es informir              | ng the twin the   | mes of liberty and f | freedom from a c | ivil rights |  |  |
| <b>Objective (PO)</b> | perspective                                                                                               | perspective and to address the growth of Indian opinion regarding modern Indian intellectuals'           |                          |                   |                      |                  |             |  |  |
| -                     | constitution                                                                                              | constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood  |                          |                   |                      |                  |             |  |  |
|                       | in the early years of Indian nationalism.                                                                 |                                                                                                          |                          |                   |                      |                  |             |  |  |
| Course Outcomes (CO)  |                                                                                                           |                                                                                                          |                          |                   |                      |                  |             |  |  |
| C01                   | Discuss the                                                                                               | Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of |                          |                   |                      |                  |             |  |  |
|                       | Gandhi in Indian politics.                                                                                |                                                                                                          |                          |                   |                      |                  |             |  |  |
| CO2                   | Discuss the intellectual origins of the framework of argument that informed the conceptualization of      |                                                                                                          |                          |                   |                      |                  |             |  |  |
|                       | social reforms leading to revolution in India.                                                            |                                                                                                          |                          |                   |                      |                  |             |  |  |
| CO3                   | Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the      |                                                                                                          |                          |                   |                      |                  |             |  |  |
|                       | leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult |                                                                                                          |                          |                   |                      |                  |             |  |  |
|                       | suffrage in the Indian Constitution.                                                                      |                                                                                                          |                          |                   |                      |                  |             |  |  |
| CO4                   | Discuss the                                                                                               | passage of t                                                                                             | he Hi <mark>ndu</mark> C | ode Bill of 1956. |                      |                  |             |  |  |

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

## Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

## Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

## Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

## References

1. The Constitution of India, 1950 (Bare Act), Government Publication.

- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

| MTAD-104             |                                                                                                        | Р                                                                                                   | edagogy S     | tudies             |                 |                   |          |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------|--------------------|-----------------|-------------------|----------|--|--|
| Lecture              | Tutorial                                                                                               | Practical                                                                                           | Credit        | Major Test         | Minor Test      | Total             | Time     |  |  |
| 2                    | 0                                                                                                      | 0                                                                                                   | 0             | -                  | 100             | 100               | 3 Hrs.   |  |  |
| Program              |                                                                                                        | Review existing evidence on the review topic to inform programme design and policy making           |               |                    |                 |                   |          |  |  |
| Objective (PO)       | undertake                                                                                              | undertaken by the DFID, other agencies and researchers and Identify critical evidence gaps to guide |               |                    |                 |                   |          |  |  |
|                      | the develo                                                                                             | the development.                                                                                    |               |                    |                 |                   |          |  |  |
| Course Outcomes (CO) |                                                                                                        |                                                                                                     |               |                    |                 |                   |          |  |  |
| C01                  | What pedagogical practices are being used by teachers in formal and informal classrooms in             |                                                                                                     |               |                    |                 |                   |          |  |  |
|                      | developing countries?                                                                                  |                                                                                                     |               |                    |                 |                   |          |  |  |
| CO2                  | What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with |                                                                                                     |               |                    |                 |                   |          |  |  |
|                      | what population of learners?                                                                           |                                                                                                     |               |                    |                 |                   |          |  |  |
| CO3                  | How can t                                                                                              | eacher educ                                                                                         | ation (curri  | culum and practicu | m) and the scho | ol curriculum and | guidance |  |  |
|                      | materials b                                                                                            | est support ef                                                                                      | fective ped   | agogy?             |                 |                   |          |  |  |
| CO4                  | What is the                                                                                            | importance of                                                                                       | f identifying | research gaps?     |                 |                   |          |  |  |

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

## Unit 2

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

## Unit 3

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

## Unit 4

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

## References

1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.

2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.

3. Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

| MTAD-106              |                                                                           | Stress Management by Yoga                                 |             |                  |                    |  |  |  |  |  |  |  |  |
|-----------------------|---------------------------------------------------------------------------|-----------------------------------------------------------|-------------|------------------|--------------------|--|--|--|--|--|--|--|--|
| Lecture               | Tutorial                                                                  | utorial Practical Credit Major Test Minor Test Total Time |             |                  |                    |  |  |  |  |  |  |  |  |
| 2                     | 0                                                                         | 0 0 0 - 100 100 3 Hi                                      |             |                  |                    |  |  |  |  |  |  |  |  |
| Program               | Program To achieve overall health of body and mind and to overcome stress |                                                           |             |                  |                    |  |  |  |  |  |  |  |  |
| <b>Objective (PO)</b> | ve (PO)                                                                   |                                                           |             |                  |                    |  |  |  |  |  |  |  |  |
|                       |                                                                           |                                                           | Course Ou   | tcomes (CO)      |                    |  |  |  |  |  |  |  |  |
| C01                   | Develop h                                                                 | ealthy mind ir                                            | a healthy l | body thus improv | ing social health. |  |  |  |  |  |  |  |  |
| CO2                   | Improve e                                                                 | fficiency                                                 |             |                  |                    |  |  |  |  |  |  |  |  |
| CO3                   | CO3 Learn the Yog asan                                                    |                                                           |             |                  |                    |  |  |  |  |  |  |  |  |
| CO4                   | Learn the                                                                 | pranayama                                                 |             |                  |                    |  |  |  |  |  |  |  |  |

# Unit – 1

Definitions of Eight parts of yog (Ashtanga).

# Unit-2

Yam and Niyam, Do's and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

# Unit-3

Asan and Pranayam, Various yog poses and their benefits for mind & body,

# Unit-4

Regularization of breathing techniques and its effects-Types of pranayam.

- 1. 'Yogic Asanas for Group Tarining-Part-I" : Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

| MTAD-108              |             | Personality Development through Life Enlightenment Skills                   |               |                   |                  |     |        |  |  |  |  |  |  |
|-----------------------|-------------|-----------------------------------------------------------------------------|---------------|-------------------|------------------|-----|--------|--|--|--|--|--|--|
| Lecture               | Tutorial    | Futorial Practical Credit Major Test Minor Test Total Tim                   |               |                   |                  |     |        |  |  |  |  |  |  |
| 2                     | 0           | 0                                                                           | 0             | -                 | 100              | 100 | 3 Hrs. |  |  |  |  |  |  |
| Program               | To learn to | o achieve the                                                               | highest goa   | I happily         |                  |     |        |  |  |  |  |  |  |
| <b>Objective (PO)</b> | To becom    | To become a person with stable mind, pleasing personality and determination |               |                   |                  |     |        |  |  |  |  |  |  |
| -                     | To awaker   | n wisdom in s                                                               | tudents       |                   | -                |     |        |  |  |  |  |  |  |
|                       |             |                                                                             | Course Ou     | tcomes (CO)       |                  |     |        |  |  |  |  |  |  |
| C01                   | Students b  | become aware                                                                | e about lead  | dership.          |                  |     |        |  |  |  |  |  |  |
| CO2                   | Students v  | vill learn how                                                              | to perform l  | his/her duties in | day to day work. |     |        |  |  |  |  |  |  |
| CO3                   | Understan   | nd the team bu                                                              | uilding and o | conflict          |                  |     |        |  |  |  |  |  |  |
| CO4                   | Student w   | ill learn how to                                                            | o become re   | ole model for the | society.         |     |        |  |  |  |  |  |  |

# Unit – 1

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

# Unit – 2

Approach to day to day work and duties; Shrimad Bhagwad Geeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

# Unit - 3

Statements of basic knowledge; Shrimad Bhagwad Geeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

# Unit – 4

Personality of Role model; Shrimad Bhagwad Geeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1. Srimad Bhagavad Gita, Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

# Dissertation Part - I and Dissertation Part - II

|     | Dissertation Part-I (MTBT-207) and Dissertation Part-II (MTBT-202)                                                                               |  |  |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|     | Course Outcomes (CO)                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
| C01 | <b>CO1</b> Ability to synthesize knowledge and skills previously gained and applied to an in depth study and execution of new technical problem. |  |  |  |  |  |  |  |  |  |  |
| CO2 | Capable to select from different methodologies, methods and forms of analysis to produce a suitable research design, and justify their design.   |  |  |  |  |  |  |  |  |  |  |
| CO3 |                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| CO4 |                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |

# Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following:

Relevance to social needs of society

Relevance to value addition to existing facilities in the institute

Relevance to industry need

Problems of national importance

Research and development in various domain

The student should complete the following:

Literature survey Problem Definition

Motivation for study and Objectives

Preliminary design / feasibility / modular approaches

Implementation and Verification

Report and presentation

The dissertation part- II is based on a report prepared by the students on dissertation allotted to them. It may be based on:

Experimental verification / Proof of concept.

The viva-voce examination will be based on the above report and work.

# Guidelines for Dissertation Part – I and Dissertation Part - II

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two parts i.e. Part-I: July to December and Part-II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives.

The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing Engineering and any other related domain. In case of Industry sponsored projects, the relevant application notes, white papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Part–I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper, proof of concept/functionality, part results, and record of continuous progress.

Part–I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Part-I work.

During Part– II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Part–II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, and record of continuous progress.

Part-II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the Part-I work.

10(255)

. . . . . . . . . . . . .



UNIVERSITY INSTITUTE OF ENGINEERING AND TECHNOLOGY

(A constituent Autonomous Institute and Recognized by UGC under Section 12(B) and 2(f))

# KURUKSHETRA UNIVERSITY, KURUKSHETRA

# Established by the state Legislature Act XII of 1956

#### ('A+' Grade, NAAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING <u>SEMESTER-1</u>

| Sr.<br>No. | Course<br>Code | Course Name                                          | L | T | Ρ | Hrs./<br>Week | Credits | Major<br>Test | Minor<br>Test | Practical | Total | Duration<br>of Exam<br>(Hrs.) |
|------------|----------------|------------------------------------------------------|---|---|---|---------------|---------|---------------|---------------|-----------|-------|-------------------------------|
| 1          | MTIP-101       | Advanced Metal<br>Casting                            | 3 | 0 | 0 | 3             | 3       | 60            | 40            | -         | 100   | 3                             |
| 2          | MTIP-103       | Computer Aided<br>Design and<br>Manufacturing        | 3 | 0 | 0 | 3             | 3       | 60            | 40            | -         | 100   | 3                             |
| 3          |                | *Programme<br>Elective-I                             | 3 | 0 | 0 | 3             | 3       | 60            | 40            | -         | 100   | 3                             |
| 4          |                | **Programme<br>Elective-II                           | 3 | 0 | 0 | 3             | 3       | 60            | 40            | -         | 100   | 3                             |
| 5          | MTRM-111       | Research<br>Methodology and<br>IPR                   | 2 | 0 | 0 | 2             | 2       | 60            | 40            | -         | 100   | 3                             |
| 6          | MTIP-117       | Advanced Metal<br>Casting Lab                        | 0 | 0 | 4 | 4             | 2       | -             | 40            | 60        | 100   | 3                             |
| 7          | MTIP-119       | Computer Aided<br>Design and<br>Manufacturing<br>Lab | 0 | 0 | 4 | 4             | 2       | -             | 40            | 60        | 100   | 3                             |
| 8          |                | ***Audit Course-I                                    | 2 | 0 | 0 | 2             | -       | -             | 100           | -         | 100   | 3                             |
|            | Total          |                                                      |   |   |   |               | 18      | 300           | 280           | 120       | 700   |                               |

| *PRC                         | *PROGRAMME ELECTIVE- I (I&P) for 1 <sup>st</sup> Semester |                                |  |  |  |  |  |  |
|------------------------------|-----------------------------------------------------------|--------------------------------|--|--|--|--|--|--|
| 1. MTIP-105 Tool Engineering |                                                           |                                |  |  |  |  |  |  |
| 2.                           | MTIP-107                                                  | Advanced Engineering Materials |  |  |  |  |  |  |
| 3.                           | MTIP-109                                                  | Non-Conventional Machining     |  |  |  |  |  |  |

| **PR                                       | **PROGRAMME ELECTIVE- II ( I&P ) for 1st Semester |                                  |  |  |  |  |  |  |  |
|--------------------------------------------|---------------------------------------------------|----------------------------------|--|--|--|--|--|--|--|
| 1. MTIP-111 Product Design and Development |                                                   |                                  |  |  |  |  |  |  |  |
| 2.                                         | MTIP-113                                          | Simulation of Industrial Systems |  |  |  |  |  |  |  |
| 3.                                         | MTIP-115                                          | Supply Chain Management          |  |  |  |  |  |  |  |

|    | ***AUDIT COURSE – I                            |                                  |  |  |  |  |  |  |  |  |  |
|----|------------------------------------------------|----------------------------------|--|--|--|--|--|--|--|--|--|
| 1. | 1. MTAD-101 English for Research Paper Writing |                                  |  |  |  |  |  |  |  |  |  |
| 2. | MTAD-103 Disaster Management                   |                                  |  |  |  |  |  |  |  |  |  |
| 3. | MTAD-105                                       | Sanskrit for Technical Knowledge |  |  |  |  |  |  |  |  |  |
| 4. | MTAD-107                                       | Value Education                  |  |  |  |  |  |  |  |  |  |

**Note1:** The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

\*\*\* **Note2:** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

#### MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING <u>SEMESTER-II</u>

| Sr.<br>No. | Course<br>Code | Course Name                 | L | Т | Р     | Hrs./<br>Week | Credits | Major<br>Test | Minor<br>Test | Practical | Total | Duration<br>of Exam<br>(Hrs.) |
|------------|----------------|-----------------------------|---|---|-------|---------------|---------|---------------|---------------|-----------|-------|-------------------------------|
| 1          | MTIP-102       | Mechatronics                | 3 | 0 | 0     | 3             | 3       | 60            | 40            | -         | 100   | 3                             |
| 2          | MTIP-104       | Industrial<br>Tribology     | 3 | 0 | 0     | 3             | 3       | 60            | 40            | -         | 100   | 3                             |
| 3          |                | *Programme<br>Elective-III  | 3 | 0 | 0     | 3             | 3       | 60            | 40            | -         | 100   | 3                             |
| 4          |                | **Programme<br>Elective-IV  | 3 | 0 | 0     | 3             | 3       | 60            | 40            | -         | 100   | 3                             |
| 5          | MTIP-118       | Mechatronics<br>Lab         | 0 | 0 | 4     | 4             | 2       | -             | 40            | 60        | 100   | 3                             |
| 6          | MTIP-120       | Industrial<br>Tribology Lab | 0 | 0 | 4     | 4             | 2       | -             | 40            | 60        | 100   | 3                             |
| 7#         | MTIP-122       | Mini Project                | 0 | 0 | 4     | 4             | 2       | -             | 100           | -         | 100   | 3                             |
| 8          |                | ***Audit<br>Course-II       | 2 | 0 | 0     | 2             | -       | -             | 100           | -         | 100   | 3                             |
|            |                |                             |   |   | Total | 26            | 18      | 240           | 340           | 120       | 700   |                               |

|    | *PROGRAMME ELECTIVE-III (I&P) for 2 <sup>nd</sup> Semester |                            |  |  |  |  |  |  |  |
|----|------------------------------------------------------------|----------------------------|--|--|--|--|--|--|--|
| 1. | MTIP-106                                                   | Advanced Welding Processes |  |  |  |  |  |  |  |
| 2. | MTIP-108                                                   | Advanced Metal Cutting     |  |  |  |  |  |  |  |
| 3. | MTIP-110                                                   | Metrology                  |  |  |  |  |  |  |  |

| **P                                   | **PROGRAMME ELECTIVE - IV (I&P) for 2 <sup>nd</sup> Semester |                                    |  |  |  |  |  |  |  |
|---------------------------------------|--------------------------------------------------------------|------------------------------------|--|--|--|--|--|--|--|
| 1. MTIP-112 Sequencing and Scheduling |                                                              |                                    |  |  |  |  |  |  |  |
| 2.                                    | MTIP-114                                                     | Quality Engineering and Management |  |  |  |  |  |  |  |
| 3.                                    | MTIP-116                                                     | Reliability Engineering            |  |  |  |  |  |  |  |

|                                   | ***AUDIT COURSE-II |                                                           |  |  |  |  |  |  |  |  |
|-----------------------------------|--------------------|-----------------------------------------------------------|--|--|--|--|--|--|--|--|
| 1. MTAD-102 Constitution of India |                    |                                                           |  |  |  |  |  |  |  |  |
| 2.                                | MTAD-104           | Pedagogy Studies                                          |  |  |  |  |  |  |  |  |
| 3.                                | MTAD-106           | Stress Management by Yoga                                 |  |  |  |  |  |  |  |  |
| 4.                                | MTAD-108           | Personality Development through Life Enlightenment Skills |  |  |  |  |  |  |  |  |

**Note1:** The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

\*\*\* **Note2:** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

**# Note3: Mini project:** During this course the student will be able to understand the contemporary/emerging technologies for various processes and systems. During the semester, the students are required to search/gather the material/information on a specific topic, comprehend it and present/discuss the same in the class. He/she will be acquainted to share knowledge effectively in oral (seminar) and written form (formulate documents) in the form of report. The student will be evaluated on the basis of viva/ seminar (40 marks) and report (60 marks).

#### MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING <u>SEMESTER-III</u>

| Sr.<br>No. | Course<br>Code | Course<br>Name           | L | T | Р    | Hrs./<br>Week | Credits | Major<br>Test | Minor<br>Test | Practical | Total | Duration<br>of Exam<br>(Hrs.) |
|------------|----------------|--------------------------|---|---|------|---------------|---------|---------------|---------------|-----------|-------|-------------------------------|
| 1          |                | *Programme<br>Elective-V | 3 | 0 | 0    | 3             | 3       | 60            | 40            | -         | 100   | 3                             |
| 2          |                | **Open<br>Elective       | 3 | 0 | 0    | 3             | 3       | 60            | 40            | -         | 100   | 3                             |
| 3          | MTIP-207       | Dissertation<br>Phase-I  | 0 | 0 | 20   | 20            | 10      | -             | 100           | -         | 100   |                               |
|            |                |                          |   | Т | otal | 26            | 16      | 120           | 180           |           | 300   |                               |

| *PROC | *PROGRAMME ELECTIVE-V (I&P) for 3 <sup>rd</sup> Semester |                              |  |  |  |  |  |  |  |  |  |  |
|-------|----------------------------------------------------------|------------------------------|--|--|--|--|--|--|--|--|--|--|
| 1.    | MTIP-201                                                 | Enterprise Resource Planning |  |  |  |  |  |  |  |  |  |  |
| 2.    | MTIP-203                                                 | Design of Experiments        |  |  |  |  |  |  |  |  |  |  |
| 3.    | MTIP-205                                                 | Strategic Entrepreneurship   |  |  |  |  |  |  |  |  |  |  |

|    | **OPEN ELE | CTIVE (I&P) for 3rd Semester               |
|----|------------|--------------------------------------------|
| 1. | MTOE-201   | Business Analytics                         |
| 2. | MTOE-203   | Industrial Safety                          |
| 3. | MTOE-205   | Operations Research                        |
| 4. | MTOE-207   | Cost Management of Engineering<br>Projects |
| 5. | MTOE-209   | Composite Materials                        |
| 6. | MTOE-211   | Waste to Energy                            |

## SEMESTER-IV

| Sr.<br>No. | Course<br>Code | Course<br>Name           | L | T | Р     | Hrs./<br>Week | Credits | Major<br>Test | Minor<br>Test | Practical | Total | Duration of<br>Exam (Hrs.) |
|------------|----------------|--------------------------|---|---|-------|---------------|---------|---------------|---------------|-----------|-------|----------------------------|
| 1          | MTIP-202       | Dissertation<br>Phase-II | 0 | 0 | 32    | 32            | 16      | -             | 100           | 200       | 300   |                            |
|            |                |                          | • |   | Total | 32            | 16      |               | 100           | 200       | 300   |                            |

Total credits of all four semesters - 68

- **Note 1**: At the end of the second semester each student is required to do his/her Dissertation work in the identified area in consent of the Guide/Supervisor. Broad area for the Dissertation Part-I is to be specified/submitted within three weeks of the beginning of the Third Semester.
- Note 2: Each admitted student is required to submit the report of his/her Dissertation Part-I as per the schedule mentioned in Academic calendar for the corresponding academic session otherwise the Dissertation Part-II cannot be continued at any level.

Note 3: Each admitted student is required to submit his/her final Dissertation Part-II as per the schedule mentioned in Academic calendar for the corresponding academic session only after the publication of at least one paper in International/National reputed journals (SCI/Scopus indexed/ UGC approved journals) or reputed conferences with ISSN number.

**Note 4:** The course of program/open elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.

| MTIP-101     |                                                                                           | ADVANCED METAL CASTING |             |               |                |             |              |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------|------------------------|-------------|---------------|----------------|-------------|--------------|--|--|--|--|
| Lecture      | Tutorial                                                                                  | Practical              | Credit      | Major Test    | Minor Test     | Total       | Time         |  |  |  |  |
| 3            | 0                                                                                         | 0                      | 3           | 60            | 40             | 100         | 3 hrs        |  |  |  |  |
| Objective    | The main objective of the course is to impart the students with the knowledge of moulding |                        |             |               |                |             |              |  |  |  |  |
| and casting. |                                                                                           |                        |             |               |                |             |              |  |  |  |  |
|              |                                                                                           | Course                 | Outcome     | S             |                |             |              |  |  |  |  |
| CO1          | To impart knowl                                                                           | edge about va          | arious func | tional requir | ements of r    | noulding m  | aterials and |  |  |  |  |
|              | specifications and                                                                        | I testing of mou       | lding sand  | properties.   |                | -           |              |  |  |  |  |
| CO2          | To acquaint stu                                                                           | dents with the         | phenome     | non of soli   | dification and | d analytics | involved in  |  |  |  |  |
| CO3          | To impart knowle                                                                          |                        |             |               |                |             |              |  |  |  |  |
|              | accurately design                                                                         | ed defect free o       | asting.     | 0 0           | Ū.             | Ū           | 0 0          |  |  |  |  |
| CO4          | To let student und                                                                        | بمسمم امسمامسما        |             |               | 1.1            | C 11        |              |  |  |  |  |

**Functional Requirement of Moulding Materials:** Principal ingredients of moulding Sands; Different Types of Sands; Clays, Different types of Clay structures, Moisture; Theories of Clay sand bonding, Sand system equipment, Flow of sand in a mechanized foundry, The Requirement of core sands,.

## Specification and testing of Moulding Sands

Grain Size, Grain Shape, Clay content, Moisture Content, Bulk Density and Specific Surface Area, Acid Demand Value (ADV), Fines Content, Sintering Temperature, Mould hardness, Permeability, Strength, Deformation & toughness, Compactability, Mouldability, High Temperature Characteristics.

### UNIT-II

**Solidifications of Metals**, Nucleation, free energy concept, critical radius of nucleus, Distribution coefficient and Constitutional Undercooling, Solidification in Pure Metals and Alloys, Directional Solidification, Casting Characteristics related to Solidification; Fluidity, Dendritic Growth, Dendrite coherency, Segregation, Inverse Segregation, Hot tearing, Hipping, Solidification under pressure.

**Heat Transfer during casting process**: Resistance to Heat Transfer, Centerline Feeding Resistance, Rate of solidification, Solidification of Large casting in an insulating mould, Solidification with predominant interface resistance, Solidification with constant casting surface temperature, Solidification with predominant resistance in mould and solidified Metal, Solidification Time and Chvorinov rule, Numerical Exercises.

### UNIT-III

**Gating System Design:** Gating system defined, Types of Gating Systems, Types of Gates, Elements of Gating System, Gating System design, Factors involved in Gating design, Pouring time, Choke Area, Sprue design, Gating Ratio, Sprue runner gate ratio, Elimination of Slag and Dross, Filtration, Numerical exercises.

**Riser Design:** Need for riser, Basic requirements of an effective feeding system for a casting, Feeding Efficiency, Types of Risers, Effective feeding distances for simple and complex shapes. Use of chills, Directional solidification, Stresses in castings, Metal Mould reactions, Claine's Method, Modulus Method, Naval Research Laboratory (NRL) Method, Pouring rate and Temperature, Padding, Use of exothermic materials, Chills, Feeding Aids, Numerical exercises.

#### UNIT-IV

**Special casting Processes:** Shell Moulding, Investment Casting, Permanent Mould Casting, Diecasting, Centrifugal casting.

**Inspection and testing of casting:** Visual, Optical, Dimensional inspection, Laser Scanning, White light scanning, Radiographic Inspection, ultrasonic testing, Magnetic Particle Testing, dye penetration, Casting Defects; Classification, Causes and remedies.

|    | H.F. Taylor, "Foundry Engineering", John Wiley and Sons. | 7.  | Flinn, "Fundamentals of Metals Casting", Addison Wesley.  |
|----|----------------------------------------------------------|-----|-----------------------------------------------------------|
| 2. | P.L. Jain, "Principles of Foundry Technology", Mc-Graw   | 8.  | Heine Loper and Resenthal, "Principles of Metal Casting", |
|    | Hill.                                                    |     | Mc-Graw Hill.                                             |
| 3. | Mahi Sahoo and Sudhari Sahu, "Principles of Metal        | 9.  | Hielel and Draper, "Product Design & Process              |
|    | Casting.                                                 |     | Engineering", Mc-Graw Hill.                               |
| 4. | Amitabha Ghosh, " Manufacuring Science", Affliated East  | 10. | Salman & Simans, "Foundry Practice", Issac Pitman.        |
|    | West Press.                                              | 11. | ASME, "Metals Handbook- Metal Casting."                   |
| 5. | P.N Rao, "Manufacturing Technology: Foundry, Forming     | 12. | P.C. Mukharjee, Fundamentals of Metal casting             |
|    | and Welding" TMH.                                        |     | Technology, Oxford, IBH.                                  |
| 6. | K.P. Sinha,"Foundry Technology", Standard Publishers,    | 13. | P.R.Beeley, Foundry Technology, Butterworth Heinmann.     |
|    | Delhi.                                                   |     |                                                           |
|    | Dell'II.                                                 |     |                                                           |

|           | MTIP w.e.f. 2018-19                              |                                                                                                |               |                 |                  |             |               |  |  |  |  |
|-----------|--------------------------------------------------|------------------------------------------------------------------------------------------------|---------------|-----------------|------------------|-------------|---------------|--|--|--|--|
| MTIP-103  |                                                  | COM                                                                                            | PUTER AIDE    | D DESIGN ANI    | D MANUFACTU      | IRING       |               |  |  |  |  |
| Lecture   | Tutorial                                         | Practical                                                                                      | Credit        | Major Test      | Minor Test       | Total       | Time          |  |  |  |  |
| 3         | 0                                                | 0                                                                                              | 3             | 60              | 40               | 100         | 3 hrs         |  |  |  |  |
| Objective | The objective of                                 | The objective of the course is to understand about the technology of computers for the design, |               |                 |                  |             |               |  |  |  |  |
|           | process planning and manufacturing the products. |                                                                                                |               |                 |                  |             |               |  |  |  |  |
|           |                                                  |                                                                                                | Course O      | utcomes         |                  |             |               |  |  |  |  |
| C01       | To understand                                    | the fundame                                                                                    | ntals and a   | pplications of  | computers in t   | he field of | designing and |  |  |  |  |
|           | manufacturing a                                  | ind the transfo                                                                                | rmation of ge | ometric models  |                  |             |               |  |  |  |  |
| CO2       | To understand t                                  | he concepts of                                                                                 | G.T. and FM   | IS.             |                  |             |               |  |  |  |  |
| CO3       | To know the use                                  | e of computers                                                                                 | in process p  | lanning and sho | p floor control. |             |               |  |  |  |  |
| CO4       | To learn the bas                                 | sics of AGV an                                                                                 | d coding syst | ems for CNC.    |                  |             |               |  |  |  |  |
| -         | •                                                |                                                                                                | 110           | ІТ І            |                  |             |               |  |  |  |  |

UNIT I

**Fundamentals of CAD:** Introduction to CAD/CAM, Historical Development, Industrial Look at CAD/CAM, Application of computers in design, Creating manufacturing database, Benefits of CAD. Computer Hardware, Graphic input devices, display devices, Graphics output devices, Central processing unit (CPU).

**Geometric transformations:** 2D and 3D; transformations of geometric models like translation, scaling, rotation, reflection, shear; homogeneous representations, concatenated representation; Orthographic projections, Numerical Problems

### unit II

## Group Technology and Cellular Manufacturing

Part families, parts classifications and coding, Production flow Analysis, cellular Manufacturing- composite part concept, machine cell design, applications of group technology, Grouping parts and machines by Rank order clustering technique, Arranging machines in a G.T. cell.

## **Flexible Manufacturing**

Introduction, FMS components, Flexibility in Manufacturing – machine, Product, Routing, Operation, types of FMS, FMS layouts, FMS planning and control issues, deadlock in FMS, FMS benefits and applications.

#### UNIT III

### Process Planning

Introduction, Manual process planning, Computer aided process planning – variant, generative, Decision logicdecision tables, decision trees, Introduction to Artificial intelligence.

#### Shop Floor Control

Introduction, Shop floor control features, Major displays, Major reports, Phases of SFC Order Release, Order Scheduling, Order Progress, Manufacturing control, Methodology, Applications, Shop floor data collections, Types of data collection system, Data input techniques, Automatic data, Collection system.

## UNIT IV

#### CNC Basics and Part Programming

Introduction, Historical Background, Basic Components of an NC, Steps in NC, Verifications of Numerical control machine tool programs, Classification of NC Machine tool, Basics of motion control and feedback for NC M/C, NC part programming, Part programming methods, Modern Machining system, Automatically programmed tools, DNC, Adaptive control

## Automated Guided Vehicle

Introduction, History, Features, Functions of AGV, Types of AGV, Safety consideration for AGV, Design of AGV. **RECOMMENDED BOOKS:** 

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 3. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 6. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 7. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Pub., New Delhi, Second Edition, 2000.
- 8. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall
- 9. Chang, Wang & Wysk Computer Aided Manufacturing. Prentice Hall.
- 10. Kundra & Rao, Numerical Control and Computer Aided Manufacturing by, Rao and Tiwari, Tata Mc-Graw Hill.
- 11. Mattson, CNC programming Principles and applications, Cengage Learning India Pvt.
  - Ltd. Delhi.

|           |                                                                                                                                                                    |                                                                |                 |                   |                   | MTIP w.e.f | . 2018-19 |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------|-------------------|-------------------|------------|-----------|--|--|
| MTIP-105  |                                                                                                                                                                    |                                                                | TO              | OL ENGINEERI      | NG                |            |           |  |  |
| Lecture   | Tutorial                                                                                                                                                           | Practical                                                      | Credit          | Major Test        | Minor Test        | Total      | Time      |  |  |
| 3         | 0                                                                                                                                                                  | 0                                                              | 3               | 60                | 40                | 100        | 3 hrs     |  |  |
| Objective | The objective of the course is to impart the students with the knowledge of various aspects of design of different types of Tools and fixtures used in Industries. |                                                                |                 |                   |                   |            |           |  |  |
|           | design of differ                                                                                                                                                   | ent types of To                                                | ools and fixtu  | res used in Indu  | stries.           |            |           |  |  |
|           |                                                                                                                                                                    | Co                                                             | urse Outco      | mes               |                   |            |           |  |  |
| CO1       | To impart know                                                                                                                                                     | ledge of mater                                                 | rials for cutti | ng tool and desig | gn of cutting too | ols.       |           |  |  |
| CO2       |                                                                                                                                                                    |                                                                |                 | f Gages and Wo    |                   | ces.       |           |  |  |
| CO3       | To impart know                                                                                                                                                     | To impart knowledge to students about Drill jigs and Fixtures. |                 |                   |                   |            |           |  |  |
| CO4       | To let student u                                                                                                                                                   | understand the                                                 | tool design     | process for NC I  | Machine tools     |            |           |  |  |

**Cutting Tool Materials:** Introduction and desirable properties, Carbon and Medium-Alloy Steels, High-Speed Steels, Cast-Cobalt Alloys, Carbides, Coated Tools, Alumina-Based Ceramics, Cubic Boron Nitride, Silicon-Nitride Based Ceramics, Diamond, Reinforced Tool Materials, Cutting-Tool Reconditioning.

**Design of Cutting Tools** Basic Requirements, Mechanics and Geometry of Chip Formation, General Considerations for Metal Cutting, Design of single point Cutting Tools, Design of Milling Cutters, Design of Drills and Drilling, Design of Reamers, Design of Taps, Chip Breakers.

## UNIT-II

**Gages and Gage Design**: Limits fits and tolerances, Geometrical tolerances-specification and measurement, Types of gages, Gage design, gage tolerances, Material for Gages.

Work Holding Devices: Basic requirements of work holding devices, Location: Principles, methods and devices, Clamping: Principles, methods and devices.

## UNIT-III

**Drill Jigs**: Definition and types of Drill Jigs, Chip Formation in Drilling, General Considerations in the Design of Drill Jigs, Drill Bushings, Drill Jigs, and Modern Manufacturing

**Design of Fixtures**: Fixtures and Economics , Types of Fixtures , Milling Fixtures , Boring Fixtures, Broaching Fixtures, Lathe Fixtures, Grinding

# UNIT-IV

**Tool Design for Numerically Controlled Machine Tools:** Fixture Design for Numerically Controlled Machine Tools, Cutting Tools for Numerical Control, Tool-holding Methods for Numerical Control.

## **RECOMMENDED BOOKS:**

1. ASTME, "Fundamentals of Tool Design", Prentice Hall of India, 1983.

2. Donaldson, "Tool Design", Tata-McGraw Hill, 3rd Edition, 2000.

3. Joshi P.H., "Jigs and Fixtures", Tata-McGraw Hill, 2010.

| MTIP-107  | MTIP w.e.f. 2018 ADVANCED ENGINEERING MATERIALS |                                                                                                                                                                                                                         |               |                |                |                |            |  |  |  |  |
|-----------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|----------------|----------------|------------|--|--|--|--|
| Lecture   | Tutorial                                        | Practical                                                                                                                                                                                                               | Credit        | Major<br>Test  | Minor<br>Test  | Total          | Time       |  |  |  |  |
| 3         | 0                                               | 0                                                                                                                                                                                                                       | 3             | 60             | 40             | 100            | 3 hrs      |  |  |  |  |
| Objective | The objective of th smart materials.            |                                                                                                                                                                                                                         | •             |                | e knowledge of | f various adva | nced and   |  |  |  |  |
|           |                                                 | (                                                                                                                                                                                                                       | Course Outc   | omes           |                |                |            |  |  |  |  |
| C01       | To impart knowled                               | lge of Piezoelec                                                                                                                                                                                                        | tric and shap | e memory all   | oys.           |                |            |  |  |  |  |
| CO2       | To acquaint stude                               | nts with deep kr                                                                                                                                                                                                        | now how abo   | ut Electro-rhe | ological and c | omposite mate  | erials     |  |  |  |  |
| CO3       | To impart knowled                               | ge to students a                                                                                                                                                                                                        | bout MEMS s   | systems and H  | ligh temperatu | re application | materials. |  |  |  |  |
| CO4       |                                                 | To impart knowledge to students about MEMS systems and High temperature application materials.<br>To let student understand the processing and characteristics of powder metallurgy processes and structural materials. |               |                |                |                |            |  |  |  |  |

**Introduction to advanced Engineering materials:** Classes of Materials and their usage, Historical Perspective, Intelligent Materials, Structural Materials, Functional Materials, Primitive Functions of Intelligent Materials, Intelligence inherent in Materials, Materials Intelligently Harmonizing with humanity, Biomimetic.

**Smart Materials and Structural Systems:** Introduction, Actuator Materials, Sensing Technologies, Micro-sensors, Intelligent systems, Hybrid Smart Materials, Passive Sensory Smart Structures, Reactive Actuator based smart structures, Active Sensing and Reactive smart structures, smart skins, Aero-elastic tailoring of airfoils, Synthesis of future smart systems.

#### UNIT-II

**Electrocaloric Effect:** An Introduction, History of Electrocaloric Cooling, Mechanism of working of Electrocaloric Cooling, Electrocaloric Materials, Performance of Electrocaloric Materials.

Heat Resistant Steels: Conventional Heat-Resistant Steels, Silicon-Bearing High Chromium Heat-Resistant Steels, Nitride-Strengthened Reduced Activation Heat-Resistant Steels, China Low Activation Martensitic Steel Nitride-Strengthened Steels, Microstructural Stability

#### UNIT-III

**Smart Micro-systems:** Silicon Capacitive Accelerometer, Piezo-resistive Pressure sensor, Conductometric Gas sensor, An Electrostatic Comb-drive, Magnetic Microrelay, Portable Blood Analyser, Piezoelectric Inkjet Print Head. **Buckyballs to robotics**: Bucky ball, Nano Structure of Fullerene, Carbon Nanotubes, Nano Diamond, Boron nitride nanotubes, Single electron transistors, Molecular machine, Nano Biometrics, Nano Robots,

#### UNIT-IV

**Nano-Alloys:** Introduction, Chemical Synthesis: General Concepts, Reduction of Metallic Salts, The Organometallic Route: Thermal Decomposition Method, Other Chemical Methods for synthesis of Nano-alloys, Physical Routes for synthesis of Nano-Alloys; Experimental Techniques and Examples.

**Shape memory alloys (SMA):** Shape memory effect and the metallurgical phenomenon of SMA, Types of SMA, One way and Two way Shape memory effect. Temperature assisted shape memory effect, Applications.

- 1. Gandhi, M.V. and Thompson, B.S., Smart materials and Structures, Chapman & Hall, 1992.
- 2. Ananthasuresh G.K., Vinoy K.J., Micro and Smart Systems, Wiley India.
- 3. Wei Yan, Wei Wang, 9-12 Cr Heat Resistant Steels, Engineering Material series, Springer International.
- 4. Damien Alloyeau, Christine Mottet, Nanoalloys Synthesis, Structure and Properties, Springer International.
- 5. Tatiana Correia, Qi Zhang, Electrocaloric Materials: New Generation of Coolers
- 6. Otsuka, K. and Wayman, C. M., Shape memory materials, C.U.P, 1998
- 7. Taylor, W., Pizoelectricity, George Gorden and Breach Sc. Pub., 1985
- 8. Mallick, P.K., Fiber Reinforced Composites Materials, Manufacturing and Design. Marcel Dekker Inc, New York, 1993.
- 9. Rama Rao, P. (ed.), Advances in Materials and their applications, Wiley Eastern Ltd.

|           |                              |                                                                                                                                                                                        |           |                                |                 |            | MTIP w.e.f. 2018-19            |  |  |  |  |  |
|-----------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------|-----------------|------------|--------------------------------|--|--|--|--|--|
| MTIP-109  | 9 NON-CONVENTIONAL MACHINING |                                                                                                                                                                                        |           |                                |                 |            |                                |  |  |  |  |  |
| Lecture   | Tutorial                     | Practical                                                                                                                                                                              | Credit    | Major Test                     | Minor Test      | Total      | Time                           |  |  |  |  |  |
| 3         | 0 0 3 60 40 100 3 hrs        |                                                                                                                                                                                        |           |                                |                 |            |                                |  |  |  |  |  |
| Objective |                              | o acquaint the students with the advanced technologies and processes in various streams of Non-<br>onventional machining.                                                              |           |                                |                 |            |                                |  |  |  |  |  |
|           |                              |                                                                                                                                                                                        |           | Course Outo                    | omes            |            |                                |  |  |  |  |  |
| C01       |                              | 0                                                                                                                                                                                      |           | Non-convention removal for the |                 | Working F  | Processes, technology, process |  |  |  |  |  |
| CO2       | To acquair                   | nt students wit                                                                                                                                                                        | h deep kn | owhow about ch                 | nemical and ele | ctrochemi  | cal machining processes,       |  |  |  |  |  |
| CO3       |                              | To impart knowledge to students about various kinds of Electric discharge machining processes, process parameters associated with these processes and various process characteristics. |           |                                |                 |            |                                |  |  |  |  |  |
| CO4       |                              | dent_understa<br>eam machinin                                                                                                                                                          |           | U                              | chnology assoc  | iated with | n Laser Beam machining and     |  |  |  |  |  |

Introduction, Need of Non-conventional machining processes, Characteristics of conventional and Non-conventional Machining processes. **Mechanical Working Processes: Abrasive Jet Machining:** Machining setup, Abrasives, Process Parameters, Machining Characteristics, Material removal models in AJM, Process capability, Advantages, limitations, Applications

**Water Jet Machining:** Basic mechanism of Water jet machining setup, Process parameters, Catcher, Process capabilities, Advantages, limitations, Applications **Abrasive Water Jet Machining process:** Working Principle, AWJM Machine, Process Variables, Mechanism of Metal Removal, Cutting Parameters, Process capabilities, Applications, Environmental issues.

**Ultrasonic Machining:** Fundamental principles, Equipment, Magnetostriction, Elements of process, Mechanics of cutting, Analysis of Process Parameters, Process capabilities, Economic considerations. Applications, Limitations

UNIT-II

**Chemical Machining:** Introduction, Fundamental Principles, Process Parameters; Maskants and Etchants, Advantages, Limitations, Applications.

**Electrochemical Machining Processes:** Introduction, Classification of ECM Processes, Fundamentals Principles of ECM, Elements of ECM, ECM Machine Tool Process, Determination of Metal Removal Rate, Evaluation of Metal Removal of an alloy, Electrochemistry of ECM, Cathode and Anode reaction, Dynamics of ECM, Self-Regulating feature of ECM, Process Parameters, Process capabilities, Electrochemical Deburring. **Electrochemical Grinding:** Schematics, Electrochemistry, Process Parameters, Process capabilities, Applications, Advantages, Limitations.

#### UNIT-III

**EDM:** Introduction, Basic Principles & Schematics, Process Parameters, Characteristics of EDM, Dielectric, Electrode Material, Modelling of Material Removal, Spark Erosion Generators, Analysis and Metal Removal Rate in RC circuit, Selection of Tool Material and Tool Design, Di-Electric system, Process Variables, Dielectric Pollution and its effects, Process Characteristics, Applications, Electric Discharge Grinding and Electric Discharge Diamond Grinding; **Wire EDM:** Working Principle, Wire EDM Machine, Advances in Wire-cut EDM Process Variables, Process Characteristics, Applications.

## UNIT-IV

**Laser Beam Machining** Back Ground, Production of Laser, Working Principle of LBM, Types of LASERS, Process Characteristics, Metallurgical effects, Advantages and Limitations, Applications.

## Electron Beam Machining:

Electron Beam Action, Generation and control of Electron beam, Theory of Electron Beam Machining, Process Parameters, Process capabilities, Applications.

High Energy Rate Forming, Elctro-Hydraulic Forming, Explosive Forming, Hot Machining Analysis of the Process. **RECOMMENDED BOOKS:** 

- 1. V.K. Jain, Advanced Machining Processes, Allied Publishers Pvt Ltd
- 2. P.C. Pandey and H.S. Shan, Modern Machining Processes, Tata McGraw-Hill
- 3. M. K. Singh, Unconventional Manufacturing Process, New Age Publishers
- 4. J. A. Mcgeough, Advanced Methods of Machining, Springer.
- 5. Benedict, Non-Traditional Manufacturing Process, CRC pub.
- 6. P. K. Mishra, Nonconventional manufacturing, Narosa Publishers

| MTIP-111  | MTIP w.e.f. 2018-19 PRODUCT DESIGN AND DEVELOPMENT                                                                                                                                                                                          |                 |              |               |                |               |                   |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|---------------|----------------|---------------|-------------------|--|--|--|--|
|           |                                                                                                                                                                                                                                             |                 |              |               |                |               |                   |  |  |  |  |
| Lecture   | Tutorial                                                                                                                                                                                                                                    | Practical       | Credit       | Major<br>Test | Minor<br>Test  | Total         | Time              |  |  |  |  |
| 3         | 0                                                                                                                                                                                                                                           | 0               | 3            | 60            | 40             | 100           | 3 hrs             |  |  |  |  |
| Objective | The objective of the course is to understand about the product design and developments inputs from aesthetics, ergonomics, design for manufacturing ease and cost effectiveness a from reliability and durability and other considerations. |                 |              |               |                |               |                   |  |  |  |  |
|           |                                                                                                                                                                                                                                             | 1               | rse Outcor   |               |                |               |                   |  |  |  |  |
| C01       | To understand the industry, production                                                                                                                                                                                                      |                 |              |               | considerat     | ions, design  | practiced by the  |  |  |  |  |
| CO2       | To provide a deta for manufacturing,                                                                                                                                                                                                        |                 |              |               | primary pro    | ocesses and c | lesign guidelines |  |  |  |  |
| CO3       | To discuss the hur                                                                                                                                                                                                                          | nan factor engi | ineering and | I the concep  | ot of value ei | ngineering.   |                   |  |  |  |  |
| CO4       | To study the mod<br>manufacturing and                                                                                                                                                                                                       |                 |              | uct design,   | concept of     | product deve  | elopment and its  |  |  |  |  |

**INTRODUCTION:** Introduction to product design, Design by evolution and innovation, Essential factors of product design, Production consumption cycle, Flow and value addition in production consumption cycle, Morphology of design. **PRODUCT DESIGN PRACTICE AND INDUSTRY:** Product strategies, Time to market, Analysis of the product, Basic design considerations, Role of aesthetics in product design.

### UNIT-II

**DESIGN FOR MANUFACTURE AND ASSEMBLY:** Overview and motivation, Basic method: Design guidelines: Design for assembly, Design for piece part production, Advanced method: Manufacturing cost analysis, cost driver modeling, Critique for design for assembly method.

**DESIGN FOR THE ENVIRONMENT:** Environmental objectives, Basic DFE methods, Design guidelines, Life cycle assessment, Techniques to reduce environmental impact.

## UNIT-III

**HUMAN ENGINEERING CONSIDERATIONS IN PRODUCT DESIGN:** Human being as applicator of forces, Anthropometry, the design of controls, the design of displays, Man/Machine information exchange, Workplace layout from ergonomic considerations.

**VALUE ENGINEERING:** Value, Nature and measurement of value, Maximum value, Normal degree of value, Importance of value, value analysis job plan, creativity, steps to problem solving and value analysis, value analysis tests, value engineering idea generation check list, Cost reduction through value engineering-case study, materials and process selection in value engineering.

## UNIT-IV

**MODERN APPROACHES TO PRODUCT DESIGN:** Concurrent design, Quality function deployment (QFD), Rapid prototyping, 3D printing, Introduction to 4D printing.

**PRODUCT DEVELOPMENT:** A modern product development process, reverse engineering and redesign product development process, product life cycle, product development teams, Product development planning, Manufacturing & economic aspects of product development.

- 1. Kail T Ulrich and Steven D Eppinger, "Product Design and Development, TMH.
- 2. AK Chitale and Gupta, "Product Design and Engineering, PHI.
- 3. Niebel & Draper, "Product Design and Process Engineering", McGraw-Hill.
- 4. Kevin Otto & Kristin Wood, "Product Design-Techniques in reverse engineering and new product development" Pearson.

|           | MTIP w.e.f. 20 |                                                                                             |                |                  |                 |                  |        |  |  |  |  |  |
|-----------|----------------|---------------------------------------------------------------------------------------------|----------------|------------------|-----------------|------------------|--------|--|--|--|--|--|
| MTIP-113  |                | SIMULATION OF INDUSTRIAL SYSTEMS                                                            |                |                  |                 |                  |        |  |  |  |  |  |
| Lecture   | Tutorial       | Practical                                                                                   | Credit         | Major Test       | Minor Test      | Total            | Time   |  |  |  |  |  |
| 3         | 0              | 0                                                                                           | 3              | 60               | 40              | 100              | 3 hrs  |  |  |  |  |  |
| Objective | The main of    | The main objective of the course is to impart the students with the knowledge of industrial |                |                  |                 |                  |        |  |  |  |  |  |
| -         | systems an     | systems and its simulation.                                                                 |                |                  |                 |                  |        |  |  |  |  |  |
|           |                |                                                                                             | Course         | Outcomes         |                 |                  |        |  |  |  |  |  |
| CO1       | To explain t   | the concept of i                                                                            | ndustrial sin  | nulation systems | and its models  | s of simulation. |        |  |  |  |  |  |
| CO2       | To understa    | and the simulat                                                                             | ion of discre  | te and queuing s | systems.        |                  |        |  |  |  |  |  |
| CO3       | To understa    | and the simulat                                                                             | ion if invento | ry systems and   | design of simul | ation experime   | ents.  |  |  |  |  |  |
| CO4       | To simulate    | e the industria                                                                             | l problems     | like reliability | problems, com   | puter time sl    | haring |  |  |  |  |  |
|           |                | d understand th                                                                             |                |                  | -               | •                | 5      |  |  |  |  |  |

**Introduction and overview:** concept of system, system environment, elements of system, system modeling, types of models, Monte Carlo method, system simulation, simulation - a management laboratory, advantages & limitations of system simulation, continuous and discrete systems.

**Simulation of continuous systems**: characteristics of a continuous system, comparison of numerical integration with continuous simulation system. Simulation of an integration formula.

### UNIT-II

**Simulation of discrete system:** Time flow mechanisms, Discrete and continuous probability density functions. Generation of random numbers, testing of random numbers for randomness and for auto correlation, generation of random variates for discrete distribution, generation of random variates for continuous probability distributionsbinomial, normal, exponential and beta distributions; combination of discrete event and continuous models.

**Simulation of queuing systems:** Concept of queuing theory, characteristic of queues, stationary and time dependent queues, queue discipline, time series analysis, measure of system performance.

Kendall's notation, auto covariance and auto correlation function, auto correlation effects in queuing systems, simulation of single server queues, multi-server queues, queues involving complex arrivals and service times with blanking and reneging.

### UNIT-III

**Simulation of inventory systems**: Rudiments of inventory theory, MRP, in-process inventory. Necessity of simulation in inventory problems, forecasting and regression analysis, forecasting through simulation, generation of Poisson and Erlang variates, simulation of complex inventory situations.

Design of Simulation experiments: Length of run, elimination of initial bias, Variance, Variance reduction techniques, stratified sampling, antipathetic sampling, common random numbers, time series analysis, spectral analysis, model validation, optimization procedures, search methods, single variable deterministic case search, single variable non-deterministic case search, and regenerative technique.

#### **ŬNIT-IV**

**Simulation of PERT:** Simulation of - maintenance and replacement problems, capacity planning, production systems, reliability problems, computer time sharing problem, the elevator system.

**Simulation Languages**: Continuous and discrete simulation languages, block structured continuous languages, special purpose simulation languages, SIMSCRIPT, GPSS SIMULA importance and limitations of special purpose languages.

- 1. Loffick, Simulation and Modelling Tata McGraw Hill
- 2. Deo Narsingh, System Simulation with Digital Computer Prentice Hall
- 3. Hira, D.S., System Simulation-S. Chand & Co.
- 4. Meelamkavil, Computer Simulation and Modelling John Willey
- 5. Gorden, System Simulation Prentice hall
- 6. Jerry Banks and John, S. Carson II, 'Discrete Event System Simulation', Prentice Hall Inc., NewJersey, 1984.
- 7. Geoffrey Gordon, 'System simulation', Prentice Hall, NJ, 1978.
- 8. Law, A.M. and W.D. Keltor, 'Simulation modelling analysis', McGraw Hill, 1982.

| MTIP-115                                                                                    | SUPPLY CHAIN MANAGEMENT |                                                                                        |                |                                      |                   |              |              |  |  |  |  |
|---------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------|----------------|--------------------------------------|-------------------|--------------|--------------|--|--|--|--|
| Lecture                                                                                     | Tutorial                | Practical Credit Major Test Minor Test Total Ti                                        |                |                                      |                   |              |              |  |  |  |  |
| 3                                                                                           | 0                       | 0                                                                                      | 3              | 60                                   | 40                | 100          | 3 hrs        |  |  |  |  |
| Objective                                                                                   |                         | bjective of the<br>nt aspects of su                                                    | upply chain ma | nagement.                            | nts with the know | wledge of Su | ipply chaii  |  |  |  |  |
|                                                                                             |                         |                                                                                        | Course C       | Outcomes                             |                   |              |              |  |  |  |  |
| CO1                                                                                         | To impart k             | To impart knowledge about basics of Supply chain management and Supply chain dynamics. |                |                                      |                   |              |              |  |  |  |  |
| CO2                                                                                         | To acquain chain mana   |                                                                                        | the different  | aspects involved                     | l in sourcing and | procuremen   | it in supply |  |  |  |  |
| CO3                                                                                         |                         |                                                                                        |                | t Evaluating perf<br>nd warehousing. | formance of Sup   | ply chain an | nd decision  |  |  |  |  |
| CO4 To let student understand Quantitative tools for SCM, Information Technology in a Suppl |                         |                                                                                        |                |                                      |                   |              |              |  |  |  |  |

**Overview of supply chain management:** Introduction, Definition, The Objective of a Supply Chain, The Importance of Supply Chain Decisions, Decision Phases in a Supply Chain, Process Views of a Supply Chain, Examples of Supply Chains.

**Supply chain dynamics**: Introduction, Coping with Dynamics in Supply chain. Bullwhip effect, Analysis of Bullwhip Effect, Impact of Lead time, Inventory management and Supply chain dynamics, offshoring and outsourcing Effect on SC dynamics and cost.

#### UNIT-II

**Outsourcing and Make or Buy Decisions:** Strategic Decisions and Core competencies, Tactical Decisions, Factors influencing make or buy decisions, Control of Production or Quality, Unreliable Suppliers, Suppliers Specialized knowledge and research, Small Volume Requirements, Limited Facilities, Workforce Stability, Multiple Sourcing Policy, Managerial and Procurement considerations, the Volatile nature of Make/Buy situation, Administration: Procedures and Personal.

**Sourcing of Supply:** Importance of Source Selection, Responsibilities for Source Selection, Evaluating a potential supplier, The criticality of Qualifying Sources, Competitive Bidding and Negotiation, Prerequisite for competitive bidding, Two step Bidding/Negotiation, Benefits and Risks of International Sourcing, Identifying and Qualifying an International Source.

### UNIT-III

**Supply Chain Performance: Achieving Strategic fit And Scope:** Competitive and Supply Chain Strategies, Achieving Strategic Fit, Expanding Strategic Scope, Challenges to Achieving and Maintaining, Strategic Fit, Supply chain drivers and metrics, Financial Measures of Performance, Drivers of Supply Chain Performance, Framework for Structuring Drivers, Facilities, Inventory, Transportation, Information, Sourcing, Pricing.

**Transportation, storage and warehousing:** Introduction, Transportation mode choice, Transport operator decisions, Trucking sectors in India, Rail transport, Air Transport, Water transport, Transport network, Storage and warehousing, types of warehousing, risk pooling, IT Integration: Supply chain information system, Role of IT in SCM process, Business process Re-engineering, Internet and its applications in SCM.

#### UNIT-IV

**Quantitative tools for SCM**: Introduction, Forecasting, Demand forecast, Forecasting strategy & technique, Management of Inventories in SC, Linear programming, Routing models, pricing decisions, Introduction to MCDM approach.

**Information Technology in a Supply Chain:** The Role of IT in a Supply Chain, The Supply Chain IT Framework Customer Relationship Management, Internal Supply Chain Management, Supplier Relationship Management, The Transaction Management Foundation, The Future of IT in the Supply Chain, Risk Management in IT, Supply Chain IT in practice.

- 1. Chopra, S., and Meindl, P., Supply chain Management: Strategy, Planning and Operations. Second Edition, Pearson Education (Singapore) Pte. Ltd, 2004.
- 2 Rangaraj, Supply Chain Management for Competitive Advantage, TMH.
- 3 Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E., Designing & Managing the Supply Chain: Concepts, Strategies & Case studies. Second Edition, Tata McGraw-Hill Edition, 2003.
- 4. Doebler, D.W. and Burt, D.N., Purchasing and Supply Chain Management: Text and Cases, McGraw-Hill Publishing Company Limited, New Delhi, 1996.

|           |                          |                                                                                                                    |                |               |               |                  | MTIP w.e       | .f. 2018-19 |  |  |  |  |
|-----------|--------------------------|--------------------------------------------------------------------------------------------------------------------|----------------|---------------|---------------|------------------|----------------|-------------|--|--|--|--|
| MTIP-117  |                          |                                                                                                                    | ADV            | ANCED ME      | TAL CASTI     | NG LAB           |                |             |  |  |  |  |
| Lecture   | Tutorial                 | Practical                                                                                                          | Credit         | Major<br>Test | Minor<br>Test | Practical        | Total          | Time        |  |  |  |  |
| 0         | 0                        | 4                                                                                                                  | 2              | -             | 40            | 60               | 100            | 3 hrs       |  |  |  |  |
| Objective | The main                 | The main objective of the course is to impart the students with the knowledge of foundry shop                      |                |               |               |                  |                |             |  |  |  |  |
|           |                          |                                                                                                                    | Cou            | rse Outcom    | es            |                  |                |             |  |  |  |  |
| C01       | To impart k              | nowledge of p                                                                                                      | ractical evalu | uation of san | d grades and  | d moisture conte | ent in the mou | lding sand. |  |  |  |  |
| CO2       | To acquair<br>Moulding/C |                                                                                                                    | th the differ  | ent aspects   | involved in   | testing ADV, P   | ermeability a  | nd DCS of   |  |  |  |  |
| CO3       |                          | To impart knowledge to students about determining grain size Mould Hardness and Compressive strength of the Mould. |                |               |               |                  |                |             |  |  |  |  |
| CO4       | To let stude             | nt understand                                                                                                      | how to prepa   | are MMCs u    | sing Stir Cas | ting process.    |                |             |  |  |  |  |

## List of Experiments:

- 1. To perform grading of sand for foundry purpose.
- 2. Determination of optimum moisture content in Green Sand Practice.
- 3. Determination of DCS of core sand.
- Determination of permeability for molding sand mixtures.
   Determination of acid demand value in a moulding sand sample.
- 6. To determine mould hardness.
- 7. To determine grain size and gran fines content in moulding Sand.
- 8. To determine compressive strength of the given mould sample
- 9. To determine grain size distribution and grain fines number for a sand mix.
- 10. To prepare advanced Metal Matrix Composites using Stir Casting.

## Note: At Least eight experiments need to be performed by the students from the above mentioned list.

|           |              |                                                                            |               |               |               |                   | MTIP w.e. | f. 2018-19 |  |  |  |  |  |
|-----------|--------------|----------------------------------------------------------------------------|---------------|---------------|---------------|-------------------|-----------|------------|--|--|--|--|--|
| MTIP-119  |              | COMPUTER AIDED DESIGN AND MANUFACTURING LAB                                |               |               |               |                   |           |            |  |  |  |  |  |
| Lecture   | Tutorial     | Practical                                                                  | Credit        | Major<br>Test | Minor<br>Test | Practical         | Total     | Time       |  |  |  |  |  |
| 0         | 0            | 4                                                                          | 2             | -             | 40            | 60                | 100       | 3 hrs      |  |  |  |  |  |
| Objective | To acquaint  | To acquaint the students with 2-D and 3-D modeling using design softwares. |               |               |               |                   |           |            |  |  |  |  |  |
|           |              |                                                                            | Cou           | rse Outcom    | es            |                   |           |            |  |  |  |  |  |
| C01       | To understa  | nd the basic so                                                            | olid modeling | g and applied | I features of | the softwares.    |           |            |  |  |  |  |  |
| CO2       | To learn and | I practice of su                                                           | rface technic | ques and sur  | face creation | ns using software | ).        |            |  |  |  |  |  |
| CO3       | To learn and | o learn and practice of assembly and detailed drafting.                    |               |               |               |                   |           |            |  |  |  |  |  |
| CO4       | To let stude | To let student understand how to prepare MMCs using Stir Casting process.  |               |               |               |                   |           |            |  |  |  |  |  |

# List of Experiments:

The students will be required to carry out the following exercises or their equivalent tasks using a 3-D modeling software package (e.g. Solid-works/ Creo/ Ideas/ Solid Edge/UG/CATIA/ etc.). Practical must be performed on licensed version (Preferably the latest version) of any one of above mentioned software.

# **1 BASIC SOLID MODELING**

# Introduction & sketcher tools

a) CAD Tools and Applications: CAD - CAM - CAE

b) Parametric Feature Based Modelling and Parent-Child Relation

c) Design Intent and Associativity between 3 Modes

d) Modelling Software - Getting Started & Graphical User Interface

e) Sketch Entities and Tools

f) Dimensioning and Adding Relations to define the Sketch

Sketched Features (Boss / Base and Cut)

a) Base Features

b) Extrude & Revolve

c) Reference Geometry, Curves & 3D Sketch

d) Sweep & Loft

# Editing & Refining Model

a) Editing Sketch, Sketch Plane and Editing Feature

b) Suppress / Un-Suppress Feature and Reordering Feature

# 2 ADVANCE FEATURES APPLIED FEATURES

a) Patterns & Mirror

b) Fillet/Round & Chamfer

c) Hole & Hole Wizard

d) Draft, Shell, Rib and Scale

e) Dome, Flex and Wrap

# Multi Body

a) Indent Tool

b) Combine Bodies – Boolean Operations

c) Split, Move/Copy and Delete Bodies

# **Other Tools & Options**

a) Design Table and Configurations

b) Adding Equations and Link Values

c) Tools - Measure and Mass Properties

d) Appearance - Edit Material, Colour and Texture

e) Options - System and Document Properties

# **3 SURFACING TECHNIQUES BASIC SURFACE CREATIONS**

a) Extrude & Revolve

b) Sweep & Loft

c) Boundary Surface

d) Planar Surface

# **Other Derived Techniques**

a) Offset Surface

b) Radiate Surface

### MTIP-119(Contd....): c) Ruled Surface d) Fill Surface e) Mid Surface Modify / Edit Surfaces a) Fillet/Round b) Extend c) Trim & Untrim d) Knit Surfaces e) Delete and Patch Surfaces for Hybrid Modelling a) Thicken – Boss / Base and Cut b) Replace face c) End condition for Sketched feature - Up to Surface or Offset from Surface. d) Solid body from closed surfaces **4 ASSEMBLY & MECHANISMS BOTTOM UP ASSEMBLY APPROACH** a) Inserting Components/Sub-Assemblies b) Adding Mates - Standard & Advance c) Editing Mates, Part and Replacing Components **Top down Approach & Mechanisms** a) Inserting New Part to Existing Assembly b) Use of Layout Sketching c) External References - In-context and Out-of-context, Locked and Broken Assembly Features a) Component Patterns & Mirrors b) Cuts & Holes c) Belt/Chain and Weld Bead **Representations of Assembly Components** a) Light Weight, Suppressed and Resolved b) Hide, Transparency and Isolate c) Exploded View **Assembly Check** a) Interference Detection. b) Collision Detection and Physical Dynamics Motion Study c) Assembly Motion & Physical Simulation d) Animation Wizard & Save as AVI file e) Mechanism Analysis - Plot Displacement, Velocity and Acceleration Diagram **5 DETAILED DRAFTING** Introduction to Engineering Drawings a) General Procedure for Drafting & Detailing b) Inserting Drawing Views, Dimensioning and Adding Annotations c) Drawing Templates & Sheet Format d) Setting Options Drawing Views a) Model View & Standard 3 View b) Projected View & Auxiliary View c) Section & Aligned Section View d) Detail View, Broken-out Section and Crop View. Dimensioning a) Standards, Rules and Guidelines b) Dimension Insertion/Creation - Insert Model Items & Dimension tool Annotations a) Notes & Holes Callout b) Datum & Geometric Tolerances c) Surface Finish & Weld Symbols, Centre Mark & Centre line, BOM Balloon & Bill of Material

10(269)

| MTRM-111 | Research Methodology and IPR |                                                                                                                                                                                                                    |            |                                   |                                                                                     |              |      |  |  |  |  |
|----------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------|-------------------------------------------------------------------------------------|--------------|------|--|--|--|--|
| Lecture  | Tutorial                     | utorial Practical                                                                                                                                                                                                  |            | Major Test                        | Minor Test                                                                          | Total        | Time |  |  |  |  |
| 2        | 0 0 2 60 40 10               |                                                                                                                                                                                                                    |            |                                   |                                                                                     |              |      |  |  |  |  |
|          | investmen                    | enable students to Research Methodology and IPR for further research work and vestment in R & D, which leads to creation of new and better products, and in turn brings bout, economic growth and social benefits. |            |                                   |                                                                                     |              |      |  |  |  |  |
|          |                              | C                                                                                                                                                                                                                  | ourse Ou   | tcomes (CO)                       |                                                                                     |              |      |  |  |  |  |
| C01      | Understan                    | d research p                                                                                                                                                                                                       | problem fo | rmulation.                        |                                                                                     |              |      |  |  |  |  |
| CO2      | Analyze re                   | esearch relat                                                                                                                                                                                                      | ed informa | ation                             |                                                                                     |              |      |  |  |  |  |
| CO3      |                              |                                                                                                                                                                                                                    |            | controlled by C<br>deas, concept, | Computer, Information Ter<br>and creativity.                                        | chnology, bi | ut   |  |  |  |  |
| CO4      | individuals                  | & nation, it<br>I Property R                                                                                                                                                                                       | is needles | s to emphasis                     | mportant place in growth<br>the need of information a<br>ng students in general & e | bout         |      |  |  |  |  |

## Unit 1

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

## Unit 2

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

## Unit 3

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

## Unit 4

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

## References:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'.
- 2. C.R. Kothari, "Research Methodology: Methods & Techniques, 2<sup>nd</sup> edition or above, New Age Publishers.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall , "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

10(270)

|           |                |                   |                 |                 |                  | MTIP w.         | e.f. 2018-19 |
|-----------|----------------|-------------------|-----------------|-----------------|------------------|-----------------|--------------|
| MTIP-102  |                |                   | M               | ECHATRONIC      | S                |                 |              |
| Lecture   | Tutorial       | Practical         | Credit          | Major Test      | Minor Test       | Total           | Time         |
| 3         | 0              | 0                 | 3               | 60              | 40               | 100             | 3 hrs        |
| Objective | The objectiv   | e of the cou      | urse is to a    | acquaint the    | knowledge of     | electronic      | devices and  |
| -         | electromecha   | nical systems,    | hydraulic and   | pneumatic sys   | tems, CNC, Ro    | obotics and Pl  | LC's.        |
|           |                |                   | Course Outo     | comes           |                  |                 |              |
| CO1       | To understar   | nd the concep     | ts of Mechati   | ronics, fundarr | nental of elect  | ronics and d    | igital       |
|           | circuits and e | lectrical actuati | ng circuits.    |                 |                  |                 | -            |
| CO2       | To acquaint th | ne knowledge o    | of hydraulic sy | stem with its p | ractical applica | tions.          |              |
| CO3       |                |                   |                 | ystem with its  |                  |                 |              |
| CO4       | To study the   | fundamentals o    | of CNC, Robot   | tics and progra | mmable logic o   | controllers (Pl | _C's)        |
|           | and their use. |                   |                 | 1 0             | 0                | ,               | ,            |

**Introduction:** The Mechatronics approach: A methodology for integrated design of Mechanical, Electronics and Electrical Control, Computer and Instrumentation.

**Fundamentals of Electronics and digital circuits:** Number systems: Binary, Octal, Hexadecimal, Conversion from Binary to Decimal, Octal and Hexadecimal and vice–versa, Binary arithmetic: Addition, subtraction, Multiplication and division, Boolean Algebra: Laws, De-Morgan's laws, Logic Gates, Truth tables, Karnaugh maps and logic circuits. Generation of Boolean function from truth tables and simplification, **Electrical actuating system:** Basic principle of electrical switching, Solenoids, Electrical relays, Representation of output devices, Electrical motors: A.C. motors, Stepper motors, Induction motor speed control.

UNIT-II

#### HYDRAULIC SYSTEMS:

**Direction Control Valves:** Poppet Valve, Spool Valve, Sliding Spool type DCV, Check Valve, Pilot operated check valve, Restriction check valve, 2 Way vale, 3 way valve, 4 way valve, Manually actuated valve, Mechanically actuated valve, Pilot operated DCV, Solenoid Actuated valve, Rotary Valve, Centre flow path configurations for three position four way valve, Shuttle valve

**Pressure Control Valve:** Simple and compound pressure Relief Valve, Pressure Reducing Valve, Unloading valve, sequence valve, counterbalance valve, Brake Valve

**Flow Control Valves:** Fixed and non-adjustable valve, adjustable, throttling, non-pressure compensated pressure control valve, Pressure/temperature compensated flow control valve, Shuttle and Fast exhaust valve, Time delay valve, Flow Control Valves, Fluid Conditioners, Hydraulic Symbols (ANSI), Hydraulic Circuit design: Control of Single and double acting cylinders, double pump Hydraulic System

#### PNEUMATIC SYSTEM:

#### UNIT-III

**Air Generation and distribution:** Air compressors, Air Receiver, Filters, intercoolers, After-coolers, Relief Valve, Air dryers, Primary and secondary lines, Piping layouts, Air Filters, Air Regulators, Air Lubricator, Actuators and output devices, Direction control valves, Flow control valves, junction elements, Pneumatic circuits, Control of Single and double acting cylinders.

## UNIT-IV

## INTRODUCTION TO CNC MACHINES AND ROBOTICS:

**C**NC Machines: NC machines, CNC machines, DNC machines, Machine structure, Slidways, Guideways, Slide Drives, Spindle, Robotics: Components of robots, Classification of robots, Robots application

#### **PROGRAMMABLE LOGIC CONTROLLERS**

Introduction - Principles of operation - PLC Architecture and specifications - PLC hardware Components, Analog & digital I/O modules, CPU & memory module - Programming devices - PLC ladder diagram, Converting simple relay ladder diagram in to PLC relay ladder diagram. PLC programming Simple instructions - Manually operated switches - Mechanically operated Proximity switches - Latching relays, Applications of PLC.

- 1. W. Bolton, Mechatronics, Pearson Education.
- 2. Majumdar, Pneumatic system, TMH.
- 3. Andrew Parr, Hydraulic and Pneumatic systems, TMH.
- 4. M.P. Groover, Automation, Production systems and computer integrated manufacturing, TMH.
- 5. Shetty and Kolk, Mechatronics system design, Thomson learning.
- 6. Mahalik, Mechatronics, TMH.
- 7. Anthony Esposito, Fluid power with application, Pearson Education.
- 8. K.P Ramachandran, M.S Balasundaram, Mechatronics, Wiley India.

| MTIP-104  | Industrial Tribology                                   |                                                                                                                                                                         |                 |                |                 |                 |                    |  |  |  |  |  |
|-----------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-----------------|-----------------|--------------------|--|--|--|--|--|
| Lecture   | TutorialPracticalCreditMajorMinorTotalTestTestTestTest |                                                                                                                                                                         |                 |                |                 |                 |                    |  |  |  |  |  |
| 3         | 0                                                      | 0                                                                                                                                                                       | 3               | 60             | 40              | 100             | 3                  |  |  |  |  |  |
| Objective |                                                        | To develop a solution oriented approach by in depth knowledge of Industrial Tribology address the underlying concepts, methods and application of Industrial Tribology. |                 |                |                 |                 |                    |  |  |  |  |  |
|           |                                                        |                                                                                                                                                                         | Course Ou       | utcomes        |                 |                 |                    |  |  |  |  |  |
| CO 1      |                                                        | II be able to un<br>tween different                                                                                                                                     |                 | fundamenta     | ls of tribology | , friction and  | wear processes i   |  |  |  |  |  |
| CO 2      |                                                        | II be able to u<br>face treatment                                                                                                                                       |                 | ne material re | equirements     | for tribologica | al applications an |  |  |  |  |  |
| CO 3      | Students wi                                            | ll be able to stu                                                                                                                                                       | idy different t | ypes of lubric | ants and test   | ing technique   | es.                |  |  |  |  |  |
| CO 4      |                                                        | Students will be able to study the maintenance and conservation techniques, testing specifications and standards.                                                       |                 |                |                 |                 |                    |  |  |  |  |  |

Fundamentals of Tribology: Introduction to tribology and its historical background, Economic Importance of Tribology. Friction and Wear: Genesis of friction, friction in contacting rough surfaces, sliding and rolling friction, various laws and theory of friction. Stick-slip friction behavior, frictional heating and temperature rise. Friction measurement techniques.

Wear and wear types. Mechanisms of wear - Adhesive, abrasive, corrosive, erosion, fatigue, fretting, etc., Wear of metals and non-metals. Wear models - asperity contact, constant and variable wear rate, geometrical influence in wear models, wear damage. Wear in various mechanical components, wear controlling techniques.

#### UNIT-II

Materials for Tribological Applications: An overview of engineering materials having potential for tribological application. Characterization and evaluation of Ferrous and non-ferrous materials for tribological requirements/applications, Composite materials (PM, CMC and MMC) for tribological applications.

Surface treatment techniques: Surface treatment techniques such as carburising, nitriding, induction hardening, hard facing, laser surface treatments, etc with applications, Surface coating techniques such as electrochemical depositions, anodizing, thermal spraying, Chemical Vapour Deposition (CVD), Physical Vapour Deposition (PVD), etc. and their applications.

#### UNIT-III

Lubrication and lubricants: Boundary Lubrication, Mixed Lubrication, Full Fluid Film Lubrication, Hydrodynamic, Elastohydrodynamic lubrication, Primary role of lubricants in mitigation of friction and wear & heat transfer medium, Composition and properties of lubricants, Fundamentals - Mineral oil based liquid lubricants, Synthetic liquid lubricants, Solid lubricants, greases and smart lubricants, Characteristics of lubricants and greases, Rheology of lubricants, Evaluation and testing of lubricants.

#### UNIT-IV

Lubricants additives and application: Introduction to lubricant additives, Antioxidants and bearing corrosion inhibitors, Rust inhibitors, Viscosity improvers, Extreme pressure additives.

Consumption and conservation of lubricants: Lubricants for industrial machinery, Maintenance and conservation of lubricating oils, Storage and Handling of lubricants, Used lubricating oil, Environment and health hazards, Disposability and Recycling, Technical regulation for lubricants, Test specifications and standards for maintenance and management of industrial lubricants including greases and used oils, Selection of optimum lubricant for given application.

- 1. I.M. Hutchings, Tribology, "Friction and Wear of Engineering Material", Edward Arnold.
- 2. Gwidon W. Stachowiak, Andrew W. Batchelor, "Engineering Tribology" Butter worth, Heinemann.
- 3. T.A. Stolarski, "Tribology in Machine Design ", Industrial Press Inc.
- 4. E.P. Bowden and Tabor. D., "Friction and Lubrication ", Heinemann Educational Books Ltd.
- 5. A. Cameron, "Basic Lubrication theory ", Longman, U.K.M.J. Neale (Editor), "Tribology Handbook ", Newnes. Butter worth, Heinemann, U.K.

|           |                                  |                                                                                                                |                |                |                 | MTIP w.       | e.f. 2018-19  |  |  |  |  |  |  |
|-----------|----------------------------------|----------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------------|---------------|---------------|--|--|--|--|--|--|
| MTIP-106  |                                  | ADVANCED WELDING PROCESSES                                                                                     |                |                |                 |               |               |  |  |  |  |  |  |
| Lecture   | Tutorial                         | Practical                                                                                                      | Credit         | Major Test     | Minor Test      | Total         | Time          |  |  |  |  |  |  |
| 3         | 0                                | 0                                                                                                              | 3              | 60             | 40              | 100           | 3 hrs         |  |  |  |  |  |  |
| Objective | The main obj                     | ective of the                                                                                                  | course is to   | impart the stu | udents with th  | e knowledge   | of Welding    |  |  |  |  |  |  |
| -         | metallurgy and                   | metallurgy and welding processes.                                                                              |                |                |                 |               |               |  |  |  |  |  |  |
|           |                                  | C                                                                                                              | ourse Outco    | mes            |                 |               |               |  |  |  |  |  |  |
| C01       | To impart knov                   | wledge about \                                                                                                 | various Weld   | metallurgy and | d Weld arc cha  | racteristics. |               |  |  |  |  |  |  |
| CO2       | To acquaint st                   | udents with the                                                                                                | e various weld | ding power sou | urces and their | applications. |               |  |  |  |  |  |  |
| CO3       |                                  | To impart knowledge to students about Electrode coatings and Metal transfer phenomenon in weld metal transfer. |                |                |                 |               |               |  |  |  |  |  |  |
| CO4       | To let student<br>welding techni |                                                                                                                | ne basics of S | Solid state we | Iding processe  | es and some   | of the latest |  |  |  |  |  |  |

**WELDING METALLURGY:** Introduction, Weld Metal Zone, Theory of solidification of metals and alloys, Homogeneous Nucleation, Heterogeneous Nucleation, Freezing of alloys, Epitaxial Solidification; Effect of Welding speed on Grain structure, Fusion boundary zone, Heat affected zone, Under bead zone, Grain Refined Zone, Partial transformed zone, Properties of HAZ

**WELDING ARC:** Definition of Arc, Structure and characteristics, Arc efficiency, arc blow, Electrical Characteristics of arc, Types of Welding Arcs, mechanism of arc initiation and maintenance, role of electrode polarity on arc behaviour and arc stability, analysis of the arc. Arc length regulation in mechanized welding processes.

### UNIT-II

**WELDING POWER SOURCES**: Requirement of an Arc welding power sources, basic characteristics of power sources for various arc welding processes, duty cycles, Selection of a static Volt-Ampere characteristic for a welding process, AC/DC welding power source, DC rectifiers, thyristor controlled rectifiers, transistorized units, inverter systems, Mathematical Problems on Static volt ampere characteristics

### UNIT-III

**COATED ELECTRODES:** Electrode coatings, classification of coatings of electrodes for SMAW, SAW fluxes, role of flux ingredients and shielding gases, classification of solid and flux code wires.

**METAL TRANSFER & MELTING RATE:** Mechanism and types of metal transfer, forces affecting metal transfer, modes of metal transfer, metal transfer in various welding processes, effective of polarity on metal transfer and melting rate.

#### UNIT-IV

**SOLID STATE WELDING:** Theory and mechanism of solid state welding, techniques and scope of friction welding, diffusion welding, cold pressure welding and ultrasonic welding, high energy rate welding, analysis of the Process. **WELDING TECHNIQUES:** Technique, scope and application of the electron beam and laser welding processes, under water welding - process & problem.

- 1. Raymond Sacks, -Welding: Principles & Practices II McGraw-Hill
- 2. R.S.Parmar, Welding processes & Technologyll, Khanna Publishers
- 3. R.S.Parmar, -Welding Engineering & Technologyll, Khanna Publishers
- 4. S.V. Nandkarni, -- Modern Arc Welding Technology, Oxford & IBH publishing Co.
- 5. L.M.Gourd, Principles of Welding Technology II, ELBS/ Edward Arnold.
- 6. Richard L. Little Welding & Welding Technology II, Mc-Graw Hill.
- 7. Cary, Howard Modern Welding Technology, prentice Hall, 1998.
- 8. Rossi Welding Technologyll, Mc-Graw Hill.

|           |                | MTIP w.e.f. 2018-19                                                                                                                               |              |                       |                 |       |      |  |  |  |  |  |
|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|-----------------|-------|------|--|--|--|--|--|
| MTIP-108  |                | ADVANCED METAL CUTTING                                                                                                                            |              |                       |                 |       |      |  |  |  |  |  |
| Lecture   | Tutorial       | Practical                                                                                                                                         | Credit       | Major Test            | Minor Test      | Total | Time |  |  |  |  |  |
| 3         | 0              | 0 0 3 60 40 100 3 hrs                                                                                                                             |              |                       |                 |       |      |  |  |  |  |  |
| Objective |                | The main objective of the course is to impart the students with the knowledge of advanced cutting tools, tools geometry, mechanisms and analysis. |              |                       |                 |       |      |  |  |  |  |  |
|           |                |                                                                                                                                                   | Course Ou    | tcomes                |                 |       |      |  |  |  |  |  |
| C01       | To impart know | vledge about                                                                                                                                      | various fund | ctional related to to | ols geometry.   |       |      |  |  |  |  |  |
| CO2       | To acquaint wi | To acquaint with the analysis of fundamental factors affecting tool forces                                                                        |              |                       |                 |       |      |  |  |  |  |  |
| CO3       | To impart know | To impart knowledge about cutting tool life and mathematical modelling for wear.                                                                  |              |                       |                 |       |      |  |  |  |  |  |
| CO4       | To let student | understand a                                                                                                                                      | brasive mac  | hining and its proc   | ess simulation. |       |      |  |  |  |  |  |

Introduction system of Tool nomenclature, Tool Geometry, Mechanism of Chip formation and forces in orthogonal cutting, Merchant's force diagram.

**Oblique Cutting:** Normal chip reduction coefficient under oblique cutting, true shear angle, effective rake, influx region consideration for deformation, direction of maximum elongation, effect of cutting variables on chip reduction co-efficient, forces system in oblique cutting, effect of wear land on force system, force system in milling, effect of helix angle.

UNIT-II

Fundamentals of Dynamometry, Theoretical determination of forces, angle relations, heat and temperature during metal cutting; distribution, measurement, analysis, theoretical estimation of work piece temperature, hot machining

Fundamental factors, which effect tool forces: Correlation of standard mechanized test. (Abuladze –relation), nature of contact and stagnant phenomenon, rates of strains, shear strain and normal strain distributions, cutting variables on cutting forces.

#### UNIT-III

**Cutting Tools:** Tools materials analysis of plastic failure (from stability criterion), Analysis failure by brittle fracture, wear of cutting tools, criterion, flank and crater wear analysis, optimum tool life, tool life equations, (Taylor's woxen etc) Tool life test, machining optimization, predominant types of wear; abrasive, adhesive, diffusion wear models, wear measurements and techniques, Major Test of tool wear oxidative mathematical modelling for wear, test of machinability and influence of metallurgy on machinability. Economics of metal machining

#### UNIT-IV

**Abrasive Machining:** Mechanics of grinding, cutting action of grit, maximum grit chip thickness, energy and grit force temperature during grinding, wheel wear, grinding, process simulation, testing of grinding wheels, mechanics of lapping and honing, free body abrasion.

- 1. Sen & Bhattacharya, Principles of Machine tools, New Central Book Agency.
- 2. Brown, Machining of Metals, Prentice Hall.
- 3. Shaw, Principles of Metal cutting, Oxford I.B.H.
- 4. Arshimov & Alekree, Metal cutting theory & Cutting tool design, MIR Publications.
- 5. Machining Science & Application by Knowenberg Longman Press.

|           |                   |                                                                                                                                                                                                                                            |                |                |                       | MTIP w            | .e.f. 2018-1  |  |  |  |
|-----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------------------|-------------------|---------------|--|--|--|
| MTIP-110  |                   |                                                                                                                                                                                                                                            |                | Metrolo        | ogy                   |                   |               |  |  |  |
| Lecture   | Tutorial          | Practical                                                                                                                                                                                                                                  | Credit         | Major Test     | Minor Test            | Total             | Time          |  |  |  |
| 3         | 0                 | 0                                                                                                                                                                                                                                          | 3              | 60             | 40                    | 100               | 3 hrs.        |  |  |  |
| Objective | instrument        | The main objective of the course is to deal with the basic principles of dimensional measuring instruments and precision measurement techniques in achieving quality and reliability in the service of any product in dimensional control. |                |                |                       |                   |               |  |  |  |
|           |                   |                                                                                                                                                                                                                                            | Cours          | se Outcomes    |                       |                   |               |  |  |  |
| C01       | To unders gauges. | tand the stude                                                                                                                                                                                                                             | ents about the | e requirement  | of metrology and the  | concepts of lin   | nit, fits and |  |  |  |
| CO2       | To study th       | e linear and a                                                                                                                                                                                                                             | ngular measur  | rements and th | ne optical measureme  | nt tools and tech | nniques.      |  |  |  |
| CO3       | To underst        | and how to us                                                                                                                                                                                                                              | e surface roug | hness and thr  | ead measuring instrur | nents.            | •             |  |  |  |
| CO4       | To study th       | e comparators                                                                                                                                                                                                                              | s, measureme   | nt through com | nparators and the adv | anced metrology   | concepts.     |  |  |  |

Introduction to metrology: Definition, types, need of inspection, terminologies, methods of measurement, selection of instruments, measurement errors, units, Measurement standards, calibration, statistical concepts in metrology.

Systems of Limits and Fits: Introduction, nominal size, tolerance limits, deviations, allowance, fits and their types – unilateral and bilateral tolerance system, hole and shaft basis systems - interchangeability and selective assembly. Indian standard Institution system – British standard system, International standard system for plain and screwed work. Limit Gauges: Taylor's principle - Design of limit gauges, computer aided tolerancing.

#### UNIT-II

Linear Measurement: Length standard, line and end standards, slip gauges - calibration of the slip gauges, dial indicator, micrometres. Measurement of angles and tapers: Different methods - bevel protractor - angle slip gauges spirit levels- sine bar - sine plate, rollers and spheres.

Flat Surface Measurement: Measurement of flat surfaces – instruments used – straight edges– surface plates – optical flat and auto collimator.

Optical Measuring Instruments: Tool maker's microscope and its uses, collimators, optical projector, optical flats and their uses, interferometer.

#### UNIT-III

Surface Roughness Measurement: Introduction, terminology, specifying roughness on drawings, surface roughness parameters, factors affecting surface roughness, ideal surface roughness, roughness measurement methods, precautions in measurement, surface microscopy, surface finish softwares.

Screw Thread Measurement: Elements of measurement - errors in screw threads - measurement of effective diameter, angle of thread and thread pitch, profile thread gauges.

Measurement through Comparators: Comparator: Features of comparators, classification of comparators, different comparators, advanced comparators, thread comparators.

#### UNIT-IV

Metrology of machine tools: Alignment and practical tests.

Gear Measurement: Gear measuring instruments, gear tooth profile measurement, measurement of diameter, pitch, pressure angle and tooth thickness.

Advanced Metrology: Advanced measuring machines, CNC systems, Laser vision, In-process gauging, 3D metrology, metrology softwares, Nano technology instrumentation, stage position metrology, testing and certification services, optical system design, lens design, coating design, precision lens assembly techniques, complex opto mechanical assemblies, contact bonding and other joining technologies.

- 1. K.J. Hume, Engineering Metrology, Macdonald and Co. (publisher) London.
- 2. Czichos, The Springer handbook of metrology and Testing, 2011.
- 3. Jay. L. Bucher, The Metrology Hand book, American Society for Quality, 2004.
- 4. Smith GT, Industrial Metrology, Spinger.
- 5. John W. Greve, Frank W. Wilson, Hand book of industrial metrology, PHI New Delhi.
- 6. D.M. Anthony, Engineering Metrology, Pergamon Press.
- 7. Khare MK, Dimensional Metrology, OXFORD-IBH Publishers.
- I C Gupta, "Engineering Metrology", 5th Edition, Danapath Rai & Co, 2008.
   R.K. Jain, "Engineering Metrology". 20th Edition, Khanna Publishers, 2007.
- 10. M. Mahajan, "Engineering Metrology", Dhanapati Rai publications, 2007.
- 11. BIS standards on Limits & Fits (IS 919), Surface Finish (IS 2073), Machine Tool Alignment, 1993.

| MTIP-112  |                      | SEQUENCING AND SCHEDULING                                                                                                                          |               |                    |                       |             |  |  |  |  |  |  |  |
|-----------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|-----------------------|-------------|--|--|--|--|--|--|--|
| Lecture   | Tutorial             |                                                                                                                                                    |               |                    |                       |             |  |  |  |  |  |  |  |
| 3         | 0                    | 0 0 3 60 40 100 3 hrs                                                                                                                              |               |                    |                       |             |  |  |  |  |  |  |  |
| Objective |                      | e main objective of the course is to impart the students with the knowledge of different oduction and machine models of sequencing and scheduling. |               |                    |                       |             |  |  |  |  |  |  |  |
|           |                      |                                                                                                                                                    | Course Ou     | utcomes            |                       |             |  |  |  |  |  |  |  |
| C01       | To understan         | d the concept                                                                                                                                      | of sequencing | g and scheduling.  |                       |             |  |  |  |  |  |  |  |
| CO2       | To study and         | practice for the                                                                                                                                   | e extension o | f basic models and | l parallel machine m  | odels.      |  |  |  |  |  |  |  |
| CO3       | To understan models. | o understand the concepts of the flow shop scheduling and practice for the flow shop scheduling odels.                                             |               |                    |                       |             |  |  |  |  |  |  |  |
| CO4       | To understan         | d the job shop                                                                                                                                     | problems an   | d simulation mode  | ls for dynamic job sh | nop problem |  |  |  |  |  |  |  |

### UNIT-I

**Single-Machine Sequencing:** Introduction, Preliminaries, Problems without Due Dates, Problems with Due Dates **Optimization Methods for the Single-Machine Problem:** Introduction, Adjacent Pairwise Interchange Methods, A Dynamic Programming Approach, Dominance Properties, A Branch and Bound Approach.

**Earliness and Tardiness Costs:** Introduction, Minimizing Deviations from a Common Due Date, The Restricted Version, Asymmetric Earliness and Tardiness Costs, Quadratic Costs, Job-Dependent Costs, Distinct Due Dates, Sequencing for Stochastic Scheduling.

### UNIT-II

**Extensions of the Basic Model:** Introduction, Non-simultaneous Arrivals, Related Jobs, Sequence-Dependent Setup Times, Stochastic Models with Sequence-Dependent Setup Times.

Parallel machine models: Introduction, Minimizing the Makespan, Minimizing Total Flow time, Stochastic Models.

#### UNIT-III

**Flow Shop Scheduling:** Introduction, Permutation Schedules, The Two-Machine Problem, Special Cases of The Three-Machine Problem, Minimizing the Makespan, Variations of the *m*-Machine Model, Stochastic flow shop scheduling.

## UNIT-IV

**The Job Shop Problem:** Introduction, Types of Schedules, Schedule Generation, The Shifting Bottleneck Procedure, Neighborhood Search Heuristics.

Simulation Models for the Dynamic Job Shop: Introduction, Model Elements, Types of Dispatching Rules, Reducing Mean Flowtime, Meeting Due Dates.

## **RECOMMENDED BOOKS:**

1. Michael Pinedoo, Scheduling: theory, algorithms and systems, Prentice Hall, New Delhi, 1995.

2. King, J.R. Production planning and control, Pergamon International Library, 1975.

3. Kenneth R. Baker, Introduction to sequencing and scheduling, John Wiley and Sons, 1974.

4. Kenneth R. Baker and Dan Trietsch, Principles of sequencing and scheduling, John Wiley and Sons, 2009.

|           |              |                                                                                                                                                        |                  |                      |             | MTIP w.e | .f. 2018-19 |  |  |  |  |  |
|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|-------------|----------|-------------|--|--|--|--|--|
| MTIP-114  |              | QUALITY ENGINEERING AND MANAGEMENT                                                                                                                     |                  |                      |             |          |             |  |  |  |  |  |
| Lecture   | Tutorial     | Practical                                                                                                                                              | Credit           | Major Test           | Minor Test  | Total    | Time        |  |  |  |  |  |
| 3         | 0            | 0 0 3 60 40 100 3 hrs                                                                                                                                  |                  |                      |             |          |             |  |  |  |  |  |
| Objective |              | The main objective of the course is to impart the students with the knowledge of quality tools and engineering for the improvement of product quality. |                  |                      |             |          |             |  |  |  |  |  |
|           |              |                                                                                                                                                        | Course           | Outcomes             |             |          |             |  |  |  |  |  |
| CO1       | To understan | d the statistica                                                                                                                                       | I concepts of q  | uality and quality s | statistics. |          |             |  |  |  |  |  |
| CO2       | To study the | To study the quality control charts in production process and practice for its use in problem solving.                                                 |                  |                      |             |          |             |  |  |  |  |  |
| CO3       | To understan | Fo understand the quality improvement tools.                                                                                                           |                  |                      |             |          |             |  |  |  |  |  |
| CO4       | To study the | ISO systems, f                                                                                                                                         | failure analysis | and testing.         |             |          |             |  |  |  |  |  |

Unit-I

**Introduction to Quality: An Historical Overview:** Defining Quality, The Total Quality System, Total Quality Management, Economics of Quality, Quality, Productivity, and Competitive Position, Quality Costs, Success Stories.

**Statistics for Quality:** Variability in Populations, Some Definitions, Quality vs. Variability, Section I: Empirical Methods for Describing Populations, Section II: Mathematical Models for Describing Populations, Section III: Inference of Population Quality from a Sample.

Unit-II

**Quality in Design:** Planning for Quality, Product Planning, Product Design, Process Design.

**Quality in Production-Process Control I:** Process Control, The Control Charts, Measurement Control Charts, Attribute Control Charts, Summary on Control Charts, Process Capability, Measurement System Analysis,

QualityinProduction-ProcessControlII:DerivationofLimits,Operating Characteristics of Control Charts, Measurement Control Charts for Special Situations.ControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControl<

Unit-III

**Quality in Procurement:** Importance of Quality in Supplies, Establishing a Good Supplier Relationship, Choosing and Certifying Suppliers, Specifying the Supplies Completely, Auditing the Supplier, Supply Chain Optimization Using Statistical Sampling for Acceptance,

**Continuous Improvement of Quality:** The Need for Continuous Improvement, The Problem-Solving Methodology, Quality Improvement Tools, Lean Manufacturing.

#### Unit-IV

A System for Quality: The Systems Approach, Dr. Deming's System, Dr. Juran's System, Dr. Feigenbaum's System, Baldrige Award Criteria, ISO 9000 Quality Management Systems, ISO 9001:2008 Requirements, The Six Sigma System.

- 1. Grant & Leaveworth, Statistical Quality Control, McGraw Hill
- 2. Duncan, Quality Control & Industrial Statistics, Irwin Press
- 3. Juran, Quality Control Handbook, McGraw Hill.
- 4. Hansen, Quality Control, Prentice Hall
- 5. Thomason, An Introduction to reliability & control, Machinery Publishing.
- 6. A.V. Taylor, Total Quality Control, McGraw-Hill
- 7. K.S. Krishnamoorthi, V. Ram Krishnamoorthi, A First Course in Quality Engineering: Integrating Statistical and Management Methods of Quality, Second Edition, CRC Press.

|           |               | MTIP w.e.f. 2018-19                                                                                                                                                                                    |                     |                    |                  |       |       |  |  |  |  |  |  |
|-----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|------------------|-------|-------|--|--|--|--|--|--|
| MTIP-116  |               | RELIABILITY ENGINEERING                                                                                                                                                                                |                     |                    |                  |       |       |  |  |  |  |  |  |
| Lecture   | Tutorial      | Practical                                                                                                                                                                                              | Credit              | Major Test         | Minor Test       | Total | Time  |  |  |  |  |  |  |
| 3         | 0             | 0                                                                                                                                                                                                      | 3                   | 60                 | 40               | 100   | 3 hrs |  |  |  |  |  |  |
| Objective |               | The main objective of the course is to impart the students with the knowledge of reliability analysis in industrial system. Students can get acquainted with different reliability calculation models. |                     |                    |                  |       |       |  |  |  |  |  |  |
|           |               |                                                                                                                                                                                                        | Course              | Outcomes           |                  |       |       |  |  |  |  |  |  |
| CO1       | To understan  | d the concepts                                                                                                                                                                                         | s of reliability in | industrial systems | S.               |       |       |  |  |  |  |  |  |
| CO2       | To study the  | To study the reliability determination methods and advanced evaluation techniques.                                                                                                                     |                     |                    |                  |       |       |  |  |  |  |  |  |
| CO3       | To understan  | o understand various reliability prediction and evolution methods.                                                                                                                                     |                     |                    |                  |       |       |  |  |  |  |  |  |
| CO4       | To acquaint t | he fundamenta                                                                                                                                                                                          | als of reliability  | management and     | risk assessment. |       |       |  |  |  |  |  |  |

**Reliability Engineering:** Reliability function, failure rate, Mean time between failures (MTBF), Mean time to failure (MTTF), mortality curve, useful life availability, maintainability, system effectiveness. Introduction to probability distributions.

**Time to failure distributions:** Exponential, normal, Gamma, Weibull; ranking of data, probability plotting techniques, Hazard plotting Concept of Bathtub Hazard Rate curve, Reliability evaluation of two-state device networks-series, parallel, k-out-of-m systems; Standby redundant systems, Reliability evaluation of three-state device networks-series and parallel.

### UNIT-II

**Reliability Determination and Prediction:** Reliability Determination Methods: Network reduction technique, Path tracing technique, Decomposition technique, Delta-Star method.

Advanced Reliability Evaluation Concepts: Supplementary variables technique, Interference theory, Human reliability, Common cause failures, Fault trees, Failure mode and effect analysis

#### UNIT-III

**Reliability Prediction Models:** Series and parallel systems - RBD approach - Standby systems - m/n configuration - Application of Baye's theorem - cut and tie set method - Markov analysis - FTA - Limitations.

### UNIT-IV

**Reliability testing:** Time acceleration factor, influence of acceleration factor in test planning, application to acceleration test, high temperature operating life acceleration model, temperature humidity bias acceleration model, temperature cycle acceleration model, vibration accelerator model, failure free accelerated test planning. Accelerated reliability growth.

**Risk Assessment:** Definition and measurement of risk - risk analysis techniques - risk reduction resources - industrial safety and risk assessment.

## **RECOMMENDED BOOKS:**

1. Charles E. Ebeling, "An introduction to Reliability and Maintainability engineering", TMH, 2000.

2. Roy Billington and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Springer, 2007.

3. Sharma S C, Inspection Quality Control and Reliability, Khanna Publishers.

4. Connor P.D.T.O. Practical Reliability Engineering", John Wiley.

5. Naikan V N A Reliability Engineering and Life Testing", PHI Learning Private Limited.

6. Prabhakar Murthy D N and Marvin R, "Product Reliability", Springer-Verlag.

7. Dana Crowe and Alec Feinberg, Design for Reliability, CRC Press.

|           |              |                                                                                                                 |              |               |               |           | MTIP w.e. | f. 2018-19 |  |  |  |  |
|-----------|--------------|-----------------------------------------------------------------------------------------------------------------|--------------|---------------|---------------|-----------|-----------|------------|--|--|--|--|
| MTIP-118  |              | MECHATRONICS LAB                                                                                                |              |               |               |           |           |            |  |  |  |  |
| Lecture   | Tutorial     | Practical                                                                                                       | Credit       | Major<br>Test | Minor<br>Test | Practical | Total     | Time       |  |  |  |  |
| 0         | 0            | 4                                                                                                               | 2            | -             | 40            | 60        | 100       | 3 hrs      |  |  |  |  |
| Objective |              | To practice on electrical circuits, hydraulic and pneumatic systems and PLC's for their practical implications. |              |               |               |           |           |            |  |  |  |  |
|           |              |                                                                                                                 | Cou          | rse Outcom    | es            |           |           |            |  |  |  |  |
| C01       | To understar | nd the PLC usi                                                                                                  | ing PLC sim  | ulators.      |               |           |           |            |  |  |  |  |
| CO2       | To demonstr  | o demonstrate and actuate the positioning using sensors, actuators and programming.                             |              |               |               |           |           |            |  |  |  |  |
| CO3       | To study the | study the pneumatic and electro-pneumatic training system with simulation software.                             |              |               |               |           |           |            |  |  |  |  |
| CO4       | To design ar | nd test on hydr                                                                                                 | aulic and pn | eumatic circ  | uits.         |           |           |            |  |  |  |  |

## List of Experiments

- 1. To study and conduct exercises on PLC Simulator.
- 2. Control of conveyor manually and through programming, also programming using sensors and conveyor.
- 3. To study and conduct exercise on CNC lathe.
- 4. To study and conduct exercises on Robotic simulation software.
- 5. To study and conduct exercises on Pneumatic & Electro-Pneumatic Training System.
- 6. To study the stepper motor interface with PLC.
- 7. Design and testing of hydraulic circuits such as
  - i) Pressure control
  - ii) Flow control
  - iii) Direction control

iv)Design of circuit with programmed logic sequence, using an optional PLC in hydraulic. Electro hydraulic Trainer.

## 8. Design and testing of pneumatic circuits such as

- i. Pressure control
- ii. Flow control
- iii. Direction control
- iv. Circuits with logic controls
- v. Circuits with timers
- vi. Circuits with multiple cylinder sequences in Pneumatic Electro pneumatic Trainer.
- 9. To perform exercises on process control trainer.

# Note: At least eight experiments should be performed from the above list.

| MTIP-120  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INDUSTRIAL TRIBOLOGY LAB         |               |               |                |                                 |                 |             |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|---------------|----------------|---------------------------------|-----------------|-------------|--|--|--|--|
| Lecture   | Tutorial         Practical         Credit         Major         Minor         Practical         Total           Test         Test< |                                  |               |               |                |                                 |                 |             |  |  |  |  |
| 0         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                | 2             | -             | 40             | 60                              | 100             | 3 hrs       |  |  |  |  |
| Objective | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iction, wear m<br>sing concepts, | methods an    |               | of Industria   | nance of lubric<br>I Tribology. | ants under v    | arious tes  |  |  |  |  |
| C01       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | II be able to tallic, ceramic    | explain the   | friction phe  |                | d different wea                 | r processes i   | n contact   |  |  |  |  |
| CO2       | Students will<br>properties of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | termine diffe | erent types o | f lubricants,  | their grades, tes               | st standards ar | nd differen |  |  |  |  |
|           | Students will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | be able to un                    | derstand the  | causes of tr  | ibological fai | lures and surfac                | e characteriza  | tion.       |  |  |  |  |
| CO3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |               |               |                |                                 |                 |             |  |  |  |  |

## List of Experiments

- 1. To study the friction and wear properties of a specimen (metallic/polymeric/ceramic surfaces) using wear and friction monitoring apparatus under dry sliding conditions.
- 2. To study the friction and wear properties of a specimen (metallic/polymeric/ceramic surfaces) using wear and friction monitoring apparatus under wet sliding conditions.
- 3. To study the effect of temperature on the friction and wear performance of composite materials using high temperature pin/ball on disc tester.
- 4. To study the variation of viscosity of lubricants with temperature.
- 5. To evaluate the wear and extreme pressure properties of a lubricating oil/ grease using four ball tester.
- 6. To study the surface characterization of wear components.
- 7. To study different types of industrial abrasives materials, properties and applications.
- 8. To determine abrasion index of a material with the help of dry abrasion test rig.
- 9. To access the adhesion and scratch resistance of surface coatings (hard or soft) using Scratch Tester.
- 10. To determine the erosive wear rate of different materials using Air Jet Erosion Tester under different conditions.
- 11. To demonstrate the pressure distribution of a lubricant in a journal bearing.

## Note: At least eight experiments should be performed from the above list.

|           |                              |                                                                                                            |               |                   |                                       | MTIP w.e.f | . 2018-19 |  |  |  |  |  |  |
|-----------|------------------------------|------------------------------------------------------------------------------------------------------------|---------------|-------------------|---------------------------------------|------------|-----------|--|--|--|--|--|--|
| MTIP-201  | ENTERPRISE RESOURCE PLANNING |                                                                                                            |               |                   |                                       |            |           |  |  |  |  |  |  |
| Lecture   | Tutorial                     | Tutorial         Practical         Credit         Major Test         Minor Test         Total         Time |               |                   |                                       |            |           |  |  |  |  |  |  |
| 3         | 0                            | 0                                                                                                          | 3             | 60                | 40                                    | 100        | 3         |  |  |  |  |  |  |
| Objective |                              | o manage the                                                                                               | e business a  | nd automate n     | ents with the kno<br>nany back office |            |           |  |  |  |  |  |  |
|           |                              |                                                                                                            | Course Ou     | itcomes           |                                       |            |           |  |  |  |  |  |  |
| C01       | To study the ba              | asic principles                                                                                            | and models o  | of an enterprise. |                                       |            |           |  |  |  |  |  |  |
| CO2       | To understand                | the concepts of                                                                                            | of technology | and architecture  | e in ERP.                             |            |           |  |  |  |  |  |  |
| CO3       | To study ERP                 | system packaç                                                                                              | ges.          |                   |                                       |            |           |  |  |  |  |  |  |
| CO4       | To study the E               | RP procureme                                                                                               | ent issues.   |                   |                                       |            |           |  |  |  |  |  |  |

# UNIT I

## ENTERPRISE RESOURCE PLANNING:

Introduction, Evolution of ERP, Principle of ERP, Enabling Technologies, ERP Characteristics, Features of ERP, The advantages of ERP, Reasons for the Failure of ERP Implementation, Risk and governance issues in an ERP, ERP Framework, Business Blueprint, Business Engineering Vs. Business Process Re-Engineering, ERP Tools and Software, Demand Chain, Value Chain, and Supply Chain.

#### UNIT-II

**ERP ARCHITECTURE:** Need to Study ERP Architecture, Layered Architecture, Types of ERP Architecture: Two-tier Implementations, Three-tier Client/Server Implementations, Web-based architecture, Service-Oriented Architectures, Logical Architecture of an ERP System, Physical Architecture of an ERP System, Evaluation Framework for ERP Acquisition.

### UNIT III

**ERP PACKAGE INTEGRATION AND IMPLEMENTATION:** ERP market, SAP, Peoplesoft, BAAN company, ORACLE corporation, A comparative assessment and selection of ERP packages and modules, Sales Force Automation, Integration of ERP, Integration of ERP and the Internet, ERP implementation strategies, Comparison of Big Bang vs. Phased Approach, Implementation Strategy in Small and Medium Enterprise, Post Implementation Issues.

### UNIT IV

## **OVERVIEW OF ARCHITECTURE OF DIFFERENT ERP SOFTWARES:**

Oracle overview, Architecture, A.I.M. and applications, SAP Software architecture overview, ERP before and after Y2K, Impact of Y2K on ERP Development, Risk and Governance Issues in an ERP

**ERP MODULES:** Finance module, Sales & Distribution module, Human Resources module, Plant Maintenance module, Quality Management module, Material management module, manufacturing management module.

## **RECOMMENDED BOOKS:**

- 1. Sadagopan. S, ERP-A Managerial Perspective, Tata McGraw Hill, 1999.
- 2. Jose Antonio Fernandez, the SAP R/3 Handbook, Tata McGraw Hill, 1998.
- 3. Vinod Kumar Crag and N.K. Venkitakrishnan, Enterprise Resource Planning- Concepts and Practice, Prentice Hall of India, 1998.

4. Garg & Venkitakrishnan, ERPWARE, ERP Implementation Framework, Prentice Hall, 1999.

5. Thomas E Vollmann and Bery Whybark, Manufacturing and Control Systems, Galgothia Publications, 1998.

6.Alexis Leon, Enterprise resource planning, Tata Mcgraw-Hill

| MTIP w.e.<br>MTIP-203 DESIGN OF EXPERIMENTS |                 |                                                       |                |                 |                  |                |               |  |  |  |  |  |
|---------------------------------------------|-----------------|-------------------------------------------------------|----------------|-----------------|------------------|----------------|---------------|--|--|--|--|--|
| Lecture                                     | Tutorial        | TutorialPracticalCreditMajorMinorTotalTimTestTestTest |                |                 |                  |                |               |  |  |  |  |  |
| 3                                           | 0               | 0                                                     | 3              | 60              | 40               | 100            | 3 hrs         |  |  |  |  |  |
| Objective                                   | To understar    | d the various                                         | design of e    | xperiments      | techniques f     | or optimizatio | on of probler |  |  |  |  |  |
|                                             |                 | (                                                     | Course Out     | comes           |                  |                |               |  |  |  |  |  |
| CO1                                         | To understand   | the concepts of                                       | Design of E    | xperiment a     | nd statistical N | /lethods.      |               |  |  |  |  |  |
| CO2                                         | To understand   | the ANOVA and                                         | d factorial de | esign and fitti | ng response o    | curves and sur | faces.        |  |  |  |  |  |
| CO3                                         | To study the ap | plication of Tag                                      | juchi Methoo   | d and testing   | of hypothesis    | 5              |               |  |  |  |  |  |
| CO4                                         | To study and in |                                                       |                | •               | <b>9</b> 1       |                |               |  |  |  |  |  |

**Introduction to Designed Experiments:** Introduction: Strategy of experimentation, Some typical applications of experimental design, Basic principles, Guidelines for designing experiments, Using statistical design in experimentation, A Checklist for Planning experiments, *Introduction to Minitab, Interface of Minitab, Customizing Minitab, Entering Data, Graphing Data, Printing Data and Graphs, Saving and Retrieving information.* 

**Basic Statistical Methods:** Introduction, Basic statistical concepts, Types of Data, Graphical Presentation of Data. Descriptive Statistics: Measure of Location, Measure of Variation, The Normal Distribution, Counting, Minitab Commands to Calculate Descriptive Statistics.

**Inferential Statistics:** The Distribution of Sample Means (R Known), Confidence Interval for the Population Mean ( $\sigma$  Known), Hypothesis testing for one sample mean ( $\sigma$  Known), Hypothesis test for two sample means, Testing for Normality, Hypothesis test and Confidence Intervals with Minitab.

### UNIT-II

**Analysis of Variance:** Introduction to Analysis of Variance, ANOVA assumptions and Validation, ANOVA Table, The sum of square approach to ANOVA calculations, Analysis of the fixed Effect model, Decomposition of the Total sum of squares. Statistical analysis, Estimation of the Model Parameters, Unbalanced Data, Model Accuracy Check, Practical interpretation of results. *ANOVA with Minitab* 

**Factorial Experiments:** Basic definition and principles, Advantages of factorials, Two level factorial design, The 2<sup>1</sup> Factorial Experiment, The 2<sup>2</sup> Factorial Experiment, The 2<sup>3</sup> Factorial Design, Addition of Centre Cells to 2<sup>k</sup> Designs. General Procedure for Analysis of 2<sup>k</sup> designs. 2<sup>k</sup> Factorial Designs in Minitab.

#### UNIT-III

**Introduction to Taguchi Method:** Introduction, Taguchi Quality loss function, Orthogonal Array, Properties of Orthogonal Array, Minimum number of experiments to be conducted, Static Problems, Dynamic Problems, Assumptions of the Taguchi method, Steps in Taguchi Method, Assessment of Factors and Interactions, Selection and Application of Orthogonal arrays, Data Analysis from Taguchi Experiments, Variable Data with main factors only, Variable Data with Interactions, Attribute Data Analysis, Confirmation Experiment, Confidence Intervals, Robust Design Approach. *Applications of Taguchi Method using Minitab*.

## UNIT-IV

**Introduction to Response Surface Methodology:** Introduction, Terms in Quadratic Models, The method of steepest ascent, Analysis of Second order response surfaces, Experimental design for fitting response surfaces, 2k Designs with Centers, 3<sup>k</sup> Factorial Designs, Box-Behnken Designs, Central Composite Designs, Analysis of Data from RSM Designs, Design Considerations for Response Surface Experiments. *Response Surface Designs in Minitab.* 

- 1. Douglas C Montgomery, Design and Analysis of Experiments, John Wiley
- 2. Paul G. Mathews, Design of Experiments with MINITAB, New Age International Publishers.
- 3. K. Krishnaiah, P. Shahabudeen, Applied Design of Experiments and Taguchi Methods, PHI.
- 4. Angela Dean and Daniel Voss, Design and Analysis of Experiments, Springer.
- 5. John P.W.M., Statistical Design and Analysis of Experiments, John Wiley
- 6. Montgomery D.C., Runger G. C., Introduction to Linear Regression Analysis, John Wiley
- 7. Myres R.H. and Montgomery D.C., Response Surface Methodology Process and Product Optimization Using Designed Experiments, Wiley
- 8. G UNIPUB, White Plains, Introduction to Quality Engineering Taguchi, New York.
- 9. https://www.ee.iitb.ac.in/~apte/CV\_PRA\_TAGUCHI\_INTRO.htm
- 10. www.ecs.umass.edu/mie/labs/mda/fea/sankar/chap2.html

|           |                            |                                                                  |                |                     |                     | MTIP w.       | e.f. 2018-1 |  |  |  |  |
|-----------|----------------------------|------------------------------------------------------------------|----------------|---------------------|---------------------|---------------|-------------|--|--|--|--|
| MTIP-205  | STRATEGIC ENTREPRENEURSHIP |                                                                  |                |                     |                     |               |             |  |  |  |  |
| Lecture   | Tutorial                   | Tutorial Practical Credit Major Test Minor Test Total Time       |                |                     |                     |               |             |  |  |  |  |
| 3         | 0                          | 0                                                                | 3              | 60                  | 40                  | 100           | 3 hrs       |  |  |  |  |
| Objective |                            | e knowledge t<br>es and policie                                  |                | nts about entrepre  | eneurship concepts  | s and various | developmer  |  |  |  |  |
|           |                            |                                                                  | Cours          | e Outcomes          |                     |               |             |  |  |  |  |
| CO1       | To know a                  | bout the smal                                                    | II scale indus | stries, scopes and  | the causes of their | sickness.     |             |  |  |  |  |
| CO2       | To know a                  | bout the EDP                                                     | and differer   | nt government polic | cies.               |               |             |  |  |  |  |
| CO3       | To learn al                | To learn about business incubations and its future perspectives. |                |                     |                     |               |             |  |  |  |  |
| CO4       | Ta la ama F                | To learn E-business marketing and developments.                  |                |                     |                     |               |             |  |  |  |  |

Small Scale Industries: Definition and types of SSI's; Role, scope and performance in national economy; Problems of small scale industries.

**Industrial Sickness:** Definition; Causes of sickness; Indian scenario, Government help; Management strategies; Need for trained entrepreneurs

### UNIT-II

**Entrepreneurship Development Programmes:** Introduction, Origin of EDP's, Organizations involved in EDP's, Objectives of EDPs, Implementation of EDP's, Short comings of EDP's, Role in entrepreneurship development.

Step: Introduction, Origin, Status in India, Success and failure factors, Govt. polices and incentives, future prospects in India.

### UNIT-III

**Business Incubation:** Introduction, Origin and development of business incubators in India and other countries, types of incubators, success parameters for a business incubator, Benefits to industries, institutes, government and society; future prospects. A few case studies (at least 2).

**Project Management:** Concept, Characteristics and Significance of Project Management. Components of Project Management. Project Life Cycle. Project Identification and Selection. Project Formulation and Appraisal.

## UNIT-IV

**Special Aspects of Entrepreneurship:** Entrepreneurship, Social entrepreneurship, International entrepreneurship, Rural entrepreneurship, Community Development, Women entrepreneurship.

**Network Marketing:** Introduction, E-business, E-commerce, E-auction, A basic internet e-business architecture, A multitier e-business architecture.

## **RECOMMENDED BOOKS:**

1. P.K. Gupta, Strategic Entrepreneurship, Everest Publishing House.

- 2. David Cleland, Project Management Strategic Design and Implementation, McGraw Hill.
- 3. David H Holl, Entrepreneurship-New Venture Creation, Prentice Hall of India.
- 4. Steed & Steed, Sustainable Strategic Management, Prentice Hall of India.
- 5. Kotler, Marketing Management by Prentice Hall of India.
- 6. Tarek Khalil, Management of Technology, McGraw Hill.
- 7. Henry Steiner, Engineering Economic Principles, McGraw Hill.

|                       |            |                    |             |                       |                     | MTIP w.e.      | f. 2018-19 |  |  |  |  |  |
|-----------------------|------------|--------------------|-------------|-----------------------|---------------------|----------------|------------|--|--|--|--|--|
| MTOE-201              |            | Business Analytics |             |                       |                     |                |            |  |  |  |  |  |
| Lecture               | Tutorial   | Practical          | Credit      | Major Test            | Minor Test          | Total          | Time       |  |  |  |  |  |
| 3                     | 0          | 0                  | 3           | 60                    | 40                  | 100            | 3 Hrs.     |  |  |  |  |  |
| Program               | The main   | objective of       | this course | e is to give the stud | lent a comprehensi  | ve understar   | iding of   |  |  |  |  |  |
| <b>Objective (PO)</b> | business a | analytics me       | thods.      |                       |                     |                |            |  |  |  |  |  |
|                       |            | С                  | ourse Ou    | tcomes (CO)           |                     |                |            |  |  |  |  |  |
| CO1                   | Able to ha | ve knowledg        | ge of vario | us business analys    | sis techniques.     |                |            |  |  |  |  |  |
| CO2                   | Learn the  | requirement        | specificat  | ion and transformi    | ng the requirement  | into different | models.    |  |  |  |  |  |
| CO3                   | Learn the  | requirement        | represent   | ation and managin     | ng requirement asse | ests.          |            |  |  |  |  |  |
| CO4                   | Learn the  | Recent Trer        | nds in Emb  | edded and collabo     | brative business    |                |            |  |  |  |  |  |

## Unit 1

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

# Unit 2

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirements Sources, Gathering Requirements from Stakeholders, Common Requirements Documents. Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

# Unit 3

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

# Unit 4

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

- 1. Business Analysis by James Cadle et al.
- 2. Project Management: The Managerial Process by Erik Larson and, Clifford Gray

|                       |            |                   |              |                   |                  | MTIP w         | .e.f. 2018-1 |  |  |  |  |  |
|-----------------------|------------|-------------------|--------------|-------------------|------------------|----------------|--------------|--|--|--|--|--|
| MTOE-203              |            | Industrial Safety |              |                   |                  |                |              |  |  |  |  |  |
| Lecture               | Tutorial   | Practical         | Credit       | Major Test        | Minor Test       | Total          | Time         |  |  |  |  |  |
| 3                     | 0          | 0                 | 3            | 60                | 40               | 100            | 3 Hrs.       |  |  |  |  |  |
| Program               | To enable  | students to       | aware abo    | out the industria | al safety.       |                |              |  |  |  |  |  |
| <b>Objective (PO)</b> |            |                   |              |                   |                  |                |              |  |  |  |  |  |
|                       |            | С                 | ourse Ou     | tcomes (CO)       |                  |                |              |  |  |  |  |  |
| C01                   | Understan  | nd the indust     | rial safety. |                   |                  |                |              |  |  |  |  |  |
| CO2                   | Analyze fu | Indamental o      | of mainten   | ance engineer     | ing.             |                |              |  |  |  |  |  |
| CO3                   | Understan  | d the wear a      | and corros   | ion and fault tra | acing.           |                |              |  |  |  |  |  |
| CO4                   | Understan  | ding that v       | vhen to c    | lo periodic in    | ceptions and app | oly the preven | ting         |  |  |  |  |  |
|                       | maintenar  | nce.              |              | -                 |                  |                | -            |  |  |  |  |  |

## Unit-1

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

# Unit-2

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricantstypes and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

# Unit-3

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

# Unit-4

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

|                       |                                                                            |                     |             |                   |                        | MTIP w.e.      | f. 2018-19 |  |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------|---------------------|-------------|-------------------|------------------------|----------------|------------|--|--|--|--|--|
| MTOE-205              |                                                                            | Operations Research |             |                   |                        |                |            |  |  |  |  |  |
| Lecture               | Tutorial                                                                   | Practical           | Credit      | Major Test        | Minor Test             | Total          | Time       |  |  |  |  |  |
| 3                     | 0                                                                          | 0                   | 3           | 60                | 40                     | 100            | 3 Hrs.     |  |  |  |  |  |
| Program               | To enable                                                                  | students to         | aware abc   | out the dynamic   | programming to solve   | e problems of  | discreet   |  |  |  |  |  |
| <b>Objective (PO)</b> | and continuous variables and model the real world problem and simulate it. |                     |             |                   |                        |                |            |  |  |  |  |  |
|                       |                                                                            | С                   | ourse Ou    | tcomes (CO)       |                        |                |            |  |  |  |  |  |
| C01                   | Students                                                                   | should able         | to apply th | he dynamic pro    | gramming to solve pro  | oblems of disc | reet and   |  |  |  |  |  |
|                       | continuou                                                                  | ıs variables.       |             |                   |                        |                |            |  |  |  |  |  |
| CO2                   | Students                                                                   | should able         | to apply tl | he concept of n   | on-linear programmin   | g              |            |  |  |  |  |  |
| CO3                   | Students                                                                   | should able         | to carry o  | ut sensitivity an | nalysis                |                |            |  |  |  |  |  |
| CO4                   | Student s                                                                  | hould able t        | o model th  | ne real world pr  | oblem and simulate it. |                |            |  |  |  |  |  |

# Unit -1

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit -2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

# Unit- 3

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

# Unit -4

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

|                       |           |                                                          |             |                      |                    | MTIP w.e       | .f. 2018-19 |  |  |  |  |  |
|-----------------------|-----------|----------------------------------------------------------|-------------|----------------------|--------------------|----------------|-------------|--|--|--|--|--|
| MTOE-207              |           | Cost Management of Engineering Projects                  |             |                      |                    |                |             |  |  |  |  |  |
| Lecture               | Tutorial  | torial Practical Credit Major Test Minor Test Total Time |             |                      |                    |                |             |  |  |  |  |  |
| 3                     | 0         | 0                                                        | 3           | 60                   | 40                 | 100            | 3 Hrs.      |  |  |  |  |  |
| Program               | To enable | students to                                              | make awa    | re about the cost    | management for     | the engineerin | g project   |  |  |  |  |  |
| <b>Objective (PO)</b> | and apply | cost models                                              | the real w  | vorld projects.      |                    |                |             |  |  |  |  |  |
|                       |           | С                                                        | ourse Ou    | tcomes (CO)          |                    |                |             |  |  |  |  |  |
| C01                   | Students  | should able                                              | to learn th | ne strategic cost m  | nanagement proc    | ess.           |             |  |  |  |  |  |
| CO2                   | Students  | should able                                              | to types of | of project and proje | ect team types     |                |             |  |  |  |  |  |
| CO3                   | Students  | should able                                              | to carry o  | ut Cost Behavior a   | and Profit Plannin | ig analysis.   |             |  |  |  |  |  |
| CO4                   | Student s | should able t                                            | o learn the | e quantitative tech  | niques for cost m  | anagement.     |             |  |  |  |  |  |

# Unit-1

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

# Unit-2

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

# Unit-3

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zerobased budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

# Unit-4

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

|                       |           |                                                                                 |             |                   |                   | MTIP w.           | e.f. 2018-19 |  |  |  |  |
|-----------------------|-----------|---------------------------------------------------------------------------------|-------------|-------------------|-------------------|-------------------|--------------|--|--|--|--|
| MTOE-209              |           | Composite Materials                                                             |             |                   |                   |                   |              |  |  |  |  |
| Lecture               | Tutorial  | Practical                                                                       | Credit      | Major Test        | Minor Test        | Total             | Time         |  |  |  |  |
| 3                     | 0         | 0                                                                               | 3           | 60                | 40                | 100               | 3 Hrs.       |  |  |  |  |
| Program               | To enable | To enable students to aware about the composite materials and their properties. |             |                   |                   |                   |              |  |  |  |  |
| <b>Objective (PO)</b> |           |                                                                                 |             |                   |                   |                   |              |  |  |  |  |
|                       |           | С                                                                               | ourse Ou    | tcomes (CO)       |                   |                   |              |  |  |  |  |
| C01                   | Students  | should able                                                                     | to learn th | ne Classification | n and characteris | tics of Composite | e materials. |  |  |  |  |
| CO2                   | Students  | should able                                                                     | reinforcer  | nents Composi     | ite materials.    |                   |              |  |  |  |  |
| CO3                   | Students  | should able                                                                     | to carry o  | ut the preparat   | ion of compound:  | S.                |              |  |  |  |  |
| CO4                   | Student s | hould able t                                                                    | o do the a  | nalysis of the c  | composite materia | als.              |              |  |  |  |  |

# UNIT-1:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Iso-strain and Iso-stress conditions.

# UNIT – 2

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

# UNIT-3

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

# UNIT – 4

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

# **TEXT BOOKS:**

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.
- 3. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

|                       |           |               |             |                   |                        | MTIP w.e.     | f. 2018-1 |
|-----------------------|-----------|---------------|-------------|-------------------|------------------------|---------------|-----------|
| MTOE-211              |           |               |             | Waste to Ene      | ergy                   |               |           |
| Lecture               | Tutorial  | Practical     | Credit      | Major Test        | Minor Test             | Total         | Time      |
| 3                     | 0         | 0             | 3           | 60                | 40                     | 100           | 3 Hrs.    |
| Program               | To enable | students to   | aware abo   | out the generat   | ion of energy from th  | e waste.      | •         |
| <b>Objective (PO)</b> |           |               |             |                   |                        |               |           |
|                       |           | С             | ourse Ou    | tcomes (CO)       |                        |               |           |
| C01                   | Students  | should able   | to learn th | ne Classification | n of waste as a fuel.  |               |           |
| CO2                   | Students  | should able   | to learn th | ne Manufacture    | e of charcoal.         |               |           |
| CO3                   | Students  | should able   | to carry o  | ut the designin   | g of gasifiers and bio | omass stoves. |           |
| CO4                   | Student s | should able t | o learn the | e Biogas plant t  | technology.            |               |           |

# Unit-1

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

# Unit-2

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

# Unit-3

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

# Unit-4

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

|                       |            |                |                  |                      |                       | MTIP w.e  | e.f. 2018-19 |
|-----------------------|------------|----------------|------------------|----------------------|-----------------------|-----------|--------------|
| MTAD-101              |            |                | <b>English</b> F | or Research Pa       | per Writing           |           |              |
| Lecture               | Tutorial   | Practical      | Credit           | Major Test           | Minor Test            | Total     | Time         |
| 2                     | 0          | 0              | 0                | -                    | 100                   | 100       | 3 Hrs.       |
| Program               | Student wi | ill able to un | derstand t       | he basic rules of    | research paper wi     | riting.   |              |
| <b>Objective (PO)</b> |            |                |                  |                      |                       |           |              |
|                       |            | C              | ourse Ou         | tcomes (CO)          |                       |           |              |
| C01                   | Understa   | and that hov   | v to improv      | e your writing sk    | ills and level of rea | adability |              |
| CO2                   | Learn at   | bout what to   | write in ea      | ach section          |                       |           |              |
| CO3                   | Understa   | and the skill  | s needed v       | when writing a Til   | tle                   |           |              |
| CO4                   | Ensure th  | ne good qua    | lity of pape     | er at very first-tim | e submission          |           |              |

# Unit 1

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

# Unit 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

# Unit 3

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

# Unit 4

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

|                       |              |                |              |                    |                      | MTIP w.e          | .f. 2018-19 |
|-----------------------|--------------|----------------|--------------|--------------------|----------------------|-------------------|-------------|
| MTAD-103              |              |                | Di           | isaster Manag      | ement                |                   |             |
| Lecture               | Tutorial     | Practical      | Credit       | Major Test         | Minor Test           | Total             | Time        |
| 2                     | 0            | 0              | 0            | -                  | 100                  | 100               | 3 Hrs.      |
| Program               | Develop a    | n understan    | ding of dis  | aster risk reduc   | ction and managem    | ent               |             |
| <b>Objective (PO)</b> |              |                |              |                    |                      |                   |             |
|                       |              | С              | ourse Ou     | tcomes (CO)        |                      |                   |             |
| CO1                   | Learn to d   | lemonstrate    | a critical ι | Inderstanding of   | of key concepts in a | disaster risk red | luction and |
|                       | humanitari   | ian response   | <i>).</i>    |                    |                      |                   |             |
| CO2                   | Critically e | evaluate dis   | aster risk   | reduction and      | humanitarian resp    | oonse policy ar   | nd practice |
|                       | from multij  | ple perspect   | ives.        |                    |                      |                   |             |
| CO3                   | Develop a    | n understan    | ding of sta  | andards of hum     | anitarian response   | and practical re  | elevance in |
|                       | specific ty  | oes of disas   | ters and co  | onflict situation: | S.                   |                   |             |
| CO4                   | critically   | understand     | the strei    | ngths and we       | aknesses of disas    | ster manageme     | ent         |
|                       | approache    | es, planning   | and pro      | gramming in o      | different countries, | particularly the  | eir         |
|                       | home coui    | ntry or the co | ountries th  | ey work in         |                      | -                 |             |

# Unit 1

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

## Unit 2

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

# Unit 3

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

#### Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

|                       |              |                |              |                  |                         | MTIP w.e          | e.f. 2018-19 |
|-----------------------|--------------|----------------|--------------|------------------|-------------------------|-------------------|--------------|
| MTAD-105              |              |                | Sanskrit     | for Technical    | Knowledge               |                   |              |
| Lecture               | Tutorial     | Practical      | Credit       | Major Test       | Minor Test              | Total             | Time         |
| 2                     | 0            | 0              | 0            | -                | 100                     | 100               | 3 Hrs.       |
| Program               | Students v   | vill be able t | o Understa   | anding basic Sa  | anskrit language ar     | nd Ancient Sans   | krit         |
| <b>Objective (PO)</b> | literature a | about scienc   | e & techno   | ology can be un  | nderstood and Bein      | g a logical langu | uage will    |
|                       | help to dev  | velop logic ii | n students   |                  |                         |                   |              |
|                       |              | C              | ourse Ou     | tcomes (CO)      |                         |                   |              |
| CO1                   | To get a l   | working kno    | wledge in    | illustrious Sans | krit, the scientific la | anguage in the v  | vorld        |
| CO2                   | Learning     | of Sanskrit i  | o improve    | brain functioni  | ng                      |                   |              |
| CO3                   | Learning     | of Sanskrit i  | o develop    | the logic in ma  | thematics, science      | & other subject   | S            |
|                       | enhancin     | g the memo     | ry power     |                  |                         |                   |              |
| CO4                   | The engi     | neering scho   | olars equip  | ped with Sansl   | krit will be able to e  | xplore the huge   | ò            |
|                       | knowledg     | e from anci    | ent literatu | re               |                         |                   |              |

Unit –1

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit – 2

Order, Introduction of roots, Technical information about Sanskrit Literature

# Unit –3

Technical concepts of Engineering: Electrical, Mechanical

# Unit –4

Technical concepts of Engineering: Architecture, Mathematics

- 1. "Abhyaspustakam" Dr.Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

|                       |             |               |             |                  |                  | MTIP w.e         | .f. 2018-19 |
|-----------------------|-------------|---------------|-------------|------------------|------------------|------------------|-------------|
| MTAD-107              |             |               | Value Ed    | lucation         |                  |                  |             |
| Lecture               | Tutorial    | Practical     | Credit      | Major Test       | Minor Test       | Total            | Time        |
| 2                     | 0           | 0             | 0           | -                | 100              | 100              | 3 Hrs.      |
| Program               | Understan   | nd value of e | ducation a  | nd self- develop | ment, Imbibe goo | d values in stud | ents and    |
| <b>Objective (PO)</b> | Let the she | ould know a   | bout the in | nportance of cha | racter           |                  |             |
|                       |             |               |             |                  |                  |                  |             |
|                       |             | C             | ourse Ou    | tcomes (CO)      |                  |                  |             |
| CO1                   | Knowledg    | e of self-dev | elopment    |                  |                  |                  |             |
| CO2                   | Learn the   | importance    | of Human    | values           |                  |                  |             |
| CO3                   | Developin   | g the overal  | personali   | ty               |                  |                  |             |
| CO4                   | Know abo    | out the impo  | rtance of c | haracter         |                  |                  |             |

# Unit 1

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements.

# Unit 2

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism.Love for nature,Discipline

# Unit 3

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of selfdestructive habits. Association and Cooperation. Doing best for saving nature

# Unit 4

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence,Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

# References

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

|                       |              |                |               |                     |                                | MTIP w.e.f.        | 2018-19     |
|-----------------------|--------------|----------------|---------------|---------------------|--------------------------------|--------------------|-------------|
| MTAD-102              |              |                | Constitu      | tion of India       |                                |                    |             |
| Lecture               | Tutorial     | Practical      | Credit        | Major Test          | Minor Test                     | Total              | Time        |
| 2                     | 0            | 0              | 0             | -                   | 100                            | 100                | 3 Hrs.      |
| Program               | Understan    | d the premi    | ses inform    | ing the twin the    | emes of liberty and f          | freedom from a cl  | ivil rights |
| <b>Objective (PO)</b> | perspectiv   | e and to       | address       | the growth of       | <sup>r</sup> Indian opinion re | egarding moderl    | n Indian    |
|                       | intellectua  | ls' constituti | onal role i   | and entitlemen      | t to civil and econc           | omic rights as we  | ell as the  |
|                       | emergenc     | e of nationh   | ood in the    | early years of l    | ndian nationalism.             |                    |             |
|                       |              | C              | ourse Ou      | tcomes (CO)         |                                |                    |             |
| CO1                   | Discuss th   | e growth of    | the demar     | nd for civil rights | s in India for the bull        | k of Indians befor | e the       |
|                       | arrival of C | Gandhi in Inc  | lian politic. | S.                  |                                |                    |             |
| CO2                   | Discuss th   | e intellectua  | l origins o   | f the framework     | c of argument that in          | formed the         |             |
|                       | conceptua    | lization of so | ocial reforr  | ns leading to re    | evolution in India.            |                    |             |
| CO3                   | Discuss th   | e circumsta    | nces surro    | unding the four     | ndation of the Congi           | ress Socialist Par | ty [CSP]    |
|                       |              |                |               |                     | he eventual failure o          | of the proposal of | direct      |
|                       |              | 0              | U             | in the Indian Co    |                                |                    |             |
| CO4                   | Discuss th   | e passage o    | of the Hind   | u Code Bill of 1    | 956.                           |                    |             |

# Unit I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

# Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights , Right to Equality , Right to Freedom , Right against Exploitation , Right to Freedom of Religion, Cultural and Educational Rights , Right to Constitutional Remedies , Directive Principles of State Policy , Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

# Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

# Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

# MTIP w.e.f. 2018-19

| MTAD-104              |            |               | Pedago       | gy Studies         |                    |                      |                 |
|-----------------------|------------|---------------|--------------|--------------------|--------------------|----------------------|-----------------|
| Lecture               | Tutorial   | Practical     | Credit       | Major Test         | Minor Test         | Total                | Time            |
| 2                     | 0          | 0             | 0            | -                  | 100                | 100                  | 3 Hrs.          |
| Program               | Review     | existing evid | lence on tl  | he review topic to | inform programn    | ne design and p      | olicy making    |
| <b>Objective (PO)</b> | undertak   | en by the D   | FID, other   | agencies and res   | searchers and Ide  | entify critical evid | dence gaps to   |
|                       | guide the  | e developme   | ent.         |                    |                    |                      |                 |
|                       |            | C             | ourse Ou     | tcomes (CO)        |                    |                      |                 |
| CO1                   | What peda  | agogical pra  | ctices are   | being used by tea  | achers in formal a | and informal clas    | ssrooms in      |
|                       | developing | g countries?  | ,            |                    |                    |                      |                 |
| CO2                   | What is th | e evidence (  | on the effe  | ectiveness of thes | e pedagogical pr   | actices, in what     | conditions, and |
|                       | with what  | population d  | of learners  | ?                  |                    |                      |                 |
| CO3                   | How can t  | eacher educ   | cation (cur  | riculum and pract  | icum) and the sci  | hool curriculum a    | and guidance    |
|                       | materials  | best support  | t effective  | pedagogy?          |                    |                      |                 |
| CO4                   | What is th | e importanc   | e of identii | fying research ga  | os?                |                      |                 |

Unit 1

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology , Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. , Curriculum, Teacher education.

# Unit 2

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

# Unit 3

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

# Unit 4

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

# References

Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.

Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

10(295)

# MTIP w.e.f. 2018-19

| MTAD-106              |            |               | Stress N     | lanagement by    | / Yoga                 |       |        |
|-----------------------|------------|---------------|--------------|------------------|------------------------|-------|--------|
| Lecture               | Tutorial   | Practical     | Credit       | Major Test       | Minor Test             | Total | Time   |
| 2                     | 0          | 0             | 0            | -                | 100                    | 100   | 3 Hrs. |
| Program               | To achieve | e overall hea | Ith of body  | y and mind and   | to overcome stress     |       |        |
| <b>Objective (PO)</b> |            |               |              |                  |                        |       |        |
|                       |            | C             | ourse Ou     | tcomes (CO)      |                        |       |        |
| C01                   | Develop    | healthy mind  | l in a healt | thy body thus in | nproving social healti | h.    |        |
| CO2                   | Improve e  | efficiency    |              |                  |                        |       |        |
| CO3                   | Learn the  | e Yog asan    |              |                  |                        |       |        |
| CO4                   | Learn the  | e pranayama   |              |                  |                        |       |        |

# Unit – 1

Definitions of Eight parts of yog (Ashtanga).

# Unit- 2

Yam and Niyam, Do`s and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

# Unit- 3

Asan and Pranayam, Various yog poses and their benefits for mind & body,

# Unit- 4

Regularization of breathing techniques and its effects-Types of pranayam.

- 1. 'Yogic Asanas for Group Tarining-Part-I" :Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

# MTIP w.e.f. 2018-19

| MTAD-108              |           | Personality    | / Develop   | ment through     | Life Enlightenment     | Skills     |        |
|-----------------------|-----------|----------------|-------------|------------------|------------------------|------------|--------|
| Lecture               | Tutorial  | Practical      | Credit      | Major Test       | Minor Test             | Total      | Time   |
| 2                     | 0         | 0              | 0           | -                | 100                    | 100        | 3 Hrs. |
| Program               | To learn  | to achieve th  | e highest   | goal happily     |                        |            |        |
| <b>Objective (PO)</b> | To becon  | ne a person    | with stable | e mind, pleasing | g personality and dete | ermination |        |
|                       | To awake  | en wisdom ir   | students    |                  |                        |            |        |
|                       |           | С              | ourse Ou    | tcomes (CO)      |                        |            |        |
| C01                   | Students  | become aw      | are about   | leadership.      |                        |            |        |
| CO2                   | Students  | will learn ho  | w to perfo  | rm his/her dutie | es in day to day work. |            |        |
| CO3                   | Understa  | nd the team    | building a  | nd conflict      |                        |            |        |
| CO4                   | Student v | vill learn hov | v to becon  | ne role model fa | or the society.        |            |        |

# Unit – 1

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

# Unit – 2

Approach to day to day work and duties; Shrimad Bhagwad Geeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

# Unit - 3

Statements of basic knowledge; Shrimad Bhagwad Geeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

# Unit – 4

Personality of Role model; Shrimad Bhagwad Geeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1. Srimad Bhagavad Gita, Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

| MTIP-207  |                |                                                       | DI            | SSERTATI      | ON PART -     | -1                 |              |                 |
|-----------|----------------|-------------------------------------------------------|---------------|---------------|---------------|--------------------|--------------|-----------------|
| Lecture   | Tutorial       | Practical                                             | Credits       | Major<br>Test | Minor<br>Test | Practical<br>Marks | Total        | Time (Hrs.)     |
| 0         | 0              | 20                                                    | 10            | -             | 100           | -                  | 100          | -               |
|           | _              |                                                       |               |               |               |                    |              |                 |
| Objective |                | objective of th                                       |               |               |               |                    |              |                 |
|           | formulation/   | literature reviev                                     | v, proposed   | objectives,   | proposed      | methodologies      | and refe     | rences) in the  |
|           | field of Indus | strial and Produ                                      | ction Engine  | ering or inte | errelated fie | lds of application | ons.         |                 |
|           |                |                                                       | Cours         | e Outcome     | s             |                    |              |                 |
| CO 1      | Students wil   | I be exposed to                                       | various self- | learning top  | oics.         |                    |              |                 |
| CO 2      | national/inte  | vill be expos<br>rnational referent<br>of engineering | ed journals,  | resource      |               |                    |              |                 |
| CO 3      |                | I be able to set                                      |               |               | of the ident  | ified engineerir   | nlrosoarc    | h nrohlam       |
| CO 4      |                | I learn modern                                        |               |               |               | U U                | 0            |                 |
| 004       |                | and able to lear                                      |               |               |               | iuncu crigineei    | nigheseal    |                 |
| CO 5      |                | I develop oral a                                      |               |               |               | prosont and do     | fond thoir y | work in front o |
| 005       |                | jualified audiend                                     |               | mmunicalit    | 11 SKIIS (U F | JESEIII AIIU UE    |              |                 |

The students will start their research work in third semester with a research problem having research potential involving scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution.

The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his/her supervisor and the topic of dissertation must be mutually decided by the supervisor and student.

The students will be required to submit a progress report related to their dissertation work by the end of September. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.

The progress report must be at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The students will be required to appear for comprehensive Seminar & Viva-voce and submit a synopsis report based on their progress related to the dissertation as per the presentation date mentioned in the academic calendar for the session. The synopsis report will be submitted in the same format as that of the thesis and will contain the following:

- 1. Introduction
- 2. Literature Survey
- 3. Gaps in Literature
- 4. Objectives of the Proposed Work
- 5. Methodology
- 6. References

\* Student will choose (be offered) his/her guide in the end of second semester.

| MTIP-202  |            |                                                    | C              | <b>ISSERTA</b> | <b>FION PART</b> | -11               |              |                  |
|-----------|------------|----------------------------------------------------|----------------|----------------|------------------|-------------------|--------------|------------------|
| Lecture   | Tutorial   | Practical                                          | Credits        | Major<br>Test  | Minor<br>Test    | Practical         | Total        | Time (Hrs.)      |
| 0         | 0          | 32                                                 | 16             | -              | 100              | 200               | 300          | -                |
| Objective |            | objective of the<br>nterests relate<br>ns.         |                |                |                  |                   |              |                  |
|           |            |                                                    | Cours          | e Outcome      | es               |                   |              |                  |
| CO 1      |            | will be able to<br>priate consider                 |                | ons for eng    | gineering p      | roblems that n    | neet the s   | pecified needs   |
| CO 2      | knowledge  | will be able to<br>and experim<br>ion of data, and | ental/researc  | h methods      | s including      | design of ex      | periments,   |                  |
| CO 3      |            | will be able to<br>ding of the limit               |                | rces and n     | nodern eng       | ineering tools    | and tech     | niques with ar   |
| CO 4      | Students v | vill be able to ei                                 | ther work in a | a research     | environmer       | nt or in an indus | strial envir | onment.          |
| CO 5      |            | will be convers<br>he engineering                  |                | nnical repo    | rt writing, p    | professional et   | hics, resp   | onsibilities and |
| CO 6      |            | vill be able to p                                  |                | nvince the     | ir tonic of st   | udy to the end    | nooring co   | mmunity          |

The students are required to continue Analytical/Experimental/Computational/Industrial Problems or Case studies investigations in the field of Industrial and Production Engineering or other related fields which have been finalized in the third semester. They would be working under the supervision of a faculty member.

The students will be required to submit a progress report duly signed by their respective supervisors to the department, related to their dissertation work in the last week of March. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.
- References

The progress report must be of at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The candidate has to prepare a detailed dissertation report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up/numerical details/industrial case study etc. as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study.

The final dissertation will be submitted in the end of semester as per academic calendar for the session, which will be evaluated by internal as well as external examiners based upon his/her research work. At least one publication is expected before final submission of the dissertation from every student in peer reviewed referred journals or reputed conference from the work done by them in their dissertation. The dissertation should be presented in standard format as provided by the department.

The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a supervisor, co- supervisor etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his supervisor.

# UNIVERSITY INSTITUTE OF ENGINEERING & TECHNOLOGY KURUKSHETRA UNIVERSITY, KURUKSHETRA (a\* Grade, MaAC Accredited) MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (With specialization in Thermal Engineering) SEMESTER-I

| S.No. | Course No. | Course Name                      | L:T:P  | T:P Hours/ | Credits | Exar          | nination Sc   | Examination Schedule (Marks) | (s)   | Duration |
|-------|------------|----------------------------------|--------|------------|---------|---------------|---------------|------------------------------|-------|----------|
|       |            |                                  |        | Week       |         |               |               | -                            |       | of Exam  |
|       |            |                                  |        |            |         | Major<br>Test | Minor<br>Test | Practical                    | Total | (Hrs)    |
|       | MTTH-101   | Advanced Fluid Dynamics          | 3:0:0  | e          | с       | 60            | 40            | I                            | 100   | e        |
| 2.    | MTTH-103   | Advanced Heat Transfer           | 3:0:0  | З          | ю       | 60            | 40            | I                            | 100   | e        |
| З.    | *          | Programme Elective - I           | 3:0:0  | е          | e       | 60            | 40            | 1                            | 100   | e        |
| 4.    | **         | Programme Elective - II          | 3:0:0  | e          | e       | 60            | 40            | I                            | 100   | e        |
| 5.    | MTRM-111   | Research Methodology and IPR     | 2:0:0  | 2          | 2       | 60            | 40            | 1                            | 100   | e        |
| 6.    | MTTH-117   | Advanced Heat Transfer Lab       | 0:0:4  | 4          | 2       | 1             | 40            | 60                           | 100   | e        |
| 7.    | MTTH-119   | Refrigeration and Cryogenics Lab | 0:0:4  | 4          | 2       | 1             | 40            | 60                           | 100   | e        |
| .8    | ***        | Audit Course –I                  | 2:0:0  | 2          |         | ı             | 100*          | ı                            | 100*  | с        |
|       |            | Total                            | 16:0:8 | 24         | 18      | 300           | 280           | 120                          | 700   |          |
|       |            |                                  |        |            |         |               |               |                              |       |          |

| <u>-IST</u>    | IST OF PROGRAMME ELECTI | ELECTIVE – I                       |            | **LIST OF PROGRAMME ELECTIVE – II | ELECTIVE – II                  |
|----------------|-------------------------|------------------------------------|------------|-----------------------------------|--------------------------------|
| <del>.</del> - | MTTH-105                | Advanced Thermodynamics            | <u>.</u> . | MTTH-111                          | Refrigeration and Cryogenics   |
| r)             | MTTH-107                | Design of Thermal Systems          | 5          | MTTH-113                          | Air Conditioning System Design |
| с.             | MTTH-109                | Energy Conservation and Management | с,         | (, MTTH-115                       | Gas Turbines                   |

| 1.         MTAD-101         English for Research Paper Writing         3.         MTAD-105         Sanskrit for Technical Knc           2.         MTAD-103         Disaster Management         4.         MTAD-107         Value Education |                |          |                     |    |          |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|---------------------|----|----------|-----------------|
|                                                                                                                                                                                                                                             | <del>.</del> . | MTAD-101 | ch F                | ю. | MTAD-105 | μ               |
|                                                                                                                                                                                                                                             | ,              | MTAD-103 | Disaster Management | 4. | MTAD-107 | Value Education |

Note1: The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class. \*\*\* Note2: Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

10(300)

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED) (With specialization in Thermal Engineering)

| Duration<br>of Exam          | (Hrs)      | e                                    | с                 | 3                        | 3                       | e                                        | 3                                | с            | 3                |         |
|------------------------------|------------|--------------------------------------|-------------------|--------------------------|-------------------------|------------------------------------------|----------------------------------|--------------|------------------|---------|
|                              | Total      | 100                                  | 100               | 100                      | 100                     | 100                                      | 100                              | 100          | 100*             | 700     |
| (Marks)                      | Practical  | ı                                    |                   | ı                        | ı                       | 60                                       | 60                               |              |                  | 120     |
| n Schedule                   | Minor Test | 40                                   | 40                | 40                       | 40                      | 40                                       | 40                               | 100          | 100*             | 340     |
| Examination Schedule (Marks) | Major Test | 60                                   | 60                | 60                       | 60                      |                                          |                                  |              |                  | 240     |
| Credits                      |            | ю                                    | ю                 | ю                        | e                       | 2                                        | 2                                | 2            | ı                | 18      |
| Hours/<br>Week               |            | з                                    | 3                 | з                        | 3                       | 4                                        | 4                                | 4            | 2                | 26      |
| L:T:P                        |            | 3:0:0                                | 3:0:0             | 3:0:0                    | 3:0:0                   | 0:0:4                                    | 0:0:4                            | 0:0:4        | 2:0:0            | 14:0:12 |
| Course Name                  |            | Advanced Internal Combustion Engines | Steam Engineering | Programme Elective - III | Programme Elective - IV | Advanced Internal Combustion Engines Lab | Computational Fluid Dynamics Lab | Mini Project | Audit Course -II | Total   |
| S. No. Course No.            |            | MTTH-102                             | MTTH-104          | *                        | **                      | MTTH-118                                 | MTTH-120                         | MTTH-122     | ***              |         |
| S. No.                       |            | <del>.</del> .                       | ~                 | ю.                       | 4.                      | <del>ي</del> .                           | .0                               | # L          | ω̈́              |         |

| *LIST OF       | F PROGRAMME EI | IE ELECTIVE – III                | **LIST OF PROGRAMME ELECTIVE – IV | ME ELECTIVE – IV                   |
|----------------|----------------|----------------------------------|-----------------------------------|------------------------------------|
| <del>.</del> . | MTTH-106       | Design of Solar and Wind Systems | 1. MTTH-112                       | Computational Fluid Dynamics       |
| с,             | MTTH-108       | Nuclear Engineering              | 2. MTTH-114                       | Design of Heat Transfer Equipments |
| ю.             | MTTH-110       | Convective Heat Transfer         | 3. MTTH-116                       | Compressible Flow Machines         |

| <del>.</del> | <b>MTAD-102</b> | Constitution of India | ന് | MTAD-106 | Stress Management by Yoga                                 |
|--------------|-----------------|-----------------------|----|----------|-----------------------------------------------------------|
| r,           | MTAD-104        | Pedagogy Studies      | 4. | MTAD-108 | Personality Development through Life Enlightenment Skills |

**Note1:** The course of program elective will be offered at 1/3<sup>rd</sup> or 6 numbers of students (whichever is smaller) strength or the class. \*\*\*Note2: Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator

of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

#Note3: Mini project: During this course the student will be able to understand the contemporary/emerging technologies for various processes and systems. During the semester, the students are required to search/gather the material/information on a specific topic, comprehend it and present/discuss the same in the class. He/she will be acquainted to share knowledge effectively in oral (seminar) and written form (formulate documents) in the form of report. The student will be evaluated on the basis of ival seminar (40 marks) and report (60 marks)

10(301)

| Insertion         Course Name         L:T:P         Hours/W         Credits         Examination Schedule (Mainer Test)         Major Test         Minor Test                                                                                                                                                                                                                                                                                                                                          | MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING (CREDIT BASED)<br>(With specialization in Thermal Engineering)<br>SEMESTER-III | HNOLOGY IN MECHANICAL ENGINEERING<br>(With specialization in Thermal Engineering)<br>SEMESTER-III | VICAL ENGIN<br>Thermal Eng<br>TER-III | VEERING (CRE<br>gineering)        | DIT BASED)                          |                                                                                      |                                      |                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|
| All         Major Test         Minor Test           3         3         50         40           20         10         -         100         40           20         10         -         100         100           20         10         -         100         100           20         10         10         -         100           20         10         10         -         100           20         10         10         -         100           201         Business Analytics         MTOE-207         Cost Manageme           203         Industrial Safety         MTOE-209         Composite Mate           203         Industrial Safety         MTOE-211         Waste to Energe           203         Industrial Safety         Major         Maior         Industrial Safety           203         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                               | Hours/W<br>eek                                                                                    | Credits                               | Examination S                     | schedule (Marks                     | (1                                                                                   |                                      | Duration<br>of Exam            |
| **Programme Elective-V3:0:0336040**Open Elective3:0:033:0:036040TITH-207Dissertation Phase -10:0:2:02010-100Mode Lective3:0:030:02010-100Mate ELECTIVE - VTotal6:0:2:02010-100Mate ELECTIVE - VTotal6:0:2:02010-100Mate ELECTIVE - VTotal6:0:2:020Industrial SafetyMIOE-207Cost ManagemMate ELECTIVE - VTotalMiOE-203Industrial SafetyMIOE-201With OF-201With OF-201MionInternation and AnalysisMiOE-203Industrial SafetyMIOE-201With OF-201Cost ManagemModeling and AnalysisMiOE-203Industrial SafetyMIOE-201With OF-201Cost ManagemInternation SelectionMiOE-203Industrial SafetyMIOE-201With OF-201Cost ManagemModeling and AnalysisMiOE-203Industrial SafetyMIOE-201With OF-201Cost ManagemInternation SelectionCourse No.MiOE-203Industrial SafetyMIOE-201ListMionInternation SelectionCourse No.Course No.Internation SelectionMionInternation SelectionMionInternation SelectionDissertationDissertation Part-lase per the schedule mentioned in AMionInternation Selection SelectionMionInterna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                                   |                                       | Major Test                        | Minor Test                          | Practical                                                                            | Total (                              | (Hrs)                          |
| ***         Open Elective         3:0:0         3         3:0:0         3:0:0         3:0:0         3:0:0         40           TTH-207         Dissertation Phase -1         0:0:2:0         20         10         -         100           MME         Total         6:0:2:0         26         16         120         180           MME         Total         6:0:2:0         26         16         120         180           MME         Thermal Modeling and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                               | с                                                                                                 | e                                     | 60                                | 40                                  | ,                                                                                    | 100                                  | e                              |
| ITTH-207         Dissertation Phase - I         0:0:20         20         10         -         100           MME         Total         6:0:20         26         16         120         180           Advanced Computational Fluid Dynamics         MTOE-201         Business Analytics         MTOE-207         Cost Managem           Advanced Computational Fluid Dynamics         Advanced Computational Fluid Dynamics         MTOE-203         Industrial Safety         MTOE-207         Cost Managem           Finite Element Methods         Thermal Modeling and Analysis         Advanced Computational Fluid Dynamics         MTOE-203         Industrial Safety         MTOE-201         Non           No.         Course No.         Course No.         Course No.         Course No.         Cost Managem           MTOE-205         Operations Research         MTOE-201         Business Analytics         MTOE-201         Value Safety           No.         Course No.         Course No.         Course No.         Cost Managem         Examination Sci           Advanced Component Nethods         Industrial Safety         MTOE-201         Unterstine Safety         MTOE-201         Industrial Safety           No.         Course No.         Course No.         Course No.         Course No.         Industrial Safety         M                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               | 3                                                                                                 | З                                     | 60                                | 40                                  |                                                                                      | 100                                  | ς                              |
| Total         6:0:20         26         16         120         180           MME ELECTIVE - V         **1.157 OF OPEN ELECTIVES         **1.000-2003         Composite Mater           Finite Element Methods         MTOE-203         Operations Safety         MTOE-207         Cost Managemination           No.         Course No.         Course No.         Course No.         Course No         Composite Mater           No.         Course No.         Course No.         Course No         NTOE-203         Operations Safety         MTOE-211         Waster to Energian           No.         Course No.         Course No.         Course No         L.T.P.         Hours/Me         Credits         Examination Safety           1.         MTTH-202         Dissertation Phase - II         0:0:32         32         16         -         100           1.         MTTH-202         Dissertation Phase - II         0:0:32         32         16         -         100           1. <td< td=""><td></td><td>20</td><td>10</td><td></td><td>100</td><td></td><td>100</td><td>•</td></td<>                                                                                                                                                                                                                                                                                                          |                                                                                                                               | 20                                                                                                | 10                                    |                                   | 100                                 |                                                                                      | 100                                  | •                              |
| Mile Elective – V         **LIST OF OPEN ELECTIVES         MTOE-207         Cost Managem           Advanced Computational Fluid Dynamics         MTOE-201         Business Analytics         MTOE-207         Cost Managem           Finite Element Methods         MTOE-201         Business Analytics         MTOE-207         Cost Managem           Thermal Modeling and Analysis         MTOE-205         Operations Research         MTOE-2011         Waste to Energy           No.         Course No.         Course No.         Course No         Cost Managem           No.         Course No.         Course No         Course No         Cost Managem           No.         Course No.         Course No         Course No         Cost Managem           I.         MTTH-202         Dissertation Phase - II         0:0:32         32         16         -         100           I.         MTTH-202         Dissertation Phase - II         0:0:0:32         32         16         -         100         acest           Itee end of the second semester each student is required to submit the weeks of the beginning of the Third Semester.         -         100         -         100         -         100         -         100         -         -         100         -         100         - <td< td=""><td></td><td>26</td><td>16</td><td>120</td><td>180</td><td></td><td>300</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               | 26                                                                                                | 16                                    | 120                               | 180                                 |                                                                                      | 300                                  |                                |
| Advanced Computational Fluid Dynamics         MTOE-201         Business Analytics         MTOE-207         Cost Management<br>Material Safety           Finite Element Methods         MTOE-203         Industrial Safety         MTOE-209         Composite Material Safety           No.         Course No.         Course No.         Course No.         Course No.         Course No.           No.         Course No.         Course No.         Course Name         L:1:P         HoursMe         Credits         Examination Sci           No.         Course No.         Course No.         Course No.         Course No.         Course No.         Coortin Coortin Material Modeling and Analysis           I.         MTH-202         Dissertation Phase - II         0:0:32         32         16         -         100           I.         MTH-202         Dissertation Phase - II         0:0:32         32         16         -         100           I.         MTH-202         Dissertation Part-I is to be specified/submitted within three weeks of the beginning of the Third Semester.         -         100         -         100         -         100         -         -         100         -         -         100         -         -         100         -         -         100         -         - <td>0 LSIT**</td> <td>F OPEN ELEC</td> <td>TIVES</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                            | 0 LSIT**                                                                                                                      | F OPEN ELEC                                                                                       | TIVES                                 |                                   |                                     |                                                                                      |                                      |                                |
| Finite Element Methods     MTOE-203     Industrial Safety     MTOE-209     Composite Matk       Thermal Modeling and Analysis     MTOE-205     Operations Research     MTOE-2011     Waste to Energy       No.     Course No.     Course No.     Course Name     L:T:P     Hours/We     Credits     Examination Sci       No.     Course No.     Course No.     Course Name     L:T:P     Hours/We     Credits     Examination Sci       1.     MTTH-202     Dissertation Phase - II     0:0:32     32     16     -     100       1.     MTTH-202     Dissertation Phase - II     0:0:32     32     16     -     100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MTOE                                                                                                                          |                                                                                                   | ss Analytics                          |                                   | Cost Management                     | : of Engineering Pr                                                                  | rojects                              |                                |
| Thermal Modeling and Analysis       MTOE-205       Operations Research       MTOE-211       Waste to Energy         No.       Course No.       Course No.       Course No.       Course No.       SEMESTER-IV         No.       Course No.       Course No.       Course No.       Course No.       Course No.       Course No.         1.       MTH-202       Dissertation Phase - II       0:0:32       32       16       -       100         1.       MTH-202       Dissertation Phase - II       0:0:32       32       16       -       100         1.       MTH-202       Dissertation Phase - II       0:0:32       32       16       -       100         1.       MITH-202       Dissertation Phase - II       0:0:32       32       16       -       100         1.       MITH-202       Dissertation Phase - II       0:0:32       32       16       -       100         1.       Minited student is required to submit the report of his/her Dissertation work in the identified area in construct the Dissertation Part-II cannot be confinued at any level.       -       100         2.       Ademic session otherwise the Dissertation Part-II cannot be confinued at any level.       -       100         2.       Ademitted student is required to submit his/her final Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MTOE                                                                                                                          |                                                                                                   | rial Safety                           |                                   | Composite Materi                    | als                                                                                  |                                      |                                |
| SEMESTER-IV       L:T:P     Hours/We     Credits     Examination Scl       L:T:P     Hours/We     Credits     Examination Scl       ek     0:0:32     32     16     -       0:0:32     32     16     -     100       three weeks of the beginning of the Third Semester.     -     100       Sher Dissertation work in the identified area in constitueed at any level.     -     100       Dissertation Part-I as per the schedule mentioned in Accountals (SCI/Sconding CSCI/Sconding (SCI/Sconding CSCI/Sconding CSCI/Sconding (SCI/Sconding CSCI/Sconding CSCI/Sconding CSCI/Sconding CSCI/Sconding CSCI/Sconding (SCI/Sconding CSCI/Sconding CSCI/Sconding (SCI/Sconding CSCI/Sconding CSCI/Scondi |                                                                                                                               |                                                                                                   | ns Research                           |                                   | Waste to Energy                     |                                                                                      |                                      |                                |
| L:T:P     Hours/We     Credits     Examination Science       ek     ek     Examination Science       0:0:32     32     16     -       0:0:32     32     16     -       0:0:32     32     16     -       0:0:32     32     16     -       0:0:32     32     16     -       100     -     100       10     -     100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                               | SEMES.                                                                                            | TER-IV                                |                                   |                                     |                                                                                      |                                      |                                |
| ek     Major     Minor       0:0:32     32     16     -     100       0:0:32     32     16     -     100       0:0:32     32     16     -     100       0:0:32     32     16     -     100       0:0:32     32     16     -     100       0:0:32     32     16     -     100       10     -     16     -     100       10     -     16     -     100       10     -     16     -     100       10     -     16     -     100       10     -     -     100     -       10     -     -     100     -       10     -     -     100     -       10     -     -     100     -       10     -     -     -     100       10     -     -     -     100       10     -     -     -     100       10     -     -     -     100       10     -     -     -     100       10     -     -     -     100       10     -     -     - <td< td=""><td>Course Name</td><td>L:T:P Hou</td><td></td><td></td><td>xamination Sche</td><td>dule (Marks)</td><td>Duration</td><td>Ę</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Course Name                                                                                                                   | L:T:P Hou                                                                                         |                                       |                                   | xamination Sche                     | dule (Marks)                                                                         | Duration                             | Ę                              |
| Major     Major     Minor       0:0:32     32     16     -     100       0:0:32     32     16     -     100       0:0:32     32     16     -     100       0:0:32     32     16     -     100       100     -     16     -     100       100     -     16     -     100       101     -     -     100       102     -     -     100       103     -     16     -     100       100     -     -     100       100     -     -     100       100     -     -     100       100     -     -     100       100     -     -     100       100     -     -     100       100     -     -     100       100     -     -     100       100     -     -     100       100     -     -     -       100     -     -     100       100     -     -     -       100     -     -     -       100     -     -     -       100     - </td <td></td> <td></td> <td>ek</td> <td></td> <td></td> <td></td> <td>of Exam<br/>(Hrs)</td> <td><u>ح</u></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                               |                                                                                                   | ek                                    |                                   |                                     |                                                                                      | of Exam<br>(Hrs)                     | <u>ح</u>                       |
| 0:0:32     32     16     -     100       0:0:32     32     16     -     100       to do his/her Dissertation work in the identified area in constituee weeks of the beginning of the Third Semester.     -     100       s/her Dissertation Part-I as per the schedule mentioned in / Dissertation Part-I as per the schedule mentioned in / Dissertation Part-I as per the schedule mentioned in Actional reputed iournals (SCI/Sconditional reputed iournal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                                   |                                       | Major<br>Test                     | Minor<br>Test                       | Practical Total                                                                      | I                                    |                                |
| 0:0:32     32     16     -     100       to do his/her Dissertation work in the identified area in constitute weeks of the beginning of the Third Semester.     .     .       s/her Dissertation Part-I as per the schedule mentioned in / oe continued at any level.     .     .     .       Dissertation Part-II as per the schedule mentioned in / Dissertation Part-II as per the schedule mentioned in Actional reputed iournals (SCI/Scondor 2012)     .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sertation Phase - II                                                                                                          | 0:0:32                                                                                            |                                       |                                   | 100                                 | 200 300                                                                              | •                                    |                                |
| to do his/her Dissertation work in the identified area in cons<br>three weeks of the beginning of the Third Semester.<br>s/her Dissertation Part-I as per the schedule mentioned in /<br>oe continued at any level.<br>Dissertation Part-II as per the schedule mentioned in Ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               | 0:0:32                                                                                            |                                       |                                   | 100                                 | 200 300                                                                              |                                      |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               | do his/her Dis                                                                                    | sertation wor                         | k in the identifie                | in cons                             | Total credits of all four semesters – 68<br>sent of the Guide/Supervisor. Broad area | <b>l four seme</b> :<br>bupervisor E | <b>sters – 6</b><br>3road area |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | be specified/submitted within thr                                                                                             | ree weeks of th                                                                                   | he beginning                          | of the Third Ser                  | mester.<br>montioned in Ao          | adomio aalondar                                                                      | for the corr                         | , dibrooo                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The Dissertation Part-II cannot be                                                                                            | continued at a                                                                                    | n rait-i as pe<br>any level.          | al lite scitedule                 |                                     | auennus calenual                                                                     |                                      | esponului                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               | lissertation Pal<br>aper in Interna                                                               | rt-II as per tl<br>ttional/Nationa    | he schedule m<br>al reputed jourr | entioned in Aca<br>nals (SCI/Scopus | demic calendar<br>indexed/ UGC                                                       | for the corru<br>approved jc         | espondinç<br>vurnals) o        |
| Note 4: The course of program/open elective will be offered at 1/3 <sup>rd</sup> or 6 numbers of students (whichever is smaller) strength of the class.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ective will be offered at 1/3 <sup>rd</sup> or                                                                                | 6 numbers of s                                                                                    | students (whi                         | chever is smalle                  | er) strength of the                 | e class.                                                                             |                                      |                                |
| 10(302)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               | 10(3                                                                                              | (2)                                   |                                   |                                     |                                                                                      |                                      |                                |

MTTH w.e.f. 2018-2019 ADVANCED FLUID DYNAMICS **MTTH-101** Lecture Tutorial Practical Credits Major Test Minor Test Total Time (Hrs.) 40 100 3 3 60 --3 **Objective** To understand fluid flow problems & regimes, governing parameters, industrial applications, laminar, turbulent & compressible flows, experiments in the field of fluid mechanics. **Course Outcomes** CO1 Enabling the understanding of fluid flow problems along with range of governing parameters. CO2 Enabling the understanding of flow patterns and ability to differentiate between various flow regimes and its effects & take up related problems of industrial base. CO3 Creating an understanding about turbulent & compressible flows. CO4 Enabling the students to devise the experiments in the field of fluid mechanics.

**UNIT-I** 

**Basic equations of fluid flow:** Reynold's transport theorem, continuity, momentum and energy equations in integral form and their applications, differential form of these equations, Euler's equation, Bernoulli's equation, Navier Stokes equation.

**Ideal flow:** Kinematics of fluid flow; potential flow; sources, sinks and vortices; superimposition of uniform stream with above, doublets; Rankine ovals; flow around uniform cylinders with and without circulation; pressure distribution on the surface of these bodies and D'Alembert's paradox.

#### UNIT-II

**Exact solution of N-S equations:** Navier Stokes equation, Plane Poiselle and Coutte flows; Hagen-Poiselle flow through pipes; elements of hydrodynamic theory of lubrication; Flows with very low Reynold's numbers; Stokes flow around a sphere.

**Boundary layer flows:** Elements of two-dimensional boundary layer theory; displacement thickness and momentum thickness; skin friction; Blasius solution for boundary layer on a flat plate; Karman-Pohlhausen integral method for obtaining approximate solutions, boundary layer separation & control.

#### UNIT-III

**Turbulent Flow:** Characteristics of turbulent flow, laminar-turbulent transition, Turbulent boundary layer equation, Time mean motion and fluctuations, derivation of governing equations for turbulent flow, Reynold's stresses: shear stress models, universal velocity distribution.

**Introduction to Compressible flows:** Speed of sound and Mach number, basic equations for one dimensional compressible flow, isentropic relation, propagation of infinitesimal and finite disturbances, stagnation and critical conditions, effect of variable flow area, converging and converging-diverging nozzles and diffusers.

#### UNIT-IV

**Experimental Techniques:** Role of experiments in fluid mechanics, Sources of error in experiments, Sources of Error in Measurement, Data analysis: Classification of Data, Analysis of Random Signals, Fourier Transform Technique, Probability Density Function Approach; Introduction to design of experiments; Review of probes and transducers: Introduction to Hot wire Anemometry; Single & double wire measurement; Laser Doppler Velocimetry: Light Sources & LDV; Particle Image Velocimetry: Particle Image Velocimetry, Seeding Arrangement for PIV, Particle Dynamics, Generating a Light Sheet, Synchronizer.

- 1. Muralidhar and Biswas, "Advanced Engineering Fluid Mechanics", Alpha Science International, 2005.
- 2. Irwin Shames, "Mechanics of Fluids", McGraw Hill, 2003
- 3. R.W., McDonald A.T., "Introduction to Fluid Mechanics", John Wiley and Sons Inc, 1985
- 4. Pijush K. Kundu, Ira M Kohen and David R. Dawaling, "Fluid Mechanics", Fifth Edition, 2005
- 5. I.G. Currie, "Fundamentals of Mechanics of Fluid", McGraw-Hill.
- 6. Yuan, "Foundation of Fluid Mechanics", Prentice Hall.
- 7. R.W. Fox, P.J. Pritchard & A.T. McDonald, "Introduction to Fluid Mechanics", Wiley India.
- 8. S.K. Som and G. Biswas, "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw.
- 9. Gupta and Gupta, "Fluid Mechanics and its applications", Willey Easter.

MTTH w.e.f. 2018-2019 MTTH-103 **ADVANCED HEAT TRANSFER** Credits Time (Hrs.) Lecture Tutorial Practical Major Minor Total Test Test 3 3 40 100 3 60 **Objective** To understand the subject of Heat Transfer in detail with capability to solve Industrial Problems. This will also create the base and interest among the students to carry out the Future Research. **Course Outcomes** CO 1 After completing the course, the students will be able to formulate and analyze a heat transfer problem involving any of the three modes of heat transfer. CO 2 The students will be able to obtain exact solutions for the temperature variation using analytical methods where possible or employ approximate methods or empirical correlations to evaluate the rate of heat transfer **CO** 3 The students will be able to design devices such as heat exchangers and also estimate the insulation needed to reduce heat losses where necessary.

#### UNIT-I

**Conductive Heat Transfer:** Review of the basic laws of conduction, convection and radiation. General heat conduction equation in different co-ordinates. One dimensional steady state conduction with variable thermal conductivity and with internal distributed heat sources. Extended surfaces review, tapered fins, design considerations.

Two and three dimensional steady-state conduction, method of separation of variables, graphical method, relaxation technique.

**Unsteady heat conduction:** lumped capacitance method, validity of lumped capacitance method, general lumped capacitance analysis, spatial effects, plane wall with convection, radial systems with convection, semi-infinite solid, constant surface temperature and heat fluxes, periodic heating, solutions using Heisler's charts.

#### UNIT-II

**Convective Heat Transfer:** Introduction to convection boundary layers, local and average convection coefficients, laminar and turbulent flow, boundary layer equations, boundary layer similarity, boundary layer analogies – heat and mass transfer analogy, Reynold's and Colburn analogies.

**Forced convection:** external forced convection - empirical method, flat plate in parallel flow, cylinder in cross flow, flow over a sphere; internal forced convection – hydrodynamic and thermal considerations, energy balance, laminar flow in circular tubes, convection correlations.

**Natural Convection:** physical considerations, governing equations, laminar free convection on vertical surface, empirical correlations, free convection within parallel plate channels, empirical correlations, combined free and forced convection. Special topics: transpiration cooling, ablation heat transfer, fluidized bed combustion.

#### UNIT-III

**Heat Transfer with Phase Change**: dimensionless parameters in boiling and condensation, boiling modes, pool boiling, correlations, forced convection boiling, physical mechanism of condensation, laminar and turbulent film condensation, film condensation in tubes, dropwise condensation.

**Exchangers:** Basic design methodologies – LMTD and effectiveness NTU methods, overall heat transfer coefficient, fouling of heat exchangers, classification of heat exchangers according to constructional features: tubular, plate type, extended surface heat exchanger, compact heat exchangers, design of double pipe heat exchangers, plate and heat pipe type, heat transfer enhancement - Passive and active techniques.

10(304)

## MTTH-103 (contd....):

#### UNIT-IV

**Radiation Heat Transfer:** Fundamental concepts, radiation intensity, irradiation, radiosity, black body radiation, Basic laws of radiation, emission from real surfaces, absorption, reflection and transmission by real surfaces, Kirchoff's law, Gray surface, radiative heat exchange between two or more surfaces, view factor, radiation exchange between opaque, diffuse, gray surface in an enclosure; net radiation exchange at a surface, radiation shields, multimode heat transfer, radiation exchange with participating media, radiation of gases and vapour.

**Mass Transfer:** physical origins and rate equations, mixture composition, Fick's law of diffusion, mass transfer in stationary media, steady state diffusion through a plane membrane, equimolal diffusion, diffusion of water vapours through air, mass transfer coefficient, convective mass transfer, correlations.

- 1. Incropera, Dewitt, Bergmann and Levine, "Fundamentals of Heat and Mass Transfer", Wiley India, 2006.
- 2. J.P. Holman, "Heat Transfer", McGraw Hill, 1996.
- 3. Y.V.C. Rao, "Heat and Mass Transfer", Universities Press, 2001.
- 4. D.S. Kumar, "Heat and Mass Transfer", Katson Publication, 2013.
- 5. Kreith and Bohn, "Principles of Heat Transfer", Cengage Learning, Inc. 7<sup>th</sup> Edition, 2009.
- 6. N.H. Afgan and Schliinder, "Heat Exchangers Design and Theory", McGraw Hill.

| MTTH-117  |                                                                                       |               | ADVANCE      | D HEAT T     | RANSFE     | R LAB         |       |        |  |  |
|-----------|---------------------------------------------------------------------------------------|---------------|--------------|--------------|------------|---------------|-------|--------|--|--|
| Lecture   | Tutorial                                                                              | Practical     | Credits      | Major        | Minor      | Practical     | Total | Time   |  |  |
|           |                                                                                       |               |              | Test         | Test       | Marks         |       | (Hrs.) |  |  |
| -         | -                                                                                     | 4             | 2            | -            | 40         | 60            | 100   | 3      |  |  |
|           |                                                                                       |               |              |              |            | •             |       |        |  |  |
| Objective | Objective To design and conduct experiments, and acquire, analyze and interpret data. |               |              |              |            |               |       |        |  |  |
|           |                                                                                       |               | Course O     | utcomes      |            |               |       |        |  |  |
| CO 1      | Study the                                                                             | heat pipe and | l demonstra  | ate its sup  | oer therma | I conductivit | y.    |        |  |  |
| CO 2      | Understan                                                                             | d the unstead | dy state hea | at conduc    | tion.      |               |       |        |  |  |
| CO 3      | Analyze th                                                                            | e heat transf | er characte  | ristics in ( | convectiv  | e heat transf | er.   |        |  |  |
| CO 4      | Analyze th                                                                            | e heat transf | er characte  | ristics for  | different  | heat exchang  | gers. |        |  |  |

# List of Experiments

- 1. Study of variation of emissivity of test plate with absolute temperature.
- 2. To demonstrate the super thermal conductivity of heat pipe.
- 3. To determine natural convective heat transfer coefficient and to calculate and to plot variation of natural convective heat transfer coefficient along the vertical tube.
- 4. To determine the LMTD, overall heat transfer coefficient and effectiveness of evaporative heat exchanger.
- 5. To find out heat transfer coefficient of drop wise and film wise condensation at various flow rates of water.
- 6. To study different types of heat enhancement techniques.
- 7. To determine the Biot number, Fourier number and heat transfer coefficient for unsteady heat transfer.
- 8. To calculate heat transfer coefficient of the fluidized bed.
- 9. To find out the overall heat transfer coefficient and LMTD of a finned tube heat exchanger.
- **10.** To find out the overall heat transfer coefficient and LMTD of a plate type heat exchanger.
- 11. To find out the heat flux and temperature difference between metal & liquid in a two phase transfer unit.
- **12.** To determine the overall heat transfer co-efficient under unsteady state conditions at different temperatures and heat transfer coefficient at boiling point.

Note: Total eight experiments are to be performed selecting at least six from the above list.

| MTTH-119  |               | RE                                                                        | FRIGERAT    | ION AND     | CRYOGE      | VICS LAB      |           |           |  |  |  |
|-----------|---------------|---------------------------------------------------------------------------|-------------|-------------|-------------|---------------|-----------|-----------|--|--|--|
| Lecture   | Tutorial      | Practical                                                                 | Credits     | Major       | Minor       | Practical     | Total     | Time      |  |  |  |
|           |               |                                                                           |             | Test        | Test        | Marks         |           | (Hrs.)    |  |  |  |
| -         | -             | 4                                                                         | 2           | -           | 40          | 60            | 100       | 3         |  |  |  |
|           |               |                                                                           |             |             |             |               |           |           |  |  |  |
| Objective | To make s     | tudents unde                                                              | rstand the  | applicatio  | ns of refri | igeration and | cryogen   | ics.      |  |  |  |
| -         | -             | Course Outcomes                                                           |             |             |             |               |           |           |  |  |  |
| CO 1      | Students      | Students will understand about the basics and working of refrigeration an |             |             |             |               |           |           |  |  |  |
|           | cryogenic     | s systems.                                                                |             |             |             |               |           |           |  |  |  |
| CO 2      | Students v    | vill be able to                                                           | identify th | e differen  | t cycle of  | operation in  | refrigera | tion.     |  |  |  |
| CO 3      | Students      | will know the                                                             | working p   | rinciple to | o achieve   | very low ten  | nperature | e and its |  |  |  |
|           | importanc     | e in air-condi                                                            | tioning.    | -           |             | -             | -         |           |  |  |  |
| CO 4      | Student w     | vill learn abo                                                            | out the var | ious wor    | king and    | design of d   | lifferent | types of  |  |  |  |
|           | refrigeration | on systems.                                                               |             |             | -           | -             |           |           |  |  |  |

## List of Experiments

- 1. To study and perform experiment on compound vapour compression Refrigeration Cycle.
- 2. To study and perform experiment on Solar Air-conditioner based on vapour absorption cycle.
- 3. To study and perform experiments on multi-load systems.
- 4. To study and perform experiment on vapour absorption apparatus.
- 5. To find the performance parameter of cooling tower.
- 6. To study various components in room air conditioner.
- 7. To find performance of a refrigeration test rig system by using different expansion devices.
- 8. To study and perform experiments on cascade system.
- 9. To study and perform experiments on dry ice machine.
- 10. To study and perform experiments on gas liquefaction system.

Note: Total eight experiments are to be performed selecting at least six from the above list.

| MTTH-105  |           | A                                                                 | DVANCED     | THERMOD     | YNAMICS      |         |             |  |  |  |  |
|-----------|-----------|-------------------------------------------------------------------|-------------|-------------|--------------|---------|-------------|--|--|--|--|
| Lecture   | Tutorial  | Practical                                                         | Credits     | Major       | Minor        | Total   | Time        |  |  |  |  |
|           |           |                                                                   |             | Test        | Test         |         | (Hrs.)      |  |  |  |  |
| 3         | -         | -                                                                 | 3           | 60          | 40           | 100     | 3           |  |  |  |  |
|           |           |                                                                   |             |             |              |         |             |  |  |  |  |
| Objective | To acqu   |                                                                   | students    | with f      | undamenta    | ls of   | advanced    |  |  |  |  |
|           | thermodyr | namics.                                                           |             |             |              |         |             |  |  |  |  |
|           |           | Col                                                               | irse Outcor | nes         |              |         |             |  |  |  |  |
| CO 1      |           | Student will get knowledge of exergy, basic laws governing energy |             |             |              |         |             |  |  |  |  |
|           |           | conversion in multicomponent systems and application of chemica   |             |             |              |         |             |  |  |  |  |
|           | thermodyr |                                                                   |             |             |              |         |             |  |  |  |  |
| CO 2      |           | ill be aware                                                      |             |             |              |         |             |  |  |  |  |
|           |           | on thermo                                                         |             |             | equilibrium  | n and s | tability of |  |  |  |  |
|           |           | e multi-comp                                                      |             |             |              |         |             |  |  |  |  |
| CO 3      |           | nt theoretica                                                     | -           |             | ind empirio  | al mode | ls for the  |  |  |  |  |
|           |           | of thermody                                                       |             |             |              |         |             |  |  |  |  |
| CO 4      |           | ill acquire the                                                   |             |             |              |         |             |  |  |  |  |
|           |           | ombusting                                                         |             |             |              |         |             |  |  |  |  |
|           | non-ideal | gas properti                                                      | es, chemica | al non-equi | ilibrium and | compres | ssibility.  |  |  |  |  |

UNIT – I

**Basic Concepts**: Thermodynamics - Zeroth law of thermodynamics – first law of thermodynamics - limitations of first law - Corollaries. Concept of internal energy Transient Flow Analysis - second law of thermodynamics - Corollaries. Concept of entropy- Availability and unavailability – availability function of the closed system - availability of steady flow system Irreversibility.

**Thermodynamic Relations:** Introduction Thermodynamic Potentials – Maxwell Relations – Specific Heat Relations – Mayer's relation –General relations for du, dh, ds.

#### UNIT – II

**Perfect Gases:** P.V.T. surface – Equations of state – Real Gas Behavior – Vander Waal's equation - Generalized compressibility Factor – Energy properties of Real Gases – Vapour pressure – Clausius – Clapeyron Equation – Throttling – Joule – Thompson coefficient.

**Non-reactive Mixture of perfect Gases** – Governing Laws – Evaluation of properties –Psychrometric Mixture properties and psychrometric chart – Air conditioning processes – Real Gas Mixture.

#### UNIT – III

**Reactive Gas Mixtures:** Combustion: Introduction – Combustion Reactions – Enthalpy of Formation – Entropy of Formation - Adiabatic flame Temperature -first and second law analysis of reacting systems.

**Thermodynamic cycles:** Vapor power cycles: Second law analysis of vapor power cycles, cogeneration, Binary vapor cycles, and combined gas vapor power cycles. Gas power cycles: Ideal jet propulsion cycles-Second law analysis of gas power cycles.

#### UNIT – IV

**Statistical thermodynamics**: Statistical interpretations of first and second law and Entropy, Nernst heat theorem.

**Kinetic theory of gases:** Molecular model, Clausius equation of state, van der waals equation of state, Maxwell Boltzmann velocity distribution

- 1. Cengel, "Thermodynamics", Tata McGraw Hill Co., New Delhi, 1980.
- 2. Howell and Dedcius, "Fundamentals of Engineering Thermodynamics", McGraw Hill Inc., U.S.A.
- 3. Van Wylen & Sonntag, "Thermodynamics", John Wiley and Sons Inc., U.S.A.
- 4. Jones and Hawkings, "Engineering Thermodynamics", John Wiley and Sons Inc., U.S.A, 2004.
- 5. Holman, "Thermodynamics", McGraw Hill Inc., New York, 2002.
- 6. Faires V.M. and Simmag, "Thermodynamics", Macmillan Publishing Co. Inc., U.S.A.
- 7. Rao Y.V.C., "Postulational and Statistical Thermodynamics", Allied Publishers Inc, 1994.

|                                                                                        | •            |              |               |                  |                  |             |                 |  |
|----------------------------------------------------------------------------------------|--------------|--------------|---------------|------------------|------------------|-------------|-----------------|--|
| MTTH-107                                                                               |              |              | DESIGN        | OF THERMAL       | SYSTEMS          |             |                 |  |
| Lecture                                                                                | Tutorial     | Practical    | Credits       | Major Test       | Minor Test       | Total       | Time (Hrs.)     |  |
| 3                                                                                      | -            | -            | 3             | 60               | 40               | 100         | 3               |  |
|                                                                                        |              |              |               |                  |                  |             |                 |  |
| Objective                                                                              |              |              |               | matical model    |                  |             |                 |  |
|                                                                                        | thermal sy   | ystems. Also | o students    | will be able to  | understand t     | he dynan    | nic behaviour   |  |
|                                                                                        | of therma    | l systems.   |               |                  |                  |             |                 |  |
|                                                                                        |              |              | Course        | Outcomes         |                  |             |                 |  |
| CO 1                                                                                   |              |              |               | nd the basic     |                  |             |                 |  |
|                                                                                        | systems.     | Also to dis  | scuss mat     | hematical mo     | delling of the   | ermal sy    | stems using     |  |
|                                                                                        | computer     | programme    | S.            |                  |                  |             |                 |  |
| CO 2                                                                                   |              |              |               | ing the therm    |                  |             |                 |  |
|                                                                                        |              |              |               | o to understar   |                  |             |                 |  |
| CO 3 Students will understand the concepts of optimization and its various methods for |              |              |               |                  |                  |             |                 |  |
| solving the thermal problems. Also to study geometric, linear and dynamic              |              |              |               |                  |                  |             |                 |  |
|                                                                                        | programm     |              |               |                  |                  |             |                 |  |
| CO 4                                                                                   |              |              |               | c behaviour (    | of thermal sy    | stems. A    | Also to learn   |  |
|                                                                                        |              | nalysis and  |               |                  |                  |             |                 |  |
| CO 5                                                                                   |              |              |               | nd the basic     |                  |             |                 |  |
|                                                                                        |              |              |               | hematical mo     | delling of the   | ermal sy    | stems using     |  |
|                                                                                        | computer     | programme    | S.            |                  |                  |             |                 |  |
|                                                                                        |              | _            |               | UNI              |                  |             |                 |  |
|                                                                                        |              |              |               |                  |                  |             | s, Matching of  |  |
| system comp                                                                            | onents, Eco  | nomic analys | sis, Deprecia | ation, Gradient  | present worth fa | actor.      |                 |  |
|                                                                                        |              |              |               |                  |                  |             |                 |  |
|                                                                                        |              |              |               |                  |                  | ysis, Diffe | erent modes of  |  |
| mathematica                                                                            | I models, Se | lection, Com | puter progra  | ammes for mode   | els.             |             |                 |  |
|                                                                                        |              |              |               |                  |                  |             |                 |  |
| Modoling Th                                                                            |              | nmanta. Maa  | -             | INIT-II          | anaratara Car    | donooro     | Absorption and  |  |
|                                                                                        |              |              |               | nulation studies |                  |             | Absorption and  |  |
| procedures.                                                                            | columns, Co  | unhiessol, i | =umps, Sm     |                  | 5, 111011140011  | now uld     | yrann, Solution |  |
| procedures.                                                                            |              |              |               |                  |                  |             |                 |  |

#### UNIT-III

**Systems Optimization:** Objective function formulation, Constraint equations, Mathematical formulation, Calculus method, Dynamic programming, Geometric programming, Linear programming methods, Solution procedures.

# UNIT-IV

**Dynamic Behavior of Thermal System:** Steady state simulation, Laplace transformation, Feedback control loops, Stability analysis, Non-linearties.

# **Reference/Text Books:**

1.Hodge, B.K. and Taylor, R. P., "Analysis and Design of Energy Systems", Prentice Hall (1999). 2.Bejan, A., Tsatsaronis, G. and Michel, M., "Thermal Design and Optimization", John Wiley and Sons (1996).

3.Jaluria, Y., "Design and Optimization of Thermal Systems", CRC Press (2008). 4.Ishigai, S., "Steam Power Engineering Thermal and Hydraulic Design Principle", Cambridge University Press (1999). MTTH w.e.f. 2018-2019 MTTH-109 **ENERGY CONSERVATION AND MANAGEMENT** Practical Time (Hrs.) Lecture Tutorial Credits Major Minor Total Test Test 3 3 40 100 3 60 **Objective** To understand the method of utilization of energy, types, site selection & other important aspects of Solar, wind, hydro, ocean, wave, tidal, geothermal, bio-mass & energy management. **Course Outcomes** CO 1 Understanding of methods of utilization, types, site selection & surveys etc. of Solar, Wind, Chemical, MHD sources of energy. CO 2 Understanding of methods of utilization, types, site selection & surveys etc. regarding Energy from Oceans and Hydropower. CO 3 Understanding of methods of utilization, types, site selection & surveys etc. regarding Bio-energy and Geothermal energy. **CO 4** Understanding of generation of scenarios of energy consumption and predict the future trend. The student should be able to suggest and plan energy conservation solutions.

# UNIT-I

## Alternative Sources of Energy:

**Solar Energy**: Introduction; direct solar energy utilization; solar thermal applications. **Chemical Energy Sources:** Introduction, Fuel cells: Design, Principle, operation, classification, types. **Magneto Hydro Dynamic Power Generation:** Introduction, Principle of MHD power generation, MHD Systems.

**Wind energy:** Introduction, Basic principles of wind energy conversion: Nature of wind, Power in the wind, forces on blades, wind energy conversion, design of windmills; wind data and energy estimation; site selection considerations, Basic components of WECS.

#### UNIT-II

**Energy from Oceans:** Wave energy generation – energy from waves; wave energy conversion devices; advantages and disadvantages of wave energy; Tidal energy – basic principles; tidal power generation systems; estimation of energy and power; advantages and limitations of tidal power generation; ocean thermal energy conversion (OTEC); methods of ocean thermal electric power generation.

**Hydro power:** Classification of small hydro power (SHP) stations; description of basic civil works design considerations; turbines and generators for SHP; advantages and limitations.

#### UNIT-III

**Biomass and bio-fuels:** Energy plantation; biogas generation; types of biogas plants; applications of biogas; energy from wastes.

**Energy conservation in Industries:** Cogeneration, Combined heating and power systems, Relevant international standards and laws.

#### UNIT-IV

**Energy conservation management:** General principles of energy management and energy management planning; application of Pareto's model for energy management; obtaining management support; establishing energy data base; Energy economics.

**Energy Auditing**: Conducting energy audit; identifying, evaluating and implementing feasible energy conservation opportunities; energy audit report; monitoring, evaluating and following up energy saving measures/projects.

- 1. L.C. Witte, P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilization", Hemispherical Publication, 1988.
- 2. Paul W. O'Callaghan, "Design and Management for Energy Conservation" Pergamon Pr; 1st edition (December 1, 1981)
- 3. D.A. Reeg, "Industrial Energy Conservation", Pergamon Press, 1980.

- 4. T.L. Boyen, "Thermal Energy Recovery" Wiley, 1980.
- 5. L.J. Nagrath, "Systems Modeling and Analysis", Tata McGraw Hill, 1982.
- **6.** W.C. Turner, "Energy Management Handbook ", Wiley, New York, 1982.
- 7. I.G.C. Dryden, "The Efficient Use of Energy ", Butterworth, London, 1982.
- **8.** Godfrey Boyle (Edited by), "Renewable energy power for sustainable future", Oxford University Press in association with the Open University, 1996.
- 9. S.A. Abbasi and Naseema Abbasi, "Renewable energy sources and their environmental impact" Prentice-Hall of India, 2001.
- 10. G.D. Rai, "Non-conventional sources of energy" Khanna Publishers, 2000.
- 11. G.D. Rai, "Solar energy utilization" Khanna Publishers, 2000.
- 12. S.L.Sah, "Renewable and novel energy sources", M. I. Publications, 1995.
- **13.** S.Rao and B.B. Parulekar, "Energy Technology", Khanna Publishers, 1999.

| MTTH-111  |                       | REF                                                                                                              | RIGERATI  | ON AND CI  | RYOGENIC    | S          |            |
|-----------|-----------------------|------------------------------------------------------------------------------------------------------------------|-----------|------------|-------------|------------|------------|
| Lecture   | Tutorial              | Practical                                                                                                        | Credits   | Major      | Minor       | Total      | Time       |
|           |                       |                                                                                                                  |           | Test       | Test        |            | (Hrs.)     |
| 3         | -                     | -                                                                                                                | 3         | 60         | 40          | 100        | 3          |
| Objective | To acqua<br>cryogenic |                                                                                                                  | udents wi |            | nentals of  | refrigera  | tion and   |
| CO 1      | Students application  | will learn th                                                                                                    |           |            | ation and   | cryogenic  | s and its  |
| CO 2      |                       | will be able to a point will be able to a point of the second second second second second second second second s | •         | •          | tion systen | ns for dom | nestic and |
| CO 3      | Studentes             | vill learn abo                                                                                                   |           | ND and rol | atad amuira | nmant ica  |            |

Unit-I

**Vapour compression system:** Vapour compression refrigeration, Ewing's construction, Standard rating cycle and effect on operating conditions, actual cycle, standard rating cycle for domestic refrigerator, second law efficiency,

**Multi-pressure systems:** Working and analysis of Multi-stage compression with inter-cooling, Multi-evaporator systems, Cascade systems.

#### Unit-II

**Refrigerant Compressors:** Performance characteristics and capacity control of reciprocating and centrifugal compressors, screw compressor and scroll compressor,

**Components of Vapor compression system:** Design, selection of evaporators, condensers, control systems, motor selection.

#### Unit-III

**Refrigerants**: Introduction, designation of refrigerants, alternative refrigerants, CFC/HCFC phase-out regulations, atmospheric gases as substitute for CFC refrigerants, Binary and Azeotropic mixtures.

**Refrigeration applications:** food preservation, cooling and heating of foods, freezing of foods, freeze drying and heat drying of foods, transport refrigeration

#### Unit-IV

**Vapour absorption system:** Introduction to Vapor absorption refrigeration, common refrigerant-absorbent systems, single effect and double effect systems, new mixtures for absorption system.

Gas liquefaction systems: Linde-Hampson, Linde dual pressure, Claude cycle.

# Reference/Text Books:

- 1. R. J. Dossat, "Principles of Refrigeration", Pearson Education Asia, 2001.
- 2. C. P. Arora, "Refrigeration and Air-conditioning", Tata McGraw-Hill, 2000.
- 3. Stoecker & Jones, "Refrigeration and Air-conditioning", McGraw Hill Book Company, New York, 1982.
- 4. A. R. Trott, "Refrigeration and Air-conditioning", Butterworths, 2000.
- 5. J. L. Threlkeld, "Thermal Environmental Engineering", Prentice Hall, 1970.
- 6. R. Barron, "Cryogenic systems", McGraw-Hill Company, New Yourk, 1985.
- 7. G. G. Hasseldon. "Cryogenic Fundamentals", Academic Press.
- 8. Bailey, "Advanced Cryogenics", Plenum Press, London, 1971.
- 9. W. F. Stoecker, "Industrial Refrigeration Handbook", McGraw-Hill, 1998.
- 10. John A. Corinchock, "Technician's Guide to Refrigeration systems", McGrawHill.
- 11. P. C. Koelet, "Industrial Refrigeration: Principles, Design and Applications", Macmillan, 1992.
- 12. ASHRAE HANDBOOKS (i) Fundamentals (ii) Refrigeration.
- 13. Graham Walker, "Miniature Refrigerators for Cryogenic Sensors and Cold Electronics", Clarendon Press, 1989.

10(312)

| MTTH-113  |                        |                            | AIR CON     | DITIONING SYS  | STEM DESIGN      |           |                  |  |  |  |
|-----------|------------------------|----------------------------|-------------|----------------|------------------|-----------|------------------|--|--|--|
| Lecture   | Tutorial               | Practical                  | Credits     | Major Test     | Minor Test       | Total     | Time (Hrs.)      |  |  |  |
| 3         | -                      | -                          | 3           | 60             | 40               | 100       | 3                |  |  |  |
| Objective | To acqua<br>conditioni |                            | dents with  | n fundamenta   | ls of heating    | , ventila | ation and air-   |  |  |  |
|           | Course Outcomes        |                            |             |                |                  |           |                  |  |  |  |
| CO 1      |                        | hould be al<br>ng system.  | ole to und  | erstand const  | truction and c   | lesign fe | eatures of Air-  |  |  |  |
| CO 2      |                        | hould be al<br>vironment a |             |                | us types and     | its adop  | otability in the |  |  |  |
| CO 3      | Student s              | hould be able              | e to unders | tand various I | nealth issues    |           |                  |  |  |  |
| CO 4      | Student s              | hould be able              | e to design | seasonal ene   | rgy efficient sy | /stem     |                  |  |  |  |

#### Unit-I

**Air conditioning systems**: the complete system, System selection and arrangement, HVAC components and distribution system, All-air, Air-water and All-water systems, decentralized cooling and heating.

**Various air-conditioning processes:** Moist air and standard atmosphere, Adiabatic saturation, classic moist air processes, Space air conditioning: design conditions, off-design conditions.

#### Unit-II

**Comfort and health-Indoor air quality:** Enthalpy deviation curve, psychrometry, SHF, dehumidified air quantity, human comfort, indoor air quality.

Heat transmission in building structures: Basic heat transfer modes, Tabulated overall heat-transfer coefficient.

#### Unit-III

**Design conditions and load calculations**: Space heating load: outdoor and indoor design conditions, transmission heat losses, infiltration, heat losses from air duct. Solar radiation

**The cooling load:** Design conditions, Internal heat gain, Transient conduction heat transfer, Fenestration: Transmitted solar radiations.

#### Unit-IV

**Fan and Building air distribution**: fan performance and selection, Fans and variable-air-volume systems, Air flow in ducts and fittings, pressure drop, duct design, & blowers, Performance & selection, noise control.

- 1. ASHRAE Handbook.
- 2. "Handbook of air-conditioning system design", Carrier Incorporation, McGraw Hill Book Co., U.S.A, 1965.
- 3. Norman C. Harris, "Modern Air Conditioning", McGraw-Hill, 1974.
- 4. Jones W.P., "Air Conditioning Engineering", Edward Arnold Publishers Ltd., London, 1984.
- 5. Hainer R.W., "Control Systems for Heating, Ventilation and Air-Conditioning", Van Nostrand
- 6. Reinhold Co., New York, 1984. 7. Arora C.P., "Refrigeration & Air Conditioning", Tata Mc Graw Hill, 1985.
- 7. Manohar Prasad, "Refrigeration & Air Conditioning", New Age Publishers.
- 8. Stoecker, "Refrigeration & Air Conditioning", Mc Graw Hill, 1992.
- 9. Stoecker, "Design of Thermal Systems", Mc Graw Hill, 1992.
- 10. F. C. McQuiston, J. D Parker, J. D. Spitler "Heating, Ventilation and Air-conditioning", Wiley publications.

| MTTH            | -115                                                                                       |                         |               |             | GAS TURE       | BINES          |             |                    |  |  |  |  |
|-----------------|--------------------------------------------------------------------------------------------|-------------------------|---------------|-------------|----------------|----------------|-------------|--------------------|--|--|--|--|
| Lect            | ure                                                                                        | Tutorial                | Practical     | Credits     | Major Test     | Minor Test     | Total       | Time (Hrs.)        |  |  |  |  |
| 3 3 60 40 100 3 |                                                                                            |                         |               |             |                |                | 3           |                    |  |  |  |  |
| Objec           | Objective Design and analyze the performance of gas turbines and propulsion devices.       |                         |               |             |                |                |             |                    |  |  |  |  |
|                 | Course Outcomes                                                                            |                         |               |             |                |                |             |                    |  |  |  |  |
| CO 1            | Understand the ideal and real thermodynamic cycles of air-breathing engines and Industrial |                         |               |             |                |                |             |                    |  |  |  |  |
|                 | gas                                                                                        | turbines                |               |             |                |                |             |                    |  |  |  |  |
| CO 2            | Desi                                                                                       | gn the blac             | ling, study t | he velocity | triangles and  | estimate the   | performai   | nce of centrifugal |  |  |  |  |
|                 | and                                                                                        | axial flow c            | ompressors    | -           | _              |                | -           | _                  |  |  |  |  |
| CO 3            | Und                                                                                        | erstand the             | combustion    | process a   | nd design the  | combustion cl  | namber of   | a gas Turbine.     |  |  |  |  |
| CO 4            | Desi                                                                                       | gn the blac             | ding, study t | he velocit  | y triangles an | d estimate the | e performa  | ance of axial and  |  |  |  |  |
|                 | radia                                                                                      | radial in-flow turbines |               |             |                |                |             |                    |  |  |  |  |
| CO 5            | Ana                                                                                        | vze the off-            | desian perfo  | rmance an   | d matching of  | the compone    | nts of a ga | as turbine         |  |  |  |  |

UNIT-I

**Introduction:** Classification of Turbomachines, Applications of Gas Turbines, Assumptions for Air-Standard Cycles, Simple Brayton Cycle, Heat Exchange Cycle, Inter-cooling and Reheating Cycle, Comparison of Various Cycles.

**Ideal Shaft Power Cycles and their Analysis:** Assumptions for Air-Standard Cycles, Simple Brayton Cycle, Heat Exchange Cycle, Inter-cooling and Reheating Cycle, Comparison of Various Cycles.

#### UNIT-II

**Real Cycles and their Analysis:** Methods of Accounting for Component Losses, Isentropic and Polytropic Efficiencies, Transmission and Combustion Efficiencies, Comparative Performance of Practical Cycles, Combined Cycles and Cogeneration Schemes.

**Jet Propulsion Cycles and their Analysis:** Criteria of Performance, Simple Turbojet Engine, Simple Turbofan Engine, Simple Turboprop Engine, Turbo-shaft Engine, Thrust Augmentation Techniques.

**Combustion System:** Operational Requirements, Classification of Combustion Chambers, Factors Effecting Combustion Chamber Design, The Combustion Process, Flame Stabilization, Combustion Chamber Performance, Some Practical Problems Gas Turbine Emissions

#### UNIT-III

**Fundamentals of Rotating Machines:** General Fluid Dynamic Analysis, Euler's Energy Equation, Components of Energy Transfer, Impulse and Reaction Machines.

**Centrifugal Compressors:** Construction and Principle of Operation, Elementary Theory and Velocity Triangles, Factors Effecting Stage Pressure Ratio, The Diffuser, The Compressibility Effects, Pre-rotation and Slip Factor, Surging and Choking, Performance Characteristics.

#### UNIT-IV

**Flow Through Cascades:** Cascade of Blades, Axial Compressor Cascades, Lift and Drag Forces, Cascade Efficiency, Cascade Tunnel.

**Axial Flow Compressors:** Construction and Principle of Operation, Elementary Theory and Velocity Triangles, Factors Effecting Stage Pressure Ratio, Degree of Reaction, Work done factor, Three Dimensional Flow, Design Process, Blade Design, Stage Performance, Compressibility Effects, Off-Design Performance.

**Axial and Radial Flow Turbines:** Construction and Operation, Vortex Theory, Estimation of Stage Performance, Overall Turbine Performance, Turbine Blade Cooling, The Radial Flow Turbine.

**Off-Design Performance:** Off-Design Performance of Single Shaft Gas Turbine, Off-Design Performance of Free Turbine Engine, Off-Design Performance of the Jet Engine, Methods of Displacing the Equilibrium Running Line

## **Reference/Text Books:**

1. Sarvana Muttoo, H.I.H., Rogers, G. F. C. and Cohen, H., "Gas Turbine Theory", 6th Edition, Pearson 2008.

- 2. Dixon, S.L., "Fluid Mechanics and Thermodynamics of Turbomachinery", 7th Edition, Elsevier, 2014.
- 3. Flack, R.D., "Fundamentals of Jet Propulsion with Applications", Cambridge University Press, 2011.
- 4. Ganesan, V., "Gas Turbines", 3rd Edition, Tata McGraw Hill, 2010.

# 5. Yahya, S. M., "Turbines, Compressors and Fans", 4th Edition, McGraw Hill.

| MTRM-111              |              |                                                                                            | Resear              | rch Methodolo    | gy and IPR                   |            |      |  |  |  |  |
|-----------------------|--------------|--------------------------------------------------------------------------------------------|---------------------|------------------|------------------------------|------------|------|--|--|--|--|
| Lecture               | Tutorial     | Practical                                                                                  | Credit              | Major Test       | Minor Test                   | Total      | Time |  |  |  |  |
| 2                     | 0            | 0                                                                                          | 0 2 60 40 100 3 Hrs |                  |                              |            |      |  |  |  |  |
| Program               | To enable    | To enable students to Research Methodology and IPR for further research work and           |                     |                  |                              |            |      |  |  |  |  |
| <b>Objective (PO)</b> | investmen    | nvestment in R & D, which leads to creation of new and better products, and in turn brings |                     |                  |                              |            |      |  |  |  |  |
|                       | about, eco   | nomic grow                                                                                 | h and soc           | ial benefits.    |                              |            |      |  |  |  |  |
|                       |              | С                                                                                          | ourse Ou            | tcomes (CO)      |                              |            |      |  |  |  |  |
| C01                   | Understan    | d research p                                                                               | roblem for          | rmulation.       |                              |            |      |  |  |  |  |
| CO2                   | Analyze re   | esearch relat                                                                              | ed informa          | ation            |                              |            |      |  |  |  |  |
|                       |              |                                                                                            |                     |                  | omputer, Information Techn   | ology, but | t    |  |  |  |  |
|                       | tomorrow     | world will be                                                                              | ruled by ic         | deas, concept, a | and creativity.              |            |      |  |  |  |  |
|                       |              |                                                                                            |                     |                  | mportant place in growth of  |            |      |  |  |  |  |
|                       |              |                                                                                            |                     |                  | he need of information about |            |      |  |  |  |  |
|                       | Intellectua  | l Property Ri                                                                              | ght to be p         | promoted amon    | g students in general & eng  | ineering   |      |  |  |  |  |
|                       | in particula | ar.                                                                                        |                     |                  |                              |            |      |  |  |  |  |

Unit 1

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

#### Unit 2

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

#### Unit 3

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

#### Unit 4

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

#### References:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'.
- 2. C.R. Kothari, "Research Methodology: Methods & Techniques, 2<sup>nd</sup> edition or above, New Age Publishers.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel , "Product Design", McGraw Hill, 1974.
- 7. Asimov , "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

10(315)

| MTTH-102  |           | ADVA            | NCED INTER   | RNAL COME    | <b>BUSTION EN</b> | IGINES      |             |  |  |  |
|-----------|-----------|-----------------|--------------|--------------|-------------------|-------------|-------------|--|--|--|
| Lecture   | Tutorial  | Practical       | Credits      | Major        | Minor             | Total       | Time        |  |  |  |
|           |           |                 |              | Test         | Test              |             | (Hrs.)      |  |  |  |
| 3         | -         | -               | 3            | 60           | 40                | 100         | 3           |  |  |  |
|           |           |                 |              |              |                   |             |             |  |  |  |
| Objective | Enable 1  | the student     | s to unde    | rstand the   | various t         | heories, c  | ycles and   |  |  |  |
|           |           | es of Interna   |              |              |                   |             | he various  |  |  |  |
|           | devices a | and types of    | emission as  | ssociated w  | ith engines.      |             |             |  |  |  |
|           |           | 0               | Course Outc  | omes         |                   |             |             |  |  |  |
| CO 1      |           | will be able t  |              |              |                   |             |             |  |  |  |
|           | -         | of internal     |              |              |                   |             | •           |  |  |  |
|           |           | parison of      |              |              |                   |             |             |  |  |  |
|           |           | y of fuel-air   |              |              |                   | bustion cha | arts of the |  |  |  |
|           |           | nixture in int  |              |              |                   |             |             |  |  |  |
| CO 2      |           | will unders     |              |              |                   |             |             |  |  |  |
|           | in the cy | linder and i    | ts effects o | n combusti   | on process        | in SI and   | CI engines  |  |  |  |
|           |           | rol the pollu   |              |              |                   |             |             |  |  |  |
| CO 3      |           | nd the com      | bustion in S | I and CI eng | gine with th      | e thermody  | namics of   |  |  |  |
|           |           | the combustion. |              |              |                   |             |             |  |  |  |
| CO 4      |           | nd modern       |              | ke Lean bur  | n, HCCI, GE       | DI, MPFI an | d evaluate  |  |  |  |
|           | method f  | or pollution    | control.     |              |                   |             |             |  |  |  |

#### UNIT-I

**Cycle Analysis:** Fuel-air cycles, variable specific heats, dissociation, effect of operating variables, comparison with air standard cycle. Actual cycles, time and heat loss factors, exhaust blow down, comparison of real engine cycle and fuel air cycle, availability analysis of engine processes.

**Thermochemistry of fuel-air mixtures**: composition of air and fuels, first law and second law applied to combustion, unburned mixture composition, combustion charts.

#### UNIT-II

**Heat Transfer:** Heat transfer and engine energy balance, parameters affecting heat transfer, convective and radiative heat transfer, measurement of instantaneous heat transfer rate, thermal loading.

**Gas Exchange Processes:** flow through valves and ports, exhaust gas flow rate, scavenging in two stroke engines, scavenging models, actual scavenging processes, supercharging and turbocharging, types and methods of supercharging, basic relationships, compressors, turbines, wave-compression devices, effects and limitations, charge cooling.

#### UNIT-III

**Combustion:** combustion in SI engines, thermodynamic analysis of SI engine combustion, burned and unburned mixture states, flame structure and speed, cycle variations, spark ignition, abnormal combustion, combustion in CI engines, types, CI engine combustion model, analysis of cylinder pressure data, fuel spray behavior, ignition delay, mixing controlled combustion.

#### UNIT-IV

**Fuel Injection:** fuel injection systems, mechanism of spray formation, electronic injection systems, MPFI system, feedback systems, flow in intake manifolds, design requirements.

**Pollution Formation and Control:** trends in vehicle emission standards, unburned hydrocarbon emissions, nitrogen oxides, CO, particulate emissions, exhaust gas treatment, non-exhaust emissions.

- 1. J.B. Heywood, "Internal Combustion Engine Fundamentals" McGraw Hill.
- 2. C.P. Taylor, "I.C. Engine Vol. I & II", MIT press.
- 3. V. Ganesan, "Internal Combustion Engines", Tata McGraw Hill.
- 4. Rowland S. Benson, J. H. Horlock & D E Winterbone, "Thermodynamics and Gas Dynamics of I.C. Engine, Vol. I & II", Oxford University press.
- 5. Campbell, A. S., "Thermodynamic Analysis of Combustion Engines" Krieger Publishing Company.

| MT1  | <b>FH-104</b> |              |               | STE         | AM ENGIN     | EERING        |             |                    |
|------|---------------|--------------|---------------|-------------|--------------|---------------|-------------|--------------------|
| Le   | cture         | Tutorial     | Practical     | Credits     | Major        | Minor         | Total       | Time (Hrs.)        |
|      |               |              |               |             | Test         | Test          |             |                    |
|      | 3             | -            | -             | 3           | 60           | 40            | 100         | 3                  |
|      |               |              |               |             |              |               |             |                    |
| Obj  | ective        |              |               |             |              |               |             | engineering and    |
|      |               | thermal sy   | stems for er  | nergy conse | ervation and | d waste hea   | at recovery | 1.                 |
|      |               |              |               | Course Ou   | itcomes      |               |             |                    |
| CO 1 | Students      | will have    | the ability t | o explain v | vorking of   | different b   | oilers and  | I significance of  |
|      | mounting      | gs and acc   | essories, us  | age of tec  | hniques, s   | kills, and    | modern e    | ngineering tools   |
|      | necessar      | y for boiler | performance   | e assessme  | nt.          |               |             |                    |
| CO 2 | Students      | will have a  | theoretical a | nd practica | l backgrou   | ind in thern  | nal system  | s and will have a  |
|      |               |              |               |             |              |               |             | ave the ability to |
|      |               |              | ems for ener  |             |              |               |             | , <b>, ,</b>       |
| CO 3 |               |              |               |             |              | system, its   | compone     | nts for a process  |
|      |               |              | nomical and   |             |              | o jotoini, no |             |                    |
| CO 4 |               | <b>v</b>     |               |             |              | em for sou    | rces of was | ste heat design a  |
|      |               |              |               |             |              |               |             | gn and develop     |
|      |               |              | entation for  |             |              |               |             | gii and develop    |
|      | 50111013      |              |               | UN          | <b>v</b>     |               | JJ.         |                    |

UNIT-I

**Fundamentals of steam generation:** Introduction, Quality of steam, Use of steam table, Mollier Chart. **Boilers**: Types, Mountings and Accessories, Combustion in boilers, Determination of adiabatic flame temperature, quantity of flue gases, Feed Water and its quality, Blow down; IBR, Boiler standards. **Piping & Insulation:** Water Line, Steam line design and insulation; Insulation-types and application, Economic thickness of insulation. Heat cavings and application articles and application of the standards.

thickness of insulation, Heat savings and application criteria, Refractory-types, selection and application of refractory, Heat loss.

# UNIT-II

**Steam Systems**: Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Steam Engineering Practices; Steam Based Equipments / Systems.

**Boiler Performance Assessment:** Performance Test codes and procedure, Boiler Efficiency, Analysis of losses; performance evaluation of accessories; factors affecting boiler performance.

# UNIT-III

**Boiler Performance Assessment Performance**: Test codes and procedure, Boiler Efficiency, Analysis of losses; performance evaluation of accessories; factors affecting boiler performance.

**Energy Conservation and Waste Minimization:** Energy conservation options in Boiler; waste minimization, methodology; Economical viability of waste minimization.

# UNIT-IV

**Instrumentation & Control:** Process instrumentation; control and monitoring. Flow, pressure and temperature measuring and controlling instruments, its selection.

# Reference/Text Books:

- 1. T. D. Estop, A. McConkey, "Applied Thermodynamics", Parson Publication.
- 2. Domkundwar; "A Course in Power Plant Engineering", Dhanapat Rai and Sons.
- 3. Yunus A. Cengel and Boles, "Engineering Thermodynamics", Tata McGraw-Hill Publishing Co. Ltd.
- 4. Book II Energy Efficiency in Thermal Utilities; Bureau of Energy Efficiency.
- 5. Book IV Energy Performance Assessment for Equipment & Utility Systems; Bureau of Energy Efficiency.
- 6. Edited by J. B. Kitto & S C Stultz, "Steam: Its Generation and Use", The Babcock and Wilcox Company.
- 7. P. Chatopadhyay, "Boiler Operation Engineering: Questions and Answers", Tata McGraw Hill Education Pvt Ltd, N Delhi.

10(317)

| MTTH-118                                                                                 |                                                                                                                                     | ADVANC        |             | VAL COM       | BUSTION       | ENGINES LA         | В         |                |  |  |  |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|---------------|---------------|--------------------|-----------|----------------|--|--|--|
| Lecture                                                                                  | Tutorial                                                                                                                            | Practical     | Credits     | Major<br>Test | Minor<br>Test | Practical<br>Marks | Total     | Time<br>(Hrs.) |  |  |  |
| -                                                                                        | -                                                                                                                                   | 4             | 2           | -             | 40            | 60                 | 100       | 3              |  |  |  |
| Objective To make the students aware of netrol and discel engines along with multi-fuels |                                                                                                                                     |               |             |               |               |                    |           |                |  |  |  |
| Objective                                                                                | Objective To make the students aware of petrol and diesel engines along-with multi fuels based engines using different experiments. |               |             |               |               |                    |           |                |  |  |  |
|                                                                                          |                                                                                                                                     |               | Course O    | utcomes       |               |                    |           |                |  |  |  |
| CO 1                                                                                     | Ability to a                                                                                                                        | nalyze the pe | rformance   | curves of     | SI and CI     | engines.           |           |                |  |  |  |
| CO 2                                                                                     | Ability to d                                                                                                                        | etermine the  | exhaust en  | nissions f    | rom engir     | nes using gas      | s analyze | r.             |  |  |  |
| CO 3                                                                                     | To underst                                                                                                                          | and the Wan   | kel engine, | bomb cal      | orimeter.     |                    |           |                |  |  |  |
| CO 4                                                                                     | D 4 To perform test on reciprocating air compressor unit.                                                                           |               |             |               |               |                    |           |                |  |  |  |
| CO 5                                                                                     | Ability to a                                                                                                                        | nalyze smoke  | e emissions | s through     | smoke m       | eter.              |           |                |  |  |  |

# List of Experiments

- 1. To analyze the performance of single cylinder VCR Engine [Computerised],
- 2. To evaluate the Performance of Reciprocating Air-Compressor unit.
- 3. To analyze the Valve / Port Timing Diagrams of IC engines.
- 4. To study the sectional light weight models of IC Engine, injection system and carburetor, sectional working model for 4 stroke petrol engine.
- 5. Study of sectional light weight models of IC Engine, injection system and carburetor, sectional working model for 2 stroke petrol engine.
- 6. To study sectional working model for four stroke cycle diesel engine.
- 7. To study Wankel engine model.
- 8. To analyze the smoke emissions of microprocessor based Smoke meter.
- 9. To analyze the various exhaust gases of IC Engines through five gas analyzer.
- 10. To study hydraulic dynamometer.
- 11. To analyze the performance of four Cylinder 4 stroke Multi-fuel diesel Engine [Computerised].

Note: Total eight experiments are to be performed selecting at least six from the above list.

| MTTH-120  |                     | COMPUTATIONAL FLUID DYNAMICS LAB                                     |             |             |            |              |           |          |  |  |  |  |
|-----------|---------------------|----------------------------------------------------------------------|-------------|-------------|------------|--------------|-----------|----------|--|--|--|--|
| Lecture   | Tutorial            | Practical                                                            | Credits     | Major       | Minor      | Practical    | Total     | Time     |  |  |  |  |
|           |                     |                                                                      |             | Test        | Test       | Marks        |           | (Hrs.)   |  |  |  |  |
| -         | -                   | 4                                                                    | 2           | -           | 40         | 60           | 100       | 3        |  |  |  |  |
| Objective | To acquair          | nt the studen                                                        | ts with fun | damental    | s of prog  | ramming of ' | 1 D and 2 | 2 D heat |  |  |  |  |
|           | transfer an         | nd fluid flow p                                                      | roblems us  | sing finite | difference | ing.         |           |          |  |  |  |  |
|           |                     |                                                                      | Course O    | utcomes     |            |              |           |          |  |  |  |  |
| CO 1      |                     | n understan                                                          |             |             | ence betv  | veen dimen   | sional a  | nd non-  |  |  |  |  |
|           |                     | al programmi                                                         |             |             |            |              |           |          |  |  |  |  |
| CO 2      | Understan problems. | ding of fund                                                         | damentals   | of progr    | amming     | of heat tra  | nsfer in  | pin fin  |  |  |  |  |
| CO 3      | Understan           | Understanding of fundamentals of programming of fluid flow problems. |             |             |            |              |           |          |  |  |  |  |
| CO 4      |                     | ding of fund<br>n problems.                                          | amentals    | of progra   | imming o   | f steady an  | d transi  | ent heat |  |  |  |  |

# List of Experiments

- 1. To make and validate a computer programme for the one dimensional pin fin steady state heat conduction when fin is insulated at tip.
- 2. To make and validate a computer programme for the one dimensional pin fin steady state heat conduction when fin is losing heat at tip.
- 3. To make and validate a computer programme for the one dimensional transient heat conduction.
- 4. To make and validate a computer programme for the plate in two dimensions in steady state conduction.
- 5. To make and validate a computer programme for the plate in two dimensions in transient state.
- 6. To make and validate a computer programme for the comparison of explicit, implicit, semi- implicit method of computation of heat transfer equation.
- 7. To make and validate a computer programme for the fully developed laminar flow in circular pipe.
- 8. To make and validate a computer programme for the Coutte flow.
- 9. To make a project by using MAC /SIMPLER method

**Note:** Total eight experiments are to be performed selecting at least six from the above list. The programs may be validated using any software.

| MTTH-106  |                     | DESIGN OF SOLAR AND WIND SYSTEMS |           |               |               |            |                |  |  |  |  |  |
|-----------|---------------------|----------------------------------|-----------|---------------|---------------|------------|----------------|--|--|--|--|--|
| Lecture   | Tutorial            | Practical                        | Credits   | Major<br>Test | Minor<br>Test | Total      | Time<br>(Hrs.) |  |  |  |  |  |
| 3         | -                   | 2 (0 40 100                      |           |               |               |            |                |  |  |  |  |  |
| Objective | devices.            |                                  |           |               |               |            |                |  |  |  |  |  |
| CO 1      | Students<br>NCES in | will learn                       | about the |               | cal status o  | of impleme | entation of    |  |  |  |  |  |
| CO 2      |                     | should be ca<br>mmercial de      |           |               |               | economical | obstacles      |  |  |  |  |  |
| CO 3      |                     |                                  |           |               |               |            |                |  |  |  |  |  |
| CO 4      |                     | should sug                       |           |               |               | ions to co | nventional     |  |  |  |  |  |

#### Unit-I

**Fundamental of energy science and technology:** energy, economy and social development, classification of energy sources, energy scenario in India.

**Conventional sources of energy:** Consumption trend of primary energy sources, energy-environment economy, Nuclear, Alternative energy sources.

#### Unit-II

**Solar Radiation**: Estimation, prediction & measurement, solar energy utilization, extraterrestrial and terrestrial radiations, spectral power distribution of solar radiation, solar time, and solar radiation geometry, Estimation of solar radiation on horizontal and tilted surface.

**Solar Thermal Systems:** Solar water heater, Solar cooker, Solar furnace, Solar dryer, Solar distillation, Solar greenhouse.

#### Unit-III

**Solar radiation collector:** Performance of Solar flat plate collectors, concentrating collectors.

Thermal storage: Sensible, latent and chemical heat storage. Solar air heaters, solar air-conditioning systems. Unit-IV

Wind energy: Direct Energy conversion- PV, MHD.

**Non-conventional Energy Technologies:** Fuel cells, thermionic, thermoelectric, Biomass, biogas, hydrogen, Geothermal.

- 1. D.Y. Goswami, F. Kreith and J.F. Kreider, "Principle of Solar Engineering", Taylor and Francis, 2000.
- 2. Sukhatme S.P., "Solar Energy", Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1994.
- 3. J.F. Kreider, F. Kreith, "Solar Energy Handbook", McGraw Hill, 1981
- 4. J.A. Duffie and W.A. Beckman, "Solar Engineering of Thermal Processes", John Wiley, 1991.

| MTTH | H w.e.f. 201                 | 8-2019      |                              |           |            |                                    |            |               |  |  |
|------|------------------------------|-------------|------------------------------|-----------|------------|------------------------------------|------------|---------------|--|--|
| MT   | MTTH-108 NUCLEAR ENGINEERING |             |                              |           |            |                                    |            |               |  |  |
| L    | ecture                       | Tutorial    | Practical                    | Credits   | Major Test | Minor Test                         | Total      | Time (Hrs.)   |  |  |
|      | 3                            | -           | -                            | 3         | 60         | 40                                 | 100        | 3             |  |  |
| Ob   | jective                      |             |                              |           |            | es, energy rele<br>emoval, safety  |            |               |  |  |
|      |                              |             |                              | Course Ou | itcomes    |                                    |            |               |  |  |
| CO 1 |                              | uch as nucl |                              |           |            | sses taking pl<br>tering, diffusio |            |               |  |  |
| CO 2 |                              |             |                              |           |            | y release, rencentration in a      |            |               |  |  |
| CO 3 |                              |             |                              |           |            |                                    |            |               |  |  |
| CO 4 |                              |             | amiliar with<br>on. Applicat |           |            | al from reacto                     | r core, re | eactor safety |  |  |

#### UNIT-I

**Concepts of Nuclear Physics**: The atom, structure, the nucleus, nuclear structure, atomic transmutation of elements, detection of radio-activity, particle accelerator, decay, natural of elements, nucleus interactions, decay rates, half-life, transuranic elements, Radioactivity, nuclear reactions, cross sections, nuclear fission, power from fission, conversion and breeding.

**Neutron transport and diffusion**: Neutron transport equation, diffusion theory approximation, Fick's law, solutions to diffusion equation for point source, planar source, etc., energy loss in elastic collisions, neutron slowing down.

#### UNIT-II

**Energy Release**: Mass energy equivalence, mass defect, binding energy, energy release in fission & fusion, thermonuclear reaction, fusion bomb.

**Multi-group, multi-region diffusion equation, concept of criticality:** Solution of multigroup diffusion equations in one region and multi-region reactors, concept of criticality of thermal reactors, Reactor Materials Fissile & fertile materials, cladding & shielding materials, moderators, coolants.

#### UNIT-III

**Reactor kinetics and control:** Basic principles, fuel assembly, Neutron balance, Reactor kinetics, Derivation of point kinetics equations, in-hour equation, Solutions for simple cases of reactivity additions, Excess reactivity, Reactivity control, Reactor stability, Fission product poison or Xenon poisoning, Reactivity coefficients, Burnable absorbers.

**Nuclear Reactors:** Types of nuclear reactors, pressurized water reactors, boiling water reactors, CANDU type reactors, gas cooled & liquid metal cooled reactors, fast breeder reactors.

#### UNIT-IV

**Heat removal from reactor core**: Solution of heat transfer equation in reactor core, temperature distribution, critical heat flux, heat balance, production & transfer of heat to the coolant, structural considerations.

**Reactor safety, radiation protection:** Reactor safety philosophy, defense in depth, units of radioactivity exposure, radiation protection standards, Waste Disposal Hazards, plant site selection, safety measures incorporated in; plant design, accident control, disposal of nuclear waste, Health Physics & Radio-isotopes Radiation: units, hazards, prevention, preparation of radio-isotopes & their use in medicine, agriculture & industry.

- 1. M.M. El-Wakel, 'Nuclear Power Engineering". McGraw-Hill Inc., US
- 2. John R Lamarsh, "Introduction to nuclear engineering", Pearson Publication
- 3. J.J. Duderstadt, L. J. Hamilton, "Nuclear reactor analysis" Wiley publication

| MTTH-110  |                                                                                                                    | CONVECTIVE HEAT TRANSFER       |              |               |               |             |                |  |  |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|---------------|---------------|-------------|----------------|--|--|--|--|--|--|
| Lecture   | Tutorial                                                                                                           | Practical                      | Credits      | Major<br>Test | Minor<br>Test | Total       | Time<br>(Hrs.) |  |  |  |  |  |  |
| 3         | -                                                                                                                  | -                              | 3            | 60            | 40            | 100         | 3              |  |  |  |  |  |  |
| Objective | Objective To impart an in depth knowledge about the fundamentals and applications of the convective heat transfer. |                                |              |               |               |             |                |  |  |  |  |  |  |
| CO 1      |                                                                                                                    | will be able<br>nd internal fl | to different |               | en laminai    | forced c    | onvection      |  |  |  |  |  |  |
| CO 2      |                                                                                                                    | will develop<br>al natural co  |              | anding of I   | ooundary la   | iyer flow i | n external     |  |  |  |  |  |  |
| CO 3      | CO 3 Students will be able to analyze the turbulent boundary layer and duct flows.                                 |                                |              |               |               |             |                |  |  |  |  |  |  |
| CO 4      | Students in porous                                                                                                 | will understa<br>media.        | nd the mec   | hanism of     | phase cha     | nge and c   | onvection      |  |  |  |  |  |  |

UNIT-I

**Fundamental Principles:** Continuity, momentum and energy equations, Second law of thermodynamics, Rules of Scale analysis, Concept of Heat line visualization.

**Laminar Forced Convection-External Flows:** Boundary layer concept, velocity and thermal boundary layers, governing equations, similarity solutions, various wall heating conditions, Flow past a wedge and stagnation flow, blowing and suction, entropy generation minimization, heat lines in laminar boundary layer flow.

**Laminar Forced Convection-Internal Flows:** Fully developed laminar flow, heat transfer to fully developed duct flow, constant heat flux and constant wall temperature, heat transfer to developing flow, heat lines in fully developed duct flow.

#### UNIT-II

**External Natural Convection:** Boundary layer equations, Scale analysis, Low and high Prandtl number fluids, integral solution, similarity solution, uniform heat wall flux, conjugate boundary layers, vertical channel flow, combined natural and forced convection, vertical walls, horizontal walls, inclined walls, horizontal and vertical cylinder, sphere.

**Internal Natural Convection:** transient heating from side, boundary layer regime, isothermal and constant heat flux side walls, partially divided and triangular enclosures, and enclosures heated from below, inclined enclosures, annular space between horizontal cylinders and concentric spheres.

#### UNIT-III.

**Transition to Turbulence:** empirical transition data, scaling laws of transition, buckling of inviscid streams, instability of inviscid flow.

**Turbulent Boundary Layer Flow:** Boundary layer equations, mixing length model, velocity distribution, heat transfer in boundary layer flow, flow over single cylinder, cross flow over array of cylinders, Natural convection along vertical walls.

**Turbulent duct flow:** velocity distribution, friction factor and pressure drop, heat transfer coefficient, isothermal wall, uniform wall heating, heat lines in turbulent flow near a wall, optimal channel spacing.

#### **UNIT-IV**

**Convection with Change of Phase:** Condensation, laminar and turbulent film on a vertical surface, film condensation, drop condensation, Boiling, pool boiling regimes, nucleate boiling, film boiling and flow boiling, contact melting and lubrication, melting by natural convection.

**Convection in Porous Media:** Mass conservation, Darcy and Forchheimer flow models, enclosed porous media heated from side, penetrative convection, enclosed porous media heated from below.

# Reference/Text Books:

- 1. A. Bejan, "Convection Heat Transfer", Wiley Publications.
- 2. Louis C. Burmeister, "Convective Heat Transfer", Wiley Publications.
- 3. W.M. Kays and M.E. Crawford, "Convective Heat and Mass Transfer", McGraw Hill.

10(322)

| MTTH w.e.f. 2018-2019 |                                                                                           |                                                                 |                              |               |                   |                 |           |               |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------|---------------|-------------------|-----------------|-----------|---------------|--|--|--|
| MT                    | TH-112                                                                                    |                                                                 | COMPUTATIONAL FLUID DYNAMICS |               |                   |                 |           |               |  |  |  |
| Le                    | ecture                                                                                    | Tutorial                                                        | Practical                    | Credits       | Major Test        | Minor Test      | Total     | Time (Hrs.)   |  |  |  |
|                       | 3                                                                                         | -                                                               | -                            | 3             | 60                | 40              | 100       | 3             |  |  |  |
| Ob                    | jective                                                                                   | To familia                                                      | irize the st                 | udents wit    | h the basic       | concepts of     | Comput    | ational Fluid |  |  |  |
|                       |                                                                                           | <b>Dynamics</b>                                                 | and problem                  | n solving ap  | proach using (    | CFD.            |           |               |  |  |  |
|                       |                                                                                           |                                                                 |                              | Course Ou     | tcomes            |                 |           |               |  |  |  |
| CO 1                  | After com                                                                                 | pletion of th                                                   | le course stu                | Idents will b | e able to mod     | el the basic eq | uations   | which govern  |  |  |  |
|                       | the fluid fl                                                                              | ow and hea                                                      | t transfer ph                | enomena ar    | id analyze thei   | ir mathematica  | I behavir | our.          |  |  |  |
| CO 2                  | The stude                                                                                 | nts will un                                                     | derstand the                 | e basic cor   | cepts of disc     | retization and  | error a   | nalysis. Also |  |  |  |
|                       | develop th                                                                                | ie understar                                                    | nding of som                 | ie simple CF  | D techniques.     |                 |           | _             |  |  |  |
| CO 3                  | 3 The students will be able to analyze the steady and unsteady heat conduction & combined |                                                                 |                              |               |                   |                 |           |               |  |  |  |
|                       | conductio                                                                                 | conduction diffusion problems using control volume formulation. |                              |               |                   |                 |           |               |  |  |  |
| CO 4                  | The stude                                                                                 | nts will be a                                                   | ble to apply                 | CFD to actu   | ial fluid flow pi | roblems.        |           |               |  |  |  |

UNIT-I

**Introduction:** Introduction to C.F.D., comparison of the three basic approaches in engineering problem solvinganalytical, experimental and computational; models of the flow, substantial derivative, governing equations – continuity equation, momentum equation, energy equation, Navier-Stokes equation; physical boundary conditions.

**Mathematical behavior of governing equations:** classification of quasi linear partial differential equations, general method of determining the classification of partial differential equations, general behavior of hyperbolic, parabolic, elliptic equations.

## UNIT-II

**Discretization:** Introduction, finite difference method, difference equations, explicit and implicit approaches, error and stability analysis, Practical aspects of computational modeling of flow domains, Grid Generation, Types of mesh and selection criteria, Mesh quality, Key parameters and their importance.

#### UNIT-III

**Heat Conduction:** control volume formulation of one-dimensional steady state diffusion, unsteady onedimensional diffusion, two and three dimensional diffusion problems, over and under relaxation.

**Convection & Diffusion:** Steady one-dimensional convection and diffusion, central differencing scheme, upwind differencing scheme, exact solution, exponential, hybrid, and power law schemes, discretization equations for two dimensions & three dimensions.

#### UNIT-IV

**Simple CFD Techniques:** Lax-Wendroff technique, MacCormack's technique, space marching, relaxation technique, pressure correction technique, SIMPLE algorithm.

**Fluid Flow:** CFD solution of subsonic-supersonic isentropic nozzle flow, solution of incompressible Couette flow problem by F.D.M., solution of Navier-Stokes equations for incompressible flows using MAC and SIMPLE methods.

- 1. Suhas V. Patankar, "Numerical Heat Transfer and Fluid Flow", CRC Press (Reprint 2017).
- 2. John D.Anderson, Jr, "Computational fluid dynamics", McGraw Hill Education, 1 July, 2017.
- 3. H. Versteeg & W. Malalasekra, "An Introduction to Computational Fluid Dynamics", Pearson; 2 edition (2008).
- 4. Atul Sharma, "An Introduction to CFD: Development, Application & Analysis", Ane/Athena Books, Wiley, November, 2016.
- 5. K. Muralidhar & T. Sundararajan, "Computational Fluid Flow & Heat Transfer", Alpha Science Intl Ltd.
- 6. Anil W. Date, "Introduction to Computational fluid dynamics" Cambridge University Press, August, 2005.
- 7. J.C. Tannehill, D. A. Anderson and R.H. Pletcher, "Computational Fluid Dynamics", CRC Press; 3rd edition (April 15, 2011).
- 8. J. Blazek, "Computational Fluid Dynamics: Principles and Applications", Elsevier Science & Technology, 2001.
- 9. T.J. Chung, "Computational Fluid Dynamics", Cambridge University Press (7 February 2002).

| MT   | TH-114     |             | DE              | EAT TRANSFE  | R EQUIPMEN      | ΓS             |            |                 |
|------|------------|-------------|-----------------|--------------|-----------------|----------------|------------|-----------------|
| Le   | ecture     | Tutorial    | Practical       | Credits      | Major Test      | Minor Test     | Total      | Time (Hrs.)     |
|      | 3          | -           | -               | 3            | 60              | 40             | 100        | 3               |
| Ob   | jective    | To familiar | ize the stude   | nts with dif | ferent types o  | f heat exchang | gers used  | l in industries |
|      |            | and their d | lesign parame   | eters.       |                 |                |            |                 |
|      |            |             |                 | Course Ou    | itcomes         |                |            |                 |
| CO 1 |            |             |                 |              |                 |                |            | gers that will  |
|      |            |             | e, double pipe  | e, plate-and | -frame, finned  | tube, and pla  | te-fin nea | t exchangers,   |
|      | Heat pipes |             |                 |              |                 |                |            |                 |
| CO 2 |            | •           | n and analy     | ses of sh    | ell-and-tube    | double pipe,   | compac     | t, plate heat   |
|      | exchange   | rs.         |                 |              |                 |                |            |                 |
| CO 3 | Students v | will demons | trate the perfe | ormance de   | egradation of h | neat exchange  | rs subjec  | t to fouling.   |

Unit-I

**Heat Exchangers** – Classification according to transfer process, number of fluids, surface compactness, and construction features. Tubular heat exchanger, plate type heat exchangers, extended surface heat exchangers, heat pipe, Regenerators. Classification according to flow arrangement: counter flow, parallel flow, cross flow exchanger.

**Heat exchanger design methodology**- assumption for heat transfer analysis, problem formulation, e-NTU method, *P*-NTU method, Mean temperature difference method, fouling of heat exchanger, effects of fouling, categories of fouling, fundamental processes of fouling.

#### Unit-II

**Double Pipe Heat Exchangers:** Thermal and Hydraulic design of inner tube, Thermal and hydraulic analysis of Annulus, Total pressure drop.

**Compact Heat Exchangers:** Thermal and Hydraulic design of compact heat exchanger Shell and Tube heat exchangers – Tinker's, kern's, and Bell Delaware's methods, for thermal and hydraulic design of Shell and Tube heat exchangers.

#### Unit-III

**Heat Exchanger Pressure Drop Analysis:** Importance of Pressure Drop, Devices, Extended Surface Heat Exchanger Pressure Drop, Tubular Heat Exchanger Pressure Drop, Tube Banks, Shell-and-Tube Exchangers, Plate Heat Exchanger Pressure Drop, Pipe Losses, Non-dimensional Presentation of Pressure Drop Data

**Heat Transfer Characteristics:** Dimensionless Surface Characteristics, Experimental Techniques for Determining Surface Characteristics, Steady-State Kays and London Technique, Wilson Plot Technique, Transient Test Techniques, Friction Factor Determination, Hydrodynamic ally Developing Flows, Thermally Developing Flows, Extended Reynolds Analogy, Heat Exchanger Surface Geometrical Characteristics, Selection of Heat Exchangers and Their Components, Temperature Difference Distributions

#### Unit-IV

**Mechanical Design of Heat Exchangers** – Design standards and codes, key terms in heat exchanger design, material selection, and thickness calculation for major components such as tube sheet, shell, tubes, flanges and nozzles. Introduction to simulation and optimization of heat exchangers, flow induced vibrations.

Hair-Pin Heat Exchangers: Introduction to Counter-flow Double-pipe or Hair-Pin heat exchangers, Industrial versions of the same, Film coefficients in tubes and annuli, Pressure drop, Augmentation of performance of hair-pin heat exchangers, Series and Series-Parallel arrangements of hair-pin heat exchangers, Comprehensive Design Algorithm for hair-pin heat exchangers, Numerical Problems.

# Reference/Text Books:

1. Shah and Dusan P. Sekulic, "Fundamentals of Heat Exchanger Design" John Wiley & sons Inc., 2003.

2.D.C. Kern, "Process Heat Transfer", McGraw Hill, 1950.

3.Sadik Kakac and Hongton Liu, "Heat Exchangers: Selection, Rating and Thermal Design" CRC Press, 1998. 4.A.P. Frass and M.N. Ozisik, "Heat Exchanger Design", McGraw Hill, 1984

5. Afgan N. and Schlinder E.V. "Heat Exchanger Design and Theory Source Book".

6.T. Kuppan, "Hand Book of Heat Exchanger Design".

7. "T.E.M.A. Standard", New York, 1999.

8.G. Walkers, "Industrial Heat Exchangers-A Basic Guide", McGraw Hill, 1982.

| MTTH-116  |            | <u></u>                                                                                                                                                              |            |       |       |           |                |  |  |  |  |
|-----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|-----------|----------------|--|--|--|--|
|           | <b>-</b>   | COMPRESSIBLE FLOW MACHINES Tutorial Practical Credits Maior Minor Total Time                                                                                         |            |       |       |           |                |  |  |  |  |
| Lecture   | lutorial   | Practical                                                                                                                                                            | Credits    | Major | Minor | Total     | Time<br>(Hrs.) |  |  |  |  |
|           |            | Test Test                                                                                                                                                            |            |       |       |           |                |  |  |  |  |
| 3         | -          | -                                                                                                                                                                    | 3          | 60    | 40    | 100       | 3              |  |  |  |  |
| Objective | compress   | Students can able to understand the various fluid devices like turbine, compressors, pumps etc. Also to understand the concepts of shock waves and their properties. |            |       |       |           |                |  |  |  |  |
|           |            |                                                                                                                                                                      | rse Outcom | es    |       |           |                |  |  |  |  |
| CO 1      | Also to le | e students to<br>arn the conc<br>of power dev                                                                                                                        | epts of va |       |       |           |                |  |  |  |  |
| CO 2      | Students v | vill able to u<br>ntages, disad                                                                                                                                      | nderstand  |       |       | oumps alo | ong with       |  |  |  |  |
| CO 3      |            | vill study the<br>s terms and p                                                                                                                                      |            |       |       | ers. Also | to learn       |  |  |  |  |
| CO 4      |            | e students to<br>rn the variou                                                                                                                                       |            |       |       |           |                |  |  |  |  |
| CO 5      | Also to le | e students to<br>arn the conc<br>of power dev                                                                                                                        | epts of va |       |       |           |                |  |  |  |  |

#### UNIT-I

**Introduction:** Introduction to Fluid Machines, Energy Transfer in Fluid Machines, Energy Transfer-impulse and Reaction Machines, efficiencies of Fluid Machines, Principles of Similarity in Fluid Machines, Concept of Specific Speed and introduction to Impulse Hydraulic Turbine.

**Turbines:** Analysis of Force on the Bucket of Pelton wheel and Power Generation, Specific Speed, Governing and Limitation of a Pelton Turbine, Introduction to reaction Type of Hydraulic Turbine- A Francis Turbine, Analysis of Force on Francis Runner and Power Generation, Axial Flow machine and Draft Tube, Governing of Reaction Turbine.

#### UNIT-II

**Pumps:** Introduction to Rotodynamic Pumps, Flow and Energy Transfer in a Centrifugal Pump, Characteristics of a Centrifugal Pump, Matching of Pump and System Characteristics, Diffuser and Cavitation, Axial Flow Pump, Reciprocating Pump.

#### UNIT-III

**Compressors**: Centrifugal and Axial Flow Compressor, their characteristics.

**Flow through Diffusers:** Classification of diffusers, internal compression subsonic diffusers, velocity gradient, effect of friction and area change, the conical internal-compression Subsonic diffusers, external compression subsonic diffusers, supersonic diffusers, Normal shock supersonic diffusers, the converging diverging supersonic diffusers.

#### UNIT-IV

**Shock wave:** Introduction to Compressible Flow, Thermodynamic Relations and Speed of Sound, Disturbance propagation, Stagnation and Sonic Properties, Effects of Area variation on Properties in an Isentropic Flow, choking in a Converging nozzle, Isentropic Flow Through Convergent-Divergent Duct, Normal Shock, Oblique Shock, Introduction to Expansion Wave and Prandtl Meyer Flow.

#### **Reference/Text Books:**

- 1. S. M. Yahya, "Fundamentals of Compressible Flow", New Age International.
- 2. S.M. Yahya, "Turbines, Compressors and Fans", Tata McGraw Hill.
- 3. P.H. Oosthvizen and W.E. Carscallen, "Compressible Fluid Flow", McGraw Hill.

| MTTH   | -201                                                                                    |                     | ADVANCED COMPUTATIONAL FLUID DYNAMICS |              |                 |                 |            |                   |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------|---------------------|---------------------------------------|--------------|-----------------|-----------------|------------|-------------------|--|--|--|--|
| Lect   | ure                                                                                     | Tutorial            | Practical                             | Credits      | Major Test      | Minor Test      | Total      | Time (Hrs.)       |  |  |  |  |
| 3      |                                                                                         | 3 60 40 100 3       |                                       |              |                 |                 |            |                   |  |  |  |  |
| Object | tive                                                                                    | To familia          | rize the stu                          | udents with  | h the advand    | ed concepts     | of Con     | nputational Fluid |  |  |  |  |
| -      |                                                                                         | Dynamics.           |                                       |              |                 | -               |            | -                 |  |  |  |  |
|        | Course Outcomes                                                                         |                     |                                       |              |                 |                 |            |                   |  |  |  |  |
| CO 1   | Dev                                                                                     | elop the und        | derstanding (                         | of the mode  | ling of turbule | nce and its eff | ects.      |                   |  |  |  |  |
| CO 2   | Ana                                                                                     | lyze the co         | nvection dif                          | fusion prol  | blems and de    | velop algorith  | ms for     | pressure velocity |  |  |  |  |
|        | cou                                                                                     | pling in stea       | dy flows and                          | d unsteady f | flows.          |                 |            | -                 |  |  |  |  |
| CO 3   | Develop skills to implement and handle boundary conditions; errors and uncertainty; and |                     |                                       |              |                 |                 |            |                   |  |  |  |  |
|        | com                                                                                     | complex geometries. |                                       |              |                 |                 |            |                   |  |  |  |  |
| CO 4   | Able                                                                                    | e to model th       | ne combusti                           | on phenome   | enon and radia  | tive heat trans | sfer using | g CFD.            |  |  |  |  |

#### UNIT-I

Introduction: Revision of pre-requisite courses, finite differences and finite volume methods.

**Turbulence and its modeling:** transition from laminar to turbulent flow, descriptors of turbulent flow, characteristics of turbulent flow, effect of turbulent fluctuations on mean flow, turbulent flow calculations, turbulence modeling, Large eddy simulation, Direct Numerical Simulation.

#### UNIT-II

**Finite volume method for convection-diffusion problems:** Steady 1-D convection-diffusion, Conservativeness, Boundedness and Transportiveness, Central, Upwind, Hybrid and Power law schemes, QUICK and TVD schemes.

**Pressure - velocity coupling in steady flows:** Staggered grid, SIMPLE algorithm, Assembly of a complete method, SIMPLER, SIMPLEC and PISO algorithms, Worked examples of the above algorithms.

**Finite volume method for unsteady flows:** 1-D unsteady heat conduction, Explicit, Crank-Nicolson and fully implicit schemes, Transient problems with QUICK, SIMPLE schemes.

#### UNIT-III

**Implementation of boundary conditions:** Inlet, Outlet, and Wall boundary conditions, Pressure boundary condition, Cyclic or Symmetric boundary condition.

**Errors and uncertainty in CFD modeling:** Errors and uncertainty in CFD, Numerical errors, Input uncertainty, Physical model uncertainty, Verification and validation, Guide lines for best practices in CFD, Reporting and documentation of CFD results.

**Methods for Dealing with complex geometries:** Introduction, body-fitted co-ordinate grids, curvilinear grids, block structured and unstructured grids, discretization in unstructured grids, diffusion and convective term, treatment of source term, assembly of discretized equations, pressure-velocity coupling, extension of face velocity interpolation method to unstructured meshes.

#### UNIT-IV

**CFD modeling of combustion:** Enthalpy of formation, Stoichiometry, Equivalence ratio, Adiabatic flame temperature, Equilibrium and dissociation, governing equations of combusting flows, modeling of a laminar diffusion flame, SCRC model for turbulent combustion, probability density function approach, eddy break up model.

**CFD for radiation heat transfer:** Governing equations for radiation heat transfer, popular radiation calculation techniques using CFD, The Monte Carlo method, the discrete transfer method, Ray tracing, the discrete ordinates method.

# **Reference/Text Books:**

- 1. H. Versteeg & W. Malalasekra, "An Introduction to Computational Fluid Dynamics", Pearson; 2 edition (2008)
- 2. Suhas V. Patankar, "Numerical Heat Transfer and Fluid Flow", CRC Press (Reprint 2017).
- 3. J.C. Tannehill, D. A. Anderson and R.H. Pletcher, "Computational Fluid Dynamics", CRC Press; 3rd edition (April 15, 2011).
- 4. J. Blazek, "Computational Fluid Dynamics: Principles and Applications", Elsevier Science & Technology, 2001.

10(326)

5. T.J. Chung, "Computational Fluid Dynamics", Cambridge University Press (7 February 2002).

| MTTH-203  |           |                | FINITE EL   | EMENT ME    | THODS       |                                       |             |
|-----------|-----------|----------------|-------------|-------------|-------------|---------------------------------------|-------------|
| Lecture   | Tutorial  | Practical      | Credits     | Major       | Minor       | Total                                 | Time        |
|           |           |                |             | Test        | Test        |                                       | (Hrs.)      |
| 3         | -         | -              | 3           | 60          | 40          | 100                                   | 3           |
|           |           |                |             |             |             |                                       |             |
| Objective |           | aint the stu   |             |             |             |                                       |             |
|           | of FD scl | he finite eler | nent proble | ems. Aiso f | Divi, conve | rgence an                             | d stability |
|           |           |                | ırse Outcor | nes         |             |                                       |             |
| CO 1      | Students  | will be able   |             |             | asic steps  | in FFM for                            | mulation    |
|           |           | tudy variou    |             |             |             |                                       |             |
|           |           | , conditions   |             |             |             | , , , , , , , , , , , , , , , , , , , | ,           |
| CO 2      |           | will be able   |             |             |             |                                       |             |
|           |           | nts. Also to   |             |             | ons, h and  | l p approx                            | imations;   |
|           |           | ous solvers a  |             |             |             |                                       |             |
| CO 3      |           | will study     |             |             |             | •                                     |             |
|           |           | like Galer     |             |             |             |                                       |             |
|           |           | nd the natu    |             |             |             | gration an                            | d various   |
|           |           | ncepts relate  |             |             |             |                                       |             |
| CO 4      |           | will be able   |             |             |             |                                       |             |
|           |           | ne stress a    |             |             |             |                                       |             |
|           |           | cs. Also to    |             | arious ele  | ments of    | FEM, FEN                              | i with CI   |
|           | continuit | y and FDM p    |             |             |             |                                       |             |

UNIT-I

Basic Steps in FEM Formulation, General Applicability of the Method; Variational Functional, Ritz Method. Variational FEM: Derivation of Elemental Equations, Assembly, Imposition of Boundary Conditions, Solution of the Equations.

#### UNIT-II

1-D Elements, Basis Functions and Shape Functions, Convergence Criteria, h and p Approximations. Natural Coordinates, Numerical Integration, Gauss Elimination based Solvers. Computer implementation: Pre-processor, Processor, Post-processor.

# UNIT-III

AlternateFormulation:WeightedResidualMethod,GalerkinMethod;Problems with C1 Continuity: Beam Bending, Connectivity and Assembly of C1 Continuity Elements.Variational Functional; 2-D Elements (Triangles and Quadrilaterals) and Shape Functions. Natural Coordinates,

Numerical Integration, Elemental Equations, Connectivity and Assembly, Imposition of Boundary Conditions.

# UNIT-IV

Axisymmetric (Heat Conduction) Problem, Plane Strain and Plane Stress Solid Mechanics Problems. Sub-parametric, Iso-parametric and Super-parametric Elements; Elements with C1 Continuity. Free Vibration Problems, Formulation of Eigen Value Problem, FEM Formulation. Time-dependent Problems, Combination of Galerkin FEM and FDM (Finite Difference Method), Convergence and Stability of FD Scheme.

# Reference/Text Books:

- 1. C. S. Krishnamoorty, "Finite element analysis", Tata McGraw Hill
- 2. J. N Reddy, "An introduction to Finite element method", Tata Mc. Graw Hill
- 3. Y. M. Desai, "Finite Element Method with applications in engineering", Pearson Education India
- 4. Ted Belytschko, W.K. Liu and Brian Moran, "Nonlinear Finite Elements for Continua and Structures (Paperback)" Wiley-Blackwell (16 August 2000)
- 5. Guido Dhondt, "The Finite Element Method for Three-Dimensional Thermomechanical Applications", Wiley; 1 edition (June 18, 2004).

6. Claes Johnson, "Numerical Solution of Partial Differential Equations by the Finite Element Method", Dover Publications (January 15, 2009).

| MTTH-  | 205                                                                                       | THERMAL MODELING AND ANALYSIS                                                  |                                                                    |             |                 |               |           |                  |  |  |  |
|--------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|-----------------|---------------|-----------|------------------|--|--|--|
| Lectu  | re                                                                                        | Tutorial                                                                       | Tutorial Practical Credits Major Test Minor Test Total Time (Hrs.) |             |                 |               |           |                  |  |  |  |
| 3      |                                                                                           | 3 60 40 100 3                                                                  |                                                                    |             |                 |               |           |                  |  |  |  |
| Object | tive                                                                                      | This course provides the mathematical modelling and analysis for designing the |                                                                    |             |                 |               |           |                  |  |  |  |
|        |                                                                                           | -                                                                              |                                                                    | students    | can able to     | understand tl | he dynam  | ic behaviour of  |  |  |  |
|        |                                                                                           | thermal sy                                                                     | stems.                                                             |             |                 |               |           |                  |  |  |  |
|        |                                                                                           |                                                                                |                                                                    | Cours       | e Outcomes      |               |           |                  |  |  |  |
| CO 1   |                                                                                           |                                                                                |                                                                    |             |                 |               | •         | nermal systems.  |  |  |  |
|        |                                                                                           |                                                                                |                                                                    |             | <u>v</u>        |               |           | er programmes.   |  |  |  |
| CO 2   |                                                                                           |                                                                                |                                                                    |             |                 |               | exchange  | rs, evaporators, |  |  |  |
|        |                                                                                           |                                                                                |                                                                    |             | eir solution p  |               |           |                  |  |  |  |
| CO 3   |                                                                                           |                                                                                |                                                                    |             |                 |               |           | ing the thermal  |  |  |  |
|        |                                                                                           |                                                                                |                                                                    |             | ear and dynar   |               | <u> </u>  |                  |  |  |  |
| CO 4   | Learn the dynamic behaviour of thermal systems. Also to learn stability analysis and non- |                                                                                |                                                                    |             |                 |               |           |                  |  |  |  |
|        | linearity.                                                                                |                                                                                |                                                                    |             |                 |               |           |                  |  |  |  |
| CO 5   |                                                                                           |                                                                                |                                                                    |             |                 |               |           | nermal systems.  |  |  |  |
|        | Als                                                                                       | o to discuss                                                                   | s mathematic                                                       | al modellir | ng of thermal s | systems using | g compute | er programmes.   |  |  |  |

#### UNIT-I

**Design of Thermal System:** Design Principles, Workable systems, Optimal systems, Matching of system components, Economic analysis, Depreciation, Gradient present worth factor.

**Mathematical Modeling:** Equation fitting, Empirical equation, Regression analysis, Different modes of mathematical models, Selection, Computer programmes for models.

#### UNIT-II

**Modeling Thermal Equipments:** Modeling heat exchangers, Evaporators, Condensers, Absorption and rectification columns, Compressor, Pumps, Simulation studies, Information flow diagram, Solution procedures.

#### UNIT-III

**Systems Optimization:** Objective function formulation, Constraint equations, Mathematical formulation, Calculus method, Dynamic programming, Geometric programming, Linear programming methods, Solution procedures.

#### **UNIT-IV**

**Dynamic Behavior of Thermal System:** Steady state simulation, Laplace transformation, Feedback control loops, Stability analysis, Non-linearties

# Reference/Text Books:

- 1. Hodge, B.K. and Taylor, R. P., "Analysis and Design of Energy Systems", Prentice Hall (1999).
- 2. Bejan, A., Tsatsaronis, G. and Michel, M., "Thermal Design and Optimization", John Wiley and Sons (1996).
- 3. Jaluria, Y., "Design and Optimization of Thermal Systems", McGraw-Hill (1998).
- 4. Jaluria, Y., "Design and Optimization of Thermal Systems", CRC Press (2008).

5. Ishigai S., "Steam Power Engineering Thermal and Hydraulic Design Principle", Cambridge University Press (1999).

MTTH w.e.f. 2018-2019 **MTOE-201 Business Analytics** Credit Lecture Tutorial Practical **Major Test Minor Test** Total Time 3 3 40 100 0 0 60 3 Hrs. Program The main objective of this course is to give the student a comprehensive understanding of **Objective (PO)** business analytics methods. Course Outcomes (CO) CO1 Able to have knowledge of various business analysis techniques. CO2 Learn the requirement specification and transforming the requirement into different models. CO3 Learn the requirement representation and managing requirement assests. CO4 Learn the Recent Trends in Embedded and collaborative business

#### Unit 1

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

## Unit 2

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents. Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

# Unit 3

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

#### Unit 4

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

- 1. Business Analysis by James Cadle et al.
- 2. Project Management: The Managerial Process by Erik Larson and, Clifford Gray

| MTOE-203              |                                                                                | Industrial Safety                                        |              |                   |            |     |        |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|--------------|-------------------|------------|-----|--------|--|--|--|--|
| Lecture               | Tutorial                                                                       | torial Practical Credit Major Test Minor Test Total Time |              |                   |            |     |        |  |  |  |  |
| 3                     | 0                                                                              | 0                                                        | 3            | 60                | 40         | 100 | 3 Hrs. |  |  |  |  |
| Program               | To enable                                                                      | students to                                              | aware abo    | out the industria | al safety. |     |        |  |  |  |  |
| <b>Objective (PO)</b> | Objective (PO)                                                                 |                                                          |              |                   |            |     |        |  |  |  |  |
|                       | Course Outcomes (CO)                                                           |                                                          |              |                   |            |     |        |  |  |  |  |
| C01                   | Understan                                                                      | nd the indust                                            | rial safety. |                   |            |     |        |  |  |  |  |
| CO2                   | Analyze fu                                                                     | undamental o                                             | of maintena  | ance engineer     | ing.       |     |        |  |  |  |  |
| CO3                   | Understan                                                                      | nd the wear a                                            | and corrosi  | ion and fault tra | acing.     |     |        |  |  |  |  |
| CO4                   | CO4 Understanding that when to do periodic inceptions and apply the preventing |                                                          |              |                   |            |     |        |  |  |  |  |
|                       | maintenan                                                                      | nce.                                                     |              |                   |            | -   |        |  |  |  |  |

#### Unit-1

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

#### Unit-2

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricantstypes and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

#### Unit-3

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

#### Unit-4

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

| MTOE-205              |                                                            | Operations Research                                       |             |                  |                        |                |          |  |  |  |  |
|-----------------------|------------------------------------------------------------|-----------------------------------------------------------|-------------|------------------|------------------------|----------------|----------|--|--|--|--|
| Lecture               | Tutorial                                                   | Itorial Practical Credit Major Test Minor Test Total Time |             |                  |                        |                |          |  |  |  |  |
| 3                     | 0                                                          | 0 0 3 60 40 100 3 Hrs                                     |             |                  |                        |                |          |  |  |  |  |
| Program               | To enable                                                  | students to                                               | aware abo   | out the dynamic  | programming to solve   | e problems of  | discreet |  |  |  |  |
| <b>Objective (PO)</b> |                                                            |                                                           |             |                  |                        |                |          |  |  |  |  |
|                       |                                                            | C                                                         | ourse Ou    | tcomes (CO)      |                        |                |          |  |  |  |  |
| C01                   | Students                                                   | should able                                               | to apply th | ne dynamic pro   | gramming to solve pro  | oblems of disc | reet and |  |  |  |  |
|                       | continuou                                                  | us variables.                                             |             |                  |                        |                |          |  |  |  |  |
| CO2                   | Students                                                   | should able                                               | to apply th | ne concept of n  | on-linear programmin   | g              |          |  |  |  |  |
| CO3                   | CO3 Students should able to carry out sensitivity analysis |                                                           |             |                  |                        |                |          |  |  |  |  |
| CO4                   | Student s                                                  | should able t                                             | o model th  | e real world pro | oblem and simulate it. |                |          |  |  |  |  |

#### Unit -1

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

#### Unit -2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

# Unit- 3

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

#### Unit -4

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

| MTOE-207              |                                                                                   | Cost Management of Engineering Projects                                               |             |                      |                    |            |  |  |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------|----------------------|--------------------|------------|--|--|--|--|--|
| Lecture               | Tutorial                                                                          | torial Practical Credit Major Test Minor Test Total Time                              |             |                      |                    |            |  |  |  |  |  |
| 3                     | 0                                                                                 | 0 0 3 60 40 100 3 Hrs.                                                                |             |                      |                    |            |  |  |  |  |  |
| Program               | To enable                                                                         | o enable students to make aware about the cost management for the engineering project |             |                      |                    |            |  |  |  |  |  |
| <b>Objective (PO)</b> | <b>Objective (PO)</b> and apply cost models the real world projects.              |                                                                                       |             |                      |                    |            |  |  |  |  |  |
|                       |                                                                                   | C                                                                                     | ourse Ou    | tcomes (CO)          |                    |            |  |  |  |  |  |
| C01                   | Students                                                                          | should able                                                                           | to learn th | e strategic cost m   | anagement proce    | ess.       |  |  |  |  |  |
| CO2                   | Students                                                                          | should able                                                                           | to types o  | f project and proje  | ect team types     |            |  |  |  |  |  |
| CO3                   | CO3 Students should able to carry out Cost Behavior and Profit Planning analysis. |                                                                                       |             |                      |                    |            |  |  |  |  |  |
| CO4                   | Student s                                                                         | should able t                                                                         | o learn the | e quantitative techi | niques for cost ma | anagement. |  |  |  |  |  |

#### Unit-1

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

#### Unit-2

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

#### Unit-3

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

#### Unit-4

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

| MTOE-209                  |           | Composite Materials                                                          |             |                   |                    |                  |            |  |  |  |  |
|---------------------------|-----------|------------------------------------------------------------------------------|-------------|-------------------|--------------------|------------------|------------|--|--|--|--|
| Lecture                   | Tutorial  | utorial Practical Credit Major Test Minor Test Total Time                    |             |                   |                    |                  |            |  |  |  |  |
| 3                         | 0         | 0 0 3 60 40 100 3 Hrs.                                                       |             |                   |                    |                  |            |  |  |  |  |
| Program<br>Objective (PO) | To enable | enable students to aware about the composite materials and their properties. |             |                   |                    |                  |            |  |  |  |  |
|                           |           | C                                                                            | ourse Ou    | tcomes (CO)       |                    |                  |            |  |  |  |  |
| C01                       | Students  | should able                                                                  | to learn th | ne Classificatior | n and characterist | ics of Composite | materials. |  |  |  |  |
| CO2                       | Students  | should able                                                                  | reinforcen  | nents Composi     | te materials.      |                  |            |  |  |  |  |
| CO3                       | Students  | Students should able to carry out the preparation of compounds.              |             |                   |                    |                  |            |  |  |  |  |
| CO4                       | Student s | should able t                                                                | o do the a  | nalysis of the c  | omposite material  | ls.              |            |  |  |  |  |

#### UNIT-1:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Iso-strain and Iso-stress conditions.

#### UNIT – 2

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

# UNIT-3

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

# UNIT – 4

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

# TEXT BOOKS:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.
- Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

# **References:**

3.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

| MTOE-211              |           | Waste to Energy                                                                |             |                   |                       |     |        |  |  |  |  |
|-----------------------|-----------|--------------------------------------------------------------------------------|-------------|-------------------|-----------------------|-----|--------|--|--|--|--|
| Lecture               | Tutorial  | al Practical Credit Major Test Minor Test Total Time                           |             |                   |                       |     |        |  |  |  |  |
| 3                     | 0         | 0                                                                              | 3           | 60                | 40                    | 100 | 3 Hrs. |  |  |  |  |
| Program               | To enable | nable students to aware about the generation of energy from the waste.         |             |                   |                       |     |        |  |  |  |  |
| <b>Objective (PO)</b> |           | - ••                                                                           |             |                   |                       |     |        |  |  |  |  |
|                       |           | C                                                                              | ourse Ou    | tcomes (CO)       |                       |     |        |  |  |  |  |
| C01                   | Students  | should able                                                                    | to learn th | ne Classification | n of waste as a fuel. |     |        |  |  |  |  |
| CO2                   | Students  | udents should able to learn the Manufacture of charcoal.                       |             |                   |                       |     |        |  |  |  |  |
| CO3                   | Students  | udents should able to carry out the designing of gasifiers and biomass stoves. |             |                   |                       |     |        |  |  |  |  |
| CO4                   | Student s | should able t                                                                  | o learn the | e Biogas plant te | echnology.            |     |        |  |  |  |  |

#### Unit-1

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

## Unit-2

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

# Unit-3

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

#### Unit-4

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

| MTAD-101              |                                                   | English For Research Paper Writing                                         |              |                       |                       |           |        |  |  |  |  |
|-----------------------|---------------------------------------------------|----------------------------------------------------------------------------|--------------|-----------------------|-----------------------|-----------|--------|--|--|--|--|
| Lecture               | Tutorial                                          | ial Practical Credit Major Test Minor Test Total Time                      |              |                       |                       |           |        |  |  |  |  |
| 2                     | 0                                                 | 0                                                                          | 0            | -                     | 100                   | 100       | 3 Hrs. |  |  |  |  |
| Program               | Student w                                         | Student will able to understand the basic rules of research paper writing. |              |                       |                       |           |        |  |  |  |  |
| <b>Objective (PO)</b> |                                                   |                                                                            |              |                       |                       |           |        |  |  |  |  |
|                       |                                                   | C                                                                          | ourse Ou     | tcomes (CO)           |                       |           |        |  |  |  |  |
| C01                   | Understa                                          | and that hov                                                               | / to improv  | e your writing ski    | ills and level of rea | adability |        |  |  |  |  |
| CO2                   | Learn ab                                          | bout what to                                                               | write in ea  | ich section           |                       |           |        |  |  |  |  |
| CO3                   | Understand the skills needed when writing a Title |                                                                            |              |                       |                       |           |        |  |  |  |  |
| CO4                   | Ensure th                                         | ne good qua                                                                | lity of pape | er at very first-time | e submission          |           |        |  |  |  |  |

#### Unit 1

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

#### Unit 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

#### Unit 3

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

#### Unit 4

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

| MTAD-103              |              |                                                                                           | D            | isaster Manag      | ement               |                  |             |  |  |  |
|-----------------------|--------------|-------------------------------------------------------------------------------------------|--------------|--------------------|---------------------|------------------|-------------|--|--|--|
| Lecture               | Tutorial     | Practical                                                                                 | Credit       | Major Test         | Minor Test          | Total            | Time        |  |  |  |
| 2                     | 0            | 0                                                                                         | 0            | -                  | 100                 | 100              | 3 Hrs.      |  |  |  |
| Program               | Develop a    | evelop an understanding of disaster risk reduction and management                         |              |                    |                     |                  |             |  |  |  |
| <b>Objective (PO)</b> |              |                                                                                           |              |                    |                     |                  |             |  |  |  |
|                       |              | Course Outcomes (CO)                                                                      |              |                    |                     |                  |             |  |  |  |
| C01                   | Learn to d   | rn to demonstrate a critical understanding of key concepts in disaster risk reduction and |              |                    |                     |                  |             |  |  |  |
|                       | humanitar    | manitarian response.                                                                      |              |                    |                     |                  |             |  |  |  |
| CO2                   | Critically e | valuate disa                                                                              | ster risk re | eduction and hu    | imanitarian respons | se policy and pr | actice from |  |  |  |
|                       |              | erspectives.                                                                              |              |                    |                     |                  |             |  |  |  |
| CO3                   | '            |                                                                                           | 0            |                    | anitarian response  | and practical re | elevance in |  |  |  |
|                       |              |                                                                                           |              | onflict situations |                     |                  |             |  |  |  |
| CO4                   |              | ritically understand the strengths and weaknesses of disaster management                  |              |                    |                     |                  |             |  |  |  |
|                       |              | roaches, planning and programming in different countries, particularly their home         |              |                    |                     |                  |             |  |  |  |
|                       | country or   | the countrie                                                                              | s they wor   | rk in              |                     |                  |             |  |  |  |

#### Unit 1

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

# Unit 2

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

# Unit 3

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

#### Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

| MTAD-105              |                                                                                                                        | Sanskrit for Technical Knowledge                                                                           |              |                  |                         |                  |        |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------|------------------|-------------------------|------------------|--------|--|--|--|--|
| Lecture               | Tutorial                                                                                                               | Futorial         Practical         Credit         Major Test         Minor Test         Total         Time |              |                  |                         |                  |        |  |  |  |  |
| 2                     | 0                                                                                                                      | 0                                                                                                          | 0            | -                | 100                     | 100              | 3 Hrs. |  |  |  |  |
| Program               | Students will be able to Understanding basic Sanskrit language and Ancient Sanskrit                                    |                                                                                                            |              |                  |                         |                  |        |  |  |  |  |
| <b>Objective (PO)</b> |                                                                                                                        |                                                                                                            |              |                  |                         |                  |        |  |  |  |  |
|                       | help to develop logic in students                                                                                      |                                                                                                            |              |                  |                         |                  |        |  |  |  |  |
|                       |                                                                                                                        | C                                                                                                          | ourse Ou     | tcomes (CO)      |                         |                  |        |  |  |  |  |
| C01                   | To get a                                                                                                               | working kno                                                                                                | vledge in i  | illustrious Sans | krit, the scientific la | nguage in the w  | orld   |  |  |  |  |
| CO2                   |                                                                                                                        |                                                                                                            |              | brain functionii |                         |                  |        |  |  |  |  |
| CO3                   | Learning                                                                                                               | of Sanskrit t                                                                                              | o develop    | the logic in ma  | thematics, science      | & other subjects | 6      |  |  |  |  |
|                       | enhancin                                                                                                               | g the memo                                                                                                 | ry power     |                  |                         |                  |        |  |  |  |  |
| CO4                   | CO4 The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature |                                                                                                            |              |                  |                         |                  |        |  |  |  |  |
|                       | Knowledg                                                                                                               | e trom ancie                                                                                               | ent literatu | re               |                         |                  |        |  |  |  |  |

Unit –1

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit – 2

Order, Introduction of roots, Technical information about Sanskrit Literature

## Unit –3

Technical concepts of Engineering: Electrical, Mechanical

# Unit –4

Technical concepts of Engineering: Architecture, Mathematics

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

| MTAD-107              |                                                       |               | Value Ed    | ucation           |                  |                    |          |  |
|-----------------------|-------------------------------------------------------|---------------|-------------|-------------------|------------------|--------------------|----------|--|
| Lecture               | Tutorial                                              | Practical     | Credit      | Major Test        | Minor Test       | Total              | Time     |  |
| 2                     | 2 0 0                                                 |               | 0           | -                 | 100              | 100                | 3 Hrs.   |  |
| Program               | Understan                                             | nd value of e | ducation a  | nd self- developn | nent, Imbibe goo | od values in stude | ents and |  |
| <b>Objective (PO)</b> | Let the should know about the importance of character |               |             |                   |                  |                    |          |  |
|                       |                                                       |               |             |                   |                  |                    |          |  |
|                       |                                                       | C             | ourse Ou    | tcomes (CO)       |                  |                    |          |  |
| C01                   | Knowledg                                              | e of self-dev | elopment    |                   |                  |                    |          |  |
| CO2                   | Learn the                                             | importance (  | of Human    | values            |                  |                    |          |  |
| CO3                   |                                                       |               |             |                   |                  |                    |          |  |
| CO4                   | Know abo                                              | out the impo  | rtance of c | haracter          |                  |                    |          |  |

Unit 1

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements.

#### Unit 2

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism.Love for nature, Discipline

#### Unit 3

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

#### Unit 4

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence,Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

#### References

1.Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

| MTAD-102                                                          |                                                                                                |                                                                                 | Constitu     | tion of India       |                         |                     |            |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------|---------------------|-------------------------|---------------------|------------|--|--|
| Lecture                                                           | Tutorial                                                                                       | Practical                                                                       | Credit       | Major Test          | Minor Test              | Total               | Time       |  |  |
| 2                                                                 | 0 0                                                                                            |                                                                                 | 0            | -                   | 100                     | 100                 | 3 Hrs.     |  |  |
| Program                                                           | Understan                                                                                      | d the premis                                                                    | ses inform   | ing the twin the    | emes of liberty and i   | freedom from a ci   | vil rights |  |  |
| <b>Objective (PO)</b>                                             | perspectiv                                                                                     | perspective and to address the growth of Indian opinion regarding modern Indian |              |                     |                         |                     |            |  |  |
|                                                                   | intellectuals' constitutional role and entitlement to civil and economic rights as well as the |                                                                                 |              |                     |                         |                     |            |  |  |
| emergence of nationhood in the early years of Indian nationalism. |                                                                                                |                                                                                 |              |                     |                         |                     |            |  |  |
|                                                                   |                                                                                                | С                                                                               | ourse Ou     | tcomes (CO)         |                         |                     |            |  |  |
| C01                                                               | Discuss th                                                                                     | e growth of                                                                     | he demar     | nd for civil rights | s in India for the bulk | of Indians before   | e the      |  |  |
|                                                                   | arrival of C                                                                                   | Gandhi in Ind                                                                   | ian politic: | S.                  |                         |                     |            |  |  |
| CO2                                                               |                                                                                                |                                                                                 |              |                     | of argument that in     | formed the          |            |  |  |
|                                                                   | conceptua                                                                                      | lization of so                                                                  | cial reform  | ns leading to re    | volution in India.      |                     |            |  |  |
| CO3                                                               |                                                                                                |                                                                                 |              |                     | ndation of the Congr    |                     |            |  |  |
|                                                                   |                                                                                                |                                                                                 |              |                     | ne eventual failure o   | f the proposal of c | lirect     |  |  |
|                                                                   | elections t                                                                                    | hrough adul                                                                     | suffrage     | in the Indian Co    | onstitution.            |                     |            |  |  |
| CO4                                                               | Discuss th                                                                                     | e passage o                                                                     | f the Hind   | u Code Bill of 1    | 956.                    |                     |            |  |  |

## Unit I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

#### Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights , Right to Equality , Right to Freedom , Right against Exploitation , Right to Freedom of Religion, Cultural and Educational Rights , Right to Constitutional Remedies , Directive Principles of State Policy , Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

#### Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

#### Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

| MTAD-104       |                                         |              | Pedagog      | y Studies          |                   |                    |             |  |
|----------------|-----------------------------------------|--------------|--------------|--------------------|-------------------|--------------------|-------------|--|
| Lecture        | Tutorial                                | Practical    | Credit       | Major Test         | Minor Test        | Total              | Time        |  |
| 2              | 0                                       | 0            | 0            | -                  | 100               | 100                | 3 Hrs.      |  |
| Program        |                                         |              |              | the review topic   |                   |                    |             |  |
| Objective (PO) | 0                                       |              | ,            | FID, other agenc   | ies and researd   | chers and Identif  | 'y critical |  |
|                | evidence gaps to guide the development. |              |              |                    |                   |                    |             |  |
|                | -                                       | C            | ourse Ou     | tcomes (CO)        |                   |                    |             |  |
|                |                                         | 001          | ctices are   | being used by tea  | chers in formal a | nd informal class  | rooms in    |  |
|                | developing                              | g countries? |              |                    |                   |                    |             |  |
| CO2            | What is th                              | e evidence d | on the effe  | ctiveness of these | pedagogical pra   | ctices, in what co | onditions,  |  |
|                | and with w                              | hat populati | on of learr  | ners?              |                   |                    |             |  |
|                |                                         |              |              | urriculum and pr   |                   | e school curricu   | lum and     |  |
|                | U III                                   |              |              | effective pedagog  |                   |                    |             |  |
| CO4            | What is the                             | e importance | e of identif | ying research gaps | s?                |                    |             |  |

#### Unit 1

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

## Unit 2

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

# Unit 3

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

#### Unit 4

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

| MTAD-106              |                                                                           | Stress Management by Yoga                           |              |                 |                       |     |        |  |  |  |
|-----------------------|---------------------------------------------------------------------------|-----------------------------------------------------|--------------|-----------------|-----------------------|-----|--------|--|--|--|
| Lecture               | Tutorial                                                                  | torial Practical Credit Major Test Minor Test Total |              |                 |                       |     |        |  |  |  |
| 2                     | 0                                                                         | 0                                                   | 0            | -               | 100                   | 100 | 3 Hrs. |  |  |  |
| Program               | Program To achieve overall health of body and mind and to overcome stress |                                                     |              |                 |                       |     |        |  |  |  |
| <b>Objective (PO)</b> | bjective (PO)                                                             |                                                     |              |                 |                       |     |        |  |  |  |
|                       |                                                                           | С                                                   | ourse Ou     | tcomes (CO)     |                       |     |        |  |  |  |
| C01                   | Develop I                                                                 | healthy mind                                        | l in a healt | hy body thus in | proving social health |     |        |  |  |  |
| CO2                   | Improve e                                                                 | efficiency                                          |              |                 |                       |     |        |  |  |  |
| CO3                   | CO3 Learn the Yog asan                                                    |                                                     |              |                 |                       |     |        |  |  |  |
| CO4                   | Learn the                                                                 | e pranayama                                         |              |                 |                       |     |        |  |  |  |

## Unit – 1

Definitions of Eight parts of yog (Ashtanga).

# Unit- 2

Yam and Niyam, Do`s and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

# Unit- 3

Asan and Pranayam, Various yog poses and their benefits for mind & body,

# Unit- 4

Regularization of breathing techniques and its effects-Types of pranayam.

- 1. 'Yogic Asanas for Group Tarining-Part-I" :Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

| MTAD-108              |                                              | Personality Development through Life Enlightenment Skills                   |             |                  |                        |       |        |  |  |
|-----------------------|----------------------------------------------|-----------------------------------------------------------------------------|-------------|------------------|------------------------|-------|--------|--|--|
| Lecture               | Tutorial                                     | Practical                                                                   | Credit      | Major Test       | Minor Test             | Total | Time   |  |  |
| 2                     | 0                                            | 0                                                                           | 0           | -                | 100                    | 100   | 3 Hrs. |  |  |
| Program               | To learn to achieve the highest goal happily |                                                                             |             |                  |                        |       |        |  |  |
| <b>Objective (PO)</b> |                                              | To become a person with stable mind, pleasing personality and determination |             |                  |                        |       |        |  |  |
|                       | To awaken wisdom in students                 |                                                                             |             |                  |                        |       |        |  |  |
|                       |                                              | С                                                                           | ourse Ou    | tcomes (CO)      |                        |       |        |  |  |
| C01                   | Students                                     | become awa                                                                  | are about l | leadership.      |                        |       |        |  |  |
| CO2                   | Students                                     | will learn ho                                                               | w to perfo  | rm his/her dutie | es in day to day work. |       |        |  |  |
| CO3                   |                                              |                                                                             |             |                  |                        |       |        |  |  |
| CO4                   | Student v                                    | vill learn hov                                                              | to becom    | ne role model fo | r the society.         |       |        |  |  |

#### Unit – 1

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

# Unit – 2

Approach to day to day work and duties; Shrimad Bhagwad Geeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

#### Unit - 3

Statements of basic knowledge; Shrimad Bhagwad Geeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

#### Unit – 4

Personality of Role model; Shrimad Bhagwad Geeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1. Srimad Bhagavad Gita, Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

| MTTH-207  |                                                                                                                                             |                  | DIS          | SERTATI       | ON PART        | -1                 |            |                |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|---------------|----------------|--------------------|------------|----------------|--|
| Lecture   | Tutorial                                                                                                                                    | Practical        | Credits      | Major         | Minor          | Practical          | Total      | Time (Hrs.)    |  |
|           |                                                                                                                                             |                  |              | Test          | Test           | Marks              |            |                |  |
| 0         | 0                                                                                                                                           | 20               | 10           | -             | 100            | -                  | 100        | -              |  |
|           |                                                                                                                                             |                  |              |               |                |                    |            |                |  |
| Objective | The main                                                                                                                                    | objective of th  | is course is | s to plan     | a research     | n work (which      | n includes | the problem    |  |
| -         | formulation/l                                                                                                                               | iterature reviev | v, proposed  | objectives,   | proposed       | methodologies      | and refe   | rences) in the |  |
|           | field of Indus                                                                                                                              | strial and Produ | ction Engine | ering or inte | errelated fiel | lds of application | ons.       |                |  |
|           |                                                                                                                                             |                  | Cours        | e Outcom      | es             |                    |            |                |  |
| CO 1      | Students w                                                                                                                                  | ill be exposed   | to various s | elf-learnin   | g topics.      |                    |            |                |  |
| CO 2      | Students w                                                                                                                                  | vill be expos    | ed to an     | exhaustive    | e survey       | of the litera      | ture suc   | h as books,    |  |
|           |                                                                                                                                             | ernational ref   |              |               |                |                    |            |                |  |
|           |                                                                                                                                             | dentification of |              |               |                |                    |            | 5              |  |
| CO 3      |                                                                                                                                             | /ill be able to  |              | 1             |                | the identified     | l enainee  | ring/research  |  |
|           | problem.                                                                                                                                    |                  |              |               |                |                    |            |                |  |
| CO 4      |                                                                                                                                             | vill learn mod   | ern tools/te | chniques      | related to     | the identified     | enginee    | ering/research |  |
|           |                                                                                                                                             | the solution a   |              |               |                |                    | . onginot  | , ingriosouron |  |
| CO 5      |                                                                                                                                             |                  |              |               |                | <u> </u>           | and dofo   | nd their work  |  |
| 003       | Students will develop oral and written communication skills to present and defend their work<br>in front of technically qualified audience. |                  |              |               |                |                    |            |                |  |
|           |                                                                                                                                             | cumucany qua     | ineu auulei  | しせ.           |                |                    |            |                |  |

The students will start their research work in third semester with a research problem having research potential involving scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution.

The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his/her supervisor and the topic of dissertation must be mutually decided by the supervisor and student.

The students will be required to submit a progress report related to their dissertation work by the end of September. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.

The progress report must be at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The students will be required to appear for comprehensive Seminar & Viva-voce and submit a synopsis report based on their progress related to the dissertation as per the presentation date mentioned in the academic calendar for the session. The synopsis report will be submitted in the same format as that of the thesis and will contain the following:

- 1. Introduction
- 2. Literature Survey
- 3. Gaps in Literature
- 4. Objectives of the Proposed Work
- 5. Methodology
- 6. References

#### \* Student will choose (be offered) his/her guide in the end of second semester.

10(343)

| MTTH-202  |              |                                  | D         | SSERTAT       |               | T -II          |           |                                                |
|-----------|--------------|----------------------------------|-----------|---------------|---------------|----------------|-----------|------------------------------------------------|
| Lecture   | Tutoria<br>I | Practical                        | Credits   | Major<br>Test | Minor<br>Test | Practical      | Total     | Time (Hrs.)                                    |
| 0         | 0            | 32                               | 16        | -             | 100           | 200            | 300       | -                                              |
| Objective |              | nterests relate                  |           |               |               |                |           | arch in the field<br>ated fields of            |
|           |              |                                  | Cours     | e Outcom      | es            |                |           |                                                |
| CO 1      |              | will be able to<br>h appropriate | •         |               | engineerir    | ng problems t  | hat meet  | the specified                                  |
| CO 2      | based kn     | owledge and and interpreta       | experimen | tal/researc   | h method      | s including d  | lesign of | ing research-<br>experiments,<br>provide valid |
| CO 3      |              | will be able to standing of the  |           |               | modern er     | ngineering too | ls and te | chniques with                                  |
| CO 4      |              | will be able                     |           |               | a researc     | h environmer   | nt or in  | an industrial                                  |
| CO 5      |              | will be conver<br>s of the engin |           |               | oort writing  | , professiona  | ethics, r | esponsibilities                                |
| CO 6      |              | will be able                     | 01        |               | vince their   | topic of stu   | dy to the | e engineering                                  |

The students are required to continue Analytical/Experimental/Computational/Industrial Problems or Case studies investigations in the field of Industrial and Production Engineering or other related fields which have been finalized in the third semester. They would be working under the supervision of a faculty member. The students will be required to submit a progress report duly signed by their respective supervisors to the department, related to their dissertation work in the last week of March. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.
- References

The progress report must be of at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The candidate has to prepare a detailed dissertation report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up/numerical details/industrial case study etc. as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study.

The final dissertation will be submitted in the end of semester as per academic calendar for the session, which will be evaluated by internal as well as external examiners based upon his/her research work. At least one publication is expected before final submission of the dissertation from every student in peer reviewed referred journals or reputed conference from the work done by them in their dissertation. The dissertation should be presented in standard format as provided by the department.

The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a supervisor, co- supervisor etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his supervisor.

# B.A Final English Compulsory For DDE/Private Candidates Session 2019-20

# Scheme of Examination

Total Marks: 100 Theory : 80 Internal Assessment : 20 Time : 3 hrs.

# Prescribed Texts:

- 1. Kanthapura & Art Exercise in Language Use edited by Umed Singh, Pankaj Sharma, Deepti Dharmani
- 2. The Merchant of Venice and Developing Compositions by Deepti Dharmani, Pankaj Sharma, Umed Singh

# Instructions for Paper-setter and Students

Note: All questions are compulsory.

- Explanation of two extracts out of the two texts (with internal choice) with reference to the context.
   5x2=10
- Short answer-type questions: Students will be required to answer any five questions out of the given eight based on the prescribed texts.
   2x5=10
- Based on the prescribed texts, a candidate is required to attempt two long answer-type questions out of the given two (with internal choice)
   5x2=10
   The questions will be designed to test the candidate's critical understanding of the texts.
- Students are required to write a business/official letter out of the given two.
   10
- Students are required to write a business of the given passage of about 300 words.
   8
- 6 a) Students will be required to write one word substitutions of any five expressions out of the given eight. 2x5=10
- b) Students will be required to attempt two questions on Email/Memo/Circular/RTI out of the given four topics. The questions intend to test the understanding of the basic modes of communication. 2x5=10
- c) Students will be required to transcribe and mark the primary stress on any five out of the given eight 1x5=05

# (For blind students only)

There will be 10 idioms/ pairs of words out of which a candidate will be required to attempt any five.

D) Students will be required to identify and transform any seven sentences (From one type to another, i.e., simple, compound and complex) out of the given ten.
 7x1=7

# B. A. I English (Additional) Semester-I Session 2019-20

# Scheme of Examination

Total Marks: 100 Theory : 80 Internal Assessment : 20 Time : 3 hrs.

## Section A

## Prescribed Texts:

- 1. Let's Go Home and other Stories by Meenakshi Mukherjee.
- 2. A Remedial English Grammar for Foreign Students by F.T. Wood (Chapters 1 to 16)

# Section **B**

Essay writing (both descriptive and reflective type)

## Instructions for Paper-setter and Students

| 1. | Explanation with reference to the context. The students will be required to attempt one passage (with internal choice) from the prescribed book of prose. 10 | 9 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2. | One Comprehension question (with internal choice) based on a passage from the prescribed book of prose.                                                      | t |
| 3. | Short-answer type questions based on the book of prose ( <i>four</i> questions to be attempted out or the given <i>seven</i> ).                              | f |

- 4. One essay-type question (with internal choice) from the prescribed book of prose. 10
- 5. An Essay on any one of the *five* given topics in about 400 words. 10
- 6. Letter/Application 10
- 7. The students will be required to attempt twenty out of the given thirty items based on the examples/exercises given in the prescribed book of grammar. 20

# B.A. I English (Additional) Semester-II Session 2019-20

# Scheme of Examination

Total Marks: 100 Theory : 80 Internal Assessment : 20 Time : 3 hrs.

# Section A

# Prescribed Texts:

- 1. Selected College Poems by Ambika Sen Gupta.
- 2. A Remedial English Grammar for Foreign Students by F.T. Wood (Chapters 17 to 37)

# Section **B**

# Precis Writing

# Instructions for Paper-setter and Students

| 1. | Explanation with reference to the context. The students will be required to attempt one | passage |
|----|-----------------------------------------------------------------------------------------|---------|
|    | (with internal choice) from the prescribed book of poems.                               | 10      |
|    |                                                                                         |         |

- One Comprehension question (with internal choice) based on a passage from the prescribed book of poems.
   10
- 3. Short-answer type questions on the book of poems (*four* questions to be attempt out of the given *seven*) 10
- 4. One question on theme, story, summary etc. on the prescribed book of poems. (with internal choice). 10
- 5. Precis of a given passage in about 200 words. 10
- 6. One comprehension question (with internal choice) based on an unseen passage. 10
- 7. The students will be required to attempt twenty out of the given *thirty* items based on the examples/exercises given in the prescribed book of grammar. 20

# INDEX

(TOTAL : 92 PAGES).

| Sr. No. | Paper        | Nomenclature                                                                                                                                                       | Page No. |
|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|         |              | Scheme of Examination                                                                                                                                              |          |
| 1.      | Course 1     | Childhood and Growing Up                                                                                                                                           | 1-3      |
| 2.      | Course 2     | Contemporary India and Education                                                                                                                                   | 4-6      |
| 3.      | Course 3     | Learning and Teaching                                                                                                                                              | 7-9      |
| 4.      | Course 4 (A) | Language Across Curriculum                                                                                                                                         | 10-12    |
| 5.      | Course 4 (B) | Understanding, Disciplines and Subject                                                                                                                             | 13-15    |
| 6.      | Course 5     | Gender, School and Society                                                                                                                                         | 16-17    |
| 7.      | Course 6 & 7 | Note:                                                                                                                                                              |          |
|         |              | a) Students have to opt for any only two school subjects.                                                                                                          |          |
|         |              | b) They have to opt for one school subject<br>from each group except for Science,<br>Commerce & Shastri/B.A. (Skt<br>Hons)/M.A. (Skt) students.                    |          |
|         |              | c) Science students cn opt for two school<br>subject from Pedagogy of Sciences<br>(Group-I).                                                                       |          |
|         |              | <ul> <li>d) Shastri / B.A. (Skt Hons)/ M.A. (Skt) student can opt for two school subjects i.e. Pedagogy of Hindi &amp; Pedagogy of Skt. from Group-III.</li> </ul> |          |
|         |              | e) Commerce students can opt for two<br>school subjects from Pedagogy of Social<br>Sciences (Group-II).                                                            |          |
|         |              | Group –I Pedagogy of Sciences:                                                                                                                                     |          |
|         |              | (i) Pedagogy of Science                                                                                                                                            | 18-21    |
|         |              | (ii) Pedagogy of Biological Science                                                                                                                                | 22-25    |
|         |              | (iii) Pedagogy of Computer Science                                                                                                                                 | 26-28    |
|         | 1            | (iv) Pedagogy of Home Science                                                                                                                                      | 29-31    |
|         |              | (v) Pedagogy of Physical Science                                                                                                                                   | 32-35    |
|         |              | Group- II Pedagogy of Social Sciences:                                                                                                                             |          |

|     |                | (i) Pedagogy of Social Science           | 36-39 |
|-----|----------------|------------------------------------------|-------|
|     |                | (ii) Pedagogy of Commerce                | 40-42 |
|     |                | (iii) Pedagogy of Economics              | 43-45 |
|     |                | (iv) Pedagogy of History                 | 46-48 |
|     |                | (v) Pedagogy of Geography                | 49-51 |
|     |                | (vi) Pedagogy of Art                     | 52-53 |
|     |                | (vii) Pedagogy of Music                  | 54-56 |
|     |                | Group- III Pedagogy of Languages:        |       |
|     |                | (i) Pedagogy of English                  | 57-59 |
|     |                | (ii) Pedagogy of Hindi                   | 60-62 |
|     |                | (iii) Pedagogy of Punjabi                | 63-64 |
|     |                | (iv) Pedagogy of Sanskrit                | 65-68 |
|     |                | Group- IV Pedagogy of Mathematics:       | 69-72 |
|     |                | (i) Pedagogy of Mathematics              |       |
| 8.  | Course 8       | Knowledge and Curriculum                 | 73-75 |
| 9.  | Course 9       | Assessment for Learning                  | 76-78 |
| 10. | Course 10      | Creating and Inclusive School            | 79-80 |
| 11. | Course 11      | Optional Course                          |       |
|     | Ι              | Environmental Education                  | 81-83 |
|     | II             | Peace Education                          | 84-85 |
|     | III            | Health and Physical Education            | 86-87 |
|     | IV             | Guidance and Counselling                 | 88-89 |
|     | Course – EPC-1 | Reading and Reflecting on Text           | 90-91 |
|     | EPC-2          | Drama and Art in Education               | 92    |
|     | EPC-3          | Critical Understanding of ICT            | 93-94 |
|     | EPC-4          | Understanding the Self (to be discussed) | 95-96 |
|     |                | School Internship Programme (SIP) &      | 97-99 |
|     |                | Engagement with the Field (EWF)          |       |

#### KURUKSHETRA UNIVERSITY, KURUKSHETRA SCHEME OF EXAMINATION AND SYLLABUS FOR B.ED. TWO YEAQR REGULAR COURSES TO BE IMPLEMENTED FROM THE SESSION 2015-16

|                 |                                                |       |                     | Year                            | -                     |           |                   |         |
|-----------------|------------------------------------------------|-------|---------------------|---------------------------------|-----------------------|-----------|-------------------|---------|
| Paper           | Nomenclature                                   | Total | Maximum<br>External | Marks<br>Internal/<br>Practicum | Periods per<br>week** | Exam Hour | Hours per<br>Year | Credits |
| Course-1        | Childhood and<br>Growing Up                    | 100   | 80                  | 20                              | 6                     | 3 hrs     | 137-6             | 10      |
| Course-2        | Contemporary<br>India and<br>Education         | 100   | 80                  | 20                              | 6                     | 3 hrs     | 137.6             | 10      |
| Course-3        | Learning and<br>Teaching                       | 100   | 80                  | 20                              | 6                     | 3 hrs     | 137.6             | 10      |
| Course-4<br>(A) | Language across<br>Curriculum                  | 50    | 40                  | 10                              | 3                     | 1:30 hrs  | 68.8              | 5       |
| (B)             | Understanding ,<br>Disciplines and<br>Subjects | 50    | 40                  | 10                              | 3                     | 1:30 hrs  | 68.8              | 5       |
| Course-5        | Gender, School<br>and Society                  | 50    | 40                  | 10                              | 3                     | 1:30 hrs  | 68.8              | 5       |
| Course-6        | Pedagogy of a<br>School Subjects-<br>I         | 100   | 80                  | 20                              | 6                     | 3 hrs     | 137.6             | 10      |
| Course-7        | Pedagogy of a<br>School Subjects-<br>I         | 100   | 80                  | 20                              | 6                     | 3 hrs     | 137.6             | 10      |
| Course<br>EPC 1 | Reading and<br>Reflecting on<br>Text           | 50    | 40                  | 10                              | 3                     | 1:30 hrs  | 68.8              | 5       |
| Course<br>EPC 2 | Drama and Art<br>in Education                  | 50    | 40                  | 10                              | 3                     | 1:30 hrs  | 68.8              | 5       |
|                 | School Internship                              |       | 600                 | 1.50                            |                       |           |                   |         |
|                 | Total                                          | 750   | 600                 | 150                             |                       |           |                   | 75      |

\* Engagement with the field: Tasks and assignment for Courses 1-7.

**\*\*** One period is of 45 minutes

# Syllabi/ B.Ed.-2Yr/KUK

2018-19

| Paper     | Nomenclature                           | Maximum Marks |       |                        | Periods per      | Exam Hour     | Hours per   | Credits |  |
|-----------|----------------------------------------|---------------|-------|------------------------|------------------|---------------|-------------|---------|--|
| -         |                                        |               |       | Internal/<br>Practicum | week**           |               | Year        |         |  |
| Course-8  | Knowledge and<br>Curriculum            | 100           | 80    | 20                     |                  |               | 156         | 10      |  |
| Course-9  | Assessment for<br>Learning             | 100           | 80    | 20                     | 12               | 3 hrs         | 156         | 10      |  |
| Course-10 | Creating an<br>Inclusive School        | 50            | 40    | 10                     | 10 6 1:30 hrs 78 |               | 78          | 5       |  |
| Course-11 | Optional<br>Course                     |               |       |                        | (Any one of the  | e following ) | I           |         |  |
| i         |                                        |               | 50 40 |                        | 6                | 1:30 hrs      | 78          | 5       |  |
| ii        | ii Health and<br>Physical<br>Education |               | 40    | 10                     | 6                | 1:30 hrs      | 78          | 5       |  |
| iii       | Peace Education                        | 50            | 40    | 10                     | 6                | 1:30 hrs      | 1:30 hrs 78 |         |  |
| iv        | Guidance and<br>Counseling             | 50            | 40    | 10                     | 6                | 1:30 hrs      | 78          | 5       |  |
| EPC-3     | Critical<br>Understanding<br>of ICT    | 50            | 40    | 10                     | 6                | 1:30 hrs      | 78          | 5       |  |
| EPC-4     | Understanding<br>the Self              | 50            | 40    | 10                     | 6                | 1:30 hrs      | 78          | 5       |  |
|           | *** School<br>Internship               | 250           | 200   | 50                     |                  |               |             | 25      |  |
|           | Total                                  | 650           | 520   | 130                    |                  |               |             | 65      |  |

# Course 1

# CHILDHOOD AND GROWING UP

#### Time: 3 Hours

Max. Marks: 100 (Theory: 80, Internal: 20)

#### NOTE FOR PAPER SETTER

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type questions will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

# **Rationale:**

The course on "Childhood and Growing Up" offers an introduction to the study of childhood, child development and adolescence from diverse socio-economic and cultural backgrounds. The main focus in the course would be to enable student teachers to arrive at an understanding of how different socio-political realities construct different childhoods within children's lived context: family, schools and community.

#### Learning Outcomes

After transaction of the course, student teachers will be able to:

- Explain the concept of growth & development in relation to characteristics of various stages of growth & development.
- Become familiar with theories of child development and their educational implications.
- Understand the role of family, school, society in child development.
- Describe the role of contemporary issues (issue of marginalization: class, poverty, gender, issues of urbanization and economic change) in child development.
- Describe the role of media in deconstruction of significant events.

| Existi        | ng                                                                                                                                                                                                                                                                        | Corrected                                                                                                                                                                                                                                                                                                                 |          |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Unit-I        |                                                                                                                                                                                                                                                                           | Unit-I                                                                                                                                                                                                                                                                                                                    |          |
| 1.<br>•<br>•  | Child Development<br>Growth & Development:- Concept, Principle,<br>Factors, & Stages.<br>Characteristics of stages of development with<br>special reference to Childhood and<br>Adolescence.<br>Adolescents: Understanding their needs and<br>Problems in Indian context. | <ol> <li>Child Development</li> <li>Growth &amp; Development:- Concept, Principl<br/>Factors, &amp; Stages.</li> <li>Characteristics of stages of development with<br/>special reference to Childhood and<br/>Adolescence.</li> <li>Adolescents: Understanding their needs and<br/>Problems in Indian context.</li> </ol> | th<br>id |
| Unit-II<br>2. | <b>Theories of Child Development</b><br>Theory of Cognitive Development by Piaget:<br>Concept, Stages and Implications with<br>special reference to Indian Context.                                                                                                       | <ul> <li>Unit-II</li> <li>2. Theories of Child Development <ul> <li>Theory of Cognitive Development by Piage Concept, Stages and Implications with special reference to Indian Context.</li> </ul> </li> </ul>                                                                                                            |          |

| <ul> <li>Theory of Social &amp; Emotional Development<br/>by Erickson: Concept, Stages and<br/>Implications with special reference to Indian<br/>Context.</li> <li>Kohlberg theory of Moral Development:<br/>Concept, Stages and Implications with<br/>special reference to Indian Context.</li> <li>Unit-III</li> <li>Social Contexts of Development         <ul> <li>Agencies of Socialization: Family, School,<br/>Society and their role in Child Development.</li> <li>Social and Cultural Change and their Impact<br/>on child development.</li> <li>Economic Change :Impact of urbanization<br/>and Economic change on child development</li> </ul> </li> </ul> | <ul> <li>Theory of Social &amp; Emotional Development<br/>by Erickson: Concept, Stages and<br/>Implications with special reference to Indian<br/>Context.</li> <li>Kohlberg theory of Moral Development:<br/>Concept, Stages and Implications with<br/>special reference to Indian Context.</li> <li>Unit-III</li> <li>Social Contexts of Development         <ul> <li>Agencies of Socialization: Family, School,<br/>Community and their role in Child<br/>Development.</li> <li>Parenting styles: Concept and its impact on<br/>Child Development.</li> <li>Play: Concept, characteristics and<br/>developmental functions.</li> <li>Social &amp; Cultural Change as factors<br/>influencing Child Development.</li> </ul> </li> </ul> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4. Contemporary Issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4. Contemporary Issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Marginalization &amp; Stereotyping with special reference to Gender, Social Class, Poverty.</li> <li>Impact of marginalization &amp; Stereotyping on child development and related outcomes.</li> <li>Role of media in constructing &amp; deconstructing perceptions &amp; ways of dealing with above issues.</li> </ul>                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Marginalization &amp; Stereotyping with special reference to Gender, Social Class &amp; Poverty.</li> <li>Impact of marginalization &amp; Stereotyping on child development and related outcomes.</li> <li>Role of media in constructing &amp; deconstructing perceptions &amp; ways of dealing with above issues.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                   |

#### **Practicum/ Sessionals**

#### Any one of the following:

- i. Case-study of an adolescent: Problems and Needs.
- ii. Seminar/ Presentation on educational implications of One Learning theory of child development.
- iii. Survey report on impact of socio-economic status of a family on child.
- iv. Content Analysis of Media coverage on the following:
  - a. Child labour.
  - b. Gender bias.
  - c. About Disability.
- v. Play/drama on value orientation & character building and preparing a report.
- vi. Protecting the culture and indigenous practices: Compilation of local folk songs, folk tales, riddles and toys.
- vii. Observation of children during their playtime in a rural school and preparing a report.

#### **Suggested Readings:**

Aggarwal, J.C. (1995). *Essentials of Educational Psychology*, New Delhi: Vikas Publishing House Private Limited,

Allport, G.W. (1961). Pattern and Growth in Personality: New York.

Chauhan, S.S. (2002). *Advanced Educational Psychology*. New Delhi: Vikas Publishing Gore, M.S. (1984). *Education and Modernization in India*. Jaipur:Rawat Publishers.

H.Havighurtst, R. et al.(1995). *Society and Education*. Baston: Allyen ad Bacon H.P.BWheldall, K. (2006). *Developments in Educatonal psychology*. New York:

Routledg Kamat A.R. (1985) Education and Social Change in India Bombay: Samaiya

Kamat, A.R.( 1985). *Education and Social Change in India*. Bombay: Samaiya Publishing Co.

Bhatia, K.K. (2008). Basis of Educational Psychology.Ludhiana:Kalyani Publishers.

Sharma, K.N. (1990). Systems, Theories and Modern Trends in Psychology. Agra:

Woolfork, A (2004). *Educational Psychology: Reason Education (Singapore)*. New Delhi: Indian Branch.

# Course: 2 CONTEMPORARY INDIA AND EDUCATION

|                       | Max. Marks: 100          |
|-----------------------|--------------------------|
| Time: 3 Hours         | (Theory:80,Internal: 20) |
| NOTE FOR PAPER SETTER |                          |

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

## Rationale

The course on "Contemporary India and Education" shall develop a conceptual understanding about issues of diversity, inequality and marginalization in Indian society and the implication for education with analyses of significant policy debates in Indian education.

# Learning Outcomes

After the transaction of the course, student teachers will be able to:

- understand emerging societal issues and their implication for education
- understand various provision concerning education in Indian Constitution.
- identify the concerns related to socially disadvantaged segments of the society.
- understand the policies on education before and after independence related to secondary education programmes.
- evaluate the govt. policies in the context of Universalisation of school education.

# **Course Contents**

#### Unit – I

# 1. Indian Constitution and Status of Education:

- Equality of opportunities in education: Article 28, 29, 350 and 351 and their issues.
- Education and Fundamental Rights and Duties: Article 14, 15, 16, 21-A, 30 and 51A.
- Directive Principles of state policies
- 2. Diversity in Society and Implications for Education:
  - Social diversities based on Castes, Languages, Religions and Regions,.
  - Status of Education of Socially disadvantaged segments namely SC, ST, OBC, Women, PWD'S and minorities.
  - Right to Education Act 2009: right of children to free and compulsory education

# 3. Educational Committees and Commission before independence with special reference to:

- Maculay's minutes: Its features and recommendations
- Adam's Report: features and its recommendations.
- Woods Despatch of 1854: Recommendations Merits and demerits
- Basic Scheme of Education 1937: objective, merits and demerits ; Concept & need of Nai Talim and philosophy of work education and experiential learning for rural reconstruction.

# Unit – III

- 4. Educational Committees and Commission after independence with special reference to:
  - Secondary Education Commission (1952-53): objectives and recommendations.
  - Indian Education Commission (1964-66): objectives and recommendations.
  - National policy on Education (1986) ): objectives and recommendations
  - Revised National Policy 1992
  - POA: Major features.

# Unit – IV

## 5. Contemporary Issues in Indian Education

- Universalization of school Education and DPEP, MDM, SSA, RMSA and IEDSS
- Vocationalization of Secondary Education: need and implications.
- Emotional Integration and international understanding in the context of globalization.
- Modernization: Concept, merits and demerits.

#### **Practicum/Sessionals**

#### Any one of the following:

- i. Revisiting educational policies framed for the education of different sections of the society SC/ BC/Minorities/ Women.
- ii. Prepare a report on problems of secondary education.
- iii. Review educational policies for vocational education.
- iv. Review of Policies related to universalization of school education.
- v. Case study of a school on Community Engagement, Conduct & Outcome of SMC meetings.
- vi. Panel Discussion on Gandhi's idea on Education and their relevance in present day context.
- vii. Survey on literacy levels and out of school children in any locality.

#### **Suggested Readings:**

Bhattacharya & Sriniwas. (1977). Society and Education, Calcutta: Academic Publications. Deshpande, S.(2004). Contemporary India: A sociological view. New Delhi: penguin.Dubey,

S.C. (2001). Indian Society, New Delhi: National Book trust.

Government of India (GOI) (2009). Right to education Act. New Delhi: MHRD.

Ghanta, R. & Dash, B. N. (2005). *Foundations of Education*, Hyderadbad: Neelkamal Publications.

Kashyap, S.C. (2009). *The constitution of India*, New Delhi: National Book latest edition. Mishra, B.K. & Mohanty, R.K. (2003). *Trends and issues in India Education*, Meerut: Surya publications.

Ministry of Human Resource Development of India (1986).*National policy on education*. NCERT,91964-1966). Educational and national Development: report of the education commission, New Delhi: NCERT.

Rajput, J.S. (1994). *Universalisation of Elementary Education*, New Delhi: Vikas Publishing House.

Right to education Act, (2009). Gazette. Notification of central Government.

Sachdeva, M.S. et.al (2011). *Philosophical, Sociological and Economic bases of Education*, Patiala: Twenty First Century Publications.

Shankar Mukharji. (2007). *Contemporly issues in modern Indian education*, Authors Press. Stormquist, Nelly P.(2002). *Education in a Globalised world*. New York: Rowman & Little field publishers.

Walia, J.S. (1979). *Modern Indian Education and its Problems*, Jalandhar City: Paul Publishers, Gopal Nagar.

Walia, J.S (2014). *Philosophical, Sociological and Economic Bases of Education*. Jalandhar: Ahim Paul Publishers.

http://www.gandhi-manibhawan.org/gandhicomsalive/speech8.html http://www.mkgandhi.org/speeches/speech Main.html

# Course 3 LEARNING & TEACHING

# Max. Marks :100 (Theory: 80,Internal: 20)

# NOTE FOR PAPER SETTER

Time: 3 Hours

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit.
   Long- answer type questions will carry 16 marks each.

# Rationale:

Teaching & Learning will focus on aspects of social & emotional development; self & identity, cognition & learning. It offers a site for perspective teachers to reflect on and critique notions of learning & teaching

# Learning Outcomes

After transaction of the course, student teachers will be able to:

- Understand the Concept of learning.
- Explain the strategies and paradigms of learning.
- To identify the individual differences among the learners.
- To describe the educational implications of different theories of learning.
- Understand the Concept of teaching.
- To differentiate the relation with the modalities & variables in the teaching Process.
- To describe the phases & models of teaching.
- To understand the Strategies of Teaching.

# **Course Contents**

| Existing | 5                                             | Correct | ted                                          |
|----------|-----------------------------------------------|---------|----------------------------------------------|
| Unit-I   |                                               | Unit-I  |                                              |
| 1.       | Understanding Learning                        | 1.      | Understanding Learning                       |
| •        | Learning : Concept, Nature, types of learning | •       | Learning: Concept, Nature, types of learning |
|          | & Factors influencing learning,.              |         | & Factors influencing learning,.             |
| •        | Learning strategies : Co-operative learning,  | •       | Learning strategies: Co-operative learning & |
|          | peer-tutoring & collaborative & group         |         | Collaborative learning, peer-tutoring, group |
|          | learning;                                     |         | learning.                                    |
|          | Role of Teacher & School in relation to       | •       | Role of Teacher & School in relation to      |
|          | learning strategies.                          |         | learning strategies.                         |
| •        | Individual Differences: Concept, Types,       | •       | Individual Differences: Concept, Types,      |
|          | Causes & Educational implications.            |         | Causes & Educational implications.           |
| Unit-II  |                                               | Unit-II |                                              |
| 2.       | Learning Paradigm                             | 2.      | Learning Paradigm                            |
| •        | Theories of Learning :                        | •       | Theories of Learning :                       |
|          | - Connectionism theory (Trial & Error:        |         | - Connectionism theory (Trial & Error:       |
|          | Thorndike), concept, laws of learning &       |         | Thorndike), concept, laws of learning &      |
|          | Educational Implications.                     |         | Educational Implications.                    |
|          | – Conditioning theories: Classical            |         | – Conditioning theories: Classical           |
|          | conditioning (Pavlov) & Operant               |         | conditioning (Pavlov) & Operant              |
|          | Conditioning (Skinner): Concept,              |         | Conditioning (Skinner): Concept,             |

| characteri                        | stics and              | Educatio      | onal |        | characteris                     | tics and        | Educatio        | mal  |
|-----------------------------------|------------------------|---------------|------|--------|---------------------------------|-----------------|-----------------|------|
| Implicatio                        | ons.                   |               |      |        | Implication                     |                 |                 |      |
| <ul> <li>Social cor</li> </ul>    | nstructivist theor     | ry (Vygotsky  | y &  | _      | - Social-cons                   | structivist the | ory (Vygostky   | y &  |
| Bandura):                         | 1 /                    | nature        | &    |        | Bandura):                       | Concept,        | Nature          | and  |
| Education                         | al Implications.       |               |      |        | Educationa                      | l implication   | s.              |      |
| J <b>nit-III</b>                  |                        |               | Uni  | it-III |                                 |                 |                 |      |
| 3. Understandin                   | g Teaching             |               |      | 3. U   | J <b>nderstanding</b>           | g Teaching      |                 |      |
|                                   | ncept, characte        | ristic, featu | ires | • 7    | Teaching: Con                   | cept, charac    | teristic, featu | ires |
| and levels of to                  |                        |               |      |        | nd levels of tea                |                 |                 |      |
|                                   | epts of Teach          |               |      |        | Related conce                   |                 |                 |      |
| conditioning, i                   | nstruction & inc       | loctrination) |      | С      | onditioning, in                 | struction & in  | ndoctrination)  |      |
|                                   | the Teaching           |               |      |        | ariables in                     |                 |                 |      |
|                                   | k (Instructiona        |               |      |        | earning task                    |                 |                 |      |
|                                   | naviour (Entry         |               |      |        | earning Beha                    |                 |                 |      |
|                                   | acteristics) Tead      |               |      |        | earner's chara                  |                 |                 |      |
|                                   | Personality, Tea       |               |      |        | Competence, F                   |                 |                 |      |
|                                   | ctivist approac        |               | U    |        | ocial-construc                  |                 |                 |      |
|                                   | of Bruner,             |               | &    |        | Applications                    | of Bruner       |                 | &    |
|                                   | eas in teaching).      |               |      |        | ygotsky's idea                  | as in teaching  | 5).             |      |
| Unit-IV                           |                        |               | Uni  | it-IV  |                                 | 1 675 1.        |                 |      |
| 4. Phase & Mod                    | 0                      | ·             |      |        | Phase & Mode                    |                 | 0               |      |
| • Phase of Tea<br>and Post-active | aching: Pre-acti<br>e. | ive, Interact | hve  |        | Phase of Tead<br>nd Post-active |                 | ctive, Interact | hve  |
|                                   | Teaching: Mean         |               |      |        | Addels of Te                    |                 |                 |      |
|                                   | sic Teaching N         |               | er), |        | Elements, Basi                  |                 |                 | er)  |
| ·                                 | nment Model (B         |               |      |        | Concept Attain                  |                 |                 |      |
|                                   |                        | Brain-Stormi  |      |        |                                 | trategies:      | Brain-Stormi    |      |
|                                   | ole-playing, Gai       |               | dial |        | imulation, Ro                   |                 |                 | dia  |
| teaching & En                     | richment Progra        | mme.          |      | te     | eaching & Enr                   | ichment Prog    | ramme.          |      |

#### Any one of the following

- i. Group Projects: Observation report on Teaching-learning transaction process in School teaching practice.
- ii. Seminar/ Presentation on learning theories.
- iii. Application of teaching strategies (Brain-Storming, Simulation, Role-playing, Gaming, Remedial teaching) on any current/ social issue.
- iv. Case-study on Individual differences.
- v. Application of participatory learning and action techniques of resource mapping and social mapping.

#### **Suggested Readings:**

Chauhan, S.S. (2014). "Innovations in Teaching Learning Process", Noida: Vikas Publishing House Private Ltd.

Dececco, J.P. (1988) "The Psychology of Learning and Instruction", New Delhi: Prentice Hall.

Gagne, R.M. (1977). "*The conditions of learning*", New York, Chicago: Holt, Rinchart and Winston.

Joyce, B. & Weil, M. (1992). "Models of Teaching", New Delhi, Prentice Hall.

Kulkarni, S.S. (1986). "Introduction to Educational Technology", New Delhi: oxford & IBH Publishing Company.

Pandey, K.P. (1983). "Dynamics of Teaching Behaviour", Ghaziabad: Amitash Parkashan. Pandey, K.P. (1980). "A First Course in Instructional Technology", Delhi: Amitash Parkashan.

Skinner, B.F. (1968). "The Technology of teaching", New York: Appleton Century Crofts.

Sharma, R.A. (1991). "Technology of Teaching", Meerut: R. Lall Book Depot.

Sharma, S.K. (2005). "Learning and Teaching: Learning process", Delhi: Gyan Books Private Ltd.

Srivastava, D.S. and Kumari, S. (2005). "Education: Understanding the learner", Delhi: Gyan Books Private Ltd.

Walia, J.S. (2011). "Technology of Teaching", Jalandhar: Ahim Paul Publishers.

Walia, J.S. (2012). "Teaching Learning Process", Jalandhar: Ahim Paul Publishers.

## Course 4(a)

## LANGUAGE ACROSS THE CURRICULUM

|       | Max. Marks :50                                                                                                                                             |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time: | 1.30 Hours(Theory: 40,Internal: 10)                                                                                                                        |
| NOT   | E FOR PAPER SETTER                                                                                                                                         |
| i.    | Paper setter will set five questions in all, out of which students will be required to attempt three questions.                                            |
| ii.   | Q.No 1 will be compulsory and will carry 8 marks. There will be two short - answer type Questions of 4 marks each to be selected from the entire syllabus. |
| iii.  | Two long answer type question will be set from each of the two units, out of<br>which the student will be required to attempt one question from each unit. |
|       | Long- answer type questions will carry 16 marks each.                                                                                                      |

### Rationale

The course on "Language across the curriculum" will focus on the language background of the students and know how the oral and written language can be used in the classroom to ensure optimal learning of the subject area.

### **Learning Outcomes:**

After transaction of the course, student teachers will be able to:

- Know the concept of language, multilingualism and language diversity.
- Learn about communicative approach.
- Understand the ways of integrating speaking with other skills.
- Understand the nature of classroom discourse and develop strategies for using oral language i.e. discussion, questioning etc.
- Understand the nature of reading in different subjects.
- Familiarize with different types of writing that would be useful for learners.

## **Course Contents**

| Existing |                                           | Corrected                                                     |
|----------|-------------------------------------------|---------------------------------------------------------------|
| UNIT-I   |                                           | UNIT-I                                                        |
| 1.       | Language : Meaning, nature and            | 6. Language                                                   |
|          | linguistic principles                     | <ul> <li>Concept of Language: Meaning &amp;</li> </ul>        |
| 2.       | Functions of language:                    | nature of language                                            |
|          | • Communicative functions of              | <ul> <li>Linguistic principles: Process of</li> </ul>         |
|          | language & its basic assumptions          | acquisition of language                                       |
|          | • Learning language and learning          | 7. Language in Curriculum                                     |
|          | through language                          | <ul> <li>Functions of language &amp; its basic</li> </ul>     |
| 3.       | Development of Listening skill:           | assumptions: Receptive & expressive                           |
|          | • Characteristics of good listening       | functions                                                     |
|          | material,                                 | • Multilingualism and language diversity                      |
|          | • Different kind of listening             | in the classroom                                              |
|          | materials and activities.                 | <ul> <li>Relationship of language with society</li> </ul>     |
| 4.       | Development of Speaking skill:            | UNIT-II                                                       |
|          | • Need and objectives of                  | 3. Listening & Speaking skill                                 |
|          | developing speaking skills,               | <ul> <li>Different kinds of listening material and</li> </ul> |
|          | • Techniques of learning speaking         | activities & techniques of learning                           |
|          | skills-conversational/oral skills,        | • Listening & speaking skill as tool of                       |
|          | • Importance of group work in             | learning: conversational/oral skill; discussion;              |
|          | developing oral work and role of teacher. | questioning etc.                                              |
| UNIT-I   | I                                         |                                                               |

| 5. Development of Reading skill:        | 4. Reading & Writing skill              |
|-----------------------------------------|-----------------------------------------|
| • Meaning, need and importance          | • Concept, need & importance of reading |
| of developing reading skill,            | & writing skill                         |
| • Reading mechanics and process         | • Reading & Writing skill as tool of    |
| of reading.                             | learning:                               |
| • Stages of reading, types of           | i. Reading mechanics and process of     |
| reading, reading problems of learners.  | reading                                 |
| 6. Development of Writing skill:        | ii. Characteristics & techniques of     |
| • Types of writing skill & writing      | good writing                            |
| scripts                                 |                                         |
| • Importance and need of                |                                         |
| developing writing skill,               |                                         |
| Characteristics of good                 |                                         |
| handwriting and techniques of improving |                                         |
| handwriting.                            |                                         |
| 7. Language in Education and            |                                         |
| Curriculum                              |                                         |

#### **Practicum/Sessionals**

| Existing             |                                                                                                                | Corre             | cted                                                                                                                                                                                                                                                                                      |
|----------------------|----------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Practicum/Sessionals |                                                                                                                |                   | Any one of the following:                                                                                                                                                                                                                                                                 |
|                      | Any one of the following:                                                                                      | i.                | Subject wise group discussion,                                                                                                                                                                                                                                                            |
| i.                   | Subject wise group discussion, preparation of report and presentation                                          |                   | preparation of report and presentation before the group.                                                                                                                                                                                                                                  |
| ii.                  | before the group.<br>Prepare and present a report on                                                           | ii.               | Prepare a Diagnostic test to identify<br>reading and writing problems of the                                                                                                                                                                                                              |
|                      | Introduction of yourself to other in<br>different situations i.e. facing<br>interviews, in the class room etc. | iii.<br>iv.<br>v. | school students.<br>Prepare a representative sample of<br>advocacy on rural issues / problems<br>Letter writing, Notice, email<br>messages representation on local<br>issues and local challenges.<br>Reflections on Gandhian thoughts :<br>Panel discussion and preparation of<br>report |

#### **Suggested Readings:**

Agnihotri, R.K. (1995). *Multilingualism as a classroom resource*. In K. Heugh, A. Siegruhn, & P. Pluddemann (Eds.), *Multilingual Education for South Africa* (pp. 3-7), Heinemann Education Groups.

Freedman, S.W. & Dyson, A.H. (2003). *Handbook of Research on Teaching English language Arts*. Lawreuel Erlbaum Associates Inclave, USA: New Jersey.

Government of india. (1986). National Policy on Education. GOI.

Grellet, F. (1981) *Developing Reading Skills: A practical guide to Reading Comprehension exercises.* Cambridge University Press.

Kumar, Krishna. (2007). The child's language and the Teacher. New Delhi: National Book.

Mangal, U.(2010). Teaching of Hindi, New Delhi: Arya Book Depot.

National Curriculum Framework (2005), New Delhi: NCERT.

Sachdeva, M.S. (2013). Teaching of English. Patiala: Twenty First Century Publications.

Safaya, Raghunath. Methods of Teaching of Hindi. Jalandhar : Punjab Book Depot.

Sinha, S. (2009). *Roseublatt's Theory of Reading*. Explaining Literature contemporary education dialogue. 6(2), PP223-237.

Sullivan, M. (2008). *Lessons for Guided writing*. scholastic. National curriculum framework. (2005).

www.ncert.nic.in.

http://www.usingenglish.com/handouts/

## Course 4(b)

## UNDERSTANDING DISCIPLINES AND SUBJECTS

Time: 1.30 Hours

Max. Marks :50 (Theory: 40,Internal: 10)

## NOTE FOR PAPER SETTER

- i. Paper setter will set five questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 8 marks. There will be two short answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the two units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

## **Learning Outcomes**

| Existing                                                                                                                                                                                                                                                                                                                                                                                            | Corrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>After the transaction of the course, student teachers will be able to:</li> <li>Analyse and evaluate changes in the perspectives in school curriculum, text books and syllabus on socio-cultural basis.</li> <li>Compare and evaluate the perspective of NCERT on the required changes in knowledge base in school subjects-Mathematics, science, languages and social science.</li> </ul> | <ul> <li>After the transaction of the course, student teachers will be able to:</li> <li>Describe the characteristics and nature of discipline</li> <li>Understand emergence of discipline and subjects in philosophical, social and political contexts</li> <li>Understand theory of subject content, selection of content, curriculum, syllabus and text books</li> <li>Paradigm shifts in the nature of disciplines: Mathematics, science, languages and social science.</li> </ul> |

## **Course Content**

| Existing                                                                                                                                                                                                                                                                                                                                   | Corrected                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit-I                                                                                                                                                                                                                                                                                                                                     | Unit-I                                                                                                                                                                                                                                  |
| <ol> <li>Socio-cultural perspectives of disciples<br/>and school subjects (theory of school<br/>content)</li> <li>Evolution of socio –cultural perspectives<br/>in school level knowledge base;</li> <li>Social history of school contents</li> <li>Emergence of school subjects and<br/>disciplines from social, political and</li> </ol> | <ul> <li>Meaning, nature and types of discipline.</li> <li>Role of disciplinary knowledge in the school curriculum.</li> <li>Emergence of school subjects and disciplines from philosophical, social and political contexts;</li> </ul> |
| <ul> <li>intellectual contexts;</li> <li>History of emergence of methods of methods of teaching;</li> <li>NCERT Position paper on change in curriculum, syllabus and textbooks.</li> <li>Unit-II</li> <li>Changes in theory of content in school</li> </ul>                                                                                | <ul> <li>2. Disciplinary Knowledge: Related Issues</li> <li>Difference and relationship between curriculum &amp; syllabus;</li> <li>A criteria for selection of textbooks, magazine &amp; journals as source of</li> </ul>              |

| <ul> <li>education after independence in India</li> <li>Needed changes in discipline –oriented school textbooks;</li> <li>Steps needed to redesign text books for school education <ul> <li>a) Focus on drawing upon the experiences of children;</li> <li>b) Focus on the diverse community background of students;</li> <li>c) Focus on natural curiosities of students Focus on learner – centred methods</li> <li>of teaching-constructivist approach;</li> <li>Paradigm shift in teaching of science in schools</li> <li>Paradigm shift in teaching of science in schools</li> <li>Paradigm shift in teaching of Mathematics in schools</li> </ul> </li> </ul> | <ul> <li>Role of different agencies and their functions in shaping the syllabus and text books at national &amp; state level.</li> <li>Paradigm shifts in the nature of disciplines: Social Science, Mathematics, Science, Language</li> </ul>                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| languages in schools Existing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Corrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Practimum/ Sessional         Any one of the following:         i.       Critical analysis of a curriculum/ syllabus of particular school subjects.         ii.       Evaluate a text book of secondary classes with reference to its adequacy and in achieving expected learning outcome.         iii.       Review of text book in the light of connecting knowledge to life outside the school.         iv.       Readings and group discussions on NCF-2005, NCFTE-2010, RTE-2009 |

## **Suggested Readings:**

Bonrs, J.A. (2001). Cultural diversity and Education. Foundations curriculum and teaching (4<sup>th</sup> Ed) Boston: Allyn and Bacon.

Deng, Z (2013) school subjects and academic disciplines. In A. Luke , A. Woods, & Wer (Eds.), Curriculum syllabus design and equity: A primer and model. Routledge.

Krishna, A. (2009). What are Academic Disciplines? University of Southampton,NCRM E Prints Respositiry *eprints,ncrm.ac.uk*/783/1/what\_are\_academic\_disciplines.pdf.

NCERT(2006). Position paper national focus group on curriculum, syllabus and textbooks. New Delhi: author. Available from

http://www.ncert.nic.in/new\_ncert/ncert/rightside/links/pdf/focus\_group/cst\_final.pdf

NCERT (2006). Position paper national focus group on teaching of social sciences. NewDelhi:AuthorRetrievedonApril21,2015fromhttp://www.ncert.nic.in/new\_ncert/ncert/rightside/links/pdf/focus\_group/social\_sciencel.pdf

NCERT(2006). Position paper national focus group on teaching of Indian languages. New Delhi: Author Available from

http://www.ncert.nic.in/new\_ncert/ncert/rightside/links/pdf/focus\_group/Indian\_Languages.p df

NCERT (2006). Position paper national focus group on teaching of mathematics. New Delhi: Author Available from

http://www.ncert.nic.in/new\_ncert/ncert/rightside/links/pdf/focus\_group/math.pdf

NCERT(2006). Position paper national focus group on teaching of science. New deli: Author.

Available from

http://www.ncert.nic.in/new\_ncert/ncert/rightside/links/pdf/focus\_group/science.pdf

# Course-5 GENDER, SCHOOL AND SOCIETY

Time: 1.30 Hours

Max. Marks :50 (Theory: 40,Internal: 10)

## NOTE FOR PAPER SETTER

- i. Paper setter will set five questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 8 marks. There will be two short answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the two units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

## Rationale

The course on "Gender, School and Society gendered roles in society, through a variety of institutions such as family, caste, religion, culture, the media and popular culture (films, advertisements, songs etc.), law and the state.

## Learning Outcomes

After the transaction of the course, student teachers will be able to:

- Understand the basic terms, concepts used in gender studies.
- To describe equity and equality in relation with different aspects of society.
- To understand psychological and sociological perspectives of sex and gender.
- To understand paradigm shift under gender studies.
- To become aware about gender inequalities in school.
- To explain the issues related to gender.

| Existing           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Corrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.<br>•<br>2.<br>• | Unit – I<br>Gender Studies: Paradigm Shift<br>Meaning of gender equality, need &<br>importance<br>Paradigm shift from women studies from<br>gender studies: Some land marks from social<br>reform 19 <sup>th</sup> to 21 <sup>st</sup> studies<br>Gender Issues<br>Concept of gender: Issue of muscularity and<br>familiarity<br>Equity and equality: Psychological and<br>sociological perspective<br>Emergence of gender specific roles, cross<br>cultural perspective | <ul> <li>Unit – I</li> <li>Gender Studies: Paradigm Shift</li> <li>Concept of gender: Issue of masculinity and femininity</li> <li>Paradigm shift from women studies from gender studies: Some land marks from social reform 19<sup>th</sup> to 21<sup>st</sup> century</li> <li>Social construction of gender</li> <li>Philosophical and sociological theories of gender</li> <li>Gender identity, family, media gender role and stereo types</li> <li>Social construction of gender during late childhood and adolescence</li> </ul> |
| 3.<br>change       | Unit – II<br>Gender Inequalities and strategies for<br>Gender Inequality in School: School<br>curriculum, Text book, classroom processes,                                                                                                                                                                                                                                                                                                                                | Unit – II<br>3. Gender Issues<br>• Equity and equality: Psychological and<br>sociological perspective<br>• Emergence of gender specific roles, cross                                                                                                                                                                                                                                                                                                                                                                                   |

| <ul> <li>and student teacher interaction</li> <li>Strategies for change: policy and<br/>management in the school</li> <li>Social construction of gender</li> <li>Philosophical and sociological theories of<br/>gender</li> <li>Gender identity, family, media gender role<br/>and stereo types</li> <li>Social construction of gender during late<br/>childhood and adolescence</li> </ul> | <ul> <li>cultural perspective</li> <li>Need and Importance of Gender Equality</li> <li>Gender Inequalities and strategies for change</li> <li>Gender Inequality in School: School curriculum, Text book, classroom processes, and student teacher interaction</li> <li>Strategies for change: policy and management in the school</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### Practicum/Sessionals

### Any one of the following

- i. Identify at least two students (Boys/Girls) having gender bias attitude and develop strategies for gender sensitization.
- ii. Analysis of selected ideas, trends, and problems in the study of gender across academic disciplines.
- iii. Survey on Gender Equality-Status of women and girls in the family and community.
- iv. Preparing sensitization material and creating awareness on Gender issues with the help of students in a village.
- v. Poster making on Gender Equality and Empowerment.
- vi. Observation of practice of inequality between male and female students in a rural school and report writing.

#### **Suggested readings:**

Bordia, A. (2007). Education for gender equity: The Lok Jumbish experience, p 313-329

Chatterji, S. A. (1993). The Indian Women in perspective, New Delhi: Vikas Publishing

Devendra, K. (1994). Changing status of women in India, New Delhi: Vikas Publishing House

Gupta, A. K. (1986). Women and Society, New Delhi: Sterling Publications

Ministry of Education (1959). Report of National Committee of Women's Education. New Delhi: ME

Ruhela, S. (1988). Understanding the Indian Women today; Delhi: Indian Publishers Distributors

Thakur, H. K. (1988). *Women and Development planning* (Case study of Nauhatta Block), New Delhi: Vikas Publishing House

## **Course-6 & 7 Pedagogy of Teaching Subjects**

## **Group-I: Pedagogy of Sciences**

## (i) PEDAGOGY OF SCIENCE

## Time: 3 Hours

Max. Marks :100 (Theory: 80,Internal: 20)

## NOTE FOR PAPER SETTER

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short -answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

### **Learning Outcomes:**

After completion of this course the students teacher will be able to:

- understand the Nature & Scope of Science.
- understand Aim and objectives of Teaching Science.
- adopt suitable approaches, methods, different resources to teach Science.
- appreciate the importance of planning for Science.
- applying e-sources in Science.
- develop a skill of conducting experiments to demonstrate Science concepts.
- develop a skill of planning lesson plan based on various approaches.
- understand the concept of continuous and comprehensive evaluation.

### **COURSE CONTENTS**

### UNIT – I

#### 1. Nature & Scope of Science

- Meaning, Nature and Scope with reference to Science & its branches.
- History of science and contribution of Indian Scientists.
- Need & importance Science in secondary school & its values in the present context.
- Correlation of science with other school subjects
- Aim & objectives of Science.
- Bloom's Taxonomy of instructional objectives.
- Science in the service of human welfare Agriculture, Medicine, Industry & Conservation of Environment.

## 2. Content & Its Pedagogical Analysis

- Content
  - Matter in our Surroundings
  - Atom & Molecules
  - Motion
  - Force
  - Gravitation
  - Work and Energy
  - Tissues
  - Diversity in Living Organism
  - Life Process
  - Reproduction
  - Micro-organism

## • Pedagogical Analysis :

Following points should be followed for pedagogical analysis on topics covered in the syllabus

a)Identification of concept, b)Listing behavioural outcomes, c)Listing activities and experiments, d)Listing evaluation techniques

• Concept, Need & Importance of Unit Planning & Lesson Planning

## UNIT – III

## 3. Teaching Learning Resources & Procedures

- Meaning, Principles & Steps of Curriculum construction in Science
- Critical Analysis of Present Secondary School Text-Book with Reference to Haryana State
  - Teaching Skills:-
    - -Skill of Introducing the Lesson
    - -Skill of Illustrate with the help of Examples
    - -Skill of Explaining
    - -Skill of Stimulus Variation
    - -Skill of Black-Board Writing
  - Science Laboratory Importance, Planning, Designing, Equipping, Maintenance of Science equipment & Records
  - Audio-Visual Aids: Chart, Models, Film Strip, Radio, Projectors.
  - E-learning Resources Use of Multimedia & Computers, PPT, Internet, Website, Teleconferences.
  - Improvised Apparatus Meaning, Importance & Steps
  - Professional Growth of Science Teacher in Service Programme, Orientation Programme, Refresher Courses, Seminars, Symposium, Workshop, Science Fair,

Science Exhibition, Projects.

## UNIT – IV

## 4. APPROACHES AND EVALUATION IN TEACHING

- Science Inductive deductive Approach, Critical Inquiry Approach, Maier's Problem Solving Approach.
- Methods of Teaching Science
  - Lecture-cum-Demonstration
  - Project Method
  - Laboratory Method
- Continuous & Comprehensive Evaluation (CCE) in Science
- Construction & Use of Achievement Test in Science
- Construction & Use of Diagnostic Test in Science, Preparation of Diagnostic Chart,

Identification of Difficulties & Remedial Teaching.

• Meaning & Advantages of Task Analysis and Question Bank.

## Praticum/Sessional

### Any one of the following

- i. Development of Five Demonstration Experiments on the Topics Covered in the Syllabus from Science Test-books at the Lower Secondary Level in Haryana State.
- ii. Improvisation of Apparatus/Equipment
- iii. Seminar Presentation on any Topics given in the Syllabus.
- iv. Celebration of science week in a village school and report writing

v. Conducting asurvey on health concerns in a village

### Suggested Readings

Adams, G.S. (1964). Measurement & Evaluation in Education, Psychology & Guidance, New York: Halt, Rinehart & Winston.

Aggarwal, J.C. (2005). Essential of Examination System. New Delhi: Vikas Publishing House Pvt. Ltd.

Allen, D.W. and Eve, A.W. (1968). Micro Teaching in Theory to Practices. Vol. 70, pp. 181-185.

Bloom, B.S. et al. (1956). Taxonomy of Educational Objectives: The Cognitive Domain, New York: Longum's Green.

CBSE (2009). Teacher Manual on CCE. New Delhi: CBSE.

Das, R.C. (1985). Science Teaching in Schools, New Delhi.Sterling Publication Private Ltd.,

Harrow, A.J.A. (1972). Taxonomy of Motor Domain, New York: Mckay.

Kherwadkal, Anjali (2003). Teaching of Chemistry by Modern Method, New Delhi Sarup & Sons..

Kilpatrick, W.H. (1987). The Project Method, Columbia. Teachers College Record.

Krathwohl, D.R., Bloom, B.S. and Maria, B.B. (1964). Taxonomy of Educational Objectives,

Hand-book II, Affective Domain, New York: David Mckay.

Mager, R.F. (1962). Preparing Instructional Objectives, California: Fearon.

Miller, David F. and Blaydes (1962). Methods & Materials for Teaching Biological Science, New York McGraw Hill Book Co.,

Sharma, R.C. (1995). Modern Science & Teaching, New Delhi.

Dhanpat Rai & Sons. Siddique and SIddique (1998), Teaching of Science, New Delhi. Doaba House,

Vishwanth, Pandey and Kisor Valicha (1984). Science Technology & Development, New Delhi: McMillan India Ltd.

Venkataih, S. (2001). Science Education in 21st Century, New Delhi Anmol Publishers,.

Wadhwa, Shalni (2001). Modern Methods of Teaching Physics. New Delhi:Saroop & Sons.

## **Group-I: Pedagogy of Sciences**

## (ii) PEDAGOGY OF BIOLOGICAL SCIENCE

## Time: 3 Hours

Max. Marks :100 (Theory: 80,Internal: 20)

## NOTE FOR PAPER SETTER

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

## **LEARNING OUTCOMES**

After completion of this course the students teacher will be able to :

- Understand Nature & Scope of Biological Science
- Understand objectives of Teaching biological Science
- Adopt suitable approaches, methods, different resources to teach biological science.
- Appreciate the importance of planning and organizing the extension activities.
- Applying e-resources in teaching biological science.
- Develop a skill of conducting experiments to demonstrate biological concepts.
- Develop a skill of lesson planning based on various approaches.
- Understand the concept of continues and comprehensive evaluation.\

## **COURSE CONTENTS**

## UNIT – I

# 1. NATURE AND SCOPE OF BIOLOGICAL SCIENCE

- Meaning, Nature and Scope with reference to Biological science and its branches.
- History of Biological science and contribution of Indian Biologist.
- Need and Importance of Biological in secondary schools and its values in the present context.
- Correlation of Biological science with other school subject.
- Aim and Objectives of Teaching Biological science.
- Bloom's Taxonomy of educational objectives.
- Formulation of specific objectives in Behavioural terms.
- Biology in the service of human welfare-Agriculture, Medicine, Industry & Conservation of Environment.

# UNIT – II

2. CONTENT AND ITS PEDAGOGICAL ANALYSIS

# • Content

- Tissues
- Diversity in living organism
- Diseases
- Natural Resources
- Improvement in Food
- Life Process
- Reproduction
- Heredity
- Control and Co-ordination
- Micro-organism
- Photosynthesis
- **Pedagogical Analysis :** Following points should be followed for pedagogical analysis on topics covered in the syllabus
  - a) Identification of concept) Listing behavioural outcomes) Listing activities and experiments, d) Listing evaluation techniques.
- Teaching Skills
  - Skill of introducing the lesson
  - Skill of illustrate with the help of examples.
  - Skill of explaining
  - Skill of stimulus variation
  - Skill of using black board
- Concept, Need and Importance of unit planning and lesson planning.

# UNIT – III

# 3. TEACHING LEARNING RESOURCES AND PROCESSES

- Meaning, Principles and steps of curriculum construction in Biological Sciences.
- Critical Analysis of Present secondary school text book with reference to Haryana State.
- Biological Science Laboratory. Impotence, Planning, Designing, equipping, maintenance of biological equipment and records.
- Visual Aids: Chart, Model, Specimen.
- E-learning Resources: Use of Multimedia and Computers in Biological Science, e-learning, PPT, Internet, Website, Teleconferencing.
- Professional growth of Biological science teacher in service programme, orientation programme, refresher courses, seminar, symposium, workshop, projects, science museum, science fair and science exhibition.

# UNIT – IV

# 4. APPROACHES AND EVALUATION IN TEACHING

- Approaches of Teaching Biological Science.
  - Inductive deductive approach
  - Critical inquiry approach
  - Maier's Problem solving approach

10(374)

- Methods of Teaching Biological Science;
  - Lecture cum demonstration method
  - Project Method
  - Laboratory method
- Continuous and Comprehensive Evaluation (CCE) in Biological Science.
- Construction and use of achievement test in Biological Science.
- Construct and Use of diagnostic Test in Biological science, preparation of diagnostic chart, identification of difficulties and remedial teaching.
- Task Analysis, meaning and advantages
- Question Bank, meaning and advantages

### **Praticum/Sessional**

### Any one of the following

- i. Prepare a working model on Biological secondary school standard topics.
- ii. Collect and preserve any five biological specimen and write a report
- iii. Critically analyse secondary school state syllabus science text-book.
- iv. Preparation of Biological science wall magazine in every month
- v. A case study of any senior secondary lab and prepare report
- vi. Visit a farm to study and participate in organic farming operations.
- vii. Waste audit and composting to learn the important aspects of resource conservation activity.
- viii. Water audit and budgeting with water harvesting to learn the important aspects of conservation activity.
- ix. A survey report on garbage disposal practices in a village.

#### Suggested Readings:

Adams G.S., (1964). *Measurement and evaluation in education, psychology and guidance*, New York : Halt, Rinehart and Winston.

Aggarwal, J.C. (2005). *Essentials of examination system*. New Delhi : Vikas Publishing house Pvt. Ltd.

Allen, D.W, and Eve, A.W. (1968). *Microteaching in theory to practices* Vd. 70, pp. 181-185.

Ameetha P (2004). *Methods of Teaching Biological Science*. New Delhi :Neelkamal Publications,

Bloom, B.S. et. Al. (1956). *Taxonomy of Educational objectives : the cognitive domain*, New York: Lagan's Green.

CBSE (2009). Teacher's manual on CCE. New Delhi : CBSE.

Das, R.C. (1985). *Science teaching in schools*. New Delhi: Sterling Publication Private Ltd.

Green T.N. (1971). Teaching of Biology in tropical schools, Oxford University Press London.

Harrow, A.J.A. (1972); Taxonomy of Motor Domain, New York : McKay.

Karmer, L.M.J. (1975). Teaching of Life Science, McMillan India Ltd. New Delhi. Kilpatrick, W.H. (1918); the project method, Columbia: Teachers College Record.

Krathwohl, D.R., Bloom B.S. and Maria B.B. (1964) Taxonomy of Educational objectives, Handbook II, Affective Domain, New York : David McKay.

Mager, R.F. (1962); Preparing Instructional objectives, California : Fearon.

Miller, David F. and Blaydes (1962); Methods and materials for teaching Biological Science, M.C. Grow Hill Book Co; New York.

Sharma, R.C. (1995). Modern Science & Teaching, Dhanpat Rai and Sons, New Delhi.

Sood J.K. (1987). Teaching of Life Science, Kholi Publisher, Chandigarh.

Vishwanth, Pandeny & Kishore, Valicha (1984). Science Technology and Development, Mc Millan Indian Ltd. New Delhi.

## **Group-I: Pedagogy of Sciences**

### (iii) PEDAGOGY OF COMPUTER SCIENCE

| Time: 3 Hours | Max. Marks: 100            |
|---------------|----------------------------|
|               | (Theory: 80, Internal: 20) |

## NOTE FOR PAPER SETTER

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short -answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

### **Learning Outcomes**

After the transaction of the course, student teachers will be able to:

- emphasize the need and importance of computer science as a subject.
- acquaint with the aims and objectives of teaching computer science in secondary and higher secondary schools and help them to plan learning activities according to those objectives.
- perform Pedagogical Analysis of various concepts in computer science.
- underline the need and importance of lesson planning and unit planning.
- understand the principles of curriculum construction.
- discuss the importance of computer textbooks.
- teach the proper computer laboratory planning and managing
- acquire skills relating to planning lessons and presenting them effectively.
- familiarize with the various methods that can be employed for the teaching of computer science.
- develop competencies and skill for effective evaluation in computer science.

### **COURSE CONTENT**

### Unit-I

### 1. Nature and Scope

- Meaning, Nature and Scope of Computer Science.
- Significance of Computer Science in school curriculum.
- Place of Computer Science at different stages of school.
- Aims and Objectives of Teaching Computer Science at different stages of school.
- Blooms Taxonomy of educational objectives.
- Formulation of specific objectives in behavioural terms.

## Unit-II

- 2. Content and Pedagogical Analysis: Concept, need and importance of Pedagogical Analysis.
  - Content:

- Computer System
- Computer Software
- Networking
- MS-Windows
- MS-Office
- Operating System

# • Pedagogical Analysis:

Following point should be followed for pedagogical analysis:-

- a) Identification of concept.
- b) Enlisting behavioural outcomes.
- c) Enlisting activities and experiments.
- d) Enlisting evaluation techniques.
- Lesson Planning: Concept, Need and Importance of unit planning and lesson planning

## Unit-III

## 3. Teaching Learning Resources and Processes

- Development and designing of computer science curriculum.
- Development of text-books
- Development of self instructional material
- Designing and managing Computer Laboratory.

## **Teaching Skills**

- Skill of Introducing the lesson
- Skill of Probing Questions
- Skill of illustration with examples.
- Skill of Stimulus Variations
- Skill of Explaining

## Unit-IV

## 4. Approaches and Evaluation

- Teaching Methods:
- Lecture-cum-Demonstration method.
- Project method.
- Computer Assisted Instruction method.
- Laboratory Method.
- Mobile learning, and Online learning
- Evaluation
- Meaning and importance of evaluation
- Types and techniques
- Achievement Test
- Characteristics of a good test in Computer Science.
- Preparing, reporting and evaluating the results.
- Comprehensive and Continuous Evaluation.

## **Practicum/ Sessional**

### Do Any one of the following:

- i. Critical analysis of course content of Computer science of secondary school curriculum.
- ii. Prepare an achievement test of course content of Computer science of secondary school curriculum.
- iii. Internet based project: Form a group on internet and share educational information with atleast one link to audio/video material and prepare the project using ppt.
- iv. Power Point Presentation on Gandhian ideas and thoughts.
- v. Generating awareness regarding Digital India Initiative among rural community.

## **Suggested Readings**

Agarwal J. C. (2006). *Essential of educational technology, Teaching and learning*. New Delhi: Vikas Publishing House Pvt. Ltd.

Sharma, R. A. (2008). *Technological foundation of education*. Meerut: R.Lall Books Depot.

Sharma, R. N. (2008). *Principles and Techniques of Education*. Delhi: Surjeet Publications.

Singh, Arjinder. Teaching of Computer Education. Jalandhar: Modern Publisher

Sinha, P.K. & Sinha, P. *Computer Fundamentals*, BPB Singh,Y. K. (2009). *Teaching Practice*. New Delhi: APH Publishing Corporation.

## **Group-I: Pedagogy of Sciences**

### (iv) PEDAGOGY OF HOME SCIENCE

Time: 3 Hours

Max. Marks :100 (Theory: 80,Internal: 20)

## NOTE FOR PAPER SETTER

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short -answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

Learning Outcomes : After completion of this course the students teacher will be able to :

- Understand Nature & Scope of Home Science
- Understand objectives of Teaching Home Science
- Adopt suitable approaches, methods, different resources to teach biological science.
- Appreciate the importance of planning and organizing extension activities.
- Applying e-resources in teaching Home Science.
- Develop skills of lesson planning based on various approaches.
- Understand the concept of continues and comprehensive evaluation.

### UNIT – I

#### 1. Concept, Objectives and Importance

- Meaning, Nature and Scope of Home Science
- Need and Importance of Home science in secondary schools in the present context
- Correlation of Home Science with other school subjects
- Aims and objectives of teaching Home Science
- Blooms Taxonomy of educational objectives
- Formulation of specific objectives in Behavioural terms.

## UNIT – II

#### 2. Content, Pedagogical Analysis and Teaching Skills

- Content
  - Food, Nutrition and Health
  - Child Care
  - Fiber and Fabric
  - Home Management
  - Health and sanitation
- Pedagogical Analysis :

Following points should be followed for pedagogical analysis on topics

- a) Identification of concept
- b) Listing behavioural outcomes
- c) Listing activities and experiments.
- d) Listing evaluation techniques.
- Teaching Skills
  - Skill of introducing the lesson
  - Skill of illustrate with the help of examples.
  - Skill of explaining
  - Skill of stimulus variation
  - Skill of using black board
- Concept, Need and Importance of unit planning and lesson planning.

### UNIT – III

### 3. TEACHING LEARNING RESOURCES AND PROCESSES

- Meaning, Principles and steps of curriculum construction in Home Sciences.
- Development and Characteristics of a good Textbooks. Critical analysis of current Home Science Text Books in secondary schools of Haryana State.
- Planning of space and equipment of Home Science Laboratory
- Classification and importance of Teaching Aids, (Visual Aids :- Chart, Model, Specimen).
- E-learning Resources: Use of Multimedia and Computers in Home Science, e-learning, PPT, Internet.
- Qualities of a good Home Science Teacher. Professional growth of Home Science Teacher

#### UNIT – IV

### 4. APPROACHES, Methods AND EVALUATION IN TEACHING

#### • Methods of Teaching:

Lecture-cum- Demonstration; Project Method; Discussion Method; Practical and Individual Method

### • Activity Based Learning:

Learning by doing : Experimentation; observation ; games, quiz; puzzles; Field visits and excursions

- Approaches of Teaching Home Science : Inductive deductive approach ;Maier's Problem solving approach
- Continuous and Comprehensive Evaluation (CCE) in Biological Science.
- Construction and use of achievement test and diagnostic test in Home Science.
- Task Analysis, meaning and advantages
- Question Bank, meaning and advantages

### **PRACTICUM/SESSIONALS:**

Any one of the following:

- i. A course of ten practical by the Pupil-teacher in the following:
  - Cooking
  - Stitching/Embroidery/knitting

- Home Management
- ii. Preparation of online test.
- iii. Preparation of objective type test, short answer type test, essay type test
- iv. Organize a quiz competition in Home Science and analyze the response of students
- v. Plan a field visit of Home Science students for studying and reporting the health habits and health concerns of school students of village.
- vi. Prepare one remedial Teaching Programme for a Home Science student
- vii. Writing of project report in extension education.
- viii. Organise a handicrafts fair in a village.

### SUGGESTED READING

Chandra, Shah & Joshi. *Fundamental of Teaching of Home Science*, New Delhi: Sterling Publishers Pvt. Ltd

Dass & Ray. Teaching of Home Science, New Delhi: Sterling Publishers Pvt. Ltd

Devdass, R. P. Method of Teaching of Home Science, New Delhi: NCERT.

Devdass, R. P. *Teaching of Home Science in Secondary School*. A handbook of Suggestion for Teachers, New Delhi: NCERT

Spafford, I. *Fundamental in Teaching of Home Science*, New York: John Wiley & Sons CBSE (2009); *Teacher's manual on CCE*. New Delhi : CBSE

## **Group-I: Pedagogy of Sciences**

## (v) PEDAGOGY OF PHYSICAL SCIENCE

Time: 3 Hours

Max. Marks :100 (Theory: 80,Internal: 20)

## NOTE FOR PAPER SETTER

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short -answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

### Learning Outcomes:

After completion of this course the student teacher will be able to:

- Understand the Nature & Scope of Physical Science.
- Understand Aim and objectives of Teaching Physical Science.
- Adopt suitable approaches, methods, different resources to teach Physical Science.
- Appreciate the importance of planning for Teaching Physical Science.
- Applying e-sources in Teaching Physical Science.
- Develop a skill of conducting experiments to demonstrate Physical Science concepts.
- Develop a skill of planning lesson plan based on various approaches.
- Understand the concept of continuous and comprehensive evaluation.

## **COURSE CONTENTS**

### UNIT – I

| Existing                                                                                                                                                                                                                                                                                                                                                                  | Corrected                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Existing         1. NATURE AND SCOPE OF<br>BIOLOGICAL SCIENCE         • Meaning, Nature and Scope with<br>reference to Physical Science & its<br>branches.         • History of Physical science and<br>contribution of Indian Scientists in the<br>field of Physics & Chemistry.         • Need & importance Physical Science in<br>secondary school & its values in the | <ul> <li>Corrected</li> <li>1. NATURE AND SCOPE OF PHYSICAL<br/>SCIENCE <ul> <li>Meaning, Nature and Scope with<br/>reference to Physical Science &amp; its<br/>branches.</li> <li>History of Physical science and<br/>contribution of Indian Scientists in the<br/>field of Physics &amp; Chemistry.</li> <li>Need &amp; importance Physical Science in<br/>secondary school &amp; its values in the</li> </ul> </li> </ul> |
| <ul> <li>present context.</li> <li>Correlation of Physical science with other school subjects.</li> <li>Aim &amp; objectives of Physical Science.</li> <li>Bloom's Taxonomy of instructional objectives.</li> </ul>                                                                                                                                                       | <ul> <li>present context.</li> <li>Correlation of Physical science with other school subjects.</li> <li>Aim &amp; objectives of Physical Science.</li> <li>Bloom's Taxonomy of instructional objectives.</li> </ul>                                                                                                                                                                                                          |

- Physical Science in the service of human welfare - Agriculture, Medicine, Industry & Conservation of Environment. UNIT – II 2. CONTENT AND ITS PEDAGOGICAL ANALYSIS Content - Matter in our Surroundings Atom & Molecules Motion Force & Law of Motion Gravitation Work and Energy \_ Sound \_\_\_\_ Acid Bases & Salt Metal & Non-metal Light Electricity • Pedagogical Analysis - Following points should be used for Pedagogical Analysis. Following points should be followed for pedagogical analysis on topics covered in the syllabus • Identification of concept ,b)Listing behavioural outcomes ,c)Listing activities and experiments, d)Listing evaluation techniques • Concept, Need & Importance of Unit Planning & Lesson Planning UNIT – III 3. TEACHING LEARNING RESOURCES AND PROCESSES Meaning, Principles Steps ٠ & of Curriculum construction in Physical Science Critical Analysis of Present Secondary School Text-Book with Reference to Haryana State Teaching Skills:-Skill of Introducing the Lesson \_ Skill of Illustrate with the help of \_ Examples Skill of Explaining \_ Skill of Stimulus Variation Skill of Black-Board Writing • Physical Science Laboratory Importance, Planning, Designing, Equipping, Maintenance of Physical Science equipment & Records
  - Audio-Visual Aids: Chart, Models, Film Strip, Radio, Projectors.

• E-learning Resources – Use of Multimedia & Computers, PPT, Internet, Website,

Teleconferences.

• Improvised Apparatus – Meaning, Importance & Steps

• Professional Growth of Physical Science Teacher in Service Programme, Orientation Programme, Refresher Courses, Seminars, Symposium, Workshop, Science Fair, Science Exhibition, Projects.  Physical Science in the service of human welfare – Agriculture, Medicine, Industry & Conservation of Environment.

UNIT – II

#### 2. CONTENT AND ITS PEDAGOGICAL ANALYSIS

- Content
  - Matter in our Surroundings
  - Atom & Molecules
  - Motion
  - Force & Law of Motion
  - Gravitation
  - Work and Energy
  - Sound
  - Acid Bases & Salt
  - Metal & Non-metal
  - Light
  - Electricity

• **Pedagogical Analysis** – Following points should be used for Pedagogical Analysis.

Following points should be followed for pedagogical analysis on topics covered in the syllabus

• Identification of concept ,b)Listing behavioural outcomes ,c)Listing activities and experiments, d)Listing evaluation techniques

• Concept, Need & Importance of Unit Planning & Lesson Planning

### UNIT – III

3. TEACHING LEARNING RESOURCES AND PROCESSES

• Meaning, Principles & Steps of Curriculum construction in Physical Science

• Critical Analysis of Present Secondary School Text-Book with Reference to Haryana State

- Teaching Skills:-
  - Skill of Introducing the Lesson
  - Skill of Illustrate with the help of Examples
  - Skill of Explaining
  - Skill of Stimulus Variation
  - Skill of Black-Board Writing

Physical Science Laboratory –

Importance, Planning, Designing, Equipping, Maintenance of Physical Science equipment & Records

• Audio-Visual Aids: Chart, Models, Film Strip, Radio, Projectors.

• E-learning Resources – Use of Multimedia & Computers, PPT, Internet, Website,

Teleconferences.

• Improvised Apparatus – Meaning, Importance & Steps

• Professional Growth of Physical Science Teacher in Service Programme, Orientation Programme, Refresher Courses, Seminars, Symposium, Workshop, Science Fair, Science Exhibition, Projects.

| UNIT – IV                                     | UNIT – IV                                     |
|-----------------------------------------------|-----------------------------------------------|
| 4. APPROACHES AND EVALUATION IN               | 4. APPROACHES AND EVALUATION IN               |
| TEACHING                                      | TEACHING                                      |
| • Physical Science Inductive – deductive      | • Physical Science Inductive – deductive      |
| Approach, Critical Inquiry Approach,          | Approach, Critical Inquiry Approach,          |
| Maier's Problem Solving Approach.             | Maier's Problem Solving Approach.             |
| Methods of Teaching Physical Science          | Methods of Teaching Physical Science          |
| <ul> <li>Lecture-cum-Demonstration</li> </ul> | <ul> <li>Lecture-cum-Demonstration</li> </ul> |
| <ul> <li>Project Method</li> </ul>            | <ul> <li>Project Method</li> </ul>            |
| <ul> <li>Laboratory Method</li> </ul>         | <ul> <li>Laboratory Method</li> </ul>         |
| Continuous & Comprehensive                    | Continuous & Comprehensive                    |
| Evaluation (CCE) in Physical Science          | Evaluation (CCE) in Physical Science          |
| • Construction & Use of Achievement           | Construction & Use of Achievement             |
| Test in Physical Science                      | Test in Physical Science                      |
| • Construction & Use of Diagnostic Test       | Construction & Use of Diagnostic Test         |
| in Physical Science, Preparation of           | in Physical Science, Preparation of           |
| Diagnostic Chart, Identification of           | Diagnostic Chart, Identification of           |
| Difficulties & Remedial Teaching.             | Difficulties & Remedial Teaching.             |
| • Meaning & Advantages of Task                | • Meaning & Advantages of Task                |
| Analysis and Question Bank.                   | Analysis and Question Bank.                   |
| A marysis and Question Dank.                  | Analysis and Question Dalk.                   |

#### Praticum/Sessional

### Any one of the following

- i. Development of Five Demonstration Experiments on the Topics Covered in the Syllabus from Physical Science Test-books at the Lower Secondary Level in Haryana State.
- ii. Improvisation of Apparatus/Equipment
- iii. Seminar Presentation on any Topics given in the Syllabus.

### Suggested Readings

Adams, G.S. (1964). *Measurement & Evaluation in Education, Psychology & Guidance,* New York: Halt, Rinehart & Winston.

Aggarwal, J.C. (2005). Essential of Examination System. New Delhi: Vikas Publishing House

Pvt. Ltd.

Allen, D.W. and Eve, A.W. (1968). Micro Teaching in Theory to Practices. Vol. 70, pp. 181-

185.

Bloom, B.S. et al. (1956). *Taxonomy of Educational Objectives: The Cognitive Domain*. New York: Longum's Green.

CBSE (2009). Teacher Manual on CCE. New Delhi: CBSE.

Das, R.C. (1985). Science Teaching in Schools, New Delhi: Sterling Publication Private Ltd.

Harrow, A.J.A. (1972). Taxonomy of Motor Domain, New York: Mckay.

Kherwadkal, Anjali (2003). *Teaching of Chemistry by Modern Method*, New Delhi: Sarup & Sons.

Kilpatrick, W.H. (1987). The Project Method, Columbia. Teachers College Record.

Krathwohl, D.R., Bloom, B.S. and Maria, B.B. (1964). *Taxonomy of Educational Objectives*, *Hand-book II, Affective Domain*, New York: David Mckay.

Mager, R.F. (1962). Preparing Instructional Objectives, California: Fearon.

Miller, David F. and Blaydes (1962). *Methods & Materials for Teaching Biological Science*, New York: McGraw Hill Book Co.

Sharma, R.C. (1995). Modern Science & Teaching, New Delhi: Dhanpat Rai & Sons.

Siddique and SIddique (1998). Teaching of Science, New Delhi: Doaba House.

Vishwanth, Pandey and Kisor Valicha (1984). *Science Technology & Development*, New Delhi: McMillan India Ltd.

Venkataih, S. (2001). Science Education in 21st Century, New Delhi: Anmol Publishers.

Wadhwa, Shalni (2001). Modern Methods of Teaching Physics. New Delhi: Saroop & Sons.

http://www.scienceworld.wolfram.com/physics.html.

http://www.nobel.se/physics/laureates.html.

## **Group-II: Pedagogy of Social-Sciences**

## (i) PEDAGOGY OF SOCIAL SCIENCE

### Time: 3 Hours

Max. Marks: 100 (Theory: 80, Internal: 20)

## NOTE FOR PAPER SETTER

- i) Paper setters will set 9 questions in all, out of which students will be required to attempt 5 questions.
- ii) Q. No. 1 will be compulsory and will carry 16 marks. There will be 4 short-answer type questions of 4 marks each to be selected from the entire syllabus.
- iii) Two long answer type questions will be set from each of the four units, out of which the students will be required to attempt one question from each unit. Long-answer type questions will carry 16 marks each.

### Learning Outcomes

After completion of this course the student –teachers will be able to :

- understand the foundation of teaching Social Science.
- acquaint with different strategies for teaching Social Science at secondary and higher secondary level.
- to provide familiarization with Resources for teaching/learning Social science
- to develop an understanding of methods and approaches of teaching Social Science .
- to enable students to organize co-curricular activities through the Social Science Club.
- prepare achievement test in Social Science at secondary and higher secondary level.
- prepare lesson plans in Social Science for instructional purposes.
- conduct pedagogical analysis of content for teaching in the classroom.
- acquire competence in preparing tools of evaluation Social Science learning.
- acquire skills of analyzing text book in Social Science.

### COURSE CONTENTS

| Existing<br>UNIT 1 |                                                                                                                                      | Corrected<br>UNIT 1                                                                                                                  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
|                    |                                                                                                                                      |                                                                                                                                      |  |
|                    | <ul> <li>Aims and Objectives of teaching Social<br/>Sciences at School level.</li> <li>Values of Teaching Social Sciences</li> </ul> | <ul> <li>Aims and Objectives of teaching Social<br/>Sciences at School level.</li> <li>Values of Teaching Social Sciences</li> </ul> |  |
|                    | • Taxonomy and behavioural Objectives in Social Sciences.                                                                            | <ul> <li>Taxonomy and behavioural Objectives in<br/>Social Sciences.</li> </ul>                                                      |  |
|                    | • Relationship of Social Science with other subjects and within the subject                                                          | • Relationship of Social Science with other subjects and within the subject.                                                         |  |
| UNIT-2             | 2                                                                                                                                    |                                                                                                                                      |  |

- 2. Contents and its pedagogical analysis and Lesson planning
  - Understanding terminology of Social Sciences: Social structure, social stratification, community, state, region, market
  - Meaning, importance and Steps of Pedagogical Analysis.
  - Pedagogical Analysis on the following topics:
    - Constitution of India
    - Physical features of India
    - Indain Freedom Movement
    - Population
    - Democracy in the contemporary world
    - Disaster Management
  - Lesson planning in Social Sciences: Need & Importance, Basic Elements & its Preparation

#### UNIT 3

- 3. Teaching learning resources and process
  - Meaning, Importance and Principles of designing a good Curriculum of Social Sciences; Critical Appraisal of the Curriculum Existing in Social Sciences, Suggestions for Approaches improvement; of organizing social sciences curriculumlogical, concentric, spiral, chronological.
  - •Teaching Learning Material: Textbook & Reference Books, Documentaries, News Papers, Maps, Community, Atlas, and Eresources (Blog, World Wide Web, and Social Networking.)
  - Skills of teaching Social Studies: Skill of Explaining. Skill of Illustration with Examples, Skill of Reinforcement, Skill of Questioning and Skill of Stimulus Variation

#### UNIT 4

#### 4. Approaches and Evaluation in Teaching

- Classroom Processes: Discovery method, Discussion method, Source method, Survey Method, Concept Mapping and Story Telling. Concept Attainment, Inquiry Training Model.
- Social Science Club- Meaning, Importance and Organization(Club activities, Exhibitions, Field Trips, Quiz Competitions)
- Meaning, Importance and Types of Evaluation in Social Sciences.
- New approaches to Assessment Question bank, Open Book Examination, Grading & Credit System.

### UNIT-2

- 2. Contents and its pedagogical analysis and Lesson planning
  - Understanding terminology of Social Sciences: Social structure, social stratification, community, state, region, market
  - Meaning, importance and Steps of Pedagogical Analysis.
  - Pedagogical Analysis on the following topics:
    - Constitution of India
    - Physical features of India
    - Indian Freedom Movement
    - Population
    - Democracy in the contemporary world
    - Disaster Management
  - Lesson planning in Social Sciences: Need & Importance, Basic Elements & its Preparation

## UNIT 3

- 3. Teaching learning resources and process
  - Meaning, Importance and Principles of designing a good Curriculum of Social Sciences; Critical Appraisal of the Social Existing Curriculum in Suggestions Sciences, for Approaches improvement; of organizing social sciences curriculumlogical, concentric, spiral, chronological.
  - •Teaching Learning Material: Textbook & Reference Books, Documentaries, News Papers, Maps, Community, Atlas, and Eresources (Blog, World Wide Web, and Social Networking.)
  - Skills of teaching Social Studies: Skill of Introducing, Skill of Illustration with Examples, Skill of Reinforcement, Skill of Questioning and Skill of Stimulus Variation

#### UNIT 4

### 4. Approaches and Evaluation in Teaching

- Classroom Processes: Discovery method, Discussion method, Source method, Survey Method, and Story Telling.
- Social Science Club- Meaning, Importance and Organization(Club activities, Exhibitions, Field Trips, Quiz Competitions)
- Meaning, Importance and Types of Evaluation in Social Sciences.
- New approaches to Assessment Question bank, Open Book Examination, Grading & Credit System.
  - Construction of Achievement Test -

Construction of Achievement Test – Concept and Steps. Concept and Steps.

## Praticum/Sessional

•

| Existing                  |                                                                                       | Correc                    | ted                                                                              |
|---------------------------|---------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------|
| Any one of the following: |                                                                                       | Any one of the following: |                                                                                  |
| i.                        | Explore how cartoons, stamps, currency,                                               | i.                        | Explore how cartoons, stamps, currency,                                          |
|                           | magazines, globes and so on be used in                                                |                           | magazines, globes and so on be used in                                           |
|                           | teaching of social science.                                                           |                           | teaching of social science.                                                      |
| ii.                       | Make an Observation of a place of historical                                          | ii.                       | Make an Observation and prepare a list of                                        |
|                           | interest/monument nearer to your residence                                            |                           | places of historical interest/monument nearer                                    |
|                           | and prepare a report on it/ Prepare a List of                                         |                           | to your residence and prepare a report on it.                                    |
|                           | Places of Cultural/Historical//                                                       | iii.                      | Conduct a quiz competition in the class on a                                     |
|                           | Geographical/Economic/ political/scientific                                           |                           | day of national importance and prepare a                                         |
|                           | interest of your locality                                                             |                           | report of the same.                                                              |
| iii.                      | Conduct a quiz competition in the class on a                                          | iv.                       | Prepare an action plan for social science club.                                  |
|                           | day of national importance/Prepare questions                                          | v.                        | Prepare a list 10 of books/Journals in social                                    |
|                           | for a quiz programme/Prepare an action plan                                           |                           | sciences with all bibliographic details for                                      |
|                           | for social science club                                                               |                           | purchasing to the classroom library.                                             |
| iv.                       | Prepare a list 10 of books/Journals in social                                         | vi.                       | Draw different types of maps of World, India,                                    |
|                           | sciences with all bibliographic details for                                           |                           | and locality /Create a comparative timeline of                                   |
|                           | purchasing to the classroom library/Prepare a                                         |                           | events in India and world of Modern                                              |
|                           | Text book Material for a Particular Topic.                                            |                           | age/prepare a plan based on any one Model                                        |
| v.                        | Draw different types of maps of World, India,                                         | ::                        | of Teaching.                                                                     |
|                           | and locality /Create a comparative timeline<br>of events in India and world of Modern | vii.                      | Prepare a sample of Different Types of Test                                      |
|                           |                                                                                       |                           | items on different objectives or Select a<br>concept in Social Science prepare a |
|                           | age/prepare a plan based on any one Model of Teaching.                                |                           | concept in Social Science prepare a diagnostic test                              |
| vi.                       | Prepare a sample of Different Types of Test                                           | viii.                     | Prepare a sample Content analysis, Prepare                                       |
| v1.                       | items on different objectives/ Select a                                               | viii.                     | instructional objectives, Learning Activity,                                     |
|                           | concept in Social Science prepare a                                                   |                           | Learning Experience of a Topic from                                              |
|                           | diagnostic test                                                                       |                           | standard 6th or 10 <sup>th</sup> .                                               |
| vii.                      | Prepare a sample Content analysis /Prepare                                            |                           |                                                                                  |
|                           | instructional objectives/Learning                                                     |                           |                                                                                  |
|                           | Activity/Learning Experience of a Topic                                               |                           |                                                                                  |
|                           | from standard 6th or 10 <sup>th</sup>                                                 |                           |                                                                                  |
|                           |                                                                                       |                           |                                                                                  |

### **Suggested Readings**

Agarwal, J.C. (1993). Teaching of Social Studies- A Practical Approach, Second Revised Edition, Vikas Publishing House.

Batra, P.(ed) (2010) Social Science Learning in Schools: Perspective and Challenges, New Delhi, Sage

Dhamija, N. (1993). *Multimedia Approaches in Teaching Social Studies*, New Delhi: Harman Publishing House

Eklavya (1994) Samajik Adhyayan Shikshan: Ek Prayog, Hoshangabad: Eklavya.

George, A. and Madan, A.(2009) Teaching Social Science in Schools, NCERT's New

Textbook, New Delhi: Sage

Gupta Rainu (2013) Teaching of Social Science, New Delhi, Doaba Publications.

Gupta Rainu (2012) Samajik Vigyan Shikshan, New Delhi : Doaba Publications.

Khan, S. U. (1998). *History Teaching-Problems: Prospective and Prospect*, New Delhi: Heera Publications

Kochhar, S.K.(1998). Teaching of Social Studies, New Delhi: Sterling Publishers Pvt, Ltd

New Delhi.

NCERT (2006). Position Paper National Focus Group on Teaching of Social Sciences, New Delhi: NCERT

NCERT Social Science Textbooks for classes VI-X, New Delhi: NCERT.

## **Group-II: Pedagogy of Social-Sciences**

## (ii) PEDAGOGY OF COMMERCE

### Time: 3 Hours

Max. Marks: 100

(Theory: 80, Internal: 20)

### NOTE FOR PAPER SETTER

- i) Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii) Q.No 1 will be compulsory and will carry 16 marks. There will be four short -answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii) Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

### **Learning Outcomes**

After completion of this course the student-teachers will be able to:

- understand meaning, nature and scope of commerce.
- understand aims, objectives and values of teaching commerce.
- Get familiar with the relationship of commerce with other disciplines.
- analyse the content, text-book and curriculum of commerce.
- develop the lesson plan for teaching in classroom.
- develop skills in teaching of commerce.
- acquaint with the various teaching learning resource and methods.
- develop insight into current trends of teaching commerce.
- equip themselves with practices of evaluation.
- develop a research perspective in the field of commerce.

#### **Course content**

| Existing                                               | Corrected                                              |  |
|--------------------------------------------------------|--------------------------------------------------------|--|
| UNIT-I                                                 | UNIT-I                                                 |  |
| 1. Concept of Commerce and Instructional               | 1. Concept of Commerce and Instructional               |  |
| Objectives                                             | Objectives                                             |  |
| <ul> <li>Meaning nature and scope of</li> </ul>        | <ul> <li>Meaning nature and scope of</li> </ul>        |  |
| Accountancy and Business studies.                      | Accountancy and Business studies.                      |  |
| Aims, Objectives and Values of teaching                | • Aims, Objectives and Values of teaching              |  |
| Commerce.                                              | Commerce.                                              |  |
| <ul> <li>Need and Importance of Commerce in</li> </ul> | <ul> <li>Need and Importance of Commerce in</li> </ul> |  |
| school curriculum at higher secondary                  | school curriculum at higher secondary                  |  |
| level.                                                 | level.                                                 |  |
| <ul> <li>Blooms Taxonomy of Objectives</li> </ul>      | <ul> <li>Blooms Taxonomy of Objectives</li> </ul>      |  |
| (statement of objectives in behavioural                | (statement of objectives in behavioural                |  |
| terms).                                                | terms).                                                |  |

• Relationship of Commerce with other Disciplines: Economics, Law, Mathematics, Sociology, Psychology, Statistics.

### UNIT-II

#### 2. Content Analysis and lesson planning

- Pedagogical\_Analysis: Identification of concept, Listing behavioural outcomes, Listing activities and experiments, Listing evaluation techniques. Content for Pedagogical\_Analysis:
  - Final A/Cs
  - Sources of Business finance.
  - Marketing Mix.
  - Social Responsibility of Business
  - Consumer protection
  - E-commerce
- Development of lesson plan: Utility, steps in lesson planning, qualities of a good lesson plan

#### UNIT-III

#### 3. Teaching learning resources and Processes

- Commerce curriculum: Principles followed in development of commerce curriculum. Critical appraisal of the existing curriculum in Commerce. Suggestion for improvement
- Analysis of prescribed text- book of commerce (XI &XII)
- Teaching learning resources: Meaning, Importance and use of Teaching learning resources
- Traditional Instructional Material: Charts , Graphs and Specimens
- Mass media: Television , Newspaper , Journals
- E- resources: Blog , World wide Web , Social Networking
- Skills in Teaching
  - Skill of Introducing
    - Skill of Explaining
  - Skill of Probing Questions
  - Skills of Illustrating with examples
    - Skill of Stimulus variation

#### UNIT-IV

### 4. Approaches and Evaluation in teaching

- Methods of teaching:
  - Lecture cum Discussion Method
  - Project Method
  - E-Tutoring
  - Role playing
- Concept Attainment Model, Advanced organizer Model and Inquiry Training Model in Teaching commerce
- Evaluation: Meaning, Importance, Types and Techniques.
- Preparation of Blue print and construction of Achievement Test

 Relationship of Commerce with other Disciplines: Economics, Law, Mathematics, Sociology, Psychology, Statistics.

## UNIT-II

## 2. Content Analysis and lesson planning

- Pedagogical\_Analysis: Identification of concept, Listing behavioural outcomes, Listing activities and experiments, Listing evaluation techniques.
- Content for Pedagogical Analysis:
- Final A/Cs
  - Sources of Business finance.
  - Marketing Mix.
  - Social Responsibility of Business
  - Consumer protection
  - E-commerce
- Development of lesson plan: Utility, steps in lesson planning, qualities of a good lesson plan

#### UNIT-III

#### 3. Teaching learning resources and Processes

- Commerce curriculum: Principles followed in development of commerce curriculum. Critical appraisal of the existing curriculum in Commerce. Suggestion for improvement
- Analysis of prescribed text- book of commerce (XI &XII)
- Teaching learning resources: Meaning, Importance and use of Teaching learning resources
- Traditional Instructional Material: Charts , Graphs and Specimens
- Mass media: Television , Newspaper , Journals
- E- resources: Blog , World wide Web , Social Networking
- Skills in Teaching
  - Skill of Introducing
  - Skill of Explaining
  - Skill of Probing Questions
  - Skills of Illustrating with examples
    - Skill of Stimulus variation
- UNIT-IV

### 4. Approaches and Evaluation in teaching

- Methods of teaching:
  - Lecture cum Discussion Method
  - Project Method
  - E-Tutoring
  - Role playing
- Evaluation: Meaning, Importance, Types and Techniques.
- Preparation of Blue print and construction of Achievement Test

Any two of the following:

- i. Participation in discussion (class level) in any recent development in the area of commerce and prepare a report
- ii.Make a report on activities performed by a company regarding its social responsibility
- iii.Review at least two research articles on commerce
- iv.Make a report of E-Commerce operations of a company

v.Field visit to any one ( bank , factory , consumer forum).Prepare a report on functions performed

## **Suggested Readings**

Bruce, J.M and Roger Ottewill (2001). Effective learning & teaching in business and

management. London: Routledge

Chopra, H.K and Sharma, H. (2007). *Teaching of Commerce*, Kalyani Publishers Ludhiana

Dalal, D.C and Dalal V.C (2008). *Teaching of Commerce* (Hindi Version). Patiala: Twenty First Century Publications

Gupta Rainu (2009). Teaching of Commerce New Delhi, Shipra Publications

Kaur, Ravdeep (2012). Teaching of Commerce Gurusar Sadhar: GBD Publications

Kumar, Mahesh (2004). *Modern Teaching of Commerce*. New Delhi: Anmol Publications Pvt. Ltd.

Monga Vinty (2009). Teaching of Commerce Patiala: Twenty first century publications

Peter Davies, Jacek Brant (2006). *Business, Economics and enterprises*: Teaching School Subjects 11-19. London: Kogan Rage

Rao Seema (2002). Teaching of Commerce, New Delhi: Anmol Publicatons Pvt. Ltd.

Shankar T. (2007). Methods of Teaching of Commerce, New Delhi: Crecent VII

## **Group-II: Pedagogy of Social-Sciences**

### (iii) PEDAGOGY OF ECONOMICS

Time: 3 Hours

Max. Marks: 100 (Theory: 80, Internal: 20)

## NOTE FOR PAPER SETTER

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short -answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

### Learning Outcomes

After completion of this course the student -teachers will be able to :

- understand the foundation of teaching Economics.
- apply knowledge of Economic in understanding current socio- economic- political issues for human interests and building future economics activities in the light of past.
- conduct pedagogical analysis of content for teaching in the classroom.
- prepare lesson plans in Economics for instructional purposes
- familiarize with different strategies for teaching Economics at secondary and higher secondary level.
- acquire skills of analyzing text book in Economics.
- develop an understanding of methods and approaches of teaching Economics.
- enable students to organize co-curricular activities through the Economics Club.
- prepare achievement test in Economics at secondary and higher secondary level.
- acquire competence in preparing tools of evaluation Economics learning.

## **COURSE CONTENT**

| Existing |                                                     | Corrected                                                                 |
|----------|-----------------------------------------------------|---------------------------------------------------------------------------|
| Unit -I  |                                                     | Unit -I                                                                   |
| 1.       | Nature & Scope of Teaching of Economics             | 1. Nature & Scope of Teaching of Economics                                |
|          | • Meaning, Nature and Scope of                      | • Meaning, Nature and Scope of                                            |
|          | Economics as a school subject.                      | Economics as a school subject.                                            |
|          | • Aims and Objectives of teaching                   | • Aims and Objectives of teaching                                         |
|          | Economics at School level                           | Economics at School level                                                 |
|          | • Values of Teaching Economics in present scenario. | <ul> <li>Values of Teaching Economics in<br/>present scenario.</li> </ul> |
|          | • Taxonomy and behavioural Objectives in            | • Taxonomy and behavioural Objectives in                                  |
|          | Economics.                                          | Economics.                                                                |
|          | • Correlation of Economics with Public              | • Correlation of Economics with Public                                    |
|          | Finance, Commerce, Law, Geography,                  | Finance, Commerce, Law, Geography,                                        |
|          | Mathematics, Natural Science and                    | Mathematics, Natural Science and                                          |

### Sociology.

- Unit- II
  - 2. Contents and its pedagogical analysis and Lesson planning
    - Understanding terminology of Economics: Micro Economics, Macro Economics, Market, Production, Business Economics and Budgeting.
    - Meaning, Importance and Steps of Pedagogical Analysis.Pedagogical Analysis on the following topics:
      - Poverty as Challenge facing India
      - Indian economy
      - Globalization
      - Inflation& Deflation
      - Employment
    - lesson planning in Economics: Need & Importance, Basic Elements & its Preparation

#### Unit-III

#### 3. Teaching learning resources and process

- Meaning, Importance and Principles of designing a good Curriculum of Economics, Critical Appraisal of the Existing Curriculum in Economics, Suggestions for improvement. Approaches of organizing the curriculum of Economics.
- Teaching Learning Material: Textbook & Reference Books, Documentaries, Graphs, Tables, News Papers, Library and E-resources (Blog, World Wide Web, and Social Networking.)
- Skills of teaching Economics: Skill of Explaining. Skill of Illustration with Examples, Skill of Probing Questions and Skill of Stimulus Variation

### Unit-IV

#### 4. Approaches and Evaluation in Teaching

- Teaching Economics through concept mapping, Inquiry Training model, Advance Organizer model, Project method, dramatization, Survey and field visit.
- Meaning & Importance of Co-curricular activities. Economics Club meaning, importance and organization.
- Meaning, Importance and Types of Evaluation in Economics.
- Continuous and Comprehensive Evaluation: Meaning, importance & Process.
- Construction of Achievement Test Concept and Steps.

### Sociology.

#### Unit- II

- 2. Contents and its pedagogical analysis and Lesson planning
  - Understanding terminology of Economics: Micro Economics, Macro Economics, Market, Production, Business Economics and Budgeting.
  - Meaning, Importance and Steps of Pedagogical Analysis.
  - Pedagogical Analysis on the following topics:
    - Poverty as Challenge facing India
    - Indian economy
    - Globalization
    - Inflation Deflation
    - Employment
  - lesson planning in Economics: Need & Importance, Basic Elements & its Preparation

### Unit-III

#### 3. Teaching learning resources and process

- Meaning, Importance and Principles of designing a good Curriculum of Economics, Critical Appraisal of the Existing Curriculum in Economics, Suggestions for improvement. Approaches of organizing the curriculum of Economics.
- Teaching Learning Material: Textbook & Reference Books, Documentaries, Graphs, Tables, News Papers, Library and E-resources (Blog, World Wide Web, and Social Networking.)
- Skills of teaching Economics: Skill of Explaining. Skill of Illustration with Examples, Skill of Probing Questions and Skill of Stimulus Variation

# Unit-IV

#### 4. Approaches and Evaluation in Teaching

- Teaching Economics through Discussion method, Project method, problem-solving, dramatization, Survey and field visit.
- Meaning & Importance of Co-curricular activities. Economics Club meaning, importance and organization.
- Meaning, Importance and Types of Evaluation in Economics.
- Continuous and Comprehensive Evaluation: Meaning, importance & Process.
- Construction of Achievement Test Concept and Steps.

## Any one of the following:

- i. Explore how cartoons, advertisements, graphs, currency, pictures can be used for teaching Economics.
- ii. Content Analysis and preparation of instructional material related to any unit
- iii. Prepare ten (10) slides related to economics teaching content at senior secondary level.
- iv. Critical appraisal of economics text books at senior secondary level.
- v. Field Visits ( Banks, Small-Scale Industries, Consumer Cells)

## **Suggested Readings:**

Aggarwal J.C(2009). *Teaching Of Economics, A Practical Approach*. Agra-2: Vinod Pustak Mandir.

Bhatia & Bhatia (1994). The Principles & Methods of Teaching. Delhi: Doaba house.

Gupta Rainu (2003) Teaching of Economics.New Delhi: Jagdamba Publications.

Gupta Rainu (2004) Arthshastra Shikshan. New Delhi; Jagdamba Publications.

Joyce, B. & Weil. M (1979). Models of Teaching. New Jersey: Hall Inc.

Kanwar, B.S(1970). *Teaching of Economics*. Ludhiana : Educational Publishers.

Knoph, J.H.(1965)*Teaching of Elementary Economics*. New York: Holt Rinehart and Winston.

Mustafa M, (2005) *Teaching of Economics New Trends and Challenges*. New Delhi: Deep & Deep Publications.

Natarajan S. (1993). *Introduction to Economics of education*, New Delhi: sterling publications Private Limited.

Oliver, J.M.(1975). *The Principles of Teaching Economics*. New Delhi: Heinmann Educational Books Ltd.

Pal, H.R.( 2000).*Methodologies of Teaching & Training in Higher Education*. Delhi: Directorate of Hindi Implementation, Delhi University.

Rai B.C. (1991). Techniques of Teaching. Luckhnow: Prakashan Kendra

Saxena, Mishra, Mahonty (2004) Teaching of Economics. Meerut: Surya Publication.

Tyagi, G.D.(1981). Arthshastra Shikshan. Agra: Vinod Pustak Mandir.

Yadav Amita (1999). Teaching of Economics. New Delhi: Anmol Publications Pvt. Ltd.

# **Group-II: Pedagogy of Social-Sciences**

# (iv) PEDAGOGY OF HISTORY

Time: 3 Hours

Max. Marks :100 (Theory: 80,Internal: 20)

# NOTE FOR PAPER SETTER

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

## Learning Outcomes

After transaction of the course, student teachers will be able to:

- Understand the concept and aims of history as a school subject
- Develop skills and competence to analyse content chronologically for using different methods of teaching history.
- Prepare appropriate test and evaluation techniques to measure the knowledge of history.
- Apply knowledge of history in understanding current socio-economic-political issues for human interests and building future society in the light of past.
- Deduce the logical from the facts of history to be applied for a healthy social life.

# COURSE CONTENT

# UNIT – I

# 1. NATURE, SCOPE, AIMS, AND OBJECTIVES OF HISTORY

- Meaning, Nature, Scope of history. Importance of time & space in history
- Place of history in secondary and senior secondary level school curriculum
- Aims, objectives and values of teaching history
- Bloom's taxonomy to formulate objectives in behavioural terms
- Co-relation of history with other school subjects. Relation of history with present.
- Classification of history according to geographical boundaries, period and circumstances.

# UNIT – II

# 2. PEDAGOGICAL ANALYSIS OF CONTENT AND LESSON PLANNING

• Meaning and importance of pedagogical analysis

- Points followed for pedagogical analysis: (i) Identification of concept (ii) Listing behavioural outcomes (iii) Listing activities & Experiments (iv) Listing evaluation techniques.
- Some content for pedagogical analysis:
- a) Indus valley civilization b) Ashoka The Great c) Mughal dynesty
- d) First war of independence (1857 A.D.), e) Freedom movement and modern India
- Lesson planning: Need and importance, steps involved in lesson planning, features of a good lesson planning.
- Development of self-instructional material (SIM) for secondary and senior secondary level students.

# UNIT – III

# 3. TEACHING-LEARNING RESOURSES AND HELPING MATERIALS

- Curriculum and instructional material: Need for development and designing curriculum in history.
- Principles of curriculum construction, organization of content in history curriculum according to stages of education.
- Development of history text-book, characteristics of a good text book, need of text-book for teaching history.
- Identifying controversial points of history, analytical teaching of such points.
- Meaning, importance and use of helping material, types of helping material
- Selection of helping material: Maps, time lines, flow charts, battle plans, pictures, film-strips, models, computer & internet, radio, T.V. etc.

# UNIT – IV

# 4. APPROACHES AND EVALUATION

- Approaches, methods and techniques of teaching history need and importance, selection of method to teach specific content.
- Various methods of teaching history: source method, discussion method, lecturecum-story telling method, dramatization, project method, teaching through field trips and excursions.
- Use of various techniques, tactics and maxims of teaching
- Meaning, objectives and importance of evaluation
- Evaluation techniques and devices, characteristics of a good test in history.
- Preparing, reporting and evaluating the results.

# Practicum/ Sessionals

# Any one of the following

- i. Preparation of time line, flow chart, battle plan, map showing boundaries of any specific dynasty or king or specific period (Individual activity)
- ii. Organize trip to historical place/monuments.
- iii. Prepare skit/drama from history-events / life history of Mahatma Gandhi (Groupactivity)

## **Suggested Readings:**

Chaudhary, K.P. (1975). The effective teaching of History in India. New Delhi: NCERT.

Dhamija, N. (1993). Multimedia Approaches in teaching of Social studies. New Delhi: Harman Publishing House.

Khan, S.U. (1998). History teaching problems, prospectives & prospect. New Delhi: Heera.

Gunnin, D. (1978). The teaching of History. London: Goom Helm Ltd.

## **Group II: Pedagogy of Social Sciences**

## (v) PEDAGOGY OF GEOGRAPHY

| Time: 3 Hours         | Max. Marks: 100            |  |
|-----------------------|----------------------------|--|
|                       | (Theory: 80, Internal: 20) |  |
| NOTE FOR PAPER SETTER |                            |  |

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short -answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

## **Learning Outcomes**

After completion of the course the student teacher will be able to:

- Understand the importance concepts used in Geography.
- Prepare lesson plan for different classes.
- Critically evaluate existing school syllabus and text-books.
- Prepare/handle suitable teaching aids and use them effectively in the classroom.
- Prepare diagnostic & achievement test-administer them analyse the results for providing feedback.
- Pedagogical analysis of contents in Geography.

## COURSE CONTENT Unit-I

# **1. NATURE AND SCOPE OF TEACHING GEOGRAPHY**

- Meaning, nature & scope of Geography.
- Importance of teaching geography as school subject.
- Aims and objective of Teaching Geography at School Level.
- Bloom's taxonomy of objectives.
- Formulation of specific objectives in behavioural terms.

## Unit-II

# 2. CONTENT AND ITS PEDAGOGICAL ANALYSIS

- Meaning, Importance and Steps of Pedagogical Analysis
- Pedagogical Analysis of the following:
  - Latitudes & longitudes
  - Rotation & Revolution
  - Agents of denudation
  - Physical Division of India

- Cash crops of India
- Points to be followed for pedagogical analysis
  - Identification of concepts
  - Listing behavioural outcomes
  - Listing activities and experiments
  - Listing evaluation techniques

# Unit-III

# **3. DEVELOPMENT OF INSTRUCTIONAL MATERIAL**

- Development and designing of curriculum
- Development of text books
- Development of self-instructional material
  - Self instructional modules
  - P.L. materials (Linear style) packages
- Development of instructional aids-Maps, atlas, Globes, Charts, Graphs, Models, Film Strips, Film Shades, Utilization of T.V., Video OHP, Computer
- Development of lesson plan
- Designing geography laboratory.

## Unit-IV

## 4. APPROACHES & EVALUATION IN TEACHING

- Various methods used Discovery Method, Discussion method, Problem Solving, Concept Mapping, Project, Laboratory, Story Telling, Concept Attainment Model, Inquiry Training Model.
- Meaning, Importance and Types of Evaluation in Geography
- New approaches to Assessment Question bank, Open Book, Examination, Grading & Credit System.
- Construction of Achievement Test Concept and Steps.

# **Practicum/Sessionals**

# Any Two of the following:

- i. Make an Observation of a place of Geographical interest of your locality and prepare a report on it.
- ii. Conduct a quiz competition on Geographical questions in class.
- iii. Prepare a list of 10 books/Journals in Geography with all bibliographic details for purchasing in the library/prepare a Text Book Material for a Particular Topic.
- iv. Draw different types of maps of World, India and locality.
- v. Prepare a sample of different types of test items on different objectives/Select a concept in Geography prepare a diagnostic test.
- vi. Prepare a sample Content analysis/ Prepare instructional objectives/Learning Activity/Learning Experience of a Topic from standard 6<sup>th</sup> to 10<sup>th</sup>.

# SUGGESTED READINGS

Arora, K.1 (1976). The Teaching of Geography, Jallandhar: Prakash Brothers.

David B. (1985). New Directions in Geography Education, London: Fehur Press

David, H. (1976). Geography and Geography Teacher, London: Unwin Education Books

Graves, N.G. (1982). New Source book for Geography Teaching, Longman: UNESCoHuckle, J. (1983). Geographical Education Reflection and Action, London: Oxford, University Press

Mohd, Z.U. (1984). Tadress Jugratia, Taraqqui Urdu Board New Source Book for Teaching of Geography UNESCO.

Morrey, D.C. (1972). Basic Geography, London: Hien manns Education Book Ltd.

Neelam D. (1993). Multimedia, Approaches in Teaching Social Studies, New Delhi: Human Publishing House

Verma, J.P. (1960). Bhugol Adhyhan, Agra: Vinod Pustak Mandir

Verma, O.P. (1984). Geography Teaching , New Delhi: Sterling Publication Ltd.

Walford R. (1981). Signposts for Geography Teaching, London: Longman

# **Group-II: Pedagogy of Social-Sciences**

## (vi) PEDAGOGY OF ART

Time: 3 Hours

Max. Marks: 100

(Theory: 80, Internal: 20)

## NOTE FOR PAPER SETTER

- iv. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- v. Q.No 1 will be compulsory and will carry 16 marks. There will be four short -answer type Questions of 4 marks each to be selected from the entire syllabus.
- vi. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

## Learning Outcomes

After the transaction of the course, student teachers will be able to:

- understand the foundation of teaching Art
- develop an awareness of various art forms and their cultural bases.
- familiarize with different strategies for teaching Art secondary and higher secondary level.
- develop skill in use of various art tools and instruments
- develop a perspective and appreciation of art, nature, human existence relationship
- develop an understanding of methods and approaches of teaching Art

## **Course content**

## Unit-I

- **1. Foundation and Context of Economics** 
  - Meaning, nature, and scope of Arts
  - Aims and objectives of teaching Fine Arts
  - Importance and place of Fine Arts in Education
  - Construction of syllabus of Fine Arts at Secondary Education
  - Relationship of Fine Arts with other school subjects
  - Elements of Art (Colour, Form, Space, Texture, Light and Shade)
  - Principles of Art (Balance, Rhythm, Harmony, Unity, Proportion, Dominance)
  - Social and cultural importance of Art

## Unit-II

## 2. Methods of Teaching , Lesson Planning and use of teaching aids

- Lecture-cum-demonstration Method
- Project Method
- Observation Method
- Excursion Method (field trips and tours)

- Preparation of lesson plan from 6<sup>th</sup> to 12<sup>th</sup> class
- Use of charts, flash cards and real objects
- Use of ICT

# Unit-III

# 3. Skill Development

- Skill of Art appreciation
- Skill of observation
- Skill of Imagination
- Skill of Visual communication
- Skill of handling the colours, brushes etc.
- Skill of Art development in child at different stages

# Unit-IV

# 4. Professional Efficiency, Measurement and Evaluation

- Professional qualities of a good teacher in Art
- Creativity in Art and Art teacher
- Organizing Art Exhibition and decorating the classroom
- Meaning, importance and need of measurement and evaluation
- Types of evaluation techniques

# Practicum/Sessionals

Any one of the following

- i. Design
- ii. Greeting Cards
- iii. Composition
- iv. Landscape
- v. Collage
- vi. Poster

# **Suggested Readings**

Gupta, Arvind (2003). Kabad se Jugad: Little Science. Bhopal: Eklavya.

Khanna, S. and NBT (1992). Joy of Making Indian Toys, Popular Science. NewDelhi: NBT.

Prasad, Devi (1998). Art as the Basis of Education, New Delhi: NBT,.

Sahi, Jane and Sahi, R(2009). Learning Through Art, Eklavya,

## **Group II: Pedagogy of Social Sciences**

## (vii) PEDAGOGY OF MUSIC

Time: 3 Hours

Max. Marks: 100

(Theory: 80, Internal: 20)

## NOTE FOR PAPER SETTER

- vii. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- viii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short -answer type Questions of 4 marks each to be selected from the entire syllabus.
- ix. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

#### Learning Outcomes

After completion of the course the student teacher will be able to:

- Understand the aims of teaching Music
- Understand competencies and skills for teaching of Music
- Develop understanding and awareness of the essentials of Music
- Understand the important evaluation procedures in Music
- Demonstrate Aesthetic Sense, Time Sense, Tolerance & Self-confidence

## **COURSE CONTENT**

## Unit-I

## **1. CONCEPT, OBJECTIVE & IMPORTANCE**

- A brief history of Indian Music.
- Need and importance of Music in secondary schools in present context.
- Co-relation of Music with other school subjects.
- Aims & Objectives of teaching Music in schools.
- Knowledge of Swaras-difference of Swaras and Sruti:- division of Swaras in measures of Sruti.

## Unit-II

## 2. ESSENTIALS OF MUSIC

- Information about Voice Culture and Carynx.
- Possibilities of Notation for Indian Music.
- Motion and Rhythm in Music.

# Unit-III

## **3. TEACHING LEARNING RESOURCES**

- Importance of various Teaching Aids in Music.
- Concept, need and importance of Lesson Planning in Music.
- Qualities of Music Teachers: Gayak, Vadak and Vadykar.

#### **Unit-IV**

#### 4. APPROACHES AND EVALUATION IN TEACHING

- Different Method of Teaching Music.
- Meaning, importance and need of evaluation in Music.
- Types of Evaluation Techniques.
- Importance of Classical Music, Suggestions for the Popularization of Classical Music.

#### **Practicum/Sessionals**

#### Any Two of the following :

- Every Candidate should be able to sing a fast Khyal or play a rezakhoni Gat with Tanas and Alaps or Jhala and Toras in each of the following Ragas: Bhupali, Bhairvi, Brindavani Sarag, Asawari, Bhimplashi, Malkauns, Kaffi.
   Every candidate should be able to sing or play a slow Khal (Vilambit Bara Khyal) or Masti Khayal Gat in Asawari and Malkauns Rag.
- II. The following Tals are required to be practiced in. Tha's and Dvigun Laya on Table: Teen Tal, Dadra, Juptal, Dharva, Ektal
- III. Tuning of the instrument for the instrument player and tuning of the Janpura for vocal music students.
- IV. Candidate shall be able to read, write music notation either of Bhatkhande or Vishnu Digamber Pulskar.

#### SUGGESTED READINGS

Awasthis. *Teaching of Music(Hindi)*, Extension Services, Jallandhar: Govt. Training College Bhatnagar, S Teaching of Music Goswami, O. Indian Music Khande B. Short Historical Survey Khanna, J.: Teaching of Music Masan, P.L. Teaching of Music, (Hindi). Patwardhan, rag Vigvan Ranaday. Indian Music (Its Physical and Aesthetics)\ Sambamoorthy, P. Teaching of Music

# Group-III: Pedagogy of Languages

## (i) PEDAGOGY OF ENGLISH

Time: 3 Hours

Max. Marks :100 (Theory: 80,Internal: 20)

## NOTE FOR PAPER SETTER

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short -answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

## LEARNING OUTCOMES

After transaction of the course, student teachers will be able to:

- Familiarize with the elements of English language.
- develop linguistic skills among their pupils.
- conduct pedagogical analysis of the content in English language and develop teaching skills.
- make effective use of introduction aids in teaching of English.
- evaluate the performance of the students.
- explain various teaching methods of English.

## **Course Content**

## Unit-1

- 1. Nature, Scope and Concept of Language
  - Importance of teaching English at National and International Scenario.
  - Social history of English language Teaching in India
  - Aims and objectives of teaching English
  - Pedagogical analysis of Prose, Poetry, Grammar, Composition: Objectives and Lesson Planning.

## Unit-II

- 2. Development of Linguistic Skills, Methods and Approaches of Teaching
  - Strategies for developing language skills : Listening and Speaking.
  - Developing Reading Skills & reading comprehension: Intensive and Extensive Reading, silent and loud reading.
  - Developing Writing Skills : Characteristics and Techniques for improvement.
  - Teaching grammar Deductive and Inductive Approach.

• Methods and Approaches of Teaching: Direct, Bilingual, Interactive Communicative Approach, Co-operative learning approach.

# Unit-III

## 3. Teaching Learning Resources & Processes

- Features of English Pronunciation : Stress, juncture and intonation.
- Co-curricular activities in English classroom : Language games, quiz, debates, group discussions.
- Importance of Instructional material and their effective use : 1. Charts, 2. Pictures, 3. Chalk board 4. Models, 5. Real Objects, 6. Use of ICT including internet.

## UNIV-IV

#### 4. Development of Professional Efficiency & Evaluation Techniques

- Qualities of a good teacher of English
- Difference between measurement and evaluation
- Meaning and significance of Comprehensive and continuous evaluation in English.
- Development of good test items in English (Objective- type, essay type and short answer type)

## Praticum/Sessional

#### Any one of the following:

- i. Preparation of Diagnostic Test, Achievement Test and reading comprehension test.
- ii. Preparation of Instructional Material:
  - a. Preparing PPT's
  - b. Preparation of Charts and Models
- iii. Prepare a Remedial programme for a child having English Spelling errors.
- iv. Collect Indian folkales and folklores and translate in English.
- v. Organise a workshop on improving communication skills of students in a rural school.

#### Suggested Readings

Bansal, R.K. and Harrison, J.B. (1972) : *Spoken English for Indian*, Madras: Orient Longman Ltd.

Baruag, T.C. (1985): *The English Teacher's Handbook*, New Delhi Starling publishing Pvt.Ltd.

Brumfit,C.J. (1984): *Communicative Methodology in Language Teaching*. Cambridge: C.U.P.

Chadha, S.C. (2004). Arts and Science of Teaching English (2<sup>nd</sup> ed.). Meerut : Surya Publication.

Freeman D.L. (2000). Techniques and Principles in Language Teaching, Oxford: CUP.

Gimson A.C. (1980). An Introduction to the Pronunciation of English London: Edward Arnold.

Hornby, A.S. (1968): A Guide to Patterns and Usage in English, Oxford: OUP

Kochar, Shasi, Rama Chandran Jyothy (2001). Teaching of English. New Delhi.

Lado, Robert (1971). *Language Teaching*, New Delhi: Tata McGraw Hill Publishing House Co. Ltd.

Mendonca, Lawrence, (2002). *Applied English Grammar and Composition*. New Delh: Nav Publications.

NCERT (2005) Position Paper National Focus Group on Teaching of English, New Delhi, NCERT.

Paliwal, A.K., (1988): English Language Teaching, Jaipur: Surbhi Publication

Rai, Geeta (2009). Teaching of English, Meerut : Vinay Rakheja

Sawhney, K.K. & Sharma, K.R. (2004). *Teaching of English*, Jammu : Educational Publishers.

Sharma, Praveen (2008). *Teaching of English Language*, Delhi : Shipra Publications.
Sharma, R.A. (2004). *Fundamentals of Teaching English*, Meerut : R.Lall Book Depot.
Wilkins, D.A. (1983), *Linguistics in English Teaching*, London : Edward Arnold
ELBS Edition.

# **Group-III: Pedagogy of Languages**

# (ii) fgUnh f'k{k.k

# Maximum Marks :- 100

Time: 3 Hours 20) (Theory: 80, Internal -

# isij fuekZrk ds fy, funsZ'k

- isij fuekZrk iwjs ikB~; Øe esa Is ukS iz'uksa dk fuekZ.k djsxk ftlesa Is fo|kFkhZ dks iakp iz'u djus gksaxsA
- igyk iz'u vfuok; Z gksxk vkSj ;g lksyg vadksa dk gksxkA ;g pkj&pkj vadksa dk pkj NksVs&NksVs iz'uksa ls feydj cusxk ;g iwjs ikB~;Øe ls gksxkA
- nks nh?kZ mÙkj kRed iz'u pkj ksa bdkbZ; ksa esa ls gksaxs ftlesa ls fo/kkFkhZ dks izR; sd bdkbZ esa ls ,d iz'u djuk gksxkA nh?kZ mÙkj kRed iz'u lksyg vadksa ds gksaxsA
- IHkh iz'u leku vadksa ds gksaxs

# 0; ogkj kRed mn~ns';%

- ekr`Hkk"kk fgUnh dh izd`fr ,oa egRo ds ckjs esa 0;k[;k dj IdsaxsA
- fons' kksa esa fgUnh Hkk"kk ds egRo dks Li "V dj I dsaxsA
- ikB~; p; kZ ds mifo"k; ksa dk f'k{kk&'kkL=h; fo'ys"k.k ds :i esas 0; k[; k dj ldsaxsA
- Hkk"kk ds vk/kkjHkwr dkS'kyks ds f'k{k.k dk vH;kl dj I dsaxsA
- fgUnh f'k{k.k dh fofHkUu fof/k; ksa dk oxhZdj.k dj ldsaxsA
- vf/kxe lalk/kuksa dh igpku dj ldsaxsA
- ewY; kadu izfd; k dks izfriknu dj ldsaxsA
- Cyw fizaV cukdj iz'ui = dk fuekZ.k dj ldsaxsA
- ikB~; dze ds fuekZ.k ds fl)kUrks dh lwph cuk ldsaxsA
- ikB~;iqLrd dh fo'ks"krkvksa dks ifjHkkf"kr dj ldsaxsA
- mPpkj.k , oa v{kj foU; kl lEcU/kh =qfV; ksa dk fuokj.k dj ldsaxsA

# bdkbZ&1

# 1/2 fgUnh Hkk"kk dh Hkwfedk

- ekr` Hkk"kk fgUnh dk |EizR;;] izd`fr ,oa {ks=
- Iafo/kku esa fgUnh Hkk"kk dh fLFkfr ,oa oS'ohdj.k ds IUnHkZ esa fgUnh Hkk"kk dk egRoA
- Cywe }kjk fu/kkZfjr mn~ns'; dk 0;ogkfjd iz;ksx A

 fgUnh esa mPpkj.k f'k{k.k] v{kj&foU; kl%& mPpkj.k vkSj v{kj&foU; kl | EcfU/kr =qfV; ksa ds fuokj.k , oa | a' kks/ku esas Hkk"kk; h i z; ksx' kkyk dk egRoA

## bdkbZ&2

| ¼2½ Hkk''kkbZ dkS' ky ,oa f' k{kk ' kkL=h; fo' ys''k. k%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 4d½ Hkk"kkbZ dkS' ky dk I kekU; Kku%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 1-Jo. k dkS' ky3-Hkk"k. k dkS' ky2-i Bu dkS' ky4-ys[ku dkS' ky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| bu dkS' kyksa dks fodflr djus esa lgk; d v/; ; u lalk/kuksa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| dk i z; ksxA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| $% [k^{2}, k^{3}, k^{2}] = \frac{1}{2} \left[ \frac{k^{2}}{k^{2}} + \frac{1}{k^{2}} \right] \frac{1}{k^{2}} \left[ \frac{k^{2}}{k^{2}} + \frac{1}{k^{2}} \right] \frac{1}{k$ |  |  |
| fo' ys"k. k%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| x vkSj i ds fdlh nks mifo"k; ksa dk f'k{kk 'kkL=h;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| fo' ys"k. k $\frac{1}{6}$ ls 10 rd ds i kB; p; kZ ls $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| <ul> <li>f' k{kk ' kkL=h; fo' ys"k. k</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| &I Ei zR; ; dh i gpku] mn~ns' ; j s[kkadu] i z; ksxkRed fdz; kvks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| dks l wphc) dj uk] ewY; kadu rduhd fu/kkZj . k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| bdkbZ&3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| • ikB ; kstuk dk vFkZ] egRo] : ijs[kk , oa fuekZ.k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| <sup>4</sup> dEi; wVj hd`r, oa I wpuk rduhdh ds Ig; ksx I s½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| <ul> <li>fgUnh Hkk"kk f'k{k.k dh fof/k; kW , oa vH; kI dk; ZA</li> <li>iv f'k{k k %fafliktly, fa{kkykaa da si aaa%</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| &x  f'k{k.k ¼fofHkUu fo/kkvksa ds :i esa½<br>&i  f'k{k.k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| $a_1 + K_{K,K}$<br>&0; kdj. k f' k{k. k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| &jpuk f'k{k.k ¼dgkuh] i= ,oa fucU/k ds :i esa½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| bdkbZ&4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| <ul> <li>ikB; dze fuekZ.k , oa leh{kk</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| <ul> <li>ikB~; iqLrd dh fo'ks"krk, a ,oa ek/; fed Lrj dh fgUnh ikB~;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| iqLrd dh leh{kkA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| <ul> <li>f'k{kkFkhZ mUu; u ewY; kadu ¼vk/kqfud ewY; kadu rduhd</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| vk/kkfj r½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| <ul> <li>iz'ui = dk fuekZ.k ¼mn~ns';okj] iz'uokj] izdj.kokj vad</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| foHkktu ,oa Cyw fizaV dk fuekZ.k rFkk iz'ui= dk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| fo' ys"k. kA½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| iz;ksxkRed fdz;k,W%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| fuEufyf[kr esa ls fdlh ,d ij ifj;kstuk dk;Z rS;kj djsA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| • fgUnh ds lkfgR;dkjksa esa ls fdlh ,d lkfgR;dkj dh fdlh ,d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

- fgUnh ds IktgR; dkj ksa esa Is fdIh , d IktgR; dkj dh fdIh , d fo/kk dk vkykspukRed v/; ; uA
   fallah filk(k k ese eukeistukDed film kukee% lkCa ullak(kih)
- fgUnh f'k{k.k esa euksjatukRed fdz; kvksa% 'kCn vUrk{kjh] nksgk vUrk{kjh] izgsfydk dk vk; kstuA

 fgUnh f'k{kd ds fy, okifNr ; ksX; rk, W , oa 0; olkf; d n{krk vkSj lEHkkfor dk; Z{ks= dk KkuA

# IanHkZ xzUFk Iwph%

- 1-mek] eaxy- ¼2008½- *fgUnh f' k{k.k*] ubZ fnYyh% vk; Z cqd fMi ks
- 2-d';i] js.kq- ½2001½- ^*jktHkk"kk fgUnh dk Lo:i\** fo'ys"k.k] iVuk% ftKklk izdk'ku] >sye vikVZesaV
- 3-dqekj] ; ksxs'k- ½2004½- *vk/kqfud fgUnh f'k{k.k\** ubZ fnYyh% , -ih- , p- ifCyf'kax dkWjiksjs'ku
- 4-ik.Ms;] jke'kdy- ½2004½- ^uwru fgUnh f'k{k.k\* vkxjk% fouksn iqLrd efUnj
- 5-ikjhd] eerk- ½2006½- ^*fgUnh f'k{k.k* t;iqj % dYiuk ifCyds'kUI pkWniksy cktkj]
- 6-HkkfV;k] dSyk'kpunz ,oa eksrhyky prqosZnh- ½2001½- ^*fgUnh Hkk"kk fodkl vkSj Lo:i\**] ubZ fnYyh % xzaFk vdkneh]
- 7-0; kl Hkxorhyky , oa osn izdk' k- ½2004½- *fgUnh f' k{k.k ds u; s vk; ke*% vkxj k % j k/kk izdk' ku efUnj
- 8-flag] fujatu dqekj ½2006½- *^ek/; fed fo/ky; ksa esa fgUnh f'k{k.k*\* jktLFkku% fgUnh xzUFk vdkneh] fryduxj

# **Group-III: Pedagogy of Languages**

## (iii) PEDAGOGY OF PUNJABI

| Time: 3 Hours         | Max. Marks: 100<br>(Theory: 80, Internal: 20) |
|-----------------------|-----------------------------------------------|
| NOTE FOR PAPER SETTER | (Theory: 60, Internal: 20)                    |

# **'E FOR PAPER SETTER**

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short -answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

## **Learning Outcomes**

After the transaction of the course, student teachers will be able to:

- Explain the need and principles of Punjabi Language.
- Develop awareness about basic concepts related to teaching of Punjabi at the secondary level.
- Define linguistic skills and process of development among pupils.
- Conduct pedagogical analysis and develop teaching skills.
- Explain the concept of evaluation and methods of evaluating the performance of students.
- Demonstrate language competencies.

# **Course content**

Unit -1

# 1. Nature & Scope of Teaching of Punjabi

- Language & its development
  - Meaning
  - importance
  - Nature
- Formulation of Instructional objectives in teaching of Punjabi
  - Meaning of Instructional objectives
  - Taxonomy of Instructional objectives
  - \_ writing objectives in behavioral terms
- Correlation
  - Inter correlation of Punjabi language with other languages(Hindi, English, Sanskrit)
  - Intra correlation of Punjabi language (Prose, Poetry, Grammar, Composition)

# Unit-2

# 2. Contents and its pedagogical analysis

Pedagogical Analysis- Objectives and lesson planning ٠

10(414)

- Teaching of Prose
- Teaching of Poetry
- Teaching of Grammar
- Teaching of Composition

- Development of Language skills
  - Listening
  - speaking
  - Reading
  - Writing
- Teaching skills
  - Skill of Questioning
  - Skill of Explaining
  - Skill of Technology enthusiast
  - Skill of chalk board writing

# Unit-3

# 3. Teaching learning resources and process

- Instructional Material
  - Concept
    - components
  - Importance / use
- Use of Language laboratory and latest techniques
- Curriculum of Punjabi Language
- Text Books of Punjabi Language

# Unit-IV

# 4. Approaches and Evaluation on Teaching

- Remedial Teaching
  - Meaning and significance of remedial teaching
  - Common errors in Punjabi language and their removal
- Evaluation
  - Concept of test measurement and evaluation
  - Place of Evaluation in the process of teaching learning

# **Practicum/Sessionals**

Select anyone of the following:

- i. Preparation of a Diagnostic /Achievement Test.
- ii. Organize a quiz competition in Punjabi and analyze the responses of students.
- iii. ICT Based presentation on any topic of your choice.
- iv. Seminar presentation on any topic given in the syllabus.

# Suggested Readings

Singh,G.B.(1981). *Gurumukhi Lipi Da Janam Te Vikas*, Chandigarh: Punjab University Publication Bureau

Singh, G.(1971). Gurumukhi Lipi Bare, Ludhinana : Lahore Book Shop

Singh, H.(1966), Punjabi Bare, Patiala: Punjabi University

Sekhon, S.S. & Singh, P.P.(1961). Punjabi Boli Da Itihaas, Punhabi Bhasha Vibhag

Group-III: Pedagogy of Languages

# (iv) $laLd r f'k\{k.k$

le;% 3 ?k.Vs vad% 100

dqy ckg~; vad% 80

# vkUrfjd vad % 20

# iz'u i = fuekZrk gsrq funsZ'k&

IEiw. kZ ikB~; Øe Is ukS iz'u fn, tka, xsA tks IHkh Iksyg vadksa ds gkasxsA izFke iz'u vfuok; Z gksxk tks pkj&pkj vadksa ds pkj y?kq iz'uksa ds :i esa IEiw. kZ ikB~; Øe Is fy; k tk, xkA

mís';%

- 1- ek/; fed Lrj ij fo/kkfFkZ; ksa esa laLd`r&f'k{k.k mís'; ksa ds ckjs esa tkx:d djukA
- 2- laizs"k.k dkS'ky ds egRo dh le> dks
  fodflr djuk
- 3- laLd`r f'k{k.k dh fof/k;ksa ls ifjfpr
  djokukA
- 4- LaLd`r f'k{k.k ds fy, vuqns'kkRed Lkexzh dks rS;kj djuk vkSj mLs izHkko'kkyh <ax Ls iz;ksxkRed dkS'ky fodflr djukA
- 5- fo|kfFkZ; ksa dks laLd`r f'k{k.k , oa vf/kxe ds fofHkUu igyqvksa ls ifjfpr dj kukA
- 6- laLd`r f'k{k.k esa funkukRed o mipkjkRed dkS'ky dks fodflr djukA

# bdkbZ&1

- laLd`r Hkk"kk , oa lkfgR; dk egRo o bldk vU; fo"k; ksa ls vUrZlaca/kA
- laLd`r Hkk"kk dk vU; Hkk"kkvksa Is laaca/kA
- vk/kqfud ikB~; Øe esa laLd`r dk LFkkuA
- f=Hkk"kk |w= ,oa vU; 'kkldh; izfrosnuksa dk laLd`r f'k{k.k ij izHkkoA
- laLd`r vk; ksx ds izfrosnu vkSj mlds vuqdj.k dk; Z lkj foe'kZA
- laLd`r Hkk"kk dk fo'o Hkk"kkvksa ds lkFk lglEcU/k rFkk v/;;u dh izklafxdrkA
- laLd`r f'k{k.k ds y{;] mís'; vkSj budk foHkktuA
- pkj ksa ewy Hkk"kkbZ dkS' kyksa dk laLd`r ds lanHkZ esa Kku , oa vH; kl

# bdkbZ&2

- laLd`r Hkk"kk f'k{k.k dh ijEijkxr vkSj vk/kqfud fof/k; ksa dk ifjp;
- ikB'kkyk ¼lw=½ fof/k
- Hk. Mkjdj ¼0; kdj. k vuqokn½ fof/k
- ikB~;iqLrd fof/k
- i zR; {k , oa ekSf[kd fof/k
- I aj pukRed mi kxe
- vfeØfer vuqns' ku
- IaLd`r f'k{k.kkFkZ Iwpuk rduhdh ds vk/kqfud Ik/kuksa dk Kku ,oa iz;ksx dk vH;kI

# bdkbZ&3

 laLd`r Hkk"kk dh fofHkUu fo/kkvksa dk f' k{k. k • laLd`r 0; kdj.k f'k{k.k mís';] eqRo] izfØ;k ,oa ikB ;kstuk • laLd`r i | f'k{k.k mís';] egRo] izfØ;k ,oa ikB ;kstuk • laLd`r x| f'k{k.k mís';] egRo] izfØ;k ,oa ikB ;kstuk laLd`r jpuk f'k{k.k mís';] eqRo] izfØ;k,oa ikB;kstuk • laLd`r vuqokn f'k{k.k mís';] egRo] izfØ;k ,oa ikB ;kstuk laLd`r f'k{k.k esa vH; kl dk; Z fu; kstu rFkk la'kks/ku izfØ;k bdkbZ&4 • laLd`r Hkk"kk dh i kB~; l gxkeh fØ; kvksa&' yksdksPpkj . k] Hkk''k.k] vfHku; hdj.k] jpuk ds vk; sktu dk f'k{k.k laLd`r esa ekSf[kd dk; Z esa 'kq)rk dk egRo] mPpkj.k v'kqf);ksa ds dkj.k] izdkj rFkk mipkj laLd`r ys[ku esa v{kj foU; kl rFkk ys[kuxr =qfV; ksa ds dkj k] i zdkj rFkk mi pkj laLd`r ikB~;iqLrd fuekZ.k ,oa leh{kk] laLd`r Hkk"kk f'k{k.k ds ewY;kdau dh izkphu, oa vokZphu fof/k; ksa dk f'k{k.k

# izk;ksfxd dk;Z%&

 Nk=k/; kid laLd`r ewY; kadu gsrq ek/; fed Lrj ds ikB~; Øe esa ls oLrqfu"B y?kwÙkj kRed rFkk fucU/kkRed iz'ui=ksa dk fuekZ.k laLd`r ek/; e esa dj saxsA

- ek/; fed Lrj dh laLd`r ikB~; iqLrd dh leh{kk djsxsA
- , d ikB~; iqLrd ds izR; sd ikB ls nl&nl 'kCnksa dk in ifjp; ikoj lokbaV ds iz; ksx }kjk rS; kj dj saxs A
- d{kk ds le o fo"ke vuqØekad okys Nk= Øe'k% xhrk ds izFke vkSj vfUre v/;k; dk 'kkL=h; fo'ys"k.k] 0;k[;k vkSj la{ksihdj.k vius 'kCnksa esa djsaxsA

# IaUnHkZ xazFk Iwph%

vklVs] Mh-th- , oe Mksxjs ¼1980½-Vhfpax vkWQ laLd`r bu lSds.Mjh Ldwy] cMkSnk% vkpk; Z cqd fMi ksA dkys] ,e-vkj- gk;j laLd`r xzkej xouZeSUV vkWQ bf. M; k% fj i ksVZ vkWQ laLd`r deh' kuA ik.Ms] vkj-,I- ¼2000½- *laLd`r* f'k{k.k] vkxjk% fouksn iqLrd efUni ik. Ms; ] jke'kDy *laLd`r* f'k{k.k] vkxjk% fouksn iqLrd efUnj A feùky] | Urks"k laLd`r  $f' k\{k, k\}$  esj B% vkj yky cqd fMiks feJ] i zHkk' kadj laLd`r&f'k{k.k A cksfdy ,oe~ ikjlfud U; w , *ijksp Vw laLd`r*] iwuk% yksd laxzg izsSIA IQk; k] j?kqukFk IaLd`r&f' k{k. k] p. Mhx<% gfj;k.kk lkfgR; vdkneh

flag] , I -Mh- , oe~ 'kekZ ¼1999½laLd`r f'k{k.k] vkxjk% jk/kk izdk'ku eaMhA 'kkL=h , oe~ 'kkL=h laLd`r f'k{k.k] t;iqj% jktLFkku izdk'kuA gqQjsdj n izksCYe vkWQ Vhfpax vkWQ laLd`r

# **Group-IV: Pedagogy of Mathematics**

## **PEDAGOGY OF MATHEMATICS**

**Time: 3 Hours** 

Max. Marks: 100 (Theory: 80, Internal: 20)

#### NOTE FOR PAPER SETTER

- i. Paper setters will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q. No. 1 will be compulsory and will carry 16 marks. There will be four short-answer type questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type questions will be set from each of the four units, out of which the students will be required to attempt one question from each unit. Long-answer type questions will carry 16 marks each.

#### iv. All questions will carry equal marks.

#### **Learning Outcomes**

After the transaction of the course, student teachers will be able to:

- understand the nature of mathematics
- develop an understanding of the correlation of mathematics with external subjects
- teach the concepts and principles of mathematics.
- select appropriate methods of teaching to teach mathematics.
- develop an understanding of innovative trends in teaching of Mathematics
- develop achievement test in mathematics;
- understand preparation and use of diagnostic test and organize remedial teaching;
- understand the application of appropriate evaluation techniques in mathematics

# COURSE CONTENT

## Unit-I

# 1. Nature & Scope of Teaching of Mathematics

- Meaning, nature and scope of mathematics
- History of Mathematics and Contribution of Indian mathematician with special reference to Bhaskaracharya, Aryabhatta and Ramanujam
- Relationship of Mathematics with other school subjects
- Aims and objectives of Mathematics teaching
- Behavioural objectives: meaning and importance of behavioural objectives, writing instructional objectives for teaching of mathematics (Bloom's Taxonomy of Instructional Objectives).

# Unit-II

# 2. Pedagogical Analysis and Lesson Planning

Meaning and importance of Pedagogical Analysis

- Points followed for Pedagogical Analysis: Identification of concept, listing behavioral outcome, listing activity & experiments, listing evaluation techniques
- Contents for Pedagogical Analysis:

- Arithmetic (Number Systems, Fractions, Ratio and Proportion, Profit and Loss, Simple and Compound Interest)
- Algebra (Polynomials, Linear equations, Quadratic equations Arithmetic Progressions)
- Geometry (Congruent and Similar triangles, Constructions and Circles),
- Trigonometry (t-ratios, Heights and Distances)
- Statistics (Measures of Central Tendency and Graphical Representation of Data)
- Menstruation (Areas, Surface areas and volumes of solid figures)
- Skills of teaching mathematics: Skill of Introduction, Skill of Questioning, Skill of Reinforcement, Skill of Illustration with examples and Skill of Stimulus variation
- Lesson planning: Need and importance, steps involved in lesson planning, features of a good lesson plan.

# Unit-III

# 3. Teaching Learning Resources and Processes

- Meaning, Importance and Principles of designing a good curriculum of Mathematics
- Textbooks: Meaning and importance of textbooks in mathematics, qualities of a good textbook in Mathematics
- Applications of ICT in teaching of mathematics
- Meaning and importance and preparation of audio-visual aids in teaching mathematics
- Problems in teaching and learning of mathematics
- Importance and organization of Mathematics Club
- Recreational activities of Mathematics Club
  - Quiz
  - Games
  - Puzzles
  - Mathematics exhibition

# Unit-IV

- 4. Approaches and Evaluation in Teaching of Mathematics
- Methods of teaching Mathematics
  - Lecture cum demonstration method
  - Analytic-Synthetic
  - Laboratory
  - Inductive-Deductive
  - Problem Solving
  - Project Method
- Techniques of teaching Mathematics
  - Oral work
  - Written work
  - Drill work,
  - Brain Storming,
  - Home Assignment

- Evaluation: Meaning, importance and types of evaluation.
- Preparation of diagnostic and achievement test.

## Praticum/Sessional

## Any one of the following

- i. Critical study of mathematics text book of secondary school.
- ii. Prepare any one self-made teaching aid for teaching of Mathematics in secondary school
- iii. Prepare an achievement test of mathematics
- iv. Prepare a diagnostic tests of mathematics
- v. Prepare slides using MS Power point on any one topic of mathematics

# Suggested Readings:

Aggarwal, J. C. (2008). Teaching of mathematics. UP: Vikas Publishing House Pvt Ltd.

Bagyanathan, D. (2007). Teaching of mathematics. Chennai: Tamil Nadu Text Book Society.

Bhatia, K. K. (2001). Foundations of teaching learning process. Ludhiana: Tandon

CFAI. (2004). Methodology of teaching mathematics. Hyderabad: ICFAI University Press.

Ediger, M., & Bhaskara Rao, D. B. (2004). *Teaching mathematics successfully*. New Delhi: Discovery Publishing House.

Ediger, M., & Rao, D.B. (2000). *Teaching mathematics successfully*. New Delhi: Discovery Publishing House.

Goel, Amit. (2006). Learn and teach mathematics. Delhi: Authors Press.

ICFAI. (2004). Methodology of teaching mathematics. Hyderabad: ICFAI University Press.

James Anice (2005); Teaching of Mathematics, Neelkamal Publication.

Joyce., & Well., (2004). Models of teaching. U.K: Prentice hall of India.

Kapoor, S. K. (2006). The teaching of vedic mathematics. New Delhi: Lotus Press.

Kapur S. K. (2005); Learn and Teach Vedic Mathematics; Lotus Publication

Kapur, J. N. (2002). Suggested experiments in school mathematics. New delhi: Arya Book Depot.

Kulshreshtha, A. K. (2008). *Teaching of Mathematics*. Meerut: R.Lall Books Depot.

Nalikar, J. V., & Narlikar, M. (2001). *Fun and fundamentals of mathematics*. Hyderabad: Universities Press.

Ploker, Kim (2009), *Mathematics in India*: 500 BCE–1800 CE, Princeton, NJ: Princeton University Press,

Pratap, N. (2008). Teaching of Mathematics. Meerut: R.Lall Books Depot. Publications.

Reymond, B. (2000). Math-tricks, puzzles and games. New Delhi: Orient Paperbacks.

Schwartz, S. L. (2007). *Teaching young children mathematics*. London: Atlantic Publishers & Distributors (P) Ltd.

Sharan, R., & Sharma, M. (2006). Teaching of Mathematics. New delhi: A.P.H. Publishing Corporation.

Sharma, R. A. (2008). Technological foundation of education. Meerut: R.Lall Books Depot.

Siddizui, M. H. (2005). *Teaching of mathematics*. New Delhi: A.P.H. Publishing Corporation.

Sidhu, K. S. (2006). The teaching of mathematics. New Delhi: Sterling Publishers private ltd.

Singh, M. (2006). Modern teaching of mathematics. New Delhi: Anmol Publications Pvt.Ltd.

Tyagi, S.K. (2004); *Teaching of Arithmetic*; Commonwealth Publications

Wadhwa, S. (2008). *Modern methods of teaching mathematics*. New Delhi: Karan Papers Backs.

# Course 8 KNOWLEDGE AND CURRICULUM

## Time: 3 Hours

Max. Marks :100 (Theory: 80,Internal: 20)

# NOTE FOR PAPER SETTER

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

## **Rationale:**

The course "Knowledge and Curriculum" addresses the theoretical foundations of school knowledge from historical, philosophical and sociological perspectives, with critical analysis of curricular aims and contexts, and the relationship between curriculum, policy and learning to shape the educational and pedagogic practice with greater awareness.

#### Learning Outcomes

After the transaction of the course, student teachers will be able to:

- To understand and explore the concept of education
- To develop understanding of philosophical, sociological and historical dimensions of education
- Analyze the philosophical reflections and educational thoughts of great Educational thinkers
- Understand the nature of knowledge in Education and its contribution to status of
- Education as a discipline and interdisciplinary in nature
- Realize the need and importance of equity and equality in education
- Examine the concerns and issues related to curriculum.

**Course Contents** 

## Unit-I

## 1. Knowledge Basis of Education

- Basic concepts of Education: Teaching, Training, Learning, Skill, Beliefs and Education.
- Contribution of Gandhi & Tagore in relation to child-centered education (activity, Discovery, Dialogue)
- Concept, sources & types of Knowledge

## Unit-II

## 2. Social Basis of Education

- Basic concepts of Society: Socialization, Equity and Equality, Modernity with reference to industrialization, democracy and individual Autonomy.
- The role of culture, economy and historical forces in shaping the aims of education.
- Individual opportunity, social justice and dignity in context of democratic education.
- A study of Secularism, Nationalism and Universalism and their interrelationship with education.

# Unit-III

# 3. Curriculum Development

- Concept of Curriculum and Syllabus: Dimensions of Curriculum and their relationship with aims of education.
- Curriculum at different levels- National, State and School.
- Determinants of curriculum: Philosophical, Psychological, Sociological, Political, Culture and Economic.
- Basic considerations in Curriculum Development.

# Unit-IV

# 4. Curriculum Practices

- Teachers' experiences and concerns: Laboratory work, Library and References, Field Survey, Group Discussion.
- Nature of learner and learning process and subject matter.
- Knowledge and ideology in relation to curriculum and text books.
- National curriculum framework: Concept need and process of development.

# Practicum/ Sessionals

# Any two of the following:

- i. Socio-economic educational survey of near by village/ urban settings.
- ii. Role of education in empowerment of weaker sections of society.
- iii. To analyze and prepare a report on the present curriculum of Haryana School Education Board/ CBSE in the light of various determinates of curriculum development.
- iv. Filed survey on impact of present system of education on:
  - a) Socialization of child
  - b) Modernization with reference to industrialization and individual autonomy.
- v. To survey and prepare a project report on how far the present system of education is able to inculcate secularism, nationalism, and universalism.
- vi. Blue Print of practice models of Gandhi ji /Tagore for rural reconstruction.

# Suggested Readings

Butchvarov, P. (1970), *The Concept of Knowledge*, Evanston, Illinois: North Western University Press.

Chomsky, N (1986). *Knowledge of Language*, New York : Prager.

Cole Luella (1950). A History of Education: Socrates to Montessori, NewYork: Holt, Rinehart & Winston.

Datta, D.M. (1972). Six ways of Knowing. Calcultta.: Calcultta University Press,

Dewey, J.( 1997.)My Pedagogic Creed', in D.J. Flinders and S.J. Thorton(eds.) The Curriculum Studies Reader, New York: Routledge.

Dewey, J (1997) Experience and Education, Touchstone, New York

Dewey, J (1956). *The Child and the Curriculum and School and Society*, University of Chicago Press, U.S.A. Chicago, Illinois.

Krishna M. J. (1947) On Education, New Delhi: Orient Longman.

Kumar K. (1996). Learning From Conflict, New Delhi: Orient Longman.

Lakshmi, T.K.S. & Yadav M.S.(1992). Education: Its Evolving Characteristics, in New

Frontiers in Education, Vol. XXII, No.4, Oct-Dec.

Margaret, K.T.( 1999.) *The open Classroom*, Orient Longman: New Delhi: Hirst. Paul, Knowledge and curriculum.

Peters, R.S.(1967) The Concept of Education, UK: Routledge.

Power, E, J., M (1962). *Currents in the History of Education*, New York. : McGraw Hill Book Co. Inc.

Prema C. (2001). *Teaching & Learning: The Culture of pedagogy*, NewDelhi: Sage Publication.

# Course -9 ASSESSMENT FOR LEARNING

Time: 3 Hours

Max. Marks :100 (Theory: 80,Internal: 20)

## NOTE FOR PAPER SETTER

- i. Paper setter will set nine questions in all, out of which students will be required to attempt five questions.
- ii. Q.No 1 will be compulsory and will carry 16 marks. There will be four short answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the four units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

## **Rationale:**

The course "Assessment for Learning" aims to develop a critical understanding of issues in assessment and explore realistic, comprehensions and dynamic assessment processes which are culturally responsive for use in classroom.

## Learning Outcomes

After the transaction of the course, student teachers will be able to:

- Understand the nature of assessment and evaluation and their role in teaching-learning process.
- Understand the importance of assessment in continuous and comprehensive manner
- Develop assessment tasks and tools to assess learner's competence and performance
- Devise marking, scoring and grading procedures,
- Devise ways of reporting on student performance
- Analyse, manage and interpret assessment data.
- Develop the habit of reflecting-on and self-critiquing to improve performance.

# **Course Contents**

Unit I

## 1. Introduction to Assessment & Evaluation

• Concept of Assessment & Evaluation and their inter relationships.

Purposes and objectives of assessment for placement, providing feedbacks, grading promotion, certification, diagnostic of learning difficulties.

- Critical review of current evaluation practices:
  - a) Formative and summative evaluation
  - b) Prognostic and diagnostic
  - c) Norm referenced test and Criterion referenced test
  - d) Quantitative and Qualitative

## Unit II

## 2. Assessment of Learning

- Concept of Cognitive, Affective, Psychomotor domain of learning (Revised taxonomy of objectives (2001)
- Constructing table of specifications & writing different forms of questions (VSA, SA, ET & objective type, situation based)
- Construction of achievement tests- steps, procedure and uses
- Construction of diagnostic test Steps, uses & limitation
- Kinds of tasks: projects, assignments, performances

## Unit III

## 3. Assessment Process & tools

- Need for CCE its importance and problems faced by teachers
- Meaning & Construction of process-oriented tools observation schedule; checklist; rating scale; anecdotal record;
- Assessment of group processes Nature of group dynamics; Socio-metric techniques; steps for formation of groups, criteria for assessing tasks; Criteria's for assessment of social skills in collaborative or cooperative learning situations.
- Portfolio assessment meaning, scope & uses; developing & assessing portfolio; development of Rubrics.

## Unit IV

#### 4. Construction Interpretation and Reporting of student's performance

- Interpreting student's performance :
  - a) Descriptive statistics (measures of central tendency & measures of variability, percentages)
  - b) Graphical representation (Histogram, Frequency Curves)
  - c) NPC percentile.
  - d) Grading Meaning, types, and its uses
- Role of feedback to stake holders (Students, Parents, Teachers) and to improve teaching learning process; Identifying the strengths & weakness of learners.
- Reporting student's performance Progress reports, cumulative records, profiles and their uses, Portfolios.

#### **Practicum/ Sessionals**

#### Any one of the following:

i. Construction of unit test, using table of specifications and administering it to target group and

interpreting the result.

- ii. Construction of any one of the process oriented tools and administering it to group of students & interpreting it.
- iii. Analysis of question papers ( teacher made)
- iv. Writing self appraisal/ create portfolio.
- v. Planning and organizing student's portfolio.
- vi. Writing a report on the evaluation and learner practice of school education.
- vii. Examine and reflect upon the problems and issues involved in assessment practice of school evaluation.
- viii. Activities and Assessment criteria for Work education and Experiential learning, Community service.

#### **Suggested Readings**

Bransford, J., Brown, A.L., & Cocking, R.R. (Eds.). (2000). How people learn: Brain, mind, experience, and school. Washington, DC: National Academy Press.

Burke, K. (2005). How to assess authentic learning (4th Ed.). Thousand Oaks, CA: Corwin.

Burke, K., Fogarty, R., & Belgrad, S (2002). The portfolio connection: Student work linked to standards (2nd Ed.) Thousand Oaks, CA: Corwin.

Carr, J.F., & Harris, D.E. (2001). Succeeding with standards: Linking curriculum, assessment, and action planning. Alexandria, VA: Association for Supervision and Curriculum Development.

Danielson, C. (2002). Enhancing student achievement: A framework for school improvement. Alexandria, VA: Association for Supervision and Curriculum Development.

Gentile, J.R. & Lalley, J.P. (2003). Standards and mastery learning: Aligning teaching and assessment so all children can learn. Thousand Oaks, CA: Corwin.

Guskey, T.R., & Bailey, J.M. (2001). Developing grading and reporting systems for student learning. Thousand Oaks, CA. Corwin.

Linn, Robert and Norman E Gronland (2000); Measurement and Assessment in teaching, 8th edition, by Prentice Hall, Inc, Pearson Education, Printed in USA.

Natrajan V.and Kulshreshta SP(1983). Assessing non-Scholastic Aspects-Learners Behaviour, New Delhi: Association of Indian Universities.

NCERT(1985). Curriculum and Evaluation, New Delhi:NCERT

Newman, F.M. (1996). Authentic achievement: Restructuring schools for intellectual quality. San Francisco, CA: Jossey-Bass.

Nitko, A.J. (2001). Educational assessment of students (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

Norris N.(1990) Understanding Educational Evaluation, Kogan Page Ltd.

Rao, Manjula (1998): Training material on continuous and comprehensive evaluation (monograph) Mysore: Regional Institute of Education (NCERT).

Rao, Manjula (2004): Evaluation in schools – a training package (monograph), Mysore: Regional Institute of Education (NCERT).

Singh H.S.(1974) Modern Educational Testing. New Delhi: Sterling Publication.

Ved Prakash, et.al. (2000): Grading in schools, NCERT, Published at the publication Division by the secretary, NCERT, New Delhi: Sri Aurobindo Marg.

# Course 10

## **CREATING AN INCLUSIVE SCHOOL**

#### Time: 1.30 Hours

Max. Marks :50 (Theory: 40,Internal: 10)

## NOTE FOR PAPER SETTER

- i. Paper setter will set five questions in all, out of which students will be required to attempt three questions.
- ii. Q.No 1 will be compulsory and will carry 8 marks. There will be two short answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the two units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

## Rationale

The course "Creating an inclusive school" aims to develop an understanding of the cultures, Policies and Practices that need to be addressed in order to create an inclusive school.

## Learning Outcomes

After the transaction of the course, student teachers will be able to:

- To define the concept of Disability, Inclusion, Psychosocial construct of disability and identity.
- The course aims to develop an understanding of the Cultures, Policies and Practices that need to be addressed in order to create an inclusive school.
- To analyze the policy and Programme initiatives in the area of inclusion and barrier to learning and participation while formulating a policy of good practice and review.
- To understand how barriers of learning arise from various discriminatory practices, curriculum, teaching approaches, school organization, and various other social and cultural factors.
- To study the role of children, Parents, Community, Teachers, Administrators and Policy Makers in terms of inclusion.
- To explore and understand the possibility of change through inclusive education

#### Course Contents Unit I

## Unit I

## 1. Inclusive education:

- Meaning, nature, need and philosophy of inclusive education.
  - a) Models of inclusion,
  - b) Barriers to learning and participation.
  - c) Implementation and strategies for inclusion in society and school.
- Constitutional provisions-Govt. policies and practices:
  - a) National Policy of Persons with Disabilities Act 2006,
  - b) Sarva Shiksha Abhiyan in terms of Inclusive Education.
- Psycho-social and educational characteristics, functional limitations, role of family and community participation with reference to-Loco motor Impairment,

Hearing Impairment, Visual Impairment, Learning Impairment and Mental retardation

# Unit-II

# 2. Inclusive practices in classrooms

- School readiness and support services for inclusive education.
- Teacher competencies, role of class teachers and resource teachers in inclusive education.
- Guidance and counseling in inclusive education.
- Teaching learning strategies in inclusive education: co- operative learning, peer tutoring, social learning, multisensory learning.
- Individual Educational Programme (IEP) and use of emerging technologies.

# **Practicum/ Sessionals**

# Any one of the following:

- i. Preparation of status report on school education of children with diverse needs.
- ii. Evaluation of text books from the perspective of differently abled children.
- iii. Field visit to school/institutions promoting inclusive practices and discussion with teachers and observation and analysis of teaching learning practices.
- iv. Analysis of policy document (national, international) related to diversity.
- v. Planning and conducting multi level teaching in the local school.
- vi. Critical review of policy and practice and panel discussion by a group of students.
- vii. Make a list of existing resources in the local area and discuss their use and limitations based on survey of five inclusive schools.
- viii. Study of forms of inequities in the society, education, health, civic participation, social justice and gender.
- ix. Case study of a Child with Disability in a village

# Suggested Readings

Alur Mithu and Michael Bach, (2009), *The Journey For Inclusive Education In The Indian Sub-Continent*. UK: Routledge

Dettmer, p., Dyck, N. and Thurston, L.P. (1999). Consultation collaboration and teamwork for students with special needs, Needham Heyats, M.a Allyn & Bacon

Epstein, C. (1984) *Special Children in Regular Classrooms*. Virginia: Reston Publishing Company, Inc

Frostig, M, and, P. Maslow (1973) *Learning Problems in the Classroom: Prevention and Remediation*. New York: Grune & Stratton.

Jorgensea, C.M.ed(1998). R restructuring High Schools for all Students: Taking inclusion to the next level, Baltimore: Paul H. brookes.

Hallahan, D & Kauffman, J.M. (1991). Exceptional Children: Introduction to special Education, Englewood, NJ: Prentice Hall.

## COURSE 11 (Optional)

### (i) ENVIRONMENT EDUCATION

Time: 1.30 Hours

Max. Marks :50 (Theory: 40,Internal: 10)

### NOTE FOR PAPER SETTER

- i. Paper setter will set five questions in all, out of which students will be required to attempt three questions.
- ii. Q.No 1 will be compulsory and will carry 8 marks. There will be two short -answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the two units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

### **Learning Outcomes**

After the transaction of the course, student teachers will be able to:

- acquaint the concept, need, scope and objectives of Environmental Education.
- sensitize the global environmental problem.
- explain teaching-learning strategies & evaluation techniques in Environmental Education.
- understand the curriculum development of environmental education.
- understand the role of Media & internet in environmental Issues.
- sensitize toward Environmental disasters.

### **Course Content**

### Unit-I

### 1. Concept of Environmental Education:

- Meaning, need and scope of environmental education.
- Evolution and development of environmental education.
- Stock Holm conference, Thelisi conference and Earth Summit.
- Objective of environmental education.

## 2. Environmental problems and policies:

- Acid rain, Ozone depletion, effect of urbanization, industrialization and deforestation.
- Global warming and Kyoto Conference.
- Pollution and its types.
- Policies related with environmental problems.
- Sustainable development
- Environmental legislation in India.
- Concept of healthy environment
- Eco club: Meaning, Characteristics & Importance.

### Unit-II

### 3. Curriculum development and environmental education:

• Teaching learning strategies and evaluation techniques in environmental education.

- Planning of environmental education in school, colleges and universities.
- Role of electronic media, mass media and computers in environmental education.
- Curriculum development: India explainer, formal and non-formal approach.

## 4. Managing environmental disasters:

- Meaning, types, causes and effects of different disasters.
- Managing environmental disaster at community and individual level
- Rescue from disaster: Principles governing rescue, rescue process
- Relief for disaster: preparatory phase of relief ,planning immediate relief, execution of relief.

### Practicum/Sessionals

### Any one of the following:

- i. Prepare a scrap file along with suggestion of pupil-teacher related to environmental articles and news.
- ii. Project report on local environmental problem.
- iii. Conducting discussion (class level)on disaster management and prepare a report on it.
- iv. Participating and promoting Vanamahotsav with school community participation a feast for creating awareness of trees and planting of saplings.
- v. On field learning: Raising a nursery/ Kitchen garden.
- vi. Organise activities of an eco club in a rural school

### Suggested Readings:

Ali Khan, S. & Sterling, (1998). *Sustainable development education*: Teacher education specification, London, Education for sustainable development Panel.

Allaby, M. (1996). Basics of Environmental Science. New York: Routledge.

Aptekar.Lewis (1914). *Environmental Disasters in Global perspective*. New York :G.K.Hall; Toronto: Maxwell macmillan.

Burton, Ian, Robert W.Kares and Gilbert F.white(.1993). *The environmental as Hazard*. New York: the Guildford press.

Dani, H.M.(1996). *Environmental Education* .Chandigarh: Punjab University Publication Bureau.

Huckle, J. & Sterling, S.(eds)(1996). *Education for sustainability*, London: Earthscan.

Kaur, T.N. (1999), *Environmental Concerns & Strategies*, New Delhi: Ashish Publication House.

Laeeq Futehally (1994) Our Environment. India: National Book Trust

Lambert, P.R.(2000). Education for sustainable development : a new role for subject association, education in science ,208.pp.8-9

Pankaj Shrivastava & D.P. Singh (2002). *Environment Education*, Anmol publication Pvt. Ltd.

Pelling, Mark (ed.)(2003). *Natural Disasters & development in a globalizing world*. London: New York; Routledge.

Trivedi, P.R.(2000). *Encyclopedia of environmental Pollution Planning & Conservation*; New Delhi: A.P.H.Co.

Verma V.A. (1972). *Textbook of Plant Ecology*, Delhi: Euolcary Publication. Warburton D.(ed.)(1998). *Community & Sustainable Development*, London, Earthscan. Yogendra N.Srivastava (2012). *Environmental Pollution*. New Delhi: PPH Publishing Corporation.

## Course-11 (optional) (ii) PEACE EDUCATION

Max. Marks :50

### Time: 1.30 Hours

(Theory: 40, Internal: 10)

## NOTE FOR PAPER SETTER

- iv. Paper setter will set five questions in all, out of which students will be required to attempt three questions.
- v. Q.No 1 will be compulsory and will carry 8 marks. There will be two short answer type Questions of 4 marks each to be selected from the entire syllabus.
- vi. Two long answer type question will be set from each of the two units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

### Learning Outcomes

After the transaction of the course, student teachers will be able to:

- to understand the concept of peace education.
- to acquire the knowledge about peaceful mind makes peaceful world.
- to understand the philosophical thoughts for peace.
- understand the nature of conflicts and their resolution.
- to develop the ability to use various methods and techniques for teaching peace education.
- adopt peace education in the curriculum.
- imbibe the knowledge, attitude and skills needed to achieve and sustain a global culture of peace.
- understand the dynamics of transformation of violence into peace.

## **Course Contents**

### Unit -1

## 1. Introduction of Peace Education

- Meaning, Concept and need of Peace Education.
- As a universal value
- Aims and Objectives of Peace Education.
- Role of Social Agencies: Family, Religion, Mass Media, Community, School, NGO's, Government Agencies in promoting peace education.
- Current Status of Peace Education at Global Scenario.

## Unit-2

## 2. Peace In The Indian Context

- Role of Religion in propagation of Peace. Mother-Theresa, Vivekananda, Gandhian Philosophy in promoting Peace Education. Role of Great personalities in promoting Peace.
- Challenges to Peace- Stress, Conflict, Crimes, Terrorism, Violence and Modernization.
- Strategies and Methods of teaching Peace Education- Meditation, Yoga, Dramatization, Debate and etc.

• Democracy and Peace, Secularism and Peace, Culture and Peace.

### **Practicum/Sessionals**

### Any one of the following:

- i. Prepare a Role Play of Great Personalities who worked/ contributed towards Peace.
- ii. Organize an activity in schools to promote Peace.
- iii. Write a report on Gandhi and Peace.
- iv. Write about the contribution of any two Noble prize winners for Peace.
- v. Prepare an album of Indian Philosophers and write their thoughts on peace.

### References

Adams.D (Ed) (1997). UNESCO and a culture of Peace: Promoting a Global Movement.

Paris UNESCO.

Taj.H. (2005). National Concerns and Education, Neelkamal Publications.pvt.Ltd

Taj.H (2005). Current challenges in Education, Neelkamal Publications.pvt.Ltd

Bhargava.M. & Taj.H (2006). Glimpses of Higher Education. Agra-2: Rakhi Prakashan,

http://www.un.org/cyberschoolbus/peace/content.html.

## Course-11(optional) (iii) HEALTH, PHYSICAL AND YOGA EDUCATION

### Time: 1.30 Hours

Max. Marks :50 (Theory: 40,Internal: 10)

## NOTE FOR PAPER SETTER

- i. Paper setter will set five questions in all, out of which students will be required to attempt three questions.
- ii. Q.No 1 will be compulsory and will carry 8 marks. There will be two short answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the two units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

### Learning Outcomes:-

After the transaction of the course, student teachers will be able to:

- explain the concept of Health, Physical and Yoga Education along with their roles for a healthy Individual.
- under stands the basis of Diet and Nutrition.
- acquaint themselves with ways and means to protect pollution and Global Warming.
- understand correct posture
- understand and apply various ways and means for the safety and security of the child.

## **Course Contents**

Unit-I

## 1. Health ,Yoga and Physical Education:

- Concept of Health and factors affecting Health
- Concept and types of Yoga.
- Physical Education and its objectives.
- Role of School and society in developing a healthy individual through the programmes of Health, Yoga and Physical Education.

## 2. Food and Nutrition:

- Diet, Food, nutrition
- Balanced diet, its functions and components.
- Types of food according to Yogis and Yogic Diet
- Malnutrition –causes and prevention

## Unit-II

## 3. Safety and Security

- Communicable diseases- modes, Prevention and control.
- First Aid in case of Wounds, Hammerages, Fracture, Dislocations, Sprain, Strain and Bites
- Health Hazards
- Pollution: Types, causes and prevention
- Water conservation, management and recycling
- Global warming
- Personal and Environmental Hygiene

## 4. posture and Physical Fitness:

• Postural deformities and their Management through Yogic and other exercises

• Physical Fitness – Elements, importance.

## **Practicum/Sessionals**

## Any one of the following:

- 1. A) Prepare a Medical report of a school student.
- B) Report of common first aid emergencies in school.
- 2. Performing & Reporting any five advance yoga asana.
- 3. Prepare a report on health awareness programme in school community.

4.Survey report on health status of students in a rural school

5. celebration of Yoga day/Yoga week.

6. Awareness programme to promote hygiene, sanitation in a nearby village.

## **References:**

Anderson, C.R. Your guide to health.

Bucher, C.A. (1964) Foundations of Physical Education, New York: Mosby and company. Catharine Ross Benjamin Caralleso, Robert, J. Cousino (2009). Modern Nutrition in health and diseases.

Holmes, A.C. Health in developing countries.

Kang Gurpreet singh & Deol NishanSingh.(2013). An Introduction to Health and Physical Education, 21<sup>st</sup> century publications, India.

Piper, B. (1999). Diet and Nutrition: A guide for students and practitioners.

## COURSE 11 (Optional)

## (iv) GUIDANCE AND COUNSELLING

Time: 1.30 Hours

Max. Marks :50 (Theory: 40,Internal: 10)

### NOTE FOR PAPER SETTER

- i. Paper setter will set five questions in all, out of which students will be required to attempt three questions.
- ii. Q.No 1 will be compulsory and will carry 8 marks. There will be two short answer type Questions of 4 marks each to be selected from the entire syllabus.
- iii. Two long answer type question will be set from each of the two units, out of which the student will be required to attempt one question from each unit. Long- answer type questions will carry 16 marks each.

### Rationale

The course on "Guidance and Counselling" is designed to introduce the student teacher to the study of concept of Guidance and Counselling, assessing an individual with testing and non testing techniques of guidance and organization of guidance services in the schools.

### Learning Outcomes

After transaction of the course, student teachers will be able to:

- explain the concepts of guidance and counseling.
- describe educational, vocational and personal guidance.
- understand the need of assessing an individual.
- familiarize with testing and non-testing devices of guidance.
- get aware of the organization of guidance services in the schools.

## **Course Content**

UNIT-I

## 1. INTRODUCTION TO GUIDANCE

- Meaning, Nature and Scope
- Principles of Guidance
- Types of Guidance : Educational, Vocational and Personal Guidance (Meaning, Need and Importance, Objectives)

## 2. COUNSELING

- Concept of Counselling, Need & Importance of Counselling
- Types of Counselling : Directive, Non-Directive and Eclectic
- Meaning and Characteristics
- Process of Counselling

## UNIT-II

## 3. STUDYING AN INDIVIDUAL

- Need and importance of Studying an individual
- Testing and Non-testing devices for the study of an individual
- Testing : Interest Inventories and aptitude tests
- Non-Testing : Interview, Questionnaire Cumulative record card, Anecdotal record, Rating scale

## 4. GUIDANCE SERVICES AND THEIR ORGANIZATION IN THE SCHOOLS:

- Types of Guidance services
- Role of School personnel in organizing guidance services
- Role of Teacher as a counselor.

## Practicum/Sessionals

## Any one of the following

- i. Make a study of a guidance centre. Prepare a report.
- ii. Prepare a cumulative record card of a student studying at secondary level.
- iii. Prepare a report on the guidance services organized by school personnel.
- iv. Learning and participating in the world of work : Study of local occupations, technologies & skills and work force.
- v. Prepare a report on the guidance & counselling needs of Students with Disabilities in a rural school.

### Suggested Readings:

Bhatia K.K (2002). *Principles of Guidance and counseling*, Ludhiana : Kalyani Publishers. Gibren, R.h and Mitchell, M.H (2003). *Introduction to counseling and guidance*, New Delhi: Pearson Education.

Pandey, K.P (2000). *Educational and Vocational Guidance in India*, Varanasi: Vishwa VidyalayaPrakashan.

Robinson (2005). Principles and Procedures in Students counseling, New York : Harper & Row.

Sharma, R.A (2008). *Fundamental of Guidance and counseling*, Meerut: R Lall Book Depot. Sidhu, H.S (2005). *Guidance and Counselling*, Patiala : Twenty First Century.

Strong, R. (2005). *Counselling Techniques in colleges and secondary school*. New York: Harper.

## Course EPC-1

## **Reading and Reflecting on Text.**

## Time: 3 Hours Learning Outcomes

## Max. Marks :50 (External: 40,Internal: 10)

After the transaction of the course, student-teacher will be able to:

- Read and respond to a variety of texts in different ways: personal, creative & critical
- Get involved in the readings interactively-individually and in small groups and enhance capacities as active readers and writers.
- Comprehend and think reflectively on spoken or written texts.
- Read critically and analyze course readings and pedagogical experiences.

| Existing                 | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Corrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •                        | <ul> <li>General Orientation</li> <li>Communication- concept and type of communication, overcoming barriers of communication.</li> <li>Identifying and describe some differences in dhonemic system of language spoken by learners (in first and second language).</li> <li>a. Engaging with narrative and descriptive accounts. The selected text could include stories or chapter from fiction, dramatic incidence, vivid descriptive accounts, or even well produced trip stories.</li> </ul> | <ol> <li>1. Text and Reading<br/>Types of Texts:<br/>General: Literary or non-literary; Narrative,<br/>expository, technical &amp; persuasive.</li> <li>Education: Descriptive, conceptual, historical,<br/>policy documents, narrative texts, expository<br/>texts, ethnographies.</li> <li>2. Text and Reflection         <ul> <li>Text structure, language, genre,<br/>context, socio-cultural diversity.</li> <li>Reflection in Reading: Pre-<br/>reading, Post-reading.</li> <li>Previews the text and make</li> </ul> </li> </ol> |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| i.<br>ii.<br>iii.<br>iv. | Exposure (native speaker) to give students by<br>using ICT followed by discussion.<br>Narrating/describing a related account from one's<br>life experience (in front of a smaller group) by<br>student -teacher.<br>Re-telling the account – in one's own words/from<br>different points of view (talking turns in a smaller<br>group).<br>Discussion of chapter character and situation                                                                                                         | predictions, makes connections to<br>personal experience or other texts,<br>asks clarifying questions, identify<br>difficult sentences or passages,<br>restates in own words, reacts to<br>the text by using language<br>laboratory.<br>Unit 2<br>3. Communicative Reader- Interactive                                                                                                                                                                                                                                                  |
|                          | sharing interpretation and points of view (in a                                                                                                                                                                                                                                                                                                                                                                                                                                                  | reading (Individual and groups)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| v.<br>Unit II            | small group)<br>Writing based on text, e. g. summary of scene,<br>extrapolation of a story, converting a situation into<br>a dialogue, etc. ( individual text).                                                                                                                                                                                                                                                                                                                                  | Concept and relevance of<br>communicative reader.<br>4. Expressive Reflections<br>a) Concept of reflective writing<br>b) Critical appreciation of the text: Note<br>taking, critically reviewing the text.                                                                                                                                                                                                                                                                                                                              |
|                          | • Engaging with popular subject- based                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | <ul><li>expository writing (educational and writing)<br/>Spelling and punctuation.</li><li>The selected text could include articles,</li></ul>                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Suggested Activities:</li> <li>i. Ways of reading: pre-reading and post reading</li> <li>ii. Read a book, a journal Article, or a chapter and write personal responses</li> </ul>                                                                                                                                                                                                                                                                                                                                              |
|                          | Essays and biographical writing with themes<br>that are drawn from the subject area of the<br>students, teachers (various sciences,                                                                                                                                                                                                                                                                                                                                                              | and summarize.<br>iii. Prepare presentations on literary TEXT                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          | Mathematics, social sciences, language.)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | – Autobiography / ethnographic text.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          | Suggested Activities:           i.         Attending the writing style, subject<br>specific, vocabulary and perspective or                                                                                                                                                                                                                                                                                                                                                                       | <ul><li>iv. Beyond the textbook: reading<br/>comprehension and question –answers.</li><li>v. Preparing a Vocabulary Book (50</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                  |

## **COURSE CONTENT**

|          |     | reference frame in which differen                        | nt topic                  | words), with Meanings and Usage.                                |
|----------|-----|----------------------------------------------------------|---------------------------|-----------------------------------------------------------------|
|          |     | are presented- (group discussion)                        | . vi.                     | Writing a book review and critically                            |
|          | ii. | Writing a review or a summary o                          | f the                     | analyze the Content and Language of                             |
|          |     | text, with comments and opinion.                         |                           | the text.                                                       |
|          | •   | Engaging with journalistic wri                           | ting vii.                 | Make a list of reading books of diverse                         |
|          | •   | Student teacher will select                              |                           | texts and classify them under headings.                         |
|          |     | newspaper/magazine articles on t                         | opics of viii.            | Conduct interactive group reading                               |
|          |     | contemporary issues.                                     |                           | session (small groups).                                         |
|          | •   | Analyze the structure use of artic                       |                           | Narrating/describing a related account                          |
|          |     | identifying sub-heading, keyword                         |                           | from one's life experience (in front of a                       |
|          |     | sequencing of ideas, use of concr                        |                           | smaller group).                                                 |
|          |     | details and statistical representati                     |                           | Discussion of characters and situations -                       |
|          | •   | Articles on topics of interest for y                     | write                     | sharing interpretations and points of                           |
|          |     | collage magazine/wall.                                   | xi.                       | view (in a smaller group).<br>Read a book and identify the text |
| Unit III |     |                                                          | -                         | structure, language, genre, context,                            |
|          | •   | Engaging with subject – relate                           | d                         | socio-cultural diversity.                                       |
|          |     | reference books.                                         | xii.                      | Reading to extract overall meaning,                             |
|          |     | • Sequence of Activities                                 |                           | information, subject knowledge (guided                          |
|          |     | i. Students teacher ( in sma<br>group) will make a choic |                           | reading in pairs and simple note                                |
|          |     | specific topic in their sub                              |                           | making).                                                        |
|          |     | area which they could res                                |                           | Explain the gist of the text/topic to                           |
|          |     | from a set of available re                               |                           | others (in the larger subject group)                            |
|          |     | books.                                                   | xiv.                      | Discussion of the theme, sharing                                |
|          |     | ii. Search relevant reference                            | es books                  | responses and points of view (small                             |
|          |     | from library/internet sour                               |                           | group discussion).                                              |
|          |     | extract relevant informati                               |                           | Conduct debates/discussions, role-                              |
|          |     | iii. Makes notes on these ide                            | as in                     | playing, dialogues on educational                               |
|          |     | some schemative from (f                                  | low                       | policies and documents on them by                               |
|          |     | diagram/mind map)                                        |                           | using language laboratory.                                      |
|          |     | iv. Plan a presentation with                             | display <mark>xvi.</mark> | Study and reflect on Biography of Gandhi ji                     |
|          |     | and oral comments.                                       | ole <mark>xvii.</mark>    | Studying and reporting health concerns/                         |
|          |     | v. Make presentation to who                              | ole xvii.                 | drainage system of school/ village.                             |
|          |     | group.                                                   | xviii.                    | Writing expenditure account for an                              |
|          |     |                                                          |                           | activity/function and house hold family                         |
|          |     |                                                          |                           | budget plan.                                                    |
|          |     |                                                          |                           |                                                                 |
|          |     |                                                          |                           |                                                                 |
|          |     |                                                          |                           |                                                                 |
|          |     |                                                          |                           |                                                                 |
|          |     |                                                          |                           |                                                                 |

## EPC-2 Drama and Art in Education

## Time: 3 Hours Learning Outcomes

Max. Marks :50 (External: 40,Internal: 10)

### After the transaction of the course, student teachers will be able to:

- develop aesthetic sensibilities in students to learn the use of art in teaching- learning.
- shape student consciousness through introspection and imagined collective experiences

### 1. Drawing and Painting

- Representational Drawing and painting from nature plants, foliage, flowers, birds and animals etc. (medium pencil, pen & ink, crayon, water-colour- any two medium)
- Perspective Drawing.
- Still-life study (medium pencil, pen & ink, crayon, water colour, oil-colour, acrylic colour any two medium).
- Composition Painting (Crayon, Water-colour, Oil-colour any two medium).
- Arrangement printing with leaf, finger, cork, stamps, cardboard, jute and bandage texture– any two medium.
- Monotype surface-printing, Thread-print, Stencil-print, spray-print, Simple block making and print Potato-cut-print, vegetable print with lady finger, Simple block making and print Potato-cut-print, vegetable print with lady finger, any two medium.

## 2. Creative Art /Drama

- Creative pictorial or geometrical design Water colour / Pastel colour.
- Surface design Floor decoration (Alpana, Rangoli), Wall decoration.
- Poster-Design (Monochrome / multi-colour).
- Simple lettering for communication, calligraphy.
- developing narratives in visuals, composition of an imagined situation
- telling a story through comic strips, creating a collage using images, bits cutout from old magazines, news paper etc.
- Collecting and arranging rare photographs, photo print on various theme.
- Understanding the Drama as a medium of instructions and its role in effective teaching. It should be based on the lesson from particular subjects of teaching: One Act Play, Skit, Mono Acting, Voice Play, Storey Board etc. should be implemented as one of the effective teaching aid.
- The prospective teacher will prepare minimum TWO lessons through drama. The contents will be from or based on the lesson to teach in the class.
- Reflective report on curriculum of Art, Craft, Drama, Music and Theatre in schools.
- Tailoring, Stitching, Knitting and folk arts- Preparing samples.

## Course EPC 3

## **Critical Understanding of ICT**

## Time: 3 Hours Learning Outcomes

After the transaction of the course, student teachers will be able to:

- acquire knowledge of computers, its accessories and software.
- acquire the skills of operating a computer in multifarious activities and integrate technology into classroom teaching learning strategies.
- demonstrate the use of MS Windows
- develop skill in using MS-Word, Power points and Spread sheets.
- acquire skill in accessing world wide web and Internet and global accessing of information.
- Interact with ICT and its integration in education.
- select and use effectively ICT tools and relevant software applications for specific purpose in teaching learning process.

## COURSE CONTENTS

## 1. ORIENTATION TO ICT

- **ICT:** Meaning, Importance and Tools of ICT
- **Computer Fundamentals:** Basic anatomy, types and applications, Input-Output devices, Storage devices.
- **MS-Windows**: Basic components of Windows, Control Panel, Program Manager, File Manager, Accessories, Paint Brush, notepad.
- **MS Word:** Concept of word processing, Entering Text, Selecting and Inserting text, editing text, Making paragraph, Getting help, moving and copying, searching and replacing, formatting character and paragraph, handling multiple documents, Manipulation of tables and foot notes, table of contents and index, sorting, formatting sections and documents.
- **MS Excel:** Basics of Spreadsheet, creating and saving a worksheet, Manipulation of cells, Columns and Rows, editing and formatting a worksheet, embedding charts, use of simple statistical functions, sort and filter.
- **MS Power point:** Basics of power point, creating a presentation, the slide manager, preparation of different types of slides, slide design, transition and animation and presentation of slides, printing the slides and handouts.
- **Multimedia:** Components of Multimedia, Textual Information, Animation, Digital Audio, Digital Video, MS-Publisher, Photo Draw.

## 2. DIGITAL SHARING AND EXCHANGE OF INFORMATION

• Internet: the world-wide web, websites and web browsers, Internet connectivity, browsing software, URL addresses, Search engines, Exploring websites and downloading materials from websites, E- mail – Sending, receiving and storing mail, handle attachments, Chatting, social networks, participate in discussion forum and blogging.

## 3. ICT TOOLS AND ITS INTEGRATION IN EDUCATION

• Over-head Projector

Max. Marks :50 (External: 40,Internal: 10)

- LCD Projector
- T.V.
- Camera
- Visualizer
- Interactive Boards
- CD/DVD Player

## Hands On Training:

- i. Administrative use Letter correspondence and E-Mail
- ii. Construction of a Portfolio and Question paper of teaching subjects
- iii. Creating learning materials handouts
- iv. Data processing, storing and retrieving simple financial transactions of the school such as school budget and accounting.
- v. Tabulation of Bio data of staff and students of the school in which the student teacher is attached for practice teaching.
- vi. Students progress record Tabulation and graphical representation of results of an academic test.
- vii. Multimedia presentation on a topic relevant to the Optional Subjects
- viii. Prepare transparencies on a topic relevant to the Optional Subjects.

A softcopy of above activities should be presented at the time of external examination.

## **Suggested Readings**

- 1. Copestake, S. (2004). Excel 2002. New Delhi: Drem Tech Press.
- 2. Hahn, H. (1998). The internet- complete reference. New Delhi: Tata McGrow Hill Publication.
- 3. Intel Education & NCTE. (2007). Hand book for teacher educators. Bangalore: NCTE.
- 4. Leon, A. M. (2001). Computer for every one. New Delhi: Vikas Publishing house.
- 5. Petzold, C. (1998). Programming windows. USA: Microsoft Press.
- 6. Sundararajan, K. (1998). Internet. Chennai: Kannadhasan Publications.
- 7. Stone, E. (1996). How to use Microsoft Access. California: Emergyville.
- 8. Simon, C. (1995). The way microsoft windows 95 works. USA: Microsoft Press.
- 9. Srinivasan, T. M. (2002). Use of Computers and Multimedia in education. Jaipur: Aavisakar Publication.

ix. Organizing science and technology based activities/services for the community and/or the locality.

## EPC-4

# Understanding the self

#### Max. Marks :50 l. 10 Into J. 10) (Fvt

| T:            |                                                                                                                                                                                                                                                                                                                                               |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time: 3 Hours | (External: 40,Internal: 10)                                                                                                                                                                                                                                                                                                                   |
| Existing      | Approved & Included                                                                                                                                                                                                                                                                                                                           |
| NIL           | <ul> <li>Objectives</li> <li>To enable the student teacher to discover oneself.</li> <li>To orient the student teacher the significance of knowing oneself.</li> <li>To understand the process of identity formation.</li> <li>To examine the effects of stereotyping and prejudice.</li> </ul>                                               |
|               | <ul> <li>To equip student teachers with skills<br/>for empathetic listening and self<br/>expression.</li> <li>To evolve as a progressive and<br/>flexible teacher.</li> </ul>                                                                                                                                                                 |
|               | Course Content                                                                                                                                                                                                                                                                                                                                |
|               | General Orientation                                                                                                                                                                                                                                                                                                                           |
|               | <ul> <li>Concept of self and self<br/>identity</li> <li>Exploring oneself: Self<br/>identity; Potential of self; fear;<br/>aspiration</li> <li>Factors affecting self identity:<br/>Social, Cultural, Gender,<br/>Religion &amp; Language.</li> <li>Role of teacher as a facilitator<br/>in self exploration of pupil<br/>teacher.</li> </ul> |
|               | Suggested Activities:-                                                                                                                                                                                                                                                                                                                        |
|               | <ul> <li>Self expression through varied<br/>forms: Poetry, Aesthetic<br/>Representation (painting, Poster<br/>Making, sketch &amp; Cartoon<br/>making)</li> </ul>                                                                                                                                                                             |
|               | (ii) Critically evaluate oneself as a<br>'Prospective teacher' (Self                                                                                                                                                                                                                                                                          |
|               | Appraisal Report)<br>(iii) Write a self reflective accounts of<br>significant experiences<br>concerning gender, stereotypes<br>and prejudices.                                                                                                                                                                                                |
|               | (iv) Role play and Paired activity for<br>empathetic listening.                                                                                                                                                                                                                                                                               |
|               | (v) Critically reflects on one's teaching-learning practices.                                                                                                                                                                                                                                                                                 |

| (vi) Yoga sessions                             |
|------------------------------------------------|
| (vii) Conducting workshop on                   |
| following issues:                              |
| a) Self Awareness                              |
| b) Self Identity                               |
| c) Sharing life turning incidents              |
| d) Meditation workshop                         |
| e) Gender biasness                             |
| f) Stereotyping and prejudice                  |
| g) Marginalization                             |
| h) Role of media in dealing                    |
| with above issues.                             |
| (viii) Case study of Happiness, Pleasure       |
| and Non-violence in school/                    |
| classrooms.                                    |
|                                                |
|                                                |
|                                                |
| Suggested Readings:                            |
| Brooksfield, S.d.(1995). Becoming a            |
| critically refelective teacher. San Francisco. |
| CA:Johm Wiley & Sons.                          |
| Duval. T.S., & Silvia, P.J(2001). Self         |
| awareness and causal attribution: A dual       |
| systems theory. Boston: Kluwer Academic.       |
| Phillips, A.g., & Silvia. P .J. (2002). Self-  |
| awareness, self evaluation and creativity.     |
| Personality and social psychology Bulletin,    |
| 30. 1009-1017.                                 |
| Gurol.A (2010). Determing the relective        |
| thinking skills of pre-service teachers in     |
| learning and teaching process. Firat           |
| University. Turkey.                            |
|                                                |

# School Internship Programme (SIP)

|                                                                              | &                                                                                                                                         |  |  |  |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 00                                                                           | ment with the Field (EWF)                                                                                                                 |  |  |  |
| Existing                                                                     | Proposed                                                                                                                                  |  |  |  |
| Schedule for School                                                          | Course-13                                                                                                                                 |  |  |  |
| Internship Programme                                                         | School Internship Programme (SIP)                                                                                                         |  |  |  |
| First Year                                                                   | &                                                                                                                                         |  |  |  |
| Duration: Four (04) Weeks                                                    | Engagement with the Field (EWF)                                                                                                           |  |  |  |
| f) Observation of school functioning in terms of                             | Duration                                                                                                                                  |  |  |  |
| Teaching- Learning                                                           | B.Ed Ist Year: SIP- 1 Week<br>EWF- 3 Weeks                                                                                                |  |  |  |
| process and related tasks.                                                   | B.Ed IInd Year: SIP- 14 Weeks                                                                                                             |  |  |  |
| g) Observation of classroom                                                  | EWF- 2 Weeks                                                                                                                              |  |  |  |
| teaching undertaken by                                                       |                                                                                                                                           |  |  |  |
| school teacher and                                                           | 'Student-Teachers' Tasks:                                                                                                                 |  |  |  |
| assisting the teacher in                                                     |                                                                                                                                           |  |  |  |
| Teaching- Learning                                                           | A) Engagement with the Field (EWF)                                                                                                        |  |  |  |
| h) Developing teacher                                                        | 1) Engigement (init the Field (E (FF))                                                                                                    |  |  |  |
| sensibilities and skills                                                     | This includes sustain engagement with Self, Child, Community                                                                              |  |  |  |
| under the mentorship of                                                      | and School at different levels through establishing close                                                                                 |  |  |  |
| school Head/ school                                                          | connection between curricular areas. This would include task                                                                              |  |  |  |
| teacher/ faculty                                                             | and assignments running through all curricular areas i.e.                                                                                 |  |  |  |
| i) Development of Learning                                                   | Perspectives in education, Curriculum & Pedagogical studies<br>and EPC. Evaluation of these tasks and Assignments will be                 |  |  |  |
| Material                                                                     | considered with respective Course I to XII (part of Internal                                                                              |  |  |  |
| j) Understanding the Diverse needs of the learners                           | Assessment).                                                                                                                              |  |  |  |
| k) Report of School Based                                                    |                                                                                                                                           |  |  |  |
| activities undertaken                                                        | B) School Intership Programme (SIP)                                                                                                       |  |  |  |
| during the period : CEC;                                                     | During SIP a 'student-teacher' shall observe &                                                                                            |  |  |  |
| School Record; Time                                                          | undertake various activities aimed at understanding                                                                                       |  |  |  |
| Table                                                                        | the 'Internship School' and the 'Community' around.                                                                                       |  |  |  |
| Second Year                                                                  |                                                                                                                                           |  |  |  |
| Duration: Four (16) Weeks                                                    | B.Ed. – Ist Year                                                                                                                          |  |  |  |
| Observation of various                                                       |                                                                                                                                           |  |  |  |
| School Activities/ functioning                                               | Observation of school functioning in terms of :                                                                                           |  |  |  |
| of the particular school                                                     | i) Teaching- Learning process and related tasks & Classroom                                                                               |  |  |  |
| allotted to the pupil Teacher -                                              | teaching undertaken by school-teacher.                                                                                                    |  |  |  |
| (one week)                                                                   | ii) Developing teacher sensibilities and skills under the                                                                                 |  |  |  |
| • Supervised Delivery of                                                     | mentorship of school Head/ school teacher/ faculty.                                                                                       |  |  |  |
| lessons in the school : 180 (90                                              | iii) Understanding need & process of CCE (Comprehensive & Continious Evaluation), Maintenance of various records,                         |  |  |  |
| <ul><li>in each pedagogy paper)</li><li>Peer Observation : 1 daily</li></ul> | Development of learning material.                                                                                                         |  |  |  |
| <ul> <li>Criticism lesson: 4 (2 in</li> </ul>                                | iv) Documentation of the above activities in the form of a brief                                                                          |  |  |  |
| each pedagogy subject)                                                       | comprehensive report.                                                                                                                     |  |  |  |
| <ul> <li>Organization of co-</li> </ul>                                      |                                                                                                                                           |  |  |  |
| curricular activities                                                        | B.Ed. – IInd Year                                                                                                                         |  |  |  |
| • Maintenance of school                                                      | 1 Observe and record 10 because for 1 1                                                                                                   |  |  |  |
| record                                                                       | 1. Observe and record 10 lessons of regular classroom                                                                                     |  |  |  |
| Community Based activities                                                   | teaching of <b>teachers</b> for each pedagogic subject This write<br>up will be preceded by general information of PT and with particular |  |  |  |
| l) Note : lessons to                                                         | focus on                                                                                                                                  |  |  |  |
| supervised by school Head/                                                   | <i>i. Teaching method</i>                                                                                                                 |  |  |  |
| school teacher/ faculty                                                      | <i>ii.</i> Use of teaching aids                                                                                                           |  |  |  |
|                                                                              | iii. Pupil teacher interaction in the class                                                                                               |  |  |  |
|                                                                              | iv. Class room management                                                                                                                 |  |  |  |

| v. Homework (checking and feedback)                                                        |
|--------------------------------------------------------------------------------------------|
| 2. Critically analyse syllabus and textbook of respective pedagogic subject for one class. |
| This write up will be preceded by general information of PT<br>with particular focus on    |
| i. Physical Aspect                                                                         |
| ii. Nature of Content                                                                      |
| iii. Organisation of Content<br>iv. Presentation of Content                                |
| v. Style                                                                                   |
| vi. Illustration                                                                           |
| vii. Exercise & Project                                                                    |
| viii. Bibliography<br>3. Observe and record 10 lessons of regular classroom                |
| teaching of Peers for each pedagogic subject. This write up                                |
| will be preceded by general information of PT with particular focus<br>on:                 |
| <i>i. Teaching method</i>                                                                  |
| <i>ii.</i> Use of teaching aids                                                            |
| iii. Pupil teacher interaction in the class                                                |
| iv. Class room management<br>v. Homework (checking and feedback)                           |
| 4. Prepare a brief report of the internship school.                                        |
| <i>i.</i> General Information of PT                                                        |
| ii. Physical infrastructure                                                                |
| iii. Pupil Teacher Ratio (PTR)                                                             |
| iv. Curriculum Transactions<br>v. Pupil Teacher Interaction( curricular as well as         |
| co-curricular)                                                                             |
| 5. Plan and write five lesson each of both the pedagogic                                   |
| subjects as follows:                                                                       |
| i. General information<br>ii. Instructional Aids                                           |
| iii. Writing Objectives in Behavioral terms                                                |
| iv. Assumed Previous Knowledge                                                             |
| v. Previous Knowledge Testing Questions                                                    |
| vi. Announcement of the topic<br>vii. Presentation                                         |
| viii. Recapitulation                                                                       |
| ix. Home-Assignment                                                                        |
| 6.Teach 2-4 period per day in respective pedagogic subject                                 |
| 7. Teach classes as and when directed by the mentor teacher                                |
| /head of the lab school.                                                                   |
| 8. Prepare and use teaching aids like model/chart/ flash                                   |
| card etc for making the teaching effective and interesting.                                |
| At least 2 teaching aids in each subject shall be evaluated                                |
| for the purpose of internal assessment.                                                    |
| 9. Prepare a question paper of full syllabus of any one                                    |
| chart for any one subject along with its blue print:                                       |
| 10. Preparation of a diagnostic tests and organisation of                                  |
| remedial teaching                                                                          |
| 11. Undertake action research project on at least one                                      |

| unther over the line                                      |
|-----------------------------------------------------------|
| problem area of schooling.                                |
| 12. Identify, plan and execute any one activity closely   |
| related to the local environment.                         |
| 13. Maintain a reflective diary to record day to day      |
| happenings and reflections thereon.                       |
| While selecting the units of the syllabus, the student-   |
| teachers shall follow the annual instructional plan drawn |
| by the host school.                                       |
|                                                           |
|                                                           |

## **List of Contributors**

## Development of Draft Syllabi - B.Ed -2 year course as per NCTE curriculum frame work 2014

K.U.K

| Sr. No. | NAME                                                                                 |
|---------|--------------------------------------------------------------------------------------|
| 1.      | Prof. Puran Singh, Chairman, Department of Education, KUK.                           |
| 2.      | Dr. Taruna.C.Dhall, Principal (Off)- Associate. Prof., University College of Edu.,   |
|         | KUK.                                                                                 |
| 3.      | Dr. B.S. Yadav, Associate Prof. University College of Edu., KUK.                     |
| 4       | Dr. Amisha Singh, Associate Prof. University College of Edu., KUK.                   |
| 5.      | Dr. Rajvir Singh, Department of Education, KUK.                                      |
| 5       | Dr. Vivek Kohli, Principal, S.L.DAV. College of Education, Ambala City.              |
| 6       | Dr. Narender Kaushik, Associate Prof., SLDAV, College of Education, Ambala City      |
| 7       | Dr. Sushma Gupta, Associate Prof., SLDAV, College of Education, Ambala City          |
| 8       | Dr. Neelam Luthra, Associate Prof., SLDAV, College of Education, Ambala City         |
| 9       | Dr.Satnam Kaur, Associate Prof., SLDAV, College of Education, Ambala City            |
| 10      | Dr. Renu Arora, Associate Prof., SLDAV, College of Education, Ambala City            |
| 11      | Dr. Nirmala Devi, Principal, C.R. College of Education, Hissar.                      |
| 12      | Dr. Ramesh Sandhu, Associate Prof., C.R.College of Education, Hissar.                |
| 13      | Dr. Chander Prabha, Associate Professor, C.R.College of Education, Hissar.           |
| 14      | Dr. Ajit Singh, Assitant Professor, C.R.College of Education, Hissar.                |
| 15      | Dr. Purnima, Assistant Professor, C.R.College of Education, Hissar.                  |
| 16      | Dr. Rakesh Sandhu, Principal (Off) Dr.G.D.D.A.V.COE for Women, Karnal.               |
| 17      | Dr. Saroj Sobti, Assistant Prof., Dr. G.D.D.A.V.College of Edu. for Women, Karnal.   |
| 18      | Prof. V.K.Gupta, Principal (Rtd), UCEK, KUK.                                         |
| 19      | Dr. Anju Walia, Principal, SNS College of Education, Yamuna Nagar.                   |
| 20      | Dr. Kamlesh Sandhu, Principal, RKSD. College of Education, Kaithal.                  |
| 21      | Dr. Mrinalini Somnath, Principal, Ch.I.S.M. COE, Pundri.                             |
| 22      | Dr. Rita Grover, Associate Prof. (Rtd), University College of Edu., KUK.             |
| 23      | Dr. Pinki Malik, Assistant Prof. (on contract), University College of Edu., KUK.     |
| 24      | Dr. Rajwinder Kaur, Assistant Prof. (on contract), University College of Edu., KUK.  |
| 25      | Dr. Rohini, Assistant Professo (on contract), University College of Edu., KUK.       |
| 26      | Mrs. Kanwal Preet Kaur, Assistant Prof.(on contract), University College of Edu.,    |
|         | KUK.                                                                                 |
| 27      | Mr. Digvijay Singh, Assistant Prof. (on contract), University College of Edu., KUK.  |
| 28      | Mrs. Rita Saini, Assistant Professor (on contract), University College of Edu., KUK. |
| 29      | Mrs. Reena Yadav, Assistant Prof.(on contract), University College of Edu., KUK.     |
| 30      | Dr. Mamta Chawla, Assistant Prof. (on contract), University College of Edu., KUK.    |
| 31      | Ms. Puja Saini, Assistant Prof. (on contract), University College of Edu., KUK.      |

## List of Participants

### Consultative Meeting regarding development of Draft Syllabi of B.Ed -2 year course as per NCTE curriculum frame work 2014)held on 22.04.2015 at University College of Education, K.U.K

| Sr. No. | Name                                                                                       |
|---------|--------------------------------------------------------------------------------------------|
| 1       | Dr. Taruna.C.Dhall, Principal (Off)- Associate Prof., University COE, KUK.                 |
| 2       | Dr. B.S.Yadav, Associate Prof. University College of Edu., KUK.                            |
| 3       | Dr. Amisha Singh, Associate Prof. University College of Edu., KUK.                         |
| 4       | Dr. Pinki Malik, Assistant Professor, University College of Edu., KUK.                     |
| 5       | Dr. Rajwinder Kaur, Assistant Professor, University College of Edu., KUK.                  |
| 6       | Dr. Rohini, Assistant Professor, Member, University College of Edu., KUK.                  |
| 7       | Mrs. Kanwal Preet Kaur, Assistant Professor, University College of Edu., KUK.              |
| 8       | Mr. Digvijay Singh, Assistant Professor, University College of Edu., KUK.                  |
| 9       | Mrs. Rita Saini, Assistant Professor, University College of Edu., KUK.                     |
| 10      | Mrs. Reena Yadav, Assistant Professor, University College of Edu., KUK.                    |
| 11      | Dr. Mamta Chawla, Assistant Professor, University College of Edu., KUK.                    |
| 12      | Ms. Puja Saini, Assistant Professor, University College of Edu., KUK.                      |
| 13      | Dr. Renu Gupta, Principal, Hindu College of Education., Sonipat                            |
| 14      | Dr. Ramesh Sandhu, Associate Prof., C.R.College of Education, Hissar.                      |
| 15      | Dr. Purnima, Assistant Professor, C.R.College of Education, Hissar.                        |
| 16      | Prof. V.K.Gupta, . Principal (Rtd), UCEK, KUK.                                             |
| 17      | Dr. Saroj Sobti, Assistant Professor, Dr.G.D.D.A.V. College of Education for               |
|         | Women, Karnal.                                                                             |
| 18      | Dr. Kamlesh Sandhu, Principal, RKSD. College of Education, Kaithal.                        |
| 19      | Dr. Mrinalini Somnath, Principal, Ch.I.S.M. COE, Pundri.                                   |
| 20      | Dr. Anju Walia, Member, Principal, SNS College of Education, Yamuna Nagar                  |
| 21      | Dr. Shashi Manchanda, Principal, G.V.M.College of Education, Sonipat                       |
| 22      | Dr. G. Ponmeni, , Assistant Professor, DDE, K.U.K.                                         |
| 23      | Dr. Chander Prabha, Associate Professor, C.R.College of Education, Hissar.                 |
| 24      | Dr. Ajit Singh, Associate Professor, C.R.College of Education, Hissar.                     |
| 25      | Dr. Narender Kaushik, Associate prof. , SLDAV, College of Education, Ambala                |
|         | City                                                                                       |
| 26      | Dr. Raj Kumar, Asstt. Prof., Deptt. of Education, CDLU, Sirsa.                             |
| 27      | Dr. Vinod Kumar, Asstt. Prof., Deptt. of Education, CDLU, Sirsa.                           |
| 28      | Dr. Ram Niwas, Dy. Dean, Dept. Of education, G.K. University. Talwandi Sabo, Bathinda (Pb) |
| 29      | Dr. Rita Grover, Associate Prof. (Rtd), U.C.E.K                                            |
|         |                                                                                            |

|           |                 |                                               |       |                | 0  | Examination Schedule<br>(Marks) |               |           |       | Duration<br>of Exam<br>(Hrs) |
|-----------|-----------------|-----------------------------------------------|-------|----------------|----|---------------------------------|---------------|-----------|-------|------------------------------|
| S.<br>No. | Course<br>No.   | se Subject                                    |       | Hours/<br>Week |    | Major<br>Test                   | Minor<br>Test | Practical | Total | (nrs)                        |
| 1         | ES-205          | Principles of Programming<br>Languages        | 3:0:0 | 3              | 3  | 75                              | 25            | 0         | 100   | 3                            |
| 2         | PC-CS-<br>201   | Data Structure and Algorithms                 | 3:0:0 | 3              | 3  | 75                              | 25            | 0         | 100   | 3                            |
| 3         | ES-207          | Digital Electronics                           | 3:0:0 | 3              | 3  | 75                              | 25            | 0         | 100   | 3                            |
| 4         | PC-CS-<br>203   | Object Oriented Programming                   | 3:0:0 | 3              | 3  | 75                              | 25            | 0         | 100   | 3                            |
| 5         | BS-205          | Mathematics-III                               | 3:0:0 | 3              | 3  | 75                              | 25            | 0         | 100   | 3                            |
| 6         | HM-902          | Business Intelligence and<br>Entrepreneurship | 3:0:0 | 3              | 3  | 75                              | 25            | 0         | 100   | 3                            |
| 7         | PC-CS-<br>205L  | Data Structure and Algorithms Lab             | 0:0:4 | 4              | 2  | 0                               | 40            | 60        | 100   | 3                            |
| 8         | ES-209L         | Digital Electronics Lab                       | 0:0:4 | 4              | 2  | 0                               | 40            | 60        | 100   | 3                            |
| 9         | PC-CS-<br>205 L | Object Oriented Programming Lab               | 0:0:4 | 4              | 2  | 0                               | 40            | 60        | 100   | 3                            |
|           |                 | Total                                         |       | 30             | 24 | 450                             | 270           | 180       | 900   |                              |
| 10        | SIM-<br>201*    | Seminar on Summer Internship                  | 2:0:0 | 2              |    | 0                               | 50            | 0         | 50    |                              |

## Bachelor of Technology (Computer Science and Engineering) Credit Based Scheme of Studies/Examination Semester III (w.e.f Session 2019-2020)

\*Note: SIM-201\* is a mandatory credit-less course in which the students will be evaluated for the Summer Internship (training) undergone after  $2^{nd}$  semester and students will be required to get passing marks to qualify.

| ES-205   | Principles of Programming Languages                                                                                         |                                                          |                |               |                |            |           |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|---------------|----------------|------------|-----------|--|--|
| Lecture  | Tutorial                                                                                                                    | Tutorial Practical Credit Major Minor Test Total<br>Test |                |               |                |            |           |  |  |
| 3        | 0                                                                                                                           | 0                                                        | 3.0            | 75            | 25             | 100        | 3 Hour    |  |  |
| Purpose  | To introduce the principles and paradigms of programming languages for design and implement the software intensive systems. |                                                          |                |               |                |            |           |  |  |
| Course O | utcomes (CO)                                                                                                                | )                                                        |                |               |                |            |           |  |  |
| CO 1     | To introduce the basic concepts of programming language, the general problems and methods related to syntax and semantics.  |                                                          |                |               |                |            |           |  |  |
| CO 2     | To introduc                                                                                                                 | e the structured                                         | l data objects | , subprograms | and programmer | defined da | ta types. |  |  |
| CO 3     | To outline t                                                                                                                | he sequence co                                           | ntrol and dat  | a control.    |                |            |           |  |  |
| CO 4     | To introduc                                                                                                                 | e the concepts                                           | of storage ma  | anagement usi | ng programming | languages. |           |  |  |

### **Unit-I: Introduction, Syntax and Semantics**

**Introduction:** A brief history, Characteristics of a good programming language, Programming language translatorscompiler and interpreters, Elementary data types – data objects, variable and constants, data types. Specification and implementation of elementary data types, Declarations, type checking and type conversions, Assignment and initialization, Numeric data types, enumerations, Booleans and characters.

Syntax and Semantics: Introduction, general problem of describing syntax, Formal method of describing Syntax, attribute grammar dynamic semantic.

### Unit-II: Structured data objects, Subprograms and Programmer Defined Data Types

**Structured data objects:** Structured data objects and data types, specification and implementation of structured data types, Declaration and type checking of data structure, vector and arrays, records Character strings, variable size data structures, Union, pointer and programmer defined data objects, sets, files.

**Subprograms and Programmer Defined Data Types:** Evolution of data type concept abstraction, encapsulation and information hiding, Subprograms, type definitions, abstract data types, over loaded subprograms, generic subprograms.

### **Unit–III: Sequence Control and Data Control**

**Sequence Control:** Implicit and explicit sequence control, sequence control within expressions, sequence control within statement, Subprogram sequence control: simple call return, recursive subprograms, Exception and exception handlers, co routines, sequence control. Concurrency – subprogram level concurrency, synchronization through semaphores, monitors and message passing

**Data Control:** Names and referencing environment, static and dynamic scope, block structure, Local data and local referencing environment, Shared data: dynamic and static scope, Parameter and parameter transmission schemes.

### Unit-IV: Storage Management and Programming Languages

**Storage Management:** Major run time elements requiring storage, programmer and system controlled storage management and phases, Static storage management, Stack based storage management, Heap storage management, variable and fixed size elements.

**Programming Languages:** Introduction to procedural, non-procedural, structured, logical, functional and object oriented programming language, Comparison of C and C++ programming languages.

### Suggested Books:

- Terrence W. Pratt, Marvin V. Zelkowitz, Programming Languages Design and Implementation, Pearson.
- Allen Tucker and Robert Noonan, Programming Languages–Principles and Paradigms, Tata McGraw-Hill, 2009.
- Ellis Horowitz, Fundamentals of Programming Languages, Galgotia Publications, 2010.
- C. Ghezzi, Programming Languages Concepts, Wiley Publications, 2010.

| PC-CS201   | Data Structure and Algorithms                                                                                                        |                                                                                                                       |                |               |                   |                 |                |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------|---------------|-------------------|-----------------|----------------|--|--|--|
| Lecture    | Tutorial         Practical         Credit         Major Test         Minor Test         Total         Time                           |                                                                                                                       |                |               |                   |                 |                |  |  |  |
| 3          | 0                                                                                                                                    | 0                                                                                                                     | 3.0            | 75            | 25                | 100             | 3 Hour         |  |  |  |
| Purpose    | To introduce the principles and paradigms of Data Structures for design and implement the software systems logically and physically. |                                                                                                                       |                |               |                   |                 |                |  |  |  |
| Course Out | comes (CO)                                                                                                                           |                                                                                                                       |                |               |                   |                 |                |  |  |  |
| CO 1       |                                                                                                                                      | To introduce the basic concepts of Data structure, basic data types, searching and sorting based on array data types. |                |               |                   |                 |                |  |  |  |
| CO 2       | To introduce implementation                                                                                                          |                                                                                                                       | ed data types  | s like Stacks | and Queue         | and its basic   | e operations's |  |  |  |
| CO 3       | To introduce                                                                                                                         | To introduce dynamic implementation of linked list.                                                                   |                |               |                   |                 |                |  |  |  |
| CO 4       | To introduce                                                                                                                         | the concepts of                                                                                                       | Tree and graph | h and impleme | ntation of traver | rsal algorithms | 5.             |  |  |  |

### Unit-1

**Introduction to Data Structures**, Data Types, Built in and User Defined Data Structures, Applications of Data Structure, Algorithm Analysis, Worst, Best and Average Case Analysis, Notations of Space and Time Complexity, Basics of Recursion.

**Arrays**, One Dimensional Arrays, Two Dimensional Arrays and Multi-Dimensional Arrays, Sparse Matrices, Searching from array using Linear and Binary Searching Algorithm, Sorting of array using Selection, Insertion, Bubble, Radix Algorithm

### Unit-2

**Stacks**: Definition, Implementation of Stacks and Its Operations, Evaluation of Infix, prefix and Postfix Expression, Inter-conversion of Infix, Prefix and Post-Fix Expression, Implementation of Merge Sort and Quick Sort Algorithm. **Queues**: Definition, Sequential Implementation of Linear Queues and Its Operations, Circular Queue and Its Implementation, Priority Queues and Its Implementation, Applications of queues.

### Unit-3

**Linked Lists**: Need of Dynamic Data Structures, Single Link List and Its Dynamic Implementation, Traversing, Insertion, Deletion Operations on Single Link Lists. Comparison between Static and Dynamic, Implementation of Linked List.

Circular Link Lists and Doubly Link List, Dynamic Implementation of Primitive Operations on Doubly Linked Lists and Circular Link List. Dynamic Implementation of Stacks and Queues.

### Unit-4

**Trees**: Definition, Basic Terminology, Binary Tree, External and Internal Nodes, Static and Dynamic Implementation of a Binary Tree, Primitive Operations on Binary Trees, Binary Tree Traversals: Pre-Order, In-Order and Post-Order Traversals. Representation of Infix, Post-Fix and Prefix Expressions using Trees.

Introduction to Binary Search Trees: B+ trees, AVL Trees, Threaded Binary trees, Balanced Multi-way search trees, Implementation of Heap Sort Algorithm.

**Graphs**: Basic Terminology, Definition of Undirected and Directed Graphs, Memory Representation of Graphs, Minimum-Spanning Trees, Warshal Algorithm, Graph Traversals Algorithms: Breadth First and Depth First.

### Suggested Books:

- Theory and Problems of Data Structures by Jr. Symour Lipschetz, Schaum's outline, TMH.
- Data Structures and Algorithms by PAI, TMH.
- Fundamentals of Data structures by Ellis Horowitz and Sartaj Sahni, Pub, 1983, AW.
- Data Structures and Algorithms by A.V. Aho, J.E. Hopcroft and T.D. Ullman, Original edition, Addison-Wesley, 1999, Low Priced Edition.
- Data Structures and Program Design in C by Robert Kruse, PHI,
- Shukla, Data Structures using C++, Wiley India
- Introduction to Computers Science -An Algorithms Approach , Jean Paul Tremblay, Richard B. Bunt, 2002, T.M.H.
- Data Structure and the Standard Template library Willam J. Collins, 2003, T.M.H.

| ES-207    |                                                                                                                                              |                 |                | Digital Elect | ronics         |               |                        |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|---------------|----------------|---------------|------------------------|--|--|--|
| Lecture   | Tutorial                                                                                                                                     | Practical       | Credit         | Major         | Minor          | Total         | Time                   |  |  |  |
|           |                                                                                                                                              |                 |                | Test          | Test           |               |                        |  |  |  |
| 3         | 0                                                                                                                                            | 0               | 3.0            | 75            | 25             | 100           | 3 Hour                 |  |  |  |
| Purpose   | To learn the basic methods for the design of digital circuits and provide the fundamental concepts used<br>in the design of digital systems. |                 |                |               |                |               |                        |  |  |  |
| Course Ou | itcomes (CO)                                                                                                                                 |                 |                |               |                |               |                        |  |  |  |
| CO1       | To introd                                                                                                                                    | uce basic       | postulates     | of Boolean    | algebra a      | and shows     | the correlation        |  |  |  |
|           | between Boo                                                                                                                                  | lean expressio  | ons            |               | -              |               |                        |  |  |  |
| CO2       | To introduce                                                                                                                                 | the methods for | or simplifying | Boolean expr  | essions        |               |                        |  |  |  |
| CO3       | To outline the                                                                                                                               | e formal proc   | edures for the | analysis and  | design of co   | mbinational c | ircuits and sequential |  |  |  |
|           | circuits                                                                                                                                     | -               |                | -             | -              |               | -                      |  |  |  |
| CO4       | To introduce                                                                                                                                 | the concept of  | memories and   | d programmab  | le logic devic | ces.          |                        |  |  |  |

### UNIT I MINIMIZATION TECHNIQUES AND LOGIC GATES

Binary Digits, Logic Levels, and Digital Waveforms, Logic Systems-Positive and negative, Logic Operations, Logical Operators, Logic Gates-AND, OR, NOT, NAND, NOR, Exclusive-OR and Exclusive-NOR, Active high and Active low concepts, Universal Gates and realization of other gates using universal gates, Gate Performance Characteristics and Parameters.Boolean Algebra: Rules and laws of Boolean algebra, Demorgan's Theorems, Boolean Expressions and Truth Tables, Standard SOP and POS forms; Minterm and Maxterms, Canaonical representation of Boolean expressions, Duality Theorem, Simplification of Boolean Expressions, Minimization Techniques for Boolean Expressions using Karnaugh Map and Quine McCluskey Tabular method.introduction of TTL and CMOS Logic and their characteristics, Tristate gates.

### UNIT II COMBINATIONAL CIRCUITS

Introduction to combinational Circuits, Adders-Half-Adder and Full-Adder, Subtractors- Half and Full Subtractor; Parallel adder and Subtractor; Look-Ahead Carry Adders. BCD adder, BCD subtractor, Parity Checker/Generator, Multiplexer, Demultiplexer, Encoder, Priority Encoder; Decoder ,BCD to Seven segment Display Decoder/Driver, LCD Display, and Comparators.

### **UNIT III SEQUENTIAL CIRCUITS**

Introduction to Sequential Circuits, Flip-Flops: Types of Flip Flops -RS, T, D, JK; Edge triggering, Level Triggering; Flip Flop conversions; Master-Salve JK.

Introduction to shift registers, Basic Shift Register Operations, types of shift registers, Bidirectional Shift Registers, Shift Register Counters. Introduction to counters, Types of Counters-Asynchronous and synchronous counters, Up/Down Synchronous Counters, Modulo-n Counter, State table, excitation table concepts, Design of asynchronous and synchronous counters, Ring Counter, Applications of counters.

### UNIT IV CONVERTER and MEMORY DEVICES

Digital to Analog Converter, Weighed Register: R-2R Ladder Network: Analog to Digital Conversion, Successive Approximation Type, Dual Slope Type.

Classification of memories - ROM: ROM organization, PROM, EPROM, EEPROM, EAPROM, RAM: - RAM organization - Write operation, Read operation, Memory cycle, Timing wave forms, memory expansion, Static RAM Cell, MOSFET RAM cell structure, Dynamic RAM cell structure, Programmable Logic Devices - Programmable Logic Array (PLA), Programmable Array Logic (PAL), Implementation of PLA, PAL using ROM.

### Suggested Books:

- Donald P. Leach and Albert Paul Malvino, Digital Principles and Applications, 8th Edition, TMH, 2003.M.
- Morris Mano, Digital Design, 3rd Edition, Prentice Hall of India Pvt. Ltd., 2003 / Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003.
- ALI, Digital Switching Systems, , TMH
- A.K. Maini, Digital Electronics, Wiley India
- John F. Wakerly, Digital Design, Fourth Edition, Pearson/PHI, 2006
- John. M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2002.
- S. Salivahanan and S. Arivazhagan, Digital Circuits and Design, 3rd Edition., Vikas Publishing House Pvt. Ltd, New Delhi, 2006
- William H. Gothmann, Digital Electronics, 2nd Edition, PHI, 1982.
- Thomas L. Floyd, Digital Fundamentals, 8th Edition, Pearson Education Inc, New Delhi, 2003
- Donald D. Givone, Digital Principles and Design, TMH, 2003.

| PC-CS203    |                                                                                                                                        |                | Object Orie     | ented Program  | ming             |              |                |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|----------------|------------------|--------------|----------------|--|--|--|--|
| Lecture     | Tutorial                                                                                                                               | Practical      | Credit          | Major Test     | Minor Test       | Total        | Time           |  |  |  |  |
| 3           | 0                                                                                                                                      | 0              | 3.0             | 75             | 25               | 100          | 3 Hour         |  |  |  |  |
| Purpose     | To introduce the principles and paradigms of Object Oriented Programming Language for design and implement the Object Oriented System. |                |                 |                |                  |              |                |  |  |  |  |
| Course Outo | Course Outcomes (CO)                                                                                                                   |                |                 |                |                  |              |                |  |  |  |  |
| CO1         | To introduce the                                                                                                                       | basic concepts | of object orien | ted programmi  | ng language and  | the its re   | presentation.  |  |  |  |  |
| CO2         | To allocate dynamic implementation.                                                                                                    | nic memory, ac | ccess private m | embers of clas | s and the behavi | ior of inher | itance and its |  |  |  |  |
| CO3         | To introduce poly                                                                                                                      | morphism, into | erface design a | nd overloading | g of operator.   |              |                |  |  |  |  |
| CO4         | To handle backu<br>during programm                                                                                                     |                | g file, general | purpose temp   | plate and handl  | ing of rais  | ed exception   |  |  |  |  |

### Unit-1

Introduction to C++, C++ Standard Library, Illustrative Simple C++ Programs. Header Files, Namespaces, Application of object oriented programming.

Object Oriented Concepts, Introduction to Objects and Object Oriented Programming, Encapsulation, Polymorphism, Overloading, Inheritance, Abstract Classes, Accessifier (public/ protected/ private), Class Scope and Accessing Class Members, Controlling Access Function, Constant, Class Member, Structure and Class

### Unit-2

Friend Function and Friend Classes, This Pointer, Dynamic Memory Allocation and Deallocation (New and Delete), Static Class Members, Constructors, parameter Constructors and Copy Constructors, Deconstructors, Introduction of inheritance, Types of Inheritance, Overriding Base Class Members in a Derived Class, Public, Protected and Private Inheritance, Effect of Constructors and Deconstructors of Base Class in Derived Classes.

### Unit-3

Polymorphism, Pointer to Derived class, Virtual Functions, Pure Virtual Function, Abstract Base Classes, Static and Dynamic Binding, Virtual Deconstructors.

Fundamentals of Operator Overloading, Rules for Operators Overloading, Implementation of Operator Overloading Like <<,>> Unary Operators, Binary Operators.

### Unit-4

Text Streams and binary stream, Sequential and Random Access File, Stream Input/ Output Classes, Stream Manipulators.

Basics of C++ Exception Handling, Try, Throw, Catch, multiple catch, Re-throwing an Exception, Exception specifications.

Templates: Function Templates, Overloading Template Functions, Class Template, Class Templates and Non-Type Template arguments.

### Suggested Books:

- The complete reference C ++ by Herbert shieldt Tata McGraw Hill.
- Object Oriented Programming in Turbo C++ by Robert Lafore, 1994, The WAITE Group Press.
- Shukla, Object Oriented Programming in c++, Wiley India.
- C++ How to Program by H M Deitel and P J Deitel, 1998, Prentice Hall.
- Programming with C++ By D Ravichandran, 2003, T.M.H.

| <b>BS-205</b> |                                                                                                |                |                 | Mather        | natics-III     |                |                           |  |  |  |
|---------------|------------------------------------------------------------------------------------------------|----------------|-----------------|---------------|----------------|----------------|---------------------------|--|--|--|
| Lecture       | Tutorial                                                                                       | Practical      | Credit          | Theory        | Sessional      | Total          | Time                      |  |  |  |
| 3             | 0                                                                                              | 0              | 3               | 75            | 25             | 100            | 3 Hour                    |  |  |  |
| Purpose       | To familiarize the prospective engineers with techniques in sequence and series, multivariable |                |                 |               |                |                |                           |  |  |  |
|               | calculus, an                                                                                   | nd ordinary di | fferential equa | ations.       |                |                |                           |  |  |  |
| Course Out    | Course Outcomes (CO)                                                                           |                |                 |               |                |                |                           |  |  |  |
| CO1           | To develop the tool of sequence, series and Fourier series for learning advanced Engineering   |                |                 |               |                |                |                           |  |  |  |
|               | Mathematic                                                                                     | cs.            |                 |               |                |                |                           |  |  |  |
| CO2           | To introdu                                                                                     | ce effective   | mathematical    | tools for t   | he solutions   | of differentia | I equations that model    |  |  |  |
|               | physical pro                                                                                   | ocesses.       |                 |               |                |                | -                         |  |  |  |
| CO3           | To acquain                                                                                     | t the student  | with mathem     | natical tools | needed in ev   | aluating mul   | tiple integrals and their |  |  |  |
|               | usage.                                                                                         |                |                 |               |                | -              |                           |  |  |  |
| CO4           | To familiar                                                                                    | rize the stude | ent with calcu  | ulus of vect  | or functions t | hat is essent  | ial in most branches of   |  |  |  |
|               | engineering                                                                                    | 5.             |                 |               |                |                |                           |  |  |  |

### UNIT-I

Sequence and Series: Convergence of sequence and series, tests for convergence (Comparison test, D'Alembert's Ratio test, Logarithmic test, Cauchy root test, Raabe's test).

Fourier series: Introduction, Fourier-Euler Formula, Dirichlet's conditions, Change of intervals, Fourier series for even and odd functions, Half range sine and cosine series.

### UNIT-II

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Differential equations of higher orders:

Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

### UNIT-III

Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar) Applications: areas and volumes; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds.

### UNIT-IV

Vector Calculus: Introduction, Scalar and Vector point functions, Gradient, divergence and Curl and their properties, Directional derivative. Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

### Suggested Books:

- G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.
- Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley and Sons, 2006.
- W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Edition, Wiley India, 2009.
- S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.
- E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India, 1995.
- E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.
- G.F. Simmons and S.G. Krantz, Differential Equations, Tata McGraw Hill, 2007.
- Erwin Kreyszig and Sanjeev Ahuja, Applied Mathematics-I, reprint 2015, Wiley India Publication.

| HM-902   |                                                                                                                                                    | B                   | usiness Intellig | gence and Entre     | preneurship        |               |                 |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|---------------------|--------------------|---------------|-----------------|--|--|--|
| Lecture  | Tutorial                                                                                                                                           | Practical           | Credit           | Major Test          | Minor Test         | Total         | Time            |  |  |  |
| 3        | 0                                                                                                                                                  | 0                   | 3.0              | 75                  | 25                 | 100           | 3               |  |  |  |
| Purpose  | e To make the students conversant with the basics concepts in management thereby leading to nurturing                                              |                     |                  |                     |                    |               |                 |  |  |  |
|          | their manageria                                                                                                                                    | ıl skills.          |                  |                     | -                  |               | _               |  |  |  |
| Course O | Course Outcomes (CO)                                                                                                                               |                     |                  |                     |                    |               |                 |  |  |  |
| CO1      | Students will be able understand who the entrepreneurs are and what competences needed to become an                                                |                     |                  |                     |                    |               |                 |  |  |  |
|          | Entrepreneur.                                                                                                                                      |                     |                  | -                   | _                  |               |                 |  |  |  |
| CO2      | Students will b                                                                                                                                    | e able understar    | nd insights int  | o the management    | nt, opportunity s  | earch, ident  | ification of a  |  |  |  |
|          | Product; marke                                                                                                                                     | t feasibility studi | es; project fina | lization etc. requi | ired for small bus | iness enterp  | rises.          |  |  |  |
| CO3      | Students can be                                                                                                                                    | able to write a r   | eport and do or  | al presentation or  | n the topics such  | as product i  | identification, |  |  |  |
|          | Students can be able to write a report and do oral presentation on the topics such as product identification, business idea, export marketing etc. |                     |                  |                     |                    |               |                 |  |  |  |
| CO4      | Students will b                                                                                                                                    | e able to know th   | e different fina | ancial and other a  | assistance availab | le for the sn | nall industrial |  |  |  |
|          | units.                                                                                                                                             |                     |                  |                     |                    |               |                 |  |  |  |

### Unit –I

**Entrepreneurship :** Concept and Definitions; Entrepreneurship and Economic Development; Classification and Types of Entrepreneurs; Entrepreneurial Competencies; Factor Affecting Entrepreneurial Growth – Economic, Non-Economic Factors; EDP Programmes; Entrepreneurial Training; Traits/Qualities of an Entrepreneurs; Manager Vs. Entrepreneur, Entrepreneurial challenges.

### Unit -II

**Opportunity** / **Identification and Product Selection:** Entrepreneurial Opportunity Search and Identification; Criteria to Select a Product; Conducting Feasibility Studies; Sources of business ideas, Marketing Plan : Conducting of Marketing Research, Industry Analysis, Competitor analysis, market segmentation and positioning, building a marketing plan, marketing mix, launching a new product; export marketing, Methods of Project Appraisal, Project Report Preparation; Specimen of Project Report; Project Planning and Scheduling using Networking Techniques of PERT / CPM.

### Unit –III

**Small Enterprises and Enterprise Launching Formalities :** Definition of Small Scale; Rationale; Objective; Scope; SSI; Registration; NOC from Pollution Board; Machinery and Equipment Selection, Role of SSI in Economic Development of India; major problem faced by SSI,MSMEs – Definition and Significance in Indian Economy; MSME Schemes, Challenges and Difficulties in availing MSME Schemes.

### Unit –IV

**Role of Support Institutions and Management of Small Business :** DIC; SIDO; SIDBI; Small Industries Development Corporation (SIDC); SISI; NSIC; NISBUD; State Financial Corporation SIC; Venture Capital : Concept, venture capital financing schemes offered by various financial institutions in India.

**Special Issues for Entrepreneurs**: Legal issues – Forming business entity, requirements for formation of a Private/Public Limited Company, Entrepreneurship and Intellectual Property Rights: IPR and their importance. (Patent, Copy Right, Trademarks), Case Studies-At least one in whole course.

### Note:

• Case studies of Entrepreneurs - successful, failed, turnaround ventures should be discussed in the class.

- Exercises / activities should be conducted on 'generating business ideas' and identifying problems and opportunities.
- Interactive sessions with Entrepreneurs, authorities of financial institutions, Government officials should be organized

### **Suggested Readings:**

- "Entrepreneurship development small business enterprises", Pearson, Poornima M Charantimath, 2013.
- Roy Rajiv, "Entrepreneurship", Oxford University Press, 2011.
- "Innovation and Entrepreneurship", Harper business- Drucker.F, Peter, 2006.
- "Entrepreneurship", Tata Mc-graw Hill Publishing Co.ltd new Delhi- Robert D. Hisrich, Mathew J. Manimala, Michael P Peters and Dean A. Shepherd, 8th Edition, 2012
- Enterpreneurship Development- S.Chand and Co., Delhi- S.S.Khanka 1999
- Small-Scale Industries and Entrepreneurship. Himalaya Publishing House, Delhi –Vasant Desai 2003.
- Entrepreneurship Management -Cynthia, Kaulgud, Aruna, Vikas Publishing House, Delhi, 2003.

# Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

### 10(459)

| PC-CS205L    |                                                                                                                                      |                                                                                                        | Data Str        | ucture and Alg  | orithms Lab       |                 |      |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------|-----------------|-------------------|-----------------|------|--|--|--|--|
| Lecture      | Tutorial                                                                                                                             | Practical                                                                                              | Credit          | Minor Test      | Practical         | Total           | Time |  |  |  |  |
| 0            | 0                                                                                                                                    | 4                                                                                                      | 2.0             | 40              | 60                | 100             | 3    |  |  |  |  |
| Purpose      | To introduce the principles and paradigms of Data Structures for design and implement the software systems logically and physically. |                                                                                                        |                 |                 |                   |                 |      |  |  |  |  |
| Course Outco | ourse Outcomes (CO)                                                                                                                  |                                                                                                        |                 |                 |                   |                 |      |  |  |  |  |
| CO1          | To introduce the basic concepts of Data structure, basic data types, searching and sorting based on array data types.                |                                                                                                        |                 |                 |                   |                 |      |  |  |  |  |
| CO2          |                                                                                                                                      | To introduce the structured data types like Stacks and Queue and its basic operation's implementation. |                 |                 |                   |                 |      |  |  |  |  |
| CO3          | To introduce                                                                                                                         | e dynamic impl                                                                                         | ementation of   | linked list.    |                   |                 |      |  |  |  |  |
| CO4          | To introduce                                                                                                                         | e the concepts of                                                                                      | of Tree and gra | aph and implem  | nentation of trav | versal algorith | hms. |  |  |  |  |
| 1. Write     | e a program fo                                                                                                                       | r Binary search                                                                                        | methods.        |                 |                   |                 |      |  |  |  |  |
| 2. Write     | e a program fo                                                                                                                       | r insertion sort                                                                                       | , selection sor | t and bubble so | rt.               |                 |      |  |  |  |  |
| 3. Write     | e a program to                                                                                                                       | implement Sta                                                                                          | ck and its ope  | ration.         |                   |                 |      |  |  |  |  |
| 4. Write     | e a program fo                                                                                                                       | r quick sort.                                                                                          | _               |                 |                   |                 |      |  |  |  |  |
| 5. Write     | e a program fo                                                                                                                       | r merge sort.                                                                                          |                 |                 |                   |                 |      |  |  |  |  |
| 6. Write     | e a program to                                                                                                                       | implement Qu                                                                                           | eue and its op  | eration.        |                   |                 |      |  |  |  |  |

- Write a program to implement Circular Queue and its operation.
- 8. Write a program to implement singly linked list for the following operations: Create, Display, searching, traversing and deletion.
- 9. Write a program to implement doubly linked list for the following operations: Create, Display, inserting, counting, searching, traversing and deletion.

10 Write a program to implement circular linked list for the following operations: Create, Display, inserting, counting, searching, traversing and deletion.

11. Write a program to implement insertion, deletion and traversing in B tree

### NOTE:

At least seven experiments are to be performed from above list and the concerned institution as per the scope of the syllabus may set remaining eight.

| ES-209L    |                      |                                                                                       |                | Digital Electron   | ics Lab       |               |      |  |  |  |  |
|------------|----------------------|---------------------------------------------------------------------------------------|----------------|--------------------|---------------|---------------|------|--|--|--|--|
| Lecture    | Tutorial             | Practical                                                                             | Credit         | Minor Test         | Practical     | Total         | Time |  |  |  |  |
| 0          | 0                    | 0 4 2.0 40 60 100 3                                                                   |                |                    |               |               |      |  |  |  |  |
| Purpose    | To learn the         | To learn the basic methods for the design of digital circuits and systems.            |                |                    |               |               |      |  |  |  |  |
| Course Out | Course Outcomes (CO) |                                                                                       |                |                    |               |               |      |  |  |  |  |
| CO1        | To Familiar          | ization with D                                                                        | igital Trainer | r Kit and associat | ted equipmen  | t.            |      |  |  |  |  |
| CO2        | To Study an          | d design of TT                                                                        | 'L gates       |                    |               |               |      |  |  |  |  |
| CO3        | To learn the         | To learn the formal procedures for the analysis and design of combinational circuits. |                |                    |               |               |      |  |  |  |  |
| CO4        | To learn the         | formal proced                                                                         | ures for the   | analysis and desi  | ign of sequen | tial circuits |      |  |  |  |  |

### LIST OF EXPERIMENTS:

- 1. Familiarization with Digital Trainer Kit and associated equipment.
- 2. Study of TTL gates AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR.
- 3. Design and realize a given function using K-Maps and verify its performance.
- 4. To verify the operation of Multiplexer and De-multiplexer.
- 5. To verify the operation of Comparator.
- 6. To verify the truth table of S-R, J-K, T, D Flip-flops.
- 7. To verify the operation of Bi-directional shift register.
- 8. To design and verify the operation of 3-bit asynchronous counter.
- 9. To design and verify the operation of asynchronous Up/down counter using J-K FFs.
- 10. To design and verify the operation of asynchronous Decade counter.
- 11. Study of TTL logic family characteristics.
- 12. Study of Encoder and Decoder.
- 13. Study of BCD to 7 segment Decoder.

NOTE:

At least ten experiments are to be performed from above list and the concerned institution as per the scope of the syllabus may set remaining five.

| PC-CS205 L    |                                                                                                                                           |                                                                                                     | Object Ori       | iented Program  | nming Lab        |            |                  |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|-----------------|------------------|------------|------------------|--|--|--|
| Lecture       | Tutorial                                                                                                                                  | Practical                                                                                           | Credit           | Minor Test      | Practical        | Total      | Time             |  |  |  |
| 0             | 0                                                                                                                                         | 4                                                                                                   | 2.0              | 40              | 60               | 100        | 3 Hour           |  |  |  |
| Purpose       | To introduce the principles and paradigms of Object Oriented Programming Language for design<br>and implement the Object Oriented System. |                                                                                                     |                  |                 |                  |            |                  |  |  |  |
| Course Outcor | Course Outcomes (CO)                                                                                                                      |                                                                                                     |                  |                 |                  |            |                  |  |  |  |
| CO1           |                                                                                                                                           | To introduce the basic concepts of object oriented programming language and the its representation. |                  |                 |                  |            |                  |  |  |  |
| CO2           |                                                                                                                                           | dynamic mem<br>lementation.                                                                         | iory, access pri | ivate members   | of class and th  | e behavio  | r of inheritance |  |  |  |
| CO3           | To introduc                                                                                                                               | e polymorphisi                                                                                      | n, interface de  | sign and overlo | ading of operate | or.        |                  |  |  |  |
| CO4           | To handle l<br>during prog                                                                                                                |                                                                                                     | using file, gen  | eral purpose te | emplate and han  | dling of r | aised exception  |  |  |  |

**Q1**. Raising a number n to a power p is the same as multiplying n by itself p times. Write a function called power () that takes a double value for n and an int value for p, and returns the result as double value. Use a default argument of 2 for p, so that if this argument is omitted, the number will be squared. Write a main () function that gets values from the user to test this function.

**Q2.** A point on the two dimensional plane can be represented by two numbers: an X coordinate and a Y coordinate. For example, (4,5) represents a point 4 units to the right of the origin along the X axis and 5 units up the Y axis. The sum of two points can be defined as a new point whose X coordinate is the sum of the X coordinates of the points and whose Y coordinate is the sum of their Y coordinates. Write a program that uses a structure called point to model a point. Define three points, and have the user input values to two of them. Then set the third point equal to the sum of the other two, and display the value of the new point. Interaction with the program might look like this:

Enter coordinates for P1: 3 4

Enter coordinates for P2: 57

Coordinates of P1 + P2 are : 8, 11

Q3. Create the equivalent of a four function calculator. The program should request the user to enter a number, an operator, and another number. It should then carry out the specified arithmetical operation: adding, subtracting, multiplying, or dividing the two numbers. (It should use a switch statement to select the operation). Finally it should display the result. When it finishes the calculation, the program should ask if the user wants to do another calculation. The response can be 'Y' or 'N'. Some sample interaction with the program might look like this. Enter first number, operator, and second number: 10/3

Answer = 3.333333

Do another (Y/ N)? Y

Enter first number, operator, second number 12 + 100

Answer = 112

Do another (Y/N)?N

**Q4**. A phone number, such as (212) 767-8900, can be thought of as having three parts: the area code (212), the exchange (767) and the number (8900). Write a program that uses a structure to store these three parts of a phone number separately. Call the structure phone. Create two structure variables of type phone. Initialize one, and have the user input a number for the other one. Then display both numbers. The interchange might look like this:

- Enter your area code, exchange, and number: 415 555 1212
- My number is (212) 767-8900
- Your number is (415) 555-1212

**Q5**. Create two classes DM and DB which store the value of distances. DM stores distances in metres and centimeters and DB in feet and inches. Write a program that can read values for the class objects and add one object of DM with another object of DB. Use a friend function to carry out the addition operation. The object that stores the results maybe a DM object or DB objects, depending on the units in which the results are required. The display should be in the format of feet and inches or metres and centimetres depending on the object on display.

Q6. Create a class rational which represents a numerical value by two double values- NUMERATOR and DENOMINATOR. Include the following public member Functions:

- constructor with no arguments (default).
- constructor with two arguments.
- void reduce() that reduces the rational number by eliminating the highest common factor between the numerator and denominator.
- Overload + operator to add two rational number.
- Overload >> operator to enable input through cin.

• Overload << operator to enable output through cout.

Write a main () to test all the functions in the class.

Q7. Consider the following class definition
 class father {
 protected : int age;
 public;
 father (int x) {age = x;}
 virtual void iam ()
 { cout << "I AM THE FATHER, my age is : "<< age<< end1:}
};</pre>

Derive the two classes son and daughter from the above class and for each, define iam () to write our similar but appropriate messages. You should also define suitable constructors for these classes. Now, write a main () that creates objects of the three classes and then calls iam () for them. Declare pointer to father. Successively, assign addresses of objects of the two derived classes to this pointer and in each case, call iam () through the pointer to demonstrate polymorphism in action.

**Q8**. Write a program that creates a binary file by reading the data for the students from the terminal. The data of each student consist of roll no., name (a string of 30 or lesser no. of characters) and marks.

Q9. A hospital wants to create a database regarding its indoor patients. The information to store include

a) Name of the patient

b) Date of admission

c) Disease

d) Date of discharge

Create a structure to store the date (year, month and date as its members). Create a base class to store the above information. The member function should include functions to enter information and display a list of all the patients in the database. Create a derived class to store the age of the patients. List the information about all the to store the age of the patients. List the information about all the pediatric patients (less than twelve years in age).

Q10. Make a class **Employee** with a name and salary. Make a class **Manager** inherit from **Employee**. Add an instance variable, named department, of type string. Supply a method to **to String** that prints the manager's name, department and salary. Make a class **Executive** inherits from **Manager**. Supply a method **to String** that prints the string **"Executive"** followed by the information stored in the **Manager** superclass object. Supply a test program that tests these classes and methods.

**Q11.** Imagine a tollbooth with a class called toll Booth. The two data items are a type unsigned int to hold the total number of cars, and a type double to hold the total amount of money collected. A constructor initializes both these to 0. A member function called payingCar () increments the car total and adds 0.50 to the cash total. Another function, called nopayCar (), increments the car total but adds nothing to the cash total. Finally, a member function called displays the two totals. Include a program to test this class. This program should allow the user to push one key to count a paying car, and another to count a nonpaying car. Pushing the ESC kay should cause the program to print out the total cars and total cash and then exit.

Q12. Write a function called reversit () that reverses a string (an array of char). Use a for loop that swaps the first and last characters, then the second and next to last characters and so on. The string should be passed to reversit () as an argument. Write a program to exercise reversit (). The program should get a string from the user, call reversit (), and print out the result. Use an input method that allows embedded blanks. Test the program with Napoleon's famous phrase, "Able was I ere I saw Elba)".

25

**Q13.** Create some objects of the string class, and put them in a Deque-some at the head of the Deque and some at the tail. Display the contents of the Deque using the forEach () function and a user written display function. Then search the Deque for a particular string, using the first That () function and display any strings that match. Finally remove all the items from the Deque using the getLeft () function and display each item. Notice the order in which the items are displayed: Using getLeft (), those inserted on the left (head) of the Deque are removed in "last in first out" order while those put on the right side are removed in "first in first out" order. The opposite would be true if getRight() were used.

**Q14.** Assume that a bank maintains two kinds of accounts for customers, one called as savings account and the other as current account. The savings account provides compound interest and withdrawal facilities but no cheque book facility. The current account provides cheque book facility but no interest. Current account holders should also maintain a minimum balance and if the balance falls below this level, a service charge is imposed.

Create a class account that stores customer name, account number and type of account. From this derive the classes

cur\_acct and sav\_acct to make them more specific to their requirements. Include necessary member functions in order to achieve the following tasks:

a) Accept deposit from a customer and update the balance.

- b) Display the balance.
- c) Compute and deposit interest.
- d) Permit withdrawal and update the balance.
- e) Check for the minimum balance, impose penalty, necessary and update the balance.
- f) Do not use any constructors. Use member functions to initialize the class members.

**Q15.** Create a base class called shape. Use this class to store two double type values that could be used to compute the area of figures. Derive two specific classes called triangle and rectangle from the base shape. Add to the base class, a member function get\_data() to initialize baseclass data members and another member function display\_area() to compute and display the area of figures. Make display\_area() as a virtual function and redefine this function in the derived classes to suit their requirements. Using these three classes, design a program that will accept dimensions of a triangle or a rectangle interactively and display the area.

Remember the two values given as input will be treated as lengths of two sides in the case of rectangles and as base and height in the case of triangles and used as follows:

Area of rectangle = x \* y

Area of triangle =  $\frac{1}{2} * x * y$ 

### NOTE:

At least ten experiments are to be performed from above list and the concerned institution as per the scope of the syllabus may set remaining five.

|           |            |                                           |       |                |         | Examination   | on Schedul    | e (Marks) |       | Duration of<br>Exam (Hrs) |
|-----------|------------|-------------------------------------------|-------|----------------|---------|---------------|---------------|-----------|-------|---------------------------|
| S.<br>No. | Course No. | Subject                                   | L:T:P | Hours/<br>Week | Credits | Major<br>Test | Minor<br>Test | Practical | Total | -                         |
| 1         | PC-CS-202  | Discrete Mathematics                      | 3:0:0 | 3              | 3       | 75            | 25            | 0         | 100   | 3                         |
| 2         | PC-CS-204  | Internet Technology<br>and Management     | 3:0:0 | 3              | 3       | 75            | 25            | 0         | 100   | 3                         |
| 3         | PC-CS-206  | Operating Systems                         | 3:0:0 | 3              | 3       | 75            | 25            | 0         | 100   | 3                         |
| 4         | PC-CS-208  | Design and Analysis of<br>Algorithms      | 3:0:0 | 3              | 3       | 75            | 25            | 0         | 100   | 3                         |
| 5         | HM-901     | Organizational<br>Behaviour               | 3:0:0 | 3              | 3       | 75            | 25            | 0         | 100   | 3                         |
| 6         | PC-CS-210L | Internet Technology<br>and Management Lab | 0:0:4 | 4              | 2       | 0             | 40            | 60        | 100   | 3                         |
| 7         | PC-CS-212L | Operating Systems<br>Lab                  | 0:0:4 | 4              | 2       | 0             | 40            | 60        | 100   | 3                         |
| 8         | PC-CS-214L | Design and Analysis of<br>Algorithms Lab  | 0:0:4 | 4              | 2       | 0             | 40            | 60        | 100   | 3                         |
|           |            | Total                                     |       | 27             | 21      | 375           | 245           | 180       | 800   |                           |
|           | •          |                                           | •     | •              | •       | •             | ·             |           |       | •                         |
| 9         | MC-901 *   | Environmental<br>Sciences                 | 3:0:0 | 3              | 0       | 75            | 25            | 0         | 100   | 3                         |

## **Bachelor of Technology (Computer Science and Engineering) Credit Based Scheme of Studies/Examination** Semester IV (w.e.f Session 2019-2020)

\*MC-901 is a mandatory credit-less course and student has to get passing marks in order to qualify for the award of B.Tech. Degree.

Sciences

| PC-CS202    | Discrete Mathematics                                       |                 |                |                    |            |       |      |  |  |  |  |  |
|-------------|------------------------------------------------------------|-----------------|----------------|--------------------|------------|-------|------|--|--|--|--|--|
| Lecture     | Tutorial                                                   | Practical       | Credit         | Major Test         | Minor Test | Total | Time |  |  |  |  |  |
| 3           | 0 0 3.0 75 25 100 3                                        |                 |                |                    |            |       |      |  |  |  |  |  |
| Purpose     | To provide the conceptual knowledge of Discrete structure. |                 |                |                    |            |       |      |  |  |  |  |  |
| Course Outo | Course Outcomes (CO)                                       |                 |                |                    |            |       |      |  |  |  |  |  |
| CO1         | To study varie                                             | ous fundament   | al concepts of | f Set Theory and I | Logics.    |       |      |  |  |  |  |  |
| CO2         | To study and                                               | understand the  | Relations, di  | agraphs and lattic | es.        |       |      |  |  |  |  |  |
| CO3         | To study the Functions and Combinatorics.                  |                 |                |                    |            |       |      |  |  |  |  |  |
| CO4         | To study the A                                             | Algebraic Strue | ctures.        |                    |            |       |      |  |  |  |  |  |

### Unit 1 Set Theory and Logic

Fundamentals - Sets and subsets, Venn Diagrams, Operations on sets, Laws of Set Theory, Power Sets and Products, Partition of sets, The Principle of Inclusion- Exclusion.

Logic : Propositions and Logical operations, Truth tables, Equivalence, Implications, Laws of Logic, Normal forms, Predicates and quantifiers, Mathematical Induction.

### Unit 2: Relations, diagraphs and lattices

Product sets and partitions, relations and diagraphs, paths in relations and diagraphs, properties of relations, equivalence and partially ordered relations, computer representation of relations and diagraphs, manipulation of relations, Transitive closure and Warshall's algorithm, Posets and Hasse Diagrams, Lattice.

### **Unit 3 Functions and Combinatorics**

Definitions and types of functions: injective, subjective and bijective, Composition, identity and inverse, Review of Permutation and combination-Mathematical Induction, Pigeon hole principle, Principle of inclusion and exclusion, Generating function-Recurrence relations.

### **Unit 4: Algebraic Structures**

Algebraic structures with one binary operation - semi groups, monoids and groups, Product and quotient of algebraic structures, Isomorphism, homomorphism, automorphism, Cyclic groups, Normal sub group, codes and group codes, Ring homomorphism and Isomorphism.

### Suggested Books:

- Elements of Discrete Mathematics C.L Liu, 1985, Reprinted 2000, McGraw Hill
- Discrete Mathematics Revised (SIE) (Schaum's Outline Series), LIPSCHUTZ, TMH
- Discrete mathematical structures by B Kolman RC Busby, S Ross PHI Pvt. Ltd.
- Discrete Mathematical Structures with Applications to Computer Science , by Tremblay J.P, and Manohar R., McGraw Hill Book Company, 1975, International Edition, 1987.
- Discrete and Combinatorial mathematics ", Ralph P., Grimaldi, Addison-Wesley Publishing Company, Reprinted in 1985.
- Discrete Mathematics and its Applications ", Kenneth H.Rosen, McGraw Hill Book Company, 1999. Sections: 7.1 to 7.5.
- Discrete Mathematics for computer scientists and Mathematicians, Joe L. Mott, Abraham

| PC-CS204     |                                                                                          | J                | Internet Techn  | ology and Ma    | nagement        |                  |            |  |  |  |
|--------------|------------------------------------------------------------------------------------------|------------------|-----------------|-----------------|-----------------|------------------|------------|--|--|--|
| Lecture      | Tutorial                                                                                 | Practical        | Credit          | Major Test      | Minor Test      | Total            | Time       |  |  |  |
| 3            | 0                                                                                        | 0                | 3.0             | 75              | 25              | 100              | 3          |  |  |  |
| Purpose      | To provide the conceptual knowledge of Internet and methodologies used in web and secure |                  |                 |                 |                 |                  |            |  |  |  |
|              | internet communication and networking.                                                   |                  |                 |                 |                 |                  |            |  |  |  |
| Course Outco | omes (CO)                                                                                |                  |                 |                 |                 |                  |            |  |  |  |
| CO1          | To study var                                                                             | ious fundament   | tal concepts of | Internetworking | g techniques wi | th their charact | teristics. |  |  |  |
| CO2          | To study and                                                                             | l understand the | e requirements  | for world-wide  | web formats a   | nd techniques.   |            |  |  |  |
| CO3          | To study the                                                                             | E-mail functio   | ning and basics | s of HTML, XM   | IL and DHTMI    | languages.       |            |  |  |  |
| CO4          | To study the                                                                             | functioning of   | Servers and Pr  | ivacy and Secu  | ity related mec | hanisms.         |            |  |  |  |

### **UNIT-1 : THE INTERNET**

Introduction to networks and internet, history, Internet, Intranet and Extranet, Working of Internet, Internet Congestion, internet culture, business culture on internet. Collaborative computing and the internet. Modes of Connecting to Internet, Internet Service Providers(ISPs), Internet address, standard address, domain name, DNS, IP.v6.Modems, Speed and time continuum, communications software; internet tools.

### UNIT-II : WORLD WIDW WEB

Introduction, Miscellaneous Web Browser details, searching the www: Directories search engines and meta search engines, search fundamentals, search strategies, working of the search engines, Telnet and FTP, HTTP, Gophar Commands, TCP/IP. Introduction to Browser, Coast-to-coast surfing, hypertext markup language, Web page installation, Web page setup, Basics of HTML and formatting and hyperlink creation.Using FrontPage Express, Plug-ins.

### **UNIT-III : INTERNET PLATEFORM AND MAILING SYSTEMS**

Introduction, advantages and disadvantages, User Ids, Pass words, e-mail addresses, message components, message composition, mailer features, E-mail inner workings, E-mail management, MIME types, Newsgroups, mailing lists, chat rooms, secure-mails, SMTP, PICO, Pine, Library cards catalog, online ref. works. **Languages**: Basic and advanced HTML, Basics of scripting languages – XML, DHTML, Java Script.

### **UNIT-IV : SERVERS**

Introduction to Web Servers: PWS, IIS, Apache; Microsoft Personal Web Server. Accessing and using these servers.

**Privacy and security topics**: Introduction, Software Complexity, Attacks, security and privacy levels, security policy, accessibility and risk analysis, Encryption schemes, Secure Web document, Digital Signatures, Firewalls, Intrusion detection systems

### Suggested Books:

- Internet and World Wide Programming, Deitel, Deitel and Nieto, 2012, Pearson Education
- Fundamentals of the Internet and the World Wide Web, Raymond Greenlaw and Ellen Hepp, TMH- 2012
- Inline/Online: Fundamentals of The Internet And The World Wide Web, GREENLAW, TMH
- Complete idiots guide to java script,. Aron Weiss, QUE, 2013
- Network firewalls, Kironjeet syan -New Rider Pub.2014
- Networking Essentials Firewall Media.Latest-2015
- www.secinf.com
- www.hackers.com
- Alfred Glkossbrenner-Internet 101 Computing MGH, 2013

| PC-CS-206            |                                                                   |                | OP              | ERATING SY    | YSTEMS        |       |      |  |  |  |
|----------------------|-------------------------------------------------------------------|----------------|-----------------|---------------|---------------|-------|------|--|--|--|
| Lecture              | Tutorial                                                          | Practical      | Credit          | Major<br>Test | Minor<br>Test | Total | Time |  |  |  |
| 3                    | 0                                                                 | 0              | 3.0             | 75            | 25            | 100   | 3    |  |  |  |
| Purpose              | To familiarize the students with the basics of Operating Systems. |                |                 |               |               |       |      |  |  |  |
| Course Outcomes (CO) |                                                                   |                |                 |               |               |       |      |  |  |  |
| CO1                  | To understand the structure and functions of Operating system.    |                |                 |               |               |       |      |  |  |  |
| CO2                  | To learn abo                                                      | out processes, | threads and s   | cheduling alg | orithms.      |       |      |  |  |  |
| CO3                  | To understa                                                       | nd the princip | le of concurr   | ency.         |               |       |      |  |  |  |
| CO4                  | To understa                                                       | nd the concep  | t of deadlock   | s.            |               |       |      |  |  |  |
| CO5                  | To learn various memory management schemes.                       |                |                 |               |               |       |      |  |  |  |
| CO6                  | To study I/O                                                      | ) managemen    | t and file syst | ems.          |               |       |      |  |  |  |
| CO7                  | To study the                                                      | e concept of p | rotection and   | security.     |               |       |      |  |  |  |

### UNIT 1

**Introduction:** Introduction to OS. Operating system functions, Different types of O.S.: batch process, multi-programmed, time-sharing, real-time, distributed, parallel.

**System Structure:** Computer system operation, I/O structure, storage structure, storage hierarchy, different types of protections, operating system structure (simple, layered, virtual machine), O/S services, system calls.

### UNIT II

**CPU scheduling:** scheduling criteria, preemptive and non-preemptive scheduling, scheduling algorithms, algorithm evaluation, multi-processor scheduling.

Threads: overview, benefits of threads, user and kernel threads.

Process Management: Concept of processes, process states, process control, co-operating processes, interprocess communication.

**Process Synchronization:** background, critical section problem, critical region, synchronization hardware, Classical problems of synchronization, semaphores.

### UNIT III

**Deadlocks:** Concept of deadlock, deadlock characterization, deadlock prevention, deadlock avoidance, deadlock detection, recovery from deadlock.

**Memory Management:** background, logical vs. physical address space, contiguous memory allocation, paging, segmentation, segmentation with paging. Concept of fragmentation.

Virtual Memory: background, demand paging, concept of page replacement, page replacement algorithms, allocation of frames, thrashing.

### UNIT IV

File Systems: file concept, file organization and access methods, allocation methods, directory structure, free-space management

**I/O Management:** I/O hardware, polling, interrupts, DMA, kernel I/O subsystem (scheduling, buffering, caching, spooling and device reservation)

**Disk Management:** disk structure, disk scheduling (FCFS, SSTF, SCAN,C-SCAN), disk reliability, disk Performance parameters

### **Protection and Security:**

Goals of protection and security, security attacks, authentication, program threats, system threats, threat monitoring.

Case studies: UNIX file system, Windows file system

### Suggested Books:

- Operating System Concepts", Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne, Wiley
- Operating systems: a concept based approach", Dhananjay M. Dhamdhere, McGraw Hill .
- Operating Systems : Internals and Design Principles, William Stallings, Pearson
- Operating Systems Design and Implementation<sup>57</sup>, (Prentice Hall Software Series) Andrew S Tanenbaum and Albert S Woodhull
- Taub and Schilling, Principles of Communication Systems, TMH.
- Mithal G K, Radio Engineering, Khanna Pub.
- Sirnon Haykin, Communication Systems, John Wiley

| PC-CS208             |                                                                                   |               | Design       | and Analysis of    | f Algorithms      |              |              |  |
|----------------------|-----------------------------------------------------------------------------------|---------------|--------------|--------------------|-------------------|--------------|--------------|--|
| Lecture              | Tutorial                                                                          | Practical     | Credit       | Major Test         | Minor Test        | Total        | Time         |  |
| 3                    | 0                                                                                 | 0             | 3.0          | 75                 | 25                | 100          | 3 Hrs.       |  |
| Purpose              | To introduc                                                                       | e advanced d  | ata structur | es and algorithm   | s concepts involv | ing their im | plementation |  |
| _                    | for solving                                                                       | complex appl  | ications.    |                    |                   |              |              |  |
| Course Outcomes (CO) |                                                                                   |               |              |                    |                   |              |              |  |
| CO1                  | To introduce the basic concepts of Data Structures and their analysis.            |               |              |                    |                   |              |              |  |
| CO2                  | To study the concept of Dynamic Programming and various advanced Data Structures. |               |              |                    |                   |              |              |  |
| CO3                  | To introduce                                                                      | e various Gra | ph algorithn | ns and concepts of | of Computational  | complexities | S.           |  |
| CO4                  | To study var                                                                      | rious Flow an | d Sorting N  | etworks            |                   |              |              |  |

#### **Unit 1: Introduction**

Review:- Elementary Data Structures, Algorithms and its complexity(Time and Space), Analysing Algorithms, Asymptotic Notations, Priority Queue, Quick Sort.

Recurrence relation:- Methods for solving recurrence(Substitution, Recursion tree, Master theorem), Strassen multiplication.

#### Unit 2: Advanced Design and analysis Techniques

Dynamic programming:- Elements, Matrix-chain multiplication, longest common subsequence, Greedy algorithms:- Elements, Activity- Selection problem, Huffman codes, Task scheduling problem, Travelling Salesman Problem.

Advanced data Structures:- Binomial heaps, Fibonacci heaps, Splay Trees, Red-Black Trees.

#### **Unit 3: Graph Algorithms**

Review of graph algorithms:-Traversal Methods(Depth first and Breadth first search), Topological sort, Strongly connected components, Minimum spanning trees- Kruskal and Prims, Single source shortest paths, Relaxation, Dijkstras Algorithm, Bellman- Ford algorithm, Single source shortest paths for directed acyclic graphs, All pairs shortest paths- shortest paths and matrix multiplication, Floyd-Warshall algorithm.

Computational Complexity:-Basic Concepts, Polynomial Vs Non-Polynomial Complexity, NP- hard and NP-complete classes.

#### Unit 4: Network and Sorting Algorithms

Flow and Sorting Networks Flow networks, Ford- Fulkerson method, Maximum Bipartite matching, Sorting Networks, Comparison network, The zero- One principle, Bitonic sorting network, Merging networks

#### Suggested Books :

- Corman, Leiserson and Rivest : Introduction to Algorithms, 2/e, PHI
- Das Gupta :Algorithms, TMH.
- Horowitz, Ellis and Sahni, Sartaj: Fundamentals of Computer Algorithms. Galgotia Publications
- Aho, Hopcroft and Ullman: The Design and Analyses of Computer Algorithms. Addison Wesley.
- R.B.Patel: Expert Data Structures with C, Khanna Publications, Delhi, India, 2<sup>nd</sup> Edition 2004, ISBN 81-87325-07-0.
- R.B.Patel and M.M.S Rauthan: Expert Data Structures with C++, Khana Publications, Delhi , India, 2<sup>nd</sup> Edition 2004,ISBN 87522-03-8

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| HM-901    |                                                                                            |                                                                                                 | Orga            | nizational Beh   | avior              |             |                |  |  |
|-----------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------|------------------|--------------------|-------------|----------------|--|--|
| Lecture   | Tutorial                                                                                   | Practical                                                                                       | Credit          | Major Test       | Minor Test         | Total       | Time           |  |  |
| 3         | 0                                                                                          | 0                                                                                               | 3.0             | 75               | 25                 | 100         | 3              |  |  |
| Purpose   | To make the                                                                                | To make the students conversant with the basics concepts of organizational culture and behavior |                 |                  |                    |             |                |  |  |
| _         | for nurturing their managerial skills.                                                     |                                                                                                 |                 |                  |                    |             |                |  |  |
| Course Ou | tcomes (CO)                                                                                |                                                                                                 |                 |                  |                    |             |                |  |  |
| CO1       | An overview about organizational behavior as a discipline and understanding the concept of |                                                                                                 |                 |                  |                    |             |                |  |  |
|           | individual behavior.                                                                       |                                                                                                 |                 |                  |                    |             |                |  |  |
| CO2       | Understand                                                                                 | the concept an                                                                                  | nd importance   | of personality,  | emotions and its   | importanc   | e in decision  |  |  |
|           | making and effective leadership.                                                           |                                                                                                 |                 |                  |                    |             |                |  |  |
| CO3       | Enabling the                                                                               | e students to kr                                                                                | now about the i | mportance of ef  | fective motivation | n and its c | ontribution in |  |  |
|           | group dynar                                                                                | nics and resolv                                                                                 | ing conflicts.  | -                |                    |             |                |  |  |
| CO4       | Understand                                                                                 | how to overco                                                                                   | me organizatio  | onal stress by n | naintaining prope  | r organiza  | tional culture |  |  |
|           | and effective                                                                              | e communicati                                                                                   | on.             | -                |                    | -           |                |  |  |

#### Unit 1

**Introduction to Organizational Behavior:** Concept and importance of Organizational Behavior, Role of Managers in OB, Foundations or Approaches to Organizational Behavior, Challenges and Opportunities for OB. **Foundation of individual behavior**: Biographical characteristics, concept of Abilities and Learning , Learning and Learning Cycle, Components of Learning, concept of values and attitude, types of attitude, attitude and workforce diversity.

#### Unit 2

**Introduction to Personality and Emotions**: Definition and Meaning of Personality, Determinants of Personality, Personality Traits Influencing OB, Nature and Meaning of Emotions, Emotions dimensions, concept of Emotional intelligence

**Perception and individual decision making**: Meaning of perception, factors influencing perception, Rational decision making process, concept of bounded rationality. Leadership- Trait approaches, Behavioral approaches, Situational approaches, and emerging approaches to leadership.

#### Unit-3

**Motivation**: concept and theories of Motivation, theories of motivation-Maslow, Two Factor theory, Theory X and Y,ERG Theory, McClelland's Theory of needs, goal setting theory, Application of theories in Organizational Scenario, linkage between MBO and goal setting theory, employee recognition and involvement program.

**Foundations of Group Behavior and conflict management** :Defining and classifying of Groups, stages of group development, Informal and Formal Groups – Group Dynamics, Managing Conflict and Negotiation, a contemporary perspective of intergroup conflict, causes of group conflicts, Managing intergroup conflict through Resolution.

#### Unit-4:

**Introduction to Organizational Communication**: Meaning and Importance of Communication process, importance of Organizational Communication, Effective Communication, Organizational Stress: Definition and Meaning, Sources and Types of Stress, Impact of Stress on Organizations, Stress Management Techniques.

**Introduction to Organization Culture-** Meaning and Nature of Organization Culture, Types of Culture, Managing Cultural Diversity, Managing Change and Innovation – Change at work, Resistance to change, A model for managing organizational change.

#### Suggested Books

- Colquitt, Jason A., Jeffery A. LePine, and Michael Wesson. Organizational Behavior: Improving Performance and Commitment in the Workplace. 5<sup>th</sup> ed. New York: McGraw-Hill Education, 2017.
- Hitt, Michael A., C. Chet Miller, and Adrienne Colella. Organizational Behavior. 4<sup>th</sup> ed. Hoboken, NJ: John Wiley, 2015.
- Robbins, Stephen P., and Timothy Judge. Organizational Behavior. 17<sup>th</sup> ed. Harlow, UK: Pearson Education, 2017.
- Stephen P. Robins, Organisational Behavior, PHI Learning / Pearson Education, 11<sup>th</sup> edition, 2008.
- Schermerhorn, Hunt and Osborn, Organisational behavior, John Wiley.
- UdaiPareek, Understanding OrganisationalBehaviour, Oxford Higher Education.
- Mc Shane and Von Glinov, OrganisationalBehaviour, Tata Mc Graw Hill.
- Aswathappa, K., OrganisationalBehaviour–Text and Problem, Himalaya Publication

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| PC-CS210L            |                                                               |                 | Internet Tecl | hnology and   | Management 1 | Lab   |        |  |  |
|----------------------|---------------------------------------------------------------|-----------------|---------------|---------------|--------------|-------|--------|--|--|
| Lecture              | Tutorial                                                      | Practical       | Credit        | Minor<br>Test | Practical    | Total | Time   |  |  |
| 0                    | 0                                                             | 4               | 2.0           | 40            | 60           | 100   | 3 Hour |  |  |
| Purpose              | Learn the internet and design different web pages using HTML. |                 |               |               |              |       |        |  |  |
| Course Outcomes (CO) |                                                               |                 |               |               |              |       |        |  |  |
| CO1                  | Understanding different PC software and their applications.   |                 |               |               |              |       |        |  |  |
| CO2                  | To be able to learn HTML.                                     |                 |               |               |              |       |        |  |  |
| CO3                  | To be able t                                                  | to write Web p  | ages using HT | ML.           |              |       |        |  |  |
| CO4                  | To be able t                                                  | to install mode | ms and unders | stand the e-m | ail systems. |       |        |  |  |

PC Software: Application of basics of MS Word 2000, MS Excel 2000, MS Power Point 2000, MS Access 2000, HTML

- 1. To prepare the Your Bio Data using MS Word
- 2. To prepare the list of marks obtained by students in different subjects and show with the help of chart/graph the average, min and max marks in each subject.
- 3. Prepare a presentation explaining the facilities/infrastructure available in your college/institute.
- 4. Design Web pages containing information of the Deptt.

# HTML Lists:

- 1. Create a new document that takes the format of a business letter. Combine <P> and <BR> tags to properly separate the different parts of the documents. Such as the address, greeting, content and signature. What works best for each?
- 2. Create a document that uses multiple *<*BR> and *<*P> tags, and put returns between *<*PRE> tags to add blank lines to your document see if your browser senders them differently.
- 3. Create a document using the <PRE>tags to work as an invoice or bill of sale, complete with aligned dollar values and a total. Remember not to use the Tab key, and avoid using emphasis tags like <B> or <EM> within your list.
- 4. Create a seven-item ordered list using Roman numerals. After the fifth item, increase the next list value by 5.
- 5. Beginning with an ordered list, create a list that nests both an unordered list and a definition list.
- 6. Use the ALIGN attribute of an <IMG> tags to align another image to the top of the first image.. play with this feature, aligning images to TOP, MIDDLE and BOTTOM.
- 7. Create a 'table of contents' style page (using regular and section links) that loads a different document for each chapter or section of the document.

#### Internet:

- 1. Instilling internet and external modems, NIC and assign IP address.
- 2. Study of E-mail system.
- 3. Create your own mail-id in yahoo and indiatimes.com.
- 4. Add names (mail-id's) in your address book, compose and search an element.

#### NOTE:

At least ten experiments are to be performed from above list and the concerned institution as per the scope of the syllabus may set remaining five.

| PC-CS212L    |                                   |                 | Ol              | perating Syste  | ms Lab    |       |      |  |
|--------------|-----------------------------------|-----------------|-----------------|-----------------|-----------|-------|------|--|
| Lecture      | Tutorial                          | Practical       | Credit          | Sessional       | Practical | Total | Time |  |
| 0            | 0                                 | 4               | 2.0             | 40              | 60        | 100   | 3    |  |
| Purpose      | To familiari                      | ze the students | with the basic  | cs of Operating | Systems.  |       |      |  |
| Course Outco | mes (CO)                          |                 |                 |                 |           |       |      |  |
| CO1          | To understand the CPU scheduling. |                 |                 |                 |           |       |      |  |
| CO2          | To learn about memory management. |                 |                 |                 |           |       |      |  |
| CO3          | To understand system calls.       |                 |                 |                 |           |       |      |  |
| CO4          | To understa                       | nd the concept  | of file operati | ions.           |           |       |      |  |
| CO5          | To learn var                      | ious classical  | problems.       |                 |           |       |      |  |

1. Simulation of the CPU scheduling algorithms a) Round Robin b) SJF c) FCFS d) Priority

- 2. Program for paging techniques of memory management.
- 3. Program for page replacement algorithms
- 4. Simulation of Bankers Deadlock Avoidance and Prevention algorithms.
- 5. Program for Implementation of System Calls.
- 6. Program for File Permissions
- 7. Program for File Operations.
- 8. Program for File Copy and Move.
- 9. Program for Dining Philosophers Problem.
- 10. Program For Producer Consumer Problem concept.
- 11. Program for disk scheduling algorithms.

NOTE:

At least ten experiments are to be performed from above list and the concerned institution as per the scope of the syllabus may set remaining five.

| PC-CS214L            |             |                                                                                                  | Design and     | l Analysis of al | lgorithms La  | b           |                   |  |  |  |
|----------------------|-------------|--------------------------------------------------------------------------------------------------|----------------|------------------|---------------|-------------|-------------------|--|--|--|
| Lecture              | Tutorial    | Practical                                                                                        | Credit         | Minor Test       | Practical     | Total       | Time              |  |  |  |
| 0                    | 0           | 4                                                                                                | 2.0            | 40               | 60            | 100         | 3                 |  |  |  |
| Purpose              |             |                                                                                                  |                |                  |               |             | familiar with the |  |  |  |
| _                    | different a | different algorithm design techniques and Understand the limitations of Algorithm power.         |                |                  |               |             |                   |  |  |  |
| Course Outcomes (CO) |             |                                                                                                  |                |                  |               |             |                   |  |  |  |
| CO1                  | The student | The student should be able to Design algorithms for various computing problems.                  |                |                  |               |             |                   |  |  |  |
| CO2                  | The student | The student should be able to Analyze the time and space complexity of algorithms.               |                |                  |               |             |                   |  |  |  |
| CO3                  | The student | The student should be able to Critically analyze the different algorithm design techniques for a |                |                  |               |             |                   |  |  |  |
|                      | given probl | em.                                                                                              | -              |                  | -             | -           |                   |  |  |  |
| CO4                  | The student | should be able                                                                                   | e to Modify ex | isting algorithn | ns to improve | efficiency. |                   |  |  |  |

<sup>1.</sup> Sort a given set of elements using the Quick sort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the lIst to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.

- 2. Using Open, implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
- 3. a. Obtain the Topological ordering of vertices in a given digraph.
- b. Compute the transitive closure of a given directed graph using Warshall's algorithm.
- 4. Implement 0/1 Knapsack problem using Dynamic Programming.
- 5. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.
- 6. Find Minimum Cost Spanning Tree of a given undirected graph using Kristal's algorithm.
- a. Print all the nodes reachable from a given starting node in a digraph using BFS method.
   b. Check whether a given graph is connected or not using DFS method.
- 8. Find a subset of a given set  $S = \{sl, s2, ..., sn\}$  of n positive integers whose sum is equal to a given positive integer d. For example, if  $S = \{1, 2, 5, 6, 8\}$  and d = 9 there are two solutions  $\{1, 2, 6\}$  and  $\{1, 8\}$ . A suitable message is to be displayed if the given problem instance doesn't have a solution.
- 9. Implement any scheme to find the optimal solution for the Traveling Salesperson problem and then solve the same problem instance using any approximation algorithm and determine the error in the approximation.
- 10. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.
- 11. Implement All-Pairs Shortest Paths Problem using Floyd's algorithm. Parallelize this algorithm, implement it using Open and determine the speed-up achieved.
- 12. Implement N Queen's problem using Back Tracking.
- 13. Use divides and conquers method to recursively implement Binary Search

# NOTE:

At least ten experiments are to be performed from above list and the concerned institution as per the scope of the syllabus may set remaining five.

| MC-901               |                                                                                        |                  | En              | vironmental   | l Sciences          |           |        |  |  |
|----------------------|----------------------------------------------------------------------------------------|------------------|-----------------|---------------|---------------------|-----------|--------|--|--|
| Lecture              | Tutorial                                                                               | Practical        | Credit          | Major<br>Test | Minor Test          | Total     | Time   |  |  |
| 3                    | 0                                                                                      | 0                | 0               | 75            | 25                  | 100       | 3 Hrs. |  |  |
| Purpose              | To learn the multidisciplinary nature, scope and importance of Environmental sciences. |                  |                 |               |                     |           |        |  |  |
| Course Outcomes (CO) |                                                                                        |                  |                 |               |                     |           |        |  |  |
| CO1                  | The students will be able to learn the importance of natural resources.                |                  |                 |               |                     |           |        |  |  |
| CO2                  | To learn the theoretical and practical aspects of eco system.                          |                  |                 |               |                     |           |        |  |  |
| CO3                  | Will be able                                                                           | to learn the bas | sic concepts of | of conservati | on of biodiversity. |           |        |  |  |
| CO4                  | The students                                                                           | will be able to  | understand t    | he basic con  | cept of sustainable | developme | ent.   |  |  |

#### UNIT 1

The multidisciplinary nature of environmental studies, Definition, Scope and Importance, Need for public awareness, Natural Resources: Renewable and Non-Renewable Resources: Natural resources and associated problems.

- (a) Forest Resources: Use and over-exploitation, deforestation, case studies. Timber eztraction, mining, dams and their effects on forests and tribal people.
- (b) Water Resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- (c) Mineral Resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- (d) Food Resources: World Food Problems, changes caused by agriculture and overgazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- (e) Energy Resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- (f) Land Resources: Land as a resource, land, degradation, man induced landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources, Equitable use of resources for sustainable lifestyle.

#### UNIT II

**Ecosystem-Concept of an ecosystem**. Sturcture and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological Succession, Food Chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem: (a) Forest Ecosystem, (b) Grassland Ecosystem, (c) Desert Ecosystem and (d) Aquatic Ecosystems (ponds, streams, lakes, rivers, oceans, esturaries

Field Work: Visit to a local area to document Environment assets-river/forest/grassland/hill/mountain, Visit to a local polluted site-Urban /Rural Industrial/Agricultural, Study of common plants, insects and birds, Study of simple ecosystems-pond, river, hill, slopes etc. (Field work equal to 5 lecture hours).

#### UNIT III

**Biodiversity and its conservation:** Introduction, Definition: genetic, species and ecosystem diversity. Biogeographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversityof global, National and local levels. India as a mega-diversity nation Hot spots of Biodiversity, Threats to biodiversity: Habitat loss, poaching of wild life, man-wildlife conflicts, Endangered and endemic species of India, Conservation of Biodiversity- In situ and Ex-Situ conservation of biodiversity.

**Environmental Pollution Definition:** Cause, effects and control measures of (a) Air Pollution (b) Water Pollution (c) Soil Pollution (d) Marine Pollution (e) Noise Pollution (f) Thermal Pollution (g) Nuclear Hazards

Solid waste management- cause, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies, Disaster management: floods, earthquake, cyclone and landslides

#### UNIT IV

**Social Issues and the Environment**. From unsustainable to sustainable development, Urban problems related to energy, Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people: Its problems and concerns, Case Studies: Environmental ethics-issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies: Wasteland Reclamation, Consumerism and waste products, Environment Protection Act, Air (Prevention and

Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public Awareness, Human population and the Environment, Population growth, variation among nations, Population explosion-Family Welfare Programme, Environment and human health. Human rights, Value Education, HIV/AIDS, Women and Child Welfare, Role of Information Technology in Environment and Human Health, Case Studies, Drugs and their effects; Useful and harmful drugs, Use and abuse of drugs, Stimulant and depressan drugs, Concept of drug de-addiction, Legal position on drugs and laws related to drugs.

# Suggested Books

- Environmental Studies- Deswal and Deswal. Dhanpat Rai and Co.
- Environmental Science and Engineering Anandan, P. and Kumaravelan, R. 2009. Scitech Publications (India) Pvt. Ltd., India
- Environmental Studies. Daniels Ranjit R. J. and Krishnaswamy. 2013. Wiley India.
- Environmental Science- Botkin and Keller. 2012. Wiley, India

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

|     | LIST OF | LIST OF OPEN ELECTIVES (B.TECH. ECE)   |
|-----|---------|----------------------------------------|
| SEM | CODE    | SUBJECT                                |
| >   | ECO-1   | Computer Networks                      |
|     | ECO-2   | Mechatronics                           |
|     | ECO-3   | Electronic Measurement and Instruments |
|     | ECO-4   | Renewable Energy Resources             |
|     |         | M00C 1                                 |
| ٧I  | ECO-5   | Data Structures                        |
|     | ECO-6   | Multimedia Communication               |
|     | ECO-7   | Consumer Electronics                   |
|     | ECO-8   | Transducers and Their Applications     |
|     |         | MOOC 2                                 |
| ١I  | ECO-9   | Bio-informatics                        |
|     | ECO-10  | Electromechanical Energy Conversion    |
|     | ECO-11  | Operating Systems                      |
|     | ECO-12  | Robotics                               |
|     |         | MOOC 3                                 |
| III | ECO-13  | Machine Learning                       |
|     | ECO-14  | Soft Computing                         |
|     | ECO-15  | Neural Networks and Fuzzy Logic        |
|     | ECO-16  | Software Defined Radio                 |
|     | ECO-17  | Statistics and Operational Research    |
|     | ECO-18  | Biomedical Signal Processing           |
|     | ECO-19  | Internet of Things                     |
|     | ECO-20  | Wireless Sensor Networks               |
|     |         | MOOC 4                                 |
|     |         | MOOC 5                                 |

| dies/Examination | ination       |                                           |
|------------------|---------------|-------------------------------------------|
|                  | LIST OF PROGF | LIST OF PROGRAM ELECTIVES (B.TECH. ECE)   |
| SEM              | CODE          | SUBJECT                                   |
| >                | ECP-1         | Probability Theory & Stochastic Processes |
|                  | ECP-2         | Speech and Audio Processing               |
|                  | ECP-3         | Introduction to MEMS                      |
|                  | ECP-4         | Power Electronics                         |
|                  |               |                                           |
|                  | ECP-5         | VLSI                                      |
| >                | ECP-6         | Antennas and Propagation                  |
|                  | ECP-7         | CMOS Design                               |
|                  | ECP-8         | Bio-Medical Electronics                   |
|                  | ECP-9         | Scientific Computing                      |
|                  |               | Liber Ontio Communications                |
|                  |               | FIDEL OPLIC COMMUNICATIONS                |
|                  | ECP-11        | Nano electronics                          |
|                  | ECP-12        | Microwave Theory and Techniques           |
|                  |               |                                           |
|                  | ECP-13        | Adaptive Signal Processing                |
| III              | ECP-14        | Wireless Sensor Networks                  |
|                  | ECP-15        | Satellite Communication                   |
|                  | ECP-16        | High Speed Electronics                    |
|                  | ECP-17        | Wavelets                                  |
|                  | ECP-18        | Embedded systems                          |
|                  | ECP-19        | Mixed Signal Design                       |
|                  | ECP-20        | Error correcting codes                    |
|                  | ECP-21        | Digital Image & Video Processing          |
|                  | ECP-22        | Mobile Communication and Networks         |
|                  |               |                                           |

76)

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester III (w.e.f. session 2019-2020)

| Sr. No.                              | Course<br>No.                                  | Subject                                                                                                                                                                     | L:T:P                       | Hours/Week                                                                                                                                                           | Credits                      | Exar          | mination So   | Examination Schedule (Marks) | ks)         | Duration<br>of Exam |
|--------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------|---------------|------------------------------|-------------|---------------------|
|                                      |                                                |                                                                                                                                                                             |                             |                                                                                                                                                                      |                              | Major<br>Test | Minor<br>Test | Practical                    | Total       | (SID)               |
| ~                                    | BS-201                                         | Optics &Waves                                                                                                                                                               | 3:0:0                       | e                                                                                                                                                                    | с                            | 75            | 25            | 0                            | 100         | ო                   |
| 2                                    | EC-201                                         | Electronic Devices                                                                                                                                                          | 3:0:0                       | £                                                                                                                                                                    | e                            | 75            | 25            | 0                            | 100         | с                   |
| e                                    | EC-203L                                        | Electronic Devices Lab                                                                                                                                                      | 0:0:2                       | 2                                                                                                                                                                    | -                            | ı             | 40            | 60                           | 100         | e                   |
| 4                                    | EC-205                                         | Digital Electronics                                                                                                                                                         | 3:0:0                       | 3                                                                                                                                                                    | 3                            | 75            | 25            | 0                            | 100         | e                   |
| £                                    | EC-207L                                        | Digital Electronics Lab                                                                                                                                                     | 0:0:2                       | 2                                                                                                                                                                    | -                            | I             | 40            | 60                           | 100         | С                   |
| 9                                    | EC-209                                         | Signals & Systems                                                                                                                                                           | 3:0:0                       | 3                                                                                                                                                                    | 3                            | 75            | 25            | 0                            | 100         | е                   |
| 7                                    | EC-211L                                        | Signals & Systems Lab                                                                                                                                                       | 0:0:2                       | 2                                                                                                                                                                    | -                            | I             | 40            | 60                           | 100         | Э                   |
| ω                                    | EC-213                                         | Network Theory                                                                                                                                                              | 3:0:0                       | 3                                                                                                                                                                    | 3                            | 75            | 25            | 0                            | 100         | е                   |
| റ                                    | ES-201                                         | Essentials of Information<br>Technology                                                                                                                                     | 3:0:0                       | с                                                                                                                                                                    | 3                            | 75            | 25            | 0                            | 100         | с                   |
| 10                                   | *EC-215                                        | Industrial Training-I                                                                                                                                                       | 2:0:0                       | 2                                                                                                                                                                    | -                            | -             | 100           | -                            | 100         | с                   |
| 11                                   | **MC-901                                       | Environmental Sciences                                                                                                                                                      | 3:0:0                       | 3                                                                                                                                                                    | I                            | 75            | 25            | 0                            | 100         | 3                   |
|                                      |                                                | Total                                                                                                                                                                       |                             | 26                                                                                                                                                                   | 21                           | 450           | 270           | 180                          | 006         |                     |
| *EC-215is<br>required tc<br>**MC-901 | a mandatory<br>get passing n<br>is a mandatory | *EC-215is a mandatory credit-less course in which the studer<br>required to get passing marks to qualify.<br>**MC-901 is a mandatory credit-less course in which the studer | nts will be<br>rs will be r | students will be evaluated for the industrial training undergone after 2 <sup>nd</sup> semester and students will be students will be required to get passing grade. | industrial tr<br>sing grade. | aining und∈   | ergone afte   | r 2 <sup>nd</sup> semeste    | er and stuc | dents will be       |

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester IV (w.e.f. session 2019-2020)

| ∾. S | Course No. | Subject                                | L:T:P | Hours/<br>Week | Credits | Exa   | mination So | Examination Schedule (Marks) | (s)   | Duration<br>of Exam |
|------|------------|----------------------------------------|-------|----------------|---------|-------|-------------|------------------------------|-------|---------------------|
|      |            |                                        |       |                | •<br>•  | Major | Minor       | Practical                    | Total | (Hrs)               |
|      |            |                                        |       |                |         | Test  | Test        |                              |       |                     |
| ſ    | BS-204     | Higher Engineering Mathematics         | 3:0:0 | 3              | 3       | 75    | 25          | 0                            | 100   | e                   |
| 2    | HM-903     | Soft Skills & Interpersonal            | 3:0:0 | 8              | 3       | 22    | 25          | 0                            | 100   | e                   |
|      |            | Communication                          |       |                |         |       |             |                              |       |                     |
| Э    | EC- 202    | Digital Communication                  | 3:0:0 | e              | 3       | 75    | 25          | 0                            | 100   | 3                   |
| 4    | EC-204L    | Communication Lab                      | 0:0:2 | 2              | Ļ       | •     | 40          | 60                           | 100   | 3                   |
| 2    | EC-206     | Analog Circuits                        | 3:0:0 | ε              | 3       | 75    | 25          | 0                            | 100   | 3                   |
| 9    | EC-208L    | Analog Circuits Lab                    | 0:0:2 | 2              | -       | •     | 40          | 60                           | 100   | Э                   |
| 2    | EC-210     | Microprocessors & Microcontrollers     | 3:0:0 | 3              | e       | 75    | 25          | 0                            | 100   | e                   |
| ω    | EC-212L    | Microprocessors & Microcontrollers Lab | 0:0:2 | 2              | Ļ       | 0     | 40          | 60                           | 100   | e                   |
| ი    | ES-202     | Basics of Analog Communication         | 3:0:0 | e              | e       | 75    | 25          | 0                            | 100   | e                   |
| 10   | *MC-902    | Constitution of India                  | 3:0:0 | Э              | ı       | 75    | 25          | 0                            | 100   | e                   |
|      |            | Total                                  |       | 27             | 21      | 450   | 270         | 180                          | 006   |                     |
|      |            |                                        |       |                |         |       |             |                              |       |                     |

\*MC-902 is a mandatory credit-less course in which the students will be required to get passing grade.

Note: All the students have to undergo 4 to 6 weeks Industrial Training after 4th semester which will be evaluated in 5th semester

# Syllabus B.Tech ECE IIIrd Semester Credit Based (2019-20)

| <b>BS - 201</b> |                                                                           |             | Op            | tics and Wa | ives         |              |            |  |  |
|-----------------|---------------------------------------------------------------------------|-------------|---------------|-------------|--------------|--------------|------------|--|--|
| L               | Т                                                                         | Р           | Credit        | Major       | Minor        | Total        | Time       |  |  |
|                 |                                                                           |             |               | Test        | Test         |              |            |  |  |
| 3               | -                                                                         | -           | 3             | 75          | 25           | 100          | 3h         |  |  |
| Purpose         | To introd                                                                 | uce the fu  | ndamentals    | of wave an  | nd optics fo | or the appli | cations in |  |  |
|                 | Engineerin                                                                | ng field.   |               |             |              |              |            |  |  |
| Course Outcomes |                                                                           |             |               |             |              |              |            |  |  |
| CO 1            | Familiariz                                                                | e with basi | c phenomer    | non used in | propagation  | n of waves.  |            |  |  |
| CO 2            | Introduce the fundamentals of interference, diffraction, polarization and |             |               |             |              |              |            |  |  |
|                 | their applications.                                                       |             |               |             |              |              |            |  |  |
| CO 3            | To make t                                                                 | he students | s aware to tl | ne importar | nce of Laser | in technolo  | ogy.       |  |  |

# Unit - I

**Waves:** Travelling waves, Characteristics of waves, Mathematical representation of travelling waves, General wave equation, Phase velocity, Light source emit wave packets, Wave packet and Bandwidth, Group velocity and real light waves.

**Propagation of light waves:** Maxwell's equations, Electromagnetic waves and constitutive relations, Wave equation for free-space, Uniform plane waves, Wave polarization, Energy density, the pointing vector and intensity, Radiation pressure and momentum, Light waves at boundaries, Wave incident normally on boundary, Wave incident obliquely on boundary: law of reflection, Snell's law and reflection coefficients.

# Unit - II

**Interference:** Principle of Superposition, Conditions for Sustained interference, Young's double slit experiment, Division of wave-front: Fresnel's Biprism and its applications, Division of amplitude: Interference due to reflected and transmitted light, Wedge-shaped thin film, Newton's rings and its applications, Michelson Interferometer and its applications.

# Unit – III

**Diffraction:** Types of diffraction, Fraunhofer diffraction at a single slit, Plane transmission diffraction grating: theory, secondary maxima and secondary minima, width of principal maxima, absent spectra, overlapping of spectral lines, determination of wavelength; Dispersive power and resolving power of diffraction grating.

**Polarization:** Polarization of transverse waves, Plane of polarization, Polarization by reflection, Double refraction, Nicol Prism, Quarter and half wave plate, Specific Rotation, Laurent 's half shade polarimeter, Biquartz polarimeter.

# Unit – IV

**Laser:** Stimulated Absorption, Spontaneous and Stimulated Emission; Einstein's Coefficients and its derivation, Population Inversion, Direct and Indirect pumping, Pumping

schemes, Main components of Laser, Gas lasers (He-Ne, CO<sub>2</sub>), Solid state lasers (Ruby, Neodymium, semiconductor), Dye laser, Characteristics of Laser, Applications of Laser.

# Text/Reference Books:

- 1. P.K. Diwan, Applied Physics for Engineers, Wiley India Pvt. Ltd., India
- 2. N. Subrahmanyam, B. Lal, M.N. Avadhanulu, A Textbook of Optics, S. Chand & Company Ltd., India.
- 3. A. Ghatak, Optics, McGraw Hill Education (India) Pvt. Ltd., India.
- 4. E. Hecht, A.R. Ganesan, Optics, Pearson India Education Services Pvt. Lt., India.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| EC-201  |                                  |          | El      | ectronic Device | es                         |             |            |
|---------|----------------------------------|----------|---------|-----------------|----------------------------|-------------|------------|
| Lecture | Tutorial P                       | ractical | Credit  | Major Test      | Minor Test                 | Total       | Time       |
| 3       |                                  |          | 3       | 75              | 25                         | 100         | 3 Hrs.     |
|         |                                  | C        | ourse O | outcomes (CO)   |                            |             |            |
| CO1     | To understand<br>diodes such as  |          | -       | -               | ort phenomena in<br>diode. | semicond    | uctors and |
| CO2     | To understand<br>using transisto |          | -       | eration of BJT  | and calculation            | of its para | meters     |
| CO3     | To understand                    | the ope  | ration, | characteristics | & parameters of            | FET and     | MOSFET.    |
| CO4     | To understand<br>and Op-Amp b    |          | -       | • •             | of regulated pow           | ver supplie | S          |

# UNIT-I

**Charge Carriers Transport**: Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity; Generation and recombination of carriers; Continuity equation, PN Junction: Basic Structure, small signal equivalent circuit of p-n diode, derivation of barrier potential and diode current equation, Simple diode circuits: clipping, clamping and rectifiers, Zener diode and its application as voltage regulator.

# UNIT-II

**Bipolar Junction Transistor:** Basic principle of operation, Current gains : derivation of  $\alpha,\beta,\Upsilon$  and their relationship. Various modes of operation of BJT, Base Width Modulation, Transistor hybrid model, h-parameter equivalent circuit of transistor, Analysis of transistor amplifier using h-parameters, calculation of input impedance, output impedance and voltage gain.

#### UNIT-III

**Field Effect Devices**: JFET : basic Operation and characteristics, drain and transfer characteristics, pinch off voltage, parameters of JFET: Transconductance  $(g_m)$ , ac drain resistance  $(r_d)$ , amplification factor( $\mu$ ), Small Signal Model & Frequency Limitations. MOSFET: basic operation, depletion and enhancement type, pinch-off voltage, Shockley equation and Small Signal Model of MOSFET, MOS capacitor.

# UNIT-IV

**Regulated Power Supplies**: Voltage Regulation, block diagram of DC regulated power supply, Zener diode voltage regulators: transistor series voltage regulator, Transistor shunt voltage regulator, Controlled Transistor Voltage Regulator, Op-Amp Series and shunt voltage regulator.

#### Text Books:

1. Millman & Halkias: Integrated Electronics, TMH.

2. Boylestad & Nashelsky: Electronic Devices & Circuit Theory, PHI.

**Reference Books:** 

1. B.G. Streetman, Solid State Electronic Devices, Prentice Hall of India, New Delhi, 1995.

2. E S. Yang, Microelectronic Devices, McGraw Hill, Singapore, 1988.

3. A.S. Sedra and K.C. Smith, Microelectronic Circuits, Saunder's College Publishing, 1991.

4. S Salivahanan and N Naresh Kumar, Electronics devices and circuits, McGraw Hill, 1998.

**Note:** Separate paper template will be provided to the paper setter for setting the question paper of end term semester examinations.

| EC-203L | Electronic Devices Lab |                          |                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |         |  |  |  |  |  |
|---------|------------------------|--------------------------|------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|--|--|--|--|--|
| Lecture | Tutorial               | Practical                | Credit                 | Practical                          | Minor Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total                 | Time    |  |  |  |  |  |
| -       | -                      | 2                        | 1                      | 60                                 | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                   | 3 Hrs.  |  |  |  |  |  |
|         |                        | C                        | ourse Ou               | tcomes (CO)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |         |  |  |  |  |  |
| C01     | various o              | diodes suc               | h as p-n               | -                                  | lly plot the VI cha<br>ode etc. find the t<br>curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |         |  |  |  |  |  |
| CO2     | To teach<br>parame     | h the stud<br>ters of Tr | ents how<br>ansistor s | to experimenta<br>such as voltage  | ally find the value<br>gain, current gai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es of vario<br>n etc. | ous     |  |  |  |  |  |
| CO3     |                        |                          |                        | to plot the inp<br>perimental meth | put and output ch<br>nod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aracterist            | tics of |  |  |  |  |  |
| CO4     | -                      | ations of                |                        |                                    | concept of differents<br>the source of the sour |                       |         |  |  |  |  |  |

# List of experiments:

**1.** To study the VI characteristics of p-n diode in forward and reverse bias and find the threshold voltage from the VI curve.

2. To study the operation of Zener diode as a voltage regulator.

**3.** To study the operation of half-wave and full wave rectifiers and calculate their ripple factor values.

4. To study the operation of series and parallel Clippers using P-N junction diodes.

5. To study the operation of clampers using P-N junction diodes.

**6.** To experimentally plot the input and output characteristics of a given BJT transistor in CE configuration and calculate its various parameters.

**7.** To experimentally plot the input and output characteristics of a given BJT transistor in CB configuration and calculate its various parameters.

8. To study the transfer and drain characteristics of JFET and calculate its various parameters.

**9.** To study the transfer and drain characteristics of MOSFET and calculate its various parameters.

**10.** To study the different types of negative feedback in two stage amplifier and to observe its effects upon the amplifier parameters.

**11.** To study the Zener diode as a transistor series voltage regulator.

**12.** To study the Zener diode as a transistor shunt voltage regulator.

# **Reference Books:**

1. Millman & Halkias: Integrated Electronics, TMH.

2. Boylestad & Nashelsky: Electronic Devices & Circuit Theory, PHI.

Note: Atleast ten (10) experiments from the above list are mandatory to perform for the students.

| EC-205  |                      |           | <b>Digital</b> | Electronics                             |                    |             |           |
|---------|----------------------|-----------|----------------|-----------------------------------------|--------------------|-------------|-----------|
| Lecture | Tutorial             | Practical | Credit         | Major Test                              | Minor Test         | Total       | Time      |
| 3       | -                    | -         | 3              | 75                                      | 25                 | 100         | 3 Hrs.    |
|         |                      | C         | ourse Ou       | itcomes (CO)                            |                    |             |           |
| CO1     |                      |           |                | derstand the bas<br>iques for reducin   | 0 0                |             |           |
| CO2     | Students<br>to them. | will be a | ble to de      | sign combination                        | nal circuits and a | opplication | ns relate |
| CO3     |                      |           |                | rite the truth tab<br>ops and to design |                    | -           |           |
| CO4     |                      |           |                | miliarize with va<br>ers and their cha  |                    | oes and     |           |

#### UNIT-I

**Fundamentals of Digital Systems and Techniques**: Digital signals, AND, OR, NOT, NAND, NOR and Exclusive-OR operations, Boolean algebra, number systems: binary, signed binary, octal, hexadecimal number, binary arithmetic, one's and two's complements arithmetic, Codes:BCD codes, Excess-3, Gray codes, Error detecting and correcting codes: parity check codes and Hamming code

**Minimization Techniques:**Basic postulates and fundamental theorems of Boolean algebra: Standard representation of logic functions: SOP and POS forms, Simplification of switching functions using K-map and Quine-McCluskey tabular methods,Don't care conditions, Digital logic families: TTL, Schottky TTL and CMOS logic, interfacing CMOS and TTL, Tri-statelogic.

#### UNIT-II

**Combinational DigitalCircuits**:Design procedure: Half adder, Full Adder, Half subtractor, Full subtractor, Parallel binary adder, parallel binary Subtractor, Carry Look Ahead adder, Serial Adder/Subtractor, BCD adder, Binary Multiplier, Binary Divider, Multiplexer/ De-multiplexer, decoder, encoder, parity checker, parity generators, code converters, Magnitude Comparator.

#### **UNIT-III**

**Sequential circuits**: A 1-bit memory, the circuit properties of Bistable latch, the clocked SR flip flop, J- K, T and D types flip flops, applications of flip flops: shift registers, serial to parallel converter, parallel to serial converter, Synchronous and Asynchronous mod counter,FSM, sequence generator and detector.

#### UNIT-IV

**A/D and D/A Converters**: Digital to analog converters: weighted resistor/converter, R-2R Ladder D/Aconverter, specifications for D/A converters, analog to digital converters: quantization and encoding, parallel comparator A/Dconverter, successive approximation A/D converter, specifications for A/D converters **Semiconductor Memories and Programmable Logic Devices**: Characteristics of memories, read only memory (ROM), read and write memory (RAM), Programmable logic array, Programmable array logic, Introduction to Field Programmable Gate Array (FPGA)

#### **Text Books:**

1. M. M. Mano, "Digital design", Pearson Education India, 2016.

2. Donald P. Leach and Albert Paul Malvino, Digital Principles and Applications, 8th Edition, TMH, 2003.

3. Taub Schilling, Digital Integrated Electronics, TMH

# **Reference Books:**

1. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.

2. A.K. Maini, Digital Electronics, Wiley India

**3.** R P Jain, Modern digital electronics, TMH

**Note:** Separate paper template will be provided to the paper setter for setting the question paper of end term semester examinations.

| EC-207L |                      |                            | Digital E  | lectronics Lab   |                    |            |          |
|---------|----------------------|----------------------------|------------|------------------|--------------------|------------|----------|
| Lecture | Tutorial             | Practical                  | Credit     | Practical        | Minor Test         | Total      | Time     |
| -       | -                    | 2                          | 1          | 60               | 40                 | 100        | 3 Hrs    |
|         |                      | C                          | ourse Out  | comes (CO)       |                    |            |          |
| CO1     |                      | s will be al<br>gates usin |            | •                | of basic logic gat | tes and de | sign     |
| CO2     | Students<br>operatio |                            | ble to des | ign various cor  | nbinational circu  | its and ve | rify the |
| CO3     |                      | s will be a<br>fy their op |            | ign different se | equential circuits | by using f | lip flop |
| CO4     | Students             | will be to                 | o study an | d design vario   | us encoders and o  | lecoders   |          |

# List of experiments:

- 1. Familiarization with Digital Trainer Kit and associated equipment.
- 2. Study of TTL gates AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR.
- **3.** Design and realize a given function using K-Maps and verify its performance.
- 4. To verify the operation of Multiplexer and De-multiplexer.
- **5.** To verify the operation of Comparator.
- 6. To verify the truth table of S-R, J-K, T, D Flip-flops.
- **7.** To verify the operation of Bi-directional shift register.
- 8. To design and verify the operation of 3-bit asynchronous counter.
- 9. To design and verify the operation of asynchronous Up/down counter.
- **10.** To design and verify the operation of asynchronous Decade counter.
- **11.** Study of Encoder and Decoder.
- 12. Study of BCD to 7 segment Decoder

# Text Books:

- 1. M. M. Mano, "Digital design", Pearson Education India, 2016.
- **2.** Donald P. Leach and Albert Paul Malvino, Digital Principles and Applications, 8th Edition, TMH, 2003.

| ECE-209 |            |                           | Signals a | and Systems                      |                     |          |        |
|---------|------------|---------------------------|-----------|----------------------------------|---------------------|----------|--------|
| Lecture | Tutorial   | Practical                 | Credit    | Major Test                       | Minor Test          | Total    | Time   |
| 3       | -          | -                         | 3         | 75                               | 25                  | 100      | 3 Hrs. |
| Att     | the end of |                           |           | utcomes (CO)<br>nts will demonst | rate the ability to | )        | 1      |
| CO1     | Analyze    | different                 | types of  | signals.                         |                     |          |        |
| CO2     | -          | nt continu<br>fferent tra |           | v                                | in time and freq    | uency do | main   |
| CO3     | Underst    | and samp                  | ling theo | orem and its imp                 | lications.          |          |        |

**Note:**Atleast ten (10) experiments from the above list are mandatory to perform for the students.

UNIT-I

**Introduction to Signals:** Continuous and discrete time signals, deterministic and stochastic signals, periodic and a periodic signals, even and odd signals, energy and power signals, exponential and sinusoidal signals and singular functions. Signal representation in terms of singular functions, orthogonal functions and their use in signal representation

**Introduction to Systems:** Linear and non-linear systems, time invariant and time varying systems, lumped and distributed systems, deterministic and stochastic systems, casual and non-causal systems, analog and discrete/digital memory and memory less systems.

#### UNIT-II

**Random Variables:** Introduction to Random Variables, pdf, cdf, moments, distributions, correlation functions. **Linear Time Invariant Systems**: Introduction to linear time invariant (LTI) systems, properties of LTI systems, convolution integral, convolution sum, causal LTI systems described by differential and difference equations, Concept of impulse response.

#### UNIT-III

**Discretization of Analog Signals:** Introduction to sampling, sampling theorem and its proof, effect of undersampling, reconstruction of a signal from sampled signal.

**Fourier Series** : Continuous time Fourier series (CTFS), Properties of CTFS, Convergence of Fourier series, Discrete time Fourier Series (DTFS), Properties of DTFS, Fourier series and LTI system, Filtering.

#### UNIT-IV

**Fourier Transform:** Continuous Time Fourier Transform (CTFT), Properties of CTFT, Systems characterized by linear constant- coefficient differential equations, Discrete time fourier transform (DTFT), Properties of DTFT, Duality, Systems characterized by Linear constant coefficient difference equations.

**Laplace Transform**: Introduction to Laplace transform, Region of convergence for laplace transform, Inverse laplace transform, Properties of laplace transform, Analysis and characterization of LTI systems using laplace transform, System function algebra and block diagram representations, Unilateral laplace transform.

Text Books:

1. Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Signals and Systems, Prentice Hall India, 2nd Edition, 2009

Reference Books:

1. Simon Haykins - "Signal & Systems", Wiley Eastern

2. Tarun Kumar Rawat, Signals and Systems, Oxford University Press.

3. H. P. Hsu, "Signals and systems", Schaum's series, McGraw Hill Education, 2010.

4. M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.

# 5. B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2009.

| ECE-211L |                    |             | Signals &   | & Systems Lab      |                   |       |        |
|----------|--------------------|-------------|-------------|--------------------|-------------------|-------|--------|
| Lecture  | Tutorial           | Practical   | Credit      | Practical          | Minor Test        | Total | Time   |
| -        | -                  | 2           | 1           | 60                 | 40                | 100   | 3 Hrs. |
|          |                    | C           | ourse Out   | tcomes (CO)        |                   |       |        |
| CO1      | To unde            | rstand the  | e basic co  | ncepts of softw    | are.              |       |        |
| CO2      | To explo           | re prope    | rties of va | rious types of s   | ignals and systen | 15.   |        |
| CO3      | To explo           | ore differe | ent proper  | rties of signals a | and systems.      |       |        |
| CO4      | To unde<br>domain. | rstand the  | e concept   | of sampling in     | time and frequer  | ıcy   |        |

Note: Question paper template will be provided to the paper setter.

# List of experiments:

- 1. Introduction of the MATLAB/SciLab/Octave software.
- 2. To demonstrate some simple signal.
- 3. To explore the effect of transformation of signal parameters (amplitude-scaling, time-scaling and time- shifting).
- 4. To visualize the complex exponential signal and real sinusoids.
- 5. To identify a given system as linear or non-linear.
- 6. To explore the time variance and time invariance property of a given system.
- 7. To explore causality and non-causality property of a system.
- 8. To determine Fourier transform of a signal.
- 9. To determine Laplace transform of a signal.
- 10. To demonstrate the time domain sampling of bandlimited signals (Nyquist theorem).
- 11. To demonstrate the sampling in frequency domain (Discrete Fourier Transform).
- 12. To demonstrate the convolution and correlation of two continuous-time signals.

13. To demonstrate the convolution and correlation of two discrete-time signals.

# **Reference Books:**

1. B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2009.

2. Signals and Systems using Scilab, <u>www.scilab.in</u>.

# **3.**Signals and Systems using Octave, www.octave.org

Note: Atleast ten (10) experiments from the above list are mandatory to perform for the students.

| EC-213  | Network Theory                                                                             |           |            |                                       |                                        |            |          |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------|-----------|------------|---------------------------------------|----------------------------------------|------------|----------|--|--|--|--|--|
| Lecture | Tutorial Practical Credit         Major Test         Minor Test         Total         Time |           |            |                                       |                                        |            |          |  |  |  |  |  |
| 3       | -                                                                                          | -         | 3          | 75                                    | 25                                     | 100        | 3 Hrs    |  |  |  |  |  |
|         |                                                                                            | C         | ourse Ou   | tcomes (CO)                           |                                        |            |          |  |  |  |  |  |
| CO1     |                                                                                            |           | _          | t of network tope<br>g simple and cor | ologies and the n<br>nplex circuits.   | etwork an  | alysis i |  |  |  |  |  |
| CO2     |                                                                                            |           |            | <i>,</i>                              | ork analysis using<br>the pole-zero pl | - <b>-</b> |          |  |  |  |  |  |
| CO3     | Describe                                                                                   | the chara | acteristic | s & parameters                        | of two port netw                       | orks.      |          |  |  |  |  |  |
| CO4     | To understand the concept of filters and synthesis of one port networks.                   |           |            |                                       |                                        |            |          |  |  |  |  |  |

#### UNIT I

**INTRODUCTION:** - Principles of network topology, graph matrices, Network Analysis (Time-Domain): Singularity Functions, Source-Free RC, RL, Series RLC, Parallel RLC circuits, Initial & Final Conditions, Impulse & Step Response of RC, RL, Series RLC, Parallel RLC circuits.

# UNIT 2

**NETWORK ANALYSIS (using Laplace Transform): -** Circuit Element Models, Transient Response of RC, RL, RLC Circuits to various excitation signals such as step, ramp, impulse and sinusoidal excitations using Laplace transform.

**NETWORK FUNCTIONS:** - Terminal pairs or Ports, Network functions for one-port and two-port networks, poles and zeros of Network functions, Restrictions on pole and zero Locations for driving point functions and transfer functions.

#### UNIT 3

**CHARACTERISTICS AND PARAMETERS OF TWO PORT NETWORKS:** - Relationship of two-port variables, short-circuit admittance parameters, open circuit impedance parameters, transmission parameters, hybrid parameters, relationships between parameter sets, Inter-connection of two port networks.

#### UNIT 4

**TYPES OF FILTERS AND THEIR CHARACTERISTICS:** - Filter fundamentals, constant-k and m-derived low-pass and high-pass filters.

**NETWORK SYNTHESIS:** - Causality & Stability, Hurwitz Polynomials, Positive real functions, Synthesis of one port networks with two kind of elements.

# **TEXT BOOKS:**

- 1. Fundamentals of Electric Circuits: Charles K. Alexander, Matthew N. O. Sadiku, McGraw Hill Education
- 2. Network Analysis: M.E. Van Valkenburg, PHI

#### **REFERENCE BOOKS:**

- 1. Network Analysis & Synthesis: F. F. Kuo, John Wiley.
- 2. Circuits & Networks: Sukhija & Nagsarkar, Oxford Higher Education.
- 3. Basic Circuit Theory: DasoerKuh, McGraw Hill Education.
- 4. Circuit Analysis: G.K. Mithal, Khanna Publication.

**Note:** Separate paper template will be provided to the paper setter for setting the question paper of end term semester examinations.

| ES-201  | Essentials of Information Technology |                          |         |                                       |                 |            |          |  |  |  |  |
|---------|--------------------------------------|--------------------------|---------|---------------------------------------|-----------------|------------|----------|--|--|--|--|
| Lecture | Tutorial                             | Practical                | Credit  | Major Test                            | Minor Test      | Total      | Time     |  |  |  |  |
| 3       | -                                    | -                        | 3       | 75                                    | 25              | 100        | 3 Hrs.   |  |  |  |  |
|         |                                      |                          | Course  | e Outcomes (CO                        | <b>)</b> )      |            |          |  |  |  |  |
| CO1     | -                                    |                          | -       | tional thinking<br>s, conditionals, a |                 | to reas    | on witl  |  |  |  |  |
| CO2     |                                      | and the no<br>uples, and |         | data types, and<br>aries.             | higher order da | ata struct | ures suc |  |  |  |  |
| CO3     | -                                    | a basic<br>nd cloud      |         | anding of comj<br>ng.                 | puter systems   | -architect | ture, Os |  |  |  |  |
| CO4     | Learn ba                             | asic SQL                 | program | nming                                 |                 |            |          |  |  |  |  |

#### UNIT-I

**Python Programming**: Familiarization with the basics of Python programming, process of writing a program, running it, and print statements; simple data-types: integer, float, string. The notion of a variable, and methods to manipulate it, Knowledge of data types and operators: accepting input from the console, assignment statement, expressions, operators and their precedence. Conditional statements: if, if-else, if-elsif-else; Notion of iterative computation and control flow: for, while, flowcharts, decision trees and pseudo code

#### UNIT-II

**Idea of debugging**: errors and exceptions; debugging: pdb, break points. Sequence datatype: Lists, tuples and dictionary, Introduce the notion of accessing elements in a collection using numbers and names. Sorting algorithm: bubble and insertion sort; count the number of operations while sorting. Strings: Strings in Python : compare, concat, substring. Data visualization using Pyplot: line chart, pie chart, and bar chart.

#### UNIT-III

**Computer Systems and Organisation**: description of a computer system and mobile system, CPU, memory, hard disk, I/O, battery, power. Types of software:Types of Software – System Software, Utility Software and Application Software, how an operating system runs a program, operating system as a resource manager. **Cloud Computing**: Concept of cloud computers, cloud storage (public/private), and brief introduction to parallel computing.

#### **UNIT-IV**

**Relational databases**: idea of a database and the need for it, relations, keys, primary key, foreign key; use SQL commands to create a table, foreign keys; insert/delete an entry, delete a table. SQL commands: select, project, and join; indexes. Basics of NoSQL databases: Mongo DB

#### **Text Books:**

**1.** Python Programming: A modular approach by Sheetal Taneja and Naveen Kumar Pearson **Reference Books:** 

1. Python Programming - Using Problem Solving Approach by Reema Thareja Oxford Publication.

2. Database Management System a Practical Approach by Rajiv Chopra by S. Chand

**Note:** Separate paper template will be provided to the paper setter for setting the question paper of end term semester examinations.

| MC-901  |                       | E                             | NVIRON      | MENTAL        | SCIENCES          |            |         |
|---------|-----------------------|-------------------------------|-------------|---------------|-------------------|------------|---------|
| Lecture | Tutorial              | Practical                     | Credit      | Major<br>Test | Minor Test        | Total      | Time    |
| 3       | -                     | -                             | -           | 75            | 25                | 100        | 3 Hrs.  |
| Purpose |                       | he multidisc<br>ental science |             | ature, sco    | pe and importa    | nce of     |         |
|         |                       |                               | Course C    | Outcomes      |                   |            |         |
| CO1     | The stude             | nts will be a                 | ble to lear | n the impo    | ortance of natu   | ral resou  | irces.  |
| CO2     | To learn t            | he theoretic                  | al and pra  | ctical aspe   | ects of eco syste | m.         |         |
| CO3     | Will be ab            | ole to learn t                | he basic c  | oncepts of    | conservation o    | f biodive  | ersity. |
| CO4     | The stude<br>developm |                               | ble to und  | lerstand th   | e basic concept   | t of susta | inable  |

# NIT 1

The multidisciplinary nature of environmental studies. Definition, Scope and Importance. Need for public awareness. Natural Resources: Renewable and Non-Renewable Resources: Natural resources and associated problems.

- (a) Forest Resources: Use and over-exploitation, deforestation, case studies. Timber eztraction, mining, dams and their effects on forests and tribal people.
- (b) Water Resources- Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- (c) Mineral Resources- Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- (d) Food Resources- World Food Problems, changes caused by agriculture and overgazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- (e) Energy Resources- Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- (f) Land Resources- Land as a resource, land, degradation, man induced landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources.Equitable use of resources for sustainable lifestyle.

# UNIT II

**Ecosystem-Concept of an ecosystem**. Sturcture and function of an ecosystem. Producers, consumers and decomposers. Energy flow in the ecosystem. Ecological Succession. Food Chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem-

- a. Forest Ecosystem
- b. Grassland Ecosystem
- c. Desert Ecosystem

d. Aquatic Ecosystems(ponds, streams, lakes, rivers, oceans, esturaries

Field Work. Visit to a local area to document Environment assets-river/forest/grassland/hill/mountain. Visit to a local polluted site- Urban /Rural Industrial/Agricultural. Study of common plants, insects and birds. Study of simple ecosystems-pond, river, hill, slopes etc. (Field work equal to 5 lecture hours).

# UNIT III

**Biodiversity and its conservation**. Introduction, Definition: genetic, species and ecosystem diversity. Biogeographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversityof global, National and local levels. India as a mega-diversity nation Hot spots of Biodiversity. Threats to biodiversity: Habitat loss, poaching of wild life, man-wildlife conflicts. Endangered and endemic species of India.Conservation of Biodiversity. In situ and Ex-Situ conservation of biodiversity.

**Environmental Pollution Definition**. Cause, effects and control measures of- (a) Air Pollution (b) Water Pollution (c) Soil Pollution (d) Marine Pollution (e) Noise Pollution (f) Thermal Pollution (g) Nuclear Hazards

Solid waste management- cause, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution.Pollution case studies. Disaster management: floods, earthquake, cyclone and landslides

# UNIT IV

**Social Issues and the Environment**. From unsustainable to sustainable development. Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people: Its problems and concerns. Case Studies. Environmental ethics-issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies. Wasteland Reclamation. Consumerism and waste products. Environment Protection Act. Air (Prevention and Control of Pollution) Act. Water (Prevention and Control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act. Issues involved in enforcement of environmental legislation. Public Awareness. Human population and the Environment. Population growth, variation among nations. Population explosion-Family Welfare Programme. Environment and human health. Human rights. Value Education. HIV/AIDS, Women and Child Welfare. Role of Information Technology in Environment and Human Health. Case Studies. Drugs and their effects; Useful and harmful drugs; Use and abuse of drugs; Stimulant and depressan drugs. Concept of drug de-addiction. Legal position on drugs and laws related to drugs.

#### **Text Books**

- 1. Environmental Studies- Deswal and Deswal. Dhanpat Rai & Co.
- 2. Environmental Science & Engineering Anandan, P. and Kumaravelan, R. 2009. Scitech Publications (India) Pvt. Ltd., India
- 3. Environmental Studies. Daniels Ranjit R. J. and Krishnaswamy. 2013. Wiley India.
- 4. Environmental Science- Botkin and Keller. 2012. Wiley, India

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus

Syllabus B.Tech ECE IV<sup>th</sup> Semester (Credit Based) (2019-20)

| <b>BS-204</b> |              | HI                                                                          | GHER EN      | GINEER     | ING MAT      | HEMATIO    | CS                     |  |  |  |  |  |  |
|---------------|--------------|-----------------------------------------------------------------------------|--------------|------------|--------------|------------|------------------------|--|--|--|--|--|--|
| Lecture       | Tutoria      | Practical                                                                   | Credit       | Major      | Minor        | Total      | Time                   |  |  |  |  |  |  |
|               | 1            |                                                                             |              | Test       | Test         |            |                        |  |  |  |  |  |  |
| 3             | -            | -                                                                           | 3            | 75         | 25           | 100        | 3 h                    |  |  |  |  |  |  |
| Purpose       | The obj      | ective of th                                                                | is course    | is to fam  | iliarize th  | e prospect | tive Engineers with    |  |  |  |  |  |  |
|               | Laplace      | Laplace Transform, partial differential equations which allow deterministic |              |            |              |            |                        |  |  |  |  |  |  |
|               | mathema      | atical formu                                                                | lations of   | phenome    | na in engin  | eering pro | ocesses and to study   |  |  |  |  |  |  |
|               | numerica     | al methods f                                                                | for the ap   | proximati  | ion of their | solution.  | More precisely, the    |  |  |  |  |  |  |
|               | objective    | es are as und                                                               | er:          |            |              |            |                        |  |  |  |  |  |  |
|               |              |                                                                             | Cour         | se Outcor  | nes          |            |                        |  |  |  |  |  |  |
| CO 1          | Introductio  | on about the                                                                | concept o    | of Laplace | transform    | and how i  | t is useful in solving |  |  |  |  |  |  |
|               | the definite | e integrals a                                                               | nd initial v | value prob | olems.       |            |                        |  |  |  |  |  |  |
| CO 2          | To introdu   | ice the Part                                                                | ial Differ   | ential Eq  | uations, its | s formatio | n and solutions for    |  |  |  |  |  |  |
|               | multivaria   | ble different                                                               | ial equation | ons origin | ated from a  | real world | problems.              |  |  |  |  |  |  |
| CO 3          | To introdu   | ce the tools                                                                | of numeri    | cal metho  | ods in a cor | nprehensiv | ve manner those are    |  |  |  |  |  |  |
|               | used in app  | proximating                                                                 | the solution | ons of var | ious engine  | ering prob | olems.                 |  |  |  |  |  |  |
| CO 4          | To familia   | r with essent                                                               | tial tool of | Numeric    | al different | iation and | Integration needed     |  |  |  |  |  |  |
|               | in approxi   | mate solutio                                                                | ns for the   | ordinary   | differential | equations  | •                      |  |  |  |  |  |  |

# UNIT-1

# Laplace Transform

Laplace Transform, Laplace Transform of Elementary Functions, Basic properties of Laplace Transform, Laplace transform of periodic functions, finding inverse Laplace transform by different methods, Convolution theorem, solving ODEs by Laplace Transform method.

UNIT-2

# **Partial Differential Equations**

Formation of Partial Differential Equations, Solutions of first order linear and non-linear PDEs, Charpit's method, Solution to homogenous linear partial differential equations (with constant coefficients) by complimentary function and particular integral method.

# UNIT-3

# Numerical Methods-1

Solution of polynomial and transcendental equations: Bisection method, Newton-Raphson method and Regula-Falsi method, Finite differences, Relation between operators, Interpolation using Newton's forward and backward difference formulae. Interpolation with unequal intervals: Newton's divided difference and Lagrange's formulae.

# UNIT-4

# Numerical Methods-2

Numerical Differentiation using Newton's forward and backward difference formulae, Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules, Ordinary differential equations: Taylor's series, Euler and modified Euler's methods. Runge-Kutta method of fourth order for solving first and second order equations.

# Textbooks/References:

- 1. S. J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Publications, 1993. AICTE Model Curriculum in Mathematics.
- 2. R. Haberman, Elementary Applied Partial Differential equations with Fourier Series and Boundary Value Problem, 4th Ed., Prentice Hall, 1998.

- 3. Ian Sneddon, Elements of Partial Differential Equations, McGraw Hill, 1964.
- 4. Manish Goyal and N.P. Bali, Transforms and Partial Differential Equations, University Science Press, Second Edition, 2010.
- 5. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- 6. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.
- 7. Veerarajan T., Engineering Mathematics, Tata McGraw-Hill, New Delhi, 2008.
- 8. P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numerical Methods, S. Chand & Company, 2nd Edition, Reprint 2012.
- 9. S.S. Sastry, Introductory methods of numerical analysis, PHI, 4th Edition, 2005.
- 10. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 11. Erwin Kreyszig and Sanjeev Ahuja, Applied Mathematics-II, Wiley India Publication, Reprint, 2015.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| HM- 903 |          | So        | ft Skills | & Interpersona    | al Communicati | on    |        |
|---------|----------|-----------|-----------|-------------------|----------------|-------|--------|
| Lecture | Tutorial | Practical | Credit    | Major Test        | Minor Test     | Total | Time   |
| 3       | -        | -         | 3         | 75                | 25             | 100   | 3 Hrs. |
| C01     | Develop  | hasic und |           | e Outcomes (CC    | ,<br>          | 1     | L      |
| CO1     |          |           |           | communication     |                |       |        |
| CO3     | Develop  | the Perso | nality co | oncepts and its i | mplementation  |       |        |
| CO4     | Develop  | the basic | of Grou   | p Discussion an   | d interviews   |       |        |
|         |          |           |           |                   |                |       |        |

#### UNIT-I

Communication: Introduction Verbal, Non-Verbal, kinesics, proxemics, chronemics, Types of communication, extrapersonal communication, intrapersonal communication, intrapersonal communication, mass communication, Creativity in communication, Role of communication, flow of Communication and its need, Persuasive communication and negotiation; Time management in Persuasive communication, Importance of Persuasive Communication

# UNIT-II

Barriers in the way of communication, noise, intrapersonal barriers, interpersonal barriers, organizational barriers, Extrapersonal barriers, Basics of communication:importance of communication, process of communication, objectives and characteristics of communication, Communication skills: Accent, Intonation, Phonetics, Speaking skills, Confidence, clarity, Fluency, Quality, pronunciation

# UNIT-III

Personality Development; what is personality? Role of personality, Heredity, Environment, situation, Basics of personality, Soft skills; Needs and training, Activity in soft skills, Organizational skill;introduction and its need ,basics principles for Organization skills,Stress management;Introduction, Stress at home and office, Stress prevention, analyze the model of stress.

#### UNIT-IV

Group discussion, form of Group discussion, strategy for Group discussion, discussing problems and solution, Oral presentation, introduction, planning, Occasion, Purpose, Modes of delivery, Resume making;Purpose of Resume, Resume design and structure, contents in Resume, types of resume, Job interview, introduction, objective of Interview, types of interview, stages of interview,Face to face interview and campus interview

#### **Text Books:**

1.Technical Communication Principles and Practice by Meenakshi Raman and Sangeeta Sharma by Oxford Publication

#### **Reference Books:**

Personality Development and soft skills by Barun K. Mitra, Oxford Publication
 Communication Skills For Engineers by C.Muralikrishna and Sunita Mishra, Pearson Pub.

**Note:** Separate paper **template** will be provided to the paper setter for setting the question paper of end term semester examinations.

| EC-202  |                        | ]            | Digital Co    | ommunication           |                      |               |             |
|---------|------------------------|--------------|---------------|------------------------|----------------------|---------------|-------------|
| Lecture | Tutorial               | Practical    | Credit        | Major Test             | Minor Test           | Total         | Time        |
| 3       | -                      | -            | 3             | 75                     | 25                   | 100           | 3 Hrs.      |
|         |                        |              | Course (      | Outcomes (CO)          |                      |               |             |
| CO1     | To learn o<br>performa | -            | of analog s   | signal by pulse mod    | lulation system and  | analyze the   | ir system   |
| CO2     | To anal                | yze differ   | ent baseb     | and transmission       | on schemes and       | their perf    | ormance     |
| CO3     | To learn ai            | nd understan | d different d | ligital modulation sch | nemes and compute th | e bit error p | erformanc e |
| CO4     | To analyz              | e different  | modulatio     | n tradeoffs and dif    | forent equalization  | techniques    |             |

# UNIT-I

Pulse modulation.Sampling process. Pulse Amplitude and Pulse code modulation (PCM),Differential pulse code modulation. Delta modulation, Noise considerations in PCM, Time Division multiplexing. Quantization noise in delta modulation, The O/P signal to quantization noise ratio in delta modulation, O/P signal to noise ratio in delta modulation, varients of DM.

#### UNIT-II

Base Band Pulse Transmission: Matched filter and its properties, average probability of symbol error in binary enclosed PCM receiver, Intersymbol interference, Nyquist criterion for distortionless base band binary transmission, ideal Nyquist channel raised cosine spectrum, correlative level coding Duo binary signalling, tapped delay line equalization, adaptive equalization, LMS algorithm, Eye pattern.

#### UNIT-III

Elements of Detection Theory, Optimum detection of signals in noise, Coherent communication with waveforms- Probability of Error evaluations.

Pass band Digital Modulation schemes- ASK, Phase Shift Keying, Frequency Shift Keying, Quadrature Amplitude Modulation, Continuous Phase Modulation and Minimum Shift Keying. Signal space diagram and spectra of the above systems, effect of intersymbol interference, bit symbol error probabilities, synchronization.

#### UNIT-IV

Digital Modulation tradeoffs.Optimum demodulation of digital signals over band-limited channels- Maximum likelihood sequence detection (Viterbi receiver).Equalization Techniques.Synchronization and Carrier Recovery for Digital modulation.

# Text Books:

1. Haykin S., "Communications Systems", John Wiley and Sons, 2001.

2. Proakis J. G. and Salehi M., "Communication Systems Engineering", Pearson Education, 2002.

3. Taub H. and Schilling D.L., "Principles of Communication Systems", Tata McGraw Hill, 2001.

# **Reference Books:**

1. Proakis J.G., ``Digital Communications", 4th Edition, McGraw Hill, 2000.

**2.**Lathi B.P., "Modern Digital and Analog Communication", 4<sup>th</sup> edition, Oxford university Press, 2010

| EC-204L     | COMMUNICATION LAB                                                      |                                                      |   |    |    |     |        |  |  |  |
|-------------|------------------------------------------------------------------------|------------------------------------------------------|---|----|----|-----|--------|--|--|--|
| Lecture     | Tutorial                                                               | Tutorial PracticalCreditPracticalMinor TestTotalTime |   |    |    |     |        |  |  |  |
| -           | -                                                                      | 2                                                    | 1 | 60 | 40 | 100 | 2 Hrs. |  |  |  |
|             | Course Outcomes (CO)                                                   |                                                      |   |    |    |     |        |  |  |  |
| Upon comple | Upon completion of the course, students will be able to                |                                                      |   |    |    |     |        |  |  |  |
| CO1         | Generate and analyze Analog Modulated and demodulated Signals.         |                                                      |   |    |    |     |        |  |  |  |
| CO2         | CO2 Test & observe the outputs of different types of analog detectors. |                                                      |   |    |    |     |        |  |  |  |
| CO3         | Generate and analyze digital Modulated and demodulated Signals.        |                                                      |   |    |    |     |        |  |  |  |
| CO4         | Test & observe the outputs of different types of digital detectors.    |                                                      |   |    |    |     |        |  |  |  |

# List of experiments:

- 1: To study and Perform Amplitude Modulation & Demodulation.
- 2: To study and Perform Frequency Modulation and Demodulation.
- 3: To study and Perform Pulse Amplitude Modulation and Demodulation.
- 4: To study and Perform Pulse Width Modulation and Demodulation.
- 5: To study and Perform Pulse Position Modulation and Demodulation.
- 6: To study and Perform Pulse Code Modulation and Demodulation.
- 7: To study and Perform Time Division Multiplexing (TDM) system.
- 8: To study and Perform Amplitude Shift Keying (ASK) Modulation and De- Modulation.
- 9: To study and Perform Frequency Shift Keying (FSK) Modulation and De-Modulation.
- 10: To study and Perform Phase Shift Keying (PSK) Modulation and De-Modulation.
- 11: To study and Perform Quadrature Phase Shift Keying (QPSK) Modulation and De-Modulation.
- 12: To study and perform Adaptive Delta Modulation and demodulation.
- 13. To study Base Band Transmission and calculate bit error rate.

# Note: At least ten (10) experiments from the above list are mandatory to perform for the students.

# **Reference Books:**

- 1. Taub & Schilling, Principles of Communication Systems, McGraw Hill Publications, (1998) 2nd ed.
- 2. Simon Haykin, Communication Systems, John Wiley Publication, 3rd ed.
- 3. Sklar, Digital Communications, Prentice Hall-PTR, (2001) 2nd ed.
- Lathi B. P., Modern Analog and Digital Communication, , Oxford University Press, (1998) 3rd

| EC-206  | Analog Circuits                                                                                                                                |   |          |             |                   |          |        |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|-------------|-------------------|----------|--------|--|--|--|
| Lecture | Tutorial Practical Credit Major Test Minor Test Total Time                                                                                     |   |          |             |                   |          |        |  |  |  |
| 3       | -                                                                                                                                              | - | 3        | 75          | 25                | 100      | 3 Hrs. |  |  |  |
|         |                                                                                                                                                | C | ourse Ou | tcomes (CO) |                   |          |        |  |  |  |
| CO1     | To make the students understand the analysis of various BJT and FET amplifiers using small signal models.                                      |   |          |             |                   |          |        |  |  |  |
| CO2     | To teach the students the concept of describe the frequency response of multistage amplifiers and the detailed concept of feedback topologies. |   |          |             |                   |          |        |  |  |  |
| CO3     | To make the students learn various oscillator circuits using both Op-Amp and BJT.                                                              |   |          |             |                   |          |        |  |  |  |
| CO4     | To teach t<br>designing                                                                                                                        |   |          |             | on circuits of Op | -Amp and | 1      |  |  |  |

# UNIT-I

**Amplifier Models**: Amplifier types: Voltage amplifier, current amplifier, trans-conductance amplifier and trans-resistance amplifier, comparison based on input impedance and output impedance. Small signal analysis of BJT amplifiers: CE, CB and CC amplifiers using  $r_e$  model, small signal analysis of the CS JFET amplifiers, estimation of voltage gain, input resistance, output resistance etc, design procedure for particular specifications of amplifiers. UNIT-II

**Transistor Frequency Response:** Class A, class B, class C amplifiers: calculation of maximum efficiency. Frequency response of the amplifiers: low frequency, mid-frequency and high frequency region. Effect of cascading of amplifiers on the frequency response, cut-off frequencies, Bandwidth and voltage gain. Miller effect, Feedback in amplifiers: Voltage series, current series, voltage shunt, current shunt, effect of feedback on gain, bandwidth, input impedance, output impedance.

#### UNIT-III

**Oscillators:** Barkhausen criterion for oscillators, types of Oscillators: RC phase shift oscillator, Wien bridge oscillator, LC oscillators : Hartley oscillator, Collpit oscillator, derivation of frequency of oscillation for BJT and Op-amp configurations, 555 timer: operation as astable and monostable multivibrator.

#### UNIT-IV

**Op-Amp Applications**: Simple op-amp circuits: adder, subtractor, Schmitt trigger, Differential amplifier: calculation of differential gain, common mode gain, CMRR, OP-AMP design: design of differential amplifier for a given specification, design of gain stages and output stages.

#### Text Books:

1. Millman & Halkias: Integrated Electronics, TMH.

2. Boylestad & Nashelsky: Electronic Devices & Circuit Theory, PHI.

### **Reference Books:**

1. B.G. Streetman, Solid State Electronic Devices, Prentice Hall of India, New Delhi, 1995.

**2.** E S. Yang, Microelectronic Devices, McGraw Hill, Singapore, 1988.

3. A.S. Sedra and K.C. Smith, Microelectronic Circuits, Saunder's College Publishing, 1991.

4. S Salivahanan and N Naresh Kumar, Electronics devices and circuits, McGraw Hill, 1998.

**Note:** Separate paper template will be provided to the paper setter for setting the question paper of end term semester examinations.

| EC-208L | Analog Circuits Lab                                                                                             |           |           |             |            |       |        |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------|-----------|-----------|-------------|------------|-------|--------|--|--|
| Lecture | Tutorial                                                                                                        | Practical | Credit    | Practical   | Minor Test | Total | Time   |  |  |
| -       | -                                                                                                               | 2         | 1         | 60          | 40         | 100   | 3 Hrs. |  |  |
|         |                                                                                                                 | C         | ourse Out | tcomes (CO) |            |       |        |  |  |
| CO1     | To design and calculate the gain, frequency response etc. of the various configuration of transistor amplifier. |           |           |             |            |       |        |  |  |
| CO2     | To make students Design various RC oscillators using Op-Amp 741 for a given frequency of oscillation.           |           |           |             |            |       |        |  |  |
| CO3     | To make students Design various RC oscillators using BJT for a given frequency of oscillation.                  |           |           |             |            |       |        |  |  |
| CO4     | To teach the students the design of various Op-Amp circuits such as adder, subtractor etc.                      |           |           |             |            |       |        |  |  |

List of experiments:

- 1. To design a simple common emitter (CE) amplifier circuit using BJT and find its gain and frequency response. To design a differential amplifier using BJT and calculate its gain and frequency response.
- 2. To design a BJT emitter follower and determine is gain, input and output impedances.
- 3. To design and test the performance of Phase shift Oscillator using Op-Amp 741.
- 4. To design and test the performance of Wien bridge oscillator using Op-Amp 741.
- 5. To design and test the performance of BJT RC Phase shift Oscillator for  $f0 \le 10$  KHz.
- 6. To design and test the performance of BJT Hartley Oscillators for RF range f0  $\geq 100$ KHz.
- 7. To design and test the performance of BJT Colpitt Oscillators for RF range f0  $\geq 100$ KHz.
- **8.** To design an astable multivibrator using 555 timer.
- 9. To design a monostable multivibrator using 555 timer.
- 10. To design Schmitt trigger using Op-amp and verify its operational characteristics.
- **11.** To design an adder circuit using Op-Amp to add three dc voltages.
- 12. To design a subtractor using Op-Amp to subtract DC voltages v1 and v2.

# **Reference Books:**

- 1. Millman & Halkias: Integrated Electronics, TMH.
- 2. Boylestad & Nashelsky: Electronic Devices & Circuit Theory, PHI.
- **3**. S Salivahanan and N Naresh Kumar, Electronics devices and circuits, McGraw Hill, 1998.

**Note:** Atleast ten (10) experiments from the above list are mandatory to perform for the students.

| EC-210  | MICROPROCESSORS AND MICROCONTROLLER                                                                                                  |   |          |              |    |     |        |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------|---|----------|--------------|----|-----|--------|--|--|--|
| Lecture | Tutorial PracticalCreditMajor TestMinor TestTotalTin                                                                                 |   |          |              |    |     |        |  |  |  |
| 3       | -                                                                                                                                    | - | 3        | 75           | 25 | 100 | 3 Hrs. |  |  |  |
|         |                                                                                                                                      | С | ourse Ou | utcomes (CO) |    |     |        |  |  |  |
| CO1     | Acquired knowledge about the architecture of Microprocessors and Microcontrollers.                                                   |   |          |              |    |     |        |  |  |  |
| CO2     | Acquired knowledge about instruction set and programming concept of Microprocessors and Microcontrollers in assembly and C language. |   |          |              |    |     |        |  |  |  |
| CO3     | To understand peripheral interfacing with Microprocessors and Microcontrollers.                                                      |   |          |              |    |     |        |  |  |  |
| CO4     | To design the systems /models based on Microprocessors and<br>Microcontrollers                                                       |   |          |              |    |     |        |  |  |  |
|         |                                                                                                                                      |   |          |              |    |     |        |  |  |  |

#### UNIT-I

Evolution of Microprocessor, Introduction to 8-bit Microprocessor 8085 architecture, Pin Details 8085 Microprocessor, 8086 Architecture description of data registers, address registers; pointer and index registers, PSW, Queue, BIU and EU, 8086 Pin diagram descriptions. Generating 8086 CLK and reset signals using 8284. WAIT state generation. Microprocessor BUS types and buffering techniques, 8086 minimum mode and maximum mode CPU module, 8086 CPU Read/Write timing diagrams in minimum mode and maximum mode. UNIT-II

8051 Architecture, On-chip memory organization – general purpose registers, SFR registers, Internal RAM and ROM, Oscillator and Clock circuits. Pin Diagram of 8051, I/O Pins, Port, Connecting external memory, Counters and Timers, Purpose of TCON & TMOD registers, Serial data transmission/reception and transmission modes, Purpose of SCON & PCON registers, Different Types of Interrupts, Purpose of Time Delays, 8051 addressing modes.

# UNIT-III

8086 Instruction format, addressing modes, Data transfer instructions, string instructions, logical instructions, arithmetic instructions, transfer of control instructions; process control instructions. 8051 Data transfer instructions, arithmetic and logical instructions, Jump and Call instructions, I/O port, Timer and Counter programming, Serial port and Interrupt programming, Assembly language programs.

#### UNIT-IV

Memory devices, Address decoding techniques, Interfacing SRAMS; ROMS/PROMS, 8086 Interrupt mechanism; interrupt types and interrupt vector table. Intel's 8255 - description and interfacing with 8086, ADCs and DACs, - types operation and interfacing with 8086.

Interfacing of Matrix Keyboards, ADC, DAC, Temperature Sensor, Stepper Motor with 8051.

### Text Books:

- 1. D.V. Hall, Microprocessors and Interfacing, McGraw Hill 2nd ed.
- 2. Kenneth Ayala," The 8051 Microcontroller" 3rd ed. CENGAGE Learning.

- 3. M.A. Mazidi, J.G. Mazidi, R. D. McKinlay," The 8051 Microcontroller and Embedded systems using assembly and C" -2nd Ed, Pearson Education.
- 4. Liu, Gibson, "Microcomputer Systems: The 8086/88 Family", 2nd Edition, PHI,2005.
- 5. Barry B. Brey, "The Intel Microprocessor8086/8088, 80186", Pearson Education, Eighth Edition, 2009.
- 6. Uffenback, "The 8086 Family Design" PHI, 2nd Edition.

# **Reference Books:**

- 1. Mke Predko, "Programming and Customizing the 8051 Microcontroller", TMH.
- 2. Manish K Patel,"Microcontroller based embedded system", McGraw Hill Education.

**Note:** Separate paper template will be provided to the paper setter for setting the question paper of end term semester examinations.

| EC-212L | MICROPROCESSORS AND MICROCONTROLLER LAB                                                                                        |           |           |             |            |       |        |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-------------|------------|-------|--------|--|--|
| Lecture | Tutorial                                                                                                                       | Practical | Credit    | Practical   | Minor Test | Total | Time   |  |  |
| -       | -                                                                                                                              | 2         | 1         | 60          | 40         | 100   | 3 Hrs. |  |  |
|         |                                                                                                                                | C         | ourse Out | tcomes (CO) |            |       |        |  |  |
| C01     | To familiarization with 8085, 8086 Microprocessors and 8051<br>Microcontrollers.                                               |           |           |             |            |       |        |  |  |
| CO2     | Ability to write an assembly language program for 8086 Microprocessors as well as C language program for 8051 Microcontroller. |           |           |             |            |       |        |  |  |
| CO3     | Ability to interfacing the various Peripheral to 8086 Microprocessors and 8051 Microcontrollers.                               |           |           |             |            |       |        |  |  |
| CO4     | Ability to design the systems based on 8051 Microcontrollers.                                                                  |           |           |             |            |       |        |  |  |

List of experiments to be performed using 8086 and 8051 Microcontrollers

#### For 8086 Microprocessor write an Assembly Language Program to

- 1 Add / Sub two 16 bit numbers.
- 2 Multiply two 16 bit unsigned/ signed numbers.
- 3 Divide two unsigned/ signed numbers (32/16, 16/8, 16/16, 8/8)
- 4 Find smallest/ largest number from array of n numbers.
- 5 Arrange numbers in array in ascending/ descending order.
- 6 Convert Hex to Decimal, Decimal to Hex.
- 7 Compare two strings using string instructions / without using string instructions.
- 8 Display string in reverse order, string length, Concatenation of two strings.
- 9 To find 1's and 2's complement of a number.
- 10 To find the Fibonacci Series.
- 11 To find Log of a given number using look up table.
- 12 To find Factorial of a number.
- 13 To write an ALP using 8051 Microcontrollers to perform addition, subtraction, multiplication and division of two eight bit numbers.
- 14 To write an ALP using 8051 Microcontrollers to perform logical operation i.e., AND, OR, XOR and Complement of two eight bit numbers.
- 15 To write an ALP using 8051 Microcontrollers to perform multi byte addition and subtraction of unsigned number.
- 16 To write an embedded C program using 8051 Microcontrollers for interfacing LCD to display message "LCD Display" on LCD screen.
- 17 To write an embedded C program using 8051 Microcontrollers for interfacing keypad to port P0 .Whenever a key is pressed; it should be displayed on LCD.
- 18 To write an embedded C program using 8051 Microcontrollers for interfacing a switch and a buzzer to two different pins of a Port such that the buzzer should sound as long as the switch is pressed.
- 19 To write an embedded C program using 8051 Microcontrollers for interfacing stepper motor to rotate clockwise and anticlockwise directions.
- 20 To write an embedded C program using 8051 Microcontrollers for interfacing relay and buzzer.

#### **Reference Books:**

- 1. Kenneth Ayala," The 8051 Microcontroller" 3rd ed. CENGAGE Learning.
- 2. M.A. Mazidi, J.G. Mazidi, R. D. McKinlay," The 8051 Microcontroller and Embedded systems using assembly and C" -2nd Ed, Pearson Education.

Note: Atleast ten (10) experiments from the above list are mandatory to perform for the students.

| ES -202  | BASICS OF ANALOG COMMUNICATION                                                    |                                                            |            |                   |                   |           |        |  |  |  |
|----------|-----------------------------------------------------------------------------------|------------------------------------------------------------|------------|-------------------|-------------------|-----------|--------|--|--|--|
| Lecture  | Tutorial                                                                          | Tutorial Practical Credit Major Test Minor Test Total Time |            |                   |                   |           |        |  |  |  |
| 3        | -                                                                                 | -                                                          | 3          | 75                | 25                | 100       | 3 Hrs. |  |  |  |
|          | Course Outcomes (CO)                                                              |                                                            |            |                   |                   |           |        |  |  |  |
| Upon com | Upon completion of the course, students will be able to                           |                                                            |            |                   |                   |           |        |  |  |  |
| CO1      | Describe different types of noise and predict its effect on various analog        |                                                            |            |                   |                   |           |        |  |  |  |
|          | communication systems.                                                            |                                                            |            |                   |                   |           |        |  |  |  |
| CO2      | CO2 Understand and analyze various Amplitude modulation and demodulation methods. |                                                            |            |                   |                   |           |        |  |  |  |
| CO3      | O3 Understand and analyze Angle modulation and demodulation methods.              |                                                            |            |                   |                   |           |        |  |  |  |
| CO4      | Understand                                                                        | the concep                                                 | ots of Tra | ansmitters and Re | ceivers and their | circuits. |        |  |  |  |
|          |                                                                                   |                                                            |            |                   |                   |           |        |  |  |  |

# Unit-I

**Communication system and Noise:** Constituents of communication system, Modulation, Bandwidth requirement, Noise, Classification of noise, Resistor noise, Multiple resistor noise sources, Noise Temperature, Noise bandwidth, Noise figure, its calculation and measurement, Bandpass noise representation, Noise calculation in Communication Systems: Noise in Amplitude Modulated System, Noise in angle modulated systems.

**Analog Modulation Techniques**: Theory of amplitude modulation, AM power calculations, AM modulation with a complex wave, Concepts of angle modulation, Theory of frequency modulation, Mathematical analysis of FM, Spectra of FM signals, Narrow band FM, Wide band FM, Phase modulation, Phase modulation obtained from frequency modulation, Comparison of AM, FM & PM.

# Unit-II

**AM Transmission:** Generation of Amplitude Modulation, Low level and high level modulation, Basic principle of AM generation, Square law modulation, Vander bijl modulation, Suppressed carrier AM generation (Balanced Modulator) ring Modulator.

**AM Reception:** Tuned Ratio Frequency (TRF) Receiver, Super heterodyne Receiver, RF Amplifier, Image Frequency Rejection, Cascade RF Amplifier, Frequency Conversion and Mixers, Tracking & and Alignment, IF Amplifier, AM detectors, Distortion in diode detectors, AM receiver characteristics.

# Unit-III

**FM Transmission:** FM allocation standards, Generation of FM by direct method, Varactor diode Modulator, Indirect generation of FM, The Armstrong method RC phase shift method, Frequency stabilized reactance FM transmitter, FM stereo transmitter, Noise triangle.

**FM Reception:** Direct methods of Frequency demodulation, Frequency discrimination (Balanced slope detector), Foster seelay of phase discriminator, Ratio detector, Indirect method of FM demodulation, FM detector using PLL, Pre-emphasis / de-emphasis, FM receiver, FM stereo receiver.

# Unit-IV

**SSB Transmission:** Introduction, Advantages of SSB Transmission, Generation of SSB, The Filter method The Phase Shift Method, The Third Method, Pilot Carrier SSB, Vestigial Sideband Modulation (VSB), VSB-SC, Application of AM and FM in TV transmission.

**SSB Reception:** SSB Product Demodulator, Balanced Modulator as SSB Demodulator, Pilot Carrier SSB Receiver, Modern Communication Receiver.

**Analog Pulse Modulation:** Introduction, Pulse amplitude modulation (PAM), PAM Modulator Circuit, Demodulation of PAM Signals, Pulse Time Modulation (PTM): Pulse Width Modulation (PWM), Pulse Position Modulation (PPM), PWM and PPM Demodulator,

# **Text Books**

1. Kennedy, G., Electronic Communication Systems, McGraw-Hill (2008) 4th ed.

2. Lathi.B.P., Modern Digital and Analog Communications Systems 3rd ed.

## **Reference Books:**

1. Taub, H., Principles of Communication Systems, McGraw-Hill (2008) 3rd ed.

2. Haykin, S., Communication Systems, John Willey (2009) 4th ed.

3. Proakis, J. G. and Salehi, M., Fundamentals of Communication Systems, Dorling Kindersley (2008) 2nd ed.

4. Mithal G K, Radio Engineering, Khanna Pub.

5. Singh & Sapre—Communication Systems: 2/e, TMH

**Note:** Separate paper template will be provided to the paper setter for setting the question paper of end term semester examinations.

| MC-902  |                                                                |                                                     | Constituti          | on of India       |             |                  |  |  |  |  |
|---------|----------------------------------------------------------------|-----------------------------------------------------|---------------------|-------------------|-------------|------------------|--|--|--|--|
| Lecture | Tutorial                                                       | Practical                                           | Major Test          | Minor Test        | Total       | Time             |  |  |  |  |
| 3       | -                                                              | -                                                   | 75                  | 25                | 100         | 3 Hrs.           |  |  |  |  |
| Purpose | To know the l                                                  | Fo know the basic features of Constitution of India |                     |                   |             |                  |  |  |  |  |
|         |                                                                |                                                     | <b>Course Outco</b> | mes               |             |                  |  |  |  |  |
| CO1     | The students<br>India.                                         | will be able to                                     | ) know about s      | alient features o | of the Cons | stitution of     |  |  |  |  |
| CO2     | To know abou                                                   | ut fundament                                        | al duties and fo    | ederal structure  | of Constit  | tution of India. |  |  |  |  |
| CO3     | 3 To know about emergency provisions in Constitution of India. |                                                     |                     |                   |             |                  |  |  |  |  |
| CO4     | To know abou                                                   | ut fundament                                        | al rights under     | • constitution of | India.      |                  |  |  |  |  |

# UNIT-I

- 1. Meaning of the constitution law and constitutionalism, Historical perspective of the Constitution of India. Salient features and characteristics of the Constitution of India.
- 2. Scheme of the fundamental rights

## UNIT - II

- 3. The scheme of the Fundamental Duties and its legal status. The Directive Principles of State Policy Its importance and implementation. Federal structure and distribution of legislative and financial powers between the Union and the States.
- 4. Parliamentary Form of Government in India The constitution powers and status of the President of India

## UNIT - III

- 5. Amendment of the Constitutional Powers and Procedure. The historical perspectives of the constitutional amendments in India.
- 6. Emergency Provisions: National Emergency, President Rule, Financial Emergency. Local Self Government – Constitutional Scheme in India.

## UNIT-IV

- 7. Scheme of the Fundamental Right to Equality. Scheme of the Fundamental Right to certain Freedom under Article 19.
- 8. Scope of the Right to Life and Personal Liberty under Article 21.

## **Text Books**

1. Constitution of India. Prof.Narender Kumar (2008) 8<sup>th</sup> edition. Allahabad Law Agency. **Reference Books:** 

1. The constitution of India. P.M. Bakshi (2016) 15<sup>th</sup> edition. Universal law Publishing.

## Bachelor of Technology (Biotechnology) Credit-Based SCHEME OF STUDIES/EXAMINATIONS Semester – III (w.e.f. the session 2019-20)

| S.<br>No. | Course<br>No. | Course Title                   | T  | eaching S | chedule |                    | Credit<br>s |                       | AI            | lotment of    | Marks | Duration<br>of Exam |
|-----------|---------------|--------------------------------|----|-----------|---------|--------------------|-------------|-----------------------|---------------|---------------|-------|---------------------|
|           |               |                                | L  | Т         | Р       | Hour<br>s/We<br>ek |             | Ma<br>jor<br>Te<br>st | Minor<br>Test | Practi<br>cal | Total | (Hrs.)              |
| 1         | BTE-<br>201   | Cell Biology &<br>Genetics     | 3  | 0         | 0       | 3                  | 3.0         | 75                    | 25            | 0             | 100   | 3                   |
| 2         | BTE-<br>203   | Microbiology                   | 3  | 0         | 0       | 3                  | 3.0         | 75                    | 25            | 0             | 100   | 3                   |
| 3         | BTE-<br>205   | Biochemistry                   | 3  | 0         | 0       | 3                  | 3.0         | 75                    | 25            | 0             | 100   | 3                   |
| 4         | BTE-<br>207   | Principles of<br>Biostatistics | 3  | 0         | 0       | 3                  | 3.0         | 75                    | 25            | 0             | 100   | 3                   |
| 5         | HM-<br>901    | Organizational<br>Behavior     | 3  | 0         | 0       | 3                  | 3.0         | 75                    | 25            | 0             | 100   | 3                   |
| 6         | BTE-<br>209L  | Cell Biology &<br>Genetics Lab | 0  | 0         | 3       | 3                  | 1.5         | 0                     | 40            | 60            | 100   | 3                   |
| 7         | BTE-<br>211L  | Microbiology<br>Lab            | 0  | 0         | 3       | 3                  | 1.5         | 0                     | 40            | 60            | 100   | 3                   |
| 8         | BTE-<br>213L  | Biochemistry<br>Lab            | 0  | 0         | 3       | 3                  | 1.5         | 0                     | 40            | 60            | 100   | 3                   |
|           |               | Total                          | 15 | 0         | 9       | 24                 | 19.5        | 37<br>5               | 245           | 180           | 800   |                     |
| 9         | BTE-<br>215   | Industrial<br>Training-I       | 2  | 0         | 0       | 2                  | -           | -                     | 100           | -             | 100   | -                   |
| 10        | *MC-<br>902   | Constitution of<br>India       | 3  | 0         | 0       | 3                  |             | 75                    | 25            | 0             | 100   | 3                   |

**Note:** BTE-215 is a mandatory credit less course in which the students to be evaluated for the industrial training undergone after 2<sup>nd</sup> semester and students will be required to get passing marks to qualify.

\*MC-902 is a mandatory credit less course in which the student will be required to get passing marks in the major test

## Bachelor of Technology (Biotechnology) Credit-Based SCHEME OF STUDIES/EXAMINATIONS Semester – IV (w.e.f. the session 2019-20)

| S.<br>No | Course<br>No. | Course Title                                      | T  | eaching | Schee | dule               | Credit<br>s |               | Allotme           | ent of Marks |       | Duratio<br>n of |
|----------|---------------|---------------------------------------------------|----|---------|-------|--------------------|-------------|---------------|-------------------|--------------|-------|-----------------|
|          |               |                                                   | L  | Т       | Р     | Hours<br>/Wee<br>k | C           | Major<br>Test | Min<br>or<br>Test | Practical    | Total | Exam<br>(Hrs.)  |
| 1        | BTE-202       | Molecular Biology                                 | 3  | 0       | 0     | 3                  | 3.0         | 75            | 25                | 0            | 100   | 3               |
| 2        | BTE-204       | Bio-analytical Techniques                         | 3  | 0       | 0     | 3                  | 3.0         | 75            | 25                | 0            | 100   | 3               |
| 3        | BTE-206       | Immunology                                        | 3  | 0       | 0     | 3                  | 3.0         | 75            | 25                | 0            | 100   | 3               |
| 4        | BTE-208       | Industrial Biotechnology                          | 3  | 0       | 0     | 3                  | 3.0         | 75            | 25                | 0            | 100   | 3               |
| 5        | BS-202        | Basics of Thermodynamics<br>and Organic Chemistry | 3  | 0       | 0     | 3                  | 3.0         | 75            | 25                | 0            | 100   | 3               |
| 6        | BTE-<br>212L  | Molecular Biology Lab                             | 0  | 0       | 3     | 3                  | 1.5         | 0             | 40                | 60           | 100   | 3               |
| 7        | BTE-<br>214L  | Bio-analytical Techniques<br>Lab                  | 0  | 0       | 3     | 3                  | 1.5         | 0             | 40                | 60           | 100   | 3               |
| 8        | BTE-<br>216L  | Industrial Microbiology Lab                       | 0  | 0       | 3     | 3                  | 1.5         | 0             | 40                | 60           | 100   | 3               |
| 9        | BTE-<br>218L  | Immunology Lab                                    | 0  | 0       | 3     | 3                  | 1.5         | 0             | 40                | 60           | 100   | 3               |
|          |               | Total                                             | 15 | 0       | 12    | 27                 | 21          | 375           | 285               | 240          | 900   |                 |
| 10       | MC-901*       | Environmental Sciences*                           | 3  | 0       | 0     | 3                  |             | 75            | 25                | 0            | 100   | 3               |

\*MC-901 is a mandatory credit less course in which the student will be required to get passing marks in the major test. Note: All the students have to undergo 4-6 weeks industrial training after IV semester and to be evaluated in V semester.

| BTE-201      | Cell Biology  | and Genetics                                                                               | (B.Tech. Bio  | technology) Sen   | nester-III        |             |          |  |
|--------------|---------------|--------------------------------------------------------------------------------------------|---------------|-------------------|-------------------|-------------|----------|--|
| Lecture      | Tutorial      | Practical                                                                                  | Credit        | Major Test        | Minor Test        | Total       | Time     |  |
| 3            | 0             | 0                                                                                          | 3             | 75                | 25                | 100         | 3hrs     |  |
| Purpose      | To familiariz | To familiarize the students with the basic of cell biology and genetics.                   |               |                   |                   |             |          |  |
| Course outco | ome           |                                                                                            |               |                   |                   |             |          |  |
| CO1          |               | Student to learn the fluidity and structural organization of bio membrane and cytoskeleton |               |                   |                   |             |          |  |
| CO2          | To learn the  | fundamentals                                                                               | of inheritanc | e via both qualit | ative and quanti  | tative path | terns.   |  |
| CO3          | Able to unde  | erstand the bas                                                                            | ic concept of | f evolution and g | enetic basis of v | ariations.  |          |  |
| CO4          |               | l learn about<br>auman beings.                                                             | the genome    | e mapping by d    | ifferent techniq  | ues rangi   | ing from |  |

## UNIT-1

**Bio membrane**-Physical and chemical properties, Structural organization, Cell signaling (Different Pathways), cell recognition and membrane transport, Membrane receptor for macromolecules and regulation of receptor expression and function. Receptors for neurotransmitters

**Structural organization and functions** -Microtubule, Microfilament and Intermediatery filaments.

## UNIT-II

**Mendelism** – History of Mendel, Monohybrid, Di- hybrid and Tri-hybrid cross, Gene interaction, Concept of dominance - incomplete ,complete and co-dominance(Blood group system in human beings),Multiple alleles(Skin color in rabbit),Concept of lethality and pedigree analysis. Sex linked, sex influenced and sex limited inheritance.

**Quantitative inheritance**-History, Yule experiment, Nelsson-Ehle experiment, skin color in human beings, Basis of genetic variation. Numerical problems on quantitative inheritance.

#### **UNIT-III**

**Population Genetics**- Concept of Random Mating and controlled mating and Inbreeding. Hardy Weinberg Law-Allele frequency, Genotype frequency, Causes of variations (Mutation, Migration, Random genetic drift, and Natural selection).

**Mutation-**Classification, application, detection, site directed mutagenesis and DNA repair Mechanism-(Mismatch repair, Photo-reactivation, tolerance, retrieval system.

## UNIT-IV

**Genome mapping**-Difference between cytological, physical and molecular mapping. Recombination, Linkage, Gene mapping based on Two point cross in Neurospora and Three point test cross in wheat. History and development of human genome project.

**Muscle contraction**-Types of muscles, Structural proteins of muscles, regulation and energetic of muscle contraction.

**Nerve Transmission**- structure and function of neurons. Action and resting potential, Mechanism of nerve transmission, Neuromuscular junction.

## Text /ReferenceBooks

1. Cell Biology: Organelle structure and function, Sadava, D.E.(2004) Panima Pub., New Delhi.

2. Fundamentals of Genetics, Singh, B.D., Kalyani Publishers, New Delhi.

3. Basic Genetics. (2000) Miglani, G.S., Narosa Publishing House, New Delhi.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| BTE-203 | Microbiolog    | y (B.Tech. B                                               | iotechnolog   | y) Semester- II |                 |       |      |  |
|---------|----------------|------------------------------------------------------------|---------------|-----------------|-----------------|-------|------|--|
| Lecture | Tutorial       | Practical                                                  | Credit        | Major Test      | Minor Test      | Total | Time |  |
| 3       | -              | -                                                          | 3.0           | 75              | 25              | 100   | 3hrs |  |
| Purpose | To familiarize | To familiarize the students with the basic of Microbiology |               |                 |                 |       |      |  |
|         | Course outcome |                                                            |               |                 |                 |       |      |  |
| CO1     | To learn the   | To learn the history and classification of microbiology    |               |                 |                 |       |      |  |
| CO2     | To learn mic   | robial nutrit                                              | ion and varie | ous microbiolo  | gical technique | es    |      |  |
| CO3     | Able to unde   | Able to understand microbial growth and genetics           |               |                 |                 |       |      |  |
| CO4     | Student will   | learn about                                                | various micr  | obial diseases  | and drugs       |       |      |  |

## UNIT - I

- 1. **History and scope of Microbiology**: Development of Microbiology, various branches of microbiology and applications of microbiology.
- 2. Classification of Microorganisms: Microbial Taxonomy- criteria used including molecular approaches. Microbial phylogeny and current classification of bacteria.

#### UNIT - II

- 3. **Microbial Diversity**: Morphology and cell structure of major groups of microorganisms e.g. bacteria. fungi, algae, protozoa and viruses.
- 4. **Cultivation and microbial nutrition of Microorganism**: Methods of isolation, purification and preservation. Pure culture technique and sterilization methods. Requirement for C, N, S and growth factors. Nutritional categories of microorganisms.

#### UNIT - III

- 5. **Microbial Growth and Metabolism**: Growth curve (normal and biphasic) and generation time. Measurement of growth. Synchronous, batch and continuous cultures. Microbial fermentation and its types.
- 6. **Microbial Genetics**: Bacterial plasmids. Bacterial recombination: transformation, transduction and conjugation. Formation of endospores and mechanism of sporulation.

#### UNIT - IV

- 7. Environmental Microbiology: Normal and contaminating microflora of water, soil and air. Methods to study water and air pollution.
- 8. **Medical Microbiology**: Antibacterial, Antiviral, Antifungal and Antiprotozoan drugs, Major water, air and soil borne microbial diseases.

#### **Text Book:**

- 1. Microbiology 5th Edition. Prescott, L.M.; Harley, J.P. and Klein, D.A.(2003) McGraw Hill, USA.
- 2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. (1993) Tata McGraw Hill, New Delhi.

#### **References Books:**

- 3. Modern Food Microbiology. Jay, J.M. (1996) CBS Publishers and Distributors, New Delhi.
- 4. Food Microbiology 2nd ed, Adam, M. R. and Moss (2003) Panima Pub, New Delhi.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| BTE-205   | Biochem               | istry (B.Tech                 | Biotechno  | logy) Sen     | nester-III    |           |                      |
|-----------|-----------------------|-------------------------------|------------|---------------|---------------|-----------|----------------------|
| Lecture   | Tutorial              | Practical                     | Credit     | Major<br>Test | Minor<br>Test | Total     | Time                 |
| 3         | -                     | -                             | 3          | 75            | 25            | 100       | 3 Hrs.               |
| Purpose   | To intro              | duce the stu                  | dents with | basics of     | Biochemis     | try       |                      |
| Course Ou | tcomes                |                               |            |               |               |           |                      |
| CO1       |                       | idents will<br>drates and p   |            | to learn      | the stru      | cture a   | nd functions of      |
| CO2       |                       | ents will be<br>ng with basic |            |               |               | nctions ( | of lipid and nucleic |
| CO3       | The stud<br>metabolis |                               | able to wi | rite major    | pathways      | of carbo  | ohydrates and lipid  |
| CO4       | To mak<br>nucleotid   |                               | ents leari | n synthes     | sis and d     | egradati  | on of pyrimidine     |
|           |                       |                               |            |               |               |           |                      |

#### UNIT-I

1. Amino acids & Proteins –Structure and properties of amino acids. Peptide bonds.

Proteins classification based on their biological roles. Forces stabilizing protein structure and shape. Different levels of structural organization of proteins. Ramachandran plot, alpha helix, beta plated sheets, domain motif and fold.

2. Carbohydrates-Structure and functions: Structures and properties of glucose and fructose, distinguishing features of different disaccharides. Ring structure and mutarotation. Structure and brief introduction of starch, glycogen and cellulose.

#### UNIT – II

- **3. Lipids-Structure and functions:** Classification of lipids based on their biological roles and their general functions. Membrane lipids and brief discussion on fatty acids.
- 4. Nucleic Acids-Structure and functions: Structure and properties of purine and pyrimidine bases. A brief introduction of ATP, GTP, CTP AND UTP.
- 5. **Enzymes:** Classification of Enzymes according to enzyme commission report. Activation energy and rate of reaction. Rate constant, reaction order. A brief introduction of mechanism of enzyme catalysis. Enzyme inhibition and concept of allostery. Michaelis-Menten equation.

#### UNIT-III

- 6 **Carbohydrate Metabolism:** Glycolysis and TCA cycle. Pentose phosphate pathway and its significance. Gluconeogenesis pathway. Biosynthesis of lactose, sucrose and starch. Glycogenolysis, glycogenesis and control of glycogen metabolism.
- **7.Lipid Metabolism:** Beta -oxidation of saturated fatty acids, Degradation of triacylglycerols by lipases. Biosynthesis of saturated fatty acids. Biosynthesis of triacylglycerols, phospholipids.

#### UNIT -IV

- **8 Amino Acid Metabolism:** General reactions of amino acids metabolism- transamination, oxidative and non-oxidative deamination and decarboxylation. Urea cycle and its regulations.
- 9. Nucleic Acid Metabolism: Catabolism, de novo-biosynthesis and salvage pathway.

**10. Mitochondrial oxidative phosphorylation:** Mitochondrial electron transport chain. Hypotheses of mitochondrial oxidative phosphorylation.

## Text

- 1. Biochemistry, concepts and connections, 1<sup>st</sup> edition, by Dean R. Appling, Spencer J. Anthony-Cahill and Christopher K. Matthews (2015). Pearson Education, Inc.
- 2. Biochemistry, 4<sup>th</sup> edition, by L. Stryer (1995). W.H. Freeman & Co. NY
- **3.** Lehninger: Principles of Biochemistry, 3<sup>rd</sup> edition, by David L. Nelson and M.M. Cox (2000) Maxmillan/ Worth publishers

## **References Books:**

- 1. Biochemistry, 4<sup>th</sup> edition, by G. Zubay (1998). Wm.C. Brown Publishers.
- Biochemistry, 2<sup>nd</sup> edition, by Laurence A. Moran, K.G. Scrimgeour, H. R. Horton, R.S. Ochs and J. David Rawn (1994), Neil Patterson Publishers Prentice Hall.
- 3. Biochemistry, 2<sup>nd</sup> edition, by R.H. Garrett and C.M. Grisham (1999) . Saunders college Publishing, NY. Sons, NY.
- 4. Fundamentals of Biochemistry by Donald Voet and Judith G Voet (1999) , John Wiley & Sons, NY
- 5. Harper's Biochemistry, 25<sup>th</sup> edition, by R.K. Murray, P.A. Hayes, D.K. Granner, P.A. Mayes and V.W. Rodwell (2000). Prentice Hall International.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| BTE-207   | Prin      | ciples of Bio                       | ostatistics ( | <b>B.Tech Biotech</b> | nology) Semest    | er-III       |      |  |  |  |
|-----------|-----------|-------------------------------------|---------------|-----------------------|-------------------|--------------|------|--|--|--|
| Lecture   | Tutorial  | Practical                           | Credit        | Major Test            | Minor Test        | Total        | Time |  |  |  |
| 3         | 0         | 0                                   | 3             | 75                    | 25                | 100          | 3    |  |  |  |
| Purpose   | To Int    | roduce stati                        | stical conce  | pt for biologica      | l data interpreta | ation        |      |  |  |  |
| Course Ou |           | p basic und                         | erstanding    | about statistics      | 5                 |              |      |  |  |  |
| CO2       |           | -                                   | 0             | robability and (      |                   |              |      |  |  |  |
| CO3       | To derive | numerical a                         | approach b    | etween data cor       | relation and the  | eir variatio | ns.  |  |  |  |
| CO4       | To unders | o understand the numbers and errors |               |                       |                   |              |      |  |  |  |

UNIT-1

**Introduction:** Basic concept of statistics, Difference between statistics and mathematics, Samples and variables, Frequency distribution curve and basic quantitative method: Mean median, mode, standard deviation and variance.

## UNIT-II

**Probability distribution**: Basic concept of probability, binomial distribution, Poisson distribution and normal distribution.

**Hypothesis testing**: Students T-test, estimation of null hypothesis, confidence limit of variance and chi-square test.

## UNIT-III

Analysis of Variance: F-test, Two way ANOVA and Three way ANOVA

**Correlation and Regression**: Analysis of correlation and their different types, analysis of covariance and multiple regressions.

#### UNIT-IV

**Approximation and error**: Introduction, Accuracy of numbers: approximate number, significant number, rounding off. Different types of error.

**Role of computer in solving biostatical problem**: Genetic Algorithm, Application of statistical methods in biotechnology.

#### **Text Books:**

1. Statistical Methods. S.P.Gupta. Sultan chand and sons, New delhi

## **Reference Books:**

1.Introduction to Biostatistics. Glover T. and Mitchell K. (2002). MacGraw Hill, New York.

2. Fundamentals of Biostatistics. Rosner Bernard. (1999), Duxbury Press.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| HM-901     | Organiza    | ationaL Beh    | avior(B.T     | ech Biotecl   | nology ) Sem     | ester-III |                |
|------------|-------------|----------------|---------------|---------------|------------------|-----------|----------------|
| Lecture    | Tutorial    | Practical      | Credit        | Major         | Minor Test       | Total     | Time           |
|            |             |                |               | Test          |                  |           |                |
| 3          | -           | -              | 3             | 75            | 25               | 100       | 3              |
| Purpose    | To make     | the students o | conversant v  | with the basi | cs concepts of   | organizat | tional culture |
|            | and behav   | ior for nurtu  | ring their m  | anagerial sk  | ills             |           |                |
| COURSE (   | DUTCOME     | S              |               |               |                  |           |                |
| <b>CO1</b> | An overvi   | iew about org  | ganizational  | behavior as   | s a discipline a | nd under  | rstanding the  |
|            | concept of  | f individual b | ehavior       |               |                  |           |                |
| CO2        |             |                |               |               | sonality ,emotio | ns and it | s importance   |
|            | in decision | n making and   | effective lea | dership       |                  |           |                |
| CO3        |             |                |               |               | rtance of effect | ive motiv | ation and its  |
|            |             | on in group d  |               |               |                  |           |                |
| <b>CO4</b> |             |                |               | 0             | al stress by     | maintai   | ning proper    |
|            | organizati  | onal culture a | and effective | e communica   | tion             |           |                |

# UNIT -I

**Introduction to Organizational Behavior:** Concept and importance of Organizational Behavior, Role of Managers in OB, Foundations or Approaches to Organizational Behavior, Challenges and Opportunities for OB

**Foundation of individual behavior**: Biographical characteristics, concept of Abilities and Learning, Learning and Learning Cycle, Components of Learning, concept of values and attitude, types of attitude, attitude and workforce diversity

# UNIT-II

**Introduction to Personality and Emotions**: Definition and Meaning of Personality, Determinants of Personality, Personality Traits Influencing OB, Nature and Meaning of Emotions, Emotions dimensions, concept of Emotional intelligence

**Perception and individual decision making**: Meaning of perception, factors influencing perception, Rational decision making process, concept of bounded rationality. Leadership- Trait approaches, Behavioral approaches, Situational approaches, and emerging approaches to leadership.

## UNIT-III

**Motivation**: concept and theories of Motivation, theories of motivation-Maslow, Two Factor theory, Theory X and Y,ERG Theory, McClelland's Theory of needs, goal setting theory, Application of theories in Organizational Scenario, linkage between MBO and goal setting theory, employee recognition and involvement program **Foundations of Group Behavior and conflict management**:Defining and classifying of Groups, stages of group development, Informal and Formal Groups - Group Dynamics, Managing Conflict and Negotiation, a contemporary perspective of intergroup conflict, causes of group conflicts, Managing intergroup conflict through Resolution.

## UNIT-IV

**Introduction to Organizational Communication**: Meaning and Importance of Communication process, importance of Organizational Communication, Effective Communication, Organizational Stress: Definition and Meaning Sources and Types of Stress, Impact of Stress on Organizations, Stress Management Techniques

**Introduction to Organization Culture**- Meaning and Nature of Organization Culture, Types of Culture, Managing Cultural Diversity, Managing Change and Innovation - Change at work, Resistance to change, A model for managing organizational change.

## **Text Books**

Colquitt, Jason A., Jeffery A. LePine, and Michael Wesson. *Organizational Behavior: Improving Performance and Commitment in the Workplace*. 5th ed. New York: McGraw-Hill Education, 2017.

Hitt, Michael A., C. Chet Miller, and Adrienne Colella. *Organizational Behavior*. 4th ed. Hoboken, NJ: John Wiley, 2015.

Robbins, Stephen P., and Timothy Judge. *Organizational Behavior*. 17th ed. Harlow, UK: Pearson Education, 2017.

Stephen P. Robins, Organisational Behavior, PHI Learning / Pearson Education, 11<sup>th</sup> edition, 2008.

## **Reference Books**

Schermerhorn, Hunt and Osborn, Organisational behavior, John Wiley.

Udai Pareek, Understanding Organisational Behaviour, Oxford Higher Education.

Mc Shane & Von Glinov, Organisational Behaviour, Tata Mc Graw Hill.

Aswathappa, K., Organisational Behaviour– Text and Problem, Himalaya Publication

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| BTE-209L    | Cell Bio a                                                                                             | nd Genetics                                                                                      | Lab (B.Te   | ch. Biotechnolo   | ogy) Seme      | ester –III |           |  |  |
|-------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------|-------------------|----------------|------------|-----------|--|--|
| Lecture     | Tutorial                                                                                               | Practical                                                                                        | Credit      | Minor Test        | Practical      | Total      | Time      |  |  |
| -           | -                                                                                                      | 3                                                                                                | 1.5         | 40                | 60             | 100        | 3 Hrs     |  |  |
| Purpose     | To learn v                                                                                             | working of i                                                                                     | nstrument   | ts and their prin | nciples to stu | dy basic c | oncepts.  |  |  |
| Course Outo | comes                                                                                                  |                                                                                                  |             |                   |                |            |           |  |  |
| CO1         |                                                                                                        | Students will be able to learn basic instruments need to study all types of cellular structures. |             |                   |                |            |           |  |  |
| CO2         | Preparati                                                                                              | on of perma                                                                                      | anent slide | es to study hist  | ology of diffe | erent orga | n systems |  |  |
| CO3         | Students will come to know about the procedure of division of cells in both somatic and gametic cells. |                                                                                                  |             |                   |                |            |           |  |  |
| CO4         | Students<br>fingerprir                                                                                 |                                                                                                  | echniques   | of DNA extract    | ion and its a  | pplication | in        |  |  |

- 1. Study of different types of microscopes.
- 2. Microscopy: Structure of Prokaryotic and eukaryotic cell.
- 3. Microtomy. Histology of various organ systems (Nervous, digestion, reproductive, respiratory and circulatory system).
- 4. Cell division in onion root tip.
- 5. Cell division in insect gonads/flower bud.
- 6. Isolation of Chloroplasts/ Mitochondria from Plants.
- 7. Fluorescence labeling of cellular organelles.
- 8. Isolation of DNA and study of its denaturation spectrophotometrically & viscometrically.

## **Reference books:**

1. Principles and techniques of Practical Biochemistry: K. Wilson and J. Walker (1994), Cambridge University Press, Cambridge.

2. Introductory practical Biochemistry by S.K. Sawhney and Randhir Singh (2000), Narosa Publishing House, New Delhi.

3. An introduction to Practical Biochemistry by David T. Plummer (1988), McGraw-Hill, Book Company, UK.

| BTE-211 L | MICROB     | IOLOGY LA                                      | AB (B.Tec  | h. Biotechnolo                    | gy Semeste    | r III )   |            |  |  |
|-----------|------------|------------------------------------------------|------------|-----------------------------------|---------------|-----------|------------|--|--|
| Lecture   | Tutorial   | Practical                                      | Credit     | Minor Test                        | Practical     | Total     | Time       |  |  |
| -         | -          | 3                                              | 1.5        | 40                                | 60            | 100       | 3 Hrs      |  |  |
| Purpose   | To learn t | To learn the practical aspects of Microbiology |            |                                   |               |           |            |  |  |
|           |            |                                                | Course Ou  | itcomes                           |               |           |            |  |  |
| CO1       | Students w | ill be able to k                               | xnow about | the instruments                   | s and their w | orking p  | rinciples. |  |  |
| CO2       | Learning   | of Culture M                                   | ledia Prep | aration for Mi                    | crobial Gro   | wth.      |            |  |  |
| CO3       |            |                                                |            |                                   |               |           |            |  |  |
| CO4       |            |                                                |            | g methods for i<br>wth of microbe |               | on of mic | crobes and |  |  |

- 1. Rule and Regulations of working in the laboratory.
- 2. To know about the instruments and equipments used in the laboratory
- 3. Preparation of culture media for culturing microbes.
- 5. Collection of samples from different sources and serial dilution method.
- 6. Culture techniques- Pour plate and spread plate.
- 7. Isolation of pure colonies by streaking method.

8. Gram Staining method to differentiate between gram positive and gram negative bacteria.

- 8. To analyze the waste water samples for presence of microbes.
- 9. Measurements of growth and study of effect of various factors on growth of microorganisms-temperature, pH, salt concentration,
- 10.Milk Microbiology- Testing the quality of milk.

## **Text and References Books:**

1. Experiments in Microbiology, Plant Pathology and Biotechnology. 4th Edition.

Aneja, K.R. (2003)New Age International Publishers, New Delhi.

2. Microbiology- a laboratory manual. 4th edition. Cappuccino J. and Sheeman N. (2000) Addison Wesley, California.

3. Environmental Microbiology – A Laboratory Manual Pepper. I.L.; Gerba, C.P. and Brendecke, J.W.(1995) Academic Press, New York.

| BTE-213L | BIOCHEMI                                                               | STRY LAB (B.1                                                       | Fech. Biotec | hnology ) Seme  | ster-III     |          |         |  |  |
|----------|------------------------------------------------------------------------|---------------------------------------------------------------------|--------------|-----------------|--------------|----------|---------|--|--|
| Lecture  | Tutorial                                                               | Practical                                                           | Credit       | Minor Test      | Practical    | Total    | Time    |  |  |
| -        | -                                                                      | 3                                                                   | 1.5          | 40              | 60           | 100      | 3 Hrs   |  |  |
| Purpose  | To learn th                                                            | To learn the practical aspects of Biochemistry                      |              |                 |              |          |         |  |  |
|          | ·                                                                      | Cou                                                                 | rse Outcom   | es              |              |          |         |  |  |
| CO1      | Students v<br>biomolecul                                               |                                                                     | to learn qu  | alitative and o | quantitative | estima   | tion of |  |  |
| CO2      | Students v<br>common e                                                 |                                                                     | learn proce  | dure to perforn | n enzyme as  | say of a | ny      |  |  |
| CO3      | Students will learn effect of environmental factors on enzyme activity |                                                                     |              |                 |              |          |         |  |  |
| CO4      | Students v                                                             | Students will be able to calculate Km and Vmax of any common enzyme |              |                 |              |          |         |  |  |

- 1. Qualitative tests for amino acids, proteins, Lipids and carbohydrates.
- 2. Quantitative estimation of proteins by Lowry method.
- 3. Determination of reducing sugar by Nelson-Somogyi's method
- 4. Assay of any commonly occurring enzyme.
- 5. Effect of pH, temperature, enzyme concentration and protein denaturation on an enzyme activity.
- 6. Determination of Km and Vmax of any commonly occurring enzyme.

## **Text/ Reference Books**:

- **1.** Principles and techniques of Practical Biochemistry: K. Wilson and J. Walker (1994), Cambridge University Press, Cambridge.
- **2.** Introductory practical Biochemistry by S.K. Sawhney and Randhir Singh (2000), Narosa Publishing House, New Delhi.
- **3.** An introduction to Practical Biochemistry by David T. Plummer (1988), McGraw-Hill, Book Company, UK.

| MC-902  | Constitution                                                  | n of India (B.Teo                                            | h. Biotechnolog   | y) Semester- III  |             |                  |  |  |  |
|---------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------|-------------------|-------------|------------------|--|--|--|
| Lecture | Tutorial                                                      | Practical                                                    | Major Test        | Minor Test        | Total       | Time             |  |  |  |
| 3       | -                                                             | -                                                            | 75                | 25                | 100         | 3 Hrs.           |  |  |  |
| Purpose | To know the                                                   | To know the basic features of Constitution of India          |                   |                   |             |                  |  |  |  |
|         | Course Outcomes                                               |                                                              |                   |                   |             |                  |  |  |  |
| CO1     | The student<br>India.                                         | ts will be able t                                            | o know about s    | alient features ( | of the Cons | stitution of     |  |  |  |
| CO2     | To know ab                                                    | out fundament                                                | tal duties and fe | ederal structure  | of Consti   | tution of India. |  |  |  |
| CO3     | To know ab                                                    | To know about emergency provisions in Constitution of India. |                   |                   |             |                  |  |  |  |
| CO4     | To know about fundamental rights under constitution of India. |                                                              |                   |                   |             |                  |  |  |  |

## UNIT-I

- 1. Meaning of the constitution law and constitutionalism, Historical perspective of the Constitution of India. Salient features and characteristics of the Constitution of India.
- 2. Scheme of the fundamental rights

## UNIT - II

- 3. The scheme of the Fundamental Duties and its legal status. The Directive Principles of State Policy Its importance and implementation. Federal structure and distribution of legislative and financial powers between the Union and the States.
- 4. Parliamentary Form of Government in India The constitution powers and status of the President of India

## UNIT - III

- 5. Amendment of the Constitutional Powers and Procedure. The historical perspectives of the constitutional amendments in India.
- 6. Emergency Provisions: National Emergency, President Rule, Financial Emergency. Local Self Government Constitutional Scheme in India.

#### **UNIT-IV**

- 7. Scheme of the Fundamental Right to Equality. Scheme of the Fundamental Right to certain Freedom under Article 19.
- 8. Scope of the Right to Life and Personal Liberty under Article 21.

## **Text Books**

1. Constitution of India. Prof. Narender Kumar (2008) 8<sup>th</sup> edition. Allahabad Law Agency.

## **Reference Books:**

- 1. The constitution of India. P.M. Bakshi (2016) 15<sup>th</sup> edition. Universal law Publishing.
- Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| BTE-202 | Molecular  | <sup>-</sup> Biology (B.1                                             | Tech. Biote | echnology)  | Semester -   | V         |              |  |  |  |  |
|---------|------------|-----------------------------------------------------------------------|-------------|-------------|--------------|-----------|--------------|--|--|--|--|
| Lecture | Tutorial   | Practical                                                             | Credit      | Major       | Minor        | Total     | Time         |  |  |  |  |
|         |            |                                                                       |             | Test        | Test         |           |              |  |  |  |  |
| 3       | -          | -                                                                     | 3           | 75          | 25           | 100       | 3 Hrs.       |  |  |  |  |
| Purpose | To familia | To familiarize the students with basic concepts of molecular biology. |             |             |              |           |              |  |  |  |  |
|         |            |                                                                       | Course      | Outcomes    |              |           |              |  |  |  |  |
| CO1     | The stude  | The students will be able to learn the Basic structure of DNA RNA.    |             |             |              |           |              |  |  |  |  |
| CO2     | To learn t | the process o                                                         | of DNA re   | plication a | nd regulatio | n.        |              |  |  |  |  |
| CO3     | The stude  | ents will be a                                                        | ble to und  | lerstand th | e process of | Transcri  | ption of DNA |  |  |  |  |
|         | in Prokar  | yotes and E                                                           | ukaryotes   | •           | -            |           | -            |  |  |  |  |
| CO4     | The stude  | ents will be a                                                        | ble to exp  | lain the pr | ocess of Tra | nslation. |              |  |  |  |  |

#### UNIT- I

**1.Genes :** DNA/RNA as the genetic material. Double helical structure of DNA.Types of DNA.Super coiling and periodicity of DNA.Linking number of DNA.Nature of multiple alleles, Cis- acting sites and Trans–acting molecules.Euchromatin and heterochromatin.Nucleosomes.Organelle DNA- Mitochondrial and chloroplast DNA.

**2. From Genes to Genomes :** exons and introns, repetitive and non –repetitive DNA, C-value paradox.

**3. DNA Replication** :Origin of DNA replication. Bacterial and eukaryotic replicons.DNA polymerases.Mechanism and regulation of DNA replication in prokaryotes and eukaryotes.

#### UNIT - II

**4. Transcription:** Various RNA species and their properties- tRNA as an adapter and turnover of mRNA.

a) **Transcription in Prokaryotes:** RNA polymerases. Mechanism of transcriptioninitiation, elongation and termination.Role of sigma factor in transcription.

b) **Transcription in Eukaryotes:** RNA Polymerases. Downstream and upstream promoters. Techniques to define promoters- foot printing experiment. Mechanism of transcription.Interaction of upstream factors with basal apparatus.Role of enhancers.Post-transcriptional modifications of various RNA species.Transcription in mitochondria and chloroplast.

c) **The Operon:** Positive and negative control of transcription, repressor-inducer complex, catabolite repression and attenuation.

d) **Regulation of Transcription:** DNA binding domains- zinc finger motif, helix loop helix, leucine zippers and homeodomains. Demethylation and gene regulation.

## UNIT -III

**5. Genetic Code:** Evidence for triplet code. Properties of genetic code, Wobble hypothesis.Mitochondrial genetic code. Suppressor tRNAs.

**6. Protein Synthesis :**Structure of prokaryotic and eukaryotic ribosomes and their role in protein synthesis. Mechanism of initiation, elongation and termination of protein synthesis.Regulation of translation in prokaryotes and eukaryotes. Post translational modifications of proteins.

7. Protein folding : Role of molecular chaperones.

## UNIT -IV

**8. Nuclear Splicing :**Lariat formation, Sn RNAs, cis-splicing and trans-splicing reactions. Catalytic RNA- Ribozymes- Ribonuclease P, small RNAs, group I &II introns.

## **Text/Reference Books :**

1. Genes XI Lewin, Benjamin(2013)OUP, Oxford.

2. Genomes, 2<sup>nd</sup>ed, Brown, T. A. (2002) John Wiley and sons ,Oxford

3. Molecular biology of cell 4<sup>th</sup>ed Alberts, Bruce; Watson,J D(2002) Garland Science Publishing, New York.

4. Molecular cell biology 4<sup>th</sup>edLodish, Harvey and. Baltimore,D(2000) W.H. Freeman and Co., New York

5. Cell and Molecular Biology 8<sup>th</sup>ed, Robertis, EDP De &Robertis, EMF De(2002) lippincott Williams & Wilkins international student edition, Philadelphia.

6. Essentials of Molecular Biology 4<sup>th</sup>ed, Malacinski, G. M. (2003) Jones &Bartlet Publishers, Boston

7. Cell and Molecular Biology: concepts and experiments 3<sup>rd</sup>ed Karp, Gerald(2002) John Wiley and sons, New York.

8. The Cell-a molecular approach, 3<sup>rd</sup>ed Cooper, G M&Hausman, R E(2004) ASM Press, Washington D C

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| BTE-204 | <b>Bioanalytical Techniq</b> | ues (B.Tech | . Biotechnology | ) Semester- IV |
|---------|------------------------------|-------------|-----------------|----------------|
|---------|------------------------------|-------------|-----------------|----------------|

| Lecture   | Tutorial                     | Practical                                                                                         | Credit     | Major Test      | Minor Test    | Total    | Time      |  |  |  |  |  |
|-----------|------------------------------|---------------------------------------------------------------------------------------------------|------------|-----------------|---------------|----------|-----------|--|--|--|--|--|
| 3         | -                            | -                                                                                                 | 3          | 75              | 25            | 100      | 3 Hrs.    |  |  |  |  |  |
| Purpose   | To acclimatiz                | To acclimatize students about different bioanalytical techniques.                                 |            |                 |               |          |           |  |  |  |  |  |
| Course Ou | utcomes                      |                                                                                                   |            |                 |               |          |           |  |  |  |  |  |
| CO1       | The students                 | s will be able to                                                                                 | o understa | nd the principl | e of microsco | py.      |           |  |  |  |  |  |
| CO2       |                              | The students will be able to understand the principle and applications chromatography techniques. |            |                 |               |          |           |  |  |  |  |  |
| CO3       | The student<br>spectroscopy  | ts will be abl<br>y.                                                                              | e to lear  | n underlying    | principle and | l applic | ations of |  |  |  |  |  |
| CO4       | The student<br>radioactivity | ts will be able<br>7.                                                                             | e to learn | process of d    | letection and | measur   | ement of  |  |  |  |  |  |

#### UNIT- I

- **1. Principles of Microscopy:** Light, electron (scanning and transmission), fluorescence microscopy, marker enzymes.
- **2. Centrifugation: Basic concepts and** applications, differential centrifugation, high speed and ultracentrifugation techniques.

#### UNIT- II

- **3.** Electrophoresis: basic principle and applications of Paper and gel electrophoresis, isoelectric focussing, two-dimensional electrophoresis.
- **4 Principles of Chromatography**: Ion-exchange, gel filtration, affinity, gas chromatography, High Pressure Liquid Chromatography (HPLC), FPLC and Hydrophobic Interaction Chromatography.

#### UNIT- III

- **5.** Principle and applications of Spectroscopy: UV/visible, IR, NMR, ESR, fluorescence, Raman.
- 6. Mass spectroscopy: LC-MS, X-ray diffraction (molecular crystals), CD.

#### UNIT- IV

7. Radioisotope Techniques: Nature of radioactivity, properties of  $\alpha$ ,  $\beta$  and  $\gamma$ -rays, detection and measurement of radioactivity, use of radioisotopes in research, autoradiography, radio-immunoassay.

#### **Text/ References Books:**

- 1. Physical Biochemistry, 2nd edition, by D Friefelder (1983). W.H. Freeman & Co., U.S.A.
- 2. 4. Analytical Chemistry for technicians: John Kenkel (1994), Lewis Publishers. Boca Raton.
- 3. Principles and techniques of Practical Biochemistry: K. Wilson and J. Walker (1994), Cambridge University Press, Cambridge.
- 4. Biophysical Chemistry: Principles and Techniques, 2nd edition by A. Upadhyay, K. Upadhyay and N. Nath. (1998). Himalaya Publishing House, Delhi.
- 5. Physical Biochemistry, 2nd edition, by K. E. VanHolde (1985), Prentice Hall Inc, New Jersey.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| BTE-206  | IMMUNOL                | OGY (B.Tech                                                                                                             | n Biotechno  | ology) semest | er-IV                      |             |            |  |  |
|----------|------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------|---------------|----------------------------|-------------|------------|--|--|
| Lecture  | Tutorial               | Practical                                                                                                               | Credit       | Major<br>Test | Minor<br>Test              | Total       | Time       |  |  |
| 3        | -                      | -                                                                                                                       | 3            | 75            | 25                         | 100         | 3 Hrs.     |  |  |
| Purpose  |                        | he role of va<br>rious disease                                                                                          | -            | onents of im  | mune system                | and their   | response   |  |  |
| Course O | utcomes                |                                                                                                                         |              |               |                            |             |            |  |  |
| CO1      | The stude<br>to immune |                                                                                                                         | ole to learn | the basic cor | cepts of cells             | and organ   | ns related |  |  |
| CO2      | Able to lea            | arn the form                                                                                                            | ation, matu  | ration and fu | unctions of <b>B</b>       | cells and 7 | ۲ cells.   |  |  |
| CO3      |                        | -                                                                                                                       |              | 0             | al techniques<br>nfection. | and under   | rstanding  |  |  |
| CO4      |                        | various effector responses of body against an infection.<br>To learn the immunological reasons behind various diseases. |              |               |                            |             |            |  |  |

#### UNIT – I

- 1. **Introduction to immune system**: Innate and acquired immunity, cells and organs of immune System- B-Lymphocytes and T-Lymphocytes, primary and secondary lymphoid organs, humoral and cell mediated immune response.
- 2. Immune System: Antigens. Immunoglobulins- structure and function, antigenic Determinants (isotype, allotype, idiotype).

#### UNIT –II

3. Generation of B-Cell and T-Cell Responses: Major histocompatibility complex. Antigen Processing and presentation.

4. Cell mediated immunity: T-cell receptor, T-cell maturation, activation and differentiation.

## UNIT –III

- 5 Immunological techniques: Immunoprecipitin reactions, agglutination reactions, ELISA, RIA, Immunofluorescence.
- 6. Immune effector responses: Cytokines. Complement system.

#### UNIT – IV

7. Immune System in Health and Disease: Hypersensitive reactions. Auto immunity and immune response to infectious diseases. Immune response to transplants. Vaccines.

#### Text Book:

 Kuby's Immunology, 5th ed. Goldsby, R A. Kindt, T.J, Osborne, B.A.(2003) W. H. Freeman and company, New York

## **Reference Books**

1. Essential Immunology, 10<sup>th</sup> ed Roitt, Ivon; Delves, Peter (2001) Blackwell Scientific Publications Oxford.

2. Fundamentals of Immunology: Paul W.E. (Eds.) Raven Press, New York.

3. Immunology by Presscot.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| BTE-208    | INDUSTRIA                                                                | INDUSTRIAL BIOTECHNOLOGY (B.Tech. Biotechnology) Semester -IV |          |                |              |             |             |  |  |  |  |  |
|------------|--------------------------------------------------------------------------|---------------------------------------------------------------|----------|----------------|--------------|-------------|-------------|--|--|--|--|--|
| Lecture    | Tutorial                                                                 | Practical                                                     | Credit   | Major Test     | Minor Test   | Total       | Time        |  |  |  |  |  |
| 3          | -                                                                        | -                                                             | 3        | 75             | 25           | 100         | 3 Hrs.      |  |  |  |  |  |
| Purpose    | To learn the various aspects of Industrial Biotechnology                 |                                                               |          |                |              |             |             |  |  |  |  |  |
| Course Out | comes                                                                    |                                                               |          |                |              |             |             |  |  |  |  |  |
| CO1        | To learn b                                                               | To learn basic concepts of Fermentation Bioechnology          |          |                |              |             |             |  |  |  |  |  |
| CO2        | To learn the various pr                                                  |                                                               | cal aspe | ects of Proces | s Technology | for the pro | oduction of |  |  |  |  |  |
| CO3        | CO3 To learn the concepts of biopesticides, biofuels and biofertilizers. |                                                               |          |                |              |             |             |  |  |  |  |  |
| CO4        | To understand the concept of integrated strain improvement program.      |                                                               |          |                |              |             |             |  |  |  |  |  |

## UNIT-I

1. Industrial Biotechnologyy: Introduction, objectives and scope.

**2. Fermentation Technology:** Biochemistry of fermentation. Ttaditional and modern biotechnology-A brief survey of organisms, processes and products. Basic concepts of upstream and downstream processing in fermentation technology

## UNIT - II

**3. Production of Primary metabolites and alcoholic beverages** Organic acids, dextran, amino acids (Glutamic acid, L-Lysine) and alcohols and alcoholic beverages (wine and beer.

**4. Production of Industrial Enzymes-** Amylase, protease, lipase, xylanase, lignocellulase. production of acrylamide, adipic acid and 1,2-Propanediol.

## UNIT-III

**5. Production of Biopesticides and Biofertilizers:** Characteristics of biopesticides. Important biopesticides- Bt-toxin, Kasugamycin, Beauverin, Devine and Collego. Beneficial Soil Microorganisms. Biofertilizers.

**6. Production of Biofuels**: Basic concepts and important types of biofuels. Fuel from biomass, production and economics of biofuels, biogas, biorefineries, Microbial Enhanced Oil Recovery (MEOR).

**7. Production of other industrial bioproducts-** Single Cell Protein & Mushroom Culture, Biopreservatives Nisin), Cheese, Biopolymers (Xanthan gum, PHB). Biosynthetic Technology. Bioflavours and biopigments: microbial production of flavours and fragrances. Microbial pigments in textile and food industries.

## UNIT-IV

**8. Strain Improvement Strategies-** Improvement of industrially important microorganisms, selection of mutants, use of rDNA technology. Integrated Strain Improvement Program (Precision Engineering Technology)

9. **Microbial Production of Pharmaceuticals**. Antibiotics (penicillin, streptomycin and tetracycline), Enzyme Inhibitors. Production of Vitamin E, K, B<sub>2</sub> and B<sub>12</sub>, Genetic engineering of microorganisms for production of non-ribosomoal peptides (NRPS) and polyketides (PKS), antiacancer drugs.

## Text

1. A Textbook of Basic and Applied Microbiology. Aneja, K. R., Jain, P. and Aneja, R. (2008). New Age International Publishers, New Delhi

## **Reference Books:**

1. Industrial Microbiology.Casida Jr., L.E. (1968) New Age International (P)Ltd. New Delhi.

2. Prescott & Dunn's Industrial Microbiology. Ed. E.G. Reed (1987).CBS Publishers, New Delhi.

3. Biotechnology: A Textbook of Industrial Microbiology 2nd Edition. Crueger, W. and Crueger, A. (2000) Panima Publishing Corporation, New Delhi.

4. Enzymes: Biochemistry, Biotechnology, Clinical chemistry. Palmer, T. (2000) Horwood publishing Colphon.

5. Process engineering in biotechnology. Jackson, A.T. (1991) Prentice Hall.

6. Manual of Industrial Microbiology and Biotechnology 2nd Edition. Ed. Arnold L. Demain and Julian E. Davies (1999) ASM Press Washington D.C.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

| BS-202    |            | Basics of Thermodynamic and Organic Chemistry (B.Tech. Biotechnology<br>Gemester IV)                 |              |                                 |                |            |            |  |  |  |  |
|-----------|------------|------------------------------------------------------------------------------------------------------|--------------|---------------------------------|----------------|------------|------------|--|--|--|--|
| Lecture   | Tutorial   | Practi<br>cal                                                                                        | Credit       | Major Test                      | Minor Test     | Total      | Time       |  |  |  |  |
| 3         | -          | -                                                                                                    | 3            | 75                              | 25             | 100        | 3 Hrs      |  |  |  |  |
| Purpose   |            | To familiarize the students with basic concepts of thermodynamic and organic chemistry.              |              |                                 |                |            |            |  |  |  |  |
| Course Ou | itcomes    |                                                                                                      |              |                                 |                |            |            |  |  |  |  |
| CO1       |            |                                                                                                      |              | know the bas<br>ganic reactions | -              | naming     | of organic |  |  |  |  |
| CO2       | Able to kn | ow abou                                                                                              | ut spatial a | arrangement o                   | f molecules an | d their bo | onding.    |  |  |  |  |
| CO3       | Able to kn | ow abou                                                                                              | ut basic co  | ncepts of ther                  | modynamics.    |            |            |  |  |  |  |
| CO4       |            | Able to know about concept of free energy in biomolecules and binding used in biochemical reactions. |              |                                 |                |            |            |  |  |  |  |

| U | NI | L |
|---|----|---|
|   |    |   |

**IUPAC Nomenclature**: Systematic IUPAC nomenclature of alkenes, alkynes, cycloalkanes, aromatics, bicyclic and polyfunctional organic compounds. Bond line notation.Types of Organic Reactions: Substitution, Addition, Elimination reactions. Wanger-Meerwin rearrangement reaction. Hyperconjugation : concept and consequences, mole concepts.

## UNIT-II

- **Bonding: Hydrogen bonding-** Nature, type, stability and its importance in organic compounds. Tautomerism-Concept, Ring-chain tautomerism, Ring-chain isomerism, properties and reactions of keto-enol tautomers.
- **Stereo Chemistry**: Classification of stereomers, diastereomers, separation of enantiomers, absolute configuration (R & S), projection formulae, stereochemistry of compounds containing two asymmetric C- atoms, stereochemistry of biphenyls. Geometrical isomerism-concept, E & Z nomenclature and aldol condensation

## UNIT –III

- **Thermodynamic parameters** –internal energy, enthalpy; their relationship and their significance. First law of thermodynamics. Kirchoff's Equation. Heat capacity at constant pressure and volume and their relationship.
- Concepts of Entropy, Second law of thermodynamics. Entropy changes for reversible and irreversible processes. Entropy of mixing.

Third Law of Thermodynamics. Numerical problems on Laws of Thermodynamics.

## UNIT-IV

Basic concept of Equilibrium and steady state conditions, Free energy and its relation with equilibrium constant, Chemical potential, Gibbs-Duhem equation and their application, Standard biochemical state and standard free energy changes. Thermodynamic basis of Biochemical reactions, solvent extraction for purification of compounds. Binding – Non-cooperative binding, Co-operative binding and its biological significance

## **Text/Reference Books**:

- 1. Organic Chemistry V1:6th ed. Finar, I L(2003) Pearson Education, Delhi
- 2. Organic Chemistry V2:5th ed. Finar, I L(2003) Pearson Education, Delhi.

3. Organic Chemistry 6th ed. Morrison, R & Boyd, T. (2003) Pearson Education, Delhi.

- 4. Organic Chemistry. Paula Yurkanis Bruice; Pearson Education, Delhi.
- 5. Principle of Organic Synthesis. Richard Norman and James M Coxon.
- 6. Organic Chemistry:Reactions & Reagents,37th ed. Aggarwal (2003) Goel Publishing House,Meerut.
- 7. Organic Analytical Chemistry. Jagmohan (2003) Narosa pub. New Delhi.

Kinetics and Thermodynamics in Biochemistry : Bray & White.

- 8. Biophysical chemistry Vol. I : Edsall and Wyman
- 9. Non Equilibrium Thermodynamics in Biophysics : Katchalasky and Curran; Harvard University Press.
- 10. Principles of Physical Biochemistry : Kensel. E.Van Holde, W. Curtis Johnson, P. Shing Ho (2005) 2 nd edition, Prentice Hall
- 11. Physical basis of biochemistry: Foundations of molecular biophysics, Bergethan, P.R.(2000) Springer.

| BTE-212L |          | Molecular                                                      | <sup>.</sup> Biology Lat                                                | o (B.Tech. Biote | chnology Semest    | er IV )    |        |  |  |
|----------|----------|----------------------------------------------------------------|-------------------------------------------------------------------------|------------------|--------------------|------------|--------|--|--|
| Lecture  | Tutorial | Practical                                                      | Credit                                                                  | Practical        | Minor Test         | Total      | Time   |  |  |
| -        | -        | 3                                                              | 1.5                                                                     | 60               | 40                 | 100        | 3 Hrs. |  |  |
| Purpose  |          | To familia                                                     | rize the stu                                                            | dents with basic | c concepts of mol  | ecu.       |        |  |  |
|          |          |                                                                | C                                                                       | ourse Outcome    | S                  |            |        |  |  |
| CO1      |          | Students will be able to learn Isolation of DNA from Prokaryot |                                                                         |                  |                    |            |        |  |  |
|          |          | Eukaryot                                                       | ic Cells                                                                |                  |                    |            |        |  |  |
| CO2      |          | Learning of                                                    | f Gel Electrop                                                          | horesis for sepa | ration of DNA, RNA | and Protei | ns     |  |  |
| CO3      |          | Students w                                                     | Students will learn the technique of PCR Amplification of Nucleic Acids |                  |                    |            |        |  |  |
| CO4      |          | Students will learn Restriction Mapping of Plasmid DNA         |                                                                         |                  |                    |            |        |  |  |

- 1. Isolation of genomic DNA from eukaryotic cells.
- 2. Isolation of RNA from eukaryotic cells.
- 3. Isolation of proteins from eukaryotic cells.
- 4. Isolation of genomic DNA from prokaryotic cells.
- 5. Isolation of plasmid DNA from Prokaryotic cells.

6. Restriction mapping of plasmid DNA: This experiment involves single and double digestion of the plasmid with restriction enzymes.

- 7. Gel electrophoretic separation of DNA and molecular wt. determination.
- 8. Gel electrophoretic separation of RNA.
- 9. Gel electrophoretic separation of proteins.
- 10. Transblot analysis of DNA.
- 11. Gel Extraction of DNA.
- 12. PCR amplification of DNA: Visualization by gel electrophoresis.

## **Reference Book:**

Molecular Cloning – A laboratory manual: 3rd Edition Vol. 1-3. Sambrook J and Russell D.W. (2001). Cold Spring Harbor laboratory Press, New York.

| BTE-214L  | Bioanalyt                                                                | Bioanalytical Techniques Lab (B.Tech. Biotechnology) Semester- IV  |             |                |               |            |       |  |  |  |  |  |
|-----------|--------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|----------------|---------------|------------|-------|--|--|--|--|--|
| Lecture   | Tutorial                                                                 | Practical                                                          | Credit      | Practical      | Minor<br>Test | Total      | Time  |  |  |  |  |  |
| -         | -                                                                        | 3                                                                  | 1.5         | 60             | 40            | 100        | 3 Hrs |  |  |  |  |  |
| Purpose   | To learn the Bioanalytical Techniques used in the field of Biotechnology |                                                                    |             |                |               |            |       |  |  |  |  |  |
| Course Ou | itcomes                                                                  |                                                                    |             |                |               |            |       |  |  |  |  |  |
| CO1       | Students v                                                               | vill learn ab                                                      | out worki   | ng of spectrop | photometer.   |            |       |  |  |  |  |  |
| CO2       | Students                                                                 | will be able                                                       | to learn ab | out technique  | e of paper ch | romatograp | ohy.  |  |  |  |  |  |
| CO3       | Students                                                                 | Students will be able to learn about technique of electrophoresis. |             |                |               |            |       |  |  |  |  |  |
| CO4       | Students                                                                 | will be able                                                       | to estimat  | e DNA and RN   | IA in any sam | ple.       |       |  |  |  |  |  |

- 1. To verify the validity of Beer-Lambert's law and determine the molar extinction coefficient of NADH/NAD
- 2. Separation of amino acids/ sugars by paper chromatography.
- 3. Extraction and estimation of total lipid content in a given sample of oil seed.
- 4. Partial purification of an enzyme by ammonium sulphate fractionation,
- 5. Native gel electrophoresis of proteins.
- 6. To demonstrate the working of HPLC.
- 7. Quantitative determination of DNA and RNA by spectrophotometric method.

## **Reference Books**:

1. Principles and techniques of Practical Biochemistry: K. Wilson and J. Walker (1994), Cambridge University Press, Cambridge.

2. Introductory practical Biochemistry by S.K. Sawhney and Randhir Singh (2000), Narosa Publishing House, New Delhi.

3. An introduction to Practical Biochemistry by David T. Plummer (1988), McGraw-Hill, Book Company, UK.

| BTE-216L | Industrial I                                              | Industrial Microbiology Lab (B.Tech. Biotechnology ) Semester -IV       |                |                  |              |       |       |  |  |  |  |  |
|----------|-----------------------------------------------------------|-------------------------------------------------------------------------|----------------|------------------|--------------|-------|-------|--|--|--|--|--|
| Lecture  | Tutorial                                                  | Practical                                                               | Credit         | Minor Test       | Practical    | Total | Time  |  |  |  |  |  |
| -        | -                                                         | 3                                                                       | 1.5            | 40               | 60           | 100   | 3 Hrs |  |  |  |  |  |
| Purpose  | To learn the Practical Aspects of Industrial Microbiology |                                                                         |                |                  |              |       |       |  |  |  |  |  |
|          |                                                           |                                                                         | Course Out     | comes            |              |       |       |  |  |  |  |  |
| CO1      | Learning                                                  | of Sterilization                                                        | n Technique    | s used in Microl | biology Lab  |       |       |  |  |  |  |  |
| CO2      | Learning o                                                | f Identification                                                        | n of industria | lly important m  | icroorganisn | ns    |       |  |  |  |  |  |
| CO3      | Students w                                                | Students will learn production of antibiotics and enzymes from microbes |                |                  |              |       |       |  |  |  |  |  |
| CO4      | Students w                                                | Students will learn determination of microbial cell growth              |                |                  |              |       |       |  |  |  |  |  |

1. Sterilization Techniques (Media, air & water)

2. Construction of various fermenters (bioreactors)

3. Identification of industrially important microorganisms e.g. molds, yeasts and bacteria.

4. Production of various products in the lab. Alcohol, wine, cellulase, protease and bread.

5. Isolation of antibiotic producing microorganisms from the soil.

6. Penicillin production and testing of antimicrobial activity.

7. Isolation of streptomycin-resistant mutants by replica plating method.

8. Isolation of UV induced auxotrophic mutants.

9.Determination of cell growth.

10. Production of organic acids (Citric and lactic) by microorganisms.

11. Production of industrially important enzymes (protease, amylase) by microorganisms.

## **Reference Books:**

1. Experiments in Microbiology, Plant Pathology and Biotechnology. Aneja, K.R.(2003) 4th Edition. New Age International Publishers, New Delhi.

2. Fermentations & Biochemical Hand Book: Principles, Process Design and Equipment. HC Vogel and Noyes(1983).

3. Microbiology Labortary Manual. Cappuccino, J. and Sheeman, N.(2000), 4th Edition, Addison Wesley, California.

4. Manual of Industrial Microbiology and Biotechnology. 2nd Edition. Ed. Arnold L. Demain and Julian E. Davies (1999) ASM Press Washington D.C.

| BT-218L | Immunology Lab (B.Tech. Biotechnology) Semester -IV |                                              |            |                 |               |            |              |  |  |  |  |
|---------|-----------------------------------------------------|----------------------------------------------|------------|-----------------|---------------|------------|--------------|--|--|--|--|
| Lecture | Tutorial                                            | Practical                                    | Credit     | Minor Test      | Practical     | Total      | Time         |  |  |  |  |
| -       | -                                                   | 3                                            | 1.5        | 40              | 60            | 100        | 3 Hrs        |  |  |  |  |
| Purpose | To learn                                            | To learn the practical aspects of Immunology |            |                 |               |            |              |  |  |  |  |
|         |                                                     |                                              | Course     | Outcomes        |               |            |              |  |  |  |  |
| CO1     | Students v                                          | vill be able to                              | learn basi | c techniques in | handling labo | oratory ar | nimals.      |  |  |  |  |
| CO2     | Learning                                            | of techniqu                                  | es for pur | ification of im | munoglobuli   | ins.       |              |  |  |  |  |
| CO3     | Students                                            | will learn th                                | e techniq  | ue of Immunop   | precipitation | and Ag     | glutination. |  |  |  |  |
| CO4     | Students                                            | Students will learn the principles of ELISA. |            |                 |               |            |              |  |  |  |  |

1. Routine techniques in handling laboratory animals: feeding, cleaning and bleeding procedure for mice and rabbit.

- 2. ABO blood group typing
- 3. Estimation of heamoglobin in blood sample
- 4. Detection of antigen/antibody from test sample
- 5. Purification of immunoglobulins.
- 6. Immunoprecipitation techniques
- 7. Agglutination techniques

# 8. ELISA

## **Reference Books:**

- 1. Using Antibodies: A Laboratory Manual. Harlow & Lane(1998) Cold Spring Harbor Lab Press.
- 2. Immunological Techniques Made Easy. Cochet, et al.(1998)Wiley Publishers, Canada.

| MC-901  | ENVIRON     | ENVIRONMENTAL SCIENCES (B.Tech. Biotech IV th Sem ) |              |                   |                   |            |              |  |  |  |  |  |
|---------|-------------|-----------------------------------------------------|--------------|-------------------|-------------------|------------|--------------|--|--|--|--|--|
| Lecture | Tutorial    | Practical                                           | Credit       | Major Test        | Minor Test        | Total      | Time         |  |  |  |  |  |
| 3       | -           | -                                                   | -            | 75                | 25                | 100        | 3 Hrs.       |  |  |  |  |  |
| Purpose | To learn th | e multidiscip                                       | linary natu  | ire, scope and in | nportance of En   | vironment  | al sciences. |  |  |  |  |  |
|         |             |                                                     | Cours        | e Outcomes        |                   |            |              |  |  |  |  |  |
| CO1     | The studen  | ts will be abl                                      | e to learn t | he importance o   | f natural resour  | ces.       |              |  |  |  |  |  |
| CO2     | To learn th | e theoretical                                       | and practi   | cal aspects of ec | o system.         |            |              |  |  |  |  |  |
| CO3     | Will be abl | e to learn the                                      | e basic conc | cepts of conserva | tion of biodiver  | sity.      |              |  |  |  |  |  |
| CO4     | The studen  | ts will be abl                                      | e to unders  | tand the basic c  | oncept of sustain | nable deve | lopment.     |  |  |  |  |  |

## UNIT I

The multidisciplinary nature of environmental studies.Definition, Scope and Importance. Need for public awareness. Natural Resources: Renewable and Non-Renewable Resources: Natural resources and associated problems.

- (a) Forest Resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
- (b) Water Resources- Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- (c) Mineral Resources- Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- (d) Food Resources- World Food Problems, changes caused by agriculture and overgazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- (e) Energy Resources- Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- (f) Land Resources- Land as a resource, land, degradation, man induced landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyle.

## UNIT II

**Ecosystem-Concept** of ecosystem.Sturcture and function of an an ecosystem.Producers, consumers and decomposers. Energy flow in the ecosystem. Ecological Succession. Food Chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem-

- a. Forest Ecosystem
- b. Grassland Ecosystem
- c. Desert Ecosystem
- d. Aquatic Ecosystems(ponds, streams, lakes, rivers, oceans, estuaries

Field Work. Visit to a local area to document Environment assetsriver/forest/grassland/hill/mountain.Visit to a local polluted site- Urban /Rural Industrial/Agricultural. Study of common plants, insects and birds. Study of simple ecosystems-pond, river, hill, slopes etc. (Field work equal to 5 lecture hours).

#### **UNIT III**

**Biodiversity and its conservation**. Introduction, Definition: genetic, species and ecosystem diversity. Biogeographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversityof global, National and local levels. India as a mega-diversity nation Hot spots of Biodiversity. Threats to biodiversity: Habitat loss, poaching of wild life, man-wildlife conflicts. Endangered and endemic species of India.Conservation of Biodiversity- In situ and Ex-Situ conservation of biodiversity.

**Environmental Pollution Definition**. Cause, effects and control measures of- (a) Air Pollution (b) Water Pollution (c) Soil Pollution (d) Marine Pollution (e) Noise Pollution (f) Thermal Pollution (g) Nuclear Hazards

Solid waste management- cause, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution.Pollution case studies. Disaster management: floods, earthquake, cyclone and landslides

#### UNIT IV

Social Issues and the Environment. From unsustainable to sustainable development.

Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people: Its problems and concerns. Case Studies.

**Environmental ethics-issues and possible solutions**. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies.Wasteland Reclamation.Consumerism and waste products.

**Environment Protection Act**.Air (Prevention and Control of Pollution) Act.Water (Prevention and Control of Pollution) Act.Wildlife Protection Act.Forest Conservation Act. Issues involved in enforcement of environmental legislation. Public Awareness.

**Human population and the Environment**.Population growth, variation among nations. Population explosion-Family Welfare Programme. Environment and human health.

Human rights.Value Education.HIV/AIDS, Women and Child Welfare.Role of Information Technology in Environment and Human Health.Case Studies.Drugs and

their effects; Useful and harmful drugs; Use and abuse of drugs; Stimulant and depressan drugs. Concept of drug de-addiction. Legal position on drugs and laws related to drugs.

## **Text Books**

- 1. Environmental Studies- Deswal and Deswal. Dhanpat Rai & Co.
- 2. Environmental Science & Engineering Anandan, P. and Kumaravelan, R. 2009. Scitech Publications (India) Pvt. Ltd., India
- 3. Environmental Studies. Daniels Ranjit R. J. and Krishnaswamy. 2013. Wiley India.
- 4. Environmental Science- Botkin and Keller. 2012. Wiley, India

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

|              | U<br>(A Constituent Autonomou:<br>(Establic<br>Phon                                                              | DEPARTMENT OF MECHANICAL ENGINEERING<br>UNIVERSITY INSTITUTE OF ENGINEERING & TECHNOLOGY (U.I.E.T)<br>(A Constituent Autonomous Institute and Recognized by UGC under Section 12 (B) and 2 (f)); AICTE Approved; TEQIP-III)<br>Kurukshetra University, Kurukshetra (K.U.K) – 136119, Haryana, INDIA<br>(Established by the state Legislature Act XII of 1956; 'A+' Grade, NAAC Accredited)<br>Phone: +91-1744-239155, Fax: +91-1744- | NICAL ENGINEERING<br>ERING & TECHNOLOGY (U.I.E.T)<br>under Section 12 (B) and 2 (f)); AICTI<br><.U.K) – 136119, Haryana, INDIA<br><.U.K) – 1365; 'A+' Grade, NAAC Accredit<br>http://www.uietkuk.org | )<br>NCTE Approved; TEQIP-III)<br>redited)<br>org                                                        |
|--------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Ä            | Definition of Credit:                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                          |
|              |                                                                                                                  | 1 Hour Lecture (L) per week                                                                                                                                                                                                                                                                                                                                                                                                          | 1 credit                                                                                                                                                                                             |                                                                                                          |
|              |                                                                                                                  | 1Hour Tutorial (T) per week                                                                                                                                                                                                                                                                                                                                                                                                          | 1 credit                                                                                                                                                                                             |                                                                                                          |
|              |                                                                                                                  | 1 Hour Practical (P) per week                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5 credit                                                                                                                                                                                           |                                                                                                          |
|              |                                                                                                                  | 2 Hours Practical (Lab) per week                                                                                                                                                                                                                                                                                                                                                                                                     | 1 credit                                                                                                                                                                                             |                                                                                                          |
| A <b>B</b> . | <ul> <li>B. Range of Credits:</li> <li>A total credit of 160 is required for a student to be eligible</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                      | eree in <b>Mechanical Engineering</b> . A stu                                                                                                                                                        | to get Under Graduate degree in Mechanical Engineering. A student will be eligible to get Under Graduate |

degree (B.Tech.) with Honours, if he/she completes an additional 20 credits. These could be acquired through MOOCs at Swayam portal or with in-house examination being conducted. In order to have an Honours degree, a student may choose minimum 20 credits provided that the student must ensure the course is approved by the Competent Authority, Government of India.

| Bachelor of Technology (Mechanical Engineering), UIET, KUK | Credit-Based (2018-19 Onwards) |  |
|------------------------------------------------------------|--------------------------------|--|
| Bachelor of Technology (Mechanical Engin                   | Credit-Based (2018-19 Onwa     |  |

SCHEME OF STUDIES/EXAMINATIONS (Semester -II)

| Introduction to Electromagnetic theory3:1:0Chemistry3:1:0Chemistry3:1:0Programming for Problem Solving3:0:0English3:0:0English2:0:0Manufacturing Processes Workshop0:0:3Biology2:1:0Electromagnetics Lab0:0:3Electromagnetics Lab0:0:3Chemistry Lab0:0:3Programming for Problem Solving Lab0:0:2LProgramming for Problem Solving Lab0:0:2LElectrical Engineering Lab0:0:2LBasic Electrical Engineering Lab0:0:2LBasic Electrical Engineering Lab0:0:2LEngineering Graphics & Design Practice0:0:2LLanguage Lab0:0:2LLanguage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ś          | Course No./ Subject | Subject                                    | L:T:P   | Hours/ | Credits | Exa        | Examination Schedule (Marks) | edule (Marks |       | Duration of     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|--------------------------------------------|---------|--------|---------|------------|------------------------------|--------------|-------|-----------------|
| BS-119         Introduction to Electromagnetic theory $3:1:0$ $4$ $4$ $75$ $25$ $0$ $100$ $100$ BS-101         Chemistry $3:1:0$ $4$ $4$ $75$ $25$ $0$ $100$ $100$ BS-101         Engramming for Problem Solving $3:1:0$ $4$ $4$ $75$ $25$ $0$ $100$ $100$ ES-105         English $2:0:0$ $2:0:0$ $2:0:0$ $2:0:0$ $2:0:0$ $1:00$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No.        | Code                |                                            |         | Week   |         | Major Test | Minor Test                   | Practical    | Total | exam<br>(Hours) |
| BS-101         Chemistry $3:1:0$ $4$ $4$ $75$ $26$ $0$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ <th< td=""><td>1A</td><td>BS-119</td><td>Introduction to Electromagnetic theory</td><td>3:1:0</td><td>4</td><td>4</td><td>75</td><td>25</td><td>0</td><td>100</td><td>m</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1A         | BS-119              | Introduction to Electromagnetic theory     | 3:1:0   | 4      | 4       | 75         | 25                           | 0            | 100   | m               |
| ES-105         Programming for Problem Solving $3:0:0$ $3:0:0$ $3:0:0$ $3:0:0$ $3:0:0$ $100$ $100$ $100$ HM-101         English         2:0:0 $2:0:0$ $2:0:0$ $2:0:0$ $2:0:0$ $2:0:0$ $100$ $100$ $100$ BS-136         Caloulus & Ordinary Differential Equations $3:1:0$ $4$ $75$ $25$ $0$ $100$ $100$ BS-136         Caloulus & Ordinary Differential Equations $3:1:0$ $4$ $75$ $25$ $0$ $100$ $100$ BS-131         Bauidectical Engineering $1:2:0$ $3$ $1:5$ $$ $40$ $60$ $100$ $100$ BS-111         Bauidectical Engineering $1:2:0$ $3$ $3$ $1:5$ $$ $40$ $60$ $100$ $100$ BS-111         Bauidectical Engineering $2:1:0$ $3$ $3$ $1:5$ $$ $2:0$ $0$ $100$ BS-121L         Bauic Electrical Engineering $0:0:3:3$ $3:1:5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>1</b> B | BS-101              | Chemistry                                  | 3:1:0   | 4      | 4       | 75         | 25                           | 0            | 100   | m               |
| HM-101English $2:0:0$ $2$ $2$ $7$ $5$ $5$ $0$ $100$ $100$ BS-136Calculus & Ordinary Differential Equations $3:1:0$ $4$ $4$ $75$ $25$ $0$ $100$ $100$ ES-109Engineering Graphics & Design $1:2:0$ $3$ $3$ $3$ $3$ $75$ $25$ $0$ $100$ $100$ ES-111Manufacturing Processes Workshop $0:0:3$ $3$ $1.5$ $ 40$ $60$ $100$ $100$ BS-131Biology $2:1:0$ $3$ $3$ $1.5$ $ 40$ $60$ $100$ $100$ BS-131Basic Electrical Engineering $4:1:0$ $5$ $5$ $75$ $25$ $0$ $100$ $100$ BS-131LElectromagnetics Lab $0:0:3$ $3$ $1.5$ $ 200$ $300$ $50$ $100$ BS-131LElectromagnetics Lab $0:0:3$ $3$ $1.5$ $ 200$ $300$ $50$ $100$ BS-101LProgramming for Problem Solving Lab $0:0:3$ $3$ $1.5$ $ 200$ $300$ $50$ $100$ BS-103LBasic Electrical Engineering Lab $0:0:3$ $3$ $1.5$ $ 200$ $300$ $50$ $100$ BS-103LBasic Electrical Engineering Lab $0:0:3$ $3$ $1.5$ $ 20$ $30$ $50$ $100$ BS-103LBasic Electrical Engineering Lab $0:0:3$ $3$ $1.5$ $ 20$ $30$ $50$ <t< td=""><td>2A</td><td>ES-105</td><td>Programming for Problem Solving</td><td>3:0:0</td><td>e</td><td>e</td><td>75</td><td>25</td><td>0</td><td>100</td><td>m</td></t<>                                                                                                                                                                                                                           | 2A         | ES-105              | Programming for Problem Solving            | 3:0:0   | e      | e       | 75         | 25                           | 0            | 100   | m               |
| BS-136         Calculus & Ordinary Differential Equations         3:1:0         4         75         25         0         100         100           ES-109         Engineering Graphics & Design         1:2:0         3         3         75         25         0         100         100           ES-111         Manufacturing Processes Workshop         0:0:3         3         1.5         -         40         60         100         100           BS-141         Biology         2:1:0         3         3         1.5         -         40         60         100         100         100           BS-141         Biology         2:1:0         3         3         1.5         -         40         60         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td>2B</td> <td>HM-101</td> <td>English</td> <td>2:0:0</td> <td>2</td> <td>2</td> <td>75</td> <td>25</td> <td>0</td> <td>100</td> <td>m</td> | 2B         | HM-101              | English                                    | 2:0:0   | 2      | 2       | 75         | 25                           | 0            | 100   | m               |
| ES-109         Engineering Graphics & Design         1:2:0         3         3         75         25         0         100         100           ES-111         Manufacturing Processes Workshop         0:0:3         3         1.5          40         60         100         100           BS-141         Biology         2:1:0         3         3         1.5          40         60         100         100           BS-141         Biology         2:1:0         3         3         1.5          40         60         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <t< td=""><td>e</td><td>BS-136</td><td>Calculus &amp; Ordinary Differential Equations</td><td>3:1:0</td><td>4</td><td>4</td><td>22</td><td>25</td><td>0</td><td>100</td><td>m</td></t<> | e          | BS-136              | Calculus & Ordinary Differential Equations | 3:1:0   | 4      | 4       | 22         | 25                           | 0            | 100   | m               |
| ES-111         Manufacturing Processes Workshop $0:0:3$ $3$ $1.5$ $ 40$ $60$ $100$ $100$ BS-141         Biology $2:1:0$ $3$ $3$ $75$ $25$ $0$ $100$ $100$ BS-101         Basic Electrical Engineering $4:1:0$ $5$ $5$ $75$ $25$ $0$ $100$ $100$ BS-101         Basic Electrical Engineering $4:1:0$ $5$ $5$ $5$ $7$ $2:0$ $30$ $50$ $100$ BS-101         Estormagnetics Lab $0:0:3$ $3$ $1.5$ $$ $20$ $30$ $50$ $100$ BS-103L         Programming for Problem Solving Lab $0:0:3$ $3$ $1.5$ $$ $20$ $30$ $50$ $100$ $100$ BS-103L         Basic Electrical Engineering Lab $0:0:2$ $2$ $1$ $$ $20$ $30$ $50$ $100$ $100$ ES-103L         Basic Electrical Engineering Lab $0:0:2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4A         | ES-109              | Engineering Graphics & Design              | 1:2:0   | e      | e       | 22         | 25                           | 0            | 100   | m               |
| BS-141         Biology $2:1:0$ $3$ $3$ $75$ $25$ $0$ $100$ $100$ ES-101         Basic Electrical Engineering $4:1:0$ $5$ $5$ $75$ $25$ $0$ $100$ $100$ BS-121L         Electromagnetics Lab $0:0:3$ $3$ $1.5$ $$ $20$ $30$ $50$ $50$ BS-103L         Chemistry Lab $0:0:3$ $3$ $1.5$ $$ $20$ $30$ $50$ $50$ BS-103L         Programming for Problem Solving Lab $0:0:3$ $3$ $1.5$ $$ $20$ $30$ $50$ $50$ ES-107L         Programming for Problem Solving Lab $0:0:3$ $3$ $1.5$ $$ $20$ $30$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ $50$ <td< td=""><td>4B</td><td>ES-111L</td><td>Manufacturing Processes Workshop</td><td>0:0:3</td><td>e</td><td>1.5</td><td>T</td><td>40</td><td>60</td><td>100</td><td>m</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4B         | ES-111L             | Manufacturing Processes Workshop           | 0:0:3   | e      | 1.5     | T          | 40                           | 60           | 100   | m               |
| ES-101       Basic Electrical Engineering $4:1:0$ $5$ $5$ $75$ $25$ $0$ $100$ $100$ BS-121L       Electromagnetics Lab $0:0:3$ $3$ $1.5$ $$ $20$ $30$ $50$ $50$ BS-103L       Chemistry Lab $0:0:3$ $3$ $1.5$ $$ $20$ $30$ $50$ $50$ BS-107L       Programming for Problem Solving Lab $0:0:3$ $2$ $1$ $$ $20$ $30$ $50$ $50$ $50$ BS-107L       Basic Electrical Engineering Lab $0:0:2$ $2$ $1$ $$ $20$ $30$ $50$ $50$ ES-103L       Basic Electrical Engineering Lab $0:0:2$ $2$ $1$ $$ $20$ $30$ $50$ $50$ HM-103L       Engineering Graphics & Design Practice $0:0:2$ $2$ $1$ $$ $20$ $30$ $50$ $50$ HM-103L       Language Lab $0:0:2$ $2$ $1$ $$ $20$ $30$ $50$ $50$ $50$ $50$ $50$ <td>5A</td> <td>BS-141</td> <td>Biology</td> <td>2:1:0</td> <td>e</td> <td>e</td> <td>52</td> <td>25</td> <td>0</td> <td>100</td> <td>m</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5A         | BS-141              | Biology                                    | 2:1:0   | e      | e       | 52         | 25                           | 0            | 100   | m               |
| BS-121L         Electromagnetics Lab $0:0:3$ $3$ $1.5$ $$ $20$ $30$ $50$ $50$ BS-103L         Chemistry Lab $0:0:3$ $3$ $1.5$ $$ $20$ $30$ $50$ $50$ BS-103L         Programming for Problem Solving Lab $0:0:3$ $3$ $1.5$ $$ $20$ $30$ $50$ $50$ ES-103L         Basic Electrical Engineering Lab $0:0:2$ $2$ $1$ $$ $20$ $30$ $50$ $50$ ES-103L         Basic Electrical Engineering Lab $0:0:2$ $2$ $1$ $$ $20$ $30$ $50$ $50$ ES-103L         Engineering Craphics & Design Practice $0:0:2$ $2$ $1$ $$ $20$ $30$ $50$ $50$ HM-103L         Language Lab $0:0:2$ $2$ $1$ $$ $20$ $30$ $50$ $50$ HM-103L         Language Lab         Total $2$ $2$ $2$ $2$ <td< td=""><td>5B</td><td>ES-101</td><td>Basic Electrical Engineering</td><td>4:1:0</td><td>£</td><td>ۍ</td><td>52</td><td>25</td><td>0</td><td>100</td><td>e</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5B         | ES-101              | Basic Electrical Engineering               | 4:1:0   | £      | ۍ       | 52         | 25                           | 0            | 100   | e               |
| BS-103L       Chemistry Lab       0:0:3       3       1.5        20       30       50       50         ES-107L       Programming for Problem Solving Lab       0:0:2       2       1        20       30       50       50         ES-103L       Basic Electrical Engineering Lab       0:0:2       2       1        20       30       50       50         ES-113L       Engineering Craphics & Design Practice       0:0:3       3       1.5        20       30       50       50         HM-103L       Language Lab       0:0:2       2       1        20       30       50       50         HM-103L       Total       12:5:8/       25/       21.0/       375/       185/200       90/150       650A/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6A         | BS-121L             | Electromagnetics Lab                       | 0:0:3   | e      | 1.5     | ł          | 20                           | 30           | 50    | m               |
| ES-107L         Programming for Problem Solving Lab         0:0:2         2         1          20         30         50         50           ES-103L         Basic Electrical Engineering Lab         0:0:2         2         1          20         30         50         50           ES-113L         Engineering Graphics & Design Practice         0:0:3         3         1.5          20         30         50         50           HM-103L         Language Lab         0:0:2         2         1          20         30         50         50           Total         Total         Total         12:5:8/         25/         21.0/         375/         185/200         90/150         650A/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6B         | BS-103L             | Chemistry Lab                              | 0:0:3   | e      | 1.5     | ł          | 20                           | 30           | 50    | m               |
| ES-103L       Basic Electrical Engineering Lab       0:0:2       2       1        20       30       50       50         ES-113L       Engineering Graphics & Design Practice       0:0:3       3       1.5        20       30       50       50         HM-103L       Language Lab       0:0:2       2       1        20       30       50       50         Total       Total       12:5:8/       25/       21.0/       375/       185/200       90/150       650A/         Total       Total       12:5:8/       25       20.0       300       50       50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ٦A         | ES-107L             | Programming for Problem Solving Lab        | 0:0:2   | 2      | ~       | ł          | 20                           | 30           | 50    | m               |
| ES-113L       Engineering Graphics & Design Practice       0:0:3       3       1.5        20       30       50         HM-103L       Language Lab       0:0:2       2       1        20       30       50       50         Total       Total       12:5:8/       25/       21.0/       375/       185/200       90/150       650A/         12:3:10       25       20.0       300       90       650B/       650B/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7B         | ES-103L             | Basic Electrical Engineering Lab           | 0:0:2   | 2      | ~       | ł          | 20                           | 30           | 50    | m               |
| HM-103L         Language Lab         0:0:2         2         1          20         30         50           Total         12:5:8/         25/         21.0/         375/         185/200         90/150         650A/           Total         12:3:10         25         20.0         300         650A/         650B/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8A         | ES-113L             | Engineering Graphics & Design Practice     | 0:0:3   | e      | 1.5     | ł          | 20                           | 30           | 50    | m               |
| 12:5:8/         25/         21.0/         375/         185/200         90/150           12:3:10         25         20.0         300         300         12300         12300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8B         | HM-103L             | Language Lab                               | 0:0:2   | 2      | ~       | I          | 20                           | 30           | 50    | m               |
| 25 20.0 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                     | Total                                      | 12:5:8/ | 25/    | 21.0/   | 375/       | 185/200                      | 90/150       | 650A/ |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                     |                                            | 12:3:10 | 25     | 20.0    | 300        |                              |              | 650B  |                 |

Note: (1) A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. Marked B in one particular semester. (2) All students have to undertake the industrial training for 4 to 6 weeks after 2<sup>nd</sup> semester which will be evaluated in 3rd semester BACHELOR OF TECHNOLOGY (MECHANICAL ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA SCHEME OF STUDIES/EXAMINATION

# SEMESTER III (w.e.f. session 2019-2020)

| S. No.  | Course No.       | Course Name                                                                                                                                                      | L:T:P       | Hours/<br>Week | Credits        | Exal            | mination Sc   | Examination Schedule (Marks) | -ks)       | Duration<br>of Exam<br>(Hrs ) |
|---------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|----------------|-----------------|---------------|------------------------------|------------|-------------------------------|
|         |                  |                                                                                                                                                                  |             |                |                | Major<br>Test   | Minor<br>Test | Practical                    | Total      |                               |
| F       | BS-201           | Optics & Waves                                                                                                                                                   | 3:0:0       | e              | 3              | 52              | 25            | 0                            | 100        | 3                             |
| 2       | BS-204           | Higher Engineering Mathematics                                                                                                                                   | 3:0:0       | с              | 3              | 75              | 25            | 0                            | 100        | 3                             |
| က       | ES-203           | Basic Electronics Engineering                                                                                                                                    | 3:0:0       | n              | с              | 75              | 25            | 0                            | 100        | 3                             |
| 4       | MEC-201          | Theory of Machines                                                                                                                                               | 3:1:0       | 4              | 4              | 75              | 25            | 0                            | 100        | 3                             |
| 5       | MEC-203          | Mechanics of Solids-I                                                                                                                                            | 3:1:0       | 4              | 4              | 75              | 25            | 0                            | 100        | 3                             |
| 9       | MEC-205          | Thermodynamics                                                                                                                                                   | 3:1:0       | 4              | 4              | 75              | 25            | 0                            | 100        | 3                             |
| 7       | MEC-207L         | Theory of Machines Lab                                                                                                                                           | 0:0:2       | 2              | <b>~</b>       | 0               | 40            | 60                           | 100        | 3                             |
| ω       | MEC-209L         | Mechanics of Solids Lab                                                                                                                                          | 0:0:2       | 2              | <b>~</b>       | 0               | 40            | 60                           | 100        | 3                             |
| თ       | *MEC-211         | Industrial Training-I                                                                                                                                            | 2:0:0       | 2              | ı              | 1               | 100           | 1                            | 100        |                               |
| 10      | **MC-901         | Environmental Sciences                                                                                                                                           | 3:0:0       | e              | ı              | 22              | 25            | 0                            | 100        | 3                             |
|         |                  |                                                                                                                                                                  | Total       | 30             | 23             | 450             | 230           | 120                          | 800        |                               |
| *MEC_01 | 11 is a mandator | *MEP 311 is a mandatory non-credit course in which the students will be avaluated for the industrial training undergroup after 2nd semester and students will be | - avaluated | 4 for the inc  | Auctrial trair | propulsion puic | one offer 7   | nd comoctor ,                | and childo | ate will be                   |

MEC-211 is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 2nd semester and students will be required to get passing marks to qualify. \*\*MC-901 is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

10(540)

BACHELOR OF TECHNOLOGY (MECHANICAL ENGINEERING) CREDIT BASED

# KURUKSHETRA UNIVERSITY KURUKSHETRA SCHEME OF STUDIES/EXAMINATION

SEMESTER IV (w.e.f. session 2019-2020)

| S. No. | Course No. | Course Name                             | L:T:P | Hours/<br>Week | Credits | Examination | Examination Schedule (Marks) | ks)       |       | Duration<br>of Exam<br>(Hrs.) |
|--------|------------|-----------------------------------------|-------|----------------|---------|-------------|------------------------------|-----------|-------|-------------------------------|
|        |            |                                         |       |                |         | Major Test  | Minor Test                   | Practical | Total |                               |
| -      | ES-204     | Materials Engineering                   | 3:0:0 | e              | с       | 75          | 25                           | 0         | 100   | ę                             |
| 2      | MEC-202    | Applied Thermodynamics                  | 3:0:0 | e              | e       | 75          | 25                           | 0         | 100   | с<br>С                        |
| e      | MEC-204    | Fluid Mechanics & Fluid Machines        | 3:1:0 | 4              | 4       | 75          | 25                           | 0         | 100   | S                             |
| 4      | MEC-206    | Mechanics of Solids-II                  | 3:1:0 | 4              | 4       | 75          | 25                           | 0         | 100   | S                             |
| 5      | MEC-208    | Instrumentation& Control                | 3:0:0 | e              | n       | 75          | 25                           | 0         | 100   | e                             |
| 9      | ES-206L    | Materials Engineering Lab               | 0:0:2 | 2              | F       | 0           | 40                           | 60        | 100   | e                             |
| 7      | MEC-210L   | Fluid Mechanics & Fluid Machines<br>Lab | 0:0:2 | 2              | -       | 0           | 40                           | 60        | 100   | e.                            |
| ω      | *MC-902    | Constitution of India                   | 3:0:0 | 33             | ı       | 75          | 25                           | 1         | 100   | e                             |
|        |            |                                         | Total | 24             | 19      | 375         | 205                          | 120       | 700   |                               |

\*MC-902 is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

Note: All the students have to undergo 4 to 6 weeks Industrial Training after 4th semester which will be evaluated in 5th semester.

10(541)

## **Third Semester**

|                 | В           | . Tech (3rd        | Semester) I   | Mechanical   | Engineerin    | ng           |             |  |  |  |  |
|-----------------|-------------|--------------------|---------------|--------------|---------------|--------------|-------------|--|--|--|--|
| <b>BS - 201</b> |             |                    | Ор            | tics and Wa  | aves          |              |             |  |  |  |  |
| L               | Т           | Р                  | Credit        | Major        | Minor         | Total        | Time        |  |  |  |  |
|                 |             |                    |               | Test         | Test          |              |             |  |  |  |  |
| 3               | -           | -                  | 3             | 75           | 25            | 100          | 3h          |  |  |  |  |
| Purpose         | To introd   | uce the fur        | ndamentals    | of wave an   | nd optics for | or the appli | ications in |  |  |  |  |
|                 | Engineerin  | Engineering field. |               |              |               |              |             |  |  |  |  |
|                 |             |                    | Course (      | Dutcomes     |               |              |             |  |  |  |  |
| CO 1            | Familiariz  | e with basic       | c phenomen    | on used in p | ropagation    | of waves.    |             |  |  |  |  |
| CO 2            | Introduce   | the fundam         | nentals of in | nterference, | diffraction,  | polarization | n and their |  |  |  |  |
|                 | application | ns.                |               |              |               |              |             |  |  |  |  |
| CO 3            | To make t   | he students        | aware to the  | e importance | e of Laser in | technology   | <i>.</i>    |  |  |  |  |

#### Unit - I

**Waves:** Travelling waves, Characteristics of waves, Mathematical representation of travelling waves, General wave equation, Phase velocity, Light source emit wave packets, Wave packet and Bandwidth, Group velocity and real light waves.

**Propagation of light waves:** Maxwell's equations, Electromagnetic waves and constitutive relations, Wave equation for free-space, Uniform plane waves, Wave polarization, Energy density, the pointing vector and intensity, Radiation pressure and momentum, Light waves at boundaries, Wave incident normally on boundary, Wave incident obliquely on boundary: law of reflection, Snell's law and reflection coefficients.

#### Unit - II

**Interference:** Principle of Superposition, Conditions for Sustained interference, Young's double slit experiment, Division of wave-front: Fresnel's Biprism and its applications, Division of amplitude: Interference due to reflected and transmitted light, Wedge-shaped thin film, Newton's rings and its applications, Michelson Interferometer and its applications.

#### Unit – III

**Diffraction:** Types of diffraction, Fraunhofer diffraction at a single slit, Plane transmission diffraction grating: theory, secondary maxima and secondary minima, width of principal maxima, absent spectra, overlapping of spectral lines, determination of wavelength; Dispersive power and resolving power of diffraction grating.

**Polarization:** Polarization of transverse waves, Plane of polarization, Polarization by reflection, Double refraction, Nicol Prism, Quarter and half wave plate, Specific Rotation, Laurent 's half shade polarimeter, Biquartzpolarimeter.

#### Unit – IV

**Laser:** Stimulated Absorption, Spontaneous and Stimulated Emission; Einstein's Coefficients and its derivation, Population Inversion, Direct and Indirect pumping, Pumping

schemes, Main components of Laser, Gas lasers (He-Ne, CO<sub>2</sub>), Solid state lasers (Ruby, Neodymium, semiconductor), Dye laser, Characteristics of Laser, Applications of Laser.

#### Text/Reference Books:

- 1. P.K. Diwan, Applied Physics for Engineers, Wiley India Pvt. Ltd., India
- 2. N. Subrahmanyam, B. Lal, M.N. Avadhanulu, A Textbook of Optics, S. Chand & Company Ltd., India.
- 3. A. Ghatak, Optics, McGraw Hill Education(India) Pvt. Ltd., India.
- 4. E. Hecht, A.R. Ganesan, Optics, Pearson India Education Services Pvt. Lt., India.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

|               |                                                                                         | B. Tech (3rd    | Semester)      | Mechanica    | al Engineer    | ing           |                    |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------|-----------------|----------------|--------------|----------------|---------------|--------------------|--|--|--|--|
| <b>BS-204</b> |                                                                                         | HIGH            | IER ENGI       | NEERING      | MATHEN         | IATICS        |                    |  |  |  |  |
| Lecture       | Tutorial                                                                                | Practical       | Credits        | Theory       | Sessional      | Total         | Time               |  |  |  |  |
| 3             | -                                                                                       | -               | 3              | 75           | 25             | 100           | 3 h                |  |  |  |  |
| Purpose       | The objective                                                                           | of this course  | is to familia  | rize the pro | spective Engi  | ineers with L | aplace Transform,  |  |  |  |  |
|               | partial differe                                                                         | ential equatio  | ns which       | allow det    | erministic n   | nathematical  | formulations of    |  |  |  |  |
|               | phenomena in                                                                            | engineering p   | rocesses and   | l to study n | umerical me    | thods for the | e approximation of |  |  |  |  |
|               | their solution. I                                                                       | More precisely  | , the objectiv | es are as un | ider:          |               |                    |  |  |  |  |
|               |                                                                                         |                 | Course         | Outcomes     |                |               |                    |  |  |  |  |
| CO 1          | Introduction about the concept of Laplace transform and how it is useful in solving the |                 |                |              |                |               |                    |  |  |  |  |
|               | definite integr                                                                         | als and initia  | l value prob   | lems.        |                |               |                    |  |  |  |  |
| CO 2          | To introduce                                                                            | the Partia      | Different      | ial Equati   | ons, its fo    | rmation an    | nd solutions for   |  |  |  |  |
|               | multivariable                                                                           | differential e  | quations ori   | ginated fro  | m real world   | l problems.   |                    |  |  |  |  |
| CO 3          | To introduce                                                                            | the tools of n  | umerical me    | ethods in a  | comprehens     | sive manner   | those are used in  |  |  |  |  |
|               | approximating                                                                           | g the solution  | s of various   | engineerin   | ng problems.   |               |                    |  |  |  |  |
| CO 4          | To familiar v                                                                           | with essential  | tool of N      | umerical d   | lifferentiatio | n and Integ   | gration needed in  |  |  |  |  |
|               | approximate s                                                                           | solutions for t | he ordinary    | differentia  | l equations.   | -             |                    |  |  |  |  |

#### UNIT-I

#### Laplace Transform

Laplace Transform, Laplace Transform of Elementary Functions, Basic properties of Laplace Transform, Laplace transform of periodic functions, finding inverse Laplace transform by different methods, Convolution theorem, solving ODEs by Laplace Transform method.

#### UNIT-2

#### **Partial Differential Equations**

Formation of Partial Differential Equations, Solutions of first order linear and non-linear PDEs, Charpit's method, Solution to homogenous linear partial differential equations (with constant coefficients) by complimentary function and particular integral method.

#### UNIT-3

#### Numerical Methods-1

Solution of polynomial and transcendental equations: Bisection method, Newton-Raphson method and Regula-Falsi method, Finite differences, Relation between operators, Interpolation using Newton's forward and backward difference formulae. Interpolation with unequalintervals: Newton's divided difference and Lagrange's formulae.

#### UNIT-4

#### Numerical Methods-2

Numerical Differentiation using Newton's forward and backward difference formulae, Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules, Ordinary differential equations: Taylor's series, Euler and modified Euler's methods. Runge-Kutta method of fourth order for solving first and second order equations.

#### Textbooks/References:

- 1. S. J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Publications, 1993. AICTE Model Curriculum in Mathematics.
- 2. R. Haberman, Elementary Applied Partial Differential equations with Fourier Series and Boundary Value Problem, 4th Ed., Prentice Hall, 1998.

- 3. Ian Sneddon, Elements of Partial Differential Equations, McGraw Hill, 1964.
- 4. Manish Goyal and N.P. Bali, Transforms and Partial Differential Equations, University Science Press, Second Edition, 2010.
- 5. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- 6. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.
- 7. Veerarajan T., Engineering Mathematics, Tata McGraw-Hill, New Delhi, 2008.
- 8. P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numerical Methods, S. Chand & Company, 2nd Edition, Reprint 2012.
- 9. S.S. Sastry, Introductory methods of numerical analysis, PHI, 4th Edition, 2005.
- 10. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 11. Erwin Kreyszig and Sanjeev Ahuja, Applied Mathematics-II, Wiley India Publication, Reprint, 2015.

Note: The examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

|           |              | B. Tech (3 <sup>rd</sup> | Semester)    | Mechanical E       | ngineering         |             |               |  |  |  |
|-----------|--------------|--------------------------|--------------|--------------------|--------------------|-------------|---------------|--|--|--|
| ES-203    |              | Ba                       | sic Electro  | onics Engineer     | ing                |             |               |  |  |  |
| Lecture   | Tutorial     | Practical                | Credits      | Major Test         | Minor Test         | Total       | Time<br>(Hrs) |  |  |  |
| 3         | 0            | 0                        | 3            | 75                 | 25                 | 100         | 3             |  |  |  |
|           |              |                          |              |                    |                    |             |               |  |  |  |
| Purpose : | To provide   | e an overv               | iew of ele   | ctronic devices    | s and compon       | ients to    | Mechanical    |  |  |  |
| -         | engineering  | engineering students.    |              |                    |                    |             |               |  |  |  |
|           |              |                          | Course       | Outcomes           |                    |             |               |  |  |  |
| CO 1      | To introduc  | e the basic              | electronics  | devices along w    | vith their applica | itions.     |               |  |  |  |
| CO 2      | To become    | familiar with            | n basic ope  | rational amplifie  | r circuits with a  | oplications | and           |  |  |  |
|           | oscillators. |                          |              |                    |                    | •           |               |  |  |  |
| CO 3      | To underst   | and the fund             | lamentals o  | f digital electror | nics.              |             |               |  |  |  |
| CO 4      | To become    | familiar with            | n basic elec | troniccommunic     | cation system.     |             |               |  |  |  |

#### UNIT-I

**Semiconductor Devices and Applications**: Introduction to P-N junction Diode and V-Icharacteristics, Half wave and Full-wave rectifiers, capacitor filter. Zener diode and its characteristics, Zener diode as voltage regulator. BJT structure, its input-output and transfer characteristics, BJT as a Common Emitter amplifier, frequency response and bandwidth.

#### UNIT-II

**Operational amplifier and its applications:** Introduction to operational amplifiers, inverting, noninverting and differential modes, basic parameters of Op-amp, Op-amp in open loop configuration, study of practical op-amp IC 741, Op-amp applications: adder, subtractor, scale changer, averaging amplifer, comparator, integrator and differentiator.

**Timing Circuits and Oscillators:** IC 555 timer pin diagram: Astableand mono-stable operation, Barkhausen's criteria for oscillations, R-C phase shift and Wein bridge oscillators using BJT and Op-Amp and their frequency of oscillation.

#### UNIT-III

**Digital Electronics Fundamentals** : Difference between analog and digital signals, Booleanalgebra, Basic and Universal Gates, Symbols, Truth tables, logic expressions, Logic simplification using K-maps, Logic ICs, half and full adder, multiplexers, de-multiplexers, flip-flops, basic counters.

#### UNIT-IV

Electronic Communication Systems: The elements of communication system,

Transmission media: wired and wireless, need of modulation, AM and FM modulation schemes, Mobile communication systems: cellular concept and block diagram of GSM system.

#### Text Books:

- 1. Integrated Electronics, Millman&Halkias (Mc-Graw Hill)
- 2. Electronics Devices & Circuit Theory, RL Boylestead& L Nashelsky (PHI)

#### **Reference Books:**

- 1. Modern Digital Electronics, R P Jain, Tata McGraw Hill.
- 2. Electronic Communication Systems, G. Kennedy, McGraw Hill, 4th Edition

|          |                                                                                 | B. Tech (3 <sup>rd</sup> S | Semester) M     | echanical E  | ngineering    |               |              |  |  |  |
|----------|---------------------------------------------------------------------------------|----------------------------|-----------------|--------------|---------------|---------------|--------------|--|--|--|
| MEC-201  |                                                                                 |                            | THEORY OF       | MACHINES     | S             |               |              |  |  |  |
| Lecture  | Tutorial                                                                        | Practical                  | Credits         | Major        | Minor         | Total         | Time         |  |  |  |
|          |                                                                                 |                            |                 | Test         | Test          |               | (Hrs)        |  |  |  |
| 3        | 1                                                                               | 0                          | 4               | 75           | 25            | 100           | 3            |  |  |  |
|          |                                                                                 |                            |                 |              |               |               |              |  |  |  |
| Purpose: |                                                                                 |                            |                 |              | us types of I |               |              |  |  |  |
| -        | obtaining specific motion, their analysisand applicability for optimal function |                            |                 |              |               |               |              |  |  |  |
|          |                                                                                 | Course Outcomes            |                 |              |               |               |              |  |  |  |
| CO 1     | To understa                                                                     | and the kinem              | natics of simp  | le mechanis  | sms and meth  | ods of deter  | mining the   |  |  |  |
|          | link velociti                                                                   | es.                        |                 |              |               |               | U            |  |  |  |
| CO 2     | To understa                                                                     | and the accel              | eration of diff | erent mecha  | anisms and p  | rofilegenerat | ion of cams  |  |  |  |
|          | and followe                                                                     | ers.                       |                 |              | ·             | Ū             |              |  |  |  |
| CO 3     | To unders                                                                       | tand the co                | ncepts of s     | tatic and d  | lynamic force | e analysis    | of different |  |  |  |
|          |                                                                                 | is and balanc              |                 |              |               | 5             |              |  |  |  |
| CO 4     | To familiari                                                                    | ze with gear,              | gear trains, b  | elts and cha | ain drives.   |               |              |  |  |  |

UNIT-I

**Simple Mechanisms:** Introduction to mechanism and machine, Kinematic links, pairs and chains, Mobility of mechanisms, Equivalent mechanisms, Four bar chain, Inversion of four bar chain, slider crank chain and inversions.

**Velocity Analysis:**Determination of link velocities, Relative velocity method, Velocities in four bar mechanism, Slider crank mechanism, crank and slotted lever mechanism and quick return motion mechanism, Instantaneous center method: Types & location of instantaneous centers, Arnold Kennedy theorem, methods of locating instantaneous centers, steering gear mechanisms. Problems.

#### UNIT-II

**Acceleration Analysis:**Acceleration of a point on a link, four bar mechanism and slider crank mechanism, Coriolis component of acceleration, Klein's construction, Problems.

**Cams and Followers:**Classification & terminology, Cam profile by graphical methods with knife edge and radial roller follower for uniform velocity, simple harmonic, constant acceleration and deceleration and cycloidal motion of followers, Problems.

#### UNIT-III

**Static and Dynamic Force Analysis:**constraints and applied forces, static equilibrium, equilibrium of two and three-force member, equilibrium of four-forces and torque, free body diagrams. Dynamic Force Analysis:D'Alembert'sprinciple, equivalent offset interia force, Dynamic analysis of four-link,Dynamic analysis of slider-crank mechanisms, velocity and acceleration of piston, angular velocity and angular acceleration of connecting rod, turning moment on crank shaft, turning moment diagrams, fluctuation of energy, flywheels, Problems.

**Balancing:**rotating masses: Static and Dynamic Balancing, Single Rotating mass, Many Masses rotating in same plane and in different planes. Analytical method for balancing of rotating masses.Reciprocating masses: Balancing of reciprocating engine, Balancing of Multi-cylinder in line engines, balancing machines.

#### UNIT-IV

**Belts and Chain Drives:**classifications of belt, law of belting, Length of open and cross flat belt, Ratio of tensions, Centrifugal tension, power transmission, condition for maximum power transmission, creep of belt, V-belt drives: driving tensions, Chain drives: classifications, terminology of chains, kinematics of chains, Problems.

**Gears and Gear Trains:**Classification & terminology, Law of gearing, Tooth forms & comparisons, Length of path of contact, Contact ratio, Interference & undercutting in involute gear teeth, Minimum number of teeth on gear and pinion to avoid interference. Gear Trains:simple, compound, reverted andplanetary gear trains, Problems.

#### Text Books:

- 1. Theory of Mechanisms and Machines: Amitabha Ghosh and Ashok Kumar Mallik, Third Edition Affiliated East-West Press.
- 2. Thomas Bevan, Theory of Machines, 3rd edition, CBS Publishers & Distributors, 2005.
- 3. Cleghorn W.L., Mechanisms of Machines, Oxford University Press, 2005. 3. Robert L. Norton, Kinematics and Dynamics of Machinery, Tata McGrawHill, 2009.
- 4. Theory of Machines and Mechanisms: Joseph Edward Shigley and John Joseph Uicker, Jr. Second Edition, MGH, New York.

#### **Reference Books:**

- 1. Mechanism and Machine Theory: J.S. Rao and R.V. Dukkipati Second Edition New age International.
- 2. Theory and Machines: S.S. Rattan, Tata McGraw Hill.
- 3. Kinematics of Machines-Dr. Sadhu Singh, Pearson Education

|         |              | B. Tec                                                                              | h. (3rd Seme   | ster) Mecha   | nical Engine   | ering        |              |  |  |  |  |
|---------|--------------|-------------------------------------------------------------------------------------|----------------|---------------|----------------|--------------|--------------|--|--|--|--|
| MEC-203 |              |                                                                                     | MECHA          | NICS OF SC    | LIDS-I         |              |              |  |  |  |  |
| Lecture | Tutorial     | Practical                                                                           | Credits        | Major         | Minor          | Total        | Time         |  |  |  |  |
|         |              |                                                                                     |                | Test          | Test           |              | (Hrs.)       |  |  |  |  |
| 3       | 1            | 0                                                                                   | 4              | 75            | 25             | 100          | 3            |  |  |  |  |
|         | 1            |                                                                                     |                |               |                |              |              |  |  |  |  |
| Purpose | ,            |                                                                                     |                |               | idents aware   |              |              |  |  |  |  |
|         |              |                                                                                     |                |               | s, shafts and  |              |              |  |  |  |  |
|         |              |                                                                                     | idents to bu   | ild the funda | amental conc   | epts in ord  | ler to solve |  |  |  |  |
|         | engineering  | problems.                                                                           |                |               |                |              |              |  |  |  |  |
|         | •            | Course Outcomes                                                                     |                |               |                |              |              |  |  |  |  |
| CO1     |              | Apply fundamental principles of mechanics & principles of equilibrium to simple and |                |               |                |              |              |  |  |  |  |
|         |              |                                                                                     |                |               | entroid and n  |              |              |  |  |  |  |
|         |              |                                                                                     |                |               | ind its import | ance. Expla  | in the basic |  |  |  |  |
|         | concepts of  | stress and st                                                                       | rain and solv  | e the problen | ns             |              |              |  |  |  |  |
| CO 2    |              |                                                                                     |                |               | esses. Expre   |              |              |  |  |  |  |
|         |              | •                                                                                   | ent of beam    | s. Construc   | t shear force  | e and bend   | ing moment   |  |  |  |  |
|         | diagram for  | beams.                                                                              |                |               |                |              |              |  |  |  |  |
| CO 3    |              |                                                                                     |                |               | and able to    |              |              |  |  |  |  |
|         | torsion of o | circular shaft                                                                      | . Illustrate a | nd solve the  | e problems (   | on bending   | and shear    |  |  |  |  |
|         | stresses on  |                                                                                     |                |               |                |              |              |  |  |  |  |
| CO 4    | Solve the p  | problems on                                                                         | column and     | strut and D   | erive the der  | rivations an | d solve the  |  |  |  |  |
|         | problems or  | n slope and d                                                                       | eflection.     |               |                |              |              |  |  |  |  |

Unit-I

**Introduction:** Force, types of forces, Characteristics of a force, System of forces, Composition and resolution of forces, forces in equilibrium, principle and laws of equilibrium, Free body diagrams, Lami's Theorem, equations of equilibrium, Concept of center of gravity and centroid, centroid of various shapes: Triangle, circle, semicircle and trapezium, theorem of parallel and perpendicular axes, moment of inertia of simple geometrical figures, polar moment of inertia. Numerical Problems

**Simple Stresses & Strains**: Concept & types of Stresses and strains, Poisson's ratio, stresses and strain in simple and compound bars under axial loading, stress strain diagrams, Hook's law, elastic constants & their relationships, temperature stress & strain in simple & compound bars under axial loading, Numerical problems.

#### Unit-II

**Principle Stresses**: Two dimensional systems, stress at a point on a plane, principal stresses and principal planes, Mohr's circle of stresses, Numerical Problems.

**Shear Force & Bending Moments**: Definitions, SF & BM diagrams for cantilevers, simply supported beams with or without over-hang and calculation of maximum BM & SF and the point of contraflexture under (i) concentrated loads, (ii) uniformly distributed loads over whole span or a part of it, (iii)combination of concentrated loads and uniformly distributed loads, (iv) uniformly varying loads and (v) application of moments, relation between the rate of loading, the shear force and the bending moments, Numerical Problems.

#### . Unit-III

**Torsion of Circular Members**: Derivation of equation of torsion, Solid and hollow circular shafts, tapered shaft, stepped shaft & composite circular shafts, Numerical problems.

**Flexural and Shear Stresses** – Theory of simple bending, Assumptions, derivation of equation of bending, neutral axis, determination of bending stresses, section modulus of rectangular & circular (solid & hollow), I,T, Angle, channel sections, composite beams, shear stresses in beams with derivation, shear stress distribution across various beam sections like rectangular, circular, triangular, I, T, angle sections. combined bending and torsion, equivalent torque,. Numerical problems.

#### Unit-IV

**Columns & Struts:** Column under axial load, concept of instability and buckling, slenderness ratio, derivation of Euler's formula for crippling load for columns of different ends, concept of equivalent length, eccentric loading, Rankine formulae and other empirical relaions, Numerical problems.

**Slope & Deflection**: Relationship between bending moment, slope & deflection, moment area method, method of integration, Macaulay's method, calculations for slope and deflection of (i) cantilevers and (ii) simply supported beams with or without overhang under concentrated load, Uniformly distributed loads or combination of concentrated and uniformly distributed loads, Numerical problems.

#### Text Books:

- 1. Strength of Materials R.K. Rajput, Dhanpat Rai & Sons.
- 2. Strength of Materials Sadhu Singh, Khanna Publications.
- 3. Strength of Materials R.K. Bansal, Laxmi Publications.

#### **Reference Books:**

- 1. Strength of Materials Popov, PHI, New Delhi.
- 2. Strength of Materials Robert I. Mott, Pearson, New Delhi
- 3. Strength of Material Shaums Outline Series McGraw Hill
- 4. Strength of Material Rider ELBS

|         |                                          | B. Te            | ch. (3 <sup>rd</sup> seme | ster) Mecha   | nical Engine   | ering        |                |  |  |  |
|---------|------------------------------------------|------------------|---------------------------|---------------|----------------|--------------|----------------|--|--|--|
| MEC-205 |                                          |                  | THE                       | RMODYNAN      | NICS           |              |                |  |  |  |
| Lecture | Tutorial                                 | Practical        | Credits                   | Major         | Minor          | Total        | Time           |  |  |  |
|         |                                          |                  |                           | Test          | Test           |              | (Hrs.)         |  |  |  |
| 3       | 1                                        | 0                | 4                         | 75            | 25             | 100          | 3              |  |  |  |
|         |                                          |                  |                           |               |                |              |                |  |  |  |
| Purpose | The object                               | ive of this co   | urse is to m              | ake the stud  | ents aware o   | of Energy, E | intropy, and   |  |  |  |
| -       | Equilibrium                              | , various laws   | s of thermody             | namics, con   | cepts and pri  | nciples. The | e course will  |  |  |  |
|         | help the st                              | udents to build  | d the fundam              | ental concep  | ts to apply in | various appl | lications like |  |  |  |
|         | IC engines and Air conditioning systems. |                  |                           |               |                |              |                |  |  |  |
|         |                                          |                  | Course Ou                 | utcomes       |                |              |                |  |  |  |
| CO 1    | Analyze th                               | e work and he    | eat interaction           | ns associated | d with a preso | cribed proce | ss path and    |  |  |  |
|         | to perform                               | an analysis of   | a flow syster             | n.            | •              | •            | ·              |  |  |  |
| CO 2    | Define the                               | fundamentals     | s of the first a          | and second    | laws of therm  | nodynamics   | and explain    |  |  |  |
|         |                                          | ation to a wide  |                           |               |                | 1            | •              |  |  |  |
| CO 3    |                                          | ntropy change    | <u> </u>                  |               | esses and de   | etermine the | reversibility  |  |  |  |
|         |                                          | bility of a proc |                           |               |                |              | ,              |  |  |  |
| CO 4    |                                          | problems rela    |                           |               |                | n H-S and T  | -S diagram.    |  |  |  |
|         |                                          | d thermodynai    |                           |               |                |              | 5              |  |  |  |
| L       |                                          | j                |                           |               |                |              |                |  |  |  |

#### Unit-I

**Basic Concepts:** Thermodynamics: Macroscopic and Microscopic Approach, Thermodynamic Systems, Surrounding and Boundary, Thermodynamic Property – Intensive and Extensive, Thermodynamic Equilibrium, State, Path, Process and Cycle, Quasi-static, Reversible and Irreversible Processes, Working Substance. Concept of Thermodynamic Work and Heat, Zeroth Law of Thermodynamic and its utility.

**First Law of Thermodynamics:** Energy and its Forms, Energy and 1st law of Thermodynamics, Internal Energy and Enthalpy, 1st Law Applied to Non-Flow Process, Steady Flow Process and Transient Flow Process, Throttling Process and Free Expansion Process.

#### Unit-II

**Second Law of Thermodynamics:** Limitations of First Law, Thermal Reservoir Heat Source and Heat Sink, Heat Engine, Refrigerator and Heat Pump, Kelvin- Planck and Clausius Statements and Their Equivalence, Perpetual Motion Machine of Second Kind. Carnot Cycle, Carnot Heat Engine and Carnot Heat Pump, Carnot's Theorem and its Corollaries, Thermodynamic Temperature Scale, Numericals **Entropy**: Clausius Inequality and Entropy Principle of Entropy Increase. Temperature Entropy Plot

**Entropy:**Clausius Inequality and Entropy, Principle of Entropy Increase, Temperature-Entropy Plot, Entropy Change in Different Processes, Introduction to Third Law of thermodynamics.

#### Unit -III

**Availability, Irreversibility and Equilibrium:** High and Low Grade Energy, Available Energy and Unavailable Energy, Loss of Available Energy Due to Heat Transfer Through a Finite Temperature Difference, Availability of a Non-Flow or Closed System, Availability of a Steady Flow System, Helmholtz and Gibb's Functions, Effectiveness and Irreversibility.

**Pure Substance:** Pure Substance and its Properties, Phase and Phase Transformation, Vaporization, Evaporation and Boiling, Saturated and Superheated Steam, Solid – Liquid – Vapour Equilibrium, T-V, P-V and P-T Plots During Steam Formation, Properties of Dry, Wet and Superheated Steam, Property Changes During Steam Processes, Temperature – Entropy (T-S) and Enthalpy – Entropy (H-S) Diagrams, Throttling and Measurement of Dryness Fraction of Steam.

#### Unit-IV

**Thermodynamic Relations:** TDS Relations, Enthalpy and Internal Energy as a Function of Independent Variables, Specific Heat Capacity Relations, Clapeyron Equation, Maxwell Relations.

**Gas Power Cycles:** Air standard efficiency, Otto cycle, Diesel cycle, Dual cycle, Atkinson cycle, Stirling and Ericsson cycles, Brayton or Joule cycle, Lenoir cycle

#### Text Books:

- 1. Engineering Thermodynamics C P Arora, Tata McGraw Hill
- 2. Engineering Thermodynamics P K Nag, Tata McGraw Hill
- 3. Thermodynamics An Engineering Approach; Y. A. Cengel, M. A. Boles; Tata McGraw Hill **Reference Books:**
- 1. Thermal Science and Engineering D S Kumar, S K Kataria and Sons
- 2. Engineering Thermodynamics -Work and Heat transfer G F C Rogers and Maghew
- Y R Longman

|           |            | B.T             | ech (3 <sup>rd</sup> Se | mester) M   | echanical  | Engineering    | 9           |            |  |  |  |
|-----------|------------|-----------------|-------------------------|-------------|------------|----------------|-------------|------------|--|--|--|
| MEC-207L  |            |                 | THEC                    | DRY OF M    | ACHINES    | LAB            |             |            |  |  |  |
| Lecture   | Tutorial   | Practical       | Credits                 | Major       | Minor      | Practical      | Total       | Time       |  |  |  |
|           |            |                 |                         | Test        | Test       |                |             | (Hrs)      |  |  |  |
| 0         | 0          | 2               | 1                       | 0           | 40         | 60             | 100         | 3          |  |  |  |
|           |            |                 |                         |             |            |                |             |            |  |  |  |
| Purpose : | To famili  | arize and       | practice th             | ne studen   | ts with v  | arious kind    | s of me     | chanisms   |  |  |  |
| -         | andmachi   | nes.            | -                       |             |            |                |             |            |  |  |  |
|           |            | Course Outcomes |                         |             |            |                |             |            |  |  |  |
| CO 1      | To learn   | about vario     | ous types o             | of basic m  | echanism   | & their appl   | ications in | different  |  |  |  |
|           | machines   |                 |                         |             |            |                |             |            |  |  |  |
| CO 2      | To study   | the effect o    | f static and            | l dynamic   | force on t | he compone     | nts of sin  | gle slider |  |  |  |
|           | crank me   |                 |                         | 5           |            | •              |             |            |  |  |  |
| CO 3      | To find gy | roscopic cou    | ple of a mo             | torized gyr | oscope ex  | perimentally.  |             |            |  |  |  |
| CO 4      |            |                 |                         |             |            | ar trains, ste |             | ems, belt  |  |  |  |
|           |            | akes and dyr    |                         |             | 0          |                | 5 5         |            |  |  |  |
|           |            | 5               |                         |             |            |                |             |            |  |  |  |

#### List of experiments

- 1. To study inversions of 4 bar mechanisms, single and double slider crank mechanisms.
- 2. To determine the ratio of times and tool velocities of Whitworth quick-return mechanism.
- 3. To plot slider displacement, velocity and acceleration against crank rotation for single slider crank mechanism.
- 4. To find out experimentally the Coriolis component of acceleration and compare with theoretical value.
- 5. To determine the moment of inertia of a flywheel.
- 6. To plot follower displacement v/s cam rotation for various cam follower systems.
- 7. To find gyroscopic couple on motorized gyroscope and compare with applied couple.
- 8. To calculate the torque on planet carrier and torque on internal gear using epicycle gear train and holding torque apparatus.
- 9. To determine the coefficient of friction between belt and pulley and plot a graph between log  $_{10}$   $T_1/T_2$  v/s  $\theta$
- 10. To study the different types of centrifugal and inertia governor with demonstration.
- 11. To study different types of brakes and dynamometers with demonstration.
- 12. To study various types of steering mechanisms.

**Note:**At least eight experiments are required to be performed by students from the above list and two may be performed from the experiments developed by the institute.

|          |              | B.                                                                                                                                                                     | Tech. (3 <sup>rd</sup> | semester) I  | Mechanical E    | ngineering     |          |           |  |  |  |  |
|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|-----------------|----------------|----------|-----------|--|--|--|--|
| MEC-209L |              |                                                                                                                                                                        | MEC                    | HANICS O     | F SOLIDS L      | AB             |          |           |  |  |  |  |
| Lecture  | Tutorial     | Practical                                                                                                                                                              | Credits                | Major        | Minor           | Practical      | Total    | Time      |  |  |  |  |
|          |              |                                                                                                                                                                        |                        | Test         | Test            |                |          | (Hrs.)    |  |  |  |  |
| 0        | 0            | 2                                                                                                                                                                      | 1                      | 0            | 40              | 60             | 100      | 3         |  |  |  |  |
|          |              |                                                                                                                                                                        |                        |              |                 |                |          |           |  |  |  |  |
| Purpose  | To make      | the studer                                                                                                                                                             | its aware              | of differe   | nt properties   | s of materia   | l using  | different |  |  |  |  |
|          | experime     | nts.                                                                                                                                                                   |                        |              |                 |                |          |           |  |  |  |  |
|          |              |                                                                                                                                                                        | Cours                  | se Outcom    | es              |                |          |           |  |  |  |  |
| C01      | Ability to c | bility to design and conduct experiments, acquire data, analyze and interpret data<br>bility to determine the behavior of ferrous metals subjected to normal and shear |                        |              |                 |                |          |           |  |  |  |  |
| CO 2     | Ability to   | determine th                                                                                                                                                           | ne behavio             | or of ferrou | us metals su    | ibjected to n  | ormal ar | nd shear  |  |  |  |  |
|          | stresses b   | by means of e                                                                                                                                                          | experiment             | S.           |                 |                |          |           |  |  |  |  |
| CO 3     | Ability to   | determine th                                                                                                                                                           | ne behavio             | or of struct | ural element    | s, such as b   | ars subj | ected to  |  |  |  |  |
|          | tension, c   | ompression,                                                                                                                                                            | shear, ben             | iding, and t | orsion by me    | ans of experir | nents.   |           |  |  |  |  |
| CO 4     | Physical     | insight into                                                                                                                                                           | the beh                | avior mate   | erials and s    | tructural ele  | ments, i | ncluding  |  |  |  |  |
|          | distributio  | n of stresses                                                                                                                                                          | and strain             | s, deformat  | tions and failu | ire modes.     |          |           |  |  |  |  |
| CO5      |              |                                                                                                                                                                        |                        |              |                 | describe test  | procedu  | ures and  |  |  |  |  |
|          | results, sy  | nthesize and                                                                                                                                                           | discuss th             | ne test resu | lts.            |                |          |           |  |  |  |  |

#### List of Experiments:

- 1. To study the Brinell hardness testing machine & perform the Brinell hardness test.
- 2. To study the Rockwell hardness testing machine & perform the Rockwell hardness test.
- 3. To study the Vickers hardness testing machine & perform the Vickers hardness test.
- 4. To study the Erichsen sheet metal testing machine & perform the Erichsen sheet metal test.
- 5. To study the Impact testing machine and perform the Impact tests (Izod&Charpy).
- 6. To study the Universal testing machine and perform the tensile, compression & bending tests.
- 7. To perform the shear test on UTM.
- 8. To study the torsion testing machine and perform the torsion test.
- 9. To draw shear Force, Bending Moment Diagrams for a simply Supported Beam under point and distributed Loads.
- 10. To prepare the composite specimen using hot compression molding machine and test for different mechanical properties.

**Note:** At least eight experiments are required to be performed by students from the above list and two may be performed from the experiments developed by the institute.

|         |            | B                     | Tech. (3rd   | semester) I  | Mechanical E   | ngineering    |             |           |  |  |  |
|---------|------------|-----------------------|--------------|--------------|----------------|---------------|-------------|-----------|--|--|--|
| MEC-211 |            |                       | IN           | DUSTRIAL     | TRAINING       | 1             |             |           |  |  |  |
| Lecture | Tutorial   | Practical             | Credits      | Major        | Minor          | Practical     | Total       | Time      |  |  |  |
|         |            |                       |              | Test         | Test           |               |             | (Hrs.)    |  |  |  |
| 2       | 0          | 0                     |              |              | 100            |               | 100         |           |  |  |  |
|         |            |                       |              |              |                |               |             |           |  |  |  |
| Purpose | To provid  | e comprehei           | nsive learni | ing platforn | n to students  | where they o  | can enhai   | nce their |  |  |  |
| -       | employ al  | bility skills ar      | d exposure   | e to the ind | ustrial enviro | onment.       |             |           |  |  |  |
|         |            | Course Outcomes       |              |              |                |               |             |           |  |  |  |
| C01     | Capability | <i>i</i> to acquire a | ind apply fu | undamenta    | l principles o | f engineering |             |           |  |  |  |
| CO 2    | Become u   | updated with          | all the late | st changes   | in technolog   | gical world.  |             |           |  |  |  |
| CO 3    | Capability | and enthu             | isiasm for   | self-impro   | ovement three  | ough continu  | ous prof    | fessional |  |  |  |
|         |            | ent and life-l        |              |              |                | 0             |             |           |  |  |  |
| CO 4    | Awarenes   | ss of the so          | ocial, cultu | iral, global | and enviro     | onmental res  | ponsibility | y as an   |  |  |  |
|         | engineer.  |                       |              | 5            |                |               |             |           |  |  |  |

**Note:**MEC-211 is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 2<sup>nd</sup> semester and students will be required to get passing marks to qualify.

The candidate has to submit a training report of his/her work/project/assignment completed in the industry during the training period. The evaluation will be made on the basis of submitted training report and viva-voce/presentation.

|         |                      | B.Tec             | h. (3 <sup>rd</sup> seme | ester) Mechanic | al Engineering   |           |            |
|---------|----------------------|-------------------|--------------------------|-----------------|------------------|-----------|------------|
| MC-901  |                      |                   | Enviro                   | nmental Scien   | ces              |           |            |
| Lecture | Tutorial             | Practical         | Credits                  | Major Test      | Minor Test       | Total     | Time       |
| 3       | 0                    | 0                 | -                        | 75              | 25               | 100       | 3 Hrs.     |
| Purpose | To learn t sciences. | he multidiscip    | olinary natu             | ire, scope ar   | nd importance    | of Env    | ironmental |
|         |                      |                   | Course O                 | utcomes         |                  |           |            |
| CO1     | The student          | ts will be able t | o learn the              | importance of ı | natural resourc  | es.       |            |
| CO2     | To learn the         | e theoretical an  | d practical              | aspects of eco  | system.          |           |            |
| CO3     | Will be able         | to learn the ba   | asic concep              | ts of conservat | ion of biodivers | sity.     |            |
| CO4     | The student          | ts will be able t | o understar              | nd the basic co | ncept of sustai  | nable dev | elopment.  |

#### UNIT I

**The Multidisciplinary Nature of Environmental Studies**. Definition, Scope and Importance. Need for public awareness. Natural Resources: Renewable and Non-Renewable Resources: Natural resources and associated problems.

- (a) Forest Resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
- (b) Water Resources- Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- (c) Mineral Resources- Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- (d) Food Resources- World Food Problems, changes caused by agriculture and overgazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- (e) Energy Resources- Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- (f) Land Resources- Land as a resource, land, degradation, man induced landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources, equitable use of resources for sustainable lifestyle.

#### UNIT II

**Ecosystem-Concept of an Ecosystem**. Structure and function of an ecosystem. Producers, consumers and decomposers. Energy flow in the ecosystem. Ecological Succession. Food Chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem-

- a. Forest Ecosystem
- b. Grassland Ecosystem
- c. Desert Ecosystem
- d. Aquatic Ecosystems(ponds, streams, lakes, rivers, oceans, estuaries

Field Work. Visit to a local area to document Environment assets-river/forest/grassland/hill/mountain. Visit to a local polluted site- Urban /Rural Industrial/Agricultural. Study of common plants, insects and birds. Study of simple ecosystems-pond, river, hill, slopes etc. (Field work equal to 5 lecture hours).

#### UNIT III

**Biodiversity and Its Conservation**. Introduction, Definition: genetic, species and ecosystem diversity. Biogeographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Bio-diversity of global, National and local levels. India as a mega-diversity nation Hot spots of Biodiversity. Threats to biodiversity: Habitat loss, poaching of wild life, man-wildlife conflicts. Endangered and endemic species of India. Conservation of Biodiversity- In situ and Ex-Situ conservation of biodiversity.

**Environmental Pollution Definition**. Cause, effects and control measures of- (a) Air Pollution (b) Water Pollution (c) Soil Pollution (d) Marine Pollution (e) Noise Pollution (f) Thermal Pollution (g) Nuclear Hazards

Solid waste management- cause, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution. Pollution case studies. Disaster management: floods, earthquake, cyclone and landslides

#### UNIT IV

**Social Issues and the Environment**. From unsustainable to sustainable development. Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people: Its problems and concerns. Case Studies.

**Environmental Ethics-Issues and Possible Solutions**. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies. Wasteland Reclamation. Consumerism and waste products.

**Environment Protection Act**. Air (Prevention and Control of Pollution) Act. Water (Prevention and Control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act. Issues involved in enforcement of environmental legislation. Public Awareness.

**Human Population and the Environment**. Population growth, variation among nations. Population explosion-Family Welfare Programme. Environment and human health. Human rights. Value Education. HIV/AIDS, Women and Child Welfare. Role of Information Technology in Environment and Human Health. Case Studies. Drugs and their effects; Useful and harmful drugs; Use and abuse of drugs; Stimulant and depressan drugs. Concept of drug de-addiction. Legal position on drugs and laws related to drugs.

#### Text Books

- 1. Environmental Studies- Deswal and Deswal. Dhanpat Rai & Co.
- 2. Environmental Science & Engineering Anandan, P. and Kumaravelan, R. 2009. Scitech Publications (India) Pvt. Ltd., India

#### Reference Books:

- 1. Environmental Studies. Daniels Ranjit R. J. and Krishnaswamy. 2013. Wiley India.
- 2. Environmental Science- Botkin and Keller. 2012. Wiley , India

### **Fourth Semester**

|          |                            | B.Tech                             | . (4 <sup>th</sup> Semest | er) Mechani    | cal Enginee   | ring           |                |
|----------|----------------------------|------------------------------------|---------------------------|----------------|---------------|----------------|----------------|
| ES-204   |                            |                                    | MATERIA                   | LS ENGINEI     | ERING         |                |                |
| Lecture  | Tutorial                   | Practical                          | Credits                   | Major<br>Test  | Minor<br>Test | Total          | Time<br>(Hrs.) |
| 3        | 0                          | 0                                  | 3                         | 75             | 25            | 100            | 3              |
|          |                            |                                    |                           |                |               |                |                |
| Purpose: |                            | and internal s<br>bout Metallog    |                           |                |               | erent types of | of materials   |
|          |                            |                                    | CourseOu                  | itcomes        |               |                |                |
| CO 1     | To understar               | nd the Crystal                     | structures ar             | nd deformation | on mechanisn  | n in various   | materials.     |
| CO 2     | ,                          | ious types of  <br>ut different he | 0                         |                | e and Iron ca | arbon diagra   | m.             |
| CO 3     | To learn abo<br>materials. | ut the failure                     | mechanisms                | like Creep ar  | nd Fatigue an | d designatio   | on of          |
| CO 4     | 5                          | sics of Metallo<br>erial characte  | 0 1 5                     |                | e involved in | the working    | of various     |

UNITI

Crystallography: ReviewofCrystalStructure,SpaceLattice,CoordinationNumber,NumberofAtomsperUnitCell,AtomicPackingFactor;Numerical Problems Related toCrystallography.

**Imperfection in Metal Crystals:** Crystal Imperfections and their Classifications, Point Defects,LineDefects,Edge&ScrewDislocations,SurfaceDefects,VolumeDefects.

**Introduction to Engineering materials and Standard Materials Designation:** Introduction to Engineering materials, Steel Terminology, Standard Designation System for Steels, Indian Standard specifications for steels as per BIS: Based on Ultimate Tensile Strength and based on Composition, AISI-SAE standard designation for Steels and Aluminium Alloys

#### UNIT II

**PhaseDiagrams:**Alloy Systems, Solid solutions, Hume Rothery's Rules, Intermediate phases, Phase Diagrams, Gibbs Phase Rule, Cooling curves, TheLever Rule, binary phasediagrams, Applications of Phase Diagrams, PhaseTransformation, Micro constituents of Fe-Csystem, Allotropic FormsofIron, Iron-ironcarbide phase diagram, ModifiedIron CarbonPhaseDiagrams, Isothermal Transformation, TTT Curve,

**Heat Treatment:** Heattreatmentof steels, Annealing, Normalising, Hardening, Tempering, Case Hardening, Ageing, Austemperingand Martempering, Surface Hardening, Mass Effect, Equipments for Heat Treatment, Major Defects in Metalsor Alloys due to faulty Heattreatment.

#### UNIT III

**DeformationofMetal:** ElasticandPlasticDeformation,MechanismofPlasticDeformation, Slip; Critical Resolved Shear Stress, Twinning,ConventionalandTrue Stress Strain Curvesfor Polycrystalline Materials,Yield Point Phenomena, Bauschinger Effect, Work Hardening.

**FailureofMaterials:** Fatigue, Fatiguefracture, fatiguefailure, MechanismofFatigueFailure, FatigueLifecalculations, Fatigue Tests, Theories of Fatigue.

**Creep**:CreepCurve,TypesofCreep,Factorsaffecting Creep, Mechanismof Creep,CreepResistantMaterial,Creep Fracture,CreepTest,StressRupture test.

#### UNITIV

Introduction to Metallography: Metallography, Phase analysis, Dendritic growth, Cracks and other defects Corrosion analysis, Intergranular attack (IGA), Coating thickness and integrity, Inclusion size, shape and distribution, Weld and

heat-affected zones (HAZ), Distribution and orientation of composite fillers, Graphite nodularity, Intergranular fracturing

**Materials CharacterizationTechniques:** Characterization techniques suchas X-Ray Diffraction (XRD), Scanning Electron Microscopy, transmission electron microscopy, atomicforce microscopy, scanning tunneling microscopy, Atomicabsorption spectroscopy.

#### **Text Books:**

- 1. Material SciencebyS.L.Kakani, New AgePublishers.
- 2. TheScienceand EngineeringofMaterials, DonaldR. Askeland , Chapman&Hall.
- 3. Fundamentals of Material Science and EngineeringbyW. D. Callister, Wiley.
- 4. FundamentalofLightMicroscopyandElectronicImagingbyDouglasB.Murphy, Kindle Edition 2001
- 5. Materials Science and Engineering, V. Raghvan
- 6. Phase Transformation in Metals and Alloys, D. A. Porter & K.E. Easterling

#### **Reference Books:**

- 7. Material SciencebyNarula, TMH
- 8. Metallographic Handbook by Donald C. Zipperian, Pace Technologies, USA.
- 9. RobertCahnConciseEncyclopediaofMaterialsCharacterization,SecondEdition:2nd Edition (Advances inMaterials Scienceand Engineering) Elsevier Publication 2005.
- 10. Smart Materials and Structures by Gandhi and Thompson, Chapman and Hall.

|          |                                                                                        | B. Tech. (4th Semester) Mechanical Engineering |                 |               |              |             |                   |  |  |
|----------|----------------------------------------------------------------------------------------|------------------------------------------------|-----------------|---------------|--------------|-------------|-------------------|--|--|
| MEC-202  |                                                                                        | APPLIED THERMODYNAMICS                         |                 |               |              |             |                   |  |  |
| Lecture  | Tutorial                                                                               | Practical                                      | Credits         | Major         | Minor        | Total       | Time (Hrs.)       |  |  |
|          |                                                                                        |                                                |                 | Test          | Test         |             |                   |  |  |
| 3        | 0                                                                                      | 0                                              | 3               | 75            | 25           | 100         | 3                 |  |  |
| Purpose: | This cours                                                                             | e aims to pr                                   | ovide a plat    | form to stuc  | lents to und | erstand, mo | odel and analyze  |  |  |
|          |                                                                                        |                                                |                 |               |              |             | are them to carry |  |  |
|          | out experimental investigation and analysis of problems related to applied             |                                                |                 |               |              |             |                   |  |  |
|          | thermodyn                                                                              | amics.                                         |                 |               |              |             |                   |  |  |
|          | -                                                                                      |                                                | Course          | Outcomes      |              |             |                   |  |  |
| CO1      | Understand                                                                             | d the working                                  | g of boilers, t | types of boil | ers, accesso | ries and m  | ountings used on  |  |  |
|          | boilers.                                                                               | boilers.                                       |                 |               |              |             |                   |  |  |
| CO 2     | Learn about simple and modified Rankine cycles.                                        |                                                |                 |               |              |             |                   |  |  |
| CO 3     | Understand the design and analysis of steam flow through steam nozzles. To learn about |                                                |                 |               |              |             |                   |  |  |
|          | the working of different types of condensers.                                          |                                                |                 |               |              |             |                   |  |  |
| CO 4     |                                                                                        |                                                |                 |               | rbine and ap | ply the kno | wledge in solving |  |  |
|          | the engine                                                                             | ering problen                                  | ns of turbines  | S.            |              |             |                   |  |  |

UNITI

**Steam Generators:** Introduction; classification of boilers; comparison of fire tube and water tube boiler; their advantages; description of boiler; Lancashire; locomotive; Babcock; Wilcox etc.; boiler mountings; stop valve; safety valve; blow off valve; feed check etc.; water level indicator; fusible plug; pressure gauge; boiler accessories; feed pump; feed water heater; preheater; super heater; economizer; natural draught chimney design; artificial draught; stream jet draught; mechanical draught; calculation of boiler efficiency and equivalent evaporation.

#### UNIT II

**Vapour Power Cycles:** Simple and modified Rankine cycle; effect of operating parameters on Rankine cycle performance; effect of superheating; effect of maximum pressure; effect of exhaust pressure; reheating and regenerative Rankine cycle; types of feed water heater; reheat factor; binary vapour cycle. Simple steam engine, compound engine; function of various components.

#### UNIT III

**Steam Nozzle:** Function of steam nozzle; shape of nozzle for subsonic and supersonics flow of stream; variation of velocity; area of specific volume; steady state energy equation; continuity equation; nozzle efficiency; critical pressure ratio for maximum discharge; physical explanation of critical pressure; super saturated flow of steam; design of steam nozzle. Advantage of steam condensation; component of steam condensing plant; types of condensers; air leakage in condensers; Dalton's law of partial pressure; vacuum efficiency; calculation of cooling water requirement; air expansion pump.

#### UNIT IV

**Steam Turbines:** Introduction; classification of steam turbine; impulse turbine; working principle; compounding of impulse turbine; velocity diagram; calculation of power output and efficiency; maximum efficiency of a single stage impulse turbine; design of impulse turbine blade section; impulse, reaction turbine; working principle; degree of reaction; parsons turbine; velocity diagram; calculation of power output; efficiency of blade height; condition of maximum efficiency; internal losses in steam turbine; governing of steam turbine.

#### Text Books:

1. Thermal Engineering – P L Ballaney, Khanna Publishers.

2. Thermodynamics and Heat Engines vol II – R Yadav, Central Publishing House

3. Engineering Thermodynamics Work and Heat Transfer - G. F. C Rogers and Y. R. Mayhew, Pearson.

4. Applied Thermodynamics for Engineering Technologists - T. D. Eastop and A. McConkey, Pearson.

#### **Reference Books:**

- 1. Applied Thermodynamics for Engineering Technologists T D Eastop and A. McConkey, Pearson Education
- 2. Heat Engineering V P Vasandani and D S Kumar, Metropolitan Book Co Pvt Ltd.

|            | B. Tech. (4th Semester) Mechanical Engineering                                            |                                |               |                |                 |               |             |  |  |
|------------|-------------------------------------------------------------------------------------------|--------------------------------|---------------|----------------|-----------------|---------------|-------------|--|--|
| MEC-204    |                                                                                           | FLUID MECHANICS&FLUID MACHINES |               |                |                 |               |             |  |  |
| Lecture    | Tutorial                                                                                  | Practical                      | Credits       | Major          | Minor           | Total         | Time        |  |  |
|            |                                                                                           |                                |               | Test           | Test            |               |             |  |  |
| 3          | 1                                                                                         | 0                              | 4             | 75             | 25              | 100           | 3           |  |  |
| Purpose: T | o build a fund                                                                            | lamental und                   | erstanding of | concepts of    | Fluid Mechan    | ics and their | application |  |  |
| i          | n rotodynami                                                                              | c machines.                    | -             | -              |                 |               |             |  |  |
|            |                                                                                           |                                | Course O      | utcomes        |                 |               |             |  |  |
| CO1        | Upon comp                                                                                 | letion of this                 | course, stud  | lents will be  | able to apply   | mass and      | momentum    |  |  |
|            | conservation                                                                              | n laws to mat                  | hematically a | inalyze simple | e flow situatio | ns.           |             |  |  |
| CO2        | The studen                                                                                | ts will be ab                  | le to obtain  | solution for k | ooundary laye   | er flows usin | ng exact or |  |  |
|            | approximate methods.                                                                      |                                |               |                |                 |               |             |  |  |
| CO3        | The student                                                                               | ts will be abl                 | e to estimate | e the major a  | and minor los   | sses through  | pipes and   |  |  |
|            | learn to draw the hydraulic gradient and total energy lines.                              |                                |               |                |                 |               |             |  |  |
| CO4        | The students will be able to obtain the velocity and pressure variations in various types |                                |               |                |                 |               |             |  |  |
|            | of simple flows.                                                                          |                                |               |                |                 |               |             |  |  |
| CO5        | They will be                                                                              | e able to an                   | alyze the flo | w and evalu    | ate the perfo   | ormance of p  | oumps and   |  |  |
|            | turbines.                                                                                 |                                | 2             |                |                 |               |             |  |  |

Unit I

**Fluid Properties**: Definition of fluid, Newton's law of viscosity, Units and dimensions-Properties of fluids, mass density, weight density, specific volume, specific gravity, viscosity, compressibility, surface tension and capillarity.

**Fluid Kinematics:** Types of fluid flows, stream, streak and path lines; flow rate and continuity equation, differential equation of continuity in cartesian and polar coordinates, rotation and vorticity, circulation, stream and potential functions, flow net. Problems.

**Fluid Dynamics:** Concept of system and control volume, Euler's equation, Navier-Stokes equation, Bernoulli's equation and its practical applications, Impulse momentum equation. Problems.

#### Viscous Flow:

Unit II

gradient. Exact flow solutions, Couette and Poisuielle flow, laminar flow through circular conduits. Problems.

**Turbulent Flow Through Pipes:**Darcy Weisbach equation, friction factor, Moody's diagram, minor losses in pipes, hydraulic gradient and total energy lines, series and parallel connection of pipes, branched pipes; equivalent pipe, power transmission through pipes. Problems.

**Boundary Layer Flow:** Concept of boundary layer, measures of boundary layer thickness, Blasius solution, von-Karman momentum integral equation, laminar and turbulent boundary layer flows, separation of boundary layer and its control. Problems.

#### Unit III

**Dimensional Analysis:** Need for dimensional analysis – methods of dimension analysis – Dimensionless parameters – application of dimensionless parameters. Problems.

**Hydraulic Pumps:** Introduction, theory of Rotodynamic machines, Classification, various efficiencies, velocity components at entry and exit of the rotor, velocity triangles; Centrifugal pumps, working principle, work done by the impeller, minimum starting speed, performance curves, Cavitation in pumps, Reciprocating pumps, working principle, Indicator diagram, Effect of friction and acceleration, air vessels, Problems.

#### Unit IV

**Hydraulic Turbines:** Introduction, Classification of water turbines, heads and efficiencies, velocity triangles, Axial, radial and mixed flow turbines, Pelton wheel, Francis turbine and Kaplan turbines, working principles, work done, design of turbines, draft tube and types, Specific speed, unit quantities, performance curves for turbines, governing of turbines. Problems.

#### Text Books:

- 1. Introduction to Fluid Mechanics R.W. Fox, Alan T. McDonald, P.J. Pritchard, Wiley Publications.
- 2. Fluid Mechanics Frank M. White, McGraw Hill
- 3. Fluid Mechanics and Fluid Power Engineering D.S. Kumar, S.K. Kataria and Sons
- 4. Fluid Mechanics Streeter V L and Wylie E B, Mc Graw Hill
- 5. Introduction to Fluid Mechanics and Fluid Machines S.K. Som and G. Biswas, Tata McGraw Hill.

#### **Reference Books:**

- 1. Mechanics of Fluids I H Shames, Mc Graw Hill
- 2. Fluid Mechanics: Fundamentals and Applications YunusCengel and John Cimbala, McGraw Hill.
- 3. Fluid Mechanics: Pijush K. Kundu, Ira M. Cohen and David R. Rowling, Academic Press.

|                                                                                             | B. Tech. (4th Semester) Mechanical Engineering                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                             | MECHANICS OF SOLIDS-II                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Tutorial                                                                                    |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                             |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               | Test                                                                                                                                                                                                                                                                                                                                                                                      | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 1                                                                                           | 0                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                             | 75                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                             |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| The objective                                                                               | e of this cour                                                                                                                                                                                                | se is to show                                                                                                                                                                                                                                                                                                                                                                 | v the develop                                                                                                                                                                                                                                                                                                                                                                             | oment of stra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in energy a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd stresses in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| springs, pres                                                                               | ssure vessel,                                                                                                                                                                                                 | rings, links,                                                                                                                                                                                                                                                                                                                                                                 | curved bars                                                                                                                                                                                                                                                                                                                                                                               | under differe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ent loads. T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | he course will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| help the stu                                                                                | udents to bu                                                                                                                                                                                                  | ild the fund                                                                                                                                                                                                                                                                                                                                                                  | lamental cor                                                                                                                                                                                                                                                                                                                                                                              | ncepts in ord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ler to solv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| problems                                                                                    |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                             |                                                                                                                                                                                                               | Course (                                                                                                                                                                                                                                                                                                                                                                      | Outcomes                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Identify the b                                                                              | asics concep                                                                                                                                                                                                  | ots of strain e                                                                                                                                                                                                                                                                                                                                                               | nergy and va                                                                                                                                                                                                                                                                                                                                                                              | arious theories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s of failures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and solve the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| problems                                                                                    |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Differentiate different types of stresses induced in thin pressure vessel and solve the     |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| problems. U                                                                                 | se of Lame's                                                                                                                                                                                                  | s equation to                                                                                                                                                                                                                                                                                                                                                                 | o calculate th                                                                                                                                                                                                                                                                                                                                                                            | ne stresses i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nduced in <sup>·</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | thick pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| vessel.                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Able to compute stresses in ring, disk and cylinder due to rotation. Classify the different |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                             |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                             | Determine the stresses in crane hook, rings, chain link for different cross section and also                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                             |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                             |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                             | 1<br>The objective<br>springs, pres<br>help the stu<br>problems<br>lidentify the to<br>problems<br>Differentiate<br>problems. U<br>vessel.<br>Able to com<br>types of sprin<br>Determine th<br>the deflection | TutorialPractical10The objective of this cour<br>springs, pressure vessel,<br>help the students to bu<br>problemsIdentify the basics concep<br>problemsIdentify the basics concep<br>problemsDifferentiate different typ<br>problems. Use of Lame's<br>vessel.Able to compute stresses<br>types of spring and analyz<br>Determine the stresses in<br>the deflection of curved | MECH/<br>TutorialPracticalCredits104The objective of this course is to show<br>springs, pressure vessel, rings, links,<br>help the students to build the fund<br>problemsCourse (<br>Course (<br>Identify the basics concepts of strain e<br>problemsDifferentiate different types of stresse<br>problems. Use of Lame's equation to<br>vessel.Able to compute stresses in ring, disk<br> | MECHANICS OF SCTutorialPracticalCreditsMajor<br>Test10475The objective of this course is to show the develop<br>springs, pressure vessel, rings, links, curved bars<br>help the students to build the fundamental cor<br>problemsCourse OutcomesIdentify the basics concepts of strain energy and va<br>problemsDifferentiate different types of stresses induced i<br>problems. Use of Lame's equation to calculate the<br>vessel.Able to compute stresses in ring, disk and cylinde<br>types of spring and analyze the stresses produced of<br>Determine the stresses in crane hook, rings, chain<br>the deflection of curved bars and rings. Analyze | MECHANICS OF SOLIDS-IITutorialPracticalCreditsMajorMinor1047525The objective of this course is to show the development of stra<br>springs, pressure vessel, rings, links, curved bars under different<br>help the students to build the fundamental concepts in orco<br>problemsCourse OutcomesIdentify the basics concepts of strain energy and various theories<br>problemsDifferentiate different types of stresses induced in thin pressu<br>problems. Use of Lame's equation to calculate the stresses i<br>vessel.Able to compute stresses in ring, disk and cylinder due to rotat<br>types of spring and analyze the stresses produced due to loading<br>Determine the stresses in crane hook, rings, chain link for different<br>the deflection of curved bars and rings. Analyze the stresses | MECHANICS OF SOLIDS-IITutorialPracticalCreditsMajorMinorTotal1047525100The objective of this course is to show the development of strain energy a springs, pressure vessel, rings, links, curved bars under different loads. T help the students to build the fundamental concepts in order to solve problemsCourse OutcomesIdentify the basics concepts of strain energy and various theories of failures problemsDifferentiate different types of stresses induced in thin pressure vessel problems. Use of Lame's equation to calculate the stresses induced in vessel.Able to compute stresses in ring, disk and cylinder due to rotation. Classif types of spring and analyze the stresses produced due to loading |  |  |

#### Unit I

**Strain Energy & Impact Loading**: Definitions, expressions for strain energy stored in a body when load is applied (i) gradually, (ii) suddenly and (iii) with impact, strain energy of beams in bending, beam deflections, strain energy of shafts in twisting, energy methods in determining spring deflection, Castigliano's theorem, Numerical.

**Theories of Elastic Failures:** Various theories of elastic failures with derivations and graphical representations, applications to problems of 2- dimensional stress system with (i) Combined direct loading and bending, and (ii) combined torsional and direct loading, Numericals.

#### Unit II

**Thin Walled Vessels:** Hoop & Longitudinal stresses & strains in cylindrical &spherical vessels & their derivations under internal pressure, wire would cylinders, Numericals.

**Thick Cylinders & Spheres**: Derivation of Lame's equations, radial & hoop stresses and strains in thick, and compound cylinders and spherical shells subjected to internal fluid pressure only, hub shrunk on solid shaft, Numericals.

#### Unit III

**Rotating Rims & Discs:** Stresses in uniform rotating rings & discs, rotating discs of uniform strength, stresses in (I) rotating rims, neglecting the effect of spokes, (ii) rotating cylinders, hollow cylinders & solids cylinders. Numericals.

**Springs:** Stresses in closed coiled helical springs, Stresses in open coiled helical springs subjected to axial loads and twisting couples, leaf springs, flat spiral springs, concentric springs, Numericals.

#### Unit IV

**Bending of Curved Bars**: Stresses in bars of initial large radius of curvature, bars of initial small radius of curvature, stresses in crane hooks, rings of circular & trapezoidal sections, deflection of curved bars & rings, deflection of rings by Castigliano's theorem, stresses in simple chain links, deflection of simple chain links, Problems.

**Unsymmetrical Bending:** Introduction to unsymmetrical bending, stresses due to unsymmetrical bending, deflection of beam due to unsymmetrical bending, shear center for angle, channel, and I-sections, Numericals.

#### Text Books:

- 1. Strength of Materials R.K. Rajput, Dhanpat Rai & Sons.
- 2. Strength of Materials Sadhu Singh, Khanna Publications.
- 3. Strength of Materials R.K. Bansal, Laxmi Publications.

#### **Reference Books:**

- 1. Strength of Materials Popov, PHI, New Delhi.
- 2. Strength of Materials Robert I. Mott, Pearson, New Delhi
- 3. Strength of Material Shaums Outline Series McGraw Hill
- 4. Strength of Material Rider ELBS

|         | B. Tech. (4th Semester) Mechanical Engineering                                                      |                                                               |                   |                   |          |     |   |  |
|---------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------|-------------------|----------|-----|---|--|
| MEC-208 |                                                                                                     |                                                               | Instrun           | nentation & Cor   | ntrol    |     |   |  |
| Lecture | Tutorial                                                                                            | Tutorial Practical Credits Major Test Minor Test Total Time(H |                   |                   |          |     |   |  |
| 3       | 0                                                                                                   | 0                                                             | 3                 | 75                | 25       | 100 | 3 |  |
| Purpose | To understand the basics of the measurement of various quantities using instruments, their accuracy |                                                               |                   |                   |          |     |   |  |
| -       | and range and                                                                                       | the techniques                                                | for controlling d | evices automation | cally.   |     | - |  |
|         | Course Outcomes                                                                                     |                                                               |                   |                   |          |     |   |  |
| C01     | Students will have basic knowledge about measurement systems and their components.                  |                                                               |                   |                   |          |     |   |  |
| CO2     | Students will learn about various sensors used for measurement of mechanical quantities.            |                                                               |                   |                   |          |     |   |  |
| CO3     | Students will h                                                                                     | ave basic knowl                                               | edge of process   | s monitoring and  | control. | •   |   |  |

Unit I

**Instrumentation System:** introduction, typical applications of instrument systems, functional elements of a measurement system, classification of instruments, standards and calibration, static and dynamic characteristics of measurement systems.

**Statistical Error Analysis:** statistical analysis of data and measurement of uncertainty: probability, confidence interval or level, mean value and standard deviation calculation, standard normal distribution curve and probability tables, sampling and theory based on samples, goodness of fit, curve fitting of experimental data.

#### Unit II

**Sensors and Transducers:** introduction and classification, transducer selection and specifications, primary sensing elements, resistance transducers, variable inductance type transducers, capacitive transducers, piezo-electric transducers, strain gauges.Smart Sensors: Introduction, architecture of smart sensor, bio sensor and physical sensor, Piezo-resistive pressure sensor, microelectronic sensor.

**Measurement of force, torque, shaft power, speed and acceleration:** force and weight measurement system, measurement of torque, shaft power, speed and velocity: electrical and contactless tachometers, acceleration: vibrometers, seismic and piezo-electric accelerometer.

#### Unit III

**Measurement of pressure, temperature and flow:** Basic terms, Pressure: Liquid column manometers, elastic type pressure gauges, electrical types for pressure and vacuum, temperature measuring instruments: RTD sensors, NTC thermistor, thermocouples, and semiconductor based sensors. Flow Measurement: drag force flow meter, turbine flow meter, electronic flow meter, electronic flow meter, electronagnetic flow meter, hot-wire anemometer.

**Instruments for measuring Humidity, Density, and Viscosity:**Humidity definitions, Humidity measuring devices, Density and Specific Gravity, Basic terms, Density measuring devices, Density application considerations, Viscosity, Viscosity measuring instruments, basic terms used in pH, pH measuring devices, pH application considerations. Problems.

#### Unit IV

**Basic Control System:** Introduction, basic components of control system, classification : closed loop and open loop control system, transfer function, block diagram representation of closed loop system and its reduction techniques, mathematical modelling of various mechanical systems and their analogy with electrical systems, signal flow graph and its representation.

**Mechanical Controllers:** Basics of actuators: pneumatic controller, hydraulic controller and their comparison.

#### Text Books:

1.Instrument and control by Patranabis D., PHI Learning.

2. Fundamental of Industrial Instrumentation and Process control by W.C.DUNN, McGrawHill,

3. Thomas G. Beckwith, Roy D. Marangoni, John H. LienhardV , Mechanical Measurements (6th

Edition), Pearson Education India, 2007

4. Gregory K. McMillan, Process/Industrial Instruments and Controls Handbook, Fifth Edition, McGraw-Hill: New York, 1999.

#### Reference Books:

1. Mechanical Measurement and Control by A K Sawhney

2. Modern control Engineering by Katsuhiko Ogata, PHI publication

|                |                                                                                                             | B. Tech. (4th Semester)MechanicalEngineering |         |               |               |               |           |                |
|----------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------|---------------|---------------|---------------|-----------|----------------|
| ES-206L        |                                                                                                             | MATERIALS ENGINEERING LAB                    |         |               |               |               |           |                |
| Lecture        | Tutorial                                                                                                    | Practical                                    | Credits | Major<br>Test | Minor<br>Test | Practical     | Total     | Time<br>(Hrs.) |
| 0              | 0                                                                                                           | 2                                            | 1       | -             | 40            | 60            | 100       | 3              |
| Purpose        | Tomakethestudentsawareofmaterialstructureandpropertiesofmaterialusing differentexperiments.                 |                                              |         |               |               |               |           |                |
| CourseOutcomes |                                                                                                             |                                              |         |               |               |               |           |                |
| CO 1           | Ability to design and conduct experiments, acquire data, analyze and interpret data                         |                                              |         |               |               |               |           | 9              |
| CO 2           | Ability to determine the grain size and microstructure in different Ferrous alloys by means of experiments. |                                              |         |               |               |               | by means  |                |
| CO 3           | Ability to learn about microstructures of different Non-Ferrous alloys by means of experiments.             |                                              |         |               |               |               |           |                |
| CO 4           | To learn about heat treatment processes through experiments.                                                |                                              |         |               |               |               |           |                |
| CO 5           | , ,                                                                                                         | nalyze micros<br>erent material              |         | Heat-treate   | ed specimens  | s and perform | Fatigue a | and creep      |

#### List of Experiments:

- 1. To Study various Crystal Structures through Ball Models.
- 2. To study the components and functions of Metallurgical Microscope.
- 3. To learn about the process of Specimen Preparation for metallographic examination.
- 4. To perform Standard test Methods for Estimation of Grain Size.
- 5. To perform Microstructural Analysis of Carbon Steels and low alloy steels.
- 6. To perform Microstructural Analysis of Cast Iron.
- 7. To perform Microstructural Analysis of Non-Ferrous Alloys: Brass & Bronze.
- 8. To perform Microstructural Analysis of Non-Ferrous Alloys: Aluminium Alloys.
- 9. To Perform annealing of a steel specimen and to analyze its microstructure.
- 10. To Perform Hardening of a steel specimen and to analyze its microstructure.
- 11. To performFatiguetest on fatiguetestingmachine.
- 12. To perform Creep test oncreep testingmachine.

**Note:** At least eight experiments are required to be performed by students from the above list and two may be performed from the experiments developed by the institute.

|          |                                                                                         | B. Tech. (4th Semester) Mechanical Engineering                                |              |              |                             |               |            |                  |
|----------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------|--------------|-----------------------------|---------------|------------|------------------|
| MEC-210L |                                                                                         | FLUID MECHANICS & FLUID MACHINES LAB                                          |              |              |                             |               |            |                  |
| Lecture  | Tutorial                                                                                | Practical                                                                     | Credits      | Major        | Minor                       | Practical     | Total      | Time             |
|          |                                                                                         |                                                                               |              | Test         | Test                        |               |            |                  |
| 0        | 0                                                                                       | 2                                                                             | 1            | 0            | 40                          | 60            | 100        | 3                |
| Purpose  | To familia                                                                              | rize the stud                                                                 | lents with t | he equipn    | nent and ins                | strumentation | of Fluid N | <b>Nechanics</b> |
| _        | and Machines                                                                            |                                                                               |              |              |                             |               |            |                  |
|          | Course Outcomes                                                                         |                                                                               |              |              |                             |               |            |                  |
| C01      | Operate f                                                                               | luid flow equ                                                                 | ipment and   | d instrume   | ntation.                    |               |            |                  |
| CO2      | Collect a                                                                               | Collect and analyse data using fluid mechanics principles and experimentation |              |              |                             |               |            |                  |
|          | methods.                                                                                | , , , , , ,                                                                   |              |              |                             |               |            |                  |
| CO3      | Determine the coefficient of discharge for various flow measurement devices.            |                                                                               |              |              |                             |               |            |                  |
| CO4      | Calculate flow characteristics such as Reynolds number, friction factor from laboratory |                                                                               |              |              |                             |               |            |                  |
|          | measurements.                                                                           |                                                                               |              |              |                             |               |            |                  |
| CO5      | Analyze t                                                                               | he performar                                                                  | nce charac   | teristics of | f hydraulic p               | oumps.        |            |                  |
| CO6      | Analyze t                                                                               | he performar                                                                  | nce charac   | teristics of | f <mark>hydrauli</mark> c t | urbines.      |            |                  |

#### List of Experiments:

- 1. To verify the Bernoulli's Theorem.
- 2. To determine coefficient of discharge of an orifice meter.
- 3. To determine the coefficient of discharge of Venturimeter.
- 4. To determine the coefficient of discharge of Notch.
- 5. To find critical Reynolds number for a pipe flow.
- 6. To determine the friction factor for the pipes.
- 7. To determine the meta-centric height of a floating body.
- 8. Determination of the performance characteristics of a centrifugal pump.
- 9. Determination of the performance characteristics of a reciprocating pump.
- 10. Determination of the performance characteristics of a gear pump.
- 11. Determination of the performance characteristics of Pelton Wheel.
- 12. Determination of the performance characteristics of a Francis Turbine.
- 13. Determination of the performance characteristics of a Kaplan Turbine.
- 14. Determination of the performance characteristics of a Hydraulic Ram.

**Note:** At least ten experiments are required to be performed by students from the above list and two may be performed from the experiments developed by the institute.

|         | B. Tech. (4th Semester) Mechanical Engineering                                   |                                                                                                |                |                    |           |     |        |  |
|---------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------|--------------------|-----------|-----|--------|--|
| MC-902  |                                                                                  | Constitution of India                                                                          |                |                    |           |     |        |  |
| Lecture | Tutorial                                                                         | Tutorial         Practical         Credits         Major Test         Minor Test         Total |                |                    |           |     |        |  |
| 3       | 0                                                                                | 0                                                                                              | -              | 75                 | 25        | 100 | 3 Hrs. |  |
| Purpose | To know the basic features of Constitution of India                              |                                                                                                |                |                    |           |     |        |  |
|         |                                                                                  | Course Outcomes                                                                                |                |                    |           |     |        |  |
| C01     | The students                                                                     | The students will be able to know about salient features of the Constitution of India.         |                |                    |           |     |        |  |
| CO2     | To know about fundamental duties and federal structure of Constitution of India. |                                                                                                |                |                    |           |     |        |  |
| CO3     | To know about emergencyprovisions in Constitution of India.                      |                                                                                                |                |                    |           |     |        |  |
| CO4     | To know abo                                                                      | ut fundamen                                                                                    | tal rights und | er constitution of | of India. |     |        |  |

#### UNIT I

Meaning of the constitution law and constitutionalism, Historical perspective of the Constitution of India. Salient features and characteristics of the Constitution of India.

Scheme of the fundamental rights

#### UNIT II

The scheme of the Fundamental Duties and its legal status. The Directive Principles of State Policy – Its importance and implementation. Federal structure and distribution of legislative and financial powers between the Union and the States.

Parliamentary Form of Government in India – The constitution powers and status of the President of India

#### UNIT III

Amendment of the Constitutional Powers and Procedure. The historical perspectives of the constitutional amendments in India.

Emergency Provisions: National Emergency, President Rule, Financial Emergency. Local Self Government – Constitutional Scheme in India.

#### UNIT IV

Scheme of the Fundamental Right to Equality. Scheme of the Fundamental Right to certain Freedom

under Article 19.

Scope of the Right to Life and Personal Liberty under Article 21.

#### Text Books

1. Constitution of India. Prof. Narender Kumar (2008) 8th edition. Allahabad Law Agency.

#### **Reference Books:**

1. The constitution of India. P.M. Bakshi (2016) 15<sup>th</sup> edition. Universal law Publishing.

### Kurukshetra University, Kurukshetra

Course of Study for BBA.LL. B. (Hons) 5-Year Integrated Course

**Commenced From the Session 2016-17** 

Syllabus for Fourth Year(Sem –VII & VIII)

Session 2019-20

|              | BBA                                                                                                                        | LLB - 4 <sup>th</sup> Year |                                                                                       |
|--------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------|
| Pape<br>r    | Semester-<br>VII                                                                                                           | Paper                      | Semester-VIII                                                                         |
| Subject Code | Subject                                                                                                                    | Subject Code               | Subject                                                                               |
| 701-A        | Marketing<br>Management                                                                                                    | 801-A                      | Human Resource<br>Management                                                          |
| 702-A        | Civil<br>Procedure<br>Code — I                                                                                             | 802-A                      | Civil Procedure Code –II<br>and Limitation Act                                        |
| 703-A        | Principles of<br>Taxation Law                                                                                              | 803-A                      | Indirect Taxation Laws                                                                |
| 704-A        | Interpretation<br>of Statutes &<br>Principles of<br>Legislation                                                            | 804-AA                     | Intellectual Property Law OR                                                          |
|              | , , , , , , , , , , , , , , , , , , ,                                                                                      | 804-AB                     | Investment and<br>Securities Laws                                                     |
| 705-AA       | Human Rights<br>Law and<br>Practices                                                                                       | 805-AA                     | Gender Justice and<br>Feminist Jurisprudence<br>OR                                    |
| 705-AB       | OR<br>International<br>Trade Law                                                                                           | 805-AB                     | Media and Law                                                                         |
| 706-A        | Professional<br>Ethics,<br>Accountancy<br>for Lawyers &<br>Bench Bar<br>Relations<br>(Compulsory<br>Clinical<br>Course- 1) | 806-A                      | Alternative Dispute<br>Resolution and Legal Aid<br>(Compulsory Clinical<br>Course-II) |

#### BBA.LL.B. (Hons) 5 Year Integrated Course

**VII - Semester** 

#### Marketing Management

Paper 701-A

#### Internal Assessment: 20Marks Theory: 80 Marks

Time: 3 Hours

#### Total: 100Marks

Note:

- **a.** Nine questions shall be set in all, two questions in each unit I-IV and one compulsory question in unit-V.
- **b.** The compulsory question in unit-V shall consist of four parts, one from each Unit I-IV.
- **c.** The Candidate shall be required to attempt <u>five</u> questions in all, selecting <u>one</u> question from each Unit I-IV and question no. 9 in Unit- V shall be compulsory.
- **d.** Each question in Unit I-IV shall carry 15 marks and question no. 9 in Unit –V shall carry 20 Marks.

#### UNIT- I

Marketing Management - Meaning, Nature and Scope. Concepts of Marketing.Marketing Environment, Marketing Mix, STP (segmenting, targeting and positioning) approach to marketing.

#### UNIT- II

Marketing Information System- Meaning and Components. Marketing Research. Consumer Behaviour-Meaning and Importance of study for Marketers.

#### UNIT- III

Product –Meaning, levels and product Mix. New Product Development, Product Life Cycle, Branding and Packaging decision.

Pricing-Meaning, procedure for setting a price. Price Variation.

#### UNIT- IV

Distribution Channels- Levels and Roles. Management of Physical Distribution. Promotion- Promotion Mix- A study of advertising, sales promotion, personal selling, direct marketing and public relations. Marketing organization and Control.

#### **Suggested Readings**

- **1.** Mc Carthy; E.J.
- : Basic marketing A Managerial Approach
- 2. Rama Swamy & Nama Kumari : Marketing Management
- **3.** Kotler, Philip : Marketing Management Analysis Planning and Control
- **4.** Still and Cundiff : Basic Marketing.
- 5. Stanton et. al. : Marketing Management

#### BBA.LL.B.(Hons.) 5 – Year Integrated Course **VII-Semester Civil Procedure Code -I**

Paper 702-A

#### Internal Assessment: 20Marks Theory: 80 Marks

Time: 3 Hours

#### Total: 100 Marks

Note:

- **a.** Nine questions shall be set in all, two questions in each unit I-IV and one compulsory question in unit-V.
- **b.** The compulsory question in unit-V shall consist of four parts, one from each Unit I-IV.
- c. The Candidate shall be required to attempt <u>five</u> questions in all, selecting <u>one</u> question from eachUnit I-IV and question no. 9 in Unit- V shall be compulsory. d. Each question in Unit I-IV shall carry 15 marks and question no. 9 in Unit –V shall carry 20
- Marks.

#### UNIT-I

- 1. Definitions : Decree, Decree Holder, Foreign Court, Foreign Judgment, Judgment, Judgment Debtor, Legal Representative, Mesne Profits, Order (Sec. 2)
- 2. Jurisdiction of Civil Courts, Nature of Suits (Sec. 9)
- 3. Stay of Suits, Res Judicata, Foreign Judgement (Sec. 10-14)
- 4. Place of Suing, Transfer of Suits (Secs. 15-25)
- 5. Joinder of Parties, Representative Suits, Splitting of Claims and Relief, Joinder of Cause of Action (Order I & II)

#### Leading Case: Sinha Romanuja v. Ranga Romanuja, AIR 1961SC 1720

#### UNIT-II

- 1. Institution of Suits (Sec. 26 & Order IV)
- 2. Fundamentals Rules of Pleadings (Order VI, VII & VIII)
- 3. Summons to Defendants and Witnesses (Secs. 27-32 & Order V & XVI)
- 4. Appearance of Parties, Exparte Decree (Order IX, X)
- 5. Discovery and Inspection (Order XI)
- 6. Admission (Order XII)

#### Leading Case: Babbar Sewing Machine Co. v. Triloki Nath, AIR 1978SC 1436

#### UNIT-III

- 1. Production, Impounding and Return of Documents(Order XIII)
- 2. Settlement of Issues (Order XIV, XV)
- 3. Adjournment (Order XVII)
- 4. Hearing of Suits (Order XVIII), Affidavits (Order XIX)
- 5. Judgment and Decree (Sec. 33 & Order XX)
- 6. Awarding of Interest and Cost (Secs. 34-35B)

#### Leading Case: Arjun Singh v. Mohijder Kumar and others, AIR 1964 SC 993

#### UNIT-IV

- 1. Power and Jurisdiction of Executing Court (Secs. 36-47, 49-50)
- 2. Procedure in Execution (Secs.51-54 & Order XXI Rules1 & 2, Rules 10- 25), Stay of Execution (Rules 26-29)
- 3. Mode of Execution (Rules 30-36), Arrest and detention (Secs.55-59 & Order XXI Rules 37-40)
- 4. Attachment of Property and Adjudication of Claims and Objections (Secs.60- 64 & Order XXI Rules 41-59)
- 5. Sale, Procedure in Sale and Distribution of Assets (Secs.65-73 & Order XXI Rules 64-96)
- 6. Resistance to Execution (Sec.74 & Order XXI Rules 96-106)

#### Leading Case: Uma Shanker v. Sarabjeet, AIR 1996 SC 1005

#### **Statutory Material**

Code of Civil Procedure, 1908

#### Suggested Readings

- 1. Mulla : The Code of Civil Procedure (Student Edition)
- **2.** Thakkar, C.K. : The Code of Civil Procedure
- **3.** Sarkar, Sudipto : The Code of Civil Procedure
- **4.** Saha, A.N. : The Code of Civil Procedure
- 5. Mulla D.F. : Key to Civil Practice
- 6. Takwani C.K. : Civil Procedure Code

# BBA.LL.B. (Hons.) 5-Year Integrated Course VII - Semester Principles of Taxation Law

Paper 703-A

### Internal Assessment: 20Marks Theory: 80 Marks

#### Total: 100 Marks

#### Note:

- **a.** Nine questions shall be set in all. Two questions from each unit I-IV and one compulsory question.
- **b.** The compulsory question in unit-V shall consist of four parts, one from each Unit I-IV.
- **c.** The Candidate shall be required to attempt five questions in all selecting one question each from Unit I-IV and question number 9 in Unit V shall be compulsory.
- **d.** Each question in Unit I-IV shall carry 15 marks and question number 9 in Unit V shall carry 20 Marks.

## UNIT-I

Tax and Fee; Scope of Tax Laws; Distribution of Tax Resources between Union and the States (Article 268-279); Surcharge; Grant-in-Aid; Constitution of Finance Commission and Functions; Principles Governing the Share of Income Tax; Inter-Government Tax Immunities (Article 285-289).

# <u>Leading Case:</u> Commissioner, Hindu Religious Edowments v. Sri Lakshmindra Thirtha Swamiar of Sri Shirur Mutt, 1954 SCR 1005.

# UNIT-II

Concept & Definition; Income [Section2(24)], Total Income [Section2 (45)], Agriculture Income [Section 2 (1A)], Assessee [Section-2(7)], Assessment Year & Previous Years 2(9), Assessing Officer. Income which do not form part of total income (Section-10-13A), Capital Receipt, Revenue Receipt, Capital Expenditure & Revenue Expenditure.

#### Leading Case: C.I.T. v. Raja Benoy Kumar Sahas Roy, 32 ITR 466 SC 1957.

#### UNIT-III

Income: Salary (Sections 15-17), Income from House Property (Sections 22-27), Profits & Gains of Business and Profession (Sections 28 & 32,33,33A, 34, 36-37), Capital Gains (Sections 45-55A), Income from Other Sources (Sections 56, 58).

# Leading Case: Bharat Development Pvt. Ltd. V. CIT, 133 ITR 470 (Del)

Time: 3 Hours

# UNIT-IV

Set off and Carry forward of Losses (Sections 70-80); Income Tax Authorities (Sections 116-138), Appeal Reference & Revision, Collection Recoveries and Refund (Sections 190-234, 237 to 245), Penalties, Offences & Prosecution (S. 271-280).

#### Leading Case : K.C. Builders and Another v. Asstt. Commissioner Income Tax (2004) 265 ITR 562 (SC)

- **<u>1.</u>** Ahuja, Grish, : Income Tax Law and Practice, Bharat Law House 2010.
- 2. HC Mehrotra : Income Tax Law & Accounts, Shahitya Prakashan
- 3. Kailash Rai : Taxation Laws, Bharat Law House
- 4. N.A.Palkhivala : Income Tax Law, Modern Law House
- 5. Saxena, A.K. : Income Tax Act, 1961
- 6. SR Myneni : Law of Taxation, Allahabad Law Agency
- 7. Vinod & Monica Singhania : Income Tax, Taxmann

# BBA.LL.B. (Hons) 5-year Integrated Course VII - Semester Interpretation of Statutes & Principles of Legislation

Paper 704-A

### Internal Assessment: 20Marks Theory: 80 Marks

## Total: 100 Marks

Time: 3 Hours

Note:

- **a.** Nine questions shall be set in all. Two questions from each unit I-IV and one compulsory question.
- **b.** The compulsory question in unit-V shall consist of four parts, one from each Unit I-IV.
- **c.** The Candidate shall be required to attempt five questions in all selecting one question each from Unit I-IV and question number 9 in Unit V shall be compulsory.
- **d.** Each question in Unit I-IV shall carry 15 marks and question number 9 in Unit V shall carry 20 Marks.

# UNIT-1

Statute: Meaning and Classification of Statute.

Interpretation: Meaning, Object and Necessity.

**General Principles of Interpretation** –Literal or Grammatical Rule, Golden Rule, Harmonious Construction, *Noscitur - A Sociis; Ejusdem Generis, Contemporanea Expositio est Optima Et fortissima in lege, Statute should be read as a whole, Statutes in Pari materia.* 

# Prescribed Case: Harbhajan Singh v. Press Council of India, AIR 2002 SC 1351

#### UNIT-II

**Internal Aids to Construction**- Short Title, Long Title, Preamble, Marginal Notes, Headings, Section and Subsection, Definitions, Interpretation Clauses, Provisos, Illustrations, Exceptions and Saving Clauses, Explanations, Schedules and Punctuation Marks and non obstante clause.

#### Prescribed Case: Special Officer and Competent Authority Urban Land Ceiling, Hyderabad v. P.S. Rao, AIR 2002 SC 843

**External Aids to Construction**- Dictionaries, Use of foreign decisions, Text Books, Historical Background, LegislativeHistory, Administrative Conveyancing and Commercial Practice.

# Prescribed Case: R.S. Nayak v. A. R. Antulay AIR 1984 SC 684

#### UNIT-III

Construction of Taxing Statutes and Evasion of Statutes; Remedial and Penal Statutes – Distinction between the two; Liberal Construction of Remedial Statutes; Strict Construction of Penal Statutes; *Mens Rea* in Statutory Offences, Vicarious responsibility in Statutory Offences, Mandatory and Directory Statutes.

#### Prescribed Case: Amery Pharmaceuticals v. State of Rajasthan, AIR 2001 SC 1303

#### UNIT-IV

Commencement, Operation and Repeal of Statute; Prospective and Retrospective Operation of Statutes, Revival of Statutes, Interpretation of Constitution, Relation between Law and Public Opinion; Bentham's Principle of Utility; Delegated Legislation.

#### Prescribed Case: Aruna Rao v. Union of India, AIR 2002 SC 3176

#### **Statutory Material**

General Clauses Act, 1897

- 1. P.St. J. Langan: Maxwell on the Interpretation of Statutes
- 2. G.P. Singh : Principles of Statutory Interpretation
- 3. V.P. Sarathi : Interpretation of Statutes
- 4. Jagdish Swarup : Legislation and Interpretation
- 5. Maxwel : Interpretation of Statutes
- 6. Bindra :Interpretation of Statutes
- 7. T. Bhattacharya : The Interpretation of statutes
- 8. D.N. Mathur : Interpretation of Statute
- 9. K.P. Chakravarty : Interpretation of Statute
- 10. Ruthnaswamy :Legislative Principles and Practice
- 11. N.K Chakrabarti :Principles of Legislation and legislative drafting
- 12. Dicey :Law and Public opinion
- 13. Bentham :Theory of Legislation

# BBA.LL.B. (Hons) 5 Year Integrated Course VII - Semester Human Rights Law and Practices

Paper 705-AA

# Internal Assessment: 20Marks Theory: 80 Marks

## Total: 100 Marks

Time: 3 Hours

Note:

- **a.** Nine questions shall be set in all. Two questions from each unit I-IV and one compulsory question.
- **b.** The compulsory question in unit-V shall consist of four parts, one from each Unit I-IV.
- c. The Candidate shall be required to attempt five questions in all selecting one question each from Unit I-IV and question number 9 in Unit V shall be compulsory
- **d.** Each question in Unit I-IV shall carry 15 marks and question number 9 in Unit V shall carry 20 Marks.

# UNIT –I

Nature and scope of Human Rights, Evolution of Universal Human Rights, League of Nations and Human Rights, U.N. Charter and Human Rights, The Universal Declaration of Human Rights and its legal significance, Covenants of Human Rights :

- I. International Covenant on Economic, Social and Cultural Rights, 1966.
- II. International Covenant on Civil and Political Rights, 1966.

#### Leading case : People's Union for Civil Liberties v. Union of India and Anr., (1997)3 SCC 433

#### UNIT-II

Terrorism and Human Rights, Human Rights of Minorities, Human Rights of Disabled, International Humanitarian Law and Rights of Disabled, International Humanitarian Law and Four Geneva Conventions of 1949 relating to :

- I. Amelioration of the conditions of Wounded and Sick in Armed Forces.
- II. Amelioration of the conditions of Wounded, Sick and Shipwrecked members of Armed Forces at Sea.
- III. Treatment of Prisoners of War.
- IV. Protection of Civilian Persons during War.

#### Leading case : Lilly Kurian v. St. Lewina, AIR 1979 SC 52.

#### UNIT-III

Human Rights in India including Constitutional Guarantee of Fundamental Rights, Judicial activism and the protection of Human Rights in India, Role of Non-Governmental Organizations in the Promotion and Protection of Human Rights, Human Rights of Accused person, Human Rights and Environment protection, Human Rights of Women, Human Rights of Children.

#### Leading case : Sunil Batra v.Delhi Administration (II), AIR 1980 SC 1579.

#### UNIT-IV

The Protection of Human Rights Act, 1993- Nature and Scope; Human Rights-Definition and Scope; National Human Rights Commission - Composition and appointment ; Inquiry into complaints and its procedure ; Functions and Powers of National Human Rights Commission ; State Human Rights Commission - Composition and appointment; Human Rights Courts - Constitution.

# Leading case: National Human Rights Commission v. State of Arunachal Pradesh and Anr., 1996 SCC (1) 742.

#### **Statutory Material**

The Protection of Human Rights Act, 1993

- **1.** Ramajois : Human Rights in Ancient India
- **2.** U.Baxi : The Rights to be Human
- **3.** F.Kazmi :Human Rights
- **4.** J.Sawrup :Human Rights and Fundamental Freedom.
- **5.** Nagendra Singh :Human Rights and International Cooperation
- **6.** S.C.Khare :Human Rights and United Nations
- **7.** A.B.Kailash :Human Rights in International Law.
- 8. J.Menon :Human Rights in International Law
- 9. B.P.Singh Sehgal :Human Rights in India
- **10.** A.B. Robertson : Human Rights in National and International Law
- **11.** E.Lauterpact :International Law and Human Rights
- **12.** A.N.Sen :Human Rights.
- **13.** H.O. Aggarwal : International Law and Human Rights
- 14. S.K. Kapoor : Human Rights under International Law and Indian Law
- **15.** Paras Diwan : Human Rights and Law
- **16.** Mahendra Gaur : Terrorism and Human Rights

# BBA.LL.B. (Hons) 5-year Integrated Course VII - Semester International Trade Law

Paper 705- AB

### Internal Assessment: 20Marks Theory: 80 Marks

Time: 3 Hours

#### Total: 100 Marks

Note:

- **a.** Nine questions shall be set in all, two questions in each unit I-IV and one compulsory question in unit-V.
- **b.** The compulsory question in unit-V shall consist of four parts, one from each Unit I-IV.
- **c.** The Candidate shall be required to attempt <u>five</u> questions in all, selecting <u>one</u> question from each Unit I-IV and question no. 9 in Unit V shall be compulsory.
- **d.** Each question in Unit I-IV shall carry 15 marks and question no. 9 in Unit –V shall carry 20 Marks.

#### UNIT-I

Meaning of International Trade Law, Overview of Public International Law relating to Trade, WTO, IMF and World Bank, Private Law relating IT, Agencies for Promoting Unification of Trade Law-UNICITRAL, UNIDROIT, UNCTAD, ICC & IMO.

## UNIT-II

Export Trade Transaction and International Commercial Contract, Types of International Contract and Law Governing Formation and Enforcement of International Contract, Rights and Liabilities of Parties to Contract, Unification of International Commercial Law, Vienna Convention on International Sale of Goods.

#### UNIT-III

Subsidies in I.T., Subsidies under GATT, Tokyo Round and Regional Trade Agreements and Customs Unions under GATT, GATT and New Issues e.g. Trade, Environment and Human Rights under the GATT dispensation.

#### UNIT-IV

Brief review of General Agreement on Trade in Services and TRIPS, Technical Barriers to Trade, Dispute Settlement Process under GATT and WTO, Legal Obligations under WTO Dispute Settlement.

- **1.** Jackson : Jurisprudence of GATT and WTO
- 2. A Lowenfield : Law of International Trade
- **3.** Arun Goyal : WTO in New Millennium
- 4. Jayanta Bagchi : World Trade Organisation
- 5. A.K. Kaul : Cases and Materials on I.T.
- **6.** Leo D' Arey : The Law & Practice of IT

# BBA.LL.B. (Hons) 5-year Integrated Course VII- Semester Professional Ethics, Accountancy for Lawyers & Bench Bar Relations

#### Paper 706-A

# Internal Assessment: 40Marks Theory: 60 Marks

#### Total: 100 Marks

#### Time: 3 Hours

Note:

- **a.** Nine questions shall be set in all, two questions in each unit I-IV and one compulsory question in unit-V.
- **b.** The compulsory question in unit-V shall consist of four parts, one from eachUnit I-IV.
- **c.** The Candidate shall be required to attempt <u>five</u> questions in all, selecting <u>one</u> question from each Unit I-IV and question no. 9 in Unit- V shall be compulsory.
- d. Each question in Unit I-V shall carry 12 marks.

#### UNIT - I

Historical Introduction to Legal Profession in India-Barristers, Vakils, High Court Pleaders, Advocates etc. The All India Bar Committee 1951 and the Passing of Indian Advocates Act, 1961. The Advocates Act 1961: Definitions (Section 2), Constitution and Function of State Bar Councils, Bar Council of India, Terms of Office, Various Sub-committees Including Disciplinary Committee and the Qualification for their Membership. Power to Make Rules, Sections 3 to 15.

#### UNIT - II

#### The Advocate Act, 1961

Admission and Enrolment of Advocate-Senior and other Advocates; Common role of Advocates; Qualifications and Disqualifications for Enrolment and Procedure thereof; Sections 16 to 28.

Professional and Other Misconduct; Principles for Determining Misconduct; Disciplinary Committees for Misconduct; Selected opinions of the Disciplinary Committee of the Bar Councils; Appeals to the Supreme Court, sections 35 to 44.

#### UNIT - III

Nature of Legal Profession, Need for an Ethical Code Rights, Privileges and Duties of Advocates, Preparation of a Case and Fees of an Advocate, Bar Against Soliciting Work and Advertisement, Bar against Touting, Refusal of Briefs, Accountability to the Client, Confidentiality between an Advocate to Compromise, Study of Code of Ethics Prepared by the Bar Council of India.

#### Contempt of Courts Act, 1971

What is Contempt Civil and Criminal Contempt, Punishment for Contempt; Procedures in Contempt Cases; Supreme Court Rules to Regulate Contempt Proceedings.

# UNIT – IV

The following 10 Judgments of the Supreme Court would be discussed and analyzed:

- 1. Supreme Court Bar Association v. Union of India & others, AIR 1998 SC 1895.
- 2. Re Ajay Kumar Pandey Advocate, AIR 1998 SC 3299.
- 3. Dr. I. P. Mishra v. State of U.P., AIR 1998 SC 3337.
- 4. Kashi Nath Kher and other v. Dinesh Kumar Bhagat and others, AIR 1998 SC 374.
- 5. P. D. Gupta v. Ram Murti, AIR 1998 SC 283.
- 6. Sadhvi Ritumbhara v. Digvijay Singh & others, (1997) 4 SCJ 64.
- 7. Delhi Judicial Service Association, Tis Hazari Court Delhi v. State of Gujarat and others, AIR 1991 SC 2176.
- 8. M. B. Sanghi v. High Court of Punjab & Haryana and others, AIR 1991 SC 1834.
- 9. Amrit Nahata v. Union of India, AIR 1986 SC 791.
- 10. State of Bihar v. Kripalu Shankar, AIR 1987 SC 1554.

# **Statutory Material**

Advocates Act, 1961 Contempt of Courts Act, 1971

#### Suggested Readings

- **1.** Rao, Sanjeev : Indian Advocates Act, 1961.
- **2.** Jain, M. P. : India Legal History (Chap. On Legal Profession)
- **3.** Iyer, Krishna Murthy : Book on Advocacy.
- 4. Journal of Bar Council of India.
- 5. Bar Council Code of Ethics.

NOTE: There shall be an internal assessment carrying 40 marks as follows:

- (i) The subject teacher will assign minimum two case-studies of 10 marks each to the students: 20 Marks
- (ii) The students are required to attend the Chamber of an Advocate for one week and maintain the Court Diary.

#### (ii) Viva-voce examination\*

# -20 Marks

\*Viva-voce examination will be conducted by a Committee consisting of Director/Principal, One External SubjectExpert and the teacher teaching the subject on the date and time fixed by the Director/Principal. The Quorum will consist of two and one of them will be external expert

# BBA.LL.B. (Hons) 5 Year Integrated Course VIII - Semester Human Resource Management

Paper 801-A

### Internal Assessment: 20 Marks Theory: 80 Marks Total: 100 Marks Time: 3 Hours

#### Note:

- a. Nine questions shall be set in all, two questions in each unit I-IV and one compulsory question in unit-V.
- b. The compulsory question in unit-V shall consist of four parts, one from each Unit I-IV.
- c. The Candidate shall be required to attempt <u>five</u> questions in all, selecting <u>one</u> question from eachUnit I-IV and question no. 9 in Unit- V shall be compulsory.
- d. Each question in Unit I-IV shall carry 15 marks and question no. 9 in Unit –V shall carry 20 Marks.

## UNIT- I

Human Resource Management- Introduction, Concept and Functions, Scope and Significance of HRM, Personnel to HRM, Role and responsibilities of the Human Resource Manager, Essentials of Sound HR Policies. Objectives, Policies and Process of Human Resource Planning.

## UNIT- II

Job analysis, Job description, Job specification, Recruitment, Selection, Induction, Placement, Promotion and Transfer, Job evaluation.

#### UNIT- III

Training and Development, Evaluation and Performance Appraisal, Grievance procedure and handling, Industrial Relations and dispute settlement, Compensation.

#### UNIT- IV

International HumanResource Management, Managing inter country differences. Separation Processes- Turnover, Retirement, Layoff, Retrenchment and discharge, VRS.

- **K Aswathappa** :Human Resource and Personnel Management; McGraw- Hill Companies
- VSP Rao : Human Resource Management; Excel Books
- Bohlander :Managing Human Resources; Thomson Learning. Ed. 13 2004
- Edward, B. Flippo :Personnel Management, Mc Graw Hill International Ed.
- Dale Yoder : Personnel Management and Industrial Relation,
- Monappa & Sayiaddin : Personnel Management, Vikas Publishing Company
- Desimone : Human Resource Development, Thomson Learning

# BBA.LL.B.(Hons.) 5 –Year Integrated Course VIII- Semester Civil Procedure Code –II and Limitation Act

Paper 802-A

# Internal Assessment: 20 Marks Theory: 80 Marks

# Total: 100 Marks

Time: 3 Hours

#### Note:

- **a.** Nine questions shall be set in all, two questions in each unit I-IV and one compulsory question in unit-V.
- **b.** The compulsory question in unit-V shall consist of four parts, one from each Unit I-IV.
- **c.** The Candidate shall be required to attempt <u>five</u> questions in all, selecting <u>one</u> question from each Unit I-IV and question no. 9 in Unit- V shall be compulsory.
- **d.** Each question in Unit I-IV shall carry 15 marks and question no. 9 in Unit –V shall carry 20 Marks.

# UNIT-I

- 1. Death, Marriage and Insolvency of Parties (Order XXII)
- 2. Withdrawal and Adjustment of Suits (Order XXIII)
- 3. Commissions (Secs. 75-78, Order XXVI), Suit against Government (Secs. 79-82)
- 4. Suit in case of Minors, Indigent Persons (Order XXXII, XXXIII)
- 5. Interpleader Suits (Sec.88 & Order XXXV), Settlement of Disputes outside the Court (Sec.89)

# Leading Case: Amar Nath Dogra v. Union of India, AIR1963SC 424

# UNIT-II

- 1. Public Nuisances and Other Wrongful acts Affecting the Public (Secs.91-93)
- 2. Supplemental Proceedings- Arrest and Attachment before judgment, Temporary Injunction, Interlocutory Orders, Appointment of Receivers (Secs. 94-95 & Order XXXVIII to XL)
- 3. Appeals from Original Decrees, Procedure in Appeals and Powers of Appellate Court (Secs. 96-99A, 107-108 & Order XLI)
- 4. Appeals from Appellate Decrees [Secs. 100-103 & Order XLII)]
- 5. Appeals to the Supreme Court (Sec.109)

# Leading Case: Chunilal V. Mehta v. Century spinning & Manufacturing Co. Ltd., AIR 1962 SC 1314

#### UNIT-III

- 1. Reference to High Court (Sec.113, Order XLVI)
- 2. Review (Sec.114 & Order XLVII)
- 3. Revision (Sec.115)
- 4. Exemption of certain women and other persons from Personal Appearance and Arrest (Secs. 132-135A), Application for Restitution (Sec.144), Right to lodge Caveat ( Sec.148A)
- 5. Inherent Powers of the Court (Secs. 151-153B)

# Leading Case: Major S.S. Khanna v. Brig. F. J. Dillion, AIR 1964 SC 497

# **UNIT-IV**

- 1. Salient features of the Limitation Act
- 2. Limitation of Suits, Appeals and Application (Secs.3-11)
- 3. Exclusion of Time (Secs. 12-15)
- 4. Effect of Death, Fraud, Acknowledgement, Payments etc. on Limitation (Secs. 16-22)
- 5. Acquisition of Ownership by Possession (Secs. 25-27)

# Leading Case: Ram Lal v. Rewa Coal Fields Ltd., AIR 1962 SC 361

# **Statutory Material**

Code of Civil Procedure, 1908 Indian Limitation Act, 1963

- 1. Mulla : The Code of Civil Procedure (Student Edition) : The Code of Civil Procedure 2. Thakkar, C.K.
- : The Code of Civil Procedure **3.** Sarkar, Sudipto
- : The Code of Civil Procedure 4. Saha, A.N.
- 5. Mulla D.F.
- : Key to Civil Practice
- 6. Takwani C.K. : Civil Procedure Code
- **7.** Mitra, B.B. : H.C. Mitra's Indian Limitation Act
- **8.** Dayal, R.D. : Limitation Act
- 9. Row, Sanjiva : Limitation Act

# BBA.LL.B. (Hons.) 5-Year Integrated Course VIII- Semester Indirect Taxation Laws

Paper 803-A

## Internal Assessment: 20 Marks Theory: 80 Marks Total: 100 Marks Time: 3 Hours

#### Note:

(a) Nine questions shall be set in all, two questions in each unit I-IV and one compulsory question in Unit-V.

(b) The compulsory question in Unit-V shall consist of four parts, one from each Unit I-IV.

(c) The candidate shall be required to attempt five questions in all, selecting one question from each Unit I-IV and question no. 9 in Unit-V shall be compulsory.

(d) Each question in Unit I-IV shall carry 15 marks and question no.9 in Unit-V shall carry 20 marks.

#### Unit- I

#### **Goods and Services Tax Act, 2017:**

Definitions: Business, Capital Goods, Consideration, Continuous Supply of Goods and Services,

Exempt Supply, Goods, Input Tax, Local Authority, Manufacturer, Market Value, person, Place of Business, Reverse Charge, Service.

Historical Background, Nature & Scope, Object and Constitutional Amendment.

Principles and Kinds of GST- CGST, SGST & IGST.

Tax liability on Composite Supplies- Input Tax Credit.

Eligibility and Conditions for Taking Input Tax Credit.

#### Unit –II

Officers under the Act; Appointment & Powers; Scope of Supply.

Levy and Collection; Powers to Grant Exemption from Tax.

Time of Supply of Goods and Services.

Assessment: Accounts and Records, Return, Assessment, Audit, Payment of Tax, Refund, Search and Seizure

#### Unit-III

#### **Registration, Return, demand & Recovery, Appeals & Revision:**

Registration- Person liable for Registration, Persons not Liable for Registration.

Procedure for Registration, Compulsory Registration, Cancellation of Registration, Exemption from GST Registration.

Returns –Furnishing Details of Outward and Inward Supplies, Furnishing of Returns, Payments of Tax, Interest, Penalty and other Amounts, Tax Deduction at Source, Collection of Tax at Source. Demand and Recovery- Advance Ruling, Definitions for Advance Ruling. Appeal and Revision- Appeals to Appellate Authority, Powers of Revision Authority. Constitution of Appellate Tribunal and benches thereof, Offences and Penalties

#### Unit-IV The Integrated Goods and Services Tax Act,2017:

Definitions - Central Tax, Export and Import of Goods or Services or both, Integrated Tax, Intermediary, Location of the Recipient and Supplier of Services Non Taxable Online Recipient, Online Information Data Base Access or Retrieval Services, Output Tax, Special Economic Zone, Supply. Administration and Collection of Tax Determination Nature of Supply, Place of Supply Refund: Zero Rated Supply Apportionment of Tax and Settlement: Taxability of E-Commerce, Anti –Profiteering, Avoidance of dual control, E-way bills, Offences and Penalties, Appeals.

# **Statutory Material:**

The Constitution (One hundred and First Amendment) Act,2016. The Goods and Services Tax Act, 2017. The Central Goods and Services Tax act, 2017. The Union Territory Goods and Services Tax Act,2017. The Integrated Goods and Services Tax Act, 2017.

| Government of India        | GST Law Manual and Vastu and Sevakar Vidhan.            |
|----------------------------|---------------------------------------------------------|
| V.S Datey,                 | GST Law & Practices with Custom & FTP, 2018.            |
| Singhania, Dr. Vinod K. &, | Student's Guide to Income Tax including GST, 2018.      |
| Dr. Monica Singhania       |                                                         |
| Jain, Sweta,               | GST Law and Practice- A Section Wise Commentary on GST. |
| V S Datey                  | GST E-way bill                                          |
| C A Kashish Gupta          | GST (Goods and Services Tax)                            |

# BBA.LL.B. (Hons) 5-year Integrated Course VIII - Semester Intellectual Property Law

Paper 804 - AA

# Internal Assessment: 20 Marks Theory: 80 Marks Total: 100 Marks Time: 3 Hours

#### Note:

- **a.** Nine questions shall be set in all, two questions in each unit I-IV and one compulsory question in unit-V.
- **b.** The compulsory question in unit-V shall consist of four parts, one from each Unit I-IV.
- c. The Candidate shall be required to attempt <u>five</u> questions in all, selecting <u>one</u> question from each Unit I-IV and question no. 9 in Unit-V shall be compulsory.
- **d.** Each question in Unit I-IV shall carry 15 marks and question no. 9 in Unit –V shall carry 20 Marks.

# UNIT-I

International Law on Intellectual Property -

- 1. Concept of Intellectual Property,
- 2. The World Intellectual Property Organization (WIPO) convention, 1967.
- 3. Paris Convention, Berne Convention and Universal Copyright Convention
- 4. TRIPS Agreement of World Trade
- 5. Phonogram Treaty

#### Leading Case: R.G. Anand v. Delux Films, AIR 1978 SC 1673.

#### UNIT-II

The Law of Copyright 1957-

- 1. Meaning, Nature and Scope of Copyright (Ss 13-16)
- 2. Author and Ownership of Copyright and Rights Conferred by Copyright (Ss 17-21)
- 3. Term of Copyright (Ss 22-29)
- 4. Licenses (Ss 30-32)
- 5. Registration of Copyright (Ss 44 50 A)
- 6. Infringement of Copyright and Remedies (Ss 51-62)

#### Leading Case : State of Tamil Nadu v. Thiru Murugan Brothers AIR 1988 SC 336

#### UNIT-III

The Law of Trade Mark Act 1999-

- 1. Definition and Kinds of Trade Mark (Sec. 2)
- 2. Registration of Trade Marks Conditions, Procedure, Duration and Effect (Ss 6-26)
- 3. Certification of Trade Marks (Ss 69-82)
- 4. Infringement of Trade Mark and Remedies (Ss 29, 102, Ss 134-135)

#### Leading Case : Vishnu Dass v. Sultan Tobacco Co. Ltd. Hyderabad AIR 1996 SC 2275

## UNIT-IV

Law of Patent in India (Patent Act 1970 as amended by Patent Act, 2005) and The Designs Act, 2000-

- 1. Patentable and Non-Patentable Invention (Ss 2-3)
- 2. Procedure for obtaining Patent (Ss 6-14, 25, 43, 45, 47, & 53)
- 3. Rights of Patentee (Ss 48 & 50, 68 & 70, 63, 104-108, 154 & 118)
- 4. Infringement of Patent and Remedies (Ss 47 & 107, 104, 106, 108, 140)

The Designs Act, 2000

- 1. Definitions
- 2. Registration of Designs
- 3. Copyright in Registered Designs

# Leading Case : M/s S.M. Dye Chemical Ltd. v. M/s Cadbury (India) AIR 2000 SC 2114

- **1.** Narayanan, P
- : Patent law, Trademarks and Passing off
- K. : Law of
- Puri, K.K.
   Lyenger
- **4.** Mustafa Faizan
- **5.** Lal`s
- 6. Nagrajan RK
- **7.** Narayan P
- **8.** Mittal DP
- **9.** Cornish W
- **10**. Wadera BL

- : Law of Patent System in India
- : Copyright Act
  - : Copyright Law: A Comparative study
- : The Copyright Act
  - : Intellectual Property Law
  - : Intellectual Property Law
  - : Indian Patent's Law and Procedure
  - : Intellectual Property
    - : Patents, Trade Marks, Copy Right, Designs and Geographical Indications
- 11. Reddy G.B.
- : Intellectual Property Rights and the Law

# BBA.LL.B. (Hons) 5-Year Integrated Course VIII - Semester Investment and Securities Laws

Paper 804-AB

Internal Assessment: 20 Marks Theory: 80 Marks Total: 100 Marks Time: 3 Hours

#### Note:

- **a.** Nine questions shall be set in all, two questions in each unit I-IV and one compulsory question in unit-V.
- **b.** The compulsory question in unit-V shall consist of four parts, one from each Unit I-IV.
- **c.** The Candidate shall be required to attempt <u>five</u> questions in all, selecting <u>one</u> question from each Unit I-IV and question no. 9 in Unit V shall be compulsory.
- **d.** Each question in Unit I-IV shall carry 15 marks and question no. 9 in Unit –V shall carry 20 Marks.

#### UNIT-I

Nature and Scope of SEBI, Establishment; Powers and Functions of the Board; Registration Certificates, Adjudication and Penalties. Establishment, Jurisdiction, Authority and Procedure of Appellate Tribunal.

#### UNIT-II

Bonds and Convertible Securities, Features of Equities, Investment. Valuation theories of Bonds and Equities, Procedure for Issuance of Shares and Debentures; Prospectus; Book Building.

#### UNIT-III

Securities Laws Act 1999: Definitions; Recognized Stock Exchanges; Contracts and Options in Securities; Listing of Securities; Listing Agreement; Penalties and Procedure.

#### **UNIT-IV**

Nature and Scope of Depositories Act; Constitution; Role and Functions of Depository; Rights and Obligations of Depositories; Depository participant; Issuers and Registrars.

- 1. V.K.Bhalla : Investment Management- Security Analysis and Portfolio Management
- 2. SEBI Mumbai : SEBI Annual Report, SEBI Monthly Bulletin
- 3. Taxman : SEBI and Corporate Laws
- 4. N.Gopalaswamy : Inside Capital Market, Securities Laws Act, 1999 & Depositories Act

# BBA.LL.B. (Hons) 5-Year Integrated Course VIII - Semester Gender Justice and Feminist Jurisprudence

#### Paper 805-AA

## Internal Assessment: 20 Marks Theory: 80 Marks Total: 100 Marks Time: 3 Hours

#### Note:

- **a.** Nine questions shall be set in all, two questions in each unit I-IV and one compulsory question in unit-V.
- **b.** The compulsory question in unit-V shall consist of four parts, one from each Unit I-IV.
- **c.** The Candidate shall be required to attempt <u>five</u> questions in all, selecting <u>one</u> question from each Unit I-IV and question no. 9 in Unit V shall be compulsory.
- **d.** Each question in Unit I-IV shall carry 15 marks and question no. 9 in Unit –V shall carry 20 Marks.

#### UNIT-I

Concept of Gender Justice and Feminist Jurisprudence; United Nations and Human Rights of Women, Universal Declaration of Human Rights, 1948; Convention on Elimination of All forms of Discrimination Against Women, 1979; Declaration on Elimination of Violence Against Women, 1993.

#### Leading Case : Vishakha v. State of Rajasthan AIR 1997 SC 3011

#### UNIT-II

Constitutional Safeguards for the Protection of Women – Right to equality, Right to life and personal liberty, Right against exploitation, Directive Principles of State Policy, Protection of Women from Sexual Harassment at Workplace, National Commission for Women- Composition, Powers and Functions.

#### Leading Case : Air India v. Nargesh Mirza AIR 1981 SC 1929

#### UNIT-III

The Dowry Prohibition Act, 1961- Definition of Dowry, Penalty for giving, taking and demanding dowry; Ban on advertisement; Dowry for the benefit of the wife or her heirs; Cognizance of offences; Dowry prohibition officers; Dowry Prohibition (Maintenance of Lists of Presents to the Bride and Bridegroom) Rules, 1985;

The Protection of Women from Domestic Violence Act, 2005 – Definition of Domestic Violence, Powers and duties of Protection Officers, Service Provider etc.; Procedure for obtaining orders of reliefs.

#### Leading Case: S.R. Batra v. Taruna Batra, AIR 2007 SC 1118.

#### UNIT-IV

The Pre-conception and Pre-natal Diagnostic Techniques (Prohibition of Sex Selection) Act, 1994-Preliminary regulation of genetic counseling centers, Genetic laboratories and genetic clinics; Regulation of pre-natal diagnostic techniques; Central Supervisory Board; Appropriate authority and Advisory Committee; Offences and Penalties.

Protection of Women under Immoral Traffic (Prevention) Act 1956 – an Overview

# Leading Case: Centre for Enquiry into Health and Allied Themes (CEHAT) and others v. Union of India and others, (2001) 5 SCC 2007.

#### Suggested Readings

- **1**. Paras Diwan
- : Law relating to Dowry, Dowry Death, Bride Burning, Rape andRelated Offences.
- **2.** J.N. Pandey
- **3.** V.N. Shukla : Constitution of India
- **4.** Tripathi and Arora : Law Relating to Women & Children

: Constitutional Law of India

- 5. Devender Singh : Human Rights, Women and Law
  - : Crimes against Women and Protective Laws
    - : Handbook on Law of Domestic Violence
  - : Pre-conception & Pre-Natal Diagnostic Techniques Act: UsersGuide to the Law
- 9. Anjani Kant
- : Law relating to Women and Children : Law Relating to Women and Children
- : Justice for Women: Concerns and Expressions.
- 7. Indira Jaisingh
- 8. Indira Jaisingh

6. Shobha Sexena

- **10.** Mamta Rao
- **11.** A.S. Anand

10(595)

## BBA.LL.B. (Hons) 5-year Integrated Course VIII - Semester Media and Law

Paper 805-AB

Internal Assessment: 20 Marks Theory: 80 Marks Total: 100 Marks Time: 3 Hours

Note:

- **a.** Nine questions shall be set in all, two questions in each unit I-IV and one compulsory question in unit-V.
- **b.** The compulsory question in unit-V shall consist of four parts, one from each Unit I-IV.
- **c.** The Candidate shall be required to attempt <u>five</u> questions in all, selecting <u>one</u> question from each Unit I-IV and question no. 9 in Unit- V shall be compulsory.
- **d.** Each question in Unit I-IV shall carry 15 marks and question no. 9 in Unit –V shall carry 20 Marks.

## UNIT – I

Press Law – Concept and Need History of Indian Media Law Freedom of Expression in Indian Constitution Interpretation of Media freedom Issues of Privacy Right to Information Emergency Provisions Media Censorship: Indian Experience

# UNIT – II

Media & Criminal Law (Defamation/Obscenity/Sedition)

Media & Tort Law (Defamation & Negligence)

Media & Legislature - Privileges of the Legislature

Media & Judiciary – Contempt of Court

Media & Executive – Official Secrets Act

Media & Journalists - Working Journalists (Conditions of Service) Act & Press Council Act

#### UNIT – III

Media and Ethics Self-Regulation v. Legal regulation Media & Human Rights Issues relating to entry of Foreign Print Media

#### UNIT – IV

Public policy issues on Airwaves Community Radio Advocacy Telegraph Act and Broadcast interface

#### **Suggested Readings**

 Dr. Jan R. Hakemulder, Dr. Fay AC de Fange, P.P. Singh
 Y.K. D'souza
 Dr. Durga Das Basu
 Prof. Nandkishor Trikha
 Media Ethics and Law
 Principles and Ethics of Journalism and Mass Communication
 Law of the Press
 Press Vidhi (Hindi)

# BBA.LL.B. (Hons) 5-year Integrated Course VIII - Semester Alternative Dispute Resolution and Legal Aid (Compulsory Clinical Course-II)

#### Paper 806-A

Internal Assessment: 40 Marks Theory: 60 Marks Total: 100 Marks Time: 3 Hours

Note:

- **a.** The paper will consist of two of parts: Theory (60 marks) and Practical (40 marks).
- **b.** In theory paper, Nine questions shall be set in all, two questions in each unit I-IV and one compulsory question in unit V.
- c. The compulsory question in unit-V shall consist of four parts, one from each Unit I-IV.
- **d.** The candidate shall be required to attempt five questions in all, selecting one question from each Unit I-IV and question no. 9 in Unit-V shall be compulsory.
- e. Each question in Unit I-V shall carry 12 marks.

#### UNIT – I

Meaning of Alternate Dispute Resolution (ADR); Various procedures of ADR-Negotiation, Mediation, Conciliation, Arbitration; Advantages of ADR; Arbitration Agreement; Composition of Arbitral Tribunal; Jurisdiction of Arbitral Tribunal.

#### Leading Case: International Airport Authority of India v. K.D. Bali AIR 1988 SC 1099.

#### UNIT - II

Conduct of Arbitral Proceedings; Making of Arbitral Awards and Termination of Proceedings; Setting Aside an Award; Enforcement of Award; Enforcement of Foreign Awards; International Arbitration; New York Convention Award and Geneva Convention Awards.

#### Leading Case: Allen Berry & Co (P) Ltd v. Union of India, AIR 1971 SC 696.

#### UNIT – III

Conciliation; Appointment of Conciliators; Stages of Conciliation proceedings; Settlement Agreement in Conciliation, Termination of Conciliation Proceedings, Resort to Arbitral or Judicial Proceedings.

#### Leading Case: Haresh Dayaram Thakur v. State of Maharashtra, AIR 2000 SC 2281.

#### UNIT – IV

Lok Adalats- Concept, Meaning and Growth of Lok Adalats, Positions of Lok Adalats under Legal Services Authority Act 1987, Organisation of Lok Adalats, Cognizance of Cases by Lok Adalats, Award of Lok Adalats, Power of Lok Adalats, Analysis of Working of Lok Adalats in India, Legal Aid-Legal Aid under the Constitution of India, Legal Aid Schemes.

#### Leading Case: Guru Nanak Foundation v. Rattan Singh and Sons, AIR 1981 SC 2075.

10(597)

# **Suggested Readings**

- **1.** Chitkara, M.G.
- 2. Deshta, Sunil
- **3.** Kwatra G.K
- 4. NV Paranjape
- 5. Rao, P.C
- SC Tripathi
   Tewari, O.P
- : Arbitration and Conciliation Act, 1996 : The Arbitration & Conciliation Act

: Alternative Dispute Resolution

: Lok Adalat in India

: Lok Adalat and the Poor- A Socio-Constitutional Study.

: The New Law of Arbitration & Conciliation

: Arbitration and Alternative Dispute Resolution

NOTE: There shall be an internal Assessment of 40 Marks as follows:

- (i) The subject teacher will assign minimum two case-studies of 10 marks each to the students on the following: 20 Marks
  - (a) Arbitral Cases
  - (b) Proceedings of Lok Adalat
  - (c) Conciliation Proceedings
- (ii) The students will maintain a proper file of case studies and will submit to the subject teacher by the date fixed by him/her.
- (iii) Viva-voce examination \*

#### - 20 Marks

\* Viva-voce examination will be conducted by a Committee consisting of Director/Principal, One External SubjectExpert and the teacher teaching the subject on the date and time fixed by the Director/Principal. The Quorum will consist of two and one of them will be external expert

# **STATISTICS**

#### Scheme of Examination of B.A/B. Sc three year degree course w.e.f. 2019-2020

There will be two theory papers of Statistics and Practical in B.A / B. Sc three year degree course Part-I, II & III consisting of two semesters each. Practical examinations will be held annually (based on the constituent semesters).

|               | B.A /B. Sc Part-I<br>(Semester-I) |        |                                 |  |           |        |
|---------------|-----------------------------------|--------|---------------------------------|--|-----------|--------|
|               |                                   |        |                                 |  | Mai       |        |
| Pape          | r Code/Time                       |        | Nomenclature                    |  | B.A       | B. Sc  |
| Ι             | ST-101/3 hou                      | ırs    | Statistical Methods-I           |  | 28+7*     | 40+10* |
| II            | ST-102/3 hou                      | ırs    | Probability Theory<br>Practical |  | 28+7*<br> | 40+10* |
| (Sem          | ester-II)                         |        |                                 |  |           |        |
| Ι             | ST-201/3 hou                      | ırs    | Statistical Methods-II          |  | 28+7*     | 40+10* |
| II            | ST-202/3 hou                      | ırs    | Probability Distributions       |  | 28+7*     | 40+10* |
| III           | ST-203/3 hou                      | ırs    | Practical                       |  | 60**      | 100**  |
| <b>B.A</b> /  | B. Sc Part-II                     |        |                                 |  |           |        |
| (Sem          | ester-III)                        |        |                                 |  |           |        |
| I             | ST-301/3 hou                      | ırs    | Elementary Inference            |  | 28+7*     | 40+10* |
| II            | ST-302/3 hou                      | ırs    | Sample Surveys                  |  | 28+7*     | 40+10* |
| —             |                                   |        | Practical                       |  |           | —      |
| (Semester-IV) |                                   |        |                                 |  |           |        |
| Ι             | ST-401/                           |        | netric and Non-                 |  |           |        |
|               | 3 hours                           | -      | netric Tests                    |  | 28+7*     | 40+10* |
| II            | ST-402/<br>3 hours                | Desig  | n of Experiments                |  | 28+7*     | 40+10* |
| III           | ST-403/<br>3 hours                | Practi | cal                             |  | 60**      | 100**  |

# (Semester-V)

| Ι    | ST-501/3 ho        | rs Applied Stat       | istics-I                       | 28+7* | 40+10* |
|------|--------------------|-----------------------|--------------------------------|-------|--------|
| II   | ST-502/3 ho        | Fundamenta            | Iethods and<br>ls of Computers | 28+7* | 40+10* |
|      |                    | Practical             |                                |       |        |
| (Sem | ester-VI)          |                       |                                |       |        |
| Ι    | ST-601/<br>3 hours | Applied Statistics-II |                                | 28+7* | 40+10* |
| II   | ST-602/<br>3 hours | Operations Research   | 1                              | 28+7* | 40+10* |
| III  | ST-603/<br>3 hours | Practical             |                                | 60**  | 100**  |

\* Marks of internal assessment will be based on the following criteria:

| (i)   | Two Handwritten Assignments                   | : | 10% |
|-------|-----------------------------------------------|---|-----|
|       | (1 <sup>st</sup> Assignment after one month & |   |     |
|       | 2 <sup>nd</sup> Assignment after two months)  |   |     |
| (ii)  | One Class Test                                | : | 5%  |
|       | (One period duration)                         |   |     |
| (iii) | Attendance                                    | : | 5%  |

Marks for attendance will be given as under:

| (1) | 91% onwards | : | 5 Marks    |
|-----|-------------|---|------------|
| (2) | 81% to 90%  | : | 4 Marks    |
| (3) | 75% to 80%  | : | 3 Marks    |
| (4) | 70% to 74%  | : | 2 Marks*** |
| (5) | 65% to 69%  | : | 1 Mark***  |

\*\*Practical Examinations will be held annually in the even semesters i.e. IInd, IVth & VIth semesters. The distribution of marks will be as under:

|              |   | <b>B.A</b> | B. Sc |
|--------------|---|------------|-------|
| Practical    | : | 48         | 80    |
| Class Record | : | 06         | 10    |
| Viva-Voce    | : | 06         | 10    |

\*\*\*For students engaged in co-curricular activities of the colleges only/authenticated medical grounds duly approved by the concerned Principal.

# **B.A/B. Sc-I Semester-I**

Time: 3 Hours

#### M.M.:B. Sc: 40+10\* B.A: 28+7\* \* Internal Assessment

# **Statistical Methods-I**

**Note**: There will be nine questions in all. Question No.1 will be compulsory covering whole of the syllabus and comprising 5 to 8 short answer type questions. Rest of the eight questions will be set from the four units uniformly i.e. two from each unit. The candidate will be required to attempt five questions in all selecting one question from each unit and the compulsory one. All the questions will carry equal marks except the compulsory question, the distribution of marks for which will be as follows:-B.Sc.8 marks and B.A. 6 marks.

## UNIT-I

**Introduction of Statistics**: Origin, development, definition, scope, uses and limitations.

**Types of Data**: Qualitative and quantitative data, nominal and ordinal data, time series data, discrete and continuous data, frequency and non-frequency data.

**Collection and Scrutiny of Data**: Collection of primary and secondary data- its major sources including some government publications, scrutiny of data for internal consistency and detection of errors of recording, classification and tabulation of data.

# UNIT-II

**Presentation of Data**: Frequency distribution and cumulative frequency distribution, diagrammatic and graphical presentation of data, construction of bar, pie diagrams, histograms, frequency polygon, frequency curve and ogives.

**Measures of Central Tendency and Location**: Arithmetic mean, median, mode, geometric mean, harmonic mean; partition values-quartiles, deciles, percentiles and their graphical location along with their properties, applications, merits and demerits.

#### UNIT-III

**Measures of Dispersion**: Concept of dispersion, characteristics for an ideal measure of dispersion. Absolute and relative measures based on: range, inter quartile range, quartile deviation, coefficient of quartile deviation, Mean deviation, coefficient of mean deviation, variance, standard deviation ( $\sigma$ ), coefficient of variation and properties of these measures, root mean square deviation and their relationship, variance of the combined series.

**Moments:** Moments about mean and about any point and derivation of their relationships, effect of change of origin and scale on moments, Sheppard's correction for moments (without derivation), Charlier's checks; Pearson's  $\beta$  and  $\gamma$  coefficients.

# UNIT-IV

Skewness and Kurtosis: Coefficients of Skewness and Kurtosis with their interpretations.

**Theory of Attributes**: Symbolic notations, dichotomy of data, class frequencies, order of class frequencies, consistency of data, independence and association of attributes, Yule's coefficient of association and coefficient of colligation and their relationship.

#### **Books recommended**

| S. No. | Title of Book                                 | Name of author                        | Publisher                |
|--------|-----------------------------------------------|---------------------------------------|--------------------------|
| 1.     | Fundamental of<br>Statistics Vol. I           | Goon A.M., Gupta M.K.,<br>Dasgupta B. | World Press,<br>Calcutta |
| 2.     | Statistics                                    | Johnson R.                            | Wiley Publishers         |
| 3.     | Basic Statistics                              | Aggarwal B.L.                         | New Age<br>International |
| 4.     | Fundamentals of<br>Mathematical<br>Statistics | Gupta S.C.&<br>Kapoor V.K.            | Sultan Chand &<br>Sons   |
| 5.     | Programmed<br>Statistics                      | Aggarwal B.L.                         | New Age<br>International |

Paper-II (ST-102)

Time: 3 Hours

M.M.:B. Sc: 40+10\* B.A: 28+7\* \* Internal Assessment

## **Probability Theory**

**Note**: There will be nine questions in all. Question No.1 will be compulsory covering whole of the syllabus and comprising 5 to 8 short answer type questions. Rest of the eight questions will be set from the four units uniformly i.e. two from each unit. The candidate will be required to attempt five questions in all selecting one question from each unit and the compulsory one. All the questions will carry equal marks except the compulsory question, the distribution of marks for which will be as follows:-B.Sc.8 marks and B.A. 6 marks.

#### UNIT-I

**Concepts in Probability:** Random experiment, trial, sample point, sample space, operation of events, exhaustive, equally likely, mutually exclusive and independent events; Definition of probability-classical, relative frequency, statistical and axiomatic approach.

#### UNIT-II

Conditional probability. Addition and multiplication laws of probability and their extension to n events. Boole's inequality; Baye's theorem and its applications.

#### UNIT-III

**Random Variable and Probability Functions:** Definition of random variable, discrete and continuous random variable, probability function, probability mass function and probability density functions, distribution function and its properties, functions of random variables, joint, marginal and conditional probability distribution function.

#### UNIT-IV

**Mathematical Expectation**: Definition and its properties-moments, addition and multiplication theorem of expectation. Conditional expectation and conditional variance.

Generating Functions: Moments generating function, cumulant generating function, probability generating function along with their properties. Characteristic function.

#### **Books recommended**

| S. No. | Title of Book                                 | Name of author             | Publisher              |
|--------|-----------------------------------------------|----------------------------|------------------------|
| 1.     | Fundamentals of<br>Mathematical<br>Statistics | Gupta S.C.&<br>Kapoor V.K. | Sultan Chand<br>& Sons |
| 2.     | Elementary<br>Probability                     | David S.                   | Oxford Press           |
| 3.     | Introduction to<br>Mathematical<br>Statistics | Hoel P.G.                  | Asia Pub. House        |
| 4.     | New Mathematical<br>Statistics                | Bansi Lal &<br>Arora S.    | Satya Prakashan        |
| 5.     | Introduction to<br>Mathematical<br>Statistics | Kapoor & Saxena.           | S.Chand                |

Paper-I (ST-201)

Time: 3 Hours

M.M.:B. Sc: 40+10\* B.A: 28+7\* \* Internal Assessment

## Statistical Methods-II

**Note**: There will be nine questions in all. Question No.1 will be compulsory covering whole of the syllabus and comprising 5 to 8 short answer type questions. Rest of the eight questions will be set from the four units uniformly i.e. two from each unit. The candidate will be required to attempt five questions in all selecting one question from each unit and the compulsory one. All the questions will carry equal marks except the compulsory question, the distribution of marks for which will be as follows:-B.Sc.8 marks and B.A. 6 marks.

#### UNIT-I

**Correlation**: Concept and types of correlation, methods of finding correlation - scatter diagram, Karl Pearson's Coefficient of correlation (r), its properties, coefficient of correlation for a bivariate frequency distribution. Rank correlation with its derivation, its merits and demerits, limits of rank correlation coefficient, tied or repeated ranks.

#### UNIT-II

**Curve Fitting**: Principle of least squares, fitting of straight line, second degree parabola, power curves of the type  $Y=aX^b$ , exponential curves of the types  $Y=ab^X$  and  $Y=ae^{bX}$ .

#### UNIT-III

**Linear Regression**: Two lines of regression, regression coefficients, properties of regression coefficients, angle between two regression lines, standard error of estimate obtained from regression line, correlation coefficient between observed and estimated values, distinction between correlation and regression.

#### UNIT-IV

**Multivariate Data:** Plane of regression, properties of residuals, variance of the residual. Multiple and partial correlation for three variables: coefficient of multiple correlation and its properties, coefficient of partial correlation and its properties, multiple correlation in terms of total and partial correlations and coefficient of determination.

# **Books recommended**

| S. No. | Title of Book                                 | Name of author                          | Publisher                |
|--------|-----------------------------------------------|-----------------------------------------|--------------------------|
| 1.     | Introduction to<br>Theory of<br>Statistics    | Mood A.M., Graybill<br>F.A. & Boes D.C. | McGraw Hill              |
| 2.     | Applied General<br>Statistics                 | Croxton F.E., Cowden<br>D.J. & Kelin S. | Prentice Hall            |
| 3.     | Introduction to<br>Mathematical<br>Statistics | Kapoor & Saxena.                        | S.Chand                  |
| 4.     | Statistical Methods                           | Snedecor G.W. &<br>Cochran W.G.         | Iowa State Uni.<br>Press |
| 5.     | Fundamentals of<br>Mathematical<br>Statistics | Gupta S.C.&<br>Kapoor V.K.              | Sultan Chand &<br>Sons   |

# <u>B.A/B. Sc-I Semester-II</u>

# Paper-II (ST-202)

Time: 3 Hours

M.M.:B. Sc: 40+10\* B.A: 28+7\* \* Internal Assessment

#### Probability Distributions

**Note**: There will be nine questions in all. Question No.1 will be compulsory covering whole of the syllabus and comprising 5 to 8 short answer type questions. Rest of the eight questions will be set from the four units uniformly i.e. two from each unit. The candidate will be required to attempt five questions in all selecting one question from each unit and the compulsory one. All the questions will carry equal marks except the compulsory question, the distribution of marks for which will be as follows:-B.Sc.8 marks and B.A. 6 marks.

#### UNIT-I

Bernoulli distribution and its moments, Binomial distribution: Moments, recurrence relation for the moments, mean deviation about mean, mode, moment generating function (m.g.f), characteristic function, additive property and recurrence relation for the probabilities of Binomial distribution.

#### UNIT-II

Poisson distribution: Poisson distribution as a limiting case of Binomial distribution, moments, mode, recurrence relation for moments, m.g.f., additive property of independent Poisson variates. Negative Binomial distribution: m.g.f., deduction of moments of negative binomial distribution from those of binomial distribution. Geometric distribution: moments, m.g.f, and lack of memory.

#### UNIT-III

Continuous uniform distribution: Moments, m.g.f., characteristic function and mean deviation. Gamma distribution: m.g.f., and additive property. Exponential distribution: m.g.f., moments and lack of memory.

#### UNIT-IV

Normal distribution as a limiting form of binomial distribution, chief characteristics of Normal distribution; mode, median, m.g.f., and moments of Normal Distribution, A linear combination of independent normal variates, points of inflexion, mean deviation about mean, area property of Normal distribution, importance and fitting of normal distribution.

#### **Books recommended**

| S. No. | Title of Book                                   | Name of author                                         | Publisher                |
|--------|-------------------------------------------------|--------------------------------------------------------|--------------------------|
| 1.     | Statistics:A<br>Beginner's<br>Text Vol. II      | Bhat B.R.,<br>Srivenkatramana T. &<br>Rao Madhava K.S. | New Age<br>International |
| 2.     | Fundamentals of<br>Mathematical<br>Statistics   | Gupta S.C. &<br>Kapoor V.K.                            | Sultan chand<br>& Sons   |
| 3.     | Introduction to<br>Mathematical<br>Statistics   | Kapoor & Saxena.                                       | S.Chand                  |
| 4.     | Statistics                                      | Johnson R.                                             | Wiley<br>Publishers      |
| 5.     | Mathematical<br>Statistics With<br>Applications | Freund's J.E.                                          | Prentice Hall            |

Paper-III (Practical ST-203)

Time: 3 Hours

Max. Marks: B. Sc: 100

B.A: 60

# Practical

- Note: Five questions will be set. The candidate will be required to attempt any three.
- 1. To construct frequency distributions using exclusive and inclusive methods
- 2. Representation of data using Bar and pie diagrams
- 3. Representation of data using Histogram, Frequency Polygon, Frequency Curve and Ogives.
- 4. To toss a coin at least 100 times and plot a graph of heads with respect to number of tosses.
- 5. To compute various measures of central tendency and dispersion.
- 6 To obtain first four moments for the given grouped frequency distribution.
- 7 To apply Charlier's checks while computing the moments for a given frequency distribution.
- 8. To obtain moments applying Sheppard's correction.
- 9. To obtain various coefficients of skewness and kurtosis.
- 10. To discuss the association of attributes for a 2x2 contingency table using Yule's coefficient of association and colligation.
- 11. To compute Karl Pearson's coefficient of correlation for given bivariate frequency distribution.
- 12. To find Spearman's rank correlation coefficient for given data.
- 13. To fit the straight line for the given data on pairs of observations.
- 14. To fit the second degree curve for the given data.
- 15. To fit the curve of the type  $Y = aX^b$  for the given data on pairs of observations.
- 16. To obtain the regression lines for given data.
- 17 To compute partial and multiple correlation coefficients for the given trivariate data.
- 18. To obtain plain of regression for the given trivariate data.
- 19. To fit binomial distribution to given data.
- 20. To fit Poisson distribution to given data.
- 21. To fit normal distribution to given distribution using area under the normal curve.

# Distribution of marks:

|                      | B. Sc. | <b>B.A</b> |
|----------------------|--------|------------|
| <b>Class Record:</b> | 10     | 06         |
| Viva Voce:           | 10     | 06         |
| Practical:           | 80     | <b>48</b>  |

Paper-I (ST-301)

Time: 3 Hours

M.M.:B. Sc: 40+10\* B.A: 28+7\* \* Internal Assessment

#### **Elementary Inference**

**Note**: There will be nine questions in all. Question No.1 will be compulsory covering whole of the syllabus and comprising 5 to 8 short answer type questions. Rest of the eight questions will be set from the four units uniformly i.e. two from each unit. The candidate will be required to attempt five questions in all selecting one question from each unit and the compulsory one. All the questions will carry equal marks except the compulsory question, the distribution of marks for which will be as follows:-B.Sc.8 marks and B.A. 6 marks.

#### UNIT-I

**Statistical Estimation**: Parameter and statistic, Basic concept of sampling distribution. Point and interval estimate of a parameter, concept of bias and standard error of an estimate. Standard errors of sample mean, sample proportion, standard deviation, Properties of a good estimator: Unbiasedness, Efficiency, Consistency and Sufficiency (definition and illustrations).

#### UNIT-II

**Methods of Estimation**: Method of moments, method of maximum likelihood and its properties (without proof). Estimation of parameters of Binomial, Poisson and Normal distributions

#### UNIT-III

**Testing of Hypotheses**: Statistical Hypothesis:- Simple and composite, test of statistical hypothesis, Null and alternative hypotheses, critical region, types of errors, level of significance, power of a test, one tailed and two tailed testing, p-value, BCR, most powerful test, Neyman-Pearson Lemma, Test of simple hypothesis against a simple alternative in case of Binomial and Normal distributions.

#### UNIT-IV

**Large Sample Tests**: Testing of a single mean, single proportion, difference of two means, two standard deviations and two proportions. Fisher's Z transformation. Determination of confidence interval for mean, variance and proportion.

#### **Books recommended**

| S. No. | Title of Book                                   | Name of author                          | Publisher              |
|--------|-------------------------------------------------|-----------------------------------------|------------------------|
| 1.     | A First Course on<br>Parametric<br>Inference    | Kale B.K.                               | Narosa                 |
| 2.     | Introduction to<br>Theory of Statistics         | Mood A.M., Graybill<br>F.A. & Boes D.C. | McGraw Hill            |
| 3.     | Mathematical<br>Statistics With<br>Applications | Freund's J.E.                           | Prentice Hall          |
| 4.     | Fundamentals of<br>Mathematical<br>Statistics   | Gupta S.C. &<br>Kapoor V.K.             | Sultan chand<br>& Sons |

Paper-II (ST-302)

Time: 3 Hours

M.M.:B. Sc: 40+10\* B.A: 28+7\* \* Internal Assessment

#### Sample Surveys

**Note**: There will be nine questions in all. Question No.1 will be compulsory covering whole of the syllabus and comprising 5 to 8 short answer type questions. Rest of the eight questions will be set from the four units uniformly i.e. two from each unit. The candidate will be required to attempt five questions in all selecting one question from each unit and the compulsory one. All the questions will carry equal marks except the compulsory question, the distribution of marks for which will be as follows:-B.Sc.8 marks and B.A. 6 marks.

#### UNIT-I

Concepts of census and sample survey, basic concepts in sampling. Sampling and Nonsampling errors. Principal steps involved in a sample survey; bias, precision and accuracy, advantages of sampling over complete census, limitations of sampling, different methods of data collection.

#### UNIT-II

**Basic sampling methods:** Simple random sampling (SRS) with and without replacement, use of random number tables, estimation of mean and variance in case of SRS. Simple random sampling of attributes, size of simple random sample.

#### UNIT-III

Stratified random sampling, estimation of population mean, variance of the estimate of population mean in stratified random sampling, allocation of sample size, proportional allocation, optimum allocation. Comparison of Stratified random sampling with SRS.

#### UNIT-IV

Systematic random sampling, estimation of mean and variance. Comparison of Systematic random sampling with SRS and Stratified random sampling, Ratio and regression methods of estimation under SRSWOR.

| S. No. | Title of Book                                    | Name of author                  | Publisher                       |
|--------|--------------------------------------------------|---------------------------------|---------------------------------|
| 1.     | Sampling<br>Techniques                           | Cochran W.G.                    | Wiley Publishers                |
| 2.     | Sampling Theory                                  | Des Raj and Chandok             | Narosa                          |
| 3      | Sample Theory of<br>Surveys with<br>Applications | Sukhatme et. all                | Iowa State Uni.<br>Press & IARS |
| 4.     | Fundamentals of<br>Applied Statistics            | Gupta S.C.&<br>Kapoor V.K.      | Sultan Chand<br>& Sons          |
| 5.     | Sampling<br>Techniques                           | Daroga Singh &<br>Chaudhry, F.S | New age<br>International        |

# **B.A/B. Sc-II Semester-IV**

### Paper-I (ST-401)

Time: 3 Hours

M.M.:B. Sc: 40+10\* B.A: 28+7\* \* Internal Assessment

### Parametric and Non-parametric tests

**Note**: There will be nine questions in all. Question No.1 will be compulsory covering whole of the syllabus and comprising 5 to 8 short answer type questions. Rest of the eight questions will be set from the four units uniformly i.e. two from each unit. The candidate will be required to attempt five questions in all selecting one question from each unit and the compulsory one. All the questions will carry equal marks except the compulsory question, the distribution of marks for which will be as follows:-B.Sc.8 marks and B.A. 6 marks.

### UNIT-I

**Chi-square distribution**: Definition, derivation, moment generating function, cumulant generating function, mean, mode, skewness, additive property, conditions for the validity, chi-square test for goodness of fit. Contingency table, coefficient of contingency, test of independence of attributes in a contingency table.

### UNIT-II

**Student's 't' and Snedecor's 'F' statistics:** Definition and derivation of Student's 't', constants of t-distribution, limiting form of t-distribution. Definition & derivation of Snedcor's F-distribution, constants of F-distribution, mode of F-distribution. Relationship between t, f and chi-square distribution.

### UNIT-III

Testing for the mean and variance of univariate normal distribution, testing of equality of two means and testing of equality of two variances of two univariate normal distributions. Testing for the significance of sample correlation coefficient and regression coefficient in sampling from bivariate normal distribution.

### UNIT-IV

Nonparametric Tests: Concept of non-parametric tests, advantages of non-parametric test over parametric test, Definition of order statistics. Sign test for univariate and bivariate distribution, run test, median test, Kolmogorov-Smirnov one sample test,

Kolmogorov-Smirnov two sample test, Mann Whitney U-test (only applications without derivation).

| S. No. | Title of Book                                      | Name of author                         | Publisher               |
|--------|----------------------------------------------------|----------------------------------------|-------------------------|
| 1.     | Fundamentals of<br>Statistics, Vol. I              | Goon A.M., Gupta M.K.<br>& Dasgupta B. | World Press<br>Calcutta |
| 2.     | Random Variable<br>and Probability<br>Distribution | Cramer H.                              | Cambridge Uni.<br>Press |
| 3.     | Fundamentals of<br>Mathematical<br>Statistics      | Gupta S.C. &<br>Kapoor V.K.            | Sultan Chand<br>& Sons  |
| 4.     | Practical<br>Nonparametric                         | W.J. Conover                           | Wiley Publisher         |

Paper-II (ST-402)

Time: 3 Hours

M.M.:B. Sc: 40+10\* B.A: 28+7\* \* Internal Assessment

## **Design of Experiments**

**Note**: There will be nine questions in all. Question No.1 will be compulsory covering whole of the syllabus and comprising 5 to 8 short answer type questions. Rest of the eight questions will be set from the four units uniformly i.e. two from each unit. The candidate will be required to attempt five questions in all selecting one question from each unit and the compulsory one. All the questions will carry equal marks except the compulsory question, the distribution of marks for which will be as follows:-B.Sc.8 marks and B.A. 6 marks.

## UNIT-I

Analysis of variance (ANOVA): Definition and assumptions for ANOVA. Analysis of variance for one-way classification and two-way classifications for fixed effect models with one observation per cell.

# UNIT-II

Introduction to design of experiments, terminology: experiment, treatment, experimental unit, blocks, experimental error, replication, precision, efficiency of a design, need for design of experiments, size and shape of plots and blocks. Fundamental principles of design: randomization, replication and local control.

## UNIT-III

Completely randomized design (CRD), Randomized Block Design (RBD): their layout, statistical analysis, applications, advantages and disadvantages. Efficiency of RBD relative to CRD.

## UNIT-IV

Latin square design (LSD): Layout, statistical analysis, applications, merits and de-merits of LSD. Factorial designs: Definition, advantages and disadvantages, concept of main effects and interaction in  $2^2$  design.

| S. No. | Title of Book                                     | Name of author               | Publisher              |
|--------|---------------------------------------------------|------------------------------|------------------------|
| 1.     | Design and Analysis<br>of Experiments             | Das M.N. & Giri              | Springer Verlage       |
| 2.     | Linear Models                                     | Searle S.R.                  | John Wiley &<br>Sons   |
| 3.     | Linear Estimation<br>and Design of<br>Experiments | Joshi D.D.                   | Wiley Eastern          |
| 4.     | Fundamentals of<br>Applied Statistics             | Gupta S.C. &.<br>Kapoor V.K. | Sultan Chand<br>& Sons |

Paper-III (Practical ST-403)

Time: 3 Hours

Max. Marks: B. Sc: 100

B.A: 60

# Practical

- Note: Five questions will be set. The candidate will be required to attempt any three.
- 1. To apply large sample test of significance for single proportion and difference of two proportions and obtained their confidence intervals.
- 2. To apply large sample test of significance for single mean and to obtained confidence interval.
- 3. To apply large sample test of significance for difference between two means and standard deviations.
- 4. To apply *t*-test for testing single mean and difference between means and to obtain their confidence intervals.
- 5. To apply paired *t*-test for difference between two means.
- 6 To apply Chi-square test for goodness of fit.
- 7 To apply Chi-square test for independence of attributes.
- 8. To apply test of significance of sample correlation coefficient.
- 9. To apply F-test for testing difference of two variances.
- 10. To apply sign test for given data.
- 11. To apply Run test for given data.
- 12. To apply Median test for given data.
- 13. To apply Mann Whitney U-test for given data.
- 14. To find standard error of estimate of population mean in case of SRSWR & SRSWOR and comparison of these estimates.
- 15. To find standard error of estimate of population mean in case of stratified random sampling.
- 16. To find standard error of estimate of population mean in case of systematic sampling.
- 17 To perform ANOVA in case of CRD and test whether the treatments/varieties are equally effective.
- 18. To perform ANOVA for an RBD.
- 19. To perform ANOVA for an LSD.

## Distribution of marks:

|                      | B. Sc. | B.A       |
|----------------------|--------|-----------|
| <b>Class Record:</b> | 10     | 06        |
| Viva Voce:           | 10     | 06        |
| Practical:           | 80     | <b>48</b> |

Time: 3 Hours

Paper-I (ST-501)

M.M.:B. Sc: 40+10\* B.A: 28+7\* \* Internal Assessment

## **Applied Statistics-I**

**Note**: There will be nine questions in all. Question No.1 will be compulsory covering whole of the syllabus and comprising 5 to 8 short answer type questions. Rest of the eight questions will be set from the four units uniformly i.e. two from each unit. The candidate will be required to attempt five questions in all selecting one question from each unit and the compulsory one. All the questions will carry equal marks except the compulsory question, the distribution of marks for which will be as follows:-B.Sc.8 marks and B.A. 6 marks.

## UNIT-I

**Index Number**: Definition, problems involved in the construction of index numbers, calculation of index numbers-simple aggregate method, weighted aggregates method, simple average of price relatives, weighted average of price relatives, link relatives, chain indices, value index numbers, price and quantity index numbers.

## UNIT-II

Laspeyre's, Paasche's, Marshall-Edgeworth and Fisher's index numbers, time and factor reversal tests of index numbers, consumer price index number and its uses. Base shifting, splicing and deflating of index numbers.

### UNIT-III

**Time Series Analysis**: Definition, components of time series-trend, seasonal variations, cyclic variations, irregular component, illustrations, additive and multiplicative models, determination of trend: graphic method, semi-averages method, method of curve fitting by principle of least squares, moving average method. Analysis of seasonal fluctuations, construction of seasonal indices using method of simple averages, ratio to trend method and ratio to moving average method.

### UNIT-IV

**Demographic methods**: Sources of demographic data-census, register, adhoc survey, hospital records, measurement of mortality, crude death rate, specific death rate, standardized death rates, complete life tables and its main features, assumptions, descriptions and construction of life tables, uses of life tables, stationary and stable population, measurement of fertility-crude birth rate, general fertility rate, specific fertility rate, total fertility rate, measurement of population growth, gross reproduction rate, net reproduction rate.

| S. No. | Title of Book                      | Name of author                          | Publisher                |
|--------|------------------------------------|-----------------------------------------|--------------------------|
| 1.     | Applied General<br>Statistics      | Croxton F.E., Cowden<br>D.J. & Kelin S. | Prentice Hall            |
| 2.     | Demography                         | Cox P.R.                                | Cambridge Uni.<br>Press  |
| 3.     | Technical<br>Demography            | Ramakumar R.                            | New Age<br>International |
| 4.     | Fundamentals of Applied Statistics | Gupta S.C. &<br>Kapoor V.K.             | Sultan Chand<br>& Sons   |

## **B.A/B. Sc-III Semester-V**

## Paper-II (ST-502)

Time: 3 Hours

M.M.:B. Sc: 40+10\* B.A: 28+7\* \* Internal Assessment

# Numerical Methods and Fundamentals of Computers

**Note**: There will be nine questions in all. Question No.1 will be compulsory covering whole of the syllabus and comprising 5 to 8 short answer type questions. Rest of the eight questions will be set from the four units uniformly i.e. two from each unit. The candidate will be required to attempt five questions in all selecting one question from each unit and the compulsory one. All the questions will carry equal marks except the compulsory question, the distribution of marks for which will be as follows:-B.Sc.8 marks and B.A. 6 marks.

## UNIT-I

**Numerical Methods:** Concept of interpolation and extrapolation, difference tables for operators, forward, backward and shift, and their relationship, methods of interpolation, Newton's formula for forward and backward interpolation with equal intervals, factorial notations, equidistant terms with one or more missing terms.

## UNIT-II

Divided differences and their properties, Newton formula for unequal intervals, Lagrange's method of interpolation, Numerical integration, General quadrature formula for equidistant ordinates, Trapezoidal rule, Simpson's 1/3<sup>rd</sup> and 3/8<sup>th</sup> formulae.

### UNIT-III

**Basics of Computer:** Introduction, origin, development, uses and limitation of computers. Types of computers, computer structure, input unit, CPU, output unit, secondary storage, High Level and low level languages, compiler and interpreter.

**Computer Arithmetic**: Floating point representation of numbers, arithmetic operations with normalized floating point numbers. Number systems- Binary, decimal, octal and hexadecimal number systems and their conversions into each other. Binary arithmetic's, (Addition, subtraction, multiplication & division).

# UNIT-IV

**Flow charts and Algorithms:** Concepts of flow chart, algorithm and programming. Flow charts and algorithms for the following: Mean, median, mode, variance, covariance, coefficient of correlation and Straight line fitting. Trapezoidal rule, Simpson's 1/3 and 3/8<sup>th</sup> rules. Elementary idea of statistical software: SPSS

| S. No. | Title of Book                                       | Name of author                   | Publisher                     |
|--------|-----------------------------------------------------|----------------------------------|-------------------------------|
| 1.     | Computer<br>Fundamentals                            | Sinha P.K.                       | BPB Publication               |
| 2.     | Introductory<br>Methods of<br>Numerical<br>Analysis | Sastry S.S.                      | Prentice Hall                 |
| 3.     | Computer Based<br>Numerical<br>Algorithms           | Krishnamurthy E.V.<br>& Sen S.K. | Affiliated East<br>West Press |
| 4.     | Computer Oriented<br>Numerical Methods              | Rajaraman V.                     | Prentice Hall                 |

Paper-I (ST-601)

Time: 3 Hours

M.M.:B.Sc: 40+10\* B.A: 28+7\* \* Internal Assessment

# **Applied Statistics-II**

**Note**: There will be nine questions in all. Question No.1 will be compulsory covering whole of the syllabus and comprising 5 to 8 short answer type questions. Rest of the eight questions will be set from the four units uniformly i.e. two from each unit. The candidate will be required to attempt five questions in all selecting one question from each unit and the compulsory one. All the questions will carry equal marks except the compulsory question, the distribution of marks for which will be as follows:-B.Sc.8 marks and B.A. 6 marks.

## UNIT-I

**Indian official statistics:** Introduction, Indian statistical system, Statistical offices at the centre, Statistical offices in the states, Population statistics, Agricultural statistics, Industrial statistics, Trade statistics, Price statistics, Statistics of labour and employment, Statistics of transport and communication, Financial and banking statistics.

## UNIT-II

**Statistical Quality Control**: Meaning and uses of SQC, causes of variations in quality, product and process control, control charts, 3- control limits, control chart for variables- $\overline{X}$  and R chart, criteria for detection of lack of control in  $\overline{X}$  & R Charts, Interpretation of  $\overline{X}$  & R charts.

## UNIT-III

Control chart for standard deviation ( $\sigma$  chart), control charts for attributes: 'p' chart and 'c' chart, natural tolerance and specification limits.

## UNIT-IV

Acceptance sampling : Problem of lot acceptance, stipulation of good and bad lots, producer's and consumer's risks, single and double sampling plans, their OC functions, concepts of AQL, LTPD, AOQL, average amount of inspection and ASN function.

| S. No. | Title of Book                          | Name of author                         | Publisher               |
|--------|----------------------------------------|----------------------------------------|-------------------------|
| 1.     | Statistical Quality<br>Control         | Grant E.L.                             | McGraw Hill             |
| 2.     | Statistical Methods in Quality Control | Cowden D.J.                            | Asia Pub.<br>Society    |
| 3.     | Fundamentals of<br>Applied Statistics  | Gupta S.C. &<br>Kapoor V.K.            | Sultan Chand<br>& Sons  |
| 4.     | Fundamentals of<br>Statistics, Vol. II | Goon A.M., Gupta M.K.<br>& Dasgupta B. | World Press<br>Calcutta |

Paper-II (ST-602)

Time: 3 Hours

M.M.:B. Sc: 40+10\* B.A: 28+7\* \* Internal Assessment

### **Operations Research**

**Note**: There will be nine questions in all. Question No.1 will be compulsory covering whole of the syllabus and comprising 5 to 8 short answer type questions. Rest of the eight questions will be set from the four units uniformly i.e. two from each unit. The candidate will be required to attempt five questions in all selecting one question from each unit and the compulsory one. All the questions will carry equal marks except the compulsory question, the distribution of marks for which will be as follows:-B.Sc.8 marks and B.A. 6 marks.

## UNIT-I

Objective of O.R., nature and definitions of O.R., Scope of O.R., Meaning and necessity of O.R. models, classification of O.R. models, Advantages & disadvantages of O.R. models. Steps in model formulation, principles of modeling. Characteristics of a good model, Allocation problems.

## UNIT-II

Linear programming problem (LPP): Definition, objective function, constraints, graphical solution of L.P.P., limitations of graphical method, Simplex method to solve L.P.P., concept of initial basic feasible solution, computation procedure for Simplex method.

### UNIT-III

Artificial variable techniques: Big-M method, Two-phase method. Duality in Linear Programming; Concept of duality, Fundamental properties of duality.

### UNIT-IV

Transportation Problem (T.P.): Formulation, Basic feasible solution. Different methods to find initial feasible solution: North-West corner rule, Row minima method, column minima method, Matrix minima method (Least cost entry method), Vogel's Approximation method (or Unit cost penalty method). UV-method (Modi's method) for finding the optimum solution of T.P.

| S. No. | Title of Book                              | Name of author          | Publisher             |
|--------|--------------------------------------------|-------------------------|-----------------------|
| 1.     | Linear<br>Programming                      | Hadley G.               | Narosa                |
| 2.     | Operations<br>Research: An<br>Introduction | Taha H.A.               | Macmillan Pub.<br>Co. |
| 3.     | Operations<br>Research                     | Goel B.S. & Mittal S.K. | Pragati<br>Prakashan  |
| 4.     | Operations<br>Research                     | Sharma S.D.             | KedarNath &<br>Co.    |
| 5.     | Operations<br>Research                     | Sharma J.K.             | Macmillan Pub.        |

# B.A/B. Sc-III

Paper-III (Practical ST-603)

Max. Marks: B. Sc: 100

B.A: 60

# Practical

Note: Five questions will be set. The candidate will be required to attempt any three.

- 1. To construct  $\overline{X}$  and R-chart, and comment on the state of control of the process.
- 2. To construct p-chart and d-chart, and comment on the state of control of the process.
- 3. To obtain control limits for number of defects and comment on the state of control plotting the appropriate chart.
- 4. To calculate price and quantity index numbers using the formulae given by Laspyre, Paasche, Marshal-Edgeworth and Fisher.
- 5. To obtain cost of living index numbers for the given data using (i)Aggregate Expenditure Method. (ii) Family Budget Method
- 6 To test the given data whether the formulae given by Laspyre, Paasche, Marshal-Edgeworth and Fisher, satisfy reversal tests.
- 7 To work out trends using curve fitting method for given data.
- 8. To work out trends using moving average method for given data.
- 9. To obtain seasonal variation indices using simple average method.
- 10. To obtain seasonal variation indices using ratio to moving average method.
- 11. To calculate the crude and standardized death rates of the population using Direct Method and Indirect Method regarding one of the populations as standard population.
- 12. To calculate the following for the given data CDR, CBR, Sex/Age SDR, GFR, TFR, GRR, NRR.
- 13. To complete the given incomplete life table by computing various elements of life table.
- 14. To interpolate the required value for the given data using Newton's Forward/backward interpolation formula for equal intervals.
- 15. To interpolate the required value for the given data of using Newton's divided difference and Lagrange's interpolation formula.
- 16. To evaluate the integral of the type  $\int f(x) dx$  using
  - (i) Trapezoidal rule, (ii) Simpson's one-third rule
  - (iii) Simpson's three-eight rule

## Distribution of marks:

Time: 3 Hours

|                      | B. Sc. | B.A       |
|----------------------|--------|-----------|
| <b>Class Record:</b> | 10     | 06        |
| Viva Voce:           | 10     | 06        |
| Practical:           | 80     | <b>48</b> |

# P.G. DIPLOMA IN FLORICULTURE (ANNUAL SYSTEM)

# SCHEME OF EXAMINATION w.e.f. session 2019-20 under CBS

| Code                    | Nomenclature                              | Duration | Max. Marks | s Credit  |
|-------------------------|-------------------------------------------|----------|------------|-----------|
| Theory Pape<br>PGDF-101 | Essentials of Floriculture                | 3 Hrs.   | 80         | 4         |
| PGDF-102                | Improvement of Ornamental Plants          | 3 Hrs.   | 80         | 4         |
| PGDF-103                | Seed Production and Micro-<br>Propagation | 3 Hrs.   | 80         | 4         |
| PGDF-104                | Agro technology and Marketing             | 3 Hrs.   | 80         | 4         |
| Practical Pa            | pers                                      |          |            |           |
| PGDF-105                | Based on Paper PGDF-101 & 102             | 4 Hrs.   | 80         | 4         |
| PGDF-106                | Based on Paper PGDF-103 & 104             | 4 Hrs.   | 80         | 4         |
| PGDF-107                | Seminar                                   |          | 20         | 1         |
|                         |                                           | Total    | 500 2      | 25 Credit |

## SYLLABUS

## PGDF-101 Essentials of Floriculture

Max. Marks: 80 (Theory), Duration: 3 hours Credit-4

Note: Nine question will be set in all. Question No. 1 will be compulsory and short answer type covering the entire syllabus. Remaining eight questions will be set unit-wise and four questions from each unit. The candidates will be required to attempt Question no. 1 and four more selecting two questions from each unit. All questions carry equal marks.

# UNIT-1

- 1. History and scope of Floriculture
- 2. Layout structure and management of nursery.
- 3. Green House Plants.
- 4. Types and varieties of Dahlia, Chrysanthemum, Gladiolus and Bougainvillea.
- 5. Cultivation of cacti, succulents, orchids, and water plants.
- 6. Prolonging the vase life of flowers.

## UNIT-2

- 1. Importance and types of house plants.
- 2. Effects of factors light, temperature, mineral nutrients, fertilizers, integrated nutrient use.
- 3. Soil formation, soil structure, soil characteristics and soil fertility assessment.
- 4. Plant care, training, diseases, pests, control measures.
- 5. Mycorrhiza and soil fertility management.
- 6. Methods of growing indoor plants, containers for house plants, dish garden, terrarium, hanging basket.
- 7. Managing Plant environment-green house, green house covering material, environmental controls, mist chambers.
- 8. Media and soil mixtures for growing plants.

- 1. S.K. Bhattacharjee and Lakshman Chandran De. 2010. Advanced Commercial. Floriculture, Vols. I and II Aavishkar Pub., Second Revised and Enlarged Edition, 798.
- 2. D. Ravinath. 2007. Floriculture: A Viable Business. Excel Books
- 3. <u>S.Prasad, U. Kumar</u>. 2010. A Handbook of Floriculture). Agrobios (India)
- John M. Dole and Harold F. Wilkins. 2004. Floriculture: Principles and Secies : Prentice Hall; 2 edition (2<sup>nd</sup> Edition)

 Paul V. Nelson (Author). 2002. Greenhouse Operation and Management. Prentice Hall; 6 edition (6<sup>th</sup> Edition)

## PGDF-102 Improvement of Ornamental Plants

Max. Marks: 80 (Theory), Duration: 3 hours Credit-4

Note: Nine question will be set in all. Question No. 1 will be compulsory and short answer type covering the entire syllabus. Remaining eight questions will be set unit-wise and four questions from each unit. The candidates will be required to attempt Question no. 1 and four more selecting two questions from each unit. All questions carry equal marks.

# UNIT-1

- 1. History and overview.
- 2. Role of Introduction and selection for domestication.
- 3. Variation and genetic mechanism associated with flower characters like double ness and color in important annuals, bulbs and shrubs.
- 4. Vegetative propagation: Principles and practices of clone selection.
- 5. Techniques of cutting, budding, grafting and layering
- 6. Propagation by specialized stems and roots.

# UNIT-2

1. General account of improvement of Roses, Chrysanthemum, Dahlia, Gladiolus, Lilies, Marigold, Zinnia, Carnation, Bougainvillea, Hibiscus rosa sinensis.

- 1. J.S. Arora.2007, introductory ornamental horticulture. Kalyani Publications.
- <u>Allan M. Armitage and Judy M. Laushman</u>. 2008 Speciality Cut Flowers: The Production of Annuals, Perennials, Bulbs and Woody Plants for Fresh and Dried Cut Flowers. Timber Press; REV
- 3. <u>Gwen Kelaidis and Saxon Holt</u>. 2008. Hardy Succulents: Tough Plants for Every Climate. Storey Publishing, LLC.
- 4. <u>Christopher Brickell.</u> Royla Horticulture Society. Encyclopedia of Plants and Flowers (Rhs).
- 5. D.G. Hessayon. 2005. The House Plant Expert. Expert; 2<sup>nd</sup> edition.

PGDF-103 Seed production and Micro propagation

Max. Marks: 80 (Theory), Duration: 3 hours Credit-4

Note: Nine question will be set in all. Question No. 1 will be compulsory and short answer type covering the entire syllabus. Remaining eight questions will be set unit-wise and four questions from each unit. The candidates will be required to attempt Question no. 1 and four more selecting two questions from each unit. All questions carry equal marks.

# UNIT-1

- 1. Seed development, structure and stages of seed development.
- 2. Apomixis and Polyembryony: a general account.
- 3. Seed production systems
- 4. Techniques for seed production and handling
- 5. Seed testing and seed storage
- 6. Seedling production system
- 7. Field seedlings, field nurseries

# UNIT-II

- 1. Principles of tissue culture and microprapogations
- 2. Types of tissue culture systems.
- 3. Media preparation, sterilization, types of media, methods and applications
- 4. Protoplast and cell suspension cultures
- 5. Synthetic seeds
- 6. Microprapogation of orchids and Carnation.
- 7. Clonal selection of microprapogated plant

- 1. Introductory ornamental Horticulture 2007. J.S. Arora, Kalyani Publishers.
- 2. Advances in ornamental Horticulture, S.K. Bhattacharjee. 2006, Pointer Publishers.
- 3. Post Harvest Technology of flowers and ornamental plants. S.K. Bhattacharjee 2005, Pointer Publishers.
- 4. Advanced Commercial Floriculture, S.K. Bhattacharjee 2010. Aaviskar Publishers.
- 5. Ornamental Horticulture by Vishnu Swarup, Mac Milan Publishers.
- 6. Plant Propagation by M.K. Sadhu 1989. New Age International Publishers.
- 7. Propagation of tropical and sub-tropical horticulture crops. Bose, T.K., Mitra, S.K. and Sadhu, M.K. Noya Prakash Publisher

Max. Marks: 80 (Theory), Duration: 3 hours Credit-4

Note: Nine question will be set in all. Question No. 1 will be compulsory and short answer type covering the entire syllabus. Remaining eight questions will be set unit-wise and four questions from each unit. The candidates will be required to attempt Question no. 1 and four more selecting two questions from each unit. All questions carry equal marks.

# UNIT-1

- 1. Scope and importance of commercial floriculture in India
- 2. Production techniques- both conventional and modern for ornamental plants like Roses, Chrysanthemum, Gladiolus, Tuberose and Gerbera for domesticated and expert markets.
- 3. Hybrid seed production, Post harvest technology of cut flowers in respect of commercial flower crop production of dry flowers.

# UNIT- II

- 1. Indian floriculture industry: An overview
- 2. Strategies for marketing of floriculture products, IPR and quarantine laws
- 3. Cut flowers as specialty crops, cut flower industries
- 4. Trading flowers and potted plants
- 5. Value addition in floriculture: cosmetics and perfume industry and outdoor designing.
- 6. Cutting, grading, packaging and marketing of cut flower crops (Aster, Carnation, Chrysanthemum, Gladiolus, Narcissus, Orchids and Antirrhinum) for national and International market.

- 1. Introductory ornamental Horticulture 2007. J.S. Arora, Kalyani Publishers.
- 2. Advances in ornamental Horticulture, S.K. Bhattacharjee. 2006, Pointer Publishers.
- 3. Post Harvest Technology of flowers and ornamental plants. S.K. Bhattacharjee 2005, Pointer Publishers.
- 4. Advanced Commercial Floriculture, S.K. Bhattacharjee 2010. Aaviskar Publishers.
- 5. Ornamental Horticulture by Vishnu Swarup, Mac Milan Publishers.
- 6. Plant Propagation by M.K. Sadhu 1989. New Age International Publishers.
- 7. Propagation of tropical and sub-tropical horticulture crops. Bose, T.K., Mitra, S.K. and Sadhu, M.K. Noya Prakash Publisher.

### BOTANY DEPARTMENT KURUKSHETRA UNIVERSITY KURUKSHETRA M.Sc. BOTANY Scheme of Examination (CBCS)w.e.f. 2019-20

| Paper code | Title of paper                   | Type of paper | Hours<br>/week | Credits | Marks + Internal<br>Assessment | Total |
|------------|----------------------------------|---------------|----------------|---------|--------------------------------|-------|
| BOT-101    | Algae & Fungi                    | Core          | 4              | 4       | 80 + 20                        | 100   |
| BOT-102    | Bryophytes &<br>Pteridophytes    | Core          | 4              | 4       | 80 + 20                        | 100   |
| BOT-103    | Cytogenetics & plant<br>breeding | Core          | 4              | 4       | 80 + 20                        | 100   |
| BOT-104    | Ecology                          | Core          | 4              | 4       | 80 + 20                        | 100   |
| BOT-105    | Practical based on 101 + 102     | Core          | 8              | 4       | 80 + 20                        | 100   |
| BOT-106    | Practical based on 103 + 104     | Core          | 8              | 4       | 80 + 20                        | 100   |
| Total      | •                                | •             | •              | 24      |                                | 600   |

### Semester I

### Semester II

| Paper code | Title of paper                      | Type of<br>paper | Hours/<br>week | Credits | Marks + Internal<br>Assessment | Total |
|------------|-------------------------------------|------------------|----------------|---------|--------------------------------|-------|
| BOT-201    | Microbiology and<br>Biostatistics   | Core             | 4              | 4       | 80 + 20                        | 100   |
| BOT-202    | Natural Resources &<br>Biodiversity | Core             | 4              | 4       | 80 + 20                        | 100   |
| BOT-203    | Gymnosperms &<br>Ethnobotany        | Core             | 4              | 4       | 80 + 20                        | 100   |
| BOT-204    | Molecular genetics                  | Core             | 4              | 4       | 80 + 20                        | 100   |
| BOT-205    | Seminar                             | Core             | 1              | 1       | 25                             | 25    |
| BOT-206    | Plants for human welfare            | Open<br>Elective | 2              | 2       | 40 + 10                        | 50    |
| BOT-207    | Practical based on<br>201 + 202     | Core             | 8              | 4       | 80 + 20                        | 100   |
| BOT-208    | Practical based on<br>203 + 204     | Core             | 8              | 4       | 80 + 20                        | 100   |
| Total      | -                                   | •                | ·              | 27      |                                | 675   |

| Semester III  |                                                                                                                                                                                                                                                                            |               |                |         |                                   |       |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|---------|-----------------------------------|-------|
| Paper<br>code | Title of paper                                                                                                                                                                                                                                                             | Type of paper | Hours/<br>week | Credits | Marks +<br>Internal<br>Assessment | Total |
| BOT-301       | Plant physiology & biochemistry                                                                                                                                                                                                                                            | Core          | 4              | 4       | 80 + 20                           | 100   |
| BOT-302       | Taxonomy & economic botany                                                                                                                                                                                                                                                 | Core          | 4              | 4       | 80 + 20                           | 100   |
| BOT-303       | Biotechnology & genetic engineering                                                                                                                                                                                                                                        | Core          | 4              | 4       | 80 + 20                           | 100   |
| BOT-304       | <ul> <li>a) Advanced Phycology (elective)</li> <li>b) Applied Mycology (elective)</li> <li>c) Restoration Ecology (elective)</li> <li>d) Advanced Plant Physiology</li> <li>(elective)</li> <li>e) Biophysical &amp; biochemical</li> <li>techniques (elective)</li> </ul> | Elective      | 4              | 4       | 80 + 20                           | 100   |
| BOT-305       | Seminar                                                                                                                                                                                                                                                                    | Core          | 1              | 1       | 25                                | 25    |
| BOT-306       | Biodiversity and its conservation                                                                                                                                                                                                                                          | Open Elective | 2              | 2       | 40 + 10                           | 50    |
| BOT-307       | Practical based on 301                                                                                                                                                                                                                                                     | Core          | 6              | 3       | 60 + 15                           | 75    |
| BOT-308       | Practical based on 302 + 303                                                                                                                                                                                                                                               | Core          | 6              | 3       | 60 + 15                           | 75    |
| BOT-309       | Practical based on 304                                                                                                                                                                                                                                                     | Core          | 4              | 2       | 40 + 10                           | 50    |
| Total         | •                                                                                                                                                                                                                                                                          | •             |                | 27      |                                   | 675   |

### Semester IV

| Paper   | Title of paper                                                                                                                                                                                                                              | Type of  | Hours/ | Credits | Marks +    | Total |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------|------------|-------|
| code    |                                                                                                                                                                                                                                             | paper    | week   |         | Internal   |       |
|         |                                                                                                                                                                                                                                             |          |        |         | Assessment |       |
| BOT-401 | Plant growth & development                                                                                                                                                                                                                  | Core     | 4      | 4       | 80 + 20    | 100   |
| BOT-402 | Biology of Reproduction and                                                                                                                                                                                                                 | Core     | 4      | 4       | 80 + 20    | 100   |
|         | Anatomy                                                                                                                                                                                                                                     |          |        |         |            |       |
| BOT-403 | Plant Tissue Culture                                                                                                                                                                                                                        | Core     | 4      | 4       | 80 + 20    | 100   |
| BOT-404 | <ul> <li>a) Applied phycology (elective)</li> <li>b) Principles of Plant Pathology</li> <li>(elective)</li> <li>c) Conservation Biology (elective)</li> <li>d)Plant Growth Regulators (elective)</li> <li>e) Genomics (elective)</li> </ul> | Elective | 4      | 4       | 80 + 20    | 100   |
| BOT-405 | Practical based on 401                                                                                                                                                                                                                      | Core     | 6      | 3       | 60 + 15    | 75    |
| BOT-406 | Practical based on 402 + 403                                                                                                                                                                                                                | Core     | 6      | 3       | 60 + 15    | 75    |
| BOT-407 | Practical based on 404                                                                                                                                                                                                                      | Core     | 4      | 2       | 40 + 10    | 50    |
| Total   |                                                                                                                                                                                                                                             |          |        | 24      |            | 600   |

### **Total Credits = 102**

### Total Marks = 2550

### SEMESTER – I

| Paper – BOT-101 | Algae & Fungi | Credit -4 | <b>MM-80</b> |
|-----------------|---------------|-----------|--------------|
|-----------------|---------------|-----------|--------------|

**Objectives:** To educate and train the students for professional and research career in the field of Algology & Mycology.

**Outcome:** The learning outcome is an advanced academic education to broaden the knowledge in comparison to that obtained in Bachelor's degree programme. The acquired knowledge will provide professional qualification for work in biological laboratories and research centres.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

### Unit-I

- 1. Criteria for algal classification (pigments, reserve food, flagella etc.) and their taxonomic importance.
- 2. Comparative account of important systems of classification and recent trends.
- 3. Thallus organization in algae and evolutionary trends.
- 4. Economic importance of algae as food, feed, uses in industries etc and algal biofertilizers.

#### Unit-II

- (a) Biodiversity of algae in different habitats (terrestrial, freshwater and marine).
  (b) Ecological diversity of algae in unusual habitats (thermal, psychrophilic, subaerial, symbiotic etc.).
- 6. Thallus organization in algae and evolutionary trends.
- 7. Dynamics and consequences of algal blooms and red tides (Freshwater and Marine). Algae as major components of phytoplankton.
- 8. Morphological features and life cycle patterns of major divisions with suitable examples (Cyanophyta, Chlorophyta, Xanthophyta, Bacillariophyta, Phaeophyta, and Rhodophyta).

#### Unit- III

- 9. General characters of fungi: Thallus organization, nutrition and reproduction.
- 10. Classification of fungi by Ainsworth & Bisby (1983), Alexopoulus et. Al (1996).- phylogeny of fungi- characters used in classification.
- 11. General account of Myxomycota, mastigomycota, Zygomycota, Ascomycota, Basidiomycota and Mitosporic gungi. Different kinds of spores and their dispersal.
- 12. Concept of Homothallism, Heterothallism, alternation of generations and parasexualuality.

#### Unit – IV

- 13. Economic importance of fungi in nutrient cycling, decomposition, humus formation, decay and deterioration of wood & timber.
- 14. Causal organisms, sysptoms and management of : late and early blight of potato, downy mildew of grapes, green ear disease of ground nut, apple scab, karnal bunt of wheat, rust of wheat, tikka disease of ground nut
- 15. Lichens: structure, reproduction and economic importance

#### **Suggested Readings:**

1. Ahluwalia, A.S. (Ed. ). *Phycology: Principles, Processes and Applications*. Daya Publishing House, New Delhi. 2003.

- 2. Carr, N.G. & Whitton , B.A. (1982): The biology of Cyanobacteria Blackwell Scientific Publ., Oxford, U.K.
- 3. Dubey, R.C. (2014): Advanced Biotechnology, S Chand & Cmpany Pvt. Ltd., New Delhi.
- 4. Fatma, T. (2005): Cyanobacterial and Algal Metabolism and Environmental Biotechnology, Narosa Publihers.
- 5. Fay, P & C van Baalen (1987): The cyanobacteria, Elsevier Science Publishers, B.V. Amsterdam, Netherlands.
- 6. Gupta, R.K. & Pandey, V.D. (2007): Advaces in Applied Phycology, Daya Publishing House, Daryaganj, New Delhi.
- Hoek, C. Van Den, Mann, D.G. & Jahns, H.M. (1995): Algae: An Introduction to Phycology, Cambridge University Press, U.K.
- 8. Kaushik, B.D. (1987): Laboratory methods for Blue-green Algae, Associated Publishing Co., New Delhi.
- 9. Morris, I. (1980): The Physiological Ecology of Phytoplankton (studies in Ecology, Vol.7), Blackwell Scientific Publ., USA.
- Prescott, L.M., Harley, J.P. & Klein, D.A. (1996): Microbiology, 3<sup>rd</sup> edition, Wm. C. Brown Publishers, USA.
- 11. Singh, B.D. (1998): Biotechnology, Kalyani Publishers, New Delhi.
- 12. Singh, R.P. (1990): Introductory Biotechnology, Central Book Depot, Allahabad, India.
- 13. Sze, P. (1993): A. Biology of the Algae, Wm. C. Brown Publishers, U.K.
- 14. Venkataraman, G.S. ((1969): The Cultivation of Algae, IARI, New Delhi.
- 15. Alexopoulos, C.J. Mins, C.W. & Blackwell, M. 1995: Introductory Mycology, John Willy and Sons. Inc.
- 16. Bilgrami, K.S. & Dubey H.C. (1986): A text book of Modern Plant Pathology, Vikas, Publ Ltd., N.Delhi.
- 17. Bilgrami, K.SA. & Verma R.N. (1981): Physiology of fungi, Vikas Publ. Ltd., New Delhi.
- 18. Biswas, S.P. & Biswas, A. 1984: An Introduction to Viruses, Vani Education Books, New Delhi.
- 19. Butler, E.J. & Jones, S.G. (1978): Plant Pathology, Periodical Expert Book Agency, New Delhi.
- 20. Clifton, A. 1958: Introduction to the Bacteria. McGraw Hill Books Co. New York.
- 21. Mehrotra, R.S. & Aneja, K.R. 1990: An introduction of Mycology, New Age International Press, N.Delhi.
- 22. Moore-landeckar, E.J. (1972): Fundamentals of the fungi, Prentice Hall, Eaglewood, U.K.
- 23. Mundukar, B.B. (1967): Fungi & Plant Diseases, Mac million Co. Ltd., USA.
- 24. Webster, J. 1985: Introduction of Fungi. Cambridge University, Press.

### Paper – BOT-102 – BRYOPHYTES & PTERIDOPHYTESCredit -4MM-80

**Objectives:** The course has been conceived to equip students with the knowledge of characteristics, structure and development of gametophyte and sporophyte in bryophytes & pteridophytes.

**Outcome:** After studying this paper students will be able to classify bryophytes and distinguish these from other groups of plants. They will also be able to understand origin and evolution of sporophyte in bryophytes & pteridophytes.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

### Unit-I

- 1. General characteristics features of Bryophytes. General account of structure and development of gametophyte, sporophyte of Marchantia, Pellia and Anthoceros.
- 2. General account of structure and development of gametophyte and sporophyte of Sphagnum, Funaria & Polytrichum.

### Unit -II

- 3. Biology of reproduction- *In Vitro* regulation of gametangia formation: effect of physical and chemical factors
- 4 Ecological importance of bryophytes: Bryophytes as indicators of pollution and minerals; role of Bryophytes in succession

### Unit-III

- 5. General characteristics of Pteridophytes and their classification
- Comparative morphology and reproduction of the following: Psilophytales (Rhynia, Zosterophyllum), Psilotales (Psilotum), Lycopodiales (Lycopodium, Selaginella), Lepidodendrales (Lepidodendron), Sphenophyllales (Equisetum)

### Unit- IV

- Comparative morphology and reproduction of the following : Ophioglossales(Ophioglossum, Botrychium), Marattiales (Marattia, Angiopteris), Osmundales, Filicales (Pteris, Dryopteris), Marsileales and Salviniales
- 8. Economic and Ecological significance of Pteridophyte in succession.

- 1. Parihar, N.S. 1965. An Introduction to Embryophyta Vol. I. Bryohpyta, Central Book Depot, Allahabad, India.
- 2. Schofield, W.B. 1985. Introduction to Bryology, Macmillan, New York.
- 3. Chopra, R.N. and Kumra, P.K. 1988. Biology of Bryophytes. Wiley Eastern Ltd., New Delhi.
- 4. Chopra, R.N. & Bhatla, S.C. 1990. Bryophyte Development: Physiology and Biochemistry.CRC Press, Boca Raton, USA.
- 5. Rashid, A. 1998. An Introduction to Bryophyta. Vikas Publishing House Pvt. Ltd. New Delhi.

- 6. Watson, E.V. 1967. The Structure and Life of Bryophytes. B.I. Publications, New Delhi.
- 7. Glime, J.M and Saxena D. 1991. Uses of Bryophytes. Today and Tomorrow's Printers and Publishers, New Delhi.
- 8. Richardson, D.H.S. 1981. The Biology of Mosses. Blackwell Scientific Publications, Oxford, London.
- 9. Parihar, N.S. 1977. The Biology and Morphology of Pteridophytes. Central Book Depot. Allahabad.
- 10. Rashid, A. 1976. An Introduction to Pteridophyta (Diversity and Differentiation). Vikas Publishing House Pvt. Ltd., New Delhi.
- 11. Sporne, K.R. 1985 (reprint) The Morphology of Pteridophytes. B.I. Publications Pvt. Ltd., Delhi.

### Paper – BOT-103 - CYTOGENETICS AND PLANT BREEDING Credit -4 MM-80

**Objective:** The purpose of this paper is to acquaint the students about structure and functions of a chromosome in detail. The course also explains the chromosomal variations and their effects on biological system. Further, it aims to draw attention to methods used for crop improvement.

**Outcome:** This paper would help the students to know the role of chromosomes and chromosomal rearrangements in generation of variations. They will also be familiar with methods used to change the traits of a plant to create the desired genotype/phenotype.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

#### Unit-I

- 1. Chromatin structure and organization: Chromosome structure and DNA packaging; euchromatin and heterochromatin.
- 2. Organization of plastid and mitochondrial genomes.
- 3. Special Chromosomes: Structure, occurrence and behaviour of polytene, lampbrush, B and sex chromosomes.
- 4. Karyotype: Karyotype analysis and its evolution; FISH, CGH and flow cytometery.

### Unit-II

- 5. Cell cycle: Cell cycle phases, checkpoints and regulation.
- 6. Chromosome banding techniques and their applications.
- 7. Linkage and crossing over: Molecular mechanism of crossing over and role of different enzymes; linkage groups.
- 8. Chromosome mapping- Two point and three point test crosses.

#### Unit-III

- 9. Sex determination: Chromosomal and gene determining sex in plants, animals, *Drosophila* and humans; Gene dosage compensation.
- 10. Structural alterations in chromosomes Origin, meiosis and breeding behaviour of duplication, deficiency, inversion and translocation heterozygotes.
- 11. Variation in chromosome number: Haploids, aneuploids and euploids- origin, production, effects and uses; polyploidy and crop improvement.

#### Unit-IV

- 12. Principles of plant breeding: Principles and objectives; methods of breeding self and cross pollinated crops, heterosis and hybrid vigour; utility of hybrids in genetics and plant breeding.
- 13. Asexual breeding systems: Methods of breeding of vegetatively propagated crops; Nonconventional methods; gene variability.
- 14. Male sterility: Concept; classification; genetic control; inheritance pattern and breeding utility.

- Alberts B, Johnson A, Lewis J. Raff M, Roberts K and Walter P (2008) Molecular Biology of the Cell (5<sup>th</sup> Ed.). Garland Publishing Inc., New York.
- 2. Gustafron JP (2002) Genomes, Kluwer Academic Plenum Publishers, New York, USA.
- 3. Karp G (1999) Cell and Molecular Biology, John Wiley and Sons, USA.
- 4. Krebs JE, Goldstein ES and Kalpatrick ST (2010) Lewin's Essential Genes (2<sup>nd</sup> Ed.), Jones and Barlett Publishers.

- 5. Lewin B (2010) Gene X, Jones and Barlett Publishers.
- Lodish H, Berk A, Kaiser, CA, Krieger M, Scott MP Bretscher A Ploegh H and Matsudaira P (2008) 6. Molecular Cell Biology (6<sup>th</sup> Ed), W.H. Freeman and Company, New York, USA. Pierce BA (2012) Genetics- A Conceptual Approach (4<sup>th</sup> Ed.), W.H. Freeman and Company, New York,
- 7. USA.
- Poehlman JM and Sleper DA (1995) Breeding Field Crops, AVI. Publ., U.S.A. 8.
- Russell PJ (2006) Genetics (5th Ed.), Addison Wesley Longman, California, USA. 9.
- 10. Snustad P and Simmons MJ (2011) Principles of Genetics. (6th Ed.), John Wiley, New York.
- 11. Weaver RF (2005) Molecular Biology, McGraw Hill International Edition.
- 12. Watson, JD, Baker TA, Bell SP, Gann A, Levine M and Losick R (2008) Molecular Biology of the Gene (6<sup>th</sup> Ed.), CSHLP, New York

#### Paper – BOT-104 – ECOLOGY

#### Credit -4 MM- 80

**Objectives**: Critically engage with concepts of Ecological principles and importance of environment and the problems related with it at global and local level.

**Outcome**: By understanding the concepts of ecological principles and environmental issues, the student will be able to develop attitude, value system and ethics towards environment related issues.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

#### Unit-I

- 1. The Environment: Physical environment, biotic environment, biotic and abiotic interactions; Tolerance range and limiting factors, ecotypes
- 2. Habitat and niche: Concept of habitat and niche; niche width and overlap; fundamental and realized niche; resource partitioning; character displacement.
- 3. Population ecology: Concept, characteristics, population growth and regulation, species interactions—mutualism, competition, allelopathy, predation, parasitism, Life-history strategies and r-and K selection, concept of metapopulation demes and dispersal, interdemic extinctions, age structured populations

#### Unit-II

- 4. Community structure and organization; Nature of communities, community structure and its attributes; species diversity, Edges and ecotones, vegetation characteristics (analytical and synthetic characters, methods of analysis.
- 5. Ecological Succession: Types; mechanisms; changes involved in succession; concept of climax.

#### Unit-III

- 6. Ecosystem organization: structure and functions; primary production (global pattern and controlling factors); energy dynamics—trophic levels, energy flow pathways and ecological efficiencies.
- 7. Decomposition (mechanism, substrate quality and climatic factors); global biogeochemical cycles of C, N, P, & S, ecosystem stability (resistance and resilience).

#### Unit-IV

- 8. Biogeography: Major terrestrial biomes; theory of island biogeography; biogeographical zones of India.
- 9. Global atmosphere changes: Environmental pollution, global environmental change and its consequences (CO2 fertilization, global warming sea level rise and UV radiation).
- 10. Biodiversity: status, monitoring and documentation; major drivers of biodiversity change; biodiversity management approaches.

- 1. Botkin, D.B. and E.A. Keller (2004). Environment Science: Earth as a Living Planet, John Wiley & Sons Inc., New York.
- 2. Miller (Jr.) and G. Tyler (1994) : Living in the Environment. Wadsworth Publishing Company, Belmont, California.
- 3. Odum, E.P. (1983), Basic Ecology, Sanders, Philadelphia.
- 4. Peter H. Raven, P.H. and Berg , L. R. Berg. 2005. Environment, 5<sup>th</sup> Edition. John Wiley & Sons Inc., New York.
- 5. Ramakrishnan, P.S. 2000. Ecology and Sustainable Development. National Book Trust, India
- 6. Robert Ricklefs (2001). The Ecology of Nature. Fifth Edition. W.H. Freeman and Company.
- 7. Singh, J.S., Singh, S.P. and Gupta, S.R. 2006. Ecology, Environment and Resource Conservation, Anamaya Publishers, New Delhi.
- 8. Smith, R.L. (1996), Ecology and Field Biology, Harper Collins, New York.
- Steffen, W., A. Sanderson, P. D. Tyson, J. Jager, P. M. Matson, B. Moore, III, F. Oldfield, K. Richardson, H. J. Schnellnhuber, B. L. Turner, II, and R. J. Wasson. 2004. Global change and the Earth system: a Planet under Pressure. Springer-Verlag, New York, New York, USAReference books.
- 10. Townsend, C.R., Begon, M. And Harper, J.L. 2003. Essentials of Ecology. Second Edition. Blackwell Publishing, Oxford.

#### Credit -4 MM- 80

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

#### Unit-I

- Structure & replication of viruses and bacteriophage; transmission & control of viruses; Isolation & purification of Plant Viruses.
   Diseases caused by Viruses: TMV, Tristeza of citrus
- 2. Cyanobacteria: Salient features and Biological Importance.

#### Unit-II

- 3. Growth, culture and maintenance of microorganisms Microbial growth and measurement, environmental factors influencing growth.
- 4. Control of micro organisms: Physical methods(High temperature, dry hot or hot air sterilization, moist air sterilization, low temperature, filtration, lycophilisation, Radiation), Chemical methods (Disinfectants and antiseptics)

#### Unit-III

- 5. Microbial interaction: Functions of symbiotic relationships, types of symbiosis, commensalism, synergism, mutualism-(Lichens, Bacterial endosymbionts of protozoa, Nitrogen fixing symbiosis,mycorrhizae), parasitism.
- 6. Environmental Microbiology: Microbiology of fresh, marine and extreme environment, Biofilms, Bioremediation of polluted environment, Bioleaching.

#### Unit-IV

- 7. Biostatistics: Brief description and tabulation of data and its graphical representation.
- 8. Measures of central tendency and dispersion.
- 9. Mean, mode, median, range standard deviation, variance idea of two types of errors and level of significance, tests of significance (F & t test); chi-square test.
- 10. Simple Linear Regression and Correlation.

- 1. Gupta R & Mukherji K G (2001). Microbial technology, APH Publ. co., New Delhi.
- 2. Pelezar, MJ, Chaing, ECS & Krieg, NR (1993). Microbiology, Tata McGrawHill Publ. New Delhi.
- 3. Prescott, LM., Harley, JP & Klein, DA (1996). Microbiology Wm. C. Brown Publ. USA.
- 4. Ronald, M Atlas (1995). Principles of microbiology. Mosby-Year Book, Inc. St. Louis, Missouri, USA.
- 5. Singh R.P. (1990): Introductory Biotechnology, Central Book Depot, Allahabad, India.
- 6. Sumbali, G. 2005: The Fungi, Narosa Publ. House, New Delhi.
- 7. Statistics for Biologists (1974) Campbell R.C. Cambridge University Press, Cambridge.

8. Statistics in Biology, Vol. 1 (1967) Bliss, C.I.K, McGraw Hill, New

### Paper 202: Natural Resources and Biodiversity Credit -4 MM-80

#### Note:-

- 1. Nine questions will be set in all.
- 2. Question No. 1, which will be objective/short –answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set section-wise with two questions from each unit I, II, III & IV. The candidates will be required to attempt Q. No. 1 and four more selecting one question from each section.

### Unit-I

- 1) Resources: Types, Renewable and non-renewable resources; resources degradation and conservation.
- 2) Land resources: Land degradation and desertification; management of waste lands in India.
- 3) Water resources: Pools of water and Hydrological cycles, surface water and ground water; water-use and management.
- 4) Environmental pollution of air, water and soil-types, sources and effects.

### Unit-II

- 5) Forest resources: Forests and their importance, Non timber forest produce, forest resources of India and forest management.
- 6) Types of energy resources, renewable sources of energy-wine energy, wave energy, Energy from biomass, bioconversion technologies, energy plantation and petrocrops.
- 7) Ecosystem restoration and Environment impact assessment- Brief account.

### Unit- III

- 8) Principals of resources conservation and conservation strategies.
- Biological diversity: importance, concept and levels biodiversity, threats to biodiversityhabitat loss and fragmentation, exotic species, pollution, species extinctions; IUCN categories of threat.
- 10) Distribution and global patterns of biodiversity.
- 11) Terrestrial and marine hotspots of biodiversity; Hotspots of biodiversity in India.

#### Unit- IV

- 12) *In situ* conservation of biodiversity: Protected area in India-sanctuaries, national parks, biosphere reserves.
- 13) Conservation of biodiversity of wetlands, mangroves and coral reefs.
- 14) *Ex situ* biodiversity conservation: principles and practices, field gene banks, seed banks and cryopreservation.
- 15) Sustainable development: concept, principles and strategies; sustainability indicators.

- 1. Ball, J.B. 2001. Global forest resources: history and dynamics. In: *Forest Handbook Volume* 1, Evans, J. (ed.) Blackwell Science, Oxford.
- 2. Chape, S., Fish, L. Fox, P. and Spalding, M. 2003. United Nations list of protected areas. UCN/UNEP/World Conservation Monitoring Centre, Gland, Switzerland/Cambridge.
- 3. Gopal, B. (ed.) 1987. Ecology and Management of Aquatic Vegetation of the Indian Subcontinent. W. Junk by. The Hague.
- 4. Heywood, V.(Ed.) (1995) Global Biodiversity Assessment. United Nations Environment Programme, Cambridge University Press, Cambridge.
- 5. Huston, M.A. 1994. *Biological Diversity*: The Coexistence of Species on Changing Landscapes. Cambridge University Press, Cambridge.
- Owen, O.S., Chiras, D.D. and Reganold, J.P. 1998. Natural Resource Conservation: Management for Sustainable Future. Seventh Edition. Prentice Hall. Upper Sadle River, New Jersey.
- 7. Raven, P.H. and Berg, L.R. 2005. Environment, 5<sup>th</sup> Edition, John Wiley & Sons Inc., New York.
- 8. Singh, J.S. and Singh, S.P. 1992. *Forests of Himalaya, Structure, Functioning and Impact of Man.* Gyanodaya Prakashan, Nainital, India.
- 9. Singh, J.S., Singh, S.P. and Gupta, S.R. 2006. Ecology, Environment and Resource Conservation, Anamaya Publishers, New Delhi.

### Paper – BOT-203 – Gymnosperms & EthnobotanyCredit -4MM- 80

**Objective:** This course is intended to provide the basic understanding of morphology and reproduction in pteridophytes and gymnosperms. It also describes the modern methods of propagation of gymnosperms.

**Outcome:** After studying this paper students will be able to classify pteridophytes and gymnosperms. They will also be able to describe heterospory, origin of seed habit and evolutionary trends in stele and spore producing organs. Besides above, they will also be able to understand the phenomena of apogamy, apospory and their experimental induction.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

### Unit-I

- 1. Classification of gymnosperms and their distribution in India.
- 2. Brief account of the following families: Lyginopteridaceae, Medullosaceae, Glossopteridaceae, Caytoniaceae.

### Unit – II

- 3. General account of the following orders: Cycadeoidales(Cycadeoidea), Pentoxylales, Cordiatales
- 4. Comparative account of Structure and reproduction in the following orders: Cycadales (Cycas), Ginkgoales (Ginkgo).

### Unit- III

- 5. Coniferales (Pinus, Cedrus), Ephedrales (Ephedra), Welwitschiales, Gnetales
- 6. Economic importance of gymnosperms, Role of Gymnosperms in Biodiversity.
- 7. Modern methods of propagation of gymnosperms: somatic embryogenesis, haploids and protoplast culture

### Unit-IV

- 8. Ethnobotany: History and importance of ethnobotany, ethnomedicobotany, ethnozoology, ethnoveterinary, ethnomusicology and ethnoagriculture
- 9 Wild edible plants used as emergency food by triblals in India, methods and techniques in ethnobotanical study and research.
- 10. Traditional plants: Cereals, pulses, vegetables, spices and mushrooms, wild edible fruits and seeds. Plants in folk songs and proverbs. Sacred grooves, Impact of moderenization.

- 1. Bhatnagar, S.P. and Moitra, A. 1996. Gymnosperms, New Age International Pvt. Ltd., New Delhi.
- 2. Sporne, K.R. 1965. The Morphology of Gymnosperms. B.I. Publications Pvt. Ltd., New Delhi.
- 3. Bierhorst, D. W. 1971. Morphology of Vascular Plants. Macmillan. New York.
- 4 . Cotton, C.M. 1996. Ethnobotany- Principles and Appliations, Centruy School Book by service Film setting Ltd.
- 5. Dahlgren. R.H., Clifford, T and P.F Yeo 1985. The families of the monocotyledons; structure, Evolution and Taxonomy. SpingeVerag, NY.

- 6. Gary J, Martin, 2004. Ethnobotany- A Methods Manual, Chapman and Hall. U.K.
- 7. Jain S.K. 1981. Glimpses of Indian Ethnobotany. Oxford and IBH, New Delhi.
- 8. Jain S.K. 1987. A manual of ethnobotany. Scientific publisher Jodhpur.
- 9. Jain S.K. and Mundgal, 1999. Handbook of ethnobotany, London.
- 10. Pursrglove, J.W. 1972. Tropical Crops-Monocotyledons and Dicotyledons of ethnobotany, ethnomedicine, ethnoecology, ethnic communities.
- 11. Rao, P.C. 2006. Medicinal plants: Ethanobotanical Approach, Agribios, India.
- 12. Trivedi, P.C. 2006. Medicinal plants: Ethanobotanical Approach, Agribios, India.
- 13. Yoganarasimhan, S.N. Medicinal Plants of India-Vol-I- Karnataka, Interline Publishing Pvt. Ltd.

### Paper – BOT-204 – MOLECULAR GENETICS Credit -4 MM- 80

**Objective:** This course is intended to provide the basic understanding of biological processes such as DNA replication, transposition and mutations. A key thrust of this paper is towards the molecular mechanisms involved in the control of gene expression and regulation.

**Outcome:** The students are expected to have better understanding of basic life processes. It will also impart knowledge about the regulation of various metabolic pathways.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

### UNIT-I

- 1. Eukaryotic genome: Different forms of DNA, C- value paradox, unique and repetitive DNA, gene families, hybridization kinetics and split genes.
- 2. Transposable elements: Mechanisms of transposition; transposons in bacteria, maize, *Drosophila* and yeast.
- 3. DNA Replication: Semi-conservative, bidirectional, replication origins, replication machinery.

#### UNIT-II

- 4. Mutations: types, isolation of mutants, molecular basis of mutations.
- 5. DNA damage and repair: Causes of DNA damage; Photoreactivation, excision, mismatch, post replication and error prone repair systems.
- 6. Fine structure of gene: *cis-trans* test, rII locus, fine structure analysis of eukaryotes.
- 7. Bacterial genetics: conjugation, transduction and transformation.

#### UNIT-III

- 8. Transcription: Initiation, elongation and termination in prokaryotes and eukaryotes, RNA polymerases.
- 9. RNA Processing: Processing of mRNA, rRNA and tRNA.
- 10. Genetic code: Deciphering the genetic code, characteristics.
- 11. Translation: Initiation, elongation and termination in prokaryotes and eukaryotes.

#### **UNIT-IV**

- 12. Regulation of gene expression in prokaryotes: Operon concept, lac operon regulation by positive and negative mechanism, trp operon, regulation by negative and attenuation.
- 13. Regulation of gene expression in eukaryotes:
  - **a**) Transcriptional level Regulatory sequences, nucleosome positioning, chromatin 647itrogenis, histone modifications.
- **b**) Post-transcriptional level RNA splicing, RNA stability.
- c) Translational level and post-translational level.

- 1. Alberts B, Johnson A, Lewis J. Raff M, Roberts K and Walter P (2008) Molecular Biology of the Cell (5<sup>th</sup> Ed.). Garland Publishing Inc., New York.
- 2. Brown TA (1999) Genomes. John Wiley & Sons (Asia) Pvt. Ltd., Singapore.
- 3. Burns GW and Bottino PJ (1989) The Science of Genetics, Macmillan Publishing Co. New York.
- 4. Clark D (2005) Molecular abiology, Understanding the Genetic Revolution. Elsevier Inc. C. California.
- 5. Gustafron JP (2002) Genomes.Kluwer Academic Plenum Publishers, New York, USA.
- 6. Hartl DL (1999) Genetics Principles and analysis. (4<sup>th</sup> Ed.) Jones and Bartle, Boston.
- 7. Henry RJ (1997) Practical Applications of Plant Molecular Biology, Chapman & Hall, London, UK.

8. Klug WS and Cunning MR (1996) Essentials of Genetics. Prentice Hall London.

- 9. Krebs JE, Goldstein ES and Kalpatrick ST (2010) Lewin's Essential Genes (2<sup>nd</sup> Ed.), Jones and Barlett Publishers.
- 10. Lewin B (2005) Genes VIII. Oxford University Press, New York.
- Lodish H, Berk A, Kaiser, CA, Krieger M, Scott MP Bretscher A Ploegh H and Matsudaira P (2008) Molecular Cell Biology (6<sup>th</sup> Ed), W.H. Freeman and Company, New York, USA.
- 12. Pierce BA (2012) Genetics- A Conceptual Approach (4th Ed.), W.H. Freeman and Company, New York, USA.
- 13. Russell PJ (2006) Genetics (6th Ed.), Addison Wesley Longman, California, USA.
- 14 Snustad P and Simmons MJ (2011), Principles of Genetics. (6th Ed.), John Wiley, New York.
- 15. Swanson CP, Mertz T and Young WJ (1981) Cytogenetics- The Chromosome in Division, Inheritance and Evolution (2<sup>nd</sup> Ed.), Englewood Cliffs, Prentice Hall, New Jersey.
- 16. Weaver RF and Hedrick PW (1997). Genetics (3rd Ed.) WMC Brown, Chicago.
- 17. Watson JD, Baker TA, Bell SP, Gann A, Levine M and Losick R (2008) Molecular Biology of the Gene (6<sup>th</sup> Ed.), CSHLP, New York.

## PAPER – BOT-206 – PLANTS FOR HUMAN WELFARE CREDIT -2 MM-50

**Objective:** This course is intended to provide the basic understanding the origin, morphology, cultivation of major crops. It also deals with the traditional knowledge and utility of some common spices, condiments, medicinal plants and horticulture crops.

**Outcomes:** The students are expected to have better understanding of origin of agriculture. They will also be able to identify the plant sources of medicines, spices, oil, fibres, dyes, gum and timbers.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

### Unit-I

Plants and Civilization: Origin of agriculture
Origin crop plants: Idea about centre of origin of common crop plants
Major cereals and pulses
Spices and condiments (Saffron, Clove, Cardamom, Ginger, Turmeric, Cinnamon, Capsicums, Asafetida, Coriander, Fennel, Fenugreek)

### Unit –II

**Medicinal plants:** Importance of medicinal plants – role in human health care **Traditional knowledge and utility of some common medicinal plants-***Sarpgandha, Isabgol,Vasaka, Neem, Bhiringraj, Amla, Harrad, Bahera, Arjun ,Punarnava , Brahmi, Kasondi, Ghritkumari, Quinine and Eucalyptus* 

Hallucinogenic plants - general account

### Unit –III

Nutritive and medicinal value of some fruits and vegetables (Guava, Sapota, Orange, Mango, Banana, Lemon, Pomegranate, Moringa, Cabbage) Beverages (Coffee, Tea, Chocolate, Cola) Common ornamental plants Common food adultrants

### Unit-IV

Common timber yielding plants and minor forest products General account of Fibers, dyes, tannins, gums and resins Insecticides from plants (Pyrethrum)

**Suggested Readings:** 

Kochar, S.L. 1981. Economic Botany in the Tropics. Macmillan India Ltd., Delhi.

Hill, A.F. 1952. Economic Botany (2<sup>nd</sup> Ed.) McGraw Hill, New York.

Cobley, L.S. and Steele, W.M. 1976. An Introduction to the Botany of Tropical Crops (2<sup>nd</sup> Ed.) Longmans, London.

Simmonds, N.W. 1976. Evolution of Crop Plants Longman, London, New York.

SambaMurthy, AVS and Subrahmanyam, N.S. 1989. A Text Book of Economic Botany. Wiley Eastern Ltd., Delhi

Schery, R.W. 1972. Plants for Man. Prentice Hall. Englewood Cliffs, N.J. USA

Simpson B. B. M. C. Ogorzały 2001. Economic botany: plants of our world, 3<sup>rd</sup> ed. McGraw-Hill, New York, New York, USA.

## SEMESTER – III

## Paper – BOT-301Plant Physiology and Plant BiochemistryCredit -4MM-80

**Objective:** The course would deal with the study of plant physiology especially the water transport, absorption, mineral nutrition, photosynthesis, respiration and nitrogen metabolism.

**Outcome:** The students will be able to understand the physiology and basic metabolism of plants. They will able to answer the questions regarding water transport, absorption, mineral nutrition, photosynthesis, respiration and nitrogen metabolism.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

## Unit-I

Water: Passive and active absorption of water.

Plant water relations: Concept and components of water potential, soil water relationship, transpiration and factors governing transpiration, antitranspirants.

## Unit-II

Mineral Nutrition: Role and mode of action of micro and macro-nutrients. Photosynthesis: Photo-oxidation of water, cyclic and non-cyclic photophosphorylation, photorespiration and its significance. The sequence of reactions in photosynthesis, the path of carbon

#### assimilation (C3 and C4 cycles, CAM pathway). Unit-III

Respiration: Glycolysis, Krebs cycle, electron transport chain and ATP synthesis, pentose phosphate pathway, glyoxylate cycle.

Nitrogen Metabolism: Biochemistry of nitrogen fixation, 650itrogenise, nitrogen fixation in legumes, nitrate assimilation, ammonium assimilation, biosynthesis of amino acids.

### Unit-IV

Lipid Metabolism:

Fatty acid biosynthesis, Alpha and beta oxidation and conservation into carbohydrates. Enzymes: Structure, properties and functions of enzymes, factors affecting rates of enzymatic reactions, isozymes, allosteric enzymes.

### **Suggested Readings:**

Bonner, J. And Varner, J.E. (1976). Plant Biochemistry, IIIrd Edition, Academic Press, New York and London. Buchanan, B.B., Gruissem, W. And Jones, R.L. (2000). Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Maryland, USA.

Davies, Peter J. (1995). Plant Hormones: Physiology, Biochemistry and Molecular Biology. 2nd

Edition. Kluwer Academic Publishers, The Netherlands.

Dey, P.M. and Harborne, J.B. (1997), First Indian Edition, Plant Biochemistry. Academic Press, Harcourt Asia Pvt. Ltd.

Garrett, R.H. and Grisham, C.M. (1999). Biochemistry. Second edition. Saunders College Publishing, Philadelphia. Hopkins, W.G. (1995) Introduction to Plant Physiology, John Wiley and Sons.

Krishnamoorthy, H.N. (1993). Physiology of Plant Growth and Development. Atma Ram and Sons, Delhi.

Kumar, H.D. and Singh, H.N. (1993). Plant Metabolism. Second edition, Affiliated East-West Press Pvt Ltd. New Delhi.

Lehninger, A.L. (1978). Biochemistry. Kalyani Publishers, Ludhiana, India (Indian edition).

Lehninger, A.L, Nelson, D.L. and Co MM 1993Principles of Biochemistry Second edition, CBS Publishers.

Moore, Thomas. C. (1989). Biochemistry and Physiology of Plant Hormones. Second edition (Reprint 1994), Narosa Publishing House, New Delhi.

Noggle, G.R. and Fritz, G.J. (1983). Introductory Plant Physiology, Prentice-Hall of India Pvt. Ltd., New Delhi, Second edition Seventh reprint, 1993.

Salisbury, F.B. and Ross, C.W. (1992). Plant Physiology. Fourth edition, Wadsworth Publishing Co. Belmont, California, USA.

Singhal, G.S. Renger, G., Sopory, S.K., Irrgang, K.D. and Govindjee (editors) (1999). Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Narosa Publishing House, New Delhi.

Srivastava, L.M. (2006). Plant Growth and Development : Hormones and Environment. Academic Press. Published by Elsevier India Pvt. Ltd., New Delhi.

Taiz, L and Zeiger, E. (1998). Plant Physiology. Second edition. Sinauer Associates, Inc., Publishers, Massachusetts, USA

Trehan, K. (1990). Biochemistry. Second edition, Wiley-Eastern Ltd., New Delhi.

Trivedi, P.C. (2006). Plant Molecular Physiology: Current Scenario and Future Projections. Aavishkar Publishers, Distributors, Jaipur.

Weil, J.H. (1990). General Biochemistry. Sixth edition. Wiley-Eastern, New Age International Publishers, New Delhi.

Wilkins, M.B. (1987). Advanced Plant Physiology, ELBS, Longman, England. Zubay, Geoffrey. (1989). Biochemistry. Mc.Millan Publishing Co. New York.

## Paper – BOT-302 Plant Taxonomy and Economic Botany Credit -4 MM-100

**Objective:** The course would deal with the study of the basic concepts of plant taxonomy and botanical nomenclature. The course is also designed to know about the origin of agriculture and economic importance of major crop plants.

**Outcome:** The students will be able to understand the different systems of classification of angiosperms. They will also be able to identify the plant sources of medicines, spices, oil, fibres, dyes, gum and timbers.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

### Unit-I

The Species concept, Taxonomic hierarchy, Species, Genus and Family

Taxonomic evidence: Morphology, anatomy, palynology.

Taxonomic Tools: Herbarium and Floras.

Botanical Gardens and herbaria in India; Botanical Survey of India its organization and role.

## Unit-II

Salient Features of the International Code of Botanical Nomenclature.

Systems of angiosperm classifications of Benthom and Hooker, Engler and Prantl, Hutchinson, Cronquist, Takhtajan, Dahlgren and Thorne,

Relative merits and demerits of these systems.

### Unit-III

Origin of agriculture: World centers of primary diversity of domesticated plants.

Origin, botany, cultivation and uses of cereals (wheat, rice), Sugarcane, Potato

Oil yielding plants (groundnut, mustard, sunflower)

## Unit-IV

Botany, origin, uses of important fibres (Cotton, Jute),

General account of important spices (Ginger, Turmeric, Cinnamon, Clove, Cardamom, Chilies, Pepper, Fennel, Coriander, Cumin, Asafetida, Nutmeg, Mace, and Saffron),

General account of important medicinal plants (Aconite, Cinchona, Belladonna, Digitalis, Glycyrrhiza, Rauvolfia, Papaver, Vasaka, Aloe and Ginseng). A brief account of major Indian Medicinal plants(Amla, Neem, Arjun, Harad, Bahera, Isabgol, Ashwagandha, Bhringraj and Senna)

General account of important timber, dye, gums and tannin yielding plants

## **Suggested Readings:**

Radford, A.E. 1986. Fundamentals of Plant Systematics. Harper and Row Publishers Inc.

Lawrence, G.H.M. 1951. Taxonomy of vascular plants. The Macmillan C., New York.

Davis, P.H. and Heywood, V.H. 1965. Principles of Angiosperm Taxonomy. D Van Nostrand Co., New York.

Sivarajan, V.V. 1984. Introduction to Principles of Plant Taxonomy. Oxford IBH Pub. Co., New Delhi.

Kochar, S.L. 1981. Economic Botany in the Tropics. Macmillan India Ltd., Delhi.

Hill, A.F. 1952. Economic Botany (2<sup>nd</sup> Ed.) McGraw Hill, New York.

Cobley, L.S. and Steele, W.M. 1976. An Introduction to the Botany of Tropical Crops (2<sup>nd</sup> Ed.) Longmans, London.

Simmonds, N.W. 1976. Evolution of Crop Plants Longman, London, New York.

SambaMurthy, AVS and Subrahmanyam, N.S. 1989. A Text Book of Economic Botany. Wiley Eastern Ltd., Delhi

Judd, W.S.; Campbell. C.S., Kellogg, E.A. and Stevens, P.F. 1999. Plant Systematics A Phylogenetic Approach. Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts, U.S.A.

Schery, R.W. 1972. Plants for Man. Prentice Hall. Englewood Cliffs, N.J. USA

Simpson B. B. M. C. Ogorzały 2001. Economic botany: plants of our world, 3<sup>rd</sup> ed. McGraw-Hill, New York, New York, USA.

Hancock. J. F. 2004. Plant evolution and the origin of crop species. 2<sup>nd</sup> edition. CABI Publishing, Cambridge, MA USA.

Radford, A. E., W. C. Dickison, J. R. Massey, C. R. Bell. 1976. Vascular Plant Systematics Harper and Row, New York.

#### Paper – BOT-303 Biotechnology and Genetic Engineering Credit -4 MM-80

**Objective:** This course is intended to provide knowledge about Recombinant DNA Technology, DNA cloning, gene amplification, genetic transformation methods and transgenic plants.

**Outcome:** The students will have better understanding of genetic engineering, PCR, genetic transformation and transgenic plants.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

#### Unit-I

Techniques used in DNA Technology: Gel Electrophoresis, PFGE, Southern and Western blotting, Dot blots, Chemical synthesis of genes, DNA chip technology.

Isolation of genes, Sequencing of genes: Maxam & Gilbert's method, Sanger's method and nextgeneration sequencing technologies,

Brief account of proteomics and genomics.

#### Unit-II

DNA cloning methods, using vectors (Plasmids, phages, cosmids, phagemids, transposons, artificial chromosomes, BAC, YAC, MAC), cloning in bacteria and eukaryotes, genomic and C-DNA Libraries.

Gene amplification by PCR: different types, DNA finger printing, molecular probes: 653itrogeni and applications.

## Unit-III

Gene transfer methods in plants: plasmid mediated, electroporation, cation precipitation, liposomes, microinjection and particles gun technology, expression of transgenes.

Transgenic plants: production of transgenic plants with respect to insect resistance, herbicide resistance, resistance against biotic and abiotic factors, transgenics for male sterility and edible vaccines

#### Unit-IV

Yeast and algal biomass as source of single cell protein, oils and vitamins, microbial fermentation technology in food industry.

Plant and microbial biopesticides, bioremediation and phytoremediation.

### Suggested readings

Bajaj, Y.P.S. 2000. Biotechnology in Agriculture and Forestry-44- Transgenenic Trees, Springer Pub., New York, USA Bajaj, Y.P.S. 2000. Biotechnology in Agriculture and Forestry-46-Transgenic Trees, Springer Pub., New York, USA Brown, T.A. 1999 Genomes. John Wiley & Sons (Asia) Pvt. Ltd., Singapore

Dawson, M.T. Powell, R, and L. Gannon, F.1996. Gene Technology, BIOS Sci. Pub. Ltd., Oxford, UK.

Erlich, H.A.(Ed.) 1989, PCR Technology – Principles and applications for DNA Amplification, Stockton Press, New York, USA

Glazer, A.N. and Nikaido, H. 1995. Microbial Biotechnology, W.H. Freeman & Company, New York, USA

Glover, D.M. and Hames, B.D.(Eds.) 1995. DNA Clonning 1 - A Practical Approach, OIRL Press, Oxford, UK

Gupta, P.K. 1996. Elements of Biotechnology, Rastogi & Co., Pub., New Pub., Meerut, India.

Hammond, J., McGarvey, P. And Yusibov, V. (Eds.) 1999. Plant Biotechnology - New Products and Applications, Springer Pub., New York, USA.

Henry, R.J. 1998. Practical Applications of Plant Molecular Biology, Chapman & Hall, London, UK Keller, G.H. and Manak, M.M. 1993. DNA Probes, Mac Millan Pub. Ltd. UK.

Lea, P. And Leegood, R.C. 1999. Plant Biotechnology and Molecular Biology (2<sup>nd</sup> Ed.) John Wiley & Sons, Ltd., England.

Lewin, B. 2005. Genes VIII, Osford University Press, Oxford, UK

Lindsey, K. And Jones, M.G.K. 1990. Plant Biotechnology in Agriculture, Prentice Hall Int. Pub., London, UK Malaacinski, G.M. and Freifilder, D. 1998. Essentials of Molecular Biology 3<sup>rd</sup> Ed.), Jones & Bartlett Pub., London, UK

Miesfield, R.L. 1999. Applied Molecular Genetics, Wiely Liss, New York, USA.

Nicklin, J., Graeme-Cook, K.Paget, T. And Killington, R. 1999. Instant Notes in Mircobiology, VIVA Books Pvt. Ltd., New Delhi, India

Purohit, S.S., Kothari, P.R. and Mathur, S.K. 1993. Basic and Agricultural Biotechnology, Agro Botanical Pub. Bikaner, India.

Rehm;, H.I. and Reed, S.G. (Eds.) 1995. Fundamentals of Genetic Engineering, Pallicut, London, UK. Scragg, A. 1999. Environmental Biotechnology, Pearson Education Ltd., England, UK

Shantharam, S. And Montogomery, J.F. 1999. Biotechnology, Biosafety and Biodiversity. Oxford & IBH Pub. Pvt. Ltd., New Delhi, India.

Sheehan, D. (Ed.) 1997. Bioremediation Protocols, Humana Press, Totowa, USA

Snustad, D.P. and Simmons, M.J. 2000. Principles of Genetics (2<sup>nd</sup> Ed.) John Wiley & Sons. Inc., New York, USA Trehan, K. 1990. Biotechnology, New Age Int. Pvt. Ltrd. New Delhi India. Twyman, R.M. 1999. Advanced Molecular Biology, VIVA Books Pvt. Ltd., New Delhi, India.

## Paper – BOT-304(a) – ADVANCED PHYCOLOGY (ELECTIVE) Credit -4 MM-80

**Objectives:** To acquaint the PG students with importance of Phycology (Algology) towards its contribution to the famous '*Green Revolution*' of the nation, thereby making India self-reliant in food grain production.

**Outcome:** To come out with the trained professionals having the knowledge of nutritional requirements of algae for their mass/ large scale cultivation with particular reference to ecological biodiversity of algae & algal bio-fertilizers in Haryana.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

Unit-I

1) Limits to algal growth in natural waters.

2) Dynamics and consequences of freshwater marine & algal blooms; Causative factors for eutrophication and its impact.

3) A brief account of phycological researches in India.

### Unit-II

4) Mineral nutrition in algae with emphasis on Calcium, Magnesium, Sodium, Iron, Molybdenum, & Silica.

5) Synchronous & continuous cultures and their uses; Physiology of nutrient regulated algal growth.

6) A brief account of culture techniques, media for algal growth and measurement techniques.

#### Unit-III

7) Algae in water supplies, on ancient monuments and bio-fouling of ships.

8) Ecological biodiversity of algae in unusual habitats with suitable examples.

9) Paddy field algal flora as N<sub>2</sub>-economy builders of the nation.

#### Unit-IV

10) Physiological and biochemical aspects on algal flora exposed to heavy metals.

11) Kinetics of heavy metal uptake and its bioaccumulation.

12) Mechanisms of adaptation against tolerance to toxicants, pesticides and salt.

## Suggested Readings:

1. Ahluwalia, A.S. (Ed.). *Phycology: Principles, Processes and Applications*. Daya Publishing House, New Delhi. 2003.

2. Becker, E.W. (1994): Microalgae – Biotechnology & Microbiology, Cambridge University Press, Cambridge, U.K.

3. Carr, N.G. & Whitton , B.A. (1982): The biology of Cyanobacteria Blackwell Scientific Publ., Oxford, U.K.

4. Dubey, R.C. (2006): Introduction to Biotechnology, Delhi Book Trust, New Delhi.

5. Dubey, R.C. (2014): Advanced Biotechnology, S Chand & Cmpany Pvt. Ltd., New Delhi.

6. Fatma, T. (2005): Cyanobacterial and Algal Metabolism and Environmental

Biotechnology, Narosa Publihers.

7. Fay, P & C van Baalen (1987): The cyanobacteria, Elsevier Science Publishers, B.V. Amsterdam, Netherlands.

8. Graham, L.E. & Wilcox, L.W. (1999): Algae, Benjamin Cummings, USA.

9. Gupta, R.K. & Pandey, V.D. (2007): Advaces in Applied Phycology, Daya Publishing

Paper - BOT-304(b) - APPLIED MYCOLOGY (ELECTIVE)Credit -4MM-80Objectives: The course has been envisaged to make the students aware about the role offungi in Industry, as biofertilizer, as biocontrol agents, and biodeteriorating agents. Besidesthis, the course will be helpful in acquainting the students with the various techniques ofculturing and isolation of fungi from various sources, culture media and preservation offungi.

**Outcome:** After successfully completing the course, the students will understand the role of fungi as biofertilizers, as food spoilers and in production of some industrially important products. The students will also learn the various techniques used for culturing of fungi, sterilization of media and maintenance of cultures.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

### Unit-I

Primary metabolites production by fungi: industrial alcohol, organic acid, beer. Secondary metabolites production by fungi: Antibiotics, steroid transformation,. Enzymes, amino acids, growth regulators, vitamins

### Unit-II

Fungi as biofertilizers : Endomycorrhizae and ectomycorrhizae. Fungi as biocontrol of plant pathogens and weeds.

Biodeterioration of materials: Paper, painted surface, wood.

## Unit-III

Food processing by fungi: Bread, cheese, oriental food and baker's yeast. Fungal sources of health food: Single cell protein, edible mushrooms. Spoilage of food and fungal toxicity.

## Unit-IV

Culturing and preservation of fungi: isolation of fungi, culturing of fungi, establishing a pure culture, aseptic technique, maintenance of culture collection, culture collection and identification centres. Common culture media and sterilization techniques.

### Suggested Readings:

Alexopoulos, C.J. Mins, C.W. & Blackwell, M. (1995): Introductory Mycology, John Willy and Sons. Inc.

Bilgrami, K.SA. & Verma R.N. (1981): Physiology of fungi, Vikas Publ. Ltd., New Delhi.

Biswas, S.P. & Biswas, A. (1984): An Introduction to Viruses, Vani Education Books, New Delhi.

Butler, E.J. & Jones, S.G. (1976): Plant Pathology, Periodical Expert Book Agency, New Delhi.

Clifton, A. (1958): Introduction to the Bacteria. McGraw Hill Books Co. New York.

Dubey, R.C. (2005): A Text Book of Biotechnology, S Chand & Co. Ltd., New Delhi.

Bilgrami, K.S. & Dubey H.C. (1986): A text book of Modern Plant Pathology, Vikas, Publ. Ltd., N.Delhi.

Gupta, R. & Mukerji, K.G. (2001): Microbial Technology, APH Publ. Co., New Delhi.

Mehrotra, R.S. & Aneja, K.R. (1990): An introduction of Mycology, New Age International Press, N. Delhi.

Michael J. Pelezar, E.C.S. Chaing & N.R. Krieg, 1993: Microbiology. Tata McGraw Hill Publ. N. Delhi.

Mundukur, B.B. (1967): Fungi & Plant Diseases, Pochillion Co. Ltd., USA.

Prescott, L.M., Harley, J.P. & Klein, D.A. (1996): Microbiology, 3<sup>rd</sup> edition, Wm. C. Brown Publ., USA.

Ronald M. Atlas (1995): Principles of Microbiology. Mosby-Year Book, Inc. St. Louis, Missouri, USA.

Moore-landeckar, E.J. (1972): Fundamentals of the fungi, Prentice Hall, Eaglewood, U.K. Sumbali, G. (2005): The Fungi, Narosa Publ. House, New Delhi.

Paper - BOT-304(c) - RESTORATION ECOLOGY (ELECTIVE)Credit -4MM-80Note: Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus.The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

**Objectives:** To develop the abilities of students to critically engage with concepts and theory in Restoration ecology from interdisciplinary perspectives and at an advanced level.

**Outcomes:** Student will be able to embrace the implications of the basic principles of restoration ecology for the future of restoration of degraded ecosystems and their management.

## Unit-I

1) Restoration-Terms and definitions, Importance of ecological restoration: strategies of Restoration-Natural recovery, active restoration, rehabilitation.

2) Restoration plan and rehabilitation measures.

3) Natural and anthropogenic disturbances: Characteristics and sources, effects on structural and functioning of terrestrial and aquatic ecosystems.

### Unit-II

4) Rehabilitation of salt affected soils.

5) Prevention and mitigation of invasive species; Habitant fragmentation.

6) Ecosystem stability: Structural and functional stability.

7) Climate change mitigation and Biological carbon sequestration.

## Unit-III

8) Sustainable forestry management and agroforestry.

9) Biotechnological Tools of Restoration.

10) Environmental impact and risk assessment.

#### Unit-IV

11) Degradation and Restoration of forest and grassland ecosystems.

12) Degradation and restoration of aquatic resources: River corridors, wetlands and lakes. Adaptive restoration of wetlands; Waste water recycling and waste management.

13) Reclamation of mining sites, Bioremediation and Phytoremediation.

### Suggested Readings :

1. Botkin, D.B. and E.A. Keller (2004). Environment Science: Earth as a Living Planet, John Wiley & Sons Inc., New York.

2. Carson, Rachel . 1962. Silent spring. Boston, Houghton Mifflin

3. Manahan, S.E. 2000. Environmental Chemistry. Seventh Edition. Lewis Publishers, New York

4. Mitsch, W.J. and Jorgensen, S.E. (eds.) 1989. Ecological Engineering: An Introduction to Ecotechnology. John Wiley and Sons, New York.

5. Morgan, R.K. Environmental Impact Assessment; A methodological Perspective. Kluwer Academic Publishers, London.

6. Pierzynski, G.M., Sims, J.T. and Vance, G.F. 2000. Soils and Environmental Quality. Second Edition. CRC press, New York.

7. Singh,J.S., Singh,S.P. and Gupta, S.R. 2006. Ecology, Environment and Resource Conservation, Anamaya Publishers, New Delhi.

8. Bradshaw, A.D. and Chadwick, M.J. (1980). The Restoration of Land Ecology and Reclamation f Derelict and Degraded Land Blackwell Scientific Publication, Oxford, England. 9. Pace, M.L. and Groffman, P.M. (Eds.) (1998). Success, limitations and Frontiers in Ecosystem Science, Springer Verlag, New York.

10. Packard, S. And Mutel C.F. eds. (1997). The Tall Grass Restoration Handbook, Island Press, Washington, DC.

11. Petts, G. And Calow P. Larsen, P. (1996). River Restoration a Blackwell Science, Oxford, England.

12. Urbanska, K.M. Webb, N.R. and Edwards, P.J. (1998). Restoration Ecology and Sustainable Development. (Cambridge University Press, Cambridge).

13. USEPA (2000). Principles for the Ecological Restoration of Aquatic Resources. EPA 841-F-00-003. Office of Water (4501F), United States Environmental Protection Agency, Washington, DC. 4pp.

## Paper – BOT-304(d) – ADVANCED PLANT PHYSIOLOGY (ELECTIVE) Credit-4 MM-80

**Objective:** The course would deal with advances in plant physiology especially photosynthesis, respiration and responses of the plants to abiotic stresses.

**Outcome:** The students will be able to understand the physiological advances in response of plants to water, salt and temperature stress. They will also be acquainted with advances in photosynthesis and respiration.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

### Unit-I

Water stress:

Drought, its definition and quantification, water deficit and plant growth, physiological and biochemical functions, responses injury affected by drought, Adaptive strategies for drought resistance. Osmotic adjustment, osmoprotectants.

Water logging/ oxygen deficiency and its effects on plant growth.

Unit-II

Salt and temperature stress:

Salt stress; Saline and alkaline soils, salt stress injury, mechanism of salt stress and halophytes. Temperature stress; high temperature stress, heat shock proteins, chilling and frost injury and mechanism of tolerance.

### Unit-III

Photosynthesis:

The four major complexes of thylakoids.

The path of carbon in photosynthesis (C3, C4 and CAM plants)

Rubisco, structure and its association with the mechanism of carboxylation and oxygenation of RUBP. Effect of environmental factors on photosynthetic rates. Translocation of photosynthates and its importance in sink growth.

#### Unit-IV

Respiration:

Cyanide insensitive respiration: Mechanism and significance.

Comparison between normal electron transport chain and alternate oxidase pathway of respiration.

Glycolic acid metabolism and photorespiration.

Glyoxylate cycle.

Respiration in intact plants and tissues.

## Suggested Readings:

Bonner, J. And Varner, J.E. (1976) Plant Biochemistry, Academic Press, New York and London (Third Edition).

Buchanan, B.B., Gruissem, w. And Jones, R.L. (2000). Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Maryland, USA.

Cooper, T.G. (1977). Electrophoresis. In : The Tools of Biochemistry. John Wiley and Sons., New York. Dey, P.M. and Harborne, J.B. (1997), First Indian edition, 2000). Plant Biochemistry. Academic Press, Harcourt Asia Pvt. Ltd.

Noggle, G.r. and Fritz, G.J. (1983). Introductory Plant Physiology. Prentice-Hall of India Pvt. Ltd., New Delhi, 2<sup>nd</sup> edition (Seventh reprint, 1992).

Salisbury, F.B. and Ross, G.W. (1992). Plant Physiology. Fourth Edition, Wadsworth Publishing Co. Belmont, California, USA.

Sawhney, S.K. and Singh, Randhir. (2000). Introductory Practical Biochemistry, Narosa Publishing House, New Delhi.

Solmos, T. (1977). Cyanide resistant respiration in higher plants. In : Ann. Rev. Pl. Physiol. 28: 279-297.

### Paper – BOT-304(e) – Biophysical and Biochemical Techniques (ELECTIVE) Credit -4 MM-80

**Objective:** This paper aims to provide an introduction to various tools and techniques used to gain insight into cell structure and biological processes. The focus is on studying the techniques used for isolation, purification and characterization of biomolecules.

**Outcomes:** This paper is meant for students to gain in-depth knowledge of various methods used in characterization the biomolecules.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

## Unit-I

- 1. Microscopic techniques: Introduction; Light microscope; Phase contrast microscope; Fluorescent microscope; Electron microscope (EM) SEM, TEM and STEHM; Scanning probe microscopes- scanning 659itrogeni microscope and atomic force microscope; Different fixation and staining techniques.
- **2.** Centrifugation: Principles of sedimentation; Types, care and safety aspects of centrifuges; Differential centrifugation; Density gradient centrifugation and their applications.

## Unit-II

- **3.** Chromatographic techniques: Theory of chromatography; Types of chromatography- Paper chromatography, Thin layer chromatography, Adsorption chromatography, Partition chromatography, Affinity chromatography, Ion exchange chromatography, HPLC and Size-exclusion chromatography.
- 4. Spectrophotometery: Colorimetery; UV and Visible spectrophotometery.

#### Unit-III

- **5. Electrophoresis**: Principle; Agarose gel electrophoresis; Polyacrylamide gel electrophoresis; 2-Dimensional gel electrophoresis; Capillary electrophoresis; Microchip electrophoresis and Isoelectric focusing.
- **6. Mass spectrometry:** Introduction; Theory; Mass spectrometer; Ionization of molecules; Mass analysers- MALDI; Detectors and Applications.

#### Unit-IV

- 7. Immunotechniques: Antibody generation; Detection of molecules using ELISA, RIA, Immunoprecipitation and Immunofluorescence microscopy; Detection of molecules in living cells.
- 8. Radioisotope techniques: Radioactive isotopes; Nature of radioactivity; Detection and measurement of different types of radioisotopes normally used in biology; Incorporation of radioisotopes in biological tissues and cells; Molecular imaging of radioactive material; Disposable of radioactive wastes and safety guidelines.

## **Suggested Readings:**

- 1. Hegyi G, Kardos J, Kovacs M, Csizmadia AM, Nyitray L, Pal G, Radnai L, Remenyi A Venekei I (2013) Introduction to Practical Biochemistry, Eotvos Lorand University, Hungary.
- 2. Plummer DT (1990) An Introduction to Practical Biochemistry, Tata Mc-Graw-Hill Publishing Company Ltd., New Delhi.
- 3. Prescott L and Harley J Klein D (2005) Microbiology (6<sup>th</sup> Ed) Mc Graw-Hill.
- 4. Ranade R and Deshmukh S (2013) Handbook of Techniques in Biotechnology, Studium Press (India) Pvt. Ltd. New Delhi.
- 5. Sawhney SK and Singh R (2000) Introductory Practical Biochemistry (Ed.), Narosa Publishing House Pvt. Ltd., New Delhi.
- 6. Wilson K and Walker J (2010) Principles and Techniques of Biochemistry and Molecular Biology (7<sup>th</sup> Ed.), Cambridge University Press, New Delhi.

## Paper – BOT-306 – Biodiversity and its conservation Credit -2 MM-50

**Objectives:** This paper is meant for students to gain in-depth knowledge of different levels, threats and distribution of Biodiversity and focus on the different approaches for biodiversity conservation.

**Outcome:** The student will be able to appreciate the value of biodiversity. They will also develop the skills necessary to work efficiently in areas of *in-situ* and *ex-situ* conservation.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

## Unit-I

- 1. Biodiversity: importance, levels of biodiversity- species, genetic and ecosystem diversity, threats to biodiversity- habitat loss and fragmentation, exotic species, pollution, overexploitation, IUCN categories of threat
- 2. Distribution and global patterns of biodiversity
- 3. Biodiversity and ecosystem services
- 4. Terrestrial and marine hotspots of biodiversity; hotspots of biodiversity in India.

## Unit-II

- 5. Principles and importance of conservation biology; In- situ conservation of biodiversity-Sanctuaries, national parks, biosphere reserves.
- 6. Ex-situ conservation of biodiversity: Principles and practices, field gene banks, seed banks and cryopreservation
- 7. Approaches for biodiversity conservation: tropical forests, wetlands and aquatic ecosystems
- 8. Major approaches to Management, Indian case studies on conservation/management strategy (Project tiger, biosphere reserves)

### **Suggested Readings :**

Chape, S., Fish, L., Fox, P. and Spalding, M. 2003. United Nations list of protected areas. IUCN/UNEP/World Conservation Monitoring Centre, Gland, Switzerland/Cambridge

Gopal, B. (ed.) 1987. Ecology and Management of Aquatic Vegetation of the Indian Subcontinent. W. Junk bv. The Hague.

Heywood, V.(Ed.) (1995). Global Biodiversity Assessment. United Nations Environment Programme, Cambridge University Press, Cambridge, U.K.

Hunter (Jr.) M.L. (1996); Fundamentals of Conservation Biology, Blackwell Science. Meffe G.K. and C. Ronals Corroll (1994) Principles of Conservation Biology, Sinaur Associates, Inc., Sunderland. Massachusetts.

Peter H. Raven, P.H. and Berg , L. R. Berg. 2005. Environment, 5<sup>th</sup> Edition. John Wiley & Sons Inc., New York.

Singh,J.S., Singh,S.P. and Gupta, S.R. 2006. Ecology, Environment and Resource Conservation, Anamaya Publishers, New Delhi.

Soule, M.E. (ed.) (1986) : Conservation Biology. The Science of Scarcity and Diversity. Sinaur Associates, Inc., Sunderland, Massachusetts.

## SEMESTER - IV

#### Paper - BOT-401 PHYSIOLOGY OF PLANT GROWTH AND DEVELOPMENT Credit-4 MM- 80

**Objective:** The course would deal with different aspects of plant growth and development especially germination and dormancy of seeds, plant growth regulators, senescence and abscission, photomorphogenesis and response of plant to different abiotic stresses.

**Outcome:** The students will be able to understand the basic concepts of plant growth and development.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

#### Unit-I

Plant Growth: Growth concepts, Growth curves, Growth analysis.

Germination and Dormancy of seeds ; factors affecting dormancy and its regulation by plant growth regulators and environmental factors.

Stress Physiology: Response of plants to abiotic stresses: abiotic stress affecting plant productivity. Basic principles of crop improvement programme under stress.

### Unit-II

Plant Growth Regulators: Discovery, biosynthetic pathways, transport, influence on plant growth and mechanism of action of: Auxins, Gibberellins, Cytokinins, Ethylene, Abscisic acid.

#### Unit-III

Senescence and Abscission:

Physiological and biochemical changes associated with senescence and 661itrogenis . Tropism: Phototropism, nature of receptors, role of hormones, Geotropism and nastism.

## Unit-IV

Sensory Photobiology:

Phytochromes: mechanism of phytochrome action, photomorphogenesis and cryptochromes.

The Flowering Process:

Photoperiodism and its significance, importance of dark periods, role of vernalization.

Nature and events during flowering, florigen concept, chemical control of flowering.

#### **Suggested Readings:**

Audus, L.J. (1972). Plant Growth Substances. Vol.I Chemistry and Physiology. Leonard Hill, London.

Bonner, J. And Varner, J.E. (1976). Plant Biochemistry, IIIrd Edition, Academic Press, New York and London.

Buchanan, B.B., Gruissem, W. And Jones, R.L. (2000). Biochemstry and Molecular Biology of Plants. American Society of Plant Physiologists, Maryland, USA.

Davies, Peter J. (1995). Plant Hormones: Physiology, Biochemistry and Molecular Biology. 2<sup>nd</sup> Edition. Kluwer Academic Publishers, The Netherlands.

Dey, P.M. and Harborne, J.B. (1997), First Indian Edition, Plant Biochemistry. Academic Press, Harcourt Asia Pvt.Ltd.

Garrett, R.H. and Grisham, C.M. (1999). Biochemistry. Second edition. Saunders College Publishing, Philadelphia. Hopkins, W.G. 1995 Introduction to Plant Physiology, John Wiley and Sons.

Krishnamoorthy, H.N. (1993). Physiology of Plant Growth and Development. Atma Ram and Sons, Delhi.

Kumar, H.D. and Singh, H.N. (1993). Plant Metabolism. Second edition, Affiliated East- West Press Pvt Ltd. New Delhi.

Lehninger, A.L. (1978). Biochemistry. Kalyani Publishers, Ludhiana, India

Lehninger, A.L, Nelson, D.L. and Co MM 1993 Principles of Biochemistry Second edition, CBS Publishers.

Moore, Thomas. C. (1989). Biochemistry and Physiology of Plant Hormones. Second edition (Reprint 1994), Narosa Publishing House, New Delhi.

Noggle, G.R. and Fritz, G.J. (1983). Introductory Plant Physiology, Prentice-Hall of India Pvt. Ltd., New Delhi, Second edition Seventh reprint, 1993.

Salisbury, F.B. and Ross, C.W. (1992). Plant Physiology. Fourth edition, Wadsworth Publishing Co. Belmont, California, USA.

Singhal, G.S. Renger, G., Sopory, S.K., Irrgang, K.D. and Govindjee (editors) (1999). Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Narosa Publishing House, New Delhi.

Srivastava, L.M. (2006). Plant Growth and Development : Hormones and Environment. Academic Press. Published by Elsevier India Pvt. Ltd., New Delhi.

Taiz, L and Zeiger, E. (1998). Plant Physiology. Second edition. Sinauer Associates, Inc., Publishers, Massachusetts, USA

Trehan, K. (1990). Biochemistry. Second edition, Wiley-Eastern Ltd., New Delhi.

Trivedi, P.C. (2005). Applied Botany. Aavishkar Publishers, Distributors, Jaipur.

Trivedi, P.C. (2006). Plant Molecular Physiology: Current Scenario and Future Projections. Aavishkar Publishers, Distributors, Jaipur.

Weil, J.H. (1990). General Biochemistry. Sixth edition. Wiley-Eastern, New Age International Publishers, New Delhi.

Wilkins, M.B. (1987). Advanced Plant Physiology, ELBS, Longman, England.

Zubay, Geoffrey. (1989). Biochemistry. Mc.Millan Publishing Co. New York.

## Paper – BOT-402 Biology of Reproduction and Anatomy Credit -4 MM-80

**Objective:** The course would deal with history of Embryology. It also describe the technique and applications of *in vitro* culture of reproductive organs.

Outcome: The students will be able to describe the structure and development of reproductive

structures and the process of reproduction in plants.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

## Unit I

History of plant embryology

Male gametophyte: structure of anther, microsporogenesis, role of tapetum,

Pollen development, male sterility;

Pollen germination, pollen tube growth and guidance; pollen allergy

## Unit II

Female gametophyte; ovule development, megasporogenesis;

Organization of the embryosac, structure of the embryo sac cells.

Pollination, Pollination mechanisms and vectors,

## Unit III

Pollen pistil interaction and fertilization; structure of pistils; pollen-stigma interaction sporophytic and gametophytic incompatibility, double fertilization

Endosperm development, polyembryony; 663itrogen

Experimental Embryology: in vitro fertilization Anther, Pollen and embryo culture,

## Unit IV

Anatomy in relation to taxonomy.

Anomalous secondary Structure: Anomalous secondary growth, anomalous position of cambium, abnormal behaviour of normal cambium, accessory cambium formation and its activity, extrastelar cambium, Interxylary and intraxylary phloe, presence of medullary bundles, cortical bundles, presence of exclusive phloem and xylem bundles, secondary growth in monocots.

Suggested Readings:

Bhojwani, S.S. and Bhatnagar, S.P. 2000. The Embryology of Angiosperms (4<sup>th</sup> Ed.), Vikas Publishing House, New Delhi.

Shivanna, K.R. and Johri, B.M. 1985. The Angiopsrem Pollen: Structure and Function. Wiley Eastern Ltd., New Delhi.

Raghavan, V. 1997. Molecular Embryology of Flowering Plants. Cambridge Univ. Press, Cambridge.

Johri, B.M. (ed.) Embryology of Angiosperms. Springer-Verlag, Heidelberg, Berlin,

Esau, K. 1965. Plant Anatomy. John Wiley & Sons New York.

Fahn, A. 1967. Plant Anatomy. Pergamon Press, London, New York.

Eames, A.J. and MacDaniels, L.H. 1947. An Introduction to the Plant Anatomy (2<sup>nd</sup> Ed.), McGraw Book Comp., New York.

Eames, A. J. 1961. Morphology of Angiosperms. McGraw Hill Book Company, New York

| Paper – BOT-403 Plant Tissue Culture Credit -4 MM-80 | Paper – BOT-403 | Plant Tissue Culture | Credit -4 | <b>MM-80</b> |
|------------------------------------------------------|-----------------|----------------------|-----------|--------------|
|------------------------------------------------------|-----------------|----------------------|-----------|--------------|

**Objective:** This course seeks to impart detailed knowledge of micropropagation, somatic embryogenesis, haploid production, somatic hybridization, cryopreservation and secondary metabolite production.

**Outcome:** The students will gain in-depth knowledge of plant cell and tissue culture techniques, *In vitro* haploid production, plant breeding, synthetic seeds and secondary metabolite production.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

## Unit I

- 1. History of Plant Tissue Culture, Basic concept, principles and scope of plant cell and tissue culture, concepts of cellular differentiation; Totipotency; basic techniques of plant tissue culture; callus formation, organogenesis and embryogenesis.
- 2. Protoplast isolation, fusion and culture, somatic hybridization, hybrid selection and regeneration. Cybrids and their application.

#### Unit-II

- 3. *In vitro* haploid production and its significance, Anther/Pollen culture and ovary culture; Embryo and ovule culture Production of triploids through endosperm culture.
- 4. Micropropagation: meristem culture and virus-free plants; Cryopreservation of plant cell and tissue cultures and establishment of gene banks.

### Unit-III

- 5. Somaclonal variations and isolation of useful mutants; mechanisms and applications in genotype improvement.
- 6. Role of plant cell cultures in Bioreactor types and application in cell culture and secondary metabolite production.

## Unit-IV

- 7. Somatic embryogenesis, production of synthetic seeds, importance, limitation and their utilization.
- 8. Application of tissue culture in forestry and agriculture; status of tissue and cell culture technology in India edible vaccines, and their prospects

## Suggested Readings

- 1. Ammirato, P.V., D.A. Evans, N.D. Sharp and Y.P.S. Bajaj (1990). Hand Book of Plant Cell Culture, Vols. 1-5. McGraw Hill Publishing Company, New York.
- 2. Bhojwani, S.S. and Razadan, M.K. 1996. Plant Tissue Culture: Theory and Practice ( A revised Edition), Elsevier Science Pub., New York, USA
- 3. Collins, H.A. and Edwards, S. 1998, Plant Cell Culture, Bios Scientific Pub., Oxford, U.K.
- 4. Kartha, K.K. 1985. Cryopreservation of Plant Cells and Organs, CRC Press, Boca Raton, Florida, U.S.A.
- 5. Razadan, M.K. 1993. An introduction to Plant Culture. Oxford & IBH Pub., Co., New Delhi, India

### Paper – BOT-404(a) ADVANCED PHYCOLOGY (ELECTIVE) Credit -4 MM-80

**Objectives:** To impart knowledge about the wider perspectives of the '*Nitrogen economy builders of the nation*' in the context of fast changing industrializing Haryana as well as which has been traditionally an agricultural economy.

**Outcome:** To nurture and develop the trained human resources/ professionals to identify research problems, formulate testable objectives, develop appropriate methods & experimental designs, implement research projects in wider perspective of alagalization.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

#### Unit-I

1) Photosynthesis and Chromatic adaptations in algae: pigments, photosynthetic membrane organization, oxygenic & anoxygenic photosynthesis.

2) Relationship of CO<sub>2</sub>-assimilation with nitrogen assimilation: source of energy & reductants.

3. Nutrient uptake kinetics in algae.

#### Unit-II

4) Importance of N<sub>2</sub>-fixing genera in Indian paddy fields for the improvement of soil fertility.

5) Heterocyst, its differentiation and role in N2-fixation.

6) Mechanism N<sub>2</sub>-fixing fixation: 665itrogenise and its in vivo activity.

7) Uptake kinetics of nitrogenous compounds, their transport and assimilation.

#### Unit-III

8) Algal immobilization: methods and applications.

9) Technologies for the reclamation, restoration & maintenance of *usar* soils and its fertility.

10) Restoration of degraded ecosystems through algae. Importance of algal flora for the treatment of wastewaters (activated sludge system) for the production of useful biomass & energy-rich fuel.

### Unit-IV

11) Concept of algalization and biofertilizers.

12) Strain improvement for the production of nitrogenous compounds. Biological & technical aspects of outdoor mass culture of algae.

13) A brief account of commercial potentials of algae, algal products & their uses.

### **Suggested Readings:**

- 1. Ahluwalia, A.S. (Ed.). *Phycology: Principles, Processes and Applications*. Daya Publishing House, New Delhi. 2003.
- 2. Becker, E.W. (1994): Microalgae Biotechnology & Microbiology, Cambridge University Press, Cambridge, U.K.

3. Carr, N.G. & Whitton , B.A. (1982): The biology of Cyanobacteria Blackwell Scientific Publ., Oxford, U.K.

- 4. Dubey, R.C. (2006): Introduction to Biotechnology, Delhi Book Trust, New Delhi.
- 5. Dubey, R.C. (2014): Advanced Biotechnology, S Chand & Cmpany Pvt. Ltd., New Delhi.
- 6. Fatma, T. (2005): Cyanobacterial and Algal Metabolism and Environmental Biotechnology, Narosa Publihers.
- 7.Fay, P & C van Baalen (1987): The cyanobacteria, Elsevier Science Publishers, B.V. Amsterdam, Netherlands.
- 8.Graham, L.E. & Wilcox, L.W. (1999): Algae, Benjamin Cummings, USA.

## Paper – BOT-404(b) PRINCIPLES OF PLANT PATHOLOGY (ELECTIVE) Credit -4 MM-80

**Objectives:** The course has been conceived to equip the students with mechanism of infection of fungi, various defence mechanism employed by the plants to protect themselves against plant pathogens. Besides, the course deals with epidemiology, role of environmental factors for disease development, disease forecasting, applications of biotechnology in plant pathology and methods adopted for disease management.

**Outcome:** The students will understand various mechanisms involved during pathogenesis and disease epidemiology, plant disease forecasting and transmission and spread of plant pathogens. The students will learn the applications of biotechnological techniques in plant pathology after completing the course.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

#### Unit-I

How pathogens attack plants : chemical weapons of pathogens (enzymes and toxins)

How plants defend themselves against pathogens: structural defense and biochemical defense.

## Unit-II

Plant disease epidemiology and plant disease forecasting: Importance of disease forecasting services, methods used in plant disease forecasting.

Management of plant pathogens: cultural, chemical and biological methods.

### Unit-III

Applications of biotechnology in Plant Pathology: The use of tissue culture techniques (callus culture, apical meristem culture and protoplast fusion), Recombinant DNA technology, use of monoclonal antibodies in plant pathology.

Effect of environmental factors on disease development.

## Unit-IV

Mycotoxin producing fungi during storage and major mycotoxins produced by them.

Host-pathogen interaction of population level: transmission and spread of plant pathogens.

## Suggested Readings:

Agrios, G.N. (2005): Plant Pathology, Acad. Press, Inc. California.

Alexopoulos, C.J. Mins, C.W. & Blackwell, M. (1995): Introductory Mycology, John Willy and Sons. Inc.

Biswas, S.P. & Biswas, A. (1984): An Introduction to Viruses, Vani Education Books, New Delhi. Clifton, A. (1958): Introduction to the Bacteria. McGraw Hill Books Co. New York.

Mehrotra, R.S. & Aneja, K.R. (1990): An introduction of Mycology, New Age International Press, New Delhi.

Mehrotra, R.S. and Ashok Aggarwal (2003): Plant Pathology, Tata Mc Graw Hill Publ. Ltd., New Delhi.

Michael J. Pelezar, E.C.S. Shan & N.R. Krieg (1993): Microbiology. Tata Mc Graw Hill Publ. New Delhi.

Ronald M. Atlas (1995): Principles of Microbiology. Mosby-Year Book, Inc. St. Louis, Missouri, USA.

Singh, R.S. (1990): Plant Disease, 6<sup>th</sup> Edition, Oxford, IBH Publ., New Delhi.

Sumbali, G. (2005): The Fungi, Narosa Publ. House, New Delhi.

Webster, J. (1985): Introduction of Fungi. Cambridge University, Press.

Paper – BOT-404(c) CONSERVATION BIOLOGY (ELECTIVE) Credi-4 MM-80 Note: Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

**Objectives:** The student will be able to appreciate the value of Biodiversity and focus on the relationship between living organisms and the terrestrial, freshwater and marine environments, coupled with the interactions that results from natural and anthropogenic processes.

**Outcomes:** Student will develop the skills necessary to work efficiently in areas like conservation, EIA, environment management, monitoring and education and also gets an objective, scientific and realistic approach to conservation science.

### Unit-1

- 1) Principles, characteristics and importance of conservation biology
- 2) Conservation values and ethics, Role of species in conservation

### Unit-II

- 3) Global biodiversity I: Patterns and Processes
- 4) Global biodiversity II: Losses, Pattern of species vulnerability, Habitat fragmentation and degradation, Synergistic interactions
- 5) Biodiversity and ecosystem services

#### Unit-III

- 6) Biodiversity of wetlands, mangroves and coral reefs- A general account
- 7) Biosphere reserves and RAMSAR sites in India, The Design of Conservation Reserves
- 8) Major approaches to management, Indian case studies on conservation/management strategy (Project Tiger, Biosphere Reserves)

## Unit-IV

- 9) Importance of genetic resources and conservation of crop genetic resources
- 10) International and National efforts to conserve biodiversity: Convention on biological diversity, CITES, Ramsar convention; National Biodiversity strategy
- 11) Role of remote sensing and GIS and biodiversity conservation

#### Suggested Readings :

Chape, S., Fish, L., Fox, P. And Spalding, M. 2003. United Nations list of protected areas. IUCN/UNEP/World Conservation Monitoring Centre, Gland, Switzerland/Cambridge

Gopal, B. (ed.) 1987. Ecology and Management of Aquatic Vegetation of the Indian Subcontinent. W. Junk bv. The Hague.

Heywood, V.(Ed.) (1995). Global Biodiversity Assessment. United Nations Environment Programme, Cambridge University Press, Cambridge, U.K.

Hunter (Jr.) M.L. (1996); Fundamentals of Conservation Biology, Blackwell Science. Meffe G.K. and C. Ronals Corroll (1994) Principles of Conservation Biology, Sinaur Associates, Inc., Sunderland. Massachusetts.

Huston, M.A. 1994. Biological Diversity: The Coexistence of Species on Changing Landscapes. Cambridge University Press, Cambridge.

Peter H. Raven, P.H. and Berg , L. R. Berg. 2005. Environment, 5<sup>th</sup> Edition. John Wiley & Sons Inc., New York.

Singh,J.S., Singh,S.P. and Gupta, S.R. 2006. Ecology, Environment and Resource Conservation, Anamaya Publishers, New Delhi.

Soule, M.E. (ed.) (1986) : Conservation Biology. The Science of Scarcity and Diversity. Sinaur Associates, Inc., Sunderland, Massachusetts.

Turner, M.G., Gadner, R.H. and O, Neill, R.V. 2001. Landscape Ecology: In theory and Practice, Pattern and Processes. Spinger Verlag, New York.

## Paper – BOT-404(d) PLANT GROWTH REGULATORS (ELECTIVE) Credit -4 MM-80

**Objective:** The course would deal with the study of regulation of different growth regulators to fruit and seed physiology. The advances in senescence, abscission and mechanism of action of various phytohormones will also be studied.

**Outcome:** The students will be able to understand the recent advances in phytohormones, fruit and seed physiology. They will also be acquinted with advances in senescence and abscission also.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

Unit-I

Phytohormones

Recent advances in the biosynthesis and regulation of cytokinins and ethylene Current scenario in the mechanism of action of gibberellins, abscisic acid, salicylic acid, jasmonic acid and brassinosteroids.

### Unit-II

Seed Physiology Seed viability and seed dormancy Metabolism of germinating seeds. Environmental and hormonal control of seed dormancy and germination.

## Unit-III

Senescence and Abscission Process of induction Metabolic changes. Role of plant growth regulators

## Unit-IV

Fruit Physiology

Climacteric and non-climacteric fruits, fruit ripening.

Post-harvest storage of fruits – quality maintenance, physiological and biochemical studies under different kinds of storage conditions.

## Suggested Readings:

Krishnamoorthy, H.N. (1993). Physiology of Plant Growth and Development. Atma Ram and Sons, Delhi.

Khan, A.A (1977). The Physiology and Biochemistry of Seed Dormancy and germination. North-Holland Publishing Co., Amsterdam, New Oxford.

Moore. T.C. (1989). Biochemistry and Physiology of Plant Hormones. Second edition (Reprint 1994), Narosa Publishing House, New Delhi.

Saymour, G.B., Taylor, J.E. and Tucker, G.A. (1993). Biochemistry of Fruit Ripening. Chapman and Hall, London.

Stahl, E. (1965). Thin Layer Chromatography, a laboratory handbook. Academic Press, London.

Taiz, L. And Zeiger, E. (1998). Plant Physiology. Second edition, Sinauer Associates, Inc., Publishers, Massachusetts, USA.

Wilkins, M.B. (1987). Advanced Plant Physiology. ELBS-Longman, England.

Srivastava, L.M. (2006). Plant Growth and Development : Hormones and Environment. Academic Press. Published by Elsevier India Pvt. Ltd., New Delhi.

Trivedi, P.C. (2005). Applied Botany. Aavishkar Publishers, Distributors, Jaipur.

**Objective:** This course seeks to impart detailed knowledge of basic methods involved in genome studies, their organization and function.

**Outcomes:** This paper would provide students an understanding about how the genetic information is stored in the genome and the mechanisms by which this information is used by the organism. They are also expected to know about the various databases used for storage and analysis of genome information.

**Note:** Nine questions will be set in all. Question No.1 will be compulsory covering the entire syllabus. The remaining eight questions will be set with two questions from each Unit. The candidate will be required to attempt one question from each unit. All questions will be of equal marks.

#### Unit-I

- **1. Genome**: Completely sequenced prokaryotic (T<sub>4</sub>, and λ phages; *E. coli*) and eukaryotic genomes (*Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Oryza sativa, Mus musculus* and *Homo sapiens*); Mitochondrial and Chloroplast genomes.
- 2. Mapping of Genome: Genetic mapping- using DNA markers and Linkage analysis; Physical mapping-restriction mapping, Fluorescent *in-situ* hybridization and Sequence Tagged Sites (STSs) mapping.

#### Unit-II

- **3.** Genome sequencing: Chain termination and chemical degradation methods; Next generation sequencing (NGS)- Pyrosequencing, SOLiD sequencing, Bridge amplification sequencing, Assembly of a contiguous DNA sequence- shotgun and clone contig methods, Human Genome Project.
- **4. Understanding a Genome Sequence**: Gene location using 1.) ORF scanning, Automatic annotation, Homology searches and comparative genomics. 2.) Experimental techniques- northern hybridization, cDNA sequencing and RACE.

#### Unit-III

- 5. Identification of a Gene Function: Using computer analysis; Experimental analysis- gene inactivation and overexpression; Directed mutagenePsis; Reporter genes and Immunocytochemistry.
- 6. Analysis of the Transcriptome: Expressed Sequence Tags (ESTs); Serial analysis of gene expression (SAGE); Differential Display (DD); Representational Difference Analysis (RDA) and DNA Microarrays.
- 7. Proteome Analysis: Using 2-D; Protein identification; Protein-DNA and Protein- Protein interactions and Biochips.

#### Unit-IV

- 8. Biological Databases: Introduction; Primary and Specialized Databases; Database Scheme; Database Annotation; Retrieval System; Nucleotide Databases; Protein Databases; Genomic Databases and Resources; Gene Databases and Resources; Transcriptome Databases; Mutation Databases; Mitochondrial Databases and Resources.
- **9.** Computational Methods for Analysis of Genome Sequence Data: Introduction; Dot-Plot Matrix; Sequence pairwise alignment; Database searching; Multiple alignment; Alignment profiles to recognize distantly related protein or protein modules; Methods for sequence assembly; Linguistic analysis of biosequences; Prediction of RNA secondary structures; Protein sequence analysis; Evolutionary and phylogenetic analysis.

## **Suggested Readings:**

- 1. Birren B, Green ED, Klapholz S, Myers RM and Roskams J (1997) Genome Analysis, CSHL Press.
- 2. Brown TA (1999) Genomes. John Wiley & Sons (Asia) Pvt. Ltd., Singapore.
- 3. Brown TA (2002) Genomes 2, Wiley-Liss, New York
- 4. Brown TA (2007) Genomes 3, Garland Science Publishing New York, London.
- 5. Chawla HS (2009) Introduction to Plant Biotechnology (3<sup>rd</sup> Ed.). Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.
- Dale JW, Schantz MV and Plant N (2012) From Genes to Genomes (3<sup>rd</sup> Ed.), John Wiley and Sons, Ltd. UK.
- 7. Dawson, MT, Powell R and L Gannon F (1996) Gene Technology, BIOS Sci. Pub. Ltd., Oxford, UK. DNA Amplification, Stockton Press, New York, USA.
- 8. Glick B and Pasternak JJ (2003), Molecular Biotechnology (<sup>3rd</sup> Ed), ASM Press, Washington.
- Hartl DL and Ruvolo M (2011) Genetics- Analysis of Genes and Genomes (8<sup>th</sup> Ed.), Jones and Bartlett Publishers, Inc., USA.
- 10. Hunt SP and Livesey FJ (2000) Functional Genomics, Oxford University Press, New York. London.

- 11. Lewin B (2005) Genes VIII, Oxford University Press, Oxford, UK
- 12. Li WH (1997) Molecular Evolution, Sinauer Associates, Inc., USA.
- 13. Saccone C and Pesole G (2003), Handbook of Comparative Genomics, John Wiley and Sons, Inc., Hoboken, New Jersey.
- 14. Sambamurty AVSS (2007) Molecular Genetics, Narosa Publishing House Pvt. Ltd., New Delhi.
- 15. Singer M and Berg P (1991) Genes and Genomes: A Changing Perspective; University Science Books, CA, USA.

# DEPARTMENT OF GEOPHYSICS KURUKSHETRA UNIVERSITY KURUKSHETRA

SCHEME OF EXAMINATION, TEACHING LOAD AND SYLLABUS OF M.Sc. (Tech) Applied Geophysics.

## FIRST SEMESTER EFFECTIVE FROM THE SESSION 2019-20:

| S.No. | Course no.& Course                                  | Teaching L | oad (hrs<br>T | s/week/gr<br>P | A -  | Marks<br>stributi | 0.7   |        |
|-------|-----------------------------------------------------|------------|---------------|----------------|------|-------------------|-------|--------|
|       |                                                     | L          | 1             | P              | Th/P | CW                | Total | Credit |
| 1.    | GP-101: Mathematical Methods<br>in Geophysics       | 4          | 1⁄2           | 0              | 60   | 40                | 100   | 4      |
| 2.    | GP-102: Solid Earth Geophysics                      | 4          | 1/2           | 0              | 60   | 40                | 100   | 4      |
| 3.    | GP-103: Numerical Methods &<br>Computer Programming | 4          | 1⁄2           | 0              | 60   | 40                | 100   | 4      |
| 4.    | GP-104: Basic Geology                               | 4          | 1⁄2           | 0              | 60   | 40                | 100   | 4      |
| 5.    | GP-105: Geology Lab                                 | 0          | 0             | 12             | 90   | 60                | 150   | 6      |
| 6.    | GP-106: Computer Lab                                | 0          | 0             | 12             | 90   | 60                | 150   | 6      |
|       | Semester Total                                      | 16         | 2             | 24             |      |                   | 700   | 28     |

SECOND SEMESTER EFFECTIVE FROM THE SESSION 2019-20:

| S.No. | Course no.& Course Teach              | ing Lo | oad (hrs | /week/gr | oup)    | Marks    |       |        |
|-------|---------------------------------------|--------|----------|----------|---------|----------|-------|--------|
|       |                                       | L      | Т        | Р        | Dis     | stributi |       |        |
|       |                                       |        |          |          | Th/P    | CW       | Total | Credit |
| 1.    | GP-201: Remote Sensing & GIS          | 4      | 1⁄2      | 0        | 60      | 40       | 100   | 4      |
| 2.    | GP-202: Stratigraphy, Himalayan,      | 4      | 1⁄2      | 0        | 60      | 40       | 100   | 4      |
|       | Economic & Petroleum Geolog           | gy     |          |          |         |          |       |        |
| 3.    | GP-203: Geophysical Signal Processing | 4      | 1⁄2      | 0        | 60      | 40       | 100   | 4      |
| 4.    | GP-204: Geophysical Fields & Waves    | 4      | 1⁄2      | 0        | 60      | 40       | 100   | 4      |
| 5.    | GP-205: Geophysical Lab - I           | 0      | 0        | 12       | 90      | 60       | 150   | 6      |
| 6.    | GP-206: Geophysical Lab - II          | 0      | 0        | 12       | 90      | 60       | 150   | 6      |
| 7.    | GP-207: Geological Field Training     |        |          | 4 hr     | s/week* |          | 100   | 4      |
| 8.    | OEL-I Open Elective paper/MOOC        | 2      | 0        | 0        |         |          | 50    | 2      |
|       | Semester Total                        | 18     | 2        | 24       |         |          | 850   | 34     |

| S.No. | Course no.& Course Te              | aching I | Load (hi | rs/week/g | group) N | /larks   |       |        |
|-------|------------------------------------|----------|----------|-----------|----------|----------|-------|--------|
|       |                                    | L        | Т        | Р         | Dis      | tributio | on    |        |
|       |                                    |          |          |           | Th/P     | CW       | Total | Credit |
| 1.    | GP-301: Seismology                 | 4        | 1⁄2      | 0         | 60       | 40       | 100   | 4      |
| 2.    | GP-302: Gravity & Magnetic Prospec | ting4    | 1/2      | 0         | 60       | 40       | 100   | 4      |
| 3.    | GP-303: Groundwater Geophysics     | 4        | 1⁄2      | 0         | 60       | 40       | 100   | 4      |
| 4.    | GP-304: Electrical Prospecting     | 4        | 1⁄2      | 0         | 60       | 40       | 100   | 4      |
| 5.    | GP-305: Geophysical Lab-III        | 0        | 0        | 12        | 90       | 60       | 150   | 6      |
| 6.    | GP-306: Geophysical Lab-IV         | 0        | 0        | 12        | 90       | 60       | 150   | 6      |
| 7.    | OEL-II: Open Elective paper/MOOC   | 2        |          |           |          |          | 50    | 2      |
|       | Semester Total                     | 18       | 2        | 24        |          |          | 750   | 30     |

# THIRD SEMESTER EFFECTIVE FROM THE SESSION 2019-20:

# FOURTH SEMESTER EFFECTIVE FROM THE SESSION 2019-20:

| S.No. | Course no.& Course Teac                              | •     | -      | s/week/g | • ·  | /larks        |     |        |
|-------|------------------------------------------------------|-------|--------|----------|------|---------------|-----|--------|
|       |                                                      | L     | Т      | Р        | Th/P | tributi<br>CW |     | Credit |
| 1.    | GP-401: Petrophysics & Well Logging                  | 4     | 1⁄2    | 0        | 60   | 40            | 100 | 4      |
| 2.    | GP-402: Physical Oceanography &<br>Marine Geophysics | 4     | 1⁄2    | 0        | 60   | 40            | 100 | 4      |
| 3.    | GP-403: Seismic Prospecting                          | 4     | 1⁄2    | 0        | 60   | 40            | 100 | 4      |
| 4.    | GP-404: Geophysical Inversion                        | 4     | 1⁄2    | 0        | 60   | 40            | 100 | 4      |
| 5.    | GP-405: Geophysical Lab – V                          | 0     | 0      | 12       | 90   | 60            | 150 | 6      |
| 6.    | GP-406: Geophysical Lab - VI                         | 0     | 0      | 12       | 90   | 60            | 150 | 6      |
| 7.    | GP-407: Geophysical Field Training-I                 | 4 hrs | /week* |          |      |               | 100 | 4      |
|       |                                                      |       |        |          |      |               |     |        |
|       | Semester Total                                       | 16    | 2      | 24       |      |               | 800 | 32     |

| S.No. | Course no.& Course                                    | Teaching L | oad (hrs | s/week/gr | oup) N | Marks   |       |        |
|-------|-------------------------------------------------------|------------|----------|-----------|--------|---------|-------|--------|
|       |                                                       | Ĺ          | Т        | Р         | Dis    | tributi | on    |        |
|       |                                                       |            |          |           | Th/P   | CW      | Total | Credit |
| 1.    | GP-501: Near Surface Geophysics                       | s 4        | 1⁄2      | 0         | 60     | 40      | 100   | 4      |
| 2.    | GP-502: Electromagnetic and<br>Magenotelluric Methods | 4          | 1⁄2      | 0         | 60     | 40      | 100   | 4      |
| 3.    | GP-503: Geophysical Lab-VII                           | 0          | 0        | 12        | 90     | 60      | 150   | 6      |
| 4.    | GP-504: Geophysical Lab-VIII                          | 0          | 0        | 12        | 90     | 60      | 150   | 6      |
| 5.    | GP- Elective – I                                      | 4          | 1⁄2      | 0         | 60     | 40      | 100   | 4      |
| 6.    | GP- Elective – II                                     | 4          | 1⁄2      | 0         | 60     | 40      | 100   | 4      |
|       | Semester Total                                        | 16         | 2        | 24        |        |         | 700   | 28     |

# FIFTH SEMESTER EFFECTIVE FROM THE SESSION 2019-20:

## SIXTH SEMESTER EFFECTIVE FROM THE SESSION 2019-20:

| S.No. | Course no.& Course                     |             |      | Marks<br>stributio | on    |        |
|-------|----------------------------------------|-------------|------|--------------------|-------|--------|
|       |                                        |             | Th/P | CW                 | Total | Credit |
| 1.    | GP-601: Dissertation                   | 4 hrs/week* |      |                    | 400   | 16     |
| 2.    | GP- 602: Comprehensive Viva-Voce       |             |      |                    | 100   | 4      |
| 3.    | GP- 603: Seminar                       | 4 hr/week   |      |                    | 100   | 4      |
| 4.    | GP- 604: Geophysical Field Training-II | 4 hrs/week* |      |                    | 100   | 4      |
|       | Semester Total                         |             |      |                    | 700   | 28     |

\*Credited to the teacher(s) associated with Field training/dissertation work/seminar of the students

## Elective – I Solid Earth

GP-506 : Computational SeismologyGP-507: GeomagnetismGP-508: Whole Earth DynamicsGP-509: Solid MechanicsGP-510: Numerical Simulation of Earth SystemGP-511: Non-linear Geophysics

# Elective – II

GP-512: Geotomography

- GP-513: Seismic Data Analysis & Reservoir Geophysics
- GP-514: Reservoir Modelling

GP-515: Radiometric Exploration

GP-516: Advanced Remote Sensing & Image Processing

GP-517: Artificial Intelligence and Machine Learning in Geophysics

## **GP-101: Mathematical Methods in Geophysics**

Max. Marks: 60 Time: 3 hours

**Objective:** The main objective of this course is acquiring information on different mathematical concepts applied to solve the geophysical problems.

**Output:** The course will enhance the knowledge of students on different mathematical tools that will useful in their further studies in geophysics.

### **Special Notes:**

Credits: 4

Nine questions will be set and students will attempt five questions. Question no. 1 will be compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answers should not be in yes/no. In addition to question no. 1, there will be four units in the question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

### **UNIT-I: Special Functions**

Power series method to solve partial differential equations Legendre Function: Legendre differential equation and its solution, recurrence relation, Legendre functions, Rodrigue's formula, Associated Legendre functions and its recurrence relations and orthogonality property Bessel Functions: Bessel differential equation and its first and second solutions, Bessel functions, Recurrence relations, Orthogonality, Modified Bessel function, Spherical Bessel functions in Geophysics

### **UNIT-II: Complex Variables**

Complex variable, limit, continuity and differentiability of function of complex variables, analytic functions, Cauchy Reimann's equations, Cauchy's integral theorem, Morera's theorem, Cauchy integral formula, Expansion by Taylors and Laurents series, singularities, Residue theorem, contour integration Applications in Geophysics

## **Unit-III: Integral Transforms**

Fourier series, evaluation of coefficients of Fourier series, sine and cosine series, complex form of Fourier series, Dirichlet condition, integration and differentiation of Fourier series, Parseval theorem for Fourier series, Fourier sine and cosine integral Concept of integral transform, Laplace Transform (L.T): definition, properties, L.T. of periodic function, multiplication and division with L.T., L.T. of error function, L.T. of Bessel function, Inverse Laplace Transform. Fourier transform (F.T.): Definition, properties, Parseval theorem for F.T., Modulation, Conjugate and Convolution Theorem, Derivative of F.T., Inverse Fourier transform, application of Fourier transform in solving differential equations. Applications in Geophysics

## **Unit-IV: Partial Differential Equations (P.D.E.)**

Solution by separation of variables of

(a) Wave equation: Transverse vibrations of a stretched string; Oscillations of a hanging chain, vibrations of rectangular and circular membrances, tidal waves in a canal.

(b) Laplace's equation: Laplace equation in Cartesian, Cylindrical and spherical coordinate systems, two dimensional steady flow of heat, General cylindrical and spherical harmonics.

(c) Diffusion equation: Variable linear heat flow, periodic heat flow in one dimension, two dimensional heat conduction.

## **RECOMMENDED BOOKS**

- (1) Applied Mathematics for Engineers and Physicists by L .Pipes & L.R. Horwell
- (2) Mathematical Methods for Physicists by G. Arfken
- (3) Mathematical Physics by B.S. Rajput
- (4)Elementary Applied Partial Differential Equations: With Fourier series and Boundary Value Problems by Richard Haberman
- (5) Integral Transforms by I. Sneddon
- (6) Elements of Partial Differential Equations by I. Sneddon

## **GP-102: Solid Earth Geophysics**

Credits: 4

Max. Marks: 60 Time: 3 hours

- **Objective:** To provide basic knowledge about the origin & evolution of the Earth, its internal & external dynamics and study of potential fields developed in the earth.
- **Output:** The course will develop concepts to analyze scientific and societal problems from a geoscientific perspective. The course provides a strong background in geoscience for further studies.

### **Special Notes:**

Nine questions will be set and students will attempt five questions. Question no. 1 will be compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answers should not be in yes/no. In addition to question no. 1, there will be four units in the question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

### UNIT-I

A brief history of the development of Earth Sciences and of Geophysics in particular, an overview of Geophysical methods and their essential features, Problems of inversion and non-uniqueness in Geophysics, Origin & evolution of Solar system, Earth and Moon structure, Kepler's law of planetary motion, A review of the Earth's structure and composition

### **UNIT-II**

Chemical composition of Earth, Rheological behaviour of crust and upper mantle, viscoelasticity and rock failure criteria, Geochronology: Radiometric dating and their advantages, meaning of radiometric ages, Major features of the Earth's gravitational field and relationship with tectonic processes in the crust and upper mantle, concept of isostasy, mathematical concept of Airy and Pratt hypotheses of isostasy.

### **UNIT-III**

Origin of geomagnetic field, polar wandering, secular variations and westward drift, reversals of geomagnetic field, sun spot, solar flares, geomagnetic storms, sea-floor spreading, Paleomagnetism and its uses, Thermal history of the Earth, sources of heat generation and temperature distribution inside the earth, convection in the mantle.

## UNIT-IV

Earthquake seismology, Earthquakes and its classifications, Global seismicity and tectonics, Earth's internal structure derived from seismology, Earthquake mechanism and Anderson's theory of faulting, Continental drift and plate tectonics: its historical perspective and essential features, present day plate motions, Triple junctions, oceanic ridges, Benioff zones, trenches and island arcs, hot spots, Mantle Plume, Mountain building, origin of Himalaya, Geodynamics of Indian subcontinent.

## **RECOMMENDED BOOKS:**

- (1) The Solid Earth by C.M.R. Fowler
- (2) Understanding the Earth by I.G. Guass, P.S. Smith and R.G.L. Wilson
- (3) The dynamic Earth by P.J. Wyllie
- (4) Introduction to Geophysics by B.F. Howell
- (5) Physics and Geology by J.J. Jacobs, R.D. Russel and J.T. Klilson
- (6) Fundamental of Geodynamics by A.E. Schieddeggar
- (7) Fundamentals of Geophysics by W. Lowrie

## **GP-103: NUMERICAL METHODS AND COMPUTER PROGRAMMING**

| Credits | : | 4 |
|---------|---|---|
|---------|---|---|

Max. Marks: 60 Time: 3 hours

**Objective:** To impart the knowledge about the basics and concepts of FORTRAN, C and C++, Learn how to build computer programs.

**Outcome:** The students are expected to get acquainted with the computer based problems and will be able to make computer codes to solve a problem.

## **Special Notes:**

(i) Nine questions will be set and students will attempt five questions. Question no. I will be compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answers should not be in yes/no. In addition to question no. I, there will be four units in the question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

## UNIT-I

Introduction- Computer organization, Functional Units, basic I/O devices and storage media, computer software, computer languages, Problem Solving Approaches: Notion of an algorithm, stepwise methodology of developing algorithm, flowchart and computer program, introduction to computer operating systems: DOS, WINDOWS, UNIX/LINUX, brief introduction about MATLAB.

## UNIT-II

Introduction to FORTRAN, constants, variables, data types, operations and intrinsic function, expression and assignments statements, Logical operators and Logical expressions, iterative statements, input/output statements, subroutine and functions, data sharing among subprograms/programs, Arrays, operations with files, programming examples to handle problems of numerical and statistical type.

## UNIT-III

Programming language C: constants, variables, data types, expressions, operators, conditional statements, iterative statements, array, function, simple programming examples.

C<sup>++</sup> An object oriented language: Concepts of class, object, constructors, destructors, operator overloading, inheritance, pointers, virtual functions, simple programming examples

## UNIT-IV

Numerical integration by Simpson's method, Trapezoidal method, Numerical differentiation, solution of algebraic equation, Netwon Raphson method, solution of simultaneous linear equations, Gauss method, Gauss-Jordon method, Gauss-Seidel method, matrix inversion, least square curve fitting, straight line and polynomial fits, solution of ordinary differential equations.

A brief introduction of Binomial, Poisson and normal distributions, concept of mathematical expectations

## **RECOMMENDED BOOKS**

- (1) Fundamentals of computers by V. Rajaraman
- (2) FORTRAN 77 and Numerical methods by C. Xavier
- (3) FORTRAN Programming and Numerical methods by R.C. Desai
- (4) Let us C by Yashwant Kanetkar
- (5) Object Oriented programming with C<sup>++</sup> by E. Balagurusamy
- (6) Advanced UNIX- A Programmers guide by Stephen Prata

## GP-104: BASIC GEOLOGY

Objective: To give a concise knowledge of mineralogy, petrology, processes on the surface of the earth, landforms and structural geology.

### Output: 1. Proficiency in geology

2. Can understand and apply basic principles of geology to understand Earth Science

# Credits : 4

## **Special Notes:**

(i) Nine questions will be set and students will attempt five questions. Question no. I will be compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answers should not be in yes/no. In addition to question no. I, there will be four units in the question paper each containing two questions belonging to

### **UNIT - I: INTRODUCTION**

Introduction to geology, scope, sub-disciplines and relationships with other branches of science, Geomorphological Processes: Exogenic processes (weathering, erosive and tectonic denudation), Geologic time and age of the Earth, Geological processes by river, wind, glacier and waves and tides. Orogeny, volcanism, earthquakes and land slides

### **UNIT – II: MINERALOGY**

Mineral - its definition and mode of occurrence, physical properties of minerals like form, colour, lustre, streak, cleavage, fracture, hardness and specific gravity, radioactivity, isotopes and ions, Physical characters and chemical composition of the rock forming minerals, mode of occurrence and economic uses of some important rock forming minerals.

### **UNIT – III: PETROLOGY**

Rock- its definition, classification and distinguishing characteristics of Igneous, Sedimentary and Metamorphic rocks. Igneous rocks: Magma and lava, extrusive and intrusive forms, textures; Classification and description of some common igneous rocks (Granite, Dolerite, Basalt, Rhyolite, Pegmatite). Sedimentary rocks: Sedimentation processes; Classification and description of some common sedimentary rocks (Conglomerate, Sandstone, Shale, Limestone). Metamorphic rocks: Processes of metamorphism, textures and structures of metamorphic rocks; Classification and description of some common metamorphic rocks (Slate, Schist, Gneiss, Quartzite, Marble). Indian distribution of major rock types.

### **UNIT - IV: STRUCTURAL GEOLOGY**

Primary and secondary structures of rock, Dip, strike, bearing and azimuth, Outcrops, outliers and inliers, Folds: definition and classification scheme, mechanism of folding, recognisation of folds in the field. Fault: definition and different terminology of fault, mechanism of faulting, recognisation of fault in the field, shear zone, lineament. Joints: definition, types of joint. Unconformity: concepts, types, recognisation and significance of unconformities. Clinometer compass and its use.

## **RECOMMENDED BOOKS:**

(1) Rutley's Elements of Mineralogy By H.H. Read

four units in the syllabus. Students will select one question from each unit.

- (2) Structural Geology by M.P. Billings
- (3) Principles of Physical Geology by A.H. Holmes
- (4) A Text Book of Geology by P.K. Mukherjee
- (5) The Principles of Petrology by G.W. Tyrrell
- (6) Manual of Field Geology by R.R Compton

Max. Marks: 60 Time: 3 hours

## **GP-105: GEOLOGY LAB**

Credits : 6

Max. Marks: 60 Time: 4 hours

<u>Objective:</u> 1. To develop practical knowledge of minerals, rocks, landforms,
 2.To know the use of toposheet, bruntone/clinometer in geology
 3. To construct cross section across of area of different geological and structural setting.

<u>Output:</u> The lab work will develop field knowledge to geological problems.

- 1. Continental scale land forms of India
- 2. Physical properties of important rock forming minerals
- 3. Megascopic study and identification of important igneous, sedimentary and metamorphic rocks
- 4. Study of Toposheets
- 5. Uses of bruntone/clinometer and measurement of dip and strike of beds
- 6. Study of geological map and construction of cross section of area comprising of horizontal, unconformable, inclined, folded and faulted rocks.

## **GP-106: COMPUTER LAB**

## Credits : 6

Max. Marks: 60 Time: 3 hours

Objective: To develop programming skiils. Outcome: The students will learn to make computer programs of various methods.

- (1) Exposure to computer operating system : DOS, WINDOWS, UNIX/LINUX
- (2) Simple exercises based on available computer softwares
- (3) Programming exercises on computational problems and their solution on computers. These include the following:
- (i) Matrix operations
- (ii) Matrix inversion
- (iii) Numerical integration
- (iv) Solution of simultaneous equations
- (v) Linear curve fitting
- (vi) Correlation coefficient, standard deviation etc.
- (vii) Numerical differentiation
- (viii) Solution of differential equation
- (ix) Solution of transcendental and algebraic equation using Newton Raphson method

## **GP-201: Remote Sensing and GIS**

## Credits : 4

Max. Marks: 60 Time: 3 hours

**Objective:** To impart the knowledge about the basic concepts of remote sensing & GIS, mainly the applications of remote sensing & GIS inground water assessment.

**Outcomes:** The students are expected to get knowledge about the different tools of remote sensing and GIS.

## **Special Notes:**

(i) Nine questions will be set and the students will attempt five questions. Question No.1 will be compulsory and based on the conceptual aspects of the whole syllabus. It can have five to ten parts. Answers should not be in yes/no. In addition to question No. 1, there will be four units in the question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

## Unit I

Definition, Principle and Physical basis of Remote Sensing, Electromagnetic (EM) Spectrum, Interaction of EM radiations with earth's surface and atmosphere, Atmospheric Windows, spectral signatures, remote sensing platforms, Concept of Photogrammetry, aerial photographs, types of aerial photographs, Information recorded on aerial photographs, stereoscopy, stereoscopic parallax, measurement of height difference, vertical exaggeration, elements of photo-interpretation, geotechnical elements, photo-characteristics of different rock types, photo-mosaic, image distortion and rectification.

## Unit II

Remote Sensing Sensors: active and passive sensors, Satellite Imagery: Imagery vis a vis aerial photograph, MSS, LISS, CCD, Infrared and thermal scanners, IRS, SPOT and LANDSAT satellite programmes, microwave remote sensing: RADAR, LIDAR etc, remote sensing data products, resolutions in remote sensing, multispectral, super-spectral and hyper-spectral remote sensing, fundamentals of image interpretations and analysis, visual interpretation of remote sensing data; colour composites, concept of digital image and pixels, image restoration, image enhancement and information extraction, supervised and unsupervised classification; accuracy assessment in remote sensing

## Unit III

Introduction to Geographical Information System (GIS), components of GIS, functions of GIS, data structures, Concept of raster and vector data, digitization, editing, attribute attachment etc, creation of thematic layers, Data Integration, vector to raster conversion and vice–versa. Introduction to Global Position System (GPS), various segments of GPS, Uses of GPS, GNSS.

## Unit IV

Applications of Remote Sensing and GIS: image interpretation for identification of different rock types, structures, lineaments and preparation of geological map; recognition of landforms and preparation of geomorphological map; drainage pattern and its significance; ground water prospects mapping, integrated ground water resources (IGWR) mapping, landslide hazard zonation, route alignment for road/ canal, Hydrocarbon and minerals exploration, Disaster management (flood and cyclones)

## **Recommended Books:**

- 1. Remote Sensing Geology (Springer Verlag). R.P. Gupta
- 2. Remote Sensing in Geology (John Wiley & sons). B.S. Siegel and A.R. Gillespie
- 3. Remote Sensing and image interpretation (John Wiley & sons). T.M. Lillesand and R.W. Kiefer
- 4. Remote Sensing Principles and interpretation (WH Freeman Company. F.F. Reeds
- 5. Remote Sensing fro Earth Resources (AEG publication), D.P. Rao
- 6. Principles of Remote sensing (ELBS London). P. J. Kuran
- 7. Advances in Geophysics Vol. 1 and 13 (Academic press) H.E. Landesberg
- 8. Handbook of Information issued by GSI (Airborne Mineral surveys and exploration wing), AEC (Atomic Minerals Divisions) and NGRI.
- 9. Principles of GIS, P. A. Burrough
- 10. Indian Society of GeomaticsNews letters 2004-2005
- 11. GPS: Theory and Practice (Springer Verlag). B. Hofman-wellenhof, H.lichtenegger and J.Collins

# GP-202 STRATIGRAPHY, HIMALAYAN, ECONOMIC AND PETROLEUM GEOLOGY

## Credits : 4

Max. Marks: 60 Time: 3 hours

Objective: To give a concise knowledge of stratigraphy, economic geology and fuel geology.

Output: 1. Proficiency in geology

2. Can understand and apply basic principles of geology to understand Earth Science

## **Special Notes:**

(i) Nine questions will be set and students will attempt five questions. Question no. I will be compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answers should not be in yes/no. In addition to question no. I, there will be four units in the question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

**Unit-1 Stratigraphy:** Principles of stratigraphy, elements of stratigraphic classification, physical and structural sub-disciplines of Indian subcontinent and their characteristics, An outline of the geology of India with respect to distribution, classification, lithology and economic importance of the following: Archean, Dharwar, Cuddapah, Vindhyan, Gondawana.

**Unit-2: Himalayan Tectonics and Exhumation:** Tectonic divisions of the Himalaya and its evolution based on plate tectonics, Topographic growth: uplift, Isostasy and flexure, Tectonic-climate interactions, Principle and application of thermochronology to orogenic belt, Mountain belt exhumation with special reference to the Himalaya.

**Unit-3. Economic Geology:** Definition of ore, Ore and gangue mineral, Classification of ore deposits, Elementary ideas of the following processes of formation of ore deposits: Magmatic concentration, Pegmatitic, Sedimentation, Evaporation, Residual concentration, Mechanical concentration and Metamorphism, Chemical composition, Diagnostic characters, Occurrences, Uses and Distribution in India of important metallic and non-metallic mineral deposits.

## **Unit-4 Petroleum Geology**

Petroleum; Origin of petroleum; Sedimentary environments and facies; The sources; Migration; The reservoir rocks; Traps and Seals; Classfication of Indian basins and petroleum geology of Assam, Krishna-Godavari, Cambay and Bombay offshore basins. <u>Unconventional Source</u> of energy: Shale gas; Coal Bed Methane; Gas hydrates.

Suggested Books

- 1. Economic Geology: Bateman
- 2. India's Mineral Resources: Krishna Swami
- 3. Introduction to India's Economic Minerals
- 4. Geology of India and Burma: Krishnan
- 5. Geology of India: Wadia
- 6. Geology of Petroleum: Leverson, A.I.
- 7. Petroleum Geology: Chapman, R.E.
- 8. Aspects of Tectonics: K.S. Valdiya
- 9. Dynamic Himalaya: K.S. Valdiya

## **GP-203: Geophysical Signal Processing**

## Credits : 4

Max. Marks 60 Time 3 Hrs

**Objective:** To impart the knowledge about the various tools used the processing of geophysical data. **Output:** The students are expected to get acquainted with the tools of signal processing used for geo exploration.

## **Special Notes:**

(i) Nine questions will be set and students will attempt five questions. Question No.1 is compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answer should not be in yes and no. In addition to Question 1, there will be four unit question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

## **UNIT I: Signal and System**

Signals: Various special signal and classification of signals, orthogonal function, band limited signals, sampling theorem, aliasing effect of sampling on reconstruction of continuous signal from their samples, extrapolation of band limited signals

Systems: Classification of Systems, Linear time invariant causal and stable system with continuous and discrete input, minimum phase signals, Hilbert transform

## **UNIT II: Discrete Transform**

Z transform, properties of Z transform, and the region of convergence, Z transform of causal and non causal sequence, inverse Z transform, Transfer function, Solutions of difference equation using Z-transform, Relation between S-plane and Z-plane

Review of Fourier Transform, Introduction to wavelet transform and Walsh transform and their application in geophysics

Discrete Fourier transform (DFT), relation between DFT and Z transform, Fast Fourier Transform (FFT), Decimation in time(DIT) and Decimation in frequency (DIF) algorithms, applications of FFT in geophysics, deconvolution, circular convolution, Importance of Windowing, Commonly used windows, cepstral analysis

## **UNIT III: Time series analysis**

Introduction of stochastic process, autocorrelation and cross correlation, Stationarity, Wide sense stationarity, ergodicity, power spectral density function, Wiener Khinchine theorem, White Gaussian Noise, Wiener Filtering, Matched Filtering

## **UNIT IV: Filters and System Realization**

Recursive and non-resursive filters, ideal and realizable low pass, band pass and high pass filters, Gibbs phenomenon, IIR filters: design if IIR filter by Bilinear transformation method, Design of Butterworth filters, Characteristics of Chebyshev and elliptic filters, Design of FIR filters using windows. direct and canonical realization scheme, Cascade and paraellel realization scheme.

## **Reccomended Books**

- 1. Signal and Systems, M.L. Meade and C.R.Dillon, Chapman and Hall London
- 2. Digital Signal Processing, 1975, Oppenheim, A.V. and R.W. Schafer, Prentice Hall, Englewood Cliffs, New Jersey
- 3. An Introduction to Statistical Communication Theory, J. B. Thomas, John Wiley, New York
- 4. Spectral Analysis in Geophysics, 1974, Markus Bath, Elsevier, Amsterdam
- 5. Signal Analysis, 1977, A. Popoulis, McGraw Hill New York

- 6. The Fourier Integral and its applications, A. Popoullis, , McGraw Hill New York
- 7. Time Sequence Analysis in Geophysics, 1975, E.R. Kanscwich
- 8. Digital Signal Processing, A Anand Kumar PHI Learning, New Delhi

# **GP-204:** Geophysical Fields and Waves

#### Credits : 4

Max. Marks 60 Time 3 Hrs

**Objective:** To teach the various laws related to different geophysical fields and to impart the basic knowledge of wave theory and oceanography.

**Outcome:** The students are expected to learn about different geophysical fields, wave theory and basics of oceanography.

#### Special Notes:

Nine questions will be set and students will attempt five questions. Question No.1 is compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answer should not be in yes and no. In addition to Question 1, there will be four unit question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

#### **UNIT – I: Potential Field Theory:**

Introduction to Geophysical fields; Inverse square law of field: Gravity, Magnetostatic and electrostatic, Green's theorem and Green's functions, Potential due to an arbitrary source distribution, continuation of potential fields, Dirichlet and Neumann problems.

#### **UNIT-II: Thermal Conduction in Earth**

Heat conduction equation; effect of advection; time scale of conductive heat flow;calculation of simple geotherms in continents; Geological applications of heat conduction in semi-infinite half space: (i) penetration of external heat into the earth due to periodic variation of surface temperature, (ii) instantaneous heating or cooling of semi-infinite half space and its application to cooling of oceanic lithosphere and (iii) thermal and subsidence history of sedimentary basins, Age of Earth on the basis of cooling.

#### **UNIT-III: Wave Theory**

Introductory remarks about seismic and electromagnetic waves, Elastic Waves: Analysis of stress and strain, properties of equilibrium and motion in terms of stresses/displacements for infinite simal and finite deformation, Generlised Hook's Law, Isotropy, Aelotropy and Anelasticity.

Electromagnetic Waves: Maxwell's equations, constitutive relations, Plane electromagnetic waves in dielectric and conductor.

Kirchoff's integral theorem and Kirchoff's solution of diffraction at a slit.

#### **UNIT-IV: Oceanography**

Tidal Waves, driven tidal waves, seiches, geostrophic effect on tidal waves, internal tidal waves, surface waves, permanent waves, waves due to local disturbances, equilibrium theory of tides, dynamic theory of tides.

#### **Books Reccomended**

- (1) Geodynamics applications of continuum Physics to geological problems : Turcotte & Schubert
- (2) Interpretation theory in Applied Geophysics: F.S. Grant & G.F. West
- (3) Electromagnetic theory: J. Stratton
- (4) Heat conduction: I.R. Ingersoll
- (5) Solid Earth: C.F. Fowler
- (6) Fundamentals of Geophysics: W. Lowrie
- (7) Introduction to theoretical Geophysics: C.B. Officer

# **GP-205:** Geophysical Lab-I

#### Credits : 6

Max. Marks: 60 Time: 3 hours

#### Section – A

<u>Objective:</u> To develop practical knowledge of ores, oil reserve of India and structure contour map. To impart the practical knowledge about use of satellite image, digital image processing, preparation of different types of maps including land cover map, hydrogeomorphology map etc.

Output: The lab work will develop field knowledge about the different types of maps.

- 1. Study of rocks from different stratigraphic horizons of peninsular India
- 2. Study of rocks of different tectonic divisions of the Himalaya
- 3. Exercise based upon thermochronological data
- 4. Megascopic study of major ore minerals
- 5. Calculation of Oil reserves
- 6. Study of Geological maps and sections of important oil fields of India
- 7. Exercises on structure contour map

### Section – B

- 1. Preparation of base maps
- 2. Use of satellite image for identification of linear features.
- 3. Preparation of land use land cover map
- 4. Preparation of drainage map
- 5. Preparation of Geomorphology map
- 6. Preparation Hydrogeomorphology map
- 7. Simple exercises on digital image processing

# **GP-206:** Geophysical Lab-II

### Credits : 6

Max. Marks: 60 Time: 3 hours

Objective: To give practical exposure to the students about the various tools of digital signal processing. Output : The students are expected to get acquainted with the practical applications of tools of DSP used in the interpretation of geophysical data.

Exercises based on

- (i) Convolution model in the time & frequency domain
- (ii) Computation of FFT
- (iii) Autocorrelation & Cross correlation
- (iv) Inverse filtering
- (v) Deconvolution using Z-transform
- (vi) Predictive Deconvolution filter
- (vii) Exposure to basic signal processing softwares like PITSA & MATLAB

# **GP-301:** Seismology

### Credits : 4

Max. Marks 60 Time 3 Hrs

Objective: To impart the knowledge about the basic components of seismology including wave propagation, earthquake source process, source parameters, seismic zoning etc. Output: The students are expected to get the knowledge of different aspects of seismology.

### **Special Notes:**

(i) Nine questions will be set and students will attempt five questions. Question No.1 is compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answer should not be in yes and no. In addition to Question 1, there will be four unit question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

### **UNIT - I: SEISMIC WAVE PROPAGATION**

Review of basic concepts and relations in elasticity theory, Hook's Law, reflection and transmission of elastic waves at a plane boundary, plane waves, laws of simple reflection and refraction, head waves, total internal reflection, spherical waves, surface and interface waves, Rayleigh waves, Stoneley waves, love waves, dispersion curves, Free oscillations of the earth, toroidal and spheroidal oscillations, normal modes of a homogeneous sphere.

# **UNIT – II: EARTH STRUCTURE AND LOCATION**

Travel time table: the ray parameter and seismic rays, time distance curves for local and teleseismic events, Inversion of travel times for earth's structure, the method of Herglotz and Wichert, Preliminary location of earthquakes, refining the locations, review of various types of field observations, salient features of seismograms with description of different seismic phases.

### **UNIT-III: EARTHQUAKE SOURCE PROCESS**

Uniqueness and reciprocal theorems, Green's tensor for a uniform medium, mathematical models of earthquake source, radiation pattern for P & S waves from a shear fault, the fault plane solutions.

# UNIT - IV: EARTHQUAKE PARAMETERS AND SEISMIC ZONING

Earthquake parameters: Intensity and magnitude scales, seismic moment, relation between parameters, scaling laws, seismic zoning, seismicity, induced seismicity, earthquake prediction, discrimination between earthquakes and explosions. Earthquake Early Warning System.

- (1) Elementary Seismology: C.F. Richter
- (2) Introduction to theory of seismology : K.E. Bullen
- (3) Seismology and Plate Tectonics: David Gubbins
- (4) Seismic waves and Sources: A. Ben-Menham & S.J. Singh
- (5) Modern Global Seismology: Lay & Wallace
- (6) Seismology: Shearer

# **GP-302:** Gravity & Magnetic Prospecting

Credits : 4

Max. Marks: 60 Time: 3 hours

**Objective**: To impart the knowledge about the basic concepts of gravity & magnetic, instruments used, importance and applications of gravity and magnetic methods in geophysical exploration.

**Outcome:** The students are expected to get acquainted with the tools of gravity and magnetic including instruments used for geo exploration

### **Special Notes:**

(i) Nine questions will be set and students will attempt five questions. Question no. I will be compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answers should not be in yes/no. In addition to question no. I, there will be four units in the question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

#### **Unit – I: Basic Principles**

Principles of Gravity and Magnetic methods, concept of Geoid, Spheriod, a review of magnetic field of the Earth, relation between gravity and magnetic potential, variation of gravity with elevation and depth, determination of density, isostasy and gravity, Magnetization of rocks-Dia, Para- and Ferromagnetism, Magnetic susceptibility of rocks and their ranges, Artificial versus natural source Methods.

#### **Unit-II : Instrumentation**

Gravity Prospecting Instruments: Absolute versus Relative measurements of Gravity, Pendulum apparatus, stable and unstable gravimeters, calibration of gravimeters, LaCoste-Romberg gravimeter, Worden gravimeter.

Magnetic Prospecting Instruments: Fluxgate magnetometers, Proton precession magnetometers, optical pumping instruments, Schmidt's horizontal and vertical magnetometrs.

### **UNIT-III: Gravity and Magnetic Surveys:**

Gravity survey on land: setting up of a base station, tide and drift corrections, the reduction of gravity data: the latitude adjustment, the elevation adjustment, the excess mass adjustment, terrain correction, Gravity anomalies, Plan of conducting ground magnetic surveys, corrections applied to magnetic data, Airborne magnetic surveys and magnetic gradient surveys.

### **UNIT-IV: Interpretation**

Separation of residual and regional anomalies: Graphical method, direct computation, second derivative method, polynomial fitting method, depth rules, gravitational and magnetic attraction of structures with various simple shapes, estimation of anomalous mass, ambiguity in gravity interpretation, model analysis, step model, ribbon model, Applications of gravity and magnetic methods in oil and mineral exploration.

- (1) Basic Exploration Geophysics: Robinson
- (2) Applied Geophysics: Telford et al.
- (3) Introduction to Geophysical Prospecting: Dobrin & Saviet
- (4) Geophysical prospecting for oil: Nettleton
- (5) Introduction to Geophysical Exploration: Keary & Brooks
- (6) Gravity and Magnetic methods of prospecting: B.S. Rama Rao & IVR Murthy

### **GP-303:** Groundwater Geophysics

# Credits : 4

#### Max. Marks: 60 Time: 3 hours

**Objective:** is to understand the origin, occurrence, monitoring of ground water. Mainly the rocks associated with ground water, the groundwater exploration, watershed management and management of ground water in respect to domestic, irrigation and industrial use.

**Outcome:** The students are expected to get acquainted with the groundwater terminology and management of groundwater.

# **Special notes:**

Nine questions will be set and the students will attempt five questions. Question No.1 will be compulsory and based on the conceptual aspects of the whole syllabus. It can have five to ten parts. Answers should not be in yes/no. In addition to question No. 1, there will be four units in the question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

### Unit I

Concept of geohydrology and hydrogeophysics, hydrology in relation to other sciences, hydrosphere, hydrologic cycle, surface and subsurface distribution of water, origin of ground water, springs, hydrometeorology, precipitation, evaporation, evapotranspiration, seepage, infiltration and runoff and methods of measurement

### Unit II

Hydrological properties of water bearing materials: porosity, void ratio, permeability, transmissivity, storativity, specific yield, specific retention, diffusivity, field and laboratory method for determining permeability, movement of ground water and aquifer performance tests, Darcy's Law and its range of validity, theory of groundwater flow under steady and unsteady conditions, determination of transmissivity and storativity by discharge methods.

### Unit III

Mode of occurrence of ground water, classification of rocks with respect to their water bearing characteristics, aquifers, Aquiclude, aquitards, classification of aquifers, remote sensing studies for water resources evaluation. groundwater exploration and management, water balance studies, hydrograph analysis, conjunctive and consumptive use of ground water, water well drilling, development of wells, concept of artificial recharge, Watershed characterization and management,

### Unit IV

Monitoring the health of groundwater reservoir, Use of IP for groundwater contamination, Groundwater exploration: surface geological and geophysical methods of exploration and subsurface geophysical methods; Hydro-geochemistry: Physical and Chemical characteristics of groundwater, classification of groundwater in respect to domestic, irrigation and industrial use, pollution of groundwater.

- 1. Groundwater hydrology (John Wiley and Sons), David K. Todd
- 2. Principles of Hydrology, Ward
- 3. Handbook of Applied Hydrology, V.T. Chow
- 4. Introduction to groundwater Hydrology, Heath & Trainer
- 5. Hydrology. O. Meinzer
- 6. Hydrogeology (John Wiley and Sons). Davis, S.N., Dewiest, J.R.N.
- 7. Groundwater (Tata McGraw Hill), Tolman, C.F.
- 8. Groundwater (Wiley Eastern Ltd.) H.M. Raghunath
- 9. Basic Exploration Geophysics. Robinson
- 10. Hydrogeophysics (Kluwer Publishers), Y.Rubin and S. Hubbard
- 11. Karanth: Development, Assessment and Management of Water Resources

# **GP 304: Electrical Prospecting**

### Credits : 4

Max. Marks: 60 Time: 3 hours

**Objective:** is to teach the various electrical method and basic of acquisition processing and interpretation electrical D.C. resistivity methods.

**Outcome:** The students are expected to learn the various electrical methods.

### **Special Notes:**

Nine questions will be set and students will attempt five questions. Question No.1 is compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answer should not be in yes and no. In addition to Question 1, there will be four unit question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

### **Unit I Introduction to electrical methods**

A rapid review of the method and techniques of electrical prospecting and their classifications. Electrical properties of rocks, electrical properties of rock and their measurement, anisotrophy and its effect on electrical fields. The geoelectric section and geological section. Basic concept on natural electric field.

### **Unit II Induced Polarization and Self Potential method**

Electrode configuration, the choice of method and choice of site measurement, presentation of measured data.

S.P. Method: Origin of self potential, theoretical and experimental basis of S.P. method, field of polarized conducter, sphere and cylinder, determination of ore body parameter, downward continuation of S.P. data I.P method: Sources of I.P, Membrane and electrode potential, time domain and frequency domain measurement of IP, chargeability, percent frequency effect and metal factor, dipole theory of I.P., transformation of time domain to frequency domain data

### **Unit III Resistivity Methods**

D.C. resistivity method, fundamental laws, the potential distribution at the surface of horizontally stratified earth, Stefanescu's expression: Kernel function and its relation to subsurface parameters, Flathe and Pekeris recurrence relation: principle of equivalence, principle of superposition and principle of suppression. Apparent resistivity function, computation of apparent resistivity model curves, vertical electrical sounding

Resistivity Transform, Method of determination of resistivity transform, Asymptotic method, Complete curve matching, auxillary point method, equivalent curve matching using maxima and minima, Dar Zurruck curve, Direct interpretation method, application of linear filter theory for resistivity interpretation.

# Unit IV: Interpretation of Electrical resistivity Data

Apparent resistivity function, computation of apparent resistivity model curves, vertical electrical sounding and horizontal profiling techniques, Interpretation of resistivity sounding data, Asymptotic method, Complete curve matching, auxillary point method, equivalent curve matching using maxima and minima, Dar Zurruck curve, Direct interpretation method, electrical profiling near a vertical contact, dyke, sphere, application of linear filter theory for resistivity interpretation.

- 1. Electrical method of geophysical prospecting: Keller, G.V. and Frish Knecht,
- 2. Geosounding principles: Koefoed, O.
- 3. The application of Kernel functions in neterpretating geoelectrical measurements, Geoexploration monograph series no. 2Gebruder, Brorntraegr, Berlin : Koefoed, O.
- 4. Direct current geoelectric sounding: Bhattacharya, B.K. and Patra, H.P.
- 5. Principles of direct current prospecting Gebruder: Kunetz, G.
- 6. Interpretation theory in applied geophysics, Mg Graw Hill Co. N.York
- 7. Kaufman and Keller, The Magnetic Sounding Methods: Grant, F.S. and West, G.B.,
- 8. Geoelectromagnetism: Wait, J.R.,
- 9. Time varying geoelectric sounding: Patra and Mallick, K.

# **GP-305: Geophysical Lab-III**

| Max. Marks: 60 |
|----------------|
| Time: 3 hours  |

Objective: To impart the practical knowledge about the seismological problems including location of earthquake, fault plane solutions, estimation of earthquake magnitude, b-value, preparation of intensity maps etc.

Output: The students will get the practical exposure and learn to handle the seismological data.

- 1. Exposure to earthquake instruments available in the department
- 2. Identification of seismic phases on seismograms
- 3. Location of epicenters

Credits: 6

- 4. Fault plane Solutions
- 5. Frequency magnitude analysis of earthquake data
- 6. Estimation of decay constant (p-value) from aftershocks data
- 7. Estimation of b-value from earthquake data.
- 8. Estimation of source parameters of earthquakes.
- 9. Estimation of magnitudes of earthquake
- 10. Estimation of Poisson probability for earthquake occurrences
- 11. Draw isoseismal lines and prepare intensity map from given data.
- 12. Exposure to seismological soft wares like PITSA, SEISAN etc.

### **GP-306: Geophysical Lab-IV**

### Credits : 6

Max. Marks: 60 Time: 3 hours

Objective: To impart the practical knowledge about the geophysical problems based on Gravity, Magnetic and electrical methods.

Output: The students will learn about the acquisition, processing and interpretation of gravity, magnetic and electrical data.

- 1. Exposure to the electrical, magnetic and gravity instruments available in the department
- 2. Interpretation of VES data using partial curve matching, computer programs and filtering techniques
- 3. Preparing electrical sections and correlation with lithological logs
- 4. Reduction of gravity data, Applications of drift correction, Free air correction, Bouguer correction.
- 5. Calculation of Free Air Anomalies & Bouguer anomalies and their interpretation
- 6. Estimation of Bouguer density using Nettleton mrthod
- 7. Calculation of Gravity and Magnetic effects due to simple shapes bodies.
- 8. Reduction of magnetic data
- 9. Interpretation of magnetic data using various techniques

#### **GP-401: PETROPHYSICS AND WELL LOGGING**

#### Credits: 4

Max. Marks: 60 Time: 3 hours

- **Objectives:** The main objective of this course is acquiring information on physical properties of rocks that are exposed during drilling of an oil well. The key purpose of well logging is to obtain petrophysical properties of reservoirs such as Porosity, Permeability, hydrocarbon saturation etc., for hydrocarbon exploration.
- **Outputs:** The course will enhance the knowledge of students in petrophysics and interpretation of well logging data. It will help to build carrier in academics industries.

#### **Special Notes:**

Nine questions will be set and students will attempt five questions. Question No.1 is compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answer should not be in yes and no. In addition to Question 1, there will be four unit question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

#### **UNIT-I: Basics of Petrophysics and Formation Evaluation**

Well logging - objectives and its place in geoexploration Formation evaluation: Hydrocarbon volume calculation; Porosity: controls on porosity, porosity determination from core; Permeability: controls on permeability and ranges, determination of permeability, permeability porosity relationship; Coring: Preservation and Handling; Electrical properties of rocks: Formation resistivity factor (FR); correlations of FR with porosity, cementation, water saturation and permeability. Wire-line logging: representation of log, tools characteristics; borehole environment, invasion and drilling mud

#### UNIT-II: Spontaneous Potential (SP) and Natural Gamma Ray Logs

Introduction about SP logging, Principle, measurement tool, log presentation, factors affecting amplitude of SP, calculation of shale volume and other uses Fundamentals of radioactivity, scattering and attenuation, Gamma ray logging: principle, tool calibration, log representation, depth of investigation, bed resolution, calculation of shale volume, lithology identification and other uses

#### **UNIT-III: Porosity Logs**

Acoustic Log: Principles; acoustic logging tools; log representation, depth of investigation and vertical resolution, logging problems, uses of acoustic logging, Formation Density Log: principle; measurement tools and operation; calibration of tool, log characteristics- depth of investigation and bed resolution; uses of formation density logging; Neutron Log: Theory: neutron emission, scattering and absorption, Hydrogen Index, neutron logging tools, Log representation, Calibration, depth of investigation and vertical resolution; Uses of Neutron logging

#### **UNIT-IV: Electrical Resistivity Logs and other logs**

Concept of resistivity, resistivity of rocks, variation of formation fluid resistivity with temperature, Archie's first and second law, Hingle and Pickett plots, Saturation of Moveable Hydrocarbons. Resistivity logging: response of tool, resistivity tools: old and modern, spherically focused log, micro-resistivity logs, proximity log, induction log, depth of investigation and bed resolution, log representation, uses of resistivity log Nuclear Magnetic Resonance (NMR) Logging: background, need of NMR logging, log representation and interpretation; Caliper logging, temperature logging, dipmeter logging, LWD

- 1. Standard Methods of Geophysical Formation Evaluation: James K. Hallenburg
- 2. Practical Formation Evaluation: Robert C. Ransom
- 3. The geological Interpretation of Well Logs : Malcolm Rider
- 4. Well Logging for Earth Scientists: Darwin V. Ellis

5. Petrophysics- Theory and Practice of Measuring Reservoir Rock and fluid Transport Properties: Djebbar Tiab and Erle C. Donaldson

### **GP-402** Physical Oceanography and Marine Geophysics

### Credits: 4

Max. Marks: 60 Time: 3 hours

**Objective:** To impart the knowledge about the basic concept of physical and dynamical oceanography and different terminology related to marine geophysics.

**Outcome:** The students are expected to get knowledge of different terminology related to oceanography and marine geophysics.

#### **Special Notes:**

Nine questions will be set and students will attempt five questions. Question No.1 is compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answer should not be in yes and no. In addition to Question 1, there will be four unit question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit

#### **Unit I Physical Oceanography**

Physical properties of seawater and methods of determination, distribution of salinity in the oceans, factors affecting salinity, water masses and water type, TS Diagram, Circulation of currents in major ocean waves. Tides: Dynamical and equilibrium theory of tides. Marine pollution, steps to control marine pollution, Laws of seas, Coastal zone management

#### **Unit II Dynamical Oceanography**

Equation of motion in a rotating and translating coordinate system, Coriollis force term and other terms, Nonlinear term in equation of motion, Brunt Viasala frequency, Geopotential surface and isobaric surface, wind driven ocean circulation, Ekman Solution, Sverdrup's Solution, Vorticity.

#### **Unit III Marine exploration**

Resource potential for offshore areas, Geophysical continental margins, type of continental margins, geophysical evidences for evolution of Atlantic type continental margins, Characteristic geophysical signatures for transitional crust, isostatic 2D gravity anomalies, sea floor magnetic anomalies and their interpretation.

#### Unit IV

Geophysical studies for active continental margins, Seismicity, volcanism, heat flow studies, seismic surveys along island arc-trench areas, seismic expression for subduction and crustal deformation, paired gravity anomalies over island arc trench areas and their interpretation. Geophysical exploration for continental Margins of India and Andman shelves, brief review on the hydrocarbon exploration for the Indian continental margin.

- 1. The Earth, Tarbuck and Lutgens
- 2. Descriptive Physical oceanography, Pickard Lmerv
- 3. Estuaries- Introduction, Dyer
- 4. Oceanography, Ross
- 5. Dynamical Ocenography, Pond and Pickard

6. The Sea, Hill

- 7. Nettleton, Gravity and Magnetics in Oil prospecting
- 8. McQuillin and Ardus, Exploring the geology of shelf area

# **GP-403: SEISMIC PROSPECTING**

### Credits : 4

Max. Marks:60 Time: 3 hours

Objective: To impart the knowledge about the fundamentals, data acquisition, data processing and data interpretation of seismic prospecting method.

Output: The students will learn about the different aspects of seismic method.

### **Special Notes:**

Nine questions will be set and students will attempt five questions. Question No.1 is compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answer should not be in yes and no. In addition to Question 1, there will be four unit question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit

# **UNIT-I: FUNDAMENTAL OF PROSPECTING**

Motivation for Seismic Prospecting, Oil Exploration, Mining and Engineering Application, Principles and Physical Basis of Seismic prospecting: Types of Elastic Waves, Reflection, Refraction and Transmission Coefficients, Expression for wave velocities, Factors affecting wave velocities in Rocks.

### **UNIT-II: DATA ACQUISITION**

Seismic Sources: Explosive and Non-Explosive Sources, Seismic Refraction Method: Travel Time Equation for Simple one layer case and for variable velocity case. Expressions for dipping layer and faulted bed cases. Gardener delay time method. Hidden layer problems. Field techniques for refraction survey, fan shooting.

Seismic Reflection Method: The travel time equations for horizontally layered medium, Expression for dipping interfaces, Field techniques for reflection survey: Split Spread, End on Spread, Broad side configurations. 2D/3D configurations, Common depth point technique, Presentation formats for Seismograms, Selection of field survey parameters.

# UNIT-III: SEISMIC DATA PROCESSING

Data processing sequence, Static and Dynamic Correction, weathering and datum corrections, CDP stacking, Migration and depth section preparation.

Velocity depth determination: Velocity-depth relation for measurements in boreholes, velocity depth relation from surface observations, the T  $^2$ -X<sup>2</sup> method, the T- $\Delta$ T method, the hyperbola method. Noise Elimination method: The structure of noise and its classification using frequency and spatial filters(arrays), Multiples identification, Suppression of multiples, VSP.

# UNIT-IV: SEISMIC DATA INTERPRETATION

Mapping of Hydrocarbon bearing and water bearing structures, geological interpretation, Structural and Stratigraphic traps, direct detection of hydrocarbons, pattern recognition, Seismic attribute analysis.

- 1. Dobrin, M.B Introduction to Geophysical Prospecting
- 2. W.M.Telford et al Applied eophysics
- 3. Keary and Brooks Introduction to Geophysical Exploration
- 4. Waters, R.H.. Reflection Seismology
- 5. Robinson Basic Exploration Geophysics

| 6. Sheriff, R.E | Seismic Stratigraphy                       |
|-----------------|--------------------------------------------|
| 7. Nelson, H.R  | New technologies in Exploration Geophysics |
| 8. Lavergne, M. | Seismic Methods                            |
| -               | CP 101. Coonducted Inversion               |

#### **GP-404:** Geophysical Inversion

#### Credits : 4

Max. Marks: 60 Time: 3 hours

# **Special Notes:**

(i) Nine questions will be set and students will attempt five questions. Question no. I will be compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answers should not be in yes/no. In addition to question no. I, there will be four units in the question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

### Unit-I:

Forward problems versus Inverse problems, continuous inverse problem, discrete inverse problem, formulation of inverse problems and their reduction to a matrix problem, linear inverse problems, classification of inverse problems, L1 norm inversion, least squares solution and minimum norm solution, concept of norms, concept of 'a priori' information, constrained linear least squares inversion, review of matrix theory.

### Unit-II

Introduction to finite difference method, forward, backward and central difference method, Application of finite difference method for solving Helmholtz equation.

Introduction to finite element method, various steps, simple examples showing application of finite element method.

# Unit-III

Model and Data spaces, householder transformation, data resolution matrix, model resolution matrix, checkerboard resolution test, eigen values and eigen vectors, singular value decomposition (SVD), generalised inverses, Non-linear inverse problems, Gauss Newton method, steepest descent (gradient) method, Marquardt-Levenberg method, Earthquake location problem, tomography problem.

### Unit-IV

Probabilistic approach of inverse problems, maximum likelihood and stochastic inverse methods, Backus-Gilbert method, Global optimization techniques: genetic algorithm, simulated annealing methods, neighbourhood algorithm, examples of inverting geophysical data.

- (1) Geophysical data analysis: Discrete inverse theory: William Menke
- (2) Deconvolution & Inversion: V.P. Dimri
- (3) Geophysical Data analysis: Understanding Inverse problem theory & Practice: Max A. Meju
- (4) Time series analysis and inverse theory for Geophysicists: David Gubbins
- (5) Inverse problem theory methods for data fitting and model parameter estimation : I. Tarantola

# **GP-405: Geophysical Lab-V**

### Credits : 6

Max. Marks: 60 Time: 3 hours

Objective: To impart the practical knowledge about the various techniques used in the seismic method. Output: The students will get the exposure to the processing and interpretation techniques of seismic method.

- 1. Seismic Survey using engineering seismograph
- 2. Two layer and three layer problems of seismic refraction method for horizontal and dipping interface
- 3. Identification of faults on seismic refraction data
- 4. Static and Dynamic corrections to seismic data
- 5. NMO stretching effect
- 6. Interpretation of reflection data using  $T^2 X^2$  method, T- $\Delta T$  method etc.
- 7. Estimation of different types of velocities in Seismic method
- 8. Exposure to seismic data processing

# **GP-406: Geophysical Lab-VI**

### Credits : 6

Max. Marks: 60 Time: 3 hours

Objective: To impart the practical knowledge about the different tools to invert the geophysical data.

Output: The students will learn applying the inversion tools to geophysical data.

Exercises based on:

- (1) Eigen values and Eigen vectors
- (2) Formulation & Solution of inverse problems
- (3) Linear estimation of parameters
- (4) Constrained and Unconstrained least square inversion
- (5) SVD analysis
- (6) Different techniques of Geophysical Inversion

### **GP-501:** Near Surface Geophysics

Credits : 4

Max. Marks: 60 Time: 3 hours

Objective: To impart the knowledge about the near surface applications of geophysical methods alongwith the GPR and GIS applications.

Outcome: The students will get acquainted with the geophysical techniques including GPR and GIS applications for near surface studies.

### **Special Notes:**

(i) Nine questions will be set and students will attempt five questions. Question no. I will be compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answers should not be in yes/no. In addition to question no. I, there will be four units in the question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

#### **Unit-I: Introduction**

Man and Environment, Near Surface Geophysics: Introduction, Practitioners and Users, Traditional and Emerging views of Near Surface- Geophysics, Concepts and Fundamentals, Special Challenges associated with near Surface Geophysics. Rock Physics Principles for Near-Surface Geophysics: Description of the Geological Material, Conditions in the Near Surface of the Earth, Density, Electrical Properties, Elastic Wave Velocities.

### **Unit-II: Geophysical Techniques in Near Surface studies**

Review of Seismic, Gravity, Magnetic and Electrical methods, Applications of these methods to Environmental and Engineering studies: Delineation of structural trends, contacts and faults, microgragravity detection of subsurface voids and cavities, detection of Archaeological objects, Mapping of fracture zones, reflection profiling in ground water studies, dam site investigations, evaluation of acquifer potentional, Investigation of waste dump sites.

### **Unit-III: Ground-Penetrating Radar**

Introduction, Electromagnetic Theory, Physical properties, EM wave properties, GPR Instrumentation, Modeling of GPR Responses, Survey Design, Data processing, Interpretation, Case Studies and Pit falls.

### **Unit-IV:GIS Applications in Near surface Geophysics**

Concept of Digital Image in Remote Sensing, Image preprocessing, rectification, enhancements and analysis, Digital Image processing procedures, Band ratioing and NDVI, GIS applications in integrated ground water resources mapping, site suitability studies and utilities management, GIS applications for engineering, environmental problems, landfill sites and solid waste management,

- 1.Near-Surface Geophysics Edited by Dwain K. Butler
- 2. Applied Geophysics by W. M. Telford et al.
- 3. Experiments in Engineering Geology by KVGK Gokhale and D M Rao
- 4. Geotechnical and Environmental Geophysics Edited by Stanley H.Ward
- 5. Environmental and Engineering Geophysics, P.V.Sharma

# **GP-502: Electromagnetic and Magnetotelluric Methods**

Credits : 4

Max. Marks: 60 Time: 3 hours

**Objective:** To impart the knowledge about the basic concepts of acquisition, processing and interpretation of different electromagnetic methods.

**Outcomes:** The students are expected to learn various electromagnetic methods.

### **Special Notes:**

Nine questions will be set and students will attempt five questions in all. Question No.1 is compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answer should not be in yes and no. In addition to Question 1, there will be four unit question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

# Unit-I

**EM Principle:** Maxwell's equations, electromagnetic potential and wave equations, attenuation of EM field, depth of penetration, dip and tilt angles, electromagnetic field due to straight wire, rectangular and circular loops, elliptical polarizations, amplitude and phase relations, real and imaginary (quadrature) components.

Transient electromagnetic methods (TEM), transient emf and magnetic field behaviour due to various conductors; current density in half space by rectangular loop with time, toroidal and poloidal induction in a conductive zone, various time domain systems frequency sounding and geometric sounding, advantage of time domain methods over frequency domain methods.

Electromagnetic properties of rocks and minerals

# Unit-II

**EM Prospecting and Interpretation:** various EM methods: Dip angle methods-fixed vertical loop transmitter, two frame method, Turam method, Moving source-receiver methods- horizontal loop (Slingram) method, AFMAG and VLF methods, Airborne EM systems- rotary field method, EM profiling and sounding. Marine Electromagnetic Methods, EM modelling.

### Unit-III

**MT Principle:** Origin and sources of MT signal, interaction with the earth -uniform earth, horizontal layers, anisotropy, inhomogeneity, impedance tensor and tipper, topographic and regional effects, static shift. Data processing and analysis: auto and cross spectra, solution to the impedance and tipper equations, local and remote references, errors and noise. Robust and hybrid processing.

# Unit-IV

**MT Interpretation and uses**: interpretation of MT data over a two layered earth, strike, rotation swift strike, polar diagram, tipper, skew, ellipticity, TE and TM modes, 1D and 2D interpretation, imaging continental lower crust, MT study over cratons. Mapping structures for petroleum exploration, geothermal mapping, exploration for sulphides, gold, uranium. Detecting water and subsurface structures.

- 1. Nabighian, M. N., 1988, Electromagnetic Methods in Geophysics, Volume 1, SEG Publication.
- 2. Nabighian, M. N., 1991, Electromagnetic Methods in Geophysics, Volume 2, Parts A and B, SEG Publication.

- 3. MICHAEL S. ZHDANOV, Geophysical Electromagnetic Theory and Methods
- 4. Grant, F. S., and West, G. F., Interpretation Theory in Applied Geophysics
- 5. Telford et. al: Applied Geophysics
- 6. Patra & Mallick: Geosounding Principles Vol.II
- 7. Geoelectromagnetism: Wait, J.R.,

### **GP-503: Geophysical Lab-VII**

Credits : 6

Max. Marks: 60 Time: 3 hours

Objective: To give practical exposure to the processing and interpretation of different types of logs and designing of filters.

Output: The students will learn the processing and interpretation of different types of logs, and filter designing.

- (A) Exercises based upon:
- (i) SP log
- (ii) Natural Gamma Log
- (iii) Caliper and Temperature Log
- (iv) Resistivity Log
  - (a) Micro log
  - (b) latero log
  - (c) induction log
- (v) Porosity Logs:
  - (a) Neutron log
  - (b) Acoustic log
  - (c) Density log
- (vi) Computation of formation factor and water saturation.
- (B) Exercises based on
- (i) Design of optimum wiener filter
- (ii) Exercises on Seismic Signal Processing softwares like PITSA, GEODEPTH, FOCUS etc

# **GP-504: Geophysical Lab-VIII**

# Credits : 6

Max. Marks: 60 Time: 3 hours

Objective: To train the students in small groups to solve the geophysical problems, presents the results in the form of a report.

Output: The students will learn to handle geophysical data and also learn to write a scientific report.

Problems/Case studies based on Geophysical Methods including:

- (i) Seismology
- (ii) Exploration Seismology
- (iii) Seismic Signal Processing
- (iv) Gravity & Magnetic Methods
- (v) Electrical Methods
- (vi) Geophysical Well logging
- (vii) Remote Sensing & GIS

# **GP-506:** Computational Seismology

Credits : 4

Max. Marks: 60 Time: 3 hours

**Objective**: To impart the knowledge about the basic concepts of strong motion seismology, simulation techniques, attenuation techniques, seismic hazard and engineering seismoplogy.

**Outcome:** The students are expected to learn the various techniques of computational seismology.

### **Special Notes:**

(i) Nine questions will be set and students will attempt five questions. Question no. I will be compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answers should not be in yes/no. In addition to question no. I, there will be four units in the question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

### Unit I Strong motion seismology

Concept of strong motion: Characteristics of earthquake strong ground motion, time domain and frequency domain parameters of strong ground motion, strong motion array and recorder, dynamics of vibration, vibration of a single degree of freedom system, earthquake response spectra, Strong motion networks in India

Modelling of strong ground motion: Stochastic modelling technique, concept of dynamic corner frequency, Empirical Greens function technique, Semi empirical technique and Composite source modelling technique, hybrid technique.

# **Unit II Attenuation Studies**

Wave attenuation: geometrical spreading, scattering and intrinsic attenuation, Quality factor Q and its estimation using frequency domain methods, origin of coda waves, coda-Q and its estimation, estimation of frequency independent and frequency dependent Q using strong ground motion, simultaneous estimation of source parameters and Q, concept of 3-D Q and its estimation.

### **Unit III Engineering seismology**

Concept of earthquake hazard, vulnerability and risk, probabilistic versus deterministic approach of estimating earthquake hazard, seismic quiescence/gaps, Regression analysis for estimating peak ground motion, microzonation, site amplification, concept of earthquake resistant design, Indian earthquake hazard scenario.

### **Unit IV: Selected Topics**

Seismic tomography – Methods, regional and local tomography, 3-D velocity analysis, Receiver functions, Seismicity based studies- b-value, fractal and multifractal analysis, Dq-q analysis, self similarity, Ray tracing, Anisotropy, Time predictable model, GPS based studies in seismology.

### **RECOMMENDED BOOKS**

- (1) Quantity Seismology: Aki and Richards
- (2) Introduction to seismology: Peter M. shearer

- (3) Modern Global Seismology: Lay & Wallace
  (4) Earthquake Hazard Analysis: L. Reiter
  (5) An introduction to seismology, earthquakes and Earth structure: Stein & Wysession

# **GP-513: Seismic Data Analysis and Reservoir Geophysics**

#### Credits : 4

Max. Marks: 60 Time: 3 hours

Objective: To impart the knowledge about the seismic data analysis including seismic modelling and about the reservoir Geophysics.

Output: The students will learn the different techniques of seismic data analysis including the seismic deconvolution, seismic migration and reservoir Geophysics.

### **Special Notes:**

(i) Nine questions will be set and students will attempt five questions. Question no. I will be compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answers should not be in yes/no. In addition to question no. I, there will be four units in the question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit.

### **Unit-I: Introduction**

Objectives of Seismic Signal Processing, Seismic Resolution, Basic data processing sequence: CMP sorting, Velocity analysis, residual statics corrections, Normal-Moveout Correction, Moveout stretch, Noise and Multiple Attenuation, f-k filtering,  $\tau$ -p filtering, Dip-Moveout correction, CMP stacking, post stack processing.

#### Unit-II: Seismic Deconvolution and Seismic Migration

The convolutional Model, Inverse Filtering, Optimum Wiener filters, Predictive deconvolution in practice, The problem of nonstationarity: Time-Variant deconvolution, gated Wiener deconvolution, Homomorphic deconvolution, Minimum and Maximum Entropy Deconvolution, Inverse Q Filtering, Fresnel Zone, Seismic Migration: Mathematical foundation of migration, Migration using wave equation, Kirchhoff's theory, Pre and Post stack time and depth migration

### Unit-III: Seismic Modeling

The role of Seismic Modeling, Concept and example of Physical Models, Seismic Modeling Approaches, Forward Seismic Modeling, Inverse Seismic Modeling, Application of GLI technique, Modeling pitfalls, Ray Tracing using Snell's Law, and Ray-bending.

#### **Unit-IV: Reservoir Geophysics**

Reservoir Management, Geophysical Method for Reservoir Surveillance, Analysis of AVO, Acoustic Impedance Estimation, 4-D Seismic Method, Interpretation with SH-wave, 4-C Seismic Method.

- 1. Seismic Data Analysis, Vol. I&II, ÖZYILMAZ.
- 2. Reservoir Geophysics, Robert E.Sheriff.
- 3. Seismic Modeling of Geologic Structures, Stuart W.Fagin.
- 4. Introduction to Seismic Inversion Method, Brian H.Russell

# **GP-517: ARTIFICIAL INTELLIGENCE & MACHINE LEARNING IN GEOPHYSICS**

# Credits : 4

Max. Marks: 60 Time: 3 hours

Objective: To impart the knowledge about the fundamentals, concepts, data processing and data interpretation of machine learning.

Output: The students will learn about the different aspects of seismic interpretation using machine learning.

### **Special Notes:**

Nine questions will be set and students will attempt five questions. Question No.1 is compulsory and based on the conceptual aspects of the whole syllabus. It can have 5 to 10 parts. The answer should not be in yes and no. In addition to Question 1, there will be four unit question paper each containing two questions belonging to four units in the syllabus. Students will select one question from each unit

# **UNIT-I: FUNDAMENTAL OF MACHINE LEARNING**

Introduction to Artificial Intelligence and Machine Learning: Machine Learning concepts, algorithms, and its applications. Techniques of Machine Learning: Supervised, Unsupervised, Overview of Linear Algebra, Eigenvalues, Eigenvectors, and Eigen-decomposition, Calculus, Probability and Statistics. Regression: Linear Regression.

### **UNIT-II: NEURAL NETWORKS**

Neural Networks. Multi-layer Perceptions, Activation function. Restricted Boltzman Machines, Support Vector Machine, Deep Belief Networks, Deep Recurrent Neural Network, Convolution DBN, Max Pooling CDBN. Data Preprocessing: Comprehend the meaning, process, and importance of data preparation, feature engineering and scaling, datasets, dimensionality reduction.

# **UNIT-III: MACHINE LEARNING WITH PYTHON**

Introduction to Python. Control flow tools, Data Structures, Modules, Input and Output, Errors and Exceptions, Classes, Standard Library, Virtual environment and packages. Machine Learning with Python.

# **UNIT-IV: APPLICATION IN GEOPHYSICS**

Machine Learning Applications: First Break Picking, Sesimic Deconvolution, NMO correction in T-p domain. Reservoir characterization: Pattern recognition. Principle Component Analysis. Earthquake Prediction.

| 1. Anthony Croft et al. | Engineering Mathematics        |
|-------------------------|--------------------------------|
| 2. Martin C. Brown      | Python the compelete reference |
| 3. R. Nageshwara Rao    | Core Python Programming        |

#### **GP-601: Dissertation**

Max. Marks: 400

### Credits:16

### **Objective and Output:**

Every student is required to undertake a project in the last semester. The project may be an experimental investigation, field work and laboratory studies, a theoretical investigation accompanied by computation work, data processing and analysis or combination of these. The exact nature of the project and the problem is decided by the chairperson of the department in consultation with faculty members and students. After the project is completed the students will submit two copies of dissertation based on the results obtained in the investigation. Finally the student is expected to defend his findings as embodied in his dissertation before a board of examinations and take an oral examination.

This will inculcate the research aptitude in the students.

#### **GP- 602:** Comprehensive Viva-Voce

#### Credits:4

#### Max. Marks: 100

#### **Objective and Output:**

In order to prepare the students for the various competitive examinations held by various organizations including ONGC, GSI, GATE, CSIR-JRF-NET, Ground water boards etc. the comprehensive viva-voce has been included in this semester. Every student shall be required to appear for comprehensive viva-voce examination based on complete M.Tech. (Applied Geophysics) course before a committee of teachers of the department.

#### **GP-603: Seminar**

#### Max. Marks: 100

#### **Objective and Output:**

In order to inculcate sense of confidence and self reliance and with a view to train the student in the art of public speaking and self expression, each student is required to deliver a talk on a particular topic during sixth semester. The topic of the seminar is selected by the students under the advice of a teacher of the department. This is accompanied by a write up. Besides delivering a seminar talk a student is expected to attend all other seminars delivered by other students. The seminar shall be evaluated by a committee of the teachers of the department.

# Credits: 4

# M.Sc. (Graphic Animation and Multimedia)

# Scheme of Examination & Syllabus

w.e.f. academic session 2019-2020

| Paper Code       | Subject Name                                | Т  | Р  | Ι  | Time    | Credits |
|------------------|---------------------------------------------|----|----|----|---------|---------|
| MGM-101          | Visual Arts and Creativity                  | -  | 75 | 25 | 4 Hours | 4       |
| MGM-102          | Graphic Designing and Publishing            | 50 | 25 | 25 | 4 Hours | 4       |
| MGM-103          | Multimedia and Technologies                 | 75 | -  | 25 | 4 Hours | 4       |
| MGM-104          | Story, Script and Storyboarding             | 50 | 25 | 25 | 4 Hours | 4       |
| MGM-105          | Techniques of 2D Animation                  | 50 | 25 | 25 | 4 Hours | 4       |
|                  | Total Marks=500                             |    |    |    |         | 20      |
| Second Semester  |                                             |    |    |    |         |         |
| Paper Code       | Subject Name                                | Т  | Р  | Ι  | Time    | Credits |
| MGM-201          | Film Appreciation and Cinematography        | 75 | -  | 25 | 4 Hours | 4       |
| MGM-202          | Digital Video Production and VFX            | 50 | 25 | 25 | 4 Hours | 4       |
| MGM-203          | Multimedia Programming                      | 50 | 25 | 25 | 4 Hours | 4       |
| MGM-204          | 3D Modeling and Texturing                   | 50 | 25 | 25 | 4 Hours | 4       |
| MGM-205          | Cyber Laws and Intellectual Property Rights | 75 | -  | 25 | 4 Hours | 4       |
| Open Elective    | Photography                                 | -  | 50 | -  | 2 Hours | 2       |
| Paper (for any   | - • •                                       |    |    |    |         |         |
| student of       |                                             |    |    |    |         |         |
| university)      |                                             |    |    |    |         |         |
| -                | Total Marks=500                             |    |    |    |         | 22      |
| Third Semester   |                                             |    |    |    |         | •       |
| Paper Code       | Subject Name                                | Т  | Р  | Ι  | Time    | Credits |
| MGM-301          | Motion Graphics                             | -  | 75 | 25 | 4 Hours | 4       |
| MGM-302          | 3D Rigging                                  | 50 | 25 | 25 | 4 Hours | 4       |
| MGM-303          | 3D Animation and Rendering Techniques       | 50 | 25 | 25 | 4 Hours | 4       |
| MGM-304          | Sound and Video Design                      | 50 | 25 | 25 | 4 Hours | 4       |
| MGM-305          | Web Media Production                        | 75 | -  | 25 | 4 Hours | 4       |
| Open Elective    | Videography                                 | -  | 50 | -  | 2 Hours | 2       |
| Paper (for any   |                                             |    |    |    |         |         |
| student of       |                                             |    |    |    |         |         |
| university)      |                                             |    |    |    |         |         |
|                  | Total Marks=500                             |    |    |    |         | 22      |
| Fourth Semester  | 1                                           |    |    |    | 1       |         |
| Paper Code       | Subject Name                                | Т  | Р  | Ι  | Time    | Credits |
| MGM-401          | Portfolio Development                       | 75 | -  | 25 | 4 Hours | 4       |
| MGM-402          | Instructional Material Design               | 75 | -  | 25 | 4 Hours | 4       |
| MGM-403          | Multimedia Marketing and Research           | 75 | -  | 25 | 4 Hours | 4       |
| MGM-404 Elective | (i) Television Production                   | 50 | 25 | 25 | 4 Hours | 4       |
| Paper            | (ii) 2D Production                          | 50 | 25 | 25 | 4 Hours | 4       |
|                  | (iii) 3D Production                         | 50 | 25 | 25 | 4 Hours | 4       |
|                  | (iv) Sound Production                       | 50 | 25 | 25 | 4 Hours | 4       |
|                  | (v) Web Production                          | 50 | 25 | 25 | 4 Hours | 4       |
|                  | (vi) Android Application Development        | 50 | 25 | 25 | 4 Hours | 4       |
|                  | (vii) Graphic Designing                     | 50 | 25 | 25 | 4 Hours | 4       |
| MGM-405          | Training / Internship                       | -  | 75 | 25 | -       | 4       |
|                  | Total Marks=500                             |    |    |    |         | 20      |

# MGM 101 Visual Arts & Creativity

Total Marks: 100, Practical Marks: 75 Internal Assessment: 25 Time: 3 Hrs.

There will be a practical based paper and there will be only a practical examination in this paper. External examiner will evaluate the skills of students in this field of visual art & creativity. Examiner will give on-the-sport assignment/task to the students. Beside this viva voice (Oral Examination) will be conducted by the examiner for testing the knowledge of the student of the field. During semester student have to prepare a portfolio and will submit it to the examiner duly signed by the subject teacher at least 20 days before the commencement of the theory examination

#### UNIT-I

#### **Development of Art & Ideas**

- Origin of Art:
  - Study of Prehistoric Indian Art
  - Visual Arts & Its Forms & Creative Pedagogies
- Drawing Concepts
- Perception of Color
- Pictorial Composition

#### UNIT-II

#### Drawing & 3D Design

- Perspectives on the Creative Process
- Living & Non-Living objects
- Basic Elements & Principles of 3D Design
- Calligraphy & Typography

#### UNIT-III

#### **Development of Character Design**

- Anatomy & Proportions
- Body Types, Poses, Facial Expression
- Model sheet of Character
- Character Line-up

#### UNIT-IV

#### **Clay Modeling**

- Introduction to different kind of clay
  - Natural clay & Synthetic clay
- Create various shapes through clay
  - Volume, space & dimensions of objects
  - 2D & 3D geometrical
- To Study Human & Animal body
  - Eyes, Nose, Lips, Cat, Dog, Penguin etc.

#### References:

- 1. Drawing Human Anatomy: Giovanni Civardi
- 2. Keys to Drawing (Paperback) byBert Dodson
- 3. Fundamentals of Drawing: A Complete Professional Course for Artists, Barrington Barber, Paperback

# MGM-102 GRAPHIC DESIGNING AND PUBLISHING

Total Marks: 100, Theory Marks: 50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (For Theory Exam)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

### UNIT-I

#### **Introduction to graphics**

- Introduction to graphics, tools of graphics, uses & types of graphics
- Meaning and definition of graphics design
- Elements and principles of graphic design
- Graphics Overview: Raster graphics, Vector graphics

### **UNIT-II**

#### Corel draw

- Tools and menus, Effects and masking
- social advertising
- Cartoon character design, Product design

#### Photoshop

- Introduction to Photoshop, workspace and photo editing tools
- Filters and Adjustments
- Digital matte painting

### **Unit-III**

#### Illustrator

- Introduction to Illustrator, Applications and features, Illustrator interface
- Aligning objects, working with groups, arrange object, distributing objects. Templates
- Transforming objects: Scaling, Reflection, Distorting and Shearing objects
- Coloring and painting
- Using effects, appearance attributes and graphics styles

# Unit – IV

#### Publishing

- Authoring and process of publishing
- Publishing types, newspaper and magazine publishing
- Research papers and publications
- Packaging and its types, Functions of Packaging

# MGM 103 Multimedia and Technologies

Total Marks: 100, Theory Marks: 75, Internal Assessment: 25 Time: 3 Hrs. (*For Theory Exam*)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

# Unit I

Multimedia Elements, Multimedia Applications, Multimedia System Architecture, Evolving Technologies for Multimedia Systems, Multimedia Databases; Types of Compression, Binary Image Compression Schemes, Color, gray scale, still-video image compression, video Image compression, audio compression; Data and File format standards- RTF, TIFF, RIFF, MIDI, JPEG, AVI, JPEG

# Unit II

Key Technology Issues, Pen Input, Video and Image Display Systems, Print Output Technologies, Image Scanners, Digital Voice and Audio, Video Images and Animation, Full Motion Video; Magnetic Media Technology, Optical Media, WORM optical drives, Hierarchical Storage Management, Cache Management for storage systems.

# **Unit III**

Types of Multimedia systems, Virtual Reality Design, Components of Multimedia system, Distributed Application Design Issues, Multimedia Authoring and User Interface, Hypermedia Messaging, Distributed Multimedia Systems

# Unit IV

Secured Multimedia, Digital Rights Management Systems, Technical Trends, Multimedia encryption, Digital Watermarking, Security Attacks; Multimedia Authentication, Pattern, Speaker and Behavior Recognition, Speaker Recognition

- Weixel, Fulton, Barksdale.Morse, "Multimedia Basics", Easwar Press 2004.
- Andleigh PK and Thakrar K, "Multimedia Systems", Addison Wesley Longman, 1999.
- Fred Halsall, "Multimedia Communications", Addison Wesley, 2000.
- Ralf Steinmetz, KlaraNahrstedt, "Multimedia, computing, communications and applications", Prentice Hall, 1995.
- Tay Vaughan, "Multimedia making It work", TMH 5th Edition 2001.

# MGM-104 Story, Script and Storyboarding

Total Marks: 100, Theory Marks: 50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (For Theory Exam)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

#### Unit I

#### Story

Elements of story, Resources and ideas from life, Story Genres, Characters and the story, character driven stories, Event driven stories.

#### Story structures and styles

Narrative, non-narrative, abstract, absurd with reference to stories for animated film Basic writing for Animation, Story Structure, Plot, Dramatic structure, Conflict, Setting mood, Rising action, Falling Action, Dénouement, Resolution

#### Unit II

#### Script

Anatomy of a Script, Script Elements and Scene Heading, Action, Characters, Dialogue, Parenthetical, Extension, Transition, Shots, Page Breaking, Finer Points, Dual Dialogue, and Adlibs, Abbreviations and Montages, A Series of Shots and Short Lines/Poetry/Lyrics, transitions, continuity etc.

Titles or Opening Credits, and Superimpose or Title, Title Page, Production Drafts, Top Continued and Bottom Continued, Locking Script Pages and Locking Scenes, Header, Do's and Don'ts, Other Script Formats, radio scripts, TV scripts, animation film scripts.

#### Unit III

#### Storyboarding

Introduction to Storyboard, Importance of StoryBoard, difference between storyboard and Graphic Comic, Difference between Story, Script and Storyboard.Advantages of Storyboard in Animation and Anatomy of a Storyboard.

#### Unit IV

#### Shots

Introduction to various shots, Camera angles and Camera Movements used in Storyboard panels.continuity and Timing, Building a sequence of shots. Use of Perspective, Composition, Light & Shadow in Storyboarding.

#### Script to Storyboard

Designing a storyboard based on a short script, Use of Thumbnails and Quick story sketches, Creating visual narrative using Animatics.

- Animation history and production by aparna vats; new delhi publishers; First edition 2017
- Story: Substance, Structure, Style and the Principles of Screenwriting by Robert McKee
- The Way of the Storyteller by Ruth Sawyer
- Comic Book Design: The Essential Guide to Creating Great Comics and Graphic Novels Gary Spencer Millidge
- Facial Expressions: A Visual Reference for Artists, Mark Simon, Publisher: Watson-Guptill,

- The Animation Book: A Complete Guide to Animated Filmmaking--From Flip-Books to Sound Cartoons to 3- D Animation, Three Rivers Press
- The Illusion of Life: Disney Animation, Ollie Johnston and Frank Thomas, Publisher: Disney Editions;
- Making Comics: Storytelling Secrets of Comics, M... by Scott McCloud
- The Art of story board by John Hart
- 'How to Write for Animation' by Jeffrey Scott's book
- Animation Art: From Pencil to Pixel, the world of Cartoon Anime and CGI- Jerry Beck
- The Animation Bible: A Practical Guide to the Art of Animating from Flipbooks to Flash [Paperback], Maureen Furnis

# MGM-105 Techniques of 2D Animation

Total Marks: 100, Theory Marks: 50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (For Theory Exam)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

#### Unit I

- Interface of Adobe Flash/ Animator
- Flash workspace, Timeline, Using Tools to create character for animation
- Shape tween and motion tween, Symbols and Keyframes
- Character Model Sheet, Character Line Up in Software such as Photoshop and Flash.

#### Unit II

- Introduction to Layout and importance of layout in Animation.
- Cinematic Camera Angles, Aspect Ratio, Preparing/Posing Layouts, Camera Movements tracking, zoom, panorama, Camera movement calculation to animation – matching speeds.
- Principles of animation; Creating object animation (Different weighted ball with different properties, Book fall from book self, moving object interaction with other moving objects, pendulum and Tail animation) using all principles of animation.

#### Unit III

- Character Animation; Creating walk cycle for male and female characters, creating run and jump for biped and quartered characters
- Acting for Animation
  - Basics of Facial Expressions with different Emotions, Understanding the Gestures and Postures.
     Understanding the importance of acting in animation, Body Language, Pulling, pushing and lifting objects.

#### Unit IV

- Facial Animation
  - Adding life to characters using expressions. Classical approaches to depict various expressions and emotions. The mechanics of eye movements, blinking, talking, and making various gestures, Lip sync with dialog
- Rendering and Output
  - Fundamentals of rendering and exporting, Exporting still images and sequences. Learning output formats, terminologies related to rendering.

- Animator's Survival kit Richard Williams, Pub.-Focal Press.
- Timing for Animation Harold Whitaker, Pub.-Focal Press.
- Cartoon Animation Preston Blair, Pub.-Walter Foster.
- The Animator's Survival Kit Richard Williams
- Basics Animation: Digital Animation Andrew Chong

#### **MGM 201**

#### Film Appreciation and Cinematography

Total Marks: 100, Theory Marks: 75, Internal Assessment: 25 Time: 3 Hrs. (*For Theory Exam*)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

#### UNIT I

#### **Introduction to Indian Cinema**

- History of Indian Cinema: Realism, Neo-realism
- Other arts and cinema theater, painting
- Cinema and Literature, Language in Indian Cinema
- Foreign Cinema

#### UNIT II

#### Film Genres

- What are Movie Genres?
- Westerns and Gangster Films, Mysteries and Film Noir, Horror, Fantasy and Science Fiction(Scifi), Thrillers
- Romantic Comedy Musicals and Documentaries, Drama

#### **UNIT III**

#### Cinematography

- What is Cinematography?
- Lighting Color Saturation and Desaturation
- The Camera, Lens and Their Uses Framing Special Effects
- Cinematography Editing Time and Space, Narrative, Shot, Set and Design, Lighting, Sound/Music

#### **UNIT IV**

#### Hollywood, Short Films and Animation

- Criticism and Analysis
- Famous Animated Movies
- Best Movie Oscar Winners
- Award winning short films and Web Series

- Allen, Robert & Douglas Gomery. Film History: Theory and Practice. New York: McGraw- Hill, Inc., 1987.
- Carroll, Noel. Mystifying Movies: Fads and Fallacies in Contemporary Film Theory. New York: Columbia University Press, 1988.
- Gledhill, Christine & Linda Williams. Eds. Reinventing Film Studies. London: Arnold, 2000.
- Stam, Robert & Toby Miller. Eds. Film and Theory: An Anthology. London: Blackwell Publishers, 2000.
- Stam, Robert & Toby Miller. Eds. A Companion to Film Theory. London: Blackwell Publishers, 1999

### MGM-202 Digital Video Production and VFX

Total Marks: 100, Theory Marks: 50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs.

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

#### Unit I

#### Video Editing

Introduction and history of evolution of the specialized stream called Editing. Deciding an edit. Develop an understanding of the digital video production process: pre-production, shooting, editing, and post-production. Understanding importance of editing in the flow of a narrative.Pace and Rhythm in editing. Linear and Non Linear Film Editing.

#### **Editing Tool**

Working with interface. Importing supported files and saving project. Understanding tools and palettes, timeline and project panel.Previewing footages.Managing footages.

#### Unit II

#### Working with footages

Setting up project, removing frames, naming, finding and deleting footages, learning file size limitations, Using markers, In-out points, Scaling clips, adding transitions. Changing and replacing transitions. Adding Key, Time remapping, video formats and resolutions.Editing mode, changing Frame size, Exporting, Aspect Ratio, Pixel Aspect Ratio, Audio sample rate, Color Correction and Grading.

#### Unit III

#### Introduction to AfterEffects

Working with interface. Importing supported files and saving project. Understanding tools and palettes, timeline and project panel.Previewing footages. Managing footages, Introduction to Layers System(2D, 3D layers), Working with different types of Tools, Key Frame Animation

#### Working with footages

Rotoscope Techniques(Overview on Roto paint, Animating Roto Shape, Paint Techniques), Wire Removal Techniques, Green/Blue screen, Understanding of Pre-composing/Nesting, 3D Render Pass Comping, Color Correction & Grading.

#### Unit IV

#### **Creating Masks**

Key, Matte, Alpha, and Mask, Creating a Luma-Key, Creating a Chroma-Key, Creating a Mask(The Difference Mask, The Color Difference Mask, Geometric Primitives, Drawing Shapes, Painting a Mask, Combo Masks).

#### Compositing

Introduction to Compositing, Compositing CGI(Multipass Compositing, Depth Compositing, Multiplane Compositing, Working with Premultiplied CGI), Blue Screen Compositing (The Blue Screen Composite, About Keyers, Compositing Outside the Keyer, Shooting Blue Screens and Green Screens).

### References:

- Editing Digital Video : The Complete Creative and Technical Guide by Robert Goodman (McGraw-Hill), Pub.- McGraw-Hill/TAB Electronics.
- Adobe premiere pro Bible by Adele Droblas, Pub.-Wiley.
- The Art and Science of Digital Compositing: Techniques for Visual Effects, Animation and Motion Graphics (The Morgan Kaufmann Series in Computer Graphics) by Ron Brinkmann
- Video editing: a post-production by S.E. Browne
- The technique of film editing by Reisz and Miller
- Grammar of editing by Roy. Thompson
- Rotoscoping: Techniques and Tools for the Aspiring Artist

## MGM 203 Multimedia Programming

Total Marks: 100, Theory Marks: 50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (*For Theory Exam*)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

### UNIT-I

#### **Fundamental Of Computer Programming**

 Programming Environment, Basic Syntax, Data Types, Variables, Keywords, Basic Operators, Decision Making, Control Statements, Numbers, Characters, Arrays, Strings Functions

### **UNIT-II**

#### Web Essentials, HTML, CSS

- Basic Structure of a Web Page
- Basic Tags: Links, Images, Fonts, Colour and Character entities
- Images, Forms, Lists, Tables
- Block and Text level Elements

#### **UNIT-III**

#### JavaScript & PHP

- JavaScript Introduction, Variables and Data types, Control Structures, JavaScript Objects.
- PHP, PHP language Basics , Files and directories, Data Retrieval

### **UNIT-IV**

#### SQL and Database Management

- Introduction to Sql: Creating Databases and Tables
- Sql Queries: Inserting, Deleting, Updating Data, Joins
- Sorting and Filtering Data
- Querying Sql Database in PHP

- Paul Wilton and Jeremy McPeak, "Beginning JavaScript, 3rd Edition", Wrox Press Inc., 2007.
- Mercer, Kent, Nowicki, Squier and Choi, "Beginning PHP5", John Wiley & Sons, Inc., 2004.
- Jeffrey C. Jackson, "Web Technologies: A Computer Science Perspective", Pearson Education, 2006.
- Chris Bates, "Web Programming Building Intranet applications", Wiley Publications, 3rd Edition, 2009.
- Deitel, Deitel& Nieto, "Internet and World Wide Web How to Program", Prentice Hall, 4th Edition, 2008.
- www.w3schools.com

## MGM 204 3D Modeling and Texturing

Total Marks: 100, Theory Marks: 50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (*For Theory Exam*)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

### UNIT-I

#### **Modeling Basics**

- Polygon Modeling Basics
- Using CV/EP Curves
- NURBS/Surface Modeling
- Sculpting Tools
- Hard Surface Modeling: Interiors/Exteriors, Props etc.
- Organic Modeling: Character Modeling

### **UNIT-II**

#### Introduction to Zbrush

- Zbrush Interface, ZTools: Primitives, Subtools, Geometry, Deformations
- Basic Brush: Type, Size, Intensity, Color, Alpha, Stroke
- Symmetry, Masking, Slicing, Clipping
- Working with DynaMesh
- Transpose: Move, Scale, Rotate
- Retopology Workflow for Animation (Zbrush to Maya)

## UNIT-III

## **UV Mapping**

- UV Projections: Planar Maps, Cylindrical Maps, Spherical Maps, Automatic Mapping, Camera based Mapping
- 3D Cut and Sew UV Tool
- UV Editor and UV Toolkit: Unfold, Normalize, Distribute, Layout, Optimize
- UV Sets Editor
- Exporting UV Maps: UV Snapshot

### **UNIT-IV**

#### Texturing and Shading

- Hypershade Editor
- Using Images as Textures
- Normal Maps, Bump Maps, Displacement Maps
- Multi-Layered Texture and Alpha Maps
- Texturing with Substance Painter

- Prof. Sham, PixologicZBrush 2018: A Comprehensive Guide, CADCIM Technologies, 2019, ISBN: 978-1640570481
- Beginner's Guide to ZBrush, 3DTotal Publishing, 2017, ISBN: 978-1909414501
- Kurt Papstein, ZBrush Characters and Creatures, 3DTotal Publishing, 2015, ISBN: 978-1909414136
- Chris Legaspi, Anatomy for 3D Artists: The Essential Guide for CG Professionals, 3dtotal Publishing, 2015, ISBN: 978-1909414242
- Lee Lanier, Advanced Maya Texturing and Lighting, Sybex, 2015, ISBN: 978-1118983522

## MGM 205 Cyber Laws and Intellectual Property Rights

Total Marks: 100, Theory Marks: 75 Internal Assessment: 25 Time: 3 Hrs. (*For Theory Exam*)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

### UNIT-I

### **Cyber Threats**

Cyber Crimes, vulnerabilities, risks, theft, Hacking, Virus/Worm attacks, DOS attack, Trojan, Spoofing, Spamming, E-commerce/ Investment Frauds, Defamations, Privacy, Confidentiality, Cyber Stacking

#### **UNIT-II**

### Cyber Law & Information Technology Act 2000

Cyber Jurisprudence, Cyber Ethics, Cyber- Jurisdiction, Hierarchy of Courts, Civil and Criminal Jurisdictions, Overview of IT Act, 2000, Section 66a of IT Act, Amendments and Limitations of IT Act, Digital Signatures, Cryptography.

### UNIT-III

#### Patent Law

Patents – International Law, Patents Law- Emerging Trends, Social Implication of Patents, Infringement of Patents. Introduction to Copyrights as forms of Intellectual Property, Copyright Law in India (Copyright Act of 1957), Copyright infringement. Right conferred by Registration and use of Trademarks, Infringement of Trademarks and passing off, Offences, remedies and enforcement, Trademarks, International Law.

### **UNIT-IV**

### **Intellectual Property Rights**

Introduction to Intellectual Property Rights, Evolution of Intellectual Property Laws Standards and Concepts in Intellectual Property, IPRs and Information Technology IPRs, Management of Intellectual Property Rights, Law of Intellectual Property and Ethical Issues, Intellectual Property Rights in India and abroad.

- Law and practice of intellectual property in India by VikasVashishth
- Intellectual property by A.Kalank
- Intellectual property- patents, copyrights ,trademarks and allied rights by Cornish W R
- Patents, copyrights, trademarks and design by B L Wadhera
- Intellectual property law by P Narayana
- Patents, copyrights, trademarks and design by Rajeev Jain

Time: 3 Hrs. Total Marks: 50

There will be two assignments and two class tests for the subject. The student have to submit at least 02 assignments and they should also have appear in each class tests. The entire syllabus will be practical based.

## <u>Unit-I</u>

- Concept and definition of Photography
- Digital and analog photography
- Types of lenses and working
- Types of still camera

## <u>Unit-II</u>

- Indoor and outdoor photography
- Working with still camera
- Compositions of photograph, frame, modes of photography
- Feature photography

## <u>Unit-III</u>

- Editing of photographs
- Introduction to editing softwares
- Genre of photography, candid, wildlife, sports, fashion and glamour
- Importance of lighting and reflector in photography

## <u>Unit-IV</u>

- Placement and selection of photographs in journalism
- Caption and outline writing in photography
- Camera basics:- aperture, shutter speed, film speed, exposure, color temperature
- Creative and aesthetic approaches of a photographer

## MGM 301 Motion Graphics

Total Marks: 100, Practical Marks: 75 Internal Assessment: 25 Time: 3 Hrs. (*For Theory Exam*)

There will be a practical based paper and there will be only a practical examination in this paper. External examiner will evaluate the skills of students in this field of Motion Graphics. Examiner will give on-the-sport assignment/task to the students. Beside this viva voice (Oral Examination) will be conducted by the examiner for testing the knowledge of the student of the field. During semester student have to prepare a portfolio and will submit it to the examiner duly signed by the subject teacher at least 20 days before the commencement of the theory examination

## UNIT I

#### **Introduction to Adobe After Effects**

Understanding GUI and related terminologies, Managing and setting up workspace. Project panel, Footage, Composition, Timeline, Effects and Presets. Importing and Organizing footages and files, Using Ram preview for playback.

#### **Compositions and Layers**

Creating & saving projects. Understanding broadcasting fundaments, Pixel aspect ratios and frame rates, Trimming, Splitting and understanding concept of In and Out points. Understanding layer stacks, modes and switches. Shape layers and solid layers, Mask and transparent layers. Precomposing, and pre-rendering, Using Layer effects. Color correction and color adjustment, Light Layer, Null Layer and Adjustment Layer.

### UNIT II

#### **Effects and Tools**

Text effects Blur and Sharpen effects. Essentials of Chroma and keying. CC Snow, CC Rain, CC Blur effects etc. Learning Tracking fundamentals, Using trackers and stabilizing footages. Using four corner pins to track footage. Pen tool to draw custom shapes and masks. Text tool Puppet Pin and 3D camera tools.

### UNIT III

### **Animation and Dynamics**

Understanding Animation basics in after effects.Introduction to graph editor. Applying, selecting, editing, moving, copying and deleting key frames. Animating objects with Motion paths, motion blur and smoothing animation. Adding randomness to key values. Learning Interpolation types like Linear, Bezier and Auto Bezier, Continuous Bezier Interpolation and Hold Interpolation. Controlling speed of the animation.Using time remapping and frame blending.

### UNIT IV

#### **Audio and Transitions**

Fundamentals of Audio: Technical terminologies related to Audio and Sound. Using Audio files, Synchronizing and editing audio, Controlling Pitch and Temp, Adding effects like Echo, Reverb.

#### Rendering

Fundamentals of rendering and exporting, Using Render Queue. Exporting still images and sequences. Learning output formats.

- Broadcast Graphics On the Spot: Timesaving Techniques Using Photoshop and After Effects for Broadcast and Post Production Richard Harrington
- Motion Graphics: Principles and Practices from the ground up- Ian Crook and Peter Beare
- Trish & Chris Meyer, Creating Motion Graphics, Focal Press
- Richard Harrington and Ian Robinson, Motion Graphics Studio Techniques, Adobe Press
- The After Effects Illusionist: All the Effects in One Complete Guide by Chad Perkins
- Creative Motion Graphic Titling for Film, Video, and the Web: Dynamic Motion Graphic Title Design Yael Braha and Bill Byrne
- Motion Graphics with Adobe Creative Suite 5 Studio Techniques Richard Harrington and Ian Robinson

## MGM 302 3D Rigging

Total Marks: 100, Theory Marks: 50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (*For Theory Exam*)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

### UNIT I

### **Introduction To Rigging**

- Basic Human Anatomical Structure
- Joints, Forward Kinematics, Inverse Kinematics
- Mirroring Joints, Reroot Skeleton, Connect/Disconnect Joints
- Joint Orientation

### UNIT II

### **Basic Rigging**

- Constraints
- Deformers
- Set Driven Key, Adding Custom Attributes
- Connection Editor, Expression Editor, Reference Editor

### UNIT III

#### **Character Rigging**

- IK Handle Tool, IK Solvers(Rotate Plane, Single Chain, Spline), IK Controls, IK Preferred Angle, Pole Vector Constraint
- Mechanical Rig Setup: Props, Robots etc.
- Biped Rig Setup
- Quadruped Rig Setup
- IK/FK Switching in Arm Joints

### UNIT IV

#### Skinning and Blend Shapes

- Skinning: Smooth Binding, Interactive Binding
- Editing Skin Weights: Weight Painting, Mirror Skin Weights, Copy Skin Weights, Hammer Skin Weights, Component Editor, Export/Import Skin Weights
- Blend Shapes and Shape Editor
- Editing Blend Shapes: Duplicate, Mirror, Flip
- Facial Controls: Eyelids, Eye brows, Mouth/Lips, Cheeks, Ears, Nose

#### Reference Material:

- Tina O'Hailey, Rig it Right! Maya Animation Rigging Concepts, Focal Press, 2013, ISBN: 978-0240820798
- Palamar T., Mastering Autodesk Maya 2016, Autodesk Official Press, 2015, ISBN: 978-1-119-05982-0
- Jason Patnode, Character Modeling with Maya and ZBrush, Focal Press, 2008, ISBN: 978-0-240-52034-6
- William Vaughan, Digital Modeling, 2012, ISBN: 978-0321700896

## 10(729)

## MGM 303 3D Animation and Rendering Techniques

Total Marks: 100, Theory Marks: 50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (*For Theory Exam*)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

#### UNIT I

### **Animation Principles**

- Principles of 2D & 3D Animation
- History of Animation
- Action Analysis

#### UNIT II

#### **3D** Animation Techniques

- Graph Editor
- Dope Sheet
- Walk Cycle, Run Cycle, Jumping
- Animation Parenting: Picking, Pushing, Lifting, throwing Objects
- Animation Layers

#### UNIT III

#### **Basics of Rendering: Lights, Camera and Materials**

- Basic Materials: Base Color, Diffuse, Specular, Reflection, Refraction, Transparency, Glow
- Lights: Point, Spot, Area, Directional, Volume, Ambient
- Camera: Camera Controls, Area Of View, Focal Length, Depth Of Field
- Hypershade Editor
- Rendering Settings: Image Format, Image/Animation extension, Frame Range, Renderable Cameras, Image Size
- Render: Render View, Render IPR View, Batch render, Render Sequence

#### UNIT IV

#### **Rendering in Arnold**

- Ray Tracing
- Renderers in Maya: Maya Software Renderer, Hardware Renderer, Solid Angle's Arnold Renderer
- Arnold Lights: Area, Skydome, Mesh, Photometric, Light Portal, Physical Sky
- Arnold Materials: aiStandard, aiFlat
- Arnold Settings: Sampling, Ray Depth, Motion Blur, AOVs

- Les Pardew, Character Emotion in 2D and 3D Animation, Cengage Learning PTR, ISBN: 9781598633818
- Richard Williams, The Animator's Survival Kit, Farrar, Straus and Giroux, 2012, ISBN: 978-0865478978
- Ollie Johnston, Frank Thomas, The Illusion of Life: Disney Animation, Disney Editions, 1995, ISBN: 978-0786860708
- Jeremy Birn, Digital Lighting and Rendering, New Riders, 2013, ISBN: 978-0321928986
- Wes McDermott, The PBR Guide: A Handbook for Physically Based Rendering, Allegorithmic, 2018, ISBN: 978-2490071005
- Donna Betancourt, Arnold 5: First Lessons in Autodesk Maya 2018, Amazon Digital Services LLC, 2018

## MGM 304 Sound and Video Design

Total Marks: 100, Theory Marks: 50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (*For Theory Exam*)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

### UNIT I

### Introduction

- Introduction to Sound & its forms.
- Mono & Stereo techniques.
- Sound production equipments.

#### UNIT II

#### Recording

- Common Recording Techniques
- Recording & formats
- Microphone setup & recording.
- Introduction with Sound effects & their uses
- Assignment: Recording of audio (commentary, dubbing, music).

## UNIT III

#### Editing

- Basic Sound Editing techniques.
- Basic timeline Editing:- Trim ,add and separate .
- Sound Editing: dialogue editing- Cleaning up audio , noise reduction, etc.
- Assignment :- studio project (recording /Editing) and Field interview

### UNIT IV

#### Mixing

- Understanding How to mix?
- Levels
- Equalization Technique- Equalizers: History and Application, EQ Parameters, EQ Types
- Panning
- Time based Effects
- Assignment: Music and effects (Techniques of recording music/effects and their creative use)

- Audio book publishing, Power Publishers.
- Sound Design: The Expressive Power of Music, Voice and Sound Effects in Cinema, by David Sonnenschein (Author)
- A Thesis in Editing and Sound Design Paperback 27 Jul 2011
- by Gabriel Lamb (Author)

## MGM 305 Web Media Production

Total Marks: 100, Theory Marks: 75 Internal Assessment: 25 Time: 3 Hrs. (For Theory Exam)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

### Unit- I

Web Media: Concept, role and responsibilities in society

Web media and social media projects

Digital media components and their advantages

Web enabled media and applications

### Unit- II

Web Project stages: Planning, designing, development, testing, maintenance and promotions

Web Team: role and functions

Web team members: Co-operation, Coordination, Collaboration

Web hosting and registration services

### Unit- III

Content creation techniques for media projects

Search engine optimization (SEO) techniques

Content streaming strategies and challenges

Web Modules: Emails, logins, weblogs, online polling, comments and feedbacks

Smartphone enabled services

### Unit- IV

Cloud applications and securities

Cloud based technologies

Online media apps and tools

Data backup and restoration

Time: 3 Hrs. Total Marks: 50

There will be two assignments and two class tests for the subject. The student have to submit at least 02 assignments and they should also have appear in each class tests. The entire syllabus will be practical based.

## <u>Unit-I</u>

- TV and Video Production:- Meaning and Scope
- Importance of Concept, Idea and treatment in Production
- Production personnel's, their duties and responsibilities

## <u>Unit-II</u>

- Introduction to Video Camera
- Types of Video Camera and their major components
- Basics shots and their composition
- Camera movement and angles

## <u>Unit-III</u>

- Video Production Stage and importance
- Video Editing importance and scope
- Editing Problems and ethics
- Lighting techniques, equipments and control

## Unit-IV

- Introduction to news anchoring
- Radio Jocky, an introduction
- Social Media emerges as new media
- Story Board and Scripting for T.V. Production

## MGM 401: Portfolio Development

Total Marks: 100, Theory Marks: 75 Internal Assessment: 25 Time: 3 Hrs. (*For Theory Exam*)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

## Unit-I

Introduction to portfolio management: objectives and importance

Types of portfolios, phases

Evolution and role of portfolio management

## Unit-II

Introduction to electronic portfolio

Benefits of e-portfolio

Process of e-portfolio

e-portfolio formats

## Unit-III

Portfolio revision

Need for portfolio revision

Strategies for portfolio constraints

Portfolio assessment

## Unit-IV

Portfolio analysis,

Process of portfolio analysis

Types of portfolio evaluation analysis

Need for evaluation, portfolio evaluation tools

### MGM 402: Instructional Material Design

Total Marks: 100, Theory Marks: 75 Internal Assessment: 25 Time: 3 Hrs. (For Theory Exam)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

### Unit-I

Information processing: meaning, concept and processing

Cognitive information processing of learning

## Unit-II

Instructional design: meaning, concept and principles

Instructional material design process, system approach to instructional design

## Unit-III

Component of instructional design: instructional problem, learner characteristics, task analysis, instructional

objective, content sequencing ,instructional strategies, instructional delivery, Evaluation instruments, instructional

resources

Writing of performance objectives/learning outcome

## **Unit-IV**

Models of instructional design: use of instructional design, level of instructional design, Difference between theory

and model of instructional design

An overview of Dick and Carey model, ASSURE model and ADDIE model

David Merrill's theory of integration

### **MGM 403**

### **Multimedia Marketing and Research**

Total Marks: 100, Theory Marks:75 Internal Assessment: 25 Time: 3 Hrs. (*For Theory Exam*)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

## Unit I

Research: meaning, objective and types Introduction to various research approaches Significance of research Elements of good research

### Unit II

Research process: define research problem, research design,

Research methodologies: survey method, content analysis, case studies Methods of data collection, processing and analyzing the data

Uses of research in multimedia production

### Unit III

Marketing: meaning and scope, concept of multimedia marketing,

Tools and elements of multimedia marketing,

Benefits of multimedia marketing,

Multimedia marketing environment, marketing ethics

#### Unit IV

New trends in marketing: globalization and consumerism, green marketing, direct marketing, network marketing, event marketing.

Product decisions: new product development, product mix, product life cycle, branding and packaging; pricing methods and strategies

Promotion decisions: promotion mix, advertising, sales promotion, publicity and personal selling

## MGM 404 Elective – I: (Television Production)

Total Marks: 100, Theory Marks:50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (For Theory Exam)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

### UNIT I

#### Introduction

- Introduction to Television Broadcast
- Understanding Media
- Video Basics: Scanning, Aspect Ratio, Formats (NTSC, PAL, VGA, HDTV), Component Interface
- Stages of TV Production: Pre Production, Production and Post Production
- TV Production Team: Writers, Directors, Producers, Actors, Camera Operators, Production Manager, Line Producer, Executive
  Producer

### UNIT II

#### **Still Camera**

- Working Principal of Still Camera
- Components of Still Camera
- Types of Still Camera: Compact, SLR, DSLR
- Basic Shots and Composition

#### Video Camera

- Working Principal of Video Camera
- Components of Video Camera
- Concept of Looking Space, Head Room, and walking space
- Importance of Cut Away, and Cut in Shots
- Camera movements and angles

### UNIT III

#### Lighting

- Importance of Lighting
- Types of Lights: Key, fill, rim, kick, bounce etc.
- Techniques of Lighting
- Lighting Equipment and Control

### **UNIT IV**

#### **Production Process**

- TV Studio Production
- Single and Multi Camera Shooting
- Shooting Interview
- TV Production on Air

- Brett Christophers, Envisioning Media Power: On Capital and Geographies of Television 2006
- Herbert Zettl, Television Production Handbook 2002
- Eve Light Honthaner, The Complete Film Production Handbook 2010

## MGM 404 Elective – II: (2D Production)

Total Marks: 100, Theory Marks:50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (For Theory Exam)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

### UNIT I

#### Story and Concept

- Story Development: Premise, Story Arc, Character Arc,, Plot, etc.
- Screenplay/Script
- Storyboard, Animatic
- Concept Designs: Composition of a scene, Color, Design, Value, FG, MG, BG elements
- Character Designs: Appeal, Reference, Personality, Visual Contrast

#### **UNIT II**

#### **Asset Creation**

- Vector graphics vs Raster Graphics
- Symbols: Types of Symbols, Creating and Using Symbols
- Character Development: Expression, Prop, Replacement Parts Library
- Background Development: BG, MG, FG Elements

### UNIT III

#### Animation

- Principles of Animation
- Timing and Spacing in Animation
- Action Analysis
- Character animation: Expressions
- Lip Sync: Basic mouth expression A-E-I-O-U

#### **UNIT IV**

#### Adobe Animate (Flash)

- Timeline, Keyframing, InBetweening and Layering
- 2D Animation Techniques: Shape tween, Motion tween, Frame-By-Frame
- Masking
- Flash library
- Adding a sound in movie clip
- ActionScript
- Publishing & Exporting flash files

- Fred Gerantabee, Adobe Flash Professional CS6 Digital Classroom, 2012
- Richard Williams, The Animator's Survival Kit, Farrar, Straus and Giroux, 2012, ISBN: 978-0865478978
- Ollie Johnston, Frank Thomas, The Illusion of Life: Disney Animation, Disney Editions, 1995, ISBN: 978-0786860708

## MGM 404 Elective – III: (3D Production)

Total Marks: 100, Theory Marks:50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (For Theory Exam)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

### UNIT I

### Story and Concept

- Story Development: Premise, Story Arc, Character Arc,, Plot, etc.
- Screenplay/Script
- Storyboard, Animatic
- Concept Designs: Composition of a scene, Color, Design, Value, FG, MG, BG elements
- Character Designs: Appeal, Reference, Personality, Visual Contrast

#### **UNIT II**

#### **Asset Creation**

- Modeling: Polygon Modeling, NURBS/Surface Modeling, Sculpting (Zbrush)
- UV mapping and Texturing
- Environment Development
- Character Topology for Animation
- Character Rigging for Animation: Joints, FK/IK, Skinning, Constraints etc.

### UNIT III

#### Animation

- Principles of Animation
- Timing and Spacing in Animation
- Action Analysis
- Character animation: Expressions
- Lip Sync: Basic mouth expression A-E-I-O-U

### **UNIT IV**

#### **3D** Animation Techniques and Render

- 3D Animation Techniques: Motion Paths, Set Driven Key, Animation Layers, Animation Parenting
- Using Graph Editor, Dope Sheet
- Camera Animation: Camera Angles, Shots, and Movement in 3D
- Look Dev: Materials/Shading, Lighting, Fog/Atmosphere
- Rendering Settings, Render Layers(AOVs), Batch Render
- Compositing

- Tina O'Hailey, Rig it Right! Maya Animation Rigging Concepts, Focal Press, 2013, ISBN: 978-0240820798
- Palamar T., Mastering Autodesk Maya 2016, Autodesk Official Press, 2015, ISBN: 978-1-119-05982-0
- Jason Patnode, Character Modeling with Maya and ZBrush, Focal Press, 2008, ISBN: 978-0-240-52034-6
- Richard Williams, The Animator's Survival Kit, Farrar, Straus and Giroux, 2012, ISBN: 978-0865478978
- Ollie Johnston, Frank Thomas, The Illusion of Life: Disney Animation, Disney Editions, 1995, ISBN: 978-0786860708

## MGM 404 Elective – IV: (Sound Production)

Total Marks: 100, Theory Marks:50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (For Theory Exam)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

#### UNIT I

### Introduction

- Sound: Physics, Importance and Use
- Properties of Sound: Pitch(Bass, Treble), Amplitude, Timbre, Duration, Envelope, Location
- Sound Aesthetics: Rhythm, Harmony, Contrast, Emotiveness, Resonance etc.
- Digital vs. Analogue Sound

#### **UNIT II**

#### Sound Modulation, Filters and Effects

- Voice Modulation
- Types of Sound Effects
- Noise, Echo, Reverb, Distortion
- Audio Filters: Meaning & Types
- Equalization: Meaning, Types & Process

### UNIT III

#### Sound Recording and Equipments

- Sound Recording History
- Sound Recording Equipment
- Types of Sound: Mono, Stereo, Surround
- Types of Surround Sound: 5.1, 6.1, 7.1
- Voice Over and Dubbing
- Using Logic Pro X for Creating and Recording Sound

#### UNIT IV

#### Sound Editing

- Adobe Audition Interface
- Sound Editing Techniques: Sound Bridge, Voice Over, Sonic Flashback, J-Cut, L-Cut
- Removing Noise from Samples
- Adding Effects: Delay, Echo, Reverb, Distortion, Equalization, Pitch Shift, Time Stretch, Modulation, Compression.

#### Reference Material:

- Talbot, Michael -Smith, Sound engineering explained, Focal Press, 2011
- Nisbett, Alec, The sound studio: audio techniques for radio, television, film and recording, Focal Press, 2003
- Mott, Robert L., Sound effects: radio, TV, and film, Focal Press, 1990
- Sonnenschein, David, Sound design: the expressive power of music, voice, and sound effects in cinema, Michael Wiese Productions, 2001
- Viers, Ric, The Sound Effects Bible: How to Create and Record Hollywood Style Sound Effects, Michael Wiese Productions, 2008
- Altman, Rick, Sound theory, sound practice, Routledge, 1992
- Alburger, James, The Art of Voice Acting, Focal Press, 2010, ISBN: 9780240812113
- Rumsey, Francis and TIM MCCORMICK, Sound and Recording, Focal Press 2009, ISBN: 9780240521633

## 10(740)

## MGM 404 Elective – V: (Web Production)

Total Marks: 100, Theory Marks:50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (For Theory Exam)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

### UNIT I

### Introduction

- Introduction to Web Designing
- Basic Elements of a Web Page
- Introduction to HTML
- Static and Dynamic Web Pages

### UNIT II

#### Frontend: HTML, CSS, JS

- Basic Structure of a Web Page
- Basic Tags: Links, Images, Fonts, Colour and Character entities
- Lists and Tables
- Block and Text level Elements
- Introduction to CSS
- CSS Properties

### UNIT III

#### Web Design

- Layout Design of a Web Page
- Interface between HTML and other coding languages
- Working with External Libraries: Bootstrap & jQuery
- Using Bootstrap Components
- Project: Frontend for a Blogging Website

#### UNIT IV

#### Backend: PHP, SQL

- PHP Basics
- Introduction to MySql: Creating Databases and Tables
- MySql Queries: Inserting, Deleting, Updating Data
- Querying MySql Database in PHP (PDO)
- PHP Form Handling using GET and POST Method
- Project: Building a Students Directory with working Login and Signup Pages

Reference Material:

- Deitel, Deiteland Nieto, Internet and World Wide Web : How to Program, Edition, 2012, Prentice Hall, ISBN: 978-0-13-215100-9
- Stephen Wynkoop, Running a perfect website, QUE, 2nd Edition, 2001. ISBN: 9780789709448
- Chris Bates, Web Programming: Building Intranet applications, 3rd Edition, 2009, Wiley Publications, ISBN: 9780470017753

## 10(741)

## MGM 404 Elective – VI: (Android Application Development)

Total Marks: 100, Theory Marks:50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (*For Theory Exam*)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

## UNIT I

### Introduction to Android

- What is Android?
- Basic Building Blocks of Android
- Application Structure
- Virtual Android Emulator and project setup
- Android API levels (versions & version names)

### **UNIT II**

#### Java & SQL Basics

- OOP
- Inheritance
- Exception handling
- Packages & interfaces
- SQLite Programming

### UNIT III

#### **Android Programming Basics**

- Views
- Intent
- Activities
- Storage and Content Providers
- Services
- Basic UX/UI: Form widgets, Text Fields, Layouts

#### UNIT IV

#### **Advance Concepts**

- Multimedia Services
- Maps, GPS and Location Based Services
- Animations and Graphics
- Publishing Apps to PlayStore

- Dawn Griffiths, David Griffiths, "Head First: Android Development", OReilly 2015, ISBN: 9781449362188
- Greg Milette, Adam Stroud, "PROFESSIONAL Android™ Sensor Programming", John Wiley and Sons, Inc 2012, ISBN: 978111265055
- Paul Deital, Harvey Deital, Alexander Wald, "Android 6 for Programmers, App Driven approach", 2015, Prentice Hall, ISBN: 9780134289366
- http://developer.android.com/training/index.html

## MGM 404 Elective – VII: (Graphic Designing)

Total Marks: 100, Theory Marks: 50 Practical Marks: 25 Internal Assessment: 25 Time: 3 Hrs. (*For Theory Exam*)

Question paper for each theory paper will have two questions from each of the four units. Students will be required to answer any one Question from each unit. Unit V of the Question paper will have six questions out of which the student will require to answer any four Questions. Each unit will carry equal marks. Students have the option to attempt questions either in Hindi or English but within an answer to a question the language should be pure and correct.

### **UNIT-I**

#### Introduction to graphics

- Introduction to graphics, tools of graphics, uses & types of graphics
- Meaning and definition of graphics design
- Elements and principles of graphic design
- Graphics Overview: Raster graphics, Vector graphics

### **UNIT-II**

#### Corel draw

- Tools and menus, Effects and masking
- social advertising
- Cartoon character design, Product design

#### Photoshop

- Introduction to Photoshop, workspace and photo editing tools
- Filters and Adjustments
- Digital matte painting

#### Unit-III

#### Illustrator

- Introduction to Illustrator, Applications and features, Illustrator interface
- Aligning objects, working with groups, arrange object, distributing objects. Templates
- Transforming objects: Scaling, Reflection, Distorting and Shearing objects
- Coloring and painting
- Using effects, appearance attributes and graphics styles

### Unit – IV

#### Publishing

- Authoring and process of publishing
- Publishing types, newspaper and magazine publishing
- Research papers and publications
- Packaging and its types, Functions of Packaging

## Paper: MGM-405

### **Training / Internship**

Total Marks: 100, Training / Internship : 75 Internal Assessment: 25

The internship is compulsory for the students. Students have to go for internship for six weeks with an organization related to the field of specialization they opted. Marks awarded will be based on the report submitted by the student and assessment report given by the employer. The report will be evaluated by a panel of three examiners to be appointed by the Director of the Institute.

### Introduction

Each student shall be supposed to prepare an internship/training report with <u>CD/DVD (soft copy)</u> content during the last semester of the course. The project work will be purely practical work. This report will be prepared in accordance with the format provided by the institute. Report should be printed both side with hard bound. Report should contain minimum 40-50 pages of text, graphics, visuals etc.

Each student will write his/her report according to the following format:

- Idea/concept of the project
- Treatment of the project
- Technical equipment used
- Workflow of the project
- Contribution of the student
- Main observations during the training
- Key points of learning

The students have to prepare a training project report under the supervision of the concerned teacher in the Institute. Students will submit a soft copy of the project to the concerned teacher.

## Dissertation/Project Paper-405

| Total Marks         | : | 100      |
|---------------------|---|----------|
| Report Writing      | : | 40 Marks |
| Viva-Voce           | : | 40 Marks |
| Internal Assessment | : | 20 Marks |

Students should submit a dissertation report/project according to specialization opted/selected by him. This report/project should be submitted to the Institute before the commencement of 4<sup>th</sup> semester theory examination.

Project/Report to be evaluated by a panel of three examiners to be appointed by the Director of the Institute.

**Open Elective** 

Semester- II

## Paper code:

## Credits: 2

## **Creative and Critical Skills Enhancement**

**Course objective:** The objective of this course is to acquaint students with the conceptual understanding of creativity and critical thinking and help them in using the same for better decision making.

## **Course contents:**

Creativity: introduction, creative folk attributes, blocks to creativity, techniques for generating new ideas, creative designing; Critical Thinking and problem solving: Thinking out of the box, brainstorming sessions, group problem solving; Emotional Intelligence: Self awareness using Johari window, self management and self discipline, EQ self assessment; Personality Identification: Personality type using personality tests, choice of career according to personality type; Professional communication skills: Public speaking, interview skills, group discussion, presentation and writing skills

## **References:**

Edwards, B. Drawing on The Right Side of the Brain. Souvenir Press. 4th edition

Goleman, D. Emotional Intelligence. Bloomsbury Publishing India Pvt. Ltd. 2017

Greenberg, J. Behaviour in Organizations. Pearson Education. 10th edition

Murphy, H. A. Effective Business Communication. McGraw Hills. 7th edition

Robbins, S. P., Judge, T. A., & Vohra, N. Organization Behaviour. Pearson Education.13th edition

Sinha, K. K. Business Communication. Galgoia Publishing Co.

# Semester- II

# **Open Elective**

# **<u>Rural Community Engagements-I :-</u>**

| 1. Rural Society,                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Transformation and                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| PanchayatiRaj :- Dynamics of R     | Rural Society, Panchayati Raj System:Social, Economics                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                    | Political and Cultural Community Goal Setting: SAGY,<br>MPLADS and UBA.                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 2. Participatory Learning, Social, |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Mapping Resource Mapping :-        | Approaches and Methods, Community Project Proposal<br>and Project Management, Concept and Steps, Thematic<br>Maps, Social Maps, Transect Walk, Seasonal Map,<br>Natural and Human Resource Mapping and<br>Management, Ethnographic Research.                                                                                                                                                                                                       |  |  |  |
| 3. Rural Resilience and            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Resource Efficiency :-             | Vulnerability, Rural Resilience- Risk Reduction, Role<br>and Responsibilities Rehabilitation: Social, Physical<br>and Psychological aspects increasing efficiency in<br>Water, Energy, Sanitation and Waste (Solid and Liquid)<br>Management.                                                                                                                                                                                                      |  |  |  |
| 4. Rural Institutions Close        |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| to Community :-                    | Engagement with School of competency<br>enhancement/Street Committee for resource<br>efficiency/Health Centre/ Panchayat/ Gram Sabha/<br>SHGs Awareness: Rural Health Management,<br>Indigenous or Folk Medicine & Hygiene/Sports/Rights/<br>Policies &Programmes/Transparency/Corruption<br>/Social Benefits, addressing issues in inclusive<br>development and inclusive identification of<br>beneficiaries, improving implementation efficiency |  |  |  |

while plugging leakages in benefit schemes, Direct Benefit Transfer.

## **OPEN ELECTIVEPAPER**

## Semester -III

## **OE** Competency Mapping

Maximum Marks: 50 Internal: 50 Credits: 02

**Objectives:** -The objective of the course is to provide both theoretical and application-oriented inputs on competency mapping and developing mapped competencies and understand the various approaches towards building a competency model

**Note:** For internal evaluation the students will be evaluated by the concerned teachers on the criteria such as – written test, class attendance, assignment writing, presentation, viva-voce etc.

## **Course Contents:**

**Competency**: Concept and definition of competency, Characteristics of competency, Types of competencies – generic/specific, threshold/performance, and differentiating and technical, managerial and human, competency culture: Context and Relevance of competencies in modern organizations. **Competency mapping** :process of competency mapping, approaches of competency mapping, **competency modeling** : phases of competency model, classification of competency models ,iceberg's model of competency, **competency Assessment** : perquisites for competency assessment, process of competency assessment, Techniques used in assessment : MAP, MBTI, FIRO-B, SPIRO-M profile, 360 degree feedback.

## Suggested Readings:

- 1. The Handbook of Competency Mapping: Understanding, Designing and Implementing Competency Models in Organizations, SanghiSeema. Sage Publications Pvt. Ltd -2007
- 2. Competency based HRM Shermon, Ganesh. Tata Mc Graw Hill 2004
- 3. 360 degree feedback, competency mapping &assessment centers ,Sharma, Radha R. , Tata Mc Graw Hill – 2003
- 4. Competency based Human resource management, Srinivas R. Kandula , PHI publications.

## Semester- III

## **Social Media Analytics**

## **Course Objective**

The course aims at developing understanding of social media analytics & its various tools. It aims to introduce the necessary theories and the state-of-the art techniques in web mining, networks analysis and information retrieval to study emerging problems with social media. These problems include information diffusion, recommendations, behavior analysis, and event analytics in social media. The ultimate goal of this course is to sharpen problem solving skills of the students, and prepare them with this unique set of expertise for the increasing demands in IT industry and for in-depth advanced research.

## **Course Content**

Introduction to Social Media Listening, role, structure and evaluation of social media conversation

Opinion Science and Dynamics: Evaluation and judgement of social media contributions, online social intelligence

Applying aspects of social media monitoring to business decisions

Key Social Media Metrics: Graph Essentials: Graph theory and Centrality Measures, Network Analysis: and Data Application Program Interface(API), Centralization and Social Theory, Network Statistical Models, Social Media Clusters: Natural Language Processing, Fake News, Influence, Subgroup Analysis, Sentiment Analysis,

## Suggested Reading

"Social Network Analysis with Applications": Ian McCulloh, Helen Armstrong and Anthony Johnson, Wiley, 2013.

"Social Media Mining: An Introduction", Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu, Cambridge University Press, 2014.

Mining the Social Web". 2nd Edition. Matthew A. Russell, O'Reilly Media. 2013.

Social media analytics: effective tools for building, interpreting & using metrics, Sponder, Marshall Mc Graw Hill education.

Social media Analytics, Techniques and Insights for extracting business value out of Social media, Gains, Matthew; Kohirkar, Avinash Pearson

10(750)

## Semester- III

# **Rural Community Engagement-II:-**

# 5.Gram Panchayat Development

| and Village Disaster Management Plan: | Making of Gram Panchayat Development Plan<br>including aspects and process of preparation of<br>Village Disaster Management Plan, village<br>livelihoods, rural tourism, entrepreneurship,<br>appropriate technology access including<br>digitized transactions.                                                                                          |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6. Rural Field Engagement :-          | Community Project and Participatory Rural<br>Appraisal, Land and Human Resource Mapping<br>and Action Research with Community<br>Organization. On field Learning: Preparation of<br>Gram Panchayat Development Plan Village<br>Resource Planning, Participation in Agri/Craft<br>Operations and Value addition in village,<br>Working with SHGs and CBOs. |

## SYLLABUS FOR ONE YEAR CERTIFICATE COURSE IN COMMUNICATION SKILLS, Session 2019-20

## SCHEME OF STUDY

## Name of the Paper

Periods/Week

| 1. | Oral Communication    | 4 Periods |
|----|-----------------------|-----------|
| 2. | Written Communication | 4 Periods |

3. Personality Development 4 Periods

# SCHEME OF EXAMINATION

|    | Name of the Paper       | No. of Paper | Marks  | Time  |
|----|-------------------------|--------------|--------|-------|
| 1. | Oral Communication      |              | 60+15* | 3 Hrs |
| 2. | Written Communication   |              | 60+15* | 3 Hrs |
| 3. | Personality Development |              | 60+15* | 3 Hrs |

\* 60 marks for External Examination and 15 marks for Internal Assessment.

## Paper-I - Oral Communication

## Time: 3 Hours

## Max. Marks: 60 Internal Assessment : 15

- Note: 1. Nine questions will be set in all by the examiner and the candidates are required to attempt five questions in all including one compulsory question.
   Question No. 9 is compulsory consisting of short answer type questions and spread over the entire syllabus. Phonetic Transcription (10 Marks), other short answer type questions (10 Marks)
   The remaining eight questions are to be set from 4 units, at least two questions from each unit. The candidate is required to attempt four questions, selecting at least one question (10 marks each) from each unit. (10 \* 4 = 40 Marks)
- **UNIT-I:** Communication: Meaning, Nature, Importance and Purpose of Communication, Types of Communication, Process of Communication, Communication Network in an Organisation, Strategy for Effective Communication, Verbal and Non-Verbal Communication, Barriers to Communication.
- **UNIT-II:** The Process of Listening, Barriers to Listening, Types of Listening, Benefits of Effective Listening, Note Taking ad Note Making.
- **UNIT-III:**Spoken English in India, The Organs of Speech, Description and Articulation of English Speech Sounds, Syllables and Stress (Weak Forms, Intonation), Connected Speech, Spelling and Pronunciation, International Phonetic Alphabet Transcription of Received Pronunciation of Words as per the Oxford Advanced Learners Dictionary of H.S. Hornby.
- **UNIT-IV:**Presentation Skills; Interview Skills- Preparing for an Interview, Interview Techniques, Public Speaking, Preparing the Speech, Organising the Speech, Delivering the Speech.

## **Classroom Practice:**

- Greeting and introducing.
- Practising Short Dialogues.
- Group Discussions, Seminars/Paper-Presentations.
- Listening News/Conversations/Telephonic Conversation.
- \* Internal assessment will be marked on the basis of Presentations in the class. Suggested Readings:
- 1. Sethi, J & et al. A Practice Course in English Pronunciation, Prentice Hall of India, New Delhi.
- 2. Sen, Leena. Communication Skills, Prentice Hall of India, New Delhi.
- 3. Prasad, P. Communication Skills, S.K. Kataria & Sons.
- 4. Bansal, R.K. and J.B. Harrison. Spoken English, Orient Language.
- 5. Roach Peter. English Phonetics and Phonology.
- 6. A.S. Hornby's. Oxford Advanced Learners Dictionary of Current English, 7th Edition.

## Paper-II - Written Communication

## Time: 3 Hours

## Max. Marks: 60 Internal Assessment : 15

**Note:-** 1. Nine questions will be set in all by the examiner and the candidates are required to attempt five questions in all including one compulsory question.

2. Question No. 9 is compulsory consisting of short answer type questions and spread over the entire syllabus. (20 marks)

3. The remaining eight questions are to be set from 4 units, at least two questions from each unit. The candidate is required to attempt four questions, selecting at least one question from each unit. (10 \* 4 = 40 Marks)

- **UNIT-I:** Reading Skills: Purpose, Process, Methodologies Strategy, Reading Comprehension.
- **UNIT-II:** Effective Writing Skills: Elements of Effective Writing, Main Forms of Written Communication: Agenda, Minutes, Notices, Writing of CV, Memo, Drafting an Email, Press Release. Correspondence: Personal, Official and Business, Report Writing, Dialogue writing, Essay writing.
- **UNIT-III:** Idioms and Phrases, Words Often Confused, One Word Substitutes, Prefixes, Bases and Suffixes (Derivational & Inflectional), Idioms and Phrases.
- **UNIT-IV:**Remedial Grammar and Usage, Important Aspects of English Grammar and Usage, Phrases and Clauses.

## **Classroom Practical:**

- Based on entire syllabus.
- \* Internal assessment will be marked on the basis of writing tests in the class.

## Suggested Readings:

- 1. Prasad, P. The Functional Aspects of Communication Skills, Delhi.
- 2. Sen, Leena. Communication Skills, Prentice Hall of India, New Delhi.
- 3. McCarthy, Michael. English Vocabulary in Use, Cambridge University Press.
- 4. Rajinder Pal and Prem Lata. English Grammar and Composition, Sultan Chand Publication.

## Paper-III – Personality Development

## Time: 3 Hours

## Max. Marks: 60 Internal Assessment : 15

**Note:-** 1. Nine questions will be set in all by the examiner and the candidates are required to attempt five questions in all including one compulsory question.

2. Question No. 9 is compulsory consisting of short answer type questions and spread over the entire syllabus. (20 marks)

3. The remaining eight questions are to be set from 4 units, at least two questions from each unit. The candidate is required to attempt four questions, selecting at least one question from each unit. (10 \* 4 = 40 Marks)

- **UNIT-I:** Soft Skills: Improving soft skills; Personality Development-Personality Analaysis, Vivekananda's Concept of Personality Development, Personality Traits; Personality Types.
- **UNIT-II:** Career Planning- Benefits; Motivation and Achieving goals; SWOT Analysis, Team Building and Team work.
- **UNIT-III:** Values-Power of Values, Personal Values, Cultural Values, Social Values, Etiquette; Classification of Etiquette, Significance of Self-discipline.
- **UNIT-IV:** Time Management- Analysis of Time Matrix, Effective Scheduling; Stress Management-Effects of Stress; Kinds of Stress, Sources of Stress.
- \* Internal Assessment will be marked on the basis of Questions, Group Activity and Self-Assessment test.

## Suggested Readings

- 1. Alex, K. (2010) Soft Skills, S. Chand Publishing, New Delhi.
- 2. Mitra, Barun K. 2011 Personality Development and Soft Skills, Oxford University Press.

# Department of Social Work Kurukshetra University Kurukshetra

## Syllabus of Master of Social Work

(Choice Based Credit System) W.E.F.2016-17

| : | 03 Hours                                     |
|---|----------------------------------------------|
| : | 100 Marks                                    |
| : | 80 Marks                                     |
| : | 20 Marks, Division of Marks as given below:- |
|   | :<br>:<br>:                                  |

One Test / Seminar: 50% (For Each Paper) One class Test: 25% (One Period Duration)

Attendance: 25%, Marks of Attendance will be given as under:-

| * | 91% onwards | : | 05 Marks |
|---|-------------|---|----------|
| * | 81% To 90%  | : | 04 Marks |
| * | 75% To 80%  | : | 03 Marks |
| * | 70% To 74%  | : | 03 Marks |
| * | 65% To 69%  | : | 01 Marks |

\* For students engaged in co-curricular activities of the University only/ authenticated medical ground duly approved by the concerned Chairperson.

## Scheme of Examination for Master of Social of Work

The MSW (Master of Social Work) Examination has been divided into four semesters spread over two years. Every student has to pass 132 Credit [112 Compulsory + 16 Optional Credit and 4 Credit (2 in semester –II and 2 in semester –III) from Optional Elective Paper from Other Departments] out of 196 credit is necessary to earn the degree under the new scheme i.e. Choice Based Credit System.

However, the choice of Optional credit is subjected to the availability of teaching faculty in the Department. The paper scheme detail semester – wise is as follow:-

| Sr. No.       | Name of the Subject<br>/Paper                         | No.<br>of  | Teaching | Scheme (Hrs. | /Week)  | Examination Scheme<br>(Marks) |                            |       |
|---------------|-------------------------------------------------------|------------|----------|--------------|---------|-------------------------------|----------------------------|-------|
|               |                                                       | cred<br>it | L        | T            | Р       | (Sem. Theory<br>exam)         | Internal<br>Assessme<br>nt | Total |
| Master of Soc | ial Work (MSW) Seme                                   | ster-l     |          |              |         |                               |                            |       |
| MSW(C) -101   | Society and Current<br>Social Problems                | 4          | 4        |              |         | 80                            | 20                         | 100   |
| MSW(C) -102   | Human Growth and<br>Development-I                     | 4          | 4        |              |         | 80                            | 20                         | 100   |
| MSW(C)- 103   | Social Work Profession:<br>Philosophy and<br>Concepts | 4          | 4        |              |         | 80                            | 20                         | 100   |
| MSW(C)- 104   | Social Case Work-I                                    | 4          | 4        |              |         | 80                            | 20                         | 100   |
| MSW(C)- 105   | Social Group Work-I                                   | 4          | 4        |              |         | 80                            | 20                         | 100   |
| MSW(C)- 106   | Community<br>Organization and Social<br>Action-I      | 4          | 4        |              |         | 80                            | 20                         | 100   |
| MSW(C)- 107   | *Field Work Practicum                                 | 8          |          |              | 8x2= 16 | 175                           | 25                         | 200   |
|               | Total (A)                                             | 32         |          |              |         |                               |                            | 800   |

## \* Field Work (Detail of marks)

- External Viva-Voce: 150
- Organizational Visits: 25
- Fieldwork Internal Assessment: 25

| Master of Soc | ial Work (MSW) Seme                                                                 | ster-II |   |             |     |    |     |
|---------------|-------------------------------------------------------------------------------------|---------|---|-------------|-----|----|-----|
| MSW(C) -201   | Social Justice and Social<br>Legislation in the New<br>Millennium (21st<br>Century) | 4       | 4 | <br>        | 80  | 20 | 100 |
| MSW(C) -202   | Human Growth and<br>Development-II                                                  | 4       | 4 | <br>        | 80  | 20 | 100 |
| MSW(C) -203   | Health Care, Needs and<br>Services                                                  | 4       | 4 | <br>        | 80  | 20 | 100 |
| MSW(C) -204   | Social Case Work-II                                                                 | 4       | 4 | <br>        | 80  | 20 | 100 |
| MSW(C) -205   | Social Group Work-II                                                                | 4       | 4 | <br>        | 80  | 20 | 100 |
| MSW(C) -206   | Community<br>Organization and Social<br>Action-II                                   | 4       | 4 | <br>        | 80  | 20 | 100 |
| MSW(C) -207   | *Field Work Practicum                                                               | 8       |   | <br>8x2= 16 | 175 | 25 | 200 |
|               | **Open Elective Paper                                                               | 2       | 1 | <br>        | 50  |    | 50  |
|               | Total (B)                                                                           | 34      |   |             |     |    | 850 |

## \* Field Work (Detail of marks)

- External Viva-Voce: 150
- Summer Placement: 25
- Fieldwork Internal Assessment: 25

\*\* Open Elective Paper (to be opted out of various subjects offered by faculty of Social Sciences.)

| MSW(C) -301      | cial Work (MSW) Seme<br>Social Policy and                    | 4       | 4          |                |               | 80                       | 20         | 100      |
|------------------|--------------------------------------------------------------|---------|------------|----------------|---------------|--------------------------|------------|----------|
| IVISVV(C) - 30 I | Planning: Current<br>Issues and Strategies                   | 4       | 4          |                |               | 80                       | 20         | 100      |
| MSW(C) -302      | Administration of Social Welfare                             | 4       | 4          |                |               | 80                       | 20         | 100      |
| MSW(C) -303      | Social Work Research and Statistics-I                        | 4       | 4          |                |               | 80                       | 20         | 100      |
| MSW(C) -304      | Mental Health Care,<br>Services and<br>Counseling            | 4       | 4          |                |               | 80                       | 20         | 100      |
| Candidate h      | as to choose any one                                         | Spec    | ializatio  | on out of G    | oup I to V du | iring 3 <sup>rd</sup> ai | nd the sam | e has te |
|                  | d in 4 <sup>th</sup> semester.                               | -6      |            |                |               |                          |            |          |
|                  | an Resource Management                                       | , Indus | trial Rela | ations and Lak | our Welfare   |                          |            |          |
| MSW(E) -305      | Human Resource<br>Management and<br>Industrial Relations-I   | 4       | 4          |                |               | 80                       | 20         | 100      |
| MSW(E) -306      | Labour Welfare and<br>Labour Legislations-I                  | 4       | 4          |                |               | 80                       | 20         | 100      |
|                  | ly and Child Welfare                                         |         |            |                |               |                          | ·          | -        |
| MSW(E) -307      | Family Dynamics:<br>Issues & Needs-I                         | 4       | 4          |                |               | 80                       | 20         | 100      |
| MSW(E) -308      | Developmental<br>Services for Women<br>and Children-I        | 4       | 4          |                |               | 80                       | 20         | 100      |
| Group-III Med    | lical And Psychiatric Socia                                  | l Work  |            | ·              |               | •                        | •          |          |
| MSW(E) -309      | Policy and<br>Development of Health<br>Care-I                | 4       | 4          |                |               | 80                       | 20         | 100      |
| MSW(E) -310      | Psycho-social<br>Perspectives on Mental<br>Health-I          | 4       | 4          |                |               | 80                       | 20         | 100      |
| Group-IV Com     | munity Development                                           |         |            | ·              | ·             |                          | •          |          |
| MSW(E) -311      | Rural Community<br>Development: Policies<br>and Programmes-I | 4       | 4          |                |               | 80                       | 20         | 100      |
| MSW(E) -312      | Urban Community<br>Development: Policies<br>and Programmes-I | 4       | 4          |                |               | 80                       | 20         | 100      |
| Group-V Crim     | inology and Correctional                                     | Admini  | istration  |                | -<br>-        |                          | ·          | -        |
| MSW(E) -313      | Crime and Criminal<br>Justice-I                              | 4       | 4          |                |               | 80                       | 20         | 100      |
| MSW(E) -314      | Institutional Services &<br>Rehabilitation of<br>Criminals-I | 4       | 4          |                |               | 80                       | 20         | 100      |
| MSW(C)- 315      | *Field Work Practicum                                        | 8       |            |                | 8x2= 16       | 175                      | 25         | 200      |
|                  | **Open Elective Paper                                        | 2       | 1          |                |               | 50                       |            | 50       |
|                  | Total (C)                                                    | 34      |            |                |               |                          |            | 850      |

## \* Field Work (Detail of marks)

- External Viva-Voce: 150
- Field Work Presentation: 25
- Fieldwork Internal Assessment: 25

\*\* Open Elective Paper (to be opted out of various subjects offered by faculty of Social Sciences.)

| Master of So       | cial Work (MSW) Seme                                          | ster-IV | 1         |                     |               |      |    |      |
|--------------------|---------------------------------------------------------------|---------|-----------|---------------------|---------------|------|----|------|
| MSW(C) -401        | Dynamics of Social<br>Development in View<br>of Globlization  | 4       | 4         |                     |               | 80   | 20 | 100  |
| MSW(C) -402        | Population,<br>Environment &<br>Disaster Management           | 4       | 4         |                     |               | 80   | 20 | 100  |
| MSW(C) -403        | Social Work Research and Statistics-II                        | 4       | 4         |                     |               | 80   | 20 | 100  |
| MSW(C) -404        | Emerging Areas of<br>Social Work Practice                     | 4       | 4         |                     |               | 80   | 20 | 100  |
| Group-I Hum        | an Resource Managem                                           | ent, In | dustrial  | <b>Relations</b> an | d Labour Welf | fare |    |      |
| MSW(E) -405        | Human Resource<br>Management and<br>Industrial Relations-II   | 4       | 4         |                     |               | 80   | 20 | 100  |
| MSW(E) -406        | Labour Welfare and Labour Legislations-II                     | 4       | 4         |                     |               | 80   | 20 | 100  |
| Group-II Fam       | ily and Child Welfare                                         |         |           |                     | ·             |      | -  |      |
| MSW(E) -407        | Family Dynamics:<br>Issues & Needs-II                         | 4       | 4         |                     |               | 80   | 20 | 100  |
| MSW(E) -408        | Developmental<br>Services for Women<br>and Children-II        | 4       | 4         |                     |               | 80   | 20 | 100  |
| Group-III Med      | dical And Psychiatric So                                      | cial W  | ork       |                     |               |      |    |      |
| MSW(E) -409        | Policy and<br>Development of Health<br>Care-II                | 4       | 4         |                     |               | 80   | 20 | 100  |
| MSW(E) -410        | Psycho-social<br>Perspectives on Mental<br>Health-II          | 4       | 4         |                     |               | 80   | 20 | 100  |
| Group-IV Con       | nmunity Development                                           |         |           |                     |               |      |    |      |
| MSW(E) -411        | Rural Community<br>Development: Policies<br>and Programmes-II | 4       | 4         |                     |               | 80   | 20 | 100  |
| MSW(E) -412        | Urban Community<br>Development: Policies<br>and Programmes-II | 4       | 4         |                     |               | 80   | 20 | 100  |
| Group-V Crim       | inology and Correction                                        | al Adn  | ninistrat | tion                | ·             |      | -  |      |
| MSW(E) -413        | Crime and Criminal<br>Justice-II                              | 4       | 4         |                     |               | 80   | 20 | 100  |
| MSW(E) -414        | Institutional Services &<br>Rehabilitation of<br>Criminals-II | 4       | 4         |                     |               | 80   | 20 | 100  |
| MSW(C)- 415        | *Field Work Practicum                                         | 8       |           |                     | 8x2= 16       | 175  | 25 | 200  |
|                    | Total (D)                                                     | 32      |           |                     |               |      |    | 800  |
| <b>GRAND TOTAL</b> | (A+B+C+D)                                                     | 132     |           |                     |               |      |    | 3300 |

## \* Field Work (Detail of marks)

- External Viva-Voce: 150
- Block Placement: 25
- Fieldwork Internal Assessment: 25

## Paper Code -MSW(C)-106

## **Community Organization & Social Action-I**

Credits : 04

Max. Marks.: 100Theory: 80Internal Assessment : 20Time 3 Hours

**Objectives:** To make the students

- 1. To understand the basic elements of community organization practice
- 2. To enhance analytical understanding of the approaches/models and strategies for community organization practice.
- 3. To understand the critical issues in community organization process.
- 4. To develop skills necessary to engage in community organization practice.

## Unit-1

- Community and community engagement: concept, nature, types and approaches.
- Community Organization- concept, nature, objectives, values, scope, process and related concepts: community work, community development, community action.
- Community organization as a method of social work intervention.

## Unit- II

- Principles of community organization
- Strategies in community organization such as bargaining, confronting, collaborating, problem-solving, educating, social advocacy, joint action, persuasion and campaign.
- Skills in and techniques of community organization practice.
- Participative learning and social mapping: concept, approaches and steps; thematic mapping, social mapping, transact walk, resource mapping natural and human resource mapping.
- Roles of social worker in community organization.

## Unit- III

- W. Biddle's enabling/encouraging approach and Saul Alinsky's dynamics of power approach to community organization/development.
- Models of community organization- locality development model, social planning model and social action model.
- Theory of community engagement; school, family and community partnership.

## Unit- IV

- Problems in development of community work in India- such as problems of community welfare councils, community chests, public relations and community participation.
- Community based disasters; risk and risk reduction role and responsibilities.
- Practical records in community settings and their discussions.

Note.

- The examiner will set 9 questions in all.
- Candidate will be required to attempt five questions.
- Question No. 1 will be compulsory, consisting of 5 short answer type questions covering all the units of the whole syllabus, to be answered with in 100 words. Each question carry 4 marks (5X4=20 marks).
- Candidates are required to attempt other 4 long answer type questions, by selecting one from each of the four units. Each unit shall have two questions of 15 marks each. (4X15=60 Marks)

## Refrences

| 1. Brager, G. and Specht, H., 1969   | Community Organisation,New York: Columbia University Press.                                                                                                  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Brown, M. J. (2006).              | Building powerful community organizations: A personal guide to creating groups that can solve problems and change the world. Arlington, MA: Long Haul Press. |
| 3. Chanan, G.2013                    | Rethinking Community Practice, Rawat                                                                                                                         |
| 4.Eric Mann. 2011                    | Publications, Jaipur<br>Playbook for Progressives: 16 Qualities of a<br>Successful Organizer Beacon Press.                                                   |
| 5. Gangrade, K. D. 1971.             | Community Organization in India, Mumbai;<br>Parkashan, 1971.                                                                                                 |
| 6. Gangrade, K. D. 2001.             | Working with communities at grass root level:<br>Strategies and Programmes, Radha Publications.                                                              |
| 7. Gilchrist, A and Taylor, M., 2012 | The Short Guide to Community Development,<br>Rawat Publication, New Delhi                                                                                    |
| 8. Karamer, R.M. & Spech,H.1983      | Reading in Community Organization Practice-Hall Inc.                                                                                                         |
| 9. Loretta Pyles, 2009               | Progressive Community Organizing: A Critical Approach for a Globalizing World, Routledge.                                                                    |

| 10. Lakshmipathi Raju M 2012                                                                                                             | Community Organization and Social Action: Social<br>Work Methods and Practices, Regal Publications,<br>N. Delhi                                                                                                                                                                 |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 11. M, Warren. and K, Mapp.2011                                                                                                          | A Match on Dry Grass: Community Organizing as a Catalyst for School Reform Oxford.                                                                                                                                                                                              |  |  |  |  |
| 12. Mahatma Gandhi National<br>Council of Rural Education, 2018                                                                          | Rural Immersion: A Manual for Rural Engagement.<br>Ministry of Human Resource Development, Govt.<br>of India                                                                                                                                                                    |  |  |  |  |
| 13. McMiller,W.1945                                                                                                                      | Community Organisation for Social Welfare,<br>Chicago: University of Chicago Press.                                                                                                                                                                                             |  |  |  |  |
| 14. Murphy C. G.1954                                                                                                                     | Community Organization Practice, Boston;<br>Houghton Miffin Co.                                                                                                                                                                                                                 |  |  |  |  |
| <ul><li>15. Perlman, R. and Gurin, A.1972</li><li>16. Popay J, Attree P, Hornby D,<br/>Milton B, Whitehead M, French B, et al.</li></ul> | Community organization and social planning. New<br>York: John Wiley<br>Community engagement in initiatives addressing<br>the wider social determinants of health: a rapid<br>review of evidence on impact, experience and<br>process. Lancaster: University of Lancaster; 2007. |  |  |  |  |
| 17. Ross M.G.1955                                                                                                                        | Community Organisation:Theory,Principles and Practice, New York: Harper and Brothers.                                                                                                                                                                                           |  |  |  |  |
| <ul><li>18. Rubin &amp; Rubin 2008</li><li>19. Samuel H. Taylor and<br/>Robert W. Roberts 2013</li></ul>                                 | Community Organising and Development, Printice<br>Hall. Inc<br>Social Work Practice with Communities, Rawat<br>Publications, New Delhi                                                                                                                                          |  |  |  |  |
| 20. Sengupta, P.K.1976<br>21. Sheridan K, Tobi P. 2010                                                                                   | Community Organization Process in India, Kiran<br>Publishers.<br>Towards a community engagement strategy: some<br>practical notes. Br J Healthcare Manag ;16:123–8.                                                                                                             |  |  |  |  |

| 22. Si Kahn. 2008                  | Creative Community Organizing: A Guide for<br>Rabble-Rousers, Activists, and Quiet Lovers of<br>Justice, Berrett-Koehler.                                                            |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23. Siddique, H.Y.1997             | Working with Communities: An Introduction to<br>Community Work, New Dehli, Hira Publications.                                                                                        |
| 24. Specht, H & Karmer: R.M.; 1969 | Reading in Community; Englewood Cliffs: Prentice Hall.                                                                                                                               |
| 25. Weil,M (ed.) 1996              | Community Practice: Conceptual Models, New York; The Haworth Press.Inc.                                                                                                              |
| 26. Zastrow Charles: 1978.         | Introduction to social Welfare Institution Social<br>Problems, services & Current Issues (Social work<br>Community Practices Part-3 Chapter-10) Ontario:<br>The Dorsey Press. Delhi. |

## **Community Organization & Social Action - II**

Credits: 04Max. Marks.100Theory: 80Internal Assessment : 20Time 3 Hours

## Objectives

- 1. To understand the basic elements of community development / social action and mass communication.
- 2. To enhance analytical understanding of the approaches/models and strategies for community development/social action practice.
- 3. To understand the critical issues of local self government and community power structure for effective community organization practice.
- 4. To develop skills necessary to engage in community organization/social action practice.

## Unit-I

- Rural and Urban Development- meaning, concept, scope and Current Developmental programmes
- Slum Community: concept, characteristics, problems and current schemes and programmes for slum dwellers. Role of Social Worker in Slum Community.
- Study of rural institutions: Engagement with School, Street Committee, Health Centre, Panchayat and Self Help Groups.

## Unit- II

- Community Project and Participatory Rural Appraisal: Features, Techniques and uses.
- Introduction to Local Self- Government (Rural &Urban)- meaning, attributes, organization and function.
- 73<sup>rd</sup> & 74<sup>th</sup> Amendments of India Constitution.
- Community Power Structure concept, sources and its importance for community organization.

## Unit- III

- Community Empowerment-concept, principles, process and barriers
- Different types of conflicts like communal, regional and caste conflicts.
- Social Action- concept, strategies, steps and models
- Social Movements Narmada Bachao Andolan, Chipko Movement, J. P Movement in Bihar.

## Unit- IV

- Mass communication-concept and methods
- Models of mass communication.
- Use of mass media for community organization/social action.
- Discussion on practical records in different community setting.

## Group-III Paper Code –MSW(E)-309

## **Policy and Development of Health Care-I**

| Credits                    | :04  |
|----------------------------|------|
| Max Marks.                 | 100  |
| Theory                     | : 80 |
| <b>Internal Assessment</b> | :20  |
| Time: 3 H                  | ours |

## **Objectives:**

- 1. To gain knowledge about the concept of Health and Mental Health as an important part of life and become familiar with the policy and programmes in health and mental health care.
- 2. To develop an understanding of minor and major health problems with a focus on psychiatric disorders.
- 3. To understand the relevance and types of social work interventions in the fields of health and mental health.
- 4. To develop skills to function as Medical and Psychiatric social workers in child & adult, school, family and psychiatric setups.

## UNIT-I

- Concept of Health: individual and community health.
- Health and Social Work, medical social work: meaning, nature, scope.
- Health problems-economic considerations, social and cultural aspects.
- National Health Policy: national health programmes a critical analysis.
- Identification of needs of health and other related services in India.

## UNIT-II

- Major health problems of the disadvantaged such as T.B., leprosy, malaria and other communicable diseases.
- Psycho-social effects of disabilities on growth and development.
- Specialized services-problems of the deaf, blind and orthopedically handicapped.

## UNIT-III

- Review of mental health services, economic aspects and effectiveness of various models of treatment.
- Psycho-Social treatment & therapies i.e. RET, Client Centered therapy, Gestalt therapy, Cognitive behaviour therapy.
- Health work in the hospitals: work with patient, individual groups and community, family and collaterals.

## UNIT-IV

- Rehabilitation services-concept, nature and services for psychiatric and the physically disabled.
- Prevention of mental health problems and promotion of mental health.
- Role and functions of Social Workers in hospital and in community health.
- Role of Social Workers, individually and as a part of a team of professionals.
- Role of international organizations in health care.

## Group-III Paper Code –MSW(E)-310

## **Psycho-Social Perspectives of Mental Health-I**

| Credits                    | :04  |
|----------------------------|------|
| Max Marks.                 | 100  |
| Theory                     | : 80 |
| <b>Internal Assessment</b> | :20  |
| Time: 3 Hours              |      |

## **Objectives:**

- 1. To gain knowledge and develop an understanding of minor & major psychiatric disorders, their causes, symptoms, diagnosis manifestations and management.
- 2. To develop appropriate skills and attitude required for the practice of mental health and psychiatric social work.
- 3. To develop a critical perspective of health care and mental health care services and programmes in India and in the world.

## UNIT-I

- Concept of normality and abnormality.
- Concept of mental health, Epidemiology of mental illness: Extent and prevalence of mental disorders at National and International Levels.
- Classification of mental disorders: WHO approach (ICD-10) and American Psychiatric Association approach (DSM-IV & IV-TR).
- Scope of Psychiatric Social Work and role of Psychiatric Social Worker.

## UNIT-II

- Psychoneurotic disorders: magnitude of the problem worldwide and analysis of the problem from different perspectives.
- Delirium and Dementia: Alzheimer's disorder: causes, symptoms & treatment.
- Psychoneurotic disorders: anxiety states, hysteria, obsessive compulsive reactions; Causes, symptoms and treatment
- Neurotic depression and neurasthenia: symptoms and treatment methods.
- Somatoform disorders: conversion disorder (Hysteria), Hypochondrias is, Pain disorders; causes, symptoms, types and treatment.

## UNIT-III

- Psychotic reactions-Schizophrenia, Manic Depressive Psychosis (MDP) causes, types and treatment.
- Paranoid State: types, symptoms, treatment and rehabilitation
- Epilepsy-types and management
- Mental Retardation causes, types-management and rehabilitation, role of family and parents.
- Personality disorders: nature, causes and types; concept of gender identity.

## UNIT-IV

- Practice of Psychiatric Social work in different settings: family services agencies, child welfare agencies, school setting, general hospitals, de-addiction centres.
- Mental Status Examination, case recording, case preparation and presentation.
- Major approaches in psychiatric social work, Community mental health, community psychiatry.

## Group-III Paper Code –MSW(E)-409

| Policy and Development of Health Care-II | [        | Credits        |      | :04 |
|------------------------------------------|----------|----------------|------|-----|
|                                          | Max Ma   | arks.          | 100  |     |
|                                          | Theory   |                | : 80 |     |
|                                          | Internal | l Assessment   | : 20 |     |
|                                          | Time:    | <b>3 Hours</b> |      |     |

## **Objectives:**

- 1. To develop a critical perspective of health care services in programmes in the context of health scenario in India.
- 2. To develop a holistic and integrated approach to social work practice in the field of health.
- 3. To develop a scientific attitude to the health conditions
- 4. Gain understanding of relevance, domains and nature of social work interventions in health and psychiatric settings.

## UNIT-I

- Emotional aspects of illness, social perception of illness.
- Indicators of health status of people. Concept of patient and his role.
- Health Care Services in India: structure and functions, primary health care; concept, issues availability and problems. National Rural Health Mission (NRHM). Role of NGOs in providing health services.
- Polyclinic, nursing homes, quacks and rural health services
- Different systems of medicine and their role: Ayurveda, Homeopathy, Unani and Allopathy.

## UNIT-II

Medical conditions requiring intervention cancer, ulcers, Burns, Poisoning snake

bite.

- Cancer: types, awareness and treatment.
- Cancers of reproductive organs, breast cancer, uterus.
- Role of Social Work in prevention.

## UNIT-III

- Policy for specialized groups and diseases.
- Indian and western treatment and approaches to various psychiatric problems.

- Field instructions supervision, recording, documentation and evaluation in psychiatric social worker practice.

## UNIT-IV

- Community Health and its progress: People's participation, school health services, health insurance systems.
- Role of Social Worker in policy development for health.
- Preparing family and community for the return of the affected individual.
- Follow up, Public health and its programmes.

## Group-III Paper Code –MSW(E)-410 Psycho-Social Perspectives of Mental Health-II

| Credits                    | :04  |
|----------------------------|------|
| Max Marks.                 | 100  |
| Theory                     | : 80 |
| <b>Internal Assessment</b> | :20  |
| Time: 3 Hours              |      |

## **Objectives:**

- 1. To Understand and analyze mental health problems and services in Indian Context.
- 2. To develop non-judgmental attitudes to those experiencing problems of mental health.
- 3. To equip students for their role as Medical and Psychiatric Social Workers.

## UNIT-I

- Concept of Psychiatry and Psychopathology.
- History of mental health care in India and in western countries.
- The field of Psychiatric social work: basic concept, historical development, value concepts understanding psychiatric social work practice.

## UNIT-II

- Meaning of Sociology of mental illness
- Social concept of mental illness; mental illness as a social problem
- Patient and Society; Health, Medicine and Society
- Hospital as a social organization
- Child & Adolescent psychiatric disorders: Autism, ADHD, Temper tantruns Eating disorder, Sleep Disorder.

## UNIT-III

- Concept of therapeutic community and open mental hospital.
- Development of mental health profession and man-power, private practice, problems and limitations of treatment.
- Property rights of certified mental patient, insanity as defense.
- Community consciousness of mental health.

## UNIT-IV

- Government Policy on mental health care. Mental Health Act, 1987.
- Recent trends in mental health services: mental hospitals, psychiatric clinics, nursing homes, psychiatric emergency, team approach
- Community Mental Health and units in general hospital.
- Industrial mental health services.

## Note.

- The examiner will set 9 questions in all.
- Candidate will be required to attempt five questions.
- Question No. 1 will be compulsory, consisting of 5 short answer type questions covering all the units of the whole syllabus, to be answered with in 100 words. Each question carry 4 marks (5X4=20 marks).

### **B.Tech Instrumentation Engineering** SCHEME OF EXAMINATIONS

|             | Course title                                     | 1   |                   |   | · · · · · · · · · · · · · · · · · · · |                    | III) (w.e.f.2019-2                       | /             |           |          |          |
|-------------|--------------------------------------------------|-----|-------------------|---|---------------------------------------|--------------------|------------------------------------------|---------------|-----------|----------|----------|
| Course No.  | Credits                                          | Te  | Teaching Schedule |   |                                       | Allotment of marks |                                          |               |           | Duration |          |
|             |                                                  |     | L                 | Т | Р                                     | Total              | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total    | of Exams |
| IN-HSM-201  | Project Planning<br>Estimation and<br>Management | 2   | 2                 |   |                                       | 2                  | 40                                       | 60            |           | 100      | 3 Hrs    |
| IN-ES-203   | Basic<br>Instrumentation<br>Engineering          | 3   | 2                 | 1 |                                       | 3                  | 40                                       | 60            |           | 100      | 3 Hrs    |
| IN-PC-205   | Network Analysis                                 | 3   | 2                 | 1 |                                       | 3                  | 40                                       | 60            |           | 100      | 3 Hrs    |
| IN-PC-207   | Transducers and Applications                     | 3   | 2                 | 1 |                                       | 3                  | 40                                       | 60            |           | 100      | 3 Hrs    |
| IN-PC-209   | Linear Integrated<br>Circuits                    | 3   | 2                 | 1 |                                       | 3                  | 40                                       | 60            |           | 100      | 3 Hrs    |
| IN-PRIE-09  | Instrumentation Lab                              | 1   |                   |   | 2                                     | 2                  | 20                                       |               | 30        | 50       | 3 Hrs    |
| IN-PRNA-11  | Network Analysis<br>Lab                          | 1   |                   |   | 2                                     | 2                  | 20                                       |               | 30        | 50       | 3 Hrs    |
| IN-PRTR-13  | Transducer lab                                   | 1.5 |                   |   | 3                                     | 3                  | 30                                       |               | 45        | 75       | 3 Hrs    |
| IN-PRLIC-15 | Linear Integrated<br>Circuits Lab                | 1.5 |                   |   | 3                                     | 3                  | 30                                       |               | 45        | 75       | 3 Hrs    |
|             | Total                                            | 19  | 10                | 4 | 10                                    | 24                 | 300                                      | 300           | 150       | 750      |          |

#### B.Tech. 2<sup>ND</sup> YEAR (SEMESTER-IV) (w.e.f.2019-20)

| Course No.  | Course title                      | Credits | Te | achin | g Scheo | lule      | А                                        | llotment of   | marks     |       | Duration |
|-------------|-----------------------------------|---------|----|-------|---------|-----------|------------------------------------------|---------------|-----------|-------|----------|
|             |                                   |         | L  | Т     | Р       | Tot<br>al | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |
| IN-PC-202   | Power                             | 3       | 2  | 1     |         | 3         | 40                                       | 60            |           | 100   | 3 Hrs    |
| IN-BS-204   | Electronics-I<br>Mathematics -III | 3       | 2  | 1     |         | 3         | 40                                       | 60            |           | 100   | 3 Hrs    |
| IN-PE-206   | Control System<br>Components      | 3       | 2  | 1     |         | 3         | 40                                       | 60            |           | 100   | 3 Hrs    |
| IN-PC-208   | Electrical<br>Machines            | 3       | 2  | 1     |         | 3         | 40                                       | 60            |           | 100   | 3 Hrs    |
| IN-PC-210   | Digital<br>Techniques             | 3       | 2  | 1     |         | 3         | 40                                       | 60            |           | 100   | 3 Hrs    |
| IN-PRPE-10  | Power<br>Electronics Lab-<br>I    | 1.5     |    |       | 3       | 3         | 30                                       |               | 45        | 75    | 3 Hrs    |
| IN-PRCS-12  | Control System<br>Lab-1           | 1.5     |    |       | 3       | 3         | 30                                       |               | 45        | 75    | 3 Hrs    |
| IN-PRDT-14  | Digital Lab                       | 1       |    |       | 2       | 2         | 20                                       |               | 30        | 50    | 3 Hrs    |
| IN-PRSIM-16 | Simulation Lab                    | 1       |    |       | 2       | 2         | 20                                       |               | 30        | 50    | 3 Hrs    |
|             | Total                             | 20      | 10 | 5     | 10      | 25        | 300                                      | 300           | 150       | 750   |          |

B.Tech Instrumentation Engineering SCHEME OF EXAMINATIONS B.Tech. 2<sup>ND</sup> YEAR (SEMESTER-III) (w.e.f.2019-20)

## IN-HSM-201 Project Planning Estimation and Management

| Course No. | Course title                                     | Credits | Teaching Schedule |  |  | nedule                                   | Al            | Duration  |       |          |       |
|------------|--------------------------------------------------|---------|-------------------|--|--|------------------------------------------|---------------|-----------|-------|----------|-------|
|            |                                                  |         | L                 |  |  | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |       |
| IN-HSM-201 | Project Planning<br>Estimation and<br>Management | 2       | 2                 |  |  | 2                                        | 40            | 60        |       | 100      | 3 Hrs |

**Course Outcomes** 

The objective of this course is to familiarize the prospective engineers with basics in economics and

Management. It aims to equip the students to deal with advanced aspects of project appraisals and management aspects.

The students will learn:

- The project proposal fundamentals
- The effective demand forecast analysis and tools for statistical analysis
- The basics of economics and management practices in project funding and control

#### **PROGRAM OUTCOMES**

- 1. Graduates will be able to apply fundamental knowledge in mathematics, science, electronics and instrumentation for solving engineering problems.
- Graduates will be able to identify and analyze complex engineering problems in the areas of electronics, instrumentation and automation.
   Graduates will be able to solve open-ended technical problems and be proficient in the design, test, and implementation of electronics,
- instrumentation and control systems.
- 4. Graduates will attain skills to conduct experiments/investigations and interpret data with reference to systems and standards related to electronics and instrumentation engineering.
- 5. Graduates will have proficiency in system design tools and software packages related to electronics and instrumentation.
- 6. Graduates will have knowledge in the area of instrumentation engineering to assess and address societal, health, safety, legal and cultural issues.
- 7. Graduates will have broad education necessary to understand the impact of engineering solutions and sustainable development in environmental and societal context in the field of Instrumentation.
- 8. Graduates will be able to understand and uphold professional, ethical, and social responsibilities in Instrumentation engineering.
- 9. Graduates will be able to function efficiently as an individual or in team in process and automation industries.
- 10. Graduates will have ability to communicate effectively in written, oral and instrumentation formats to put forth solutions and prepare detailed engineering report in the process and automation industries.
- 11. Graduates will be able to apply the knowledge, skill and attitude as a team player in initiating, executing and managing projects in the areas of design, manufacture, marketing and entrepreneurship in multi-disciplinary environments.
- 12. Graduates will be able to conduct information searching and processing and develop the ability for lifetime-learning in field of Instrumentation engineering.

|     |                              |        |          |           | С       | O/PO I   | Mappin   | ıg      |       |         |        |      |  |  |
|-----|------------------------------|--------|----------|-----------|---------|----------|----------|---------|-------|---------|--------|------|--|--|
|     |                              | (S/M/W | V indica | tes strei | ngth of | correlat | tion) S- | Strong, | M-Mec | lium, W | '-Weak |      |  |  |
| COs | COs Programme Outcomes (POs) |        |          |           |         |          |          |         |       |         |        |      |  |  |
|     | PO1                          | PO2    | PO3      | PO4       | PO5     | PO6      | PO7      | PO8     | PO9   | PO10    | PO11   | PO12 |  |  |
| CO1 |                              |        |          |           |         |          |          | S       |       | S       | S      | S    |  |  |
| CO2 |                              |        |          |           |         |          |          | S       |       | S       | S      | S    |  |  |
| CO3 |                              |        |          |           |         |          |          | S       |       | S       | S      | S    |  |  |
| CO4 |                              |        |          |           |         |          |          |         |       |         |        |      |  |  |
| CO5 |                              |        |          |           |         |          |          |         |       |         |        |      |  |  |

| Course . | Assessment | methods: |
|----------|------------|----------|
|----------|------------|----------|

| Direct            | Indirect Course end survey |
|-------------------|----------------------------|
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |

## IN-HSM-201 Project Planning Estimation and Management

**Note:** The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions uniformly spread among the entire syllabus, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises

4-questions uniformly spread among the entire syllabus, asking for the derivations, numericals and applications of the various topics covered therein. The student has to **answer/ attempt 4-questions out of 4-questions in Section-A**, 2-questions out of 4-questions in Section-B and 2-questions out of 4-questions in Section-C. Section-A carry12 marks. Section-B and Section-C carry 24 marks each.

#### Module-1

Project Development Cycle: Pre-investment phase, implementation phase, operational phase. Aspects of Appraisal: Market Appraisal, Technical Appraisal, Financial Appraisal, Economic Appraisal. Objectives of investment decision making. Scouting for project ideas; Preliminary Screening, compatibility with the promoter, consistency with governmental prioritize, availability of inputs, Adequacy of the market, Reasonableness of cost, Acceptability of Risk Level.

#### Module--II

Market and Demand Analysis: Information required for Mauler and Demand Analysis, Secondary sources of information, Market Survey - Steps in sample survey, Demand Forecasting, Uncertainty in Demand forecasting, Method of Forecasting, Environmental Changes, coping with uncertainties.

Technical Analysis: Material and inputs; Product Technology; Choice of Technology, Acquiring Technology, Appropriateness, of Technology, Product Mix, Plant Capacity, Location of site.

#### Module--III

Financial Estimates: Cost of Project, Main Components, Means of financing, Planning the Capital structure of a new company, Norms of the Controller of Capital issue, Norms and requirements of All India Financial Institutions, Stock Exchange stipulation, Difficulty in raising External Finance, Designing the capital structure.

#### Module--IV

Project Planning & Control: Functions of Planning, Areas of planning, Project objectives and policies, life cycle of a project, Tools of Planning, Hierarchy of plans; Project Control- Reasons for ineffective control, variance Analysis Approach, Performance Analysis, Modern Approach to Control.

#### **Reference Books:**

1. Project Preparation, Appraisal, Budgeting Implementation by Parsanna Chandra, Tata Mc-Graw Hill.

#### B.Tech. 2<sup>ND</sup> YEAR (SEMESTER-III) (w.e.f.2019-20)

| Course<br>No. | Course title                            | Credits | Teaching<br>Schedule |   |   | 0     | Al                                          |               | Duration of |       |       |
|---------------|-----------------------------------------|---------|----------------------|---|---|-------|---------------------------------------------|---------------|-------------|-------|-------|
|               |                                         |         | L                    | T | Р | Total | Minor test<br>+<br>Curricular<br>activities | Major<br>test | Practical   | Total | Exams |
| IN-ES-<br>203 | Basic<br>Instrumentation<br>Engineering | 3       | 2                    | 1 |   | 3     | 40                                          | 60            |             | 100   | 3 Hrs |

IN-ES-203 Basic Instrumentation Engineering

#### **Course Outcomes**

- To understand basics of electrical and electronics measuring instruments
- To compute different types of errors that can occur during the measurement and to use the methods to correct the measurement errors.
- To learn the calibration of various electrical measuring instruments
- To learn the measurement of different Electrical Parameters

|     | CO/PO Mapping                                                        |
|-----|----------------------------------------------------------------------|
|     | (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak |
| COs | Programme Outcomes (POs)                                             |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 |     |     |     |     |     |     |     |     |     |      |      |      |
| CO2 |     |     |     |     |     |     |     |     |     |      |      |      |
| CO3 |     |     |     |     |     |     |     |     |     |      |      |      |
| CO4 |     |     |     |     |     |     |     |     |     |      |      |      |
| CO5 |     |     |     |     |     |     |     |     |     |      |      |      |

**Course Assessment methods:** 

| Direct            | Indirect Course end survey |
|-------------------|----------------------------|
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |

Note: The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions uniformly spread among the entire syllabus, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the entire syllabus, asking for the various topics covered therein. The student has to answer/ attempt all questions in Section-A, 2-questions out of 4-questions in Section-B and2-questions out of 4-questions in Section-C carry 24 marks each.

Module- - I

Introduction: Block diagram of measuring instruments, characteristics of instruments, classification of instruments, classification of standards, error in measurement, relative, systematic, random error, and parabolic errors.

Basic instruments: Principle, Construction, Features, Analysis & Performance of moving coil instrument (D'Arsonval Galvanometer Vibration galvanometer, flux meter, ratio meter, Meggger), a) Moving iron instruments, b) Electrodynamic instruments, c) electrostatic instruments, d) Induction Instruments.

Module- II

Measurement of energy: Energy meters for Ac circuits, theory of induction type meters, single phase induction type Watt-meters, construction, theory, operation, Two element energy meter, average demand indicator.

Module-- III

Measurement of R,L, and C: Measurement of resistance (low, medium, high).Kalvin's double bridge, bridge controlled circuits, inductance bridge (Maxwell's), Capacitance bridge (Hay's), Wein, Anderson and Schearing bridges.

Module- - IV

DC potentiometers, Basic potentiometer circuit, Compton type & multiple range potentiometer, constructional details & precision type potentiometers & their applications, AC potentiometer, Power meter, field strength meter, phase meter, vector impedance meter, Q meter, LCR bridge.

### **Reference Books:**

- 1. Electronic Instrumentation By H.S.Kalsi, TMH
- 2. Electronic Instrumentation Techniques By Cooper Halfrick, PHI

- 3. Electronic Instrumentation & Measurement By A.K.Sawhney, Dhanpat Rai & Sons
- 4. Electrical Measurements By Baldwin
- 5. Electronic Instruments and Measurement By Jones & Chin
- 6. Principles of measurement &Instrumentation by Alan S. Morris
- 7. Electrical, Electronics measurement & Instrumentation, by JB Gupta

## **IN-PRIE-09** Instrumentation Lab

| IN-PRIE-09 | Instrumentation Lab | 1 | <br> | 2 | 2 | 20 | 30 | 50 | 3 Hrs |
|------------|---------------------|---|------|---|---|----|----|----|-------|

### List of Experiments: ( A minimum of 12 experiments are to be done)

1. Determination of B-H curve of an iron ring specimen

2. Measurement of resistance using Wheat stone's bridge

3. Measurement of self/mutual inductance and coupling coefficient of iron cored coil and air cored coil

- 4. Calibration of dynamometer type wattmeter, using precision type Vernier potentiometer
- 5. Extension of range of ammeter and calibration of the extended meters using standard ammeter
- 6. Extension of range of voltmeter and calibration of the extended meters using standard voltmeter
- 7. Extension of range of a dynamometer type wattmeter using CT/PT and calibration
- of the extended meter using a standard wattmeter
- 8. Calibration of single-phase energy meter by direct loading and phantom loading at UPF
- 9. Calibration of single phase energy meter using standard wattmeter
- 10. Measurement of capacitance using Schering bridge
- 11. Measurement of branch voltages in a series RLC circuit using A.C potentiometer
- 12. Calibration of static Single Phase Energy Meter
- 13. Calibration of static Three Phase Energy Meter
- 14. Measurement of unknown voltage using Vernier potentiometer and voltmeter calibration.
- 15. Draw the V I characteristics of linear and non-linear resistance
- 16. Calibrate the given single phase energy meter by phantom loading at 0.5 and 0.866 PF lag
- 17. Calibrate the given single phase energy meter by phantom loading at 0.5 and 0.866 PF lead.
- 18. Measurement of resistance using Kelvin's double bridge

### **Expected** outcome

At the end of this course, the student will be able to measure various electrical quantities, extent meter ranges and calibrate instruments.

Text Books

- E.W. Golding and F.C. Widdis, Electrical Measurements and Measuring Instruments, Reem Publishers
- A.K. Sawhney, A course in Electrical and Electronics Measurements and Instrumentation, Dhanpat Rai and sons
- Joseph J Carr, Elements of electronic Instrumentation and Measurement, Pearson Education B.Tech. 2<sup>ND</sup> YEAR (SEMESTER-III) (w.e.f.2019-20)

| Course No. | Course title     | Credits | Teaching Schedule |   |  | edule                                                         | Al | Duration<br>of Exams |       |          |       |
|------------|------------------|---------|-------------------|---|--|---------------------------------------------------------------|----|----------------------|-------|----------|-------|
|            |                  |         | L                 |   |  | Minor test + Major Practical<br>Curricular test<br>activities |    |                      | Total | OI EXAMS |       |
| IN-PC-205  | Network Analysis | 3       | 2                 | 1 |  | 3                                                             | 40 | 60                   |       | 100      | 3 Hrs |

## IN-PC-205 Network Analysis

## **Course Outcomes**

- To model linear circuits and systems using differential equations and Transfer Functions..
- To expose to the concept of poles and zeros.
- To develop equations for large linear circuits by using network laws, and analyse their responses to different types of signals in time domain.
- To familiarise with two port network parameters.

|     |                                                                      |                                                                                                                                            |  |  | CO/I | PO Maj | oping |  |  |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|------|--------|-------|--|--|--|--|--|--|--|--|
|     | (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak |                                                                                                                                            |  |  |      |        |       |  |  |  |  |  |  |  |  |
| COs |                                                                      |                                                                                                                                            |  |  |      |        |       |  |  |  |  |  |  |  |  |
|     | PO1                                                                  | PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12 |  |  |      |        |       |  |  |  |  |  |  |  |  |
| CO1 |                                                                      |                                                                                                                                            |  |  |      |        |       |  |  |  |  |  |  |  |  |
| CO2 |                                                                      |                                                                                                                                            |  |  |      |        |       |  |  |  |  |  |  |  |  |
| CO3 |                                                                      |                                                                                                                                            |  |  |      |        |       |  |  |  |  |  |  |  |  |
| CO4 |                                                                      |                                                                                                                                            |  |  |      |        |       |  |  |  |  |  |  |  |  |
| CO5 |                                                                      |                                                                                                                                            |  |  |      |        |       |  |  |  |  |  |  |  |  |

#### **Course Assessment methods:**

| Direct            | Indirect Course end survey |
|-------------------|----------------------------|
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |

Note: The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions uniformly spread among the entire syllabus, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the entire syllabus, asking for the derivations, numericals and applications of the various topics covered therein. The student has to answer/ attempt all questions in Section-A, 2-questions out of 4-questions in Section-B and2-questions out of 4-questions in Section-C carry 24 marks each.

## IN-PC-205 Network Analysis

\

Module-- I

Topology: Principles of Network Topology, graph matrices, network analysis using graph theory. Transient Response: Transient Response of RC, RLC, TL circuits to various excitation signals such as step, ramp, impulse and sinusoidal excitations using Laplace transform.

Module-- II

Network Functions: Terminal pairs or ports, network functions for one-port and two-port networks, pole and zeros of network functions, restrictions on pole and zero locations for driving point functions and transfer functions, time domain behavior from pole-zero plots. Stability criteria of active networks

Module- - III

Characteristics and parameters of two port networks: Relationship of two port variables, short circuit admittance parameters, open circuit impedance, parameters, transmission parameters,

hybrid parameters, relationship between parameter sets, interconnection of two port networks, T and  $\pi$  networks, lattice networks, terminated two port networks

Module-- IV

Fundamental of filters, filter networks, equation of filter network, classification and characteristic impedance of band low-pass, high-pass, band-pass & band-reject, constant K pass filters, m – derived. Network synthesis: Herwitz Polynomial, positive real functions, synthesis of one port and two port networks, elementary idea of active networks and frequency response.

## **Text Books:**

- 1. Network Analysis A.Sudhakar&S.P.Shyammohan TMH
- 2. Introduction to Modern Network Synthesis Van Valkenburg, PHI
- 3. Network Analysis By Van Valkenburg, PHI
- 4. Network Analysis By G.K.Mithal, Khanna Publication
- 5. Networks and Systems by D.Roy Choudhury; New Age International

## **Reference Books:**

1. Reza F. M. and Seely S., "Modern Network Analysis", Mc.Graw Hill Book Company

- 2. Roy Choudhury D., "Networks and Systems", New Age International Publishers.
- 3. Kuo F. F., "Network Analysis & Synthesis", John Wiley & Sons.

IN-PRNA-11 Network Analysis Lab

| IN-PRNA-11 Netwo<br>Lab | ork Analysis 1 |  |  |  | 2 | 2 | 20 |  | 30 | 50 | 3 Hrs |
|-------------------------|----------------|--|--|--|---|---|----|--|----|----|-------|
|-------------------------|----------------|--|--|--|---|---|----|--|----|----|-------|

NETWORKS LAB

## List of Experiments

## 2<sup>rd</sup> Year / 4<sup>th</sup> Semester

## Subject: Network Analysis Lab (PR-2307)

| <ol> <li>To find out the cut-off frequency of RC Low pass filter.</li> <li>To find out the cut-off frequency of RC High pass filter.</li> <li>To find out the Impedance or z-parameters for two port network.</li> <li>To find out the Admittance or y-Parameters of two port network.</li> <li>To find out the hybrid or h-Parameters for two port network.</li> <li>To find out the transmission or ABCD- Parameters for two port network.</li> <li>To find out the impedance or Z-parameters for series connected two -two port network.</li> <li>To find out the admittance of Y -parameters for parallel connected two -two port network.</li> <li>To find out the transient response of series connected RC Network.</li> </ol> | S.No | Experiments                                                                               |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <ol> <li>To find out the Impedance or z-parameters for two port network.</li> <li>To find out the Admittance or y-Parameters of two port network.</li> <li>To find out the hybrid or h-Parameters for two port network.</li> <li>To find out the transmission or ABCD- Parameters for two port network.</li> <li>To find out the impedance or Z-parameters for series connected two -two port network.</li> <li>To find out the admittance of Y -parameters for parallel connected two -two port network.</li> <li>To find out the transient response of series connected RC Network.</li> </ol>                                                                                                                                      | 1.   | To find out the cut-off frequency of RC Low pass filter.                                  |  |  |  |  |  |  |
| <ol> <li>To find out the Admittance or y-Parameters of two port network.</li> <li>To find out the hybrid or h-Parameters for two port network.</li> <li>To find out the transmission or ABCD- Parameters for two port network.</li> <li>To find out the impedance or Z-parameters for series connected two -two port network.</li> <li>To find out the admittance of Y -parameters for parallel connected two -two port network.</li> <li>To find out the transient response of series connected RC Network.</li> </ol>                                                                                                                                                                                                               | 2.   | To find out the cut-off frequency of RC High pass filter.                                 |  |  |  |  |  |  |
| <ol> <li>To find out the hybrid or h-Parameters for two port network.</li> <li>To find out the transmission or ABCD- Parameters for two port network.</li> <li>To find out the impedance or Z-parameters for series connected two -two port network.</li> <li>To find out the admittance of Y -parameters for parallel connected two -two port network.</li> <li>To find out the transient response of series connected RC Network.</li> </ol>                                                                                                                                                                                                                                                                                        | 3.   | To find out the Impedance or z-parameters for two port network.                           |  |  |  |  |  |  |
| <ul> <li>6. To find out the transmission or ABCD- Parameters for two port network.</li> <li>7. To find out the impedance or Z-parameters for series connected two -two port network.</li> <li>8. To find out the admittance of Y -parameters for parallel connected two -two port network.</li> <li>9. To find out the transient response of series connected RC Network.</li> </ul>                                                                                                                                                                                                                                                                                                                                                  | 4.   | To find out the Admittance or y-Parameters of two port network.                           |  |  |  |  |  |  |
| <ul> <li>7. To find out the impedance or Z-parameters for series connected two -two port network.</li> <li>8. To find out the admittance of Y –parameters for parallel connected two –two port network.</li> <li>9. To find out the transient response of series connected RC Network.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.   | To find out the hybrid or h-Parameters for two port network.                              |  |  |  |  |  |  |
| <ol> <li>8. To find out the admittance of Y –parameters for parallel connected two –two port network.</li> <li>9. To find out the transient response of series connected RC Network.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.   | To find out the transmission or ABCD- Parameters for two port network.                    |  |  |  |  |  |  |
| 9. To find out the transient response of series connected RC Network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.   | To find out the impedance or Z-parameters for series connected two -two port network.     |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.   | To find out the admittance of Y -parameters for parallel connected two -two port network. |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.   | To find out the transient response of series connected RC Network.                        |  |  |  |  |  |  |
| <b>10.</b> To find out the transient response of parallel connected RC Network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.  | To find out the transient response of parallel connected RC Network.                      |  |  |  |  |  |  |

B.Tech. 2<sup>ND</sup> YEAR (SEMESTER-III) (w.e.f.2019-20)

## **IN-PC-207** Transducers and Applications

| Course No. | Course title                    | Credits | Teaching Schedule |   |   | edule | Al                                       | Duration<br>of Exams |           |       |          |
|------------|---------------------------------|---------|-------------------|---|---|-------|------------------------------------------|----------------------|-----------|-------|----------|
|            |                                 |         | L                 | Т | Р | Total | Minor test +<br>Curricular<br>activities | Major<br>test        | Practical | Total | of Exams |
| IN-PCC-207 | Transducers and<br>Applications | 3       | 2                 | 1 |   | 3     | 40                                       | 60                   |           | 100   | 3 Hrs    |

### **Course Outcomes**

- To understand and analyze basics of transducers/ sensors
- To study the principles and operation of various transducers
- To describe functional elements of any measurement system and to list static and dynamic characteristics of the measuring instruments.
- To use different types of transducers for various industrial purposes.

|     | CO/PO Mapping                                                        |     |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak |     |     |     |     |     |     |     |     |      |      |      |
| COs | Programme Outcomes (POs)                                             |     |     |     |     |     |     |     |     |      |      |      |
|     | PO1                                                                  | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 |                                                                      |     |     |     |     |     |     |     |     |      |      |      |
| CO2 |                                                                      |     |     |     |     |     |     |     |     |      |      |      |
| CO3 |                                                                      |     |     |     |     |     |     |     |     |      |      |      |
| CO4 |                                                                      |     |     |     |     |     |     |     |     |      |      |      |
| CO5 |                                                                      |     |     |     |     |     |     |     |     |      |      |      |

### **Course Assessment methods:**

| Direct            | Indirect Course end survey |
|-------------------|----------------------------|
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |

| Course No. | Course title                 | Credits | Teaching Schedule |   |   | nedule | A                                        | Duration<br>of Exams |           |       |          |
|------------|------------------------------|---------|-------------------|---|---|--------|------------------------------------------|----------------------|-----------|-------|----------|
|            |                              |         | L                 | Т | Р | Total  | Minor test +<br>Curricular<br>activities | Major<br>test        | Practical | Total | of Exams |
| IN-PC-207  | Transducers and Applications | 3       | 2                 | 1 |   | 3      | 40                                       | 60                   |           | 100   | 3 Hrs    |

Note: The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions uniformly spread among the entire syllabus, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the entire syllabus, asking for the various topics covered therein. The student has to answer/ attempt all questions in Section-A, 2-questions out of 4-questions in Section-B and 2-questions out of 4-questions in Section-C carry 24 marks each.

**IN-PC-207** Transducers and Applications

Module-I

Introduction of Transducer and its classifications, basic requirements of transducer/Sensors. Displacement Transducers: LVDT, RVDT, potentiometric, Variable Reluctance, Variable Capacitive displacement Transducers and Hall Effect Devices.

Tachometers: DC tachometers, AC tachometers, Bearing tachometers, magnetic speed sensors, impulse tachometers, stroboscopic tachometers, variable-reluctance tachometers, photoelectric tachometers, eddy current tachometers, hydraulic tachometers, vibration measurement. Accelerometers: Bonded strain gauge accelerometer, Piezoelectric accelerometer, seismic mass accelerometer, servo accelerometer and digital accelerometer.

Module-II

Strain Gauge Transducers: Basic principle of operation of Resistance strain gauge, type of Electrical strain gauges and their theories (wire gauges, unbounded strain gauges, foil gauges,

semiconductor strain gauges and thin film gauges), Materials for strain gauges and strain gauge circuits (potentiometer and Wheatstone Bridge circuits). Force Transducers; load Cell, Hydraulic Load Cell Torque Transducers: Absorption type, transmission Type, Stress Type, Deflection type.

Module-III

Pressure transducers: Manometers, Elastic transducers, High Pressure transducers, Mcloed Gauge, Pirani-gauge, Ionization gauge, Knudsen Gauge, pressure smart transmitters. Temperature Transducers: Resistive transducers (Platinum Resistance Thermometer), Thermistor, Thermoelectric sensors, Solid-state Sensors & Pyrometers.

Module-IV

Flow Transducers: Classification of flow meter, Volume flow Sensors (orifice, Nozzle, Venture, Pitot type) Turbine type, Rotometers, Anemometers, Ultrasonic, Mass flow meters, Positive displacement type flow-meter, Open channel flow measurement, E.M. Flow-meter. Level Transducers: Thermal effect type, Electric methods (Resistive method, Conductance probe method, Inductive level gauging and capacitive method), Ultrasonic method. Acoustics sensors: ceramic microphones, capacitor microphones, electric microphones, magnetic microphone, Humidity sensors: Hair hygrometer, electrode hygrometer, moisture sensors.

## **Reference Books:**

- 1. Principles of Industrial Instrumentation by D.Patranabis, TMH
- 2. Instrumentation measurement & Analysis by Nakra, Chaudry, TMH
- 3. Instrumentation Devices & Systems by Rangan Mani Sarma, TMH
- 4. Instrumentation for Engineers by J.D.Turner

## IN-PRTR-13 Transducer lab

| Course No.  | Course title   | Credits | Teaching Schedule |   |   | nedule | Al                                       | Duration<br>of Exams |           |       |          |
|-------------|----------------|---------|-------------------|---|---|--------|------------------------------------------|----------------------|-----------|-------|----------|
|             |                |         | L                 | Т | Р | Total  | Minor test +<br>Curricular<br>activities | Major<br>test        | Practical | Total | of Exams |
| INE-PRTR-13 | Transducer lab | 1.5     |                   |   | 3 | 3      | 30                                       |                      | 45        | 75    | 3 Hrs    |

### **Course Outcomes**

It aims to get the practical ability to the students with standard concepts and tools at an intermediate to advanced level to perform the experiments related to the theory paper IN-PC-207 Transducers and Applications.

### Laboratory Outcomes:

At the end of the laboratory work, students will demonstrate the ability to:

- Identify various elements required for characterization of given transducers/sensors.
- Design and conduct experiments for measurement, characterization, and ability to analyze and interpret data.
- Communicate effectively in oral and written form while formulating experiments, reports and other related documents.

|     | CO/PO Mapping                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
|     | (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak                                                                       |  |  |  |  |  |  |  |  |  |  |  |
| COs | COs Programme Outcomes (POs)                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |
|     | PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12 |  |  |  |  |  |  |  |  |  |  |  |
| CO1 |                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |

| CO2 |  |  |  |  |  |  |
|-----|--|--|--|--|--|--|
| CO3 |  |  |  |  |  |  |
| CO4 |  |  |  |  |  |  |
| CO5 |  |  |  |  |  |  |

## TRANSDUCER LAB

- 1. Local cell characteristics
- 2. Strain gauge characteristics
- 3. RTD and thermisters characteristics
- 4.Thermocouple calibration
- 5.Hall Effect sensor
- 6.Tachometer
- 7.Capacitive sensor characteristics
- 8.Inductive sensor characteristics- LVDT
- 9. Flapper Nozzle characteristics
- 10. LDR and optocoupler characteristics
- 11.Synchro characteristics
- 12.Vibration sensor
- 13. Elastic transducers characteristics

## Program Education Objectives (PEOs):

### The Undergraduate students will demonstrate..

I. To provide the students with solid foundation in mathematics, science andInstrumentation Engineering to solve real world problems appropriate to the discipline.

II. To able to apply current industry accepted practices, new and emerging technologies to analyze, design, implement, and maintain state-of-art solutions.

III. To exhibit self- learning capabilities to assimilate and practice emerging theories and technologies. Exhibit teamwork and effective communication skills.

IV. To inculcate professional and ethical attitude and ability to relate automation issues tosociety at large. V. To successfully employed or accepted into a graduate program / higher studies, and demonstrate a pursuit of lifelong learning.

## **PROGRAM OUTCOMES**

- 1. Graduates will be able to apply fundamental knowledge in mathematics, science, electronics and instrumentation for solving engineering problems.
- 2. Graduates will be able to identify and analyze complex engineering problems in the areas of electronics, instrumentation and automation.
- 3. Graduates will be able to solve open-ended technical problems and be proficient in the design, test, and implementation of electronics, instrumentation and control systems.
- 4. Graduates will attain skills to conduct experiments/investigations and interpret data with reference to systems and standards related to electronics and instrumentation engineering.
- 5. Graduates will have proficiency in system design tools and software packages related to electronics and instrumentation.
- 6. Graduates will have knowledge in the area of instrumentation engineering to assess and address societal, health, safety, legal and cultural issues.
- 7. Graduates will have broad education necessary to understand the impact of engineering solutions and sustainable development in environmental and societal context in the field of Instrumentation.
- 8. Graduates will be able to understand and uphold professional, ethical, and social responsibilities in Instrumentation engineering.
- 9. Graduates will be able to function efficiently as an individual or in team in process and automation industries.

- 10. Graduates will have ability to communicate effectively in written, oral and instrumentation formats to put forth solutions and prepare detailed engineering report in the process and automation industries.
- 11. Graduates will be able to apply the knowledge, skill and attitude as a team player in initiating, executing and managing projects in the areas of design, manufacture, marketing and entrepreneurship in multi-disciplinary environments.
- 12. Graduates will be able to conduct information searching and processing and develop the ability for lifetime-learning in field of Instrumentation engineering.

#### **Program Outcomes (POs):**

#### The Undergraduate Students will demonstrate.

a. An ability to apply knowledge of mathematics, Science and Engineering toInstrumentation and Control Discipline

b. An ability to design and conduct experiments for measurement, measurement devices /elements, Control System, variety of control algorithms paradigms, final controlelements, etc., and ability to analyze and interpret data.

c. Be able to apply the principles and practices for instrument / system / equipment /device design and development to real world problems adhering to safety and regulatory standards as applicable.

d. Be able to work effectively in a various team (may be multidisciplinary teams).

e. An ability to identify, formulate and solve a problem in Instrumentation and ControlEngineering

f. Understand the social impact of automation, safety aspects of automation, hazardsassociated with various processes, environmental issues, professional ethics, etc.

g. An ability to communicate effectively in oral and written form while formulating projectproposals, reports and other related documents.

h. Understand the impact of Instrumentation and Control solutions in a global, economic, environmental, and societal context.

i. Demonstrate the knowledge and capabilities necessary for pursuing a professional career or graduate studies; recognize the need for continuing professional development.

j. Understanding of contemporary and emerging technology for various processes and24systems.

k. Ability to select and use latest hardware and software tools for various processes and systems.

1. Demonstrate an understanding of sensors / transducers, Control system, completeautomation system.

m. Demonstrate proficiency in using a high-level / low level programming languages and network protocols for embedded system applications and networked systems.

## IN-PC-209 LINEAR INTEGRATED CIRCUITS

### **Course Outcomes:**

### After successful completion of this course, the students should be able to

CO1: Acquire knowledge in identifying implementation areas of op-amps for specific purpose.

CO2: Design and construct circuit's depending upon applications.

CO3: Analyze the circuits using modern simulation software

CO4: Design electrical circuits, devices, and systems to meet application requirements.

CO5: Design a project as a team

|     | <b>CO/PO Mapping</b><br>(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak |                          |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------------------------------------|--------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| COs | (                                                                                            | Programme Outcomes (POs) |     |     |     |     |     |     |     |      |      |      |
|     | PO1                                                                                          | PO2                      | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | S                                                                                            | S                        | S   |     |     |     |     |     |     |      |      |      |
| CO2 | S                                                                                            | S                        | S   |     |     |     |     |     |     |      |      |      |
| CO3 |                                                                                              |                          |     | S   | S   |     |     |     |     |      |      |      |
| CO4 |                                                                                              | S                        | S   |     |     |     |     |     |     |      |      |      |
| CO5 |                                                                                              |                          |     |     |     |     |     | S   | S   | S    | S    | S    |

#### **Course Assessment methods:**

| Direct            | Indirect Course end survey |
|-------------------|----------------------------|
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |

| <b>B. Tech.</b> 2 <b>TEAK</b> (SEMIESTER-III) (W.e.1.2019-20) |                                   |         |                   |             |    |                                          |                      |           |       |          |       |  |  |
|---------------------------------------------------------------|-----------------------------------|---------|-------------------|-------------|----|------------------------------------------|----------------------|-----------|-------|----------|-------|--|--|
| Course No.                                                    | Course title                      | Credits | Teaching Schedule |             | Al |                                          | Duration<br>of Exams |           |       |          |       |  |  |
|                                                               |                                   |         | L                 | L T P Total |    | Minor test +<br>Curricular<br>activities | Major<br>test        | Practical | Total | of Exams |       |  |  |
| IN-PCC-209                                                    | Linear Integrated<br>Circuits     | 3       | 2                 | 1           |    | 3                                        | 40                   | 60        |       | 100      | 3 Hrs |  |  |
| IN-PRLIC-15                                                   | Linear Integrated<br>Circuits Lab | 1.5     |                   |             | 3  | 3                                        | 30                   |           | 45    | 75       | 3 Hrs |  |  |

B.Tech. 2<sup>ND</sup> YEAR (SEMESTER-III) (w.e.f.2019-20)

Note: The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions among the 4-modules, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the 4-modules, asking for the derivations, numericals and applications of the various topics covered therein. The student has to answer/ attempt 4-questions out of 4-questions in Section-A, 2-questions out of 4-questions in Section-A carry12 marks. Section-B and Section-C carry 24 marks each.

IN-PCC-209 Linear Integrated Circuits Details of the Course Contents

## Module-1

The basic operational amplifier, the differential amplifier, the emitter coupled differential amplifier, transfer characteristics of differential amplifier, offset error voltages and currents, input bias current, input offset current, input offset current drift, input offset voltage, input offset voltage drift, output offset voltage, PSRR, slew rate and universal balancing techniques, measurement of Op-Amp parameters

## Module -II

Op-Amp Circuit Stability, Frequency and Phase Response, Freq. compensating methods, Op-Amp Circuit Bandwidth. Op-Amp applications: Inverter, scale changer, adder, analog integration and differentiation( brief explanation with circuit diagram), wave form generator (square wave, pulse and triangle wave generator),

## Module -III

Op-Amp Applications II: Instrumentation Amplifier, Precision Half Wave Rectifier, Precision Full Wave Rectifier, limiting Circuits, Clamping Circuits, Peak Detectors, Sample & Hold Circuits, logarithmic Amplifier, inverting Schmitt Trigger Circuit, Phase Shift Oscillator, Oscillator Amplitude Stabilization, Wien-Bridge Oscillator.

## Module -V

Regulated Power Supplies: Regulator Action, Regulator Performance, Voltage follower Regulator (Design & performance), Adjustable Voltage Regulator (Design & performance), Stabilization, Output Current limiting (Short circuit Protection) (Fold-back Current limiting), I.C. Regulators (Basic Idea). The 555 I.C. Timer, and its applications, Voltage Time Base Generators, Step (Stair Case) Generators.

## References:

- 1. Microelectronics by MillmanGrabel, TMH
- 2. Electronic Principles by Malvino, TMH
- 3. Integrated Electronics by MillmanHalkias, McGraw Hill
- 4. Op-Amps & Linear Integrated Circuits by R.A.Gayakwad, PHI

## IN-PRLIC-15 Linear Integrated Circuits Lab

|  | Course No. | Course title | Credits | Teaching Schedule | Allotment of marks | Duration |
|--|------------|--------------|---------|-------------------|--------------------|----------|
|--|------------|--------------|---------|-------------------|--------------------|----------|

|                  |                                         |     | L | Т | Р | Tot<br>al | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |
|------------------|-----------------------------------------|-----|---|---|---|-----------|------------------------------------------|---------------|-----------|-------|----------|
| INE-<br>PRLIC-15 | Linear<br>Integrated<br>Circuits<br>Lab | 1.5 |   |   | 3 | 3         | 30                                       |               | 45        | 75    | 3 Hrs    |

#### **Course Outcomes:**

#### After successful completion of this course, the students should be able to

CO1: Design basic application circuits using op-amp.

- CO2: Understand and implement the working of basic digital circuits
- CO3: Design multivibrators and voltage regulators

CO4: Design Counters and Timers

CO5: Design and Fabricate small projects using simulation tools and hardware

#### LIST OF EXPERIMENTS : Experiments beyond the syllabus should be conducted

- 1. Op-Amp parameters.
- 2. Op-Amp Application 1: Inverting, non-inverting.
- 3. Op-Amp Application 2: square wave generator, differentiator, integrator, log amplifier .
- 4. Design of astable, monostable multivibrators
- 5. Application of IC voltage regulator.
- 6. Op-amplifier as Rectifiers.

| Course No. | Course title           | Credits | Teaching Schedule |   |       | dule                                                    | Al | Duration<br>of Exams |  |     |       |
|------------|------------------------|---------|-------------------|---|-------|---------------------------------------------------------|----|----------------------|--|-----|-------|
|            |                        |         | L T P Tota        |   | Total | Minor test +MajorPracticalTotalCurriculartestactivities |    |                      |  |     |       |
| IN-PC-202  | Power<br>Electronics-I | 3       | 2                 | 1 |       | 3                                                       | 40 | 60                   |  | 100 | 3 Hrs |

#### B.Tech. 2<sup>ND</sup> YEAR (SEMESTER-IV) (w.e.f.2019-20)

**Note:** The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions uniformly spread among the entire syllabus, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the entire syllabus, asking for the derivations, numericals and applications of the various topics covered therein. The student has to **answer/ attempt 4-questions out of 4-questions in Section-A, 2-questions out of 4-questions in Section-B and2-questions out of 4-questions in Section-A carry12 marks. Section-B and Section-C carry 24 marks each** 

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

- 1. Identify, formulate & solve engineering problems with simulation.
- 2. Simulate characteristics of SCR, MOSFET, IGBT, gate firing circuits.
- 3. Formulate Thyristor Analogy and Thyristor Protection.
- 4. Simulate Rectifiers and on hardware kits.
- 5. Simulate Cyclo-converter circuit.

### **PROGRAM OUTCOMES**

- 1. Graduates will be able to apply fundamental knowledge in mathematics, science, electronics and instrumentation for solving engineering problems.
- 2. Graduates will be able to identify and analyze complex engineering problems in the areas of electronics, instrumentation and automation.

- 3. Graduates will be able to solve open-ended technical problems and be proficient in the design, test, and implementation of electronics, instrumentation and control systems.
- 4. Graduates will attain skills to conduct experiments/investigations and interpret data with reference to systems and standards related to electronics and instrumentation engineering.
- 5. Graduates will have proficiency in system design tools and software packages related to electronics and instrumentation.
- 6. Graduates will have knowledge in the area of instrumentation engineering to assess and address societal, health, safety, legal and cultural issues.
- 7. Graduates will have broad education necessary to understand the impact of engineering solutions and sustainable development in environmental and societal context in the field of Instrumentation.
- 8. Graduates will be able to understand and uphold professional, ethical, and social responsibilities in Instrumentation engineering.
- 9. Graduates will be able to function efficiently as an individual or in team in process and automation industries.
- 10. Graduates will have ability to communicate effectively in written, oral and instrumentation formats to put forth solutions and prepare detailed engineering report in the process and automation industries.
- 11. Graduates will be able to apply the knowledge, skill and attitude as a team player in initiating, executing and managing projects in the areas of design, manufacture, marketing and entrepreneurship in multi-disciplinary environments.
- 12. Graduates will be able to conduct information searching and processing and develop the ability for lifetime-learning in field of Instrumentation engineering.

|     |                                                                                                                                            |   |   |   |  | PO Maj |  |  |   |  |   |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|--|--------|--|--|---|--|---|--|--|--|
|     | (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak                                                                       |   |   |   |  |        |  |  |   |  |   |  |  |  |
| COs |                                                                                                                                            |   |   |   |  |        |  |  |   |  |   |  |  |  |
|     | PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12 |   |   |   |  |        |  |  |   |  |   |  |  |  |
| CO1 |                                                                                                                                            | S |   | М |  |        |  |  |   |  |   |  |  |  |
| CO2 |                                                                                                                                            |   |   |   |  |        |  |  |   |  | М |  |  |  |
| CO3 |                                                                                                                                            |   |   |   |  |        |  |  | М |  |   |  |  |  |
| CO4 |                                                                                                                                            |   | М | S |  |        |  |  |   |  | S |  |  |  |
| CO5 |                                                                                                                                            | Μ | S |   |  | S      |  |  | S |  | S |  |  |  |

#### **Course Assessment methods:**

| Direct            | Indirect Course end survey |
|-------------------|----------------------------|
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |

#### **POWER ELECTRONICS-I**

Introduction to power devices: Constructional features & characteristics of thyristors, MOSFET, IGBT, MCT. Triggering & switching: Various triggering devices used for thyristor.

#### Module -II

Module-I

Thyristor Analogy: Two transistor analogy, series and parallel operation of thyristors. Protection: Protection of SCR against over current, over voltage, high dv/dt, and high di/dt.

Module -III

Classification of Rectifiers, Phase Controlled Rectifiers: Single phase half wave controlled, Fully wave and half controlled rectifiers with Resistive, Inductive and e.m.f. loading and their performance parameters. Three phase half

wave, full wave and half controlled rectifiers with resistive and inductive and emf loading and their performance.

#### Module -IV

Cycloconverter: Introduction & principle of working cycloconverter; types of cycloconverter; enveloped type & phase controlled type, features of cycloconverter; voltage wave form, circulating mode of operation, circulating current free modes, cycloconverter under discontinuous conduction, effect of source inductance on the performance of cycloconverter, network reaction, Advantages and disadvantages of cycloconverter.

#### References:

- 1. Modern Power Devices by B.JayantBalica, New Age Inter.
- 2. Power Electronics by P.C. Sen (TMH)
- 3. An Introduction to Thyristors and Their Applications by M. Ramamurthy (EWP)
- 4. Power electronics by Ned Mohan and Robins, John Wiley and Sons
- 5. Power Electronics by M. Rashid (PHI)
- 6. Thyristor Phase Controlled converters and Cyclo-converters by B.R.Pelly
- 7. Power Electronics by VendemSubrahmanyam, New Age International

| B.Tech. 2 <sup>ND</sup> | YEAR (SEMES | STER-IV) (w.e | e.f.2019-20) |
|-------------------------|-------------|---------------|--------------|
|-------------------------|-------------|---------------|--------------|

| Course No. | Course title                   | Credits | Teaching Schedule |  |                                          | dule          | Al        | Duration |          |    |       |
|------------|--------------------------------|---------|-------------------|--|------------------------------------------|---------------|-----------|----------|----------|----|-------|
|            |                                |         |                   |  | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total    | of Exams |    |       |
| IN-PRPE-10 | Power<br>Electronics Lab-<br>I | 1.5     |                   |  | 3                                        | 3             | 30        |          | 45       | 75 | 3 Hrs |

#### LIST OF EXPERIMENTS STUDY EXPERIMENTS :

1.Study of characteristics of SCR, MOSFET, IGBT

2.Study of Gate firing circuits

3.Pulse Width Modulation techniques

#### SIMULATION EXPERIMENTS :

1. Single Phase Half wave controlled converter with R,RL&RLE Load (for firing angles 30,60,90)with/without FD

2. Single Phase Half controlled converter with R,RL&RLE Load (for firing angles 30,60,90) with/without FD

3. Single Phase Full controlled converter with R,RL&RLE Load (for firing angles 30,60,90) with/without FD

#### HARDWARE EXPERIMENTS :

1.Thyristorised drive for PMDC motor with speed measurement and Single Phase Half controlled rectifier and full controlled rectifier

2. Closed loop control of DC Motor using three face fed four quadrant chopper drive.

3.IGBT based 4 quadrant drive for PMDC Motor with speed measurement and closed loop control

- 1. Characteristics of
- a) SCR,
- b) MOSFET,
- c) IGBT
- 2. Gate firing circuits of SCR,

3. Single phase AC Voltage controller with R & RL loads

4. Three Phase semi controlled converter with R,RL&RLE Load

5. Three Phase full controlled converter with R,RL&RLE Load

6. Single phase AC Voltage Controller with R&RL Loads

7. Boost converter and buck converter with open loop and closed loop operations

- 8. Single Phase inverter
- 9. Single Phase cyclo converter

4. Three Phase input Thyristorised drive for Dc Motor with closed loop control

5.Speed control of three Phase 3-Phase wound

- Induction Motor
- 6.DC Jones chopper
- 7.Single Phase Series Inverter
- 8.Single Phase Parallel Inverter

4. Single phase fully controlled bridge converter with R&RL loads

- 5. Forced competition circuit trainer (Class
- A,B,C,D&E)
- 6. DC jones chopper with R&RL loads
- 7. Single phase parallel inverter with R & RL loads

#### PROGRAM OBJECTIVES & OUTCOMES PROGRAM OBJECTIVES:

1. To simulate and design various gate firing circuits.

2. To familiarize the students by introducing softwares like P- sim, Multisim, and help them to simulate and analyze different converters.

3. To enable the students to study & simulate circuits using Matlab software and on hardware kits.

#### **PROGRAM OUTCOMES:**

1. Ability to design and conduct simulation and experiments.

- 2. Ability to use the techniques, skills and modern engineering tools necessary for engineering practice.
- 3. Ability to identify, formulate & solve engineering problems with simulation.

DI DO AAA

4. Ability to simulate characteristics of SCR, MOSFET, IGBT.

5. Ability to simulate gate firing circuits

6. Ability to simulate Rectifiers, AC voltage controller on hardware kits.

#### B.Tech. 2<sup>ND</sup> YEAR (SEMESTER-IV) (w.e.f.2019-20)

|            | IN-BS-204 Mathematics -III |         |                   |                 |  |                                          |               |                      |       |          |       |  |  |
|------------|----------------------------|---------|-------------------|-----------------|--|------------------------------------------|---------------|----------------------|-------|----------|-------|--|--|
| Course No. | Course title               | Credits | Teaching Schedule |                 |  | dule                                     | Al            | Duration<br>of Exams |       |          |       |  |  |
|            |                            |         | L                 | L T P Tot<br>al |  | Minor test +<br>Curricular<br>activities | Major<br>test | Practical            | Total | of Exams |       |  |  |
| IN-BS-204  | Mathematics<br>-III        | 4       | 3                 | 1               |  | 4                                        | 40            | 60                   |       | 100      | 3 Hrs |  |  |

TTT

**Note:** The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions uniformly spread among the entire syllabus, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the entire syllabus, asking for the derivations, numericals and applications of the various topics covered therein. The student has to **answer/ attempt 4-questions out of 4-questions in Section-A carry12 marks. Section-B and Section-C carry 24 marks each** 

#### B.Tech. 2<sup>ND</sup> YEAR (SEMESTER IV) (w.e.f.2019-20) IN-BS-204 Mathematics -III

### **Course Outcomes**

The objective of this course is to familiarize the prospective engineers with techniques in complex variables, Fourier series, statistics and probaility. It aims to equip the students to deal with advanced level of mathematics and applications that would be essential for their disciplines. The students will learn:

- The mathematical tools needed in evaluating contour integration.
- The effective mathematical tools for statistical analysis

• The tools of Bessel and series solution, Fourier series to analyze harmonics used in various techniques dealing engineeringproblems.

|     |                                                                      | <u> </u> | U   | $\mathcal{U}_{\mathbf{I}}$ |     |     |     |     |     |      |      |      |  |  |
|-----|----------------------------------------------------------------------|----------|-----|----------------------------|-----|-----|-----|-----|-----|------|------|------|--|--|
|     | CO/PO Mapping                                                        |          |     |                            |     |     |     |     |     |      |      |      |  |  |
|     | (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak |          |     |                            |     |     |     |     |     |      |      |      |  |  |
| COs |                                                                      |          |     |                            |     |     |     |     |     |      |      |      |  |  |
|     | PO1                                                                  | PO2      | PO3 | PO4                        | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |  |
| CO1 | S                                                                    |          | S   |                            |     |     |     |     |     |      |      |      |  |  |
| CO2 | S                                                                    |          | S   | S                          |     |     |     |     |     |      |      |      |  |  |
| CO3 | S                                                                    |          | S   |                            |     |     |     |     |     |      |      |      |  |  |
| CO4 |                                                                      |          |     |                            |     |     |     |     |     |      |      |      |  |  |
| CO5 |                                                                      |          |     |                            |     |     |     |     |     |      |      |      |  |  |

| Course Assessment n | nethods:                   |
|---------------------|----------------------------|
| Direct              | Indirect Course end survey |
| Internal test I     |                            |
| Internal test II    |                            |
| Internal test III   |                            |
| Assignment          |                            |
| Tutorial            |                            |
| Seminar             |                            |
| End Semester Exam   |                            |

| Course No. | Course title        | Credits | Teaching Schedule |   |                                          | lule          | Al        |       | Duration |     |       |
|------------|---------------------|---------|-------------------|---|------------------------------------------|---------------|-----------|-------|----------|-----|-------|
|            |                     |         | al                |   | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |     |       |
| IN-BS-204  | Mathematics<br>-III | 4       | 3                 | 1 |                                          | 4             | 40        | 60    |          | 100 | 3 Hrs |

| IN-BS-204 Mathematics –III Detailed cont |
|------------------------------------------|
|------------------------------------------|

#### Module-I

Bessel functions: series solution of Bessel differential equation, Bessel function of first kind Jn(x), generating function for Jn(x), recurrence relations.

Legendre Polynomials: Legendre differential equation, Legedre polynomials Pn(x) as solution of legedre differential equation for (n>0), generating function for Pn(x), recurrence relations, Orthoganality of Pn(x). Module -II

Fourier Series: Euler's formulae, conditions for Fourier expansions, Fourier expansion of functions having points of discontinuity, change of interval, odd & even functions, half range series. Fourier Transforms: Fourier Integrals, Fourier transforms, Fourier cosine and sine transforms, Properties of Fourier Transforms, convolution theorem, Parseval's identity, relation between Fourier and Laplace transforms

#### Module -III

Function of a complex variables: Cauchy-Riemann equations, necessary and sufficient conditions for a function to be analytic, harmonic functions, Taylor and Laurent series, singular points, residues, evaluation of residues at poles, and poles of mth order, Cauchy's residue theorem, the Cauchy's principle value, evaluation of definite integrals. Module -IV

Probability Distributions: Probability, Baye theorem, Discrete & Continuous probability distributions, discrete random variable, probability function, distribution function, Mathematical expectation, expectation of a sum of random variables, expectation of product of independent variables.

Binomial distribution, the Poisson distribution, the normal distribution, relation between a normal and a binomial distribution, the mean deviation of a normal distribution, area under normal error curve, fitting of normal curve, the normal and Gaussian law of error, applicability of the normal law of error, normal error distributions, chi square test-definition, conditions, test of independence, goodness of fit, test of homogeneity, limitations.

#### Text / References:

- 1. E. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 2006.
- 2. P. G. Hoel, S. C. Port and C. J. Stone, "Introduction to Probability Theory", Universal Book Stall, 2003.
- 3. S. Ross, "AFirst Course in Probability", Pearson Education India, 2002.
- 4. W. Feller, "AnIntroduction to Probability Theory and its Applications", Vol. 1, Wiley, 1968.
- 5. N.P.BaliandM.Goyal, "Atextbook of Engineering Mathematics", LaxmiPublications, 2010.
- 6. B.S.Grewal, "HigherEngineering Mathematics", Khanna Publishers, 2000.
- 7. T. Veerarajan, "Engineering Mathematics", TataMcGraw-Hill, New Delhi, 2010.
- 8. Theory of Errors By J.Topping
- 9. Probability and Statistics, Speigel, Schaum Series, 2016
- References:
- 1. Complex variables and Applications by R.V.Churchil; McGraw Hill
- Engineering Mathematics Vol-II by S.S.Sastry; PHI 2.
- 3. Operation Research by H.A.Taha;
- 4. Probability and Statistics for Engineers by Johnson; PHI

- 5. Higher Engineering Mathematics by B.S.Grewal
- 6. Advance Engineering Mathematics by E. Kreyzig

| Course No. | Course title                 | Credits | Teaching Schedule |   |   | lule      | Al                                       | Duration<br>of Exams |           |       |          |
|------------|------------------------------|---------|-------------------|---|---|-----------|------------------------------------------|----------------------|-----------|-------|----------|
|            |                              |         | L                 | Т | Р | Tot<br>al | Minor test +<br>Curricular<br>activities | Major<br>test        | Practical | Total | of Exams |
| IN-PE-206  | Control System<br>Components | 3       | 2                 | 1 |   | 3         | 40                                       | 60                   |           | 100   | 3 Hrs    |

#### B.Tech. 2<sup>ND</sup> YEAR (SEMESTER-IV) (w.e.f.2019-20)

Note: The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions among the 4-modules, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the 4-modules, asking for the derivations, numericals and applications of the various topics covered therein. The student has to answer/ attempt 4-questions out of 4-questions in Section-A, 2-questions out of 4-questions in Section-B and2-questions out of 4-questions in Section-C. Section-A carry12 marks. Section-B and Section-C carry 24 marks each.

## IN-PE-206 Control System Components

#### **Course Outcomes**

After successful completion of this course, the students should be able to

CO1: Design and conduct performance experiments, as well as to identify, formulate and solve machine related problems.

CO2: Analyze and describe aspects of the construction, principle of operation, applications and methods of speed control

CO3: Describe the construction, application and operation of single phase and three phase transformers

CO4: Understand the basic concepts and working of switches and relays.

CO5: Identify suitable motors for industrial applications

#### PROGRAM OUTCOMES

- 1. Graduates will be able to apply fundamental knowledge in mathematics, science, electronics and instrumentation for solving engineering problems.
- 2. Graduates will be able to identify and analyze complex engineering problems in the areas of electronics, instrumentation and automation.
- 3. Graduates will be able to solve open-ended technical problems and be proficient in the design, test, and implementation of electronics, instrumentation and control systems.
- 4. Graduates will attain skills to conduct experiments/investigations and interpret data with reference to systems and standards related to electronics and instrumentation engineering.
- 5. Graduates will have proficiency in system design tools and software packages related to electronics and instrumentation.
- 6. Graduates will have knowledge in the area of instrumentation engineering to assess and address societal, health, safety, legal and cultural issues.
- 7. Graduates will have broad education necessary to understand the impact of engineering solutions and sustainable development in environmental and societal context in the field of Instrumentation.
- 8. Graduates will be able to understand and uphold professional, ethical, and social responsibilities in Instrumentation engineering.
- 9. Graduates will be able to function efficiently as an individual or in team in process and automation industries.
- 10. Graduates will have ability to communicate effectively in written, oral and instrumentation formats to put forth solutions and prepare detailed engineering report in the process and automation industries.
- 11. Graduates will be able to apply the knowledge, skill and attitude as a team player in initiating, executing and managing projects in the areas of design, manufacture, marketing and entrepreneurship in multi-disciplinary environments.
- 12. Graduates will be able to conduct information searching and processing and develop the ability for lifetimelearning in field of Instrumentation engineering.

Module-1

Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph.

Module-2

Basic control action & Industrial automatic controller: On/Off or two position, proportional, integral, proportional-Integral, proportional-derivative and proportional-integral-derivative control action. Pneumatic controller, comparison between pneumatic and hydraulic systems, Pneumatic amplifiers, pneumatic proportional controller, pneumatic derivative and integral control action, PID controller, PI controller action. Hydraulic controller: Advantage and disadvantage of Hydraulic controllers, Hydraulic integral controller, proportional controller, Hydraulic PI controller, hydraulic PD controller.

Module-3

Electronic controller: On/Off or two position, proportional, integral, proportional-integral, proportional-derivative and proportional-integral-derivative, design and consideration. Programmable controller, characteristic function of PLC, block diagram of PLC, ladder diagram, ladder diagram elements, development of simple ladder diagram & applications.

Module-4

Control valve: Type and characteristics, control valve sizing, selection criteria concept. Calculation of control valve size, positioner, necessity type & effects on performance of control valve. Pneumatic control valve characteristics, Actuators: electrical actuators, pneumatic actuators, Hydraulic, Electro-hydraulic, Electro-pneumatic.

Auxiliary process components: Hydraulic pumps & power supply, Hydraulic servomotor, Hydraulic integrator, Amplidyne, Magnetic Amplifier.

#### **Reference Books :**

- 1. Process Control and Instrument Technology by C.D.Jhonson.
- 2. Instrumentation for Process Measurement and Control By N.A.Anderson
- 3. Automatic Control Engineering by Raven
- 4. Automatic Control System by C.Kuo
- 5. Modern Control Engineering by Katsuhiko& Ogata
- 6 Control System by Nagrath& Gopal

#### B.Tech. 2<sup>ND</sup> YEAR (SEMESTER-IV) (w.e.f.2019-20)

| Course No. | Course title            | Credits | Teaching Schedule |   |   | lule      | Al                                       | Duration      |           |       |          |
|------------|-------------------------|---------|-------------------|---|---|-----------|------------------------------------------|---------------|-----------|-------|----------|
|            |                         |         | L                 | Т | Р | Tot<br>al | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |
| IN-PRCS-12 | Control System<br>Lab-1 | 1.5     |                   |   | 3 | 3         | 30                                       |               | 45        | 75    | 3 Hrs    |

#### Program Educational Objectives

Graduates of the program will,

| PEO1 | Have successful professional careers in Electrical Sciences, and IT enabled areas and be able |
|------|-----------------------------------------------------------------------------------------------|
|      | to pursue higher education.                                                                   |
| PEO2 | Demonstrate ability to work in multidisciplinary teams and engage in lifelong learning.       |
| PEO3 | Exhibit concern for environment and sustainable development.                                  |

#### COURSE OUTCOMES:

After the successful completion of the course, the student will be able to

1. Execute time response analysis of a second order control system using MATLAB/ simulation software

- 2. Analyze and interpret stability of the system through Root Locus, Bode plot and Nyquist plot.
- 3. Design Lag, Lead, Lead-Lag compensators and verify experimental results using MATLAB.
- 4. Analyze toque- speed characteristics of DC and AC servomotors.
- 5. Analyze the effect of P, PI, PD and PID controllers on a control system.

List of Experiments **2nd Year / 4th Semester** 

#### Subject: Control System Lab

| S.No | Experiments                                                                                                 |
|------|-------------------------------------------------------------------------------------------------------------|
| 1.   | Simulation Software for pneumatic components : An Introduction                                              |
| 2.   | Simulation Software for hydraulic components : An Introduction                                              |
| 3.   | Design a hydraulic circuit using a double acting cylinder and 4/2 hand operated valve to raise or lower the |
|      | pressure.                                                                                                   |
| 4.   | Design a hydraulic circuit by using a single acting cylinder to open or close the door. The operator can    |
|      | open or close the door at the time of loading or unloading the component.                                   |
| 5.   | Design a hydraulic circuit to lift a movable object by using telescopic cylinder and 4/3 hand lever valve.  |
| 6.   | Design a pneumatic circuit to open and close the door. By operating a push button valve, door should be     |
|      | open or close.                                                                                              |
| 7.   | Design a pneumatic circuit using a double acting cylinder and 5/2 air spring valve to open the door which   |
|      | can be controlled from other place.                                                                         |
| 8.   | Design a pneumatic circuit for a piston of double acting cylinder is to extend when one or both of the two  |
|      | 3/2 push button valve is activated, if both the push button are released the cylinder has to retract.       |

#### IN-PC-208 ELECTRICAL MACHINES

| Course No. | Course title           | Credits | Tea | ching | g Sch | edule     | Allo                                         |                | Duratio       |           |               |
|------------|------------------------|---------|-----|-------|-------|-----------|----------------------------------------------|----------------|---------------|-----------|---------------|
|            |                        |         | L   | T     | Р     | Tot<br>al | Minor test<br>+<br>Curricula<br>r activities | Majo<br>r test | Practic<br>al | Tot<br>al | n of<br>Exams |
| IN-PC-208  | Electrical<br>Machines | 3       | 2   | 1     |       | 3         | 40                                           | 60             |               | 100       | 3 Hrs         |

IN-PC-208 ELECTRICAL MACHINES

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

CO1: Design and conduct performance experiments, as well as to identify, formulate and solve machine related problems.

CO2: Analyze and describe aspects of the construction, principle of operation, applications of various electrical machines.

CO3: Describe the construction, application and operation of single phase and three phase transformers

CO4: Understand the basic concepts and working of switches and relays.

CO5: Identify suitable motors for industrial applications

#### **PROGRAM OUTCOMES**

- 1. Graduates will be able to apply fundamental knowledge in mathematics, science, electronics and instrumentation for solving engineering problems.
- 2. Graduates will be able to identify and analyze complex engineering problems in the areas of Electrical, Instrumentation and Automation.
- 3. Graduates will be able to solve open-ended technical problems and be proficient in the design, test, and implementation of Electrical, Instrumentation and control systems.
- 4. Graduates will attain skills to conduct experiments/investigations and interpret data with reference to systems and standards related to electronics and instrumentation engineering.
- 5. Graduates will have proficiency in system design tools and software packages related to electronics and instrumentation.
- 6. Graduates will have knowledge in the area of instrumentation engineering to assess and address societal, health, safety, legal and cultural issues.
- 7. Graduates will have broad education necessary to understand the impact of engineering solutions and sustainable development in environmental and societal context in the field of Instrumentation.
- 8. Graduates will be able to understand and uphold professional, ethical, and social responsibilities in Instrumentation engineering.
- 9. Graduates will be able to function efficiently as an individual or in team in process and automation industries.
- 10. Graduates will have ability to communicate effectively in written, oral and instrumentation formats to put forth solutions and prepare detailed engineering report in the process and automation industries.
- 11. Graduates will be able to apply the knowledge, skill and attitude as a team player in initiating, executing and managing projects in the areas of design, manufacture, marketing and entrepreneurship in multi-disciplinary environments.
- 12. Graduates will be able to conduct information searching and processing and develop the ability for lifetimelearning in field of Instrumentation engineering.

|     |      |                                                                                                                                            |         |          | CO/I     | PO Maj   | pping    |         |        |        |      |   |  |  |  |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|----------|----------|---------|--------|--------|------|---|--|--|--|
|     | (S/I | M/W in                                                                                                                                     | dicates | strength | n of cor | relation | ) S-Stro | ong, M- | Mediun | n, W-W | 'eak |   |  |  |  |
| COs |      |                                                                                                                                            |         |          |          |          |          |         |        |        |      |   |  |  |  |
|     | PO1  | PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12 |         |          |          |          |          |         |        |        |      |   |  |  |  |
| CO1 |      |                                                                                                                                            |         |          |          |          |          |         |        |        |      |   |  |  |  |
| CO2 | S    |                                                                                                                                            |         | S        |          |          |          | S       | S      | S      | S    | S |  |  |  |
| CO3 | S    |                                                                                                                                            |         | S        |          |          |          |         | S      | S      | S    | S |  |  |  |
| CO4 |      |                                                                                                                                            |         | S        |          |          |          |         | S      | S      | S    | S |  |  |  |
| CO5 |      |                                                                                                                                            |         | S        |          |          |          |         | S      | S      | S    | S |  |  |  |

#### **Course Assessment methods:**

| Direct            | Indirect Course end survey |
|-------------------|----------------------------|
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |

Module-1

MAGNETIC CIRCUITS AND INDUCTION: Magnetic Circuits, Magnetic Materials and their properties, static and dynamic e.m.f.s and force on current carrying conductor, AC operation of Magnetic Circuits, Hysteresis and Eddy current losses, frictional & copper losses. TRANSFORMERS: Basic theory, construction, operation at no-load, equivalent circuit, phasor diagram, O.C. and S.C. tests for parameters determination, efficiency and regulation, auto-transformer, introduction to three phase transformer; Scott connection, parallel operation of transformer. Module-2

PRINCIPLES OF ELECTROMECHANICAL ENERGY CONVERSIONS: Force and torque in magnetic field system, energy balance, energy and force in singly excited magnetic field system, concept of co-energy, forces and torques is system with permanent magnets, dynamic equation. DC MACHINES: Basic theory of DC generator, brief idea of construction, emf equation, load characteristics, basic theory of DC motor, concept of back emf, torque and power equations, load characteristics, starting and speed control of DC motors, Types of DC generator & motors, Armature reaction, commutation characteristics of DC machines.

Module-3

Induction Motors: Three phase motors, principle of operation, slip-torque equation, torque-slip characteristic, relation between slip and rotor copper loss, equivalent circuit, different types of starters applications. Single phase induction motors, principle of working, types, applications, Special Purpose Machines: Principle, working, applications of stepper motor, servo motors and universal motors.

Module-4

Alternators: Constructional features, synchronous speed, e.m.f. equation, winding factor, regulation by synchronous impedance method. Motors - concept of rotating magnetic field, principle of working, effect of variation of load, Vee curves.

Note: The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions among the 4-modules, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the 4-modules, asking for the derivations, numericals and applications of the various topics covered therein. The student has to **answer/ attempt 4-questions out of 4-questions in Section-A**, 2-questions out of 4-questions in Section-B and2-questions out of 4-questions in Section-

C. Section-A carry12 marks. Section-B and Section-C carry 24 marks each.

Reference Books :

- 1. Electrical Machines by Magrath and Kothari, TMH
- 2. Electrical Machines by Mukharjee and Chakravarty; Dhanpat Rai & Sons
- 3. Electrical Machines, Vol I & II by B.L.Thareja; Dhanpat Rai & Sons
- 4. Electrical Motor & Power Electronics by P.C.Sen; J.Wiley.

#### B.Tech. 2<sup>ND</sup> YEAR (SEMESTER-IV) (w.e.f.2019-20)

#### **IN-PC-210**

#### DIGITAL TECHNIQUES

#### **Course Outcomes**

After successful completion of this course, the students should be able to

CO1: Understand, demonstrate and troubleshoot the different types of logic gate

CO2: Demonstrate an understanding of minimizing logic circuits using Boolean operations

CO3: Understand principles and operations, demonstrate and troubleshoot combinational logic circuits.

CO4: Understand principles and operations, demonstrate and troubleshoot sequential logic

circuits.

CO5: Understand principles and operations, demonstrate and troubleshoot registers and counters.

|     |                                                                                                                                            |                   | 1:      | -4       |          | PO Maj   |                  |         | M. 1   | w w    | 71- |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|----------|----------|----------|------------------|---------|--------|--------|-----|--|--|--|--|
|     | (5/1                                                                                                                                       | <b>VI/ W</b> 1110 | uncates | strengti | 1 OI COI | relation | ) <b>S-S</b> IIC | ong, M- | Mediur | n, W-W | еак |  |  |  |  |
| COs |                                                                                                                                            |                   |         |          |          |          |                  |         |        |        |     |  |  |  |  |
|     | PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12 |                   |         |          |          |          |                  |         |        |        |     |  |  |  |  |
| CO1 |                                                                                                                                            |                   |         |          |          |          |                  |         |        |        |     |  |  |  |  |
| CO2 | S                                                                                                                                          | S                 | S       | S        | S        |          |                  |         |        |        |     |  |  |  |  |
| CO3 | S                                                                                                                                          | S                 | S       | S        | S        |          |                  |         |        |        |     |  |  |  |  |
| CO4 | S                                                                                                                                          | S                 | S       | S        | S        |          |                  |         |        |        |     |  |  |  |  |
| CO5 | S                                                                                                                                          | S                 | S       | S        | S        |          |                  |         |        |        |     |  |  |  |  |

#### **Course Assessment methods:**

| Course Assessment metho |                            |
|-------------------------|----------------------------|
| Direct                  | Indirect Course end survey |
| Internal test I         |                            |
| Internal test II        |                            |
| Internal test III       |                            |
| Assignment              |                            |
| Tutorial                |                            |
| Seminar                 |                            |
| End Semester Exam       |                            |
|                         |                            |

| Course No.  | Course title          | Credits | Teaching Schedule |   |   | lule      | Al                                       | Duration<br>of Exams |           |       |          |
|-------------|-----------------------|---------|-------------------|---|---|-----------|------------------------------------------|----------------------|-----------|-------|----------|
|             |                       |         | L                 | Т | Р | Tot<br>al | Minor test +<br>Curricular<br>activities | Major<br>test        | Practical | Total | of Exams |
| INE-PCC-210 | Digital<br>Techniques | 3       | 2                 | 1 |   | 3         | 40                                       | 60                   |           | 100   | 3 Hrs    |

Note: The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions among the 4-modules, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the 4-modules, asking for the derivations, numericals and applications of the various topics covered therein. The student has to answer/ attempt 4-questions out of 4-questions in Section-A, 2-questions out of 4-questions in Section-B and2-questions out of 4-questions in Section-A carry 24 marks each.

INE-PCC-210 DIGITAL TECHNIQUES Details of the Course Contents

#### Module -I

Number system and codes, signed binary numbers, Boolean relations, sum of products method, algebraic simplification, k-Maps, Karnaugh simplifications, binary addition, binary subtraction, digital operation of a digital system, OR, AND gates, inverter circuit, the inhibit (enable) operation, XOR circuits, DeMorgan's Laws, NAND & NOR gates. Logic Hardware: DTL, TTL, RTL, ECL, DCTL, Integrated injection logic, PMOS, NMOS, CMOS Logic and their characteristics, Dynamic MOS circuits,

#### Module -II

Binary Adders (Half Adder, Parallel Operation, Full adder, MSI Adders, Serial Operation). Arithmetic functions (True/Complement, Zero/One Element, Binary Subtraction, Digital Comparator), Decoder, Encoders, Multiplexers, Demultiplexures, Flip flops: RS Latches, Level clocking (Clocked SR flip flop), D latch, Edge triggered JK Flip Flop, JK Master Slave flip flop, T type Flip Flop.

#### Module -III

Shift Registers, Static and dynamic MOS Shift registers, Tristate logic and its uses in computers, synchronous & Asynchronous counters, Binary module counters, Programmable and presettable up/down counters, Applications of Counters.

#### Module -IV

A/D & D/A converters and their design.Digital storagedevices: ROM, RAM, EPROM, EEPROM, PAL & PLA, ULA, MOS ROM, ROM Applications

#### Reference Books :

- 1. Digital Electronics by Gothman, Prentice-Hall
- 2. Digital Principals & Applications by Malvino& Leach, TMH
- 3. System Design by Sonde, TMH
- 4. Digital Computer Electronics by A.P.Malvino, TMH
- 5. Analog and Digital Electronics by Peter.H.Beards.
- 6. Integrated Electronics by Millman&Halkias, McGraw Hill

IN-PRDT-14 Digital Lab

| Course No. | Course title | Credits | Tea | ching | g Sch | edule     | Alle                                         | Duratio          |    |           |               |
|------------|--------------|---------|-----|-------|-------|-----------|----------------------------------------------|------------------|----|-----------|---------------|
|            |              |         | L   |       |       | Tot<br>al | Minor test<br>+<br>Curricula<br>r activities | r test al<br>ula |    | Tot<br>al | n of<br>Exams |
| IN-PRDT-14 | Digital Lab  | 1.5     |     |       | 3     | 3         | 30                                           |                  | 45 | 75        | 3 Hrs         |

#### **Course Outcomes:**

#### After successful completion of this course, the students should be able to

CO1: Design basic application circuits using op-amp.

- CO2: Understand and implement the working of basic digital circuits
- CO3: Design multivibrators and voltage regulators

CO4: Design Counters and Timers

CO5: Design and Fabricate small projects using simulation tools and hardware

**LIST OF EXPERIMENTS :**Experiments beyond the syllabus should be conducted.

- 1. Study of flip flop. (JK, RS, D)
- 2. Implementation of combinational circuit
- 3. Design and Implementation of counters.
- 4. Design and Implementation of parallel and shift registers.
- 5. Binary adder/ subtractor
- 6. Digital comparator
- 7. Multiplexers and Demultiplexer
- 8. Realization of logic gates using diodes and transistors, DTL &TTL. Characteristics of TTL Gates
- 9. Half and full adders and subtractors using basic gates

#### **Expected Outcome**

After the completion of the course, students should be able to

- Design and implement combinational circuits
- Design and implement sequential circuits
- Get familiarized with the TTL logic family.

#### **Text Books:**

- 1. Charles H. Roth, Jr. Fundamentals of Logic Design, 5th edition, Thomson Books/Col
- 2. A. Anand Kumar, Fundamentals of Digital Circuits, PHI learning, 2/e, 2010, ISBN: 81-203-3679-7.

MODEL CURRICULUM for

# UNDERGRADUATE DEGREE COURSES IN ELECTRICAL AND INSTRUMENTATION ENGINEERING (Engineering & Technology) [JULY 2019]

# **B.Tech Electrical and Instrumentation Engineering** SCHEME OF EXAMINATIONS



Department of Instrumentation (U.S.I.C) Kurukshetra University Kurukshetra

#### Kurukshetra University Scheme of Exam Model Curriculum for First Year Undergraduate Degree Courses in ELECTRICAL AND INSTRUMENTATION ENGINEERING Engineering & Technology

| Sl. No. | Chapter     | Title                                                   |
|---------|-------------|---------------------------------------------------------|
| 1       | 1           | General, Course structure, Theme & Semester-wise credit |
|         |             | distribution                                            |
| 2       | 2           | Detailed First Year Curriculum Contents                 |
|         |             | Chemistry-I (Theory & Lab.)                             |
|         |             | Physics (Theory & Lab.)                                 |
|         |             | Mathematics –1                                          |
|         |             | Mathematics -2                                          |
|         |             | Programming for Problem Solving (Theory & Lab.)         |
|         |             | English                                                 |
|         |             | Engineering Graphics & Design                           |
|         |             | Workshop/Manufacturing Practices (Theory & lab.)        |
|         |             | Basic Electrical Engineering (Theory & Lab.)            |
| 3       | Appendix –A | Guide to Induction program                              |

#### **CONTENTS**

#### Model Curriculum for First Year Undergraduate Degree Courses in Engineering & Technology Chapter -1

#### General, Course structure & Theme &

#### Semester-wise credit distribution

#### A. Definition of Credit:

| 1 Hr. Lecture (L) per week   | 1 credit    |
|------------------------------|-------------|
| 1 Hr. Tutorial (T) per week  | 1 credit    |
| 1 Hr. Practical (P) per week | 0.5 credits |
|                              |             |
| 2 Hours Practical(Lab)/week  | 1 credit    |

#### B. Range of credits -

A range of credits from 150 to 160 for a student to be eligible to get Under Graduate degree in Engineering. A student will be eligible to get Under Graduate degree with Honours or additional Minor Engineering, if he/she completes an additional 20 credits. These could be acquired through MOOCs.

#### C. Structure of Undergraduate Engineering program:

| S. | Category                                                                | Suggested Breakup     |
|----|-------------------------------------------------------------------------|-----------------------|
| No |                                                                         | of Credits(Total 160) |
|    |                                                                         |                       |
| 1  | Humanities and Social Sciences including Management courses             | 7                     |
| 2  | Basic Science courses                                                   | 22                    |
| 3  | Engineering Science courses including workshop, drawing, basics of      | 22.5                  |
|    | electrical/mechanical/computer etc                                      |                       |
| 4  | Professional core courses                                               | 67                    |
| 5  | Professional Elective courses relevant to chosen specialization/branch  | 31.5                  |
| 6  | Open subjects – Electives from other technical and /or emerging         |                       |
|    | subjects                                                                |                       |
| 7  | Project work, seminar and internship in industry or elsewhere           | 10                    |
| 8  | Mandatory Courses                                                       |                       |
|    | [Environmental Sciences, Induction training, Indian Constitution, Essen | (non-credit)          |
|    | of Indian Traditional Knowledge]                                        |                       |
|    | Total                                                                   | 173.5*                |

\*Minor variation is allowed as per need of the respective disciplines.

#### D. Credit distribution in the First year of Undergraduate Engineering program:

|                                    | Lecture<br>(L) | Tutoria<br>(T) | Laboratory/Practica<br>(P) | Total credits<br>(C) |
|------------------------------------|----------------|----------------|----------------------------|----------------------|
| Chemistry –I                       | 3              | 1              |                            | 5.5                  |
| Physics                            | 3              | 1              |                            | 5.5                  |
| Maths-1                            | 3              | 1              |                            | 4                    |
| Maths -2                           | 3              | 1              |                            | 4                    |
| Programming for<br>Problem solving | 3              | 0              |                            | 5                    |
| English                            | 3              | 0              | 2                          | 3                    |
| Engineering Graphics &             | 1              | 0              |                            | 3                    |
| Design                             |                | 0              |                            |                      |
| Workshop/ practical                | 1              | 0              |                            | 3                    |

| Basic Electrical Engg. | 3 | 1 | 5 |
|------------------------|---|---|---|
| *Biology               | 2 | 1 | 3 |
| *Engg. Mechanics       | 3 | 1 | 4 |
| *Maths-3               | 3 | 1 | 4 |

\*These courses may be offered preferably in the 3<sup>rd</sup> semester & onwards.

#### E. Course code and definition:

| Course code | Definitions                              |
|-------------|------------------------------------------|
| L           | Lecture                                  |
| Т           | Tutorial                                 |
| Р           | Practical                                |
| BS          | Basic Science Courses                    |
| ES          | Engineering Science Courses              |
| HSM         | Humanities and Social Sciences including |
|             | Management courses                       |
| IN          | Instrumentation Engineering              |
| PC          | Professional core courses                |
| PE          | Professional Elective courses            |
| OE          | Open Elective courses                    |
| LC/ PR      | Laboratory course                        |
| MC          | Mandatory courses                        |
| PROJ        | Project                                  |

#### F. Category of Courses: BASIC SCIENCE COURSES

| S1. | Course     | Course Title   | Hours per week |   | Credits | Preferred |   |
|-----|------------|----------------|----------------|---|---------|-----------|---|
| No. | Code       |                |                |   |         | semester  |   |
|     |            |                | L              | Т | Р       |           |   |
| 1   | EI-BS-102  | Chemistry-I    | 3              | 1 | 3       | 5.5       | Π |
| 2   | EI -BS-101 | Physics        | 3              | 1 | 3       | 5.5       | Ι |
| 3   | EI -BS-103 | Mathematics –I | 3              | 1 | 0       | 4         | Ι |
| 4   | EI -BS-104 | Mathematics –2 | 3              | 1 | 0       | 4         | Π |

#### **ENGINEERING SCIENCE COURSES**

| Sl.<br>No. | Course<br>Code | Course Title                      | Hours per week |   | Credits | Preferred semester |          |
|------------|----------------|-----------------------------------|----------------|---|---------|--------------------|----------|
| 110.       |                |                                   | L              | Т | Р       |                    | semester |
| 1          | EI -ES-105     | Basic Electrical Engineering      | 3              | 1 | 2       | 5                  | Ι        |
| 2          | EI -ES-107     | Engineering Graphics & Design     | 1              | 0 | 4       | 3                  | Ι        |
| 3          | EI -ES-106     | Programming for Problem Solving   | 3              | 0 | 4       | 5                  | II       |
| 4          | EI -PR-08      | Workshop/Manufacturing            | 1              | 0 | 4       | 3                  | II       |
|            |                | Practices                         |                |   |         |                    |          |
| 5          | EI -ES-108     | Basic Electronics Engineering     | 2              | 0 | 1       | 3                  | II       |
| 6          | EI -ES-203     | Basic Instrumentation Engineering | 2              | 0 | 1       | 3                  | III      |

#### HUMANITIES & SOCIAL SCIENCES INCLUDING MANAGEMENT

| Sl.<br>No. | Course<br>Code | Course Title | Hours per week |   |   | Credits | Preferred<br>Semester |
|------------|----------------|--------------|----------------|---|---|---------|-----------------------|
|            |                |              | L              | Т | Р |         |                       |
| 1          | EI-HSM-109     | English      | 3              | 0 | 2 | 3       | Ι                     |

#### G. Structure of curriculum

#### Mandatory Induction Program

| Physical activity                 |               |
|-----------------------------------|---------------|
| Creative Arts                     | 3 weeks       |
| Universal Human Values            |               |
| • Literary                        |               |
| Proficiency Modules               |               |
| • Lectures by Eminent People      |               |
| Visits to local Areas             |               |
| • Familiarization to Dept./Branch | & Innovations |

#### Semester I (First year] B.Tech. ELECTRICAL AND INSTRUMENTATION ENGINEERING UG

| Sl.N | Category                       | Course No.     | Course title                    | Credi | Teaching S |   | ng Sch | nedule |
|------|--------------------------------|----------------|---------------------------------|-------|------------|---|--------|--------|
| 0    |                                |                |                                 | ts    | L          | Т | P      | Total  |
| 1    | Basic Science Course           | EI-BS-101      | Physics-I                       | 4     | 3          | 1 | -      | 4      |
| 2    | Basic Science course           | EI-BS-103      | Mathematics-I                   | 4     | 3          | 1 | -      | 4      |
| 3    | Engineering<br>Science Courses | EI-ES-105      | Basic Electrical<br>Engineering | 4     | 3          | 1 | -      | 4      |
| 4    | Engineering Science<br>Courses | EI-ES-107      | Engg. Graphics<br>and Design    | 1     | 1          | - | -      | 1      |
| 5    | Humanities courses             | EI-HSM-<br>109 | English                         | 3     | 3          | - | -      | 3      |
| 6    | Physics Lab                    | EI-PR-01       | Physics Lab                     | 1.5   | -          | - | 3      | 3      |
| 7    | Engineering Drawing lab        | EI-PR-03       | Engineering<br>Drawing lab      | 2     | -          | - | 4      | 4      |
| 8    | Basic Electrical Lab           | EI-PR-05       | Basic Electrical<br>Lab         | 1     | -          | - | 2      | 2      |
| 9    | Language Lab                   | EI-PR-07       | Language Lab                    | 0     | -          | - | 2      | 2      |
|      |                                |                | Total                           | 20.5  | 13         | 3 | 11     | 27     |

Semester II (First year]

|     |                                |             | Semester II (Firs                  | t year] |     |          |    |            |  |
|-----|--------------------------------|-------------|------------------------------------|---------|-----|----------|----|------------|--|
|     | <b>B.Tech. ELECTRI</b>         | CAL AND INS | STRUMENTATION                      | ENGIN   | EER | ING      |    | UG         |  |
| S.N | Category                       | Course No.  | Course title                       | Credi   | Te  | Teaching |    | g Schedule |  |
| 0.  |                                |             |                                    | ts      | L   | Т        | Р  | Total      |  |
| 1   | Basic Science courses          | EI-BS-102   | Chemistry                          | 4       | 3   | 1        |    | 4          |  |
| 2   | Basic Science courses          | EI-BS-104   | Mathematics-II                     | 4       | 3   | 1        |    | 4          |  |
| 3   | Engineering<br>Science Courses | EI-ES-106   | Programming for<br>Problem Solving | 4       | 3   | 1        |    | 4          |  |
| 4   | Engineering Science<br>Courses | EI-ES-108   | Basic Electronics<br>Engineering   | 3       | 2   | 1        |    | 3          |  |
| 5   | Environmental<br>Sciences MC   | EI-EVS-112  | Environmental<br>Science           |         | 3   | 0        |    | 3          |  |
| 6   | Chemistry Lab                  | EI-PR-02    | Chemistry Lab                      | 1.5     |     |          | 3  | 3          |  |
| 7   | Computer<br>programming Lab    | EI-PR-04    | Computer<br>programming Lab        | 1.5     | -   | -        | 3  | 3          |  |
| 8   | Basic Electronic lab           | EI-PR-06    | Basic Electronic lab               | 1       | -   | -        | 2  | 2          |  |
| 9   | Workshop Practice<br>Lab.      | EI-PR-08    | Workshop Practice<br>Lab.          | 1       | -   | -        | 2  | 2          |  |
|     |                                |             | Total                              | 20      | 14  | 4        | 10 | 28         |  |

#### Chapter -2

#### **Detailed first year curriculum contents**

#### I. Mandatory Induction program

(Please refer **Appendix-A** for guidelines. Details of Induction program also available in the curriculum of Mandatory courses.) [Induction program for students to be offered right at the start of the first year.]

| • | Physical activity <b>3 weeks</b>              |
|---|-----------------------------------------------|
| • | Creative Arts                                 |
| • | Universal Human Values                        |
| • | Literary                                      |
| • | Proficiency Modules                           |
| ٠ | Lectures by Eminent People                    |
| • | Visits to local Areas                         |
| • | Familiarization to Dept./Branch & Innovations |

## **Guide to Induction Program**

## **1** Introduction

(Induction Program was discussed and approved for all colleges by AICTE in March 2017. It was discussed and accepted by the Council of IITs for all IITs in August 2016. It was originally proposed by a Committee of IIT Directors and accepted at the meeting of all IIT Directors in March 2016.<sup>1</sup> This guide has been prepared based on the Report of the Committee of IIT Directors and the experience gained through its pilot implementation in July 2016 as accepted by the Council of IITs. Purpose of this document is to help insti-

tutions in understanding the spirit of the accepted Induction Program and implementing it.)

Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond.

The graduating student must have knowledge and skills in the area of his study. However, he must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he would understand and his responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.

There is a mad rush for engineering today, without the student determining for himself his interests and his goals. This is a major factor in the current state of demotivation towards studies that exists among UG students.

The success of gaining admission into a desired institution but failure in getting the desired branch, with peer pressure generating its own problems, leads to a peer environment that is demotivating and corrosive. Start of hostel life without close parental supervision at the same time, further worsens it with also a poor daily routine.

To come out of this situation, a multi-pronged approach is needed. One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character.

<sup>1</sup>A Committee of IIT Directors was setup in the 152nd Meeting of IIT Directors on 6th September 2015 at IIT Patna, on how to motivate undergraduate students at IITs towards studies, and to develop verbal ability. The Committee submitted its report on 19th January 2016. It was considered at the 153rd Meeting of all IIT Directors at IIT Mandi on 26 March 2016, and the accepted report came out on 31 March 2016. The Induction Program was an important recommendation, and its pilot was implemented by three IITs, namely, IIT(BHU), IIT Mandi and IIT Patna in July 2016. At the 50th meeting of the Council of IITs on 23 August 2016, recommendation on the Induction Program and the report of its pilot implementation were discussed and the program was accepted for all IITs.

#### 2 Induction Program

When new students enter an institution, they come with diverse thoughts, backgrounds and preparations. It is important to help them adjust to the new environment and inculcate in them the ethos of the institution with a sense of larger purpose. Precious little is done by most of the institutions, except for an orientation program lasting a couple of days.

We propose a 3-week long induction program for the UG students entering the institution, right at the start. Normal classes start only after the induction program is over. Its purpose is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awarness, sensitivity and understanding of the self, people around them, society at large, and nature.<sup>2</sup>

The time during the Induction Program is also used to rectify some critical lacunas, for example, English background, for those students who have deficiency in it.

The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

(2) IIIT Hyderabad was the first one to implement a compulsary course on Human Values. Under it, classes were held by faculty through discussions in small groups of students, rather than in lecture mode. Moreover, faculty from all departments got involved in conducting the group discussions under the course. The content is non-sectarian, and the mode is dialogical rather than sermonising or lecturing. Faculty were trained beforehand, to conduct these discussions and to guide students on issues of life.

(3) Counselling at some of the IITs involves setting up mentor-mentee network under which 1st year students would be divided into small groups, each assigned a senior student as a student guide, and a faculty member as a mentor. Thus, a new student gets connected to a faculty member as well as a senior student, to whom he/she could go to in case of any difficulty whether psychological, financial, academic, or otherwise.

The Induction Program defined here amalgamates all the three into an integrated whole, which leads to its high effectiveness in terms of building physical activity, creativity, bonding, and character. It develops sensitivity towards self and one's relationships, builds awareness about others and society beyond the individual, and also in bonding with their own batch-mates and a senior student besides a faculty member. Scaling up the above amalgamation to an intake batch of 1000 plus students was done at IIT(BHU), Varanasi starting from July 2016.

#### **Physical Activity**

This would involve a daily routine of physical activity with games and sports. It would start with all students coming to the field at 6 am for light physical exercise or yoga. There would also be games in the evening or at other suitable times according to the local climate. These would help develop team work. Each student should pick one game and learn it for three weeks. There could

<sup>&</sup>lt;sup>2</sup>Induction Program as described here borrows from three programs running earlier at different institutions: (1) Foundation Program running at IIT Gadhinagar since July 2011, (2) Human Values course running at IIIT Hyderabad since July 2005, and (3) Counselling Service or mentorship running at several IITs for many decades. Contribution of each one is described next.

<sup>(1)</sup> IIT Gandhinagar was the first IIT to recognize and implement a special 5-week Foundation Program for the incoming 1st year UG students. It took a bold step that the normal classes would start only after the five week period. It involved activities such as games, art, etc., and also science and other creative workshops and lectures by resource persons from outside.

also be gardening or other suitably designed activity where labour yields fruits from nature.

#### Creative Arts

Every student would chose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program.

These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, flow into engineering design later.

#### **Universal Human Values**

It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting staff in the hostel and department, be sensitive to others, etc. Need for character building has been underlined earlier. A module in Universal Human Values provides the base.

Methodology of teaching this content is extremely important. It must not be through do's and dont's, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing. The role of group discussions, however, with clarity of thought of the teachers cannot be over emphasized. It is essential for giving exposure, guiding thoughts, and realizing values.

The teachers must come from all the departments rather than only one department like HSS or from outside of the Institute. Experiments in this direction at IIT(BHU) are noteworthy and one can learn from them.<sup>3</sup>

Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It is to open thinking towards the self. Universal Human Values discussions could even continue for rest of the semester as a normal course, and not stop with the induction program.

Besides drawing the attention of the student to larger issues of life, it would build relationships between teachers and students which last for their entire 4-year stay and possibly beyond.

<sup>3</sup>The Universal Human Values Course is a result of a long series of experiments at educational institutes starting from IIT-Delhi and IIT Kanpur in the 1980s and 1990s as an elective course, NIT Raipur in late 1990s as a compulsory one-week off campus program. The courses at IIT(BHU) which started from July 2014, are taken and developed from two compulsory courses at IIIT Hyderabad first introduced in July 2005.

#### Literary

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

#### **Proficiency Modules**

This period can be used to overcome some critical lacunas that students might have, for example, English, computer familiarity etc. These should run like crash courses, so that when normal courses start after the induction program, the student has overcome the lacunas substantially. We hope that problems arising due to lack of English skills, wherein students start lagging behind or failing in several subjects, for no fault of theirs, would, hopefully, become a thing of the past.

#### **Lectures by Eminent People**

This period can be utilized for lectures by eminent people, say, once a week. It would give the students exposure to people who are socially active or in public life.

#### Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

#### **Familiarization to Dept./Branch & Innovations**

The students should be told about different method of study compared to coaching that is needed at IITs. They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the

laboratories, workshops & other facilities.

### 3 Schedule

The activities during the Induction Program would have an Initial Phase, a Regular Phase and a Closing Phase. The Initial and Closing Phases would be two days each.

#### 3.1 Initial Phase

| Time                | Activity                                                              |
|---------------------|-----------------------------------------------------------------------|
| Day 0               |                                                                       |
| Whole day           | Students arrive - Hostel allotment. (Preferably do pre-<br>allotment) |
| Day 1               |                                                                       |
| 09:00 am - 03:00 pm | Academic registration                                                 |
| 04:30 pm - 06:00 pm | Orientation                                                           |
| Day 2               |                                                                       |
| 09:00 am - 10:00 am | Diagnostic test (for English etc.) 10:15 am - 12:25 pm                |
|                     | Visit to respective depts.                                            |
| 12:30 pm - 01:55 pm | Lunch                                                                 |
| 02:00 pm - 02:55 pm | Director's address                                                    |
| 03:00 pm - 05:00 pm | Interaction with parents                                              |
| 03:30 pm - 05:00 pm | Mentor-mentee groups - Introduction within group.                     |
| _                   | (Same as Universal Human Values groups)                               |

#### 3.2 Regular Phase

After two days is the start of the Regular Phase of induction. With this phase there would be regular program to be followed every day.

#### 3.2.1 Daily Schedule

Some of the activities are on a daily basis, while some others are at specified periods within the Induction Program. We first show a typical daily timetable.

| <br>Sessn. Time           | Activity                               | Remarks          |
|---------------------------|----------------------------------------|------------------|
| <br>Day 3 onwards         |                                        |                  |
| 06:00 am                  | Wake up call                           |                  |
| <br>l 06:30 am - 07:10 am | Physical activity (mild exercise/yoga) |                  |
| 07:15 am - 08:55 am       | Bath, Breakfast, etc.                  |                  |
| 09:00 am - 10:55 am       | Creative Arts /Universal Human         | Half the groups  |
|                           | Values                                 | do Creative Arts |
| 11:00 am - 12:55 pm       | Universal Human Values /               | Complementary    |
| Creative                  |                                        | alternate        |
|                           | Arts                                   |                  |
| <br>01:00 pm - 02:25 pm   | Lunch                                  |                  |

| Ι | 02:30 pm - | Afternoon Session         | See    |
|---|------------|---------------------------|--------|
| V | 03:55 pm   |                           | below. |
| V | 04:00 pm - | Afternoon Session         | See    |
|   | 05:00 pm   |                           | below. |
|   | 05:00 pm - | Break / light tea         |        |
|   | 05:25 pm   |                           |        |
| V | 05:30 pm - | Games / Special Lectures  |        |
| Ι | 06:45 pm   |                           |        |
|   | 06:50 pm - | Rest and Dinner           |        |
|   | 08:25 pm   |                           |        |
| V | 08:30 pm - | Informal interactions (in |        |
| Ι | 09:25 pm   | hostels)                  |        |
| Ι | _          |                           |        |

Sundays are off. Saturdays have the same schedule as above or have outings.

#### **3.2.2** Afternoon Activities (Non-Daily)

The following five activities are scheduled at different times of the Induction Program, and are not held daily for everyone:

- 1. Familiarization to Dept./Branch & Innovations
- 2. Visits to Local Area
- 3. Lectures by Eminent People
- 4. Literary
- 5. Proficiency Modules

Here is the approximate activity schedule for the afternoons (may be changed to suit local needs):

| Activity                  | Session      | Remarks                          |               |
|---------------------------|--------------|----------------------------------|---------------|
| Familiarization with      | IV           | For 3 days (Day 3 to 5)          |               |
| Dept/Branch & Innovations |              |                                  |               |
| Visits to Local Area      | IV, V and VI | For 3 days - interspersed (e.g., | -3 Saturdays) |
| Lectures byEminent People | IV           | As scheduled - 3-5 lectures      |               |
| Literary (Play / Book     | IV           | For 3-5 days                     |               |
| Reading / Lecture)        |              |                                  |               |

Proficiency Modules

#### **3.3** Closing Phase

| Time                | Activity                                                                                        |  |  |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Last But One Day    |                                                                                                 |  |  |  |  |  |  |
| 08:30 am - 12 noon  | Discussions and finalization of presen-<br>tation within each group                             |  |  |  |  |  |  |
| 02:00 am - 05:00 pm | Presentation by each group in front of 4<br>other groups besides their own (about 100 students) |  |  |  |  |  |  |
| Last Day            |                                                                                                 |  |  |  |  |  |  |
| Whole day           | Examinations (if any). May be ex- panded to last                                                |  |  |  |  |  |  |
|                     | 2 days, in case needed.                                                                         |  |  |  |  |  |  |

V

#### 3.4 Follow Up after Closure

A question comes up as to what would be the follow up program after the formal 3-week Induction Program is over? The groups which are formed should function as mentor- mentee network. A student should feel free to approach his faculty mentor or the student guide, when facing any kind of problem, whether academic or financial or psychological etc. (For every 10 undergraduate first year students, there would be a senior student as a *student guide*, and for every 20 students, there would be a *faculty mentor*.) Such a group should remain for the entire 4-5 year duration of the stay of the student. Therefore, it would be good to have groups with the students as well as teachers from the same department/discipline<sup>4</sup>.

Here we list some important suggestions which have come up and which have been experimented with.

#### 3.4.1 Follow Up after Closure – Same Semester

It is suggested that the groups meet with their faculty mentors once a month, within the semester after the 3-week Induction Program is over. This should be a scheduled meeting shown in the timetable. (The groups are of course free to meet together on their own more often, for the student groups to be invited to their faculty mentor's home for dinner or tea, nature walk, etc.)

#### 3.4.2 Follow Up – Subsequent Semesters

It is extremely important that continuity be maintained in subsequent semesters.

It is suggested that at the start of the subsequent semesters (upto fourth semester), three days be set aside for three full days of activities related to follow up to Induction Program. The students be shown inspiring films, do collective art work, and group discussions be conducted. Subsequently, the groups should meet at least once a month.

#### 4 Summary

Engineering institutions were set up to generate well trained manpower in engineering with a feeling of responsibility towards oneself, one's family, and society. The incoming undergraduate students are driven by their parents and society to join engineering without understanding their own interests and talents. As a result, most students fail to link up with the goals of their own institution.

The graduating student must have values as a human being, and knowledge and metaskills related to his/her profession as an engineer and as a citizen. Most students who get demotivated to study engineering or their branch, also lose interest in learning.

The *Induction Program* is designed to make the newly joined students feel comfortable, sensitize them towards exploring their academic interests and activities, reducing competition and making them work for excellence, promote bonding within them, build relations

between teachers and students, give a broader view of life, and building of character. The *Universal Human Values* component, which acts as an anchor, develops awareness and sensitivity, feeling of equality, compassion and oneness, draw attention to society and nature, and character to follow through. It also makes them reflect on their relationship with their families and extended family in the college (with hostel staff and others). It also connects students with each other and with teachers so that they can share any difficulty they might be facing and seek help.

#### **References:**

Motivating UG Students Towards Studies, Rajeev Sangal, IITBHU Varanasi, Gautam Biswas, IIT Guwahati, Timothy Gonsalves, IIT Mandi, Pushpak Bhattacharya, IIT Patna, (Committee of IIT Directors), 31 March 2016, IIT Directors' Secretariat, IIT Delhi.

#### **Contact:**

*Prof. Rajeev Sangal* Director, IIT(BHU), Varanasi (director@iitbhu.ac.in)

<sup>&</sup>lt;sup>4</sup>We are aware that there are advantages in mixing the students from different depts. However, in mixing, it is our experience that the continuity of the group together with the faculty mentor breaks down soon after. Therefore, the groups be from the same dept. but hostel wings have the mixed students from different depts. For example, the hostel room allotment should be in alphabetical order irrespective of dept.

#### **Detailed first year curriculum contents**

#### **II. Mandatory Induction program**

(Please refer Appendix-A for guidelines. Details of Induction program also available in the curriculum of AICTE Mandatory courses.) [Induction program for students to be offered right at the start of the first year.]

- 3 weeks Physical activity ٠
  - Creative Arts ٠
  - Universal Human Values
  - Literary •
  - **Proficiency Modules** •
  - Lectures by Eminent People •
  - Visits to local Areas •
  - Familiarization to Dept./Branch & Innovations •

#### **B.Tech Electrical and Instrumentation Engineering** SCHEME OF EXAMINATIONS B Tech 1<sup>ST</sup> VEAD (SEMECTED 2) ( .....

| Course No. | Course title                    | Credits | Т  | eachi | ng Sch | nedule | A                                        | lotment o     | f marks   |       | Duration    |
|------------|---------------------------------|---------|----|-------|--------|--------|------------------------------------------|---------------|-----------|-------|-------------|
|            |                                 |         | L  | Т     | Р      | Total  | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of<br>Exams |
| EI-BS-101  | Physics-I                       | 4       | 3  | 1     | -      | 4      | 40                                       | 60            |           | 100   | 3 Hrs       |
| EI-BS-103  | Mathematics-I                   | 4       | 3  | 1     | -      | 4      | 40                                       | 60            |           | 100   | 3 Hrs       |
| EI-ES-105  | Basic Electrical<br>Engineering | 4       | 3  | 1     | -      | 4      | 40                                       | 60            |           | 100   | 3 Hrs       |
| EI-ES-107  | Engg. Graphics<br>and Design    | 1       | 1  | -     | -      | 1      | 20                                       | 30            |           | 50    | 3 Hrs       |
| EI-HSM-109 | English                         | 3       | 3  | -     | -      | 3      | 40                                       | 60            |           | 100   | 3 Hrs       |
| EI-PR-01   | Physics Lab                     | 1.5     | -  | -     | 3      | 3      | 30                                       |               | 45        | 75    | 3 Hrs       |
| EI-PR-03   | Engineering<br>Drawing lab      | 2       | -  | -     | 4      | 4      | 40                                       |               | 60        | 100   | 3 Hrs       |
| EI-PR-05   | Basic Electrical<br>Lab         | 1       | -  | -     | 2      | 2      | 20                                       |               | 30        | 50    | 3 Hrs       |
| EI-PR-07   | Language Lab                    | 0       | -  | -     | 2      | 2      |                                          |               |           |       |             |
|            | Total                           | 20.5    | 13 | 3     | 11     | 27     | 270                                      | 270           | 135       | 675   |             |

#### B.Tech. 1<sup>ST</sup> YEAR (SEMESTER-II) (w.e.f.2019-20)

| Course No. | Course title                       | Credit | Т  | each | ing Sch | edule | A                                           | llotment a    | of marks  |       | Duration |
|------------|------------------------------------|--------|----|------|---------|-------|---------------------------------------------|---------------|-----------|-------|----------|
|            |                                    | S      | L  | Т    | Р       | Total | Minor test<br>+<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |
| EI-BS-102  | Chemistry                          | 4      | 3  | 1    |         | 4     | 40                                          | 60            |           | 100   | 3 Hrs    |
| EI-BS-104  | Mathematics-II                     | 4      | 3  | 1    |         | 4     | 40                                          | 60            |           | 100   | 3 Hrs    |
| EI-ES-106  | Programming for<br>Problem Solving | 4      | 3  | 1    |         | 4     | 40                                          | 60            |           | 100   | 3 Hrs    |
| EI-ES-108  | Basic Electronics<br>Engineering   | 3      | 2  | 1    |         | 3     | 40                                          | 60            |           | 100   | 3 Hrs    |
| EI-EVS-112 | Environmental<br>Science           |        | 3  | 0    |         | 3     | 30+10                                       | 60            |           | 100   | 3 Hrs    |
| EI-PR-02   | Chemistry Lab                      | 1.5    |    |      | 3       | 3     | 30                                          |               | 45        | 75    | 3 Hrs    |
| EI-PR-04   | Computer<br>programming Lab        | 1.5    | -  | -    | 3       | 3     | 30                                          |               | 45        | 75    | 3 Hrs    |
| EI-PR-06   | Basic Electronic<br>lab            | 1      | -  | -    | 2       | 2     | 20                                          |               | 30        | 50    | 3 Hrs    |
| EI-PR-08   | Workshop<br>Practice Lab.          | 1      | -  | -    | 2       | 2     | 20                                          |               | 30        | 50    | 3 Hrs    |
|            | Total                              | 20     | 14 | 4    | 10      | 28    | 300                                         | 300           | 150       | 750   |          |

#### B.Tech Electrical and Instrumentation Engineering SCHEME OF EXAMINATIONS B.Tech, 2<sup>ND</sup> YEAR (SEMESTER-III) (w.e.f.2020-21) рт

| Course No. | Course title                            | Credits | Te | achir | ng Sch | edule | Al                                       | lotment of    | f marks   |       | Duration |
|------------|-----------------------------------------|---------|----|-------|--------|-------|------------------------------------------|---------------|-----------|-------|----------|
|            |                                         |         | L  | Т     | Р      | Total | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |
| EI-PC-201  | Power System I                          | 3       | 2  | 1     |        | 3     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PC-203  | Basic<br>Instrumentation<br>Engineering | 3       | 2  | 1     |        | 3     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PC-205  | Network Analysis                        | 3       | 2  | 1     |        | 3     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PC-207  | Transducers and<br>Applications         | 3       | 2  | 1     |        | 3     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-OE-209  | Open Elective I                         | 3       | 2  | 1     |        | 3     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PR-09   | Instrumentation Lab                     | 1       |    |       | 2      | 2     | 20                                       |               | 30        | 50    | 3 Hrs    |
| EI-PR-11   | Network Analysis<br>Lab                 | 1       |    |       | 2      | 2     | 20                                       |               | 30        | 50    | 3 Hrs    |
| EI-PR-13   | Transducer lab                          | 1       |    |       | 2      | 2     | 30                                       |               | 45        | 75    | 3 Hrs    |
| EI-PR-15   | Open Elective I Lab                     | 1       |    |       | 2      | 2     | 30                                       |               | 45        | 75    | 3 Hrs    |
| EI-PR-17   | Power System Lab                        | 1       |    |       | 2      | 2     | 30                                       |               | 45        | 75    | 3 Hrs    |
|            | Total                                   | 20      | 10 | 5     | 10     | 25    | 330                                      | 300           | 195       | 825   |          |

#### **Open Elective I**

Linear Integrated Circuits Computer Networks

| Course No. | Course title                                    | Credits | Т  | eachi | ng Sch | edule | А                                           | llotment a    | f marks   |           | Duratio       |
|------------|-------------------------------------------------|---------|----|-------|--------|-------|---------------------------------------------|---------------|-----------|-----------|---------------|
|            |                                                 |         | L  | Т     | Р      | Total | Minor test<br>+<br>Curricular<br>activities | Major<br>test | Practical | Tota<br>l | n of<br>Exams |
| EI-PC-202  | Power Electronics-I                             | 4       | 3  | 1     |        | 4     | 40                                          | 60            |           | 100       | 3 Hrs         |
| EI-PC-204  | Electrical<br>Measurements &<br>Instrumentation | 4       | 3  | 1     |        | 4     | 40                                          | 60            |           | 100       | 3 Hrs         |
| EI-PC-206  | Program Elective I                              | 3       | 2  | 1     |        | 3     | 40                                          | 60            |           | 100       | 3 Hrs         |
| EI-PC-208  | Electrical Machines                             | 4       | 3  | 1     |        | 4     | 40                                          | 60            |           | 100       | 3 Hrs         |
| EI-OE-210  | Open Elective II                                | 3       | 2  | 1     |        | 3     | 40                                          | 60            |           | 100       | 3 Hrs         |
| EI-PR-10   | Power Electronics Lab                           | 1       |    |       | 2      | 2     | 30                                          |               | 45        | 75        | 3 Hrs         |
| EI-PR-12   | Control System Lab-1                            | 1       |    |       | 2      | 2     | 30                                          |               | 45        | 75        | 3 Hrs         |
| EI-PR-14   | Open Elective II Lab                            | 1       |    |       | 2      | 2     | 20                                          |               | 30        | 50        | 3 Hrs         |
| EI-PR-16   | Machines lab                                    | 1.5     |    |       | 3      | 3     | 30                                          |               | 45        | 75        | 3 Hrs         |
|            | Total                                           | 22.5    | 13 | 5     | 09     | 27    | 310                                         | 300           | 165       | 775       |               |

#### B.Tech. 2<sup>ND</sup> YEAR (SEMESTER-IV) (w.e.f.2020-21)

**Program Elective I** Control System Components Industrial Electrical Systems Electrical Energy Conservation and Auditing

**Open Elective II** 

Digital Techniques Computer Organization Electronic Devices

# B.Tech Electrical and Instrumentation Engineering SCHEME OF EXAMINATIONS B.Tech. 3<sup>RD</sup> YEAR (SEMESTER-V) (w.e.f.2021-22)

| Course No. | Course title                       | Credits | Те | achiı | ng Scl | nedule | A                                        | llotment o    | f marks   |       | Duration |
|------------|------------------------------------|---------|----|-------|--------|--------|------------------------------------------|---------------|-----------|-------|----------|
|            |                                    |         | L  | Т     | Р      | Total  | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |
| EI-OE-301  | Open Elective III                  | 4       | 3  | 1     |        | 4      | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PC-303  | Power Electronics-II               | 4       | 3  | 1     |        | 4      | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PE-305  | Program Elective II                | 4       | 3  | 1     |        | 4      | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PC-307  | Power System II                    | 4       | 3  | 1     |        | 4      | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PC-309  | Linear Automatic<br>Control System | 4       | 3  | 1     |        | 4      | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PR-19   | Power Electronic Lab-<br>II        | 1.5     |    |       | 3      | 3      | 30                                       |               | 45        | 75    | 3 Hrs    |
| EI-PR-21   | Power System Lab II                | 1.5     |    |       | 3      | 3      | 30                                       |               | 45        | 75    | 3 Hrs    |
| EI-PR-23   | Program Elective II<br>Lab         | 1.5     |    |       | 3      | 3      | 30                                       |               | 45        | 75    | 3 Hrs    |
| EI-PR-25   | Control System Lab                 | 1.5     |    |       | 3      | 3      | 30                                       |               | 45        | 75    | 3 Hrs    |
| EI-PR-27   | Industrial Training                | **      |    |       |        |        | 40**                                     | 60**          |           | 100** | 3 Hrs    |
|            | Total                              | 26      | 15 | 5     | 12     | 32     | 320                                      | 300           | 180       | 800   |          |

\*\* Industrial training is non-credit/ audit course.

#### **Open Elective III**

Environment Monitoring Instrumentation Electromagnetic Field Theory Math III Energy Efficient Systems

#### **Program Elective II**

Microprocessors Analog and Digital Communication Utilization of Electrical Engineering

| Course No. | Course title                         | Credit | Tea | chin | g Sch  | edule | Al                                       | lotment of    | marks     |       | Duration |
|------------|--------------------------------------|--------|-----|------|--------|-------|------------------------------------------|---------------|-----------|-------|----------|
|            |                                      | S      | L   | Т    | Р      | Total | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |
| EI-PC-302  | Program Elective III                 | 3      | 2   | 1    |        | 3     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PC-304  | Electrical Machines II               | 4      | 3   | 1    |        | 4     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PC-306  | Power Plant<br>Engineering           | 3      | 2   | 1    |        | 3     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PC-308  | Digital Signal<br>Processing         | 4      | 3   | 1    |        | 4     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PC-310  | Microcontroller &<br>Embedded System | 4      | 3   | 1    |        | 4     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PR-18   | Electrical Machines<br>Lab II        | 1.5    |     | -    | 3      | 3     | 30                                       |               | 45        | 75    | 3 Hrs    |
| EI-PR-20   | Micro-controller Lab                 | 1.5    |     | -    | 3      | 3     | 30                                       |               | 45        | 75    | 3 Hrs    |
| EI-PR-22   | Signal Processing<br>Lab             | 1.5    |     | -    | 3      | 3     | 30                                       |               | 45        | 75    | 3 Hrs    |
| EI-PROJ-02 | Minor Project                        | 3      |     | -    | 6      | 6     | 50                                       |               | 100       | 150   | 3 Hrs    |
|            | Total                                | 25.5   | 13  | 5    | 1<br>5 | 33    | 340                                      | 300           | 235       | 875   |          |

#### B.Tech. 3<sup>RD</sup> YEAR (SEMESTER-VI) (w.e.f.2021-22)

#### **Program Elective III**

Instrument & System Design Pneumatic and Hydraulic Instrumentation Mechanical Measurements in Instrumentation Electrical and Hybrid Vehicles

#### B.Tech Electrical and Instrumentation Engineering SCHEME OF EXAMINATIONS B.Tech. 4<sup>TH</sup> YEAR (SEMESTER-VII) (w.e.f.2022-23 2022-23)

| Course No. | Course title                               | Credits | Те | achiı | ng Sch | edule | Al                                       | lotment o     | f marks   |       | Duration |
|------------|--------------------------------------------|---------|----|-------|--------|-------|------------------------------------------|---------------|-----------|-------|----------|
|            |                                            |         | L  | Т     | Р      | Total | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |
| EI-OE-401  | Open Elective IV                           | 4       | 3  | 1     |        | 4     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI -PE-403 | Program Elective IV                        | 3       | 2  | 1     |        | 3     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI -PC-405 | Electric Drives                            | 4       | 3  | 1     |        | 4     | 40                                       | 60            |           | 100   | 3 Hrs    |
| IN-PC-407  | Advance Process<br>dynamics and<br>Control | 4       | 3  | 1     |        | 4     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI -PR-29  | Electric Drives Lab                        | 1.5     |    |       | 3      | 3     | 30                                       |               | 45        | 75    | 3 Hrs    |
| EI -PR-31  | Open Elective IV                           | 1.5     |    |       | 3      | 3     | 30                                       |               | 45        | 75    | 3 Hrs    |
| EI -PR-01  | Project Work Case<br>Study                 | 2       |    |       | 4      | 4     | 40                                       |               | 60        | 100   | 3 Hrs    |
| EI -PR-33  | Industrial Training                        |         |    |       |        |       | 40**                                     |               | 60**      | 100** | 3 Hrs    |
|            | Total                                      | 20      | 11 | 4     | 10     | 25    | 260                                      | 240           | 150       | 650   |          |

\*\* Industrial training is non-credit/ audit course.

#### **Open Elective IV**

Computer Graphics & CAD CAM Remote Sensing Optical Instrumentation

**Program Elective IV** Biomedical Instrumentation Reliability Engineering Wind and Solar Energy Systems Power Quality and FACTS

| Course No. | Course title                  | Credit | Te | eachi | ing Sch | edule | Al                                       | lotment of    | f marks   |       | Duration |
|------------|-------------------------------|--------|----|-------|---------|-------|------------------------------------------|---------------|-----------|-------|----------|
|            |                               | s      | L  | Т     | Р       | Total | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |
| EI-OE-402  | Open Elective V               | 3      | 2  | 1     |         | 3     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PE-404  | Program Elective V            | 4      | 3  | 1     |         | 4     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PC-406  | Industrial Process<br>Control | 4      | 3  | 1     |         | 4     | 40                                       | 60            |           | 100   | 3 Hrs    |
| EI-PR-28   | Process Control Lab           | 1.5    |    | -     | 3       | 3     | 30                                       |               | 45        | 75    | 3 Hrs    |
| EI-PR—30   | Open Elective V Lab           | 1.5    |    | -     | 3       | 3     | 30                                       |               | 45        | 75    |          |
| EI-PR-32   | Seminar                       | 1.0    |    | -     | 2       | 2     | 20                                       |               | 30        | 50    |          |
| EI-PROJ-06 | Major Project                 | 4      |    | -     | 8       | 8     | 40                                       |               | 60        | 100   | 3 Hrs    |
|            | Total                         | 19     | 8  | 3     | 16      | 27    | 240                                      | 180           | 180       | 600   |          |

#### B.Tech. 4<sup>TH</sup> YEAR (SEMESTER-VIII) (w.e.f.2022-23)

Open Elective V Artificial Intelligence Robotics Fuzzy Logic Control

Program Elective V Switch Gear and Protection Machine Design High Voltage Engineering

#### EI-BS-101 Physics-I

#### **Course Outcomes**

It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of physical problems and applications that they would find useful in their disciplines. The student will learn

- Basic concepts of EM theory application to EM-Waves
- Basic Concepts of Quantum theory application to solids
- Further fallouts like energy band structures in solids classification
- Basic concepts of Optics applications in Fiber optics and lasers

| CO/P  | O Map   | ping      |            |          |         |         |        |         |       |      |      |      |
|-------|---------|-----------|------------|----------|---------|---------|--------|---------|-------|------|------|------|
| (S/M/ | W indi  | cates st  | rength o   | of corre | lation) | S-Stron | g, M-M | ledium, | W-Wea | ık   |      |      |
| COs   | Program | nme Outco | omes (POs) | )        |         |         |        |         |       |      |      |      |
|       | PO1     | PO2       | PO3        | PO4      | PO5     | PO6     | PO7    | PO8     | PO9   | PO10 | PO11 | PO12 |
| CO1   |         |           |            |          |         |         |        |         |       |      |      |      |
| CO2   |         |           |            |          |         |         |        |         |       |      |      |      |
| CO3   |         |           |            |          |         |         |        |         |       |      |      |      |
| CO4   |         |           |            |          |         |         |        |         |       |      |      |      |
| CO5   |         |           |            |          |         |         |        |         |       |      |      |      |

#### **Course Assessment methods:**

| Direct            | Indirect Course end survey |
|-------------------|----------------------------|
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |

| Course No. | Course title | Credits | Teaching Schedule |   |   | edule | Allotment of n                           |               | Duration  |       |             |
|------------|--------------|---------|-------------------|---|---|-------|------------------------------------------|---------------|-----------|-------|-------------|
|            |              |         | L                 | Т | Р | Total | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of<br>Exams |
| EI-BS-101  | Physics-I    | 4       | 3                 | 1 | - | 4     | 40                                       | 60            |           | 100   | 3 Hrs       |

Note: The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions uniformly spread among the entire syllabus, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the entire syllabus, asking for the derivations, numericals and applications of the various topics covered therein. The student has to **answer/ attempt 4-questions out of 4-questions in Section-A**, **2-questions out of 4-questions and Section-B and 2-questions out of 4-questions in Section-C**. Section-A carry12 marks. Section-B and Section-C carry 24 marks each.

#### **Detailed Course contents:**

#### Module 1: Electrostatics and Magnetostatics (5 lectures)

Electric field and electrostatic potential for a charge distribution; Divergence and curl of electrostatic field; Laplace's and Poisson's equations for electrostatic potential and uniqueness of their solution Electrostatic field and potential of a dipole. Bound charges due to electric polarization; Electric displacement; boundary conditions on displacement; Solving siOmple electrostatics problems in presence of dielectrics. Bio-Savart law, Divergence and curl of static magnetic field; vector potential and calculating it for a given magnetic field using Stokes' theorem; the equation for the vector potential and its solution for given current

densities. Magnetization and associated bound currents; auxiliary magnetic field  $\vec{H}$ ; Boundary conditions on  $\vec{B}$  and  $\vec{H}$ .

#### Moddule:2 Electromagnetic Theory (5 lectures)

Faraday's law in terms of EMF produced by changing magnetic flux; equivalence of Faraday's law and motional EMF; Lenz's law; to satisfy continuity equation; displace current and magnetic field arising from time- dependent electric field; calculating magnetic field due to changing electric fields in quasi- static approximation. Maxwell's equation in vacuum and non-conducting medium; Energy in an electromagnetic field; Flow of energy and Poynting vector with examples. The wave equation; Plane electromagnetic waves in vacuum, their transverse nature and polarization; relation between electric and magnetic fields of an electromagnetic wave.

#### Module 3: Wave nature of particles and the Schrodinger equation (5 lectures)

Introduction to Quantum mechanics, Wave nature of Particles, Time-dependent and timeindependent Schrodinger equation for wavefunction, Expectation values, Free-particle wavefunction and wave-packets, Uncertainty principle. Solution of stationary-state Schrodinger equation for one dimensional problems– particle in a box, Numerical solution of stationary-state Schrodinger equation for one dimensional problems for different potentials.

#### Module: 4 Introduction to solids. (6 lectures)

Free electron theory of metals, Fermi level, density of states, Application to white dwarfs and neutron stars, Bloch's theorem for particles in a periodic potential, Kronig-Penney model and origin of energy bands Numerical solution for energy in one-dimensional periodic lattice by mixing plane waves.

#### Module 5: Optics (6 lectures)

Huygens' principle, superposition of waves and interference of light by wave front splitting and amplitude splitting; Young's double slit experiment, Newton's rings, Michelson interferometer, Farunhofer diffraction from a single slit and a circular aperture, the Rayleigh criterion for limit of resolution and its application to vision; Diffraction gratings and their resolving power. Polarization, quarter wave plate, half wave plate, Nicol prism, Polarimeter.

#### Module 6: Lasers and Fibre Optics (6 lectures)

Mechanical and electrical simple harmonic oscillators, complex number notation and phasor representation of simple harmonic motion, quality factor, power absorbed by oscillator.

Einstein's theory of matter radiation interaction and A and B coefficients; amplification of light by population inversion, different types of lasers: gas lasers (He-Ne,  $CO_2$ ), solid-state lasers(ruby, Neodymium), dye lasers; Properties of laser beams: mono-chromaticity, coherence, directionality and brightness, laser speckles, applications of lasers in science, engineering and medicine.

FIBRE OPTICS: Propagation of light in fibres, numerical aperture, single mode and multimode fibres, applications.

#### Suggested Text Books

- 1. David Griffiths, Introduction to Electrodynamics
- 2. Eisberg and Resnick, Introduction to Quantum Physics
- 3. D. J. Griffiths, Quantum mechanics
- 4. A. Ghatak, Optics

#### **Suggested Reference Books:**

- 1. Halliday and Resnick, Physics
- 2. W. Saslow, Electricity, magnetism and light
- 3. Ian G. Main, Oscillations and waves in physics
- 4. H.J. Pain, The physics of vibrations and waves
- 5. E. Hecht, Optics
- 6. O. Svelto, Principles of Lasers

#### EI-BS-103 Mathematics-I

#### **Course Outcomes**

The objective of this course is to familiarize the prospective engineers with techniques in calculus, multivariate analysis. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines.

The students will learn:

• To apply differential and integral calculus to notions of curvature and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions.

•

to application of analysis to

Engineering problems.

• To deal with functions of several variables that are essential in most branches of engineering.

|     | <b>O Maj</b><br>W indi |           | rength (  | of corre | lation) | S-Stron | g, M-M | ledium, | W-Wea | ak   |      |      |
|-----|------------------------|-----------|-----------|----------|---------|---------|--------|---------|-------|------|------|------|
| COs | Program                | nme Outco | omes (POs | )        |         |         |        |         |       |      |      |      |
|     | PO1                    | PO2       | PO3       | PO4      | PO5     | PO6     | PO7    | PO8     | PO9   | PO10 | PO11 | PO12 |
| CO1 |                        |           |           |          |         |         |        |         |       |      |      |      |
| CO2 |                        |           |           |          |         |         |        |         |       |      |      |      |
| CO3 |                        |           |           |          |         |         |        |         |       |      |      |      |
| CO4 |                        |           |           |          |         |         |        |         |       |      |      |      |
| CO5 |                        |           |           |          |         |         |        |         |       |      |      |      |

**Course Assessment methods:** 

| Direct            | Indirect Course end survey |
|-------------------|----------------------------|
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |

#### B.Tech. 1<sup>ST</sup> YEAR (SEMESTER-I) (w.e.f.2018-19)

| Course No. | Course title  | Credits | Teaching Schedule |   |   | edule | Allotment of m                           |          | Duration of |       |       |
|------------|---------------|---------|-------------------|---|---|-------|------------------------------------------|----------|-------------|-------|-------|
|            |               |         | L                 | Т | Р | Total | Minor test +<br>Curricular<br>activities | Major te | Practical   | Total | Exams |
| EI-BS-103  | Mathematics-I | 4       | 3                 | 1 | I | 4     | 40                                       | 60       |             | 100   | 3 Hrs |

\

Note: The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions uniformly spread among the entire syllabus, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the entire syllabus, asking for the derivations, numericals and applications of the various topics covered therein. The student has to answer/ attempt 4-questions out of 4-questions in Section-A, 2-questions out of 4-questions in Section-C. Section-A carry12 marks. Section-B and Section-C carry 24 marks each.

| Course code        | EI-BS-1                    | EI-BS-103            |  |  |  |  |  |  |  |  |
|--------------------|----------------------------|----------------------|--|--|--|--|--|--|--|--|
| Category           | Basic So                   | Basic Science Course |  |  |  |  |  |  |  |  |
| Course title       | Mathe                      | Mathematics -1       |  |  |  |  |  |  |  |  |
| Scheme and Credits | L T P Credits Semester - I |                      |  |  |  |  |  |  |  |  |

|                            | 3 | 1 | 0 | 4 |  |  |
|----------------------------|---|---|---|---|--|--|
| Pre-requisites (if<br>any) | - |   |   | • |  |  |

Detailed contents:

#### MODULE-I

<u>Applications of Differentiation</u>: Taylor's & Maclaurin's series, Expansion by use of known series, Expansion by forming a differential equation, Asymptotes, Curvature, Radius of Curvature for Cartesian, Parametric & polar curves, Centre of curvature & chord of curvature, Tracing of Cartesian & polar curves (standard curves).

#### **MODULE – II**

<u>**Partial Differentiation & its Applications</u>**: Functions of two or more variables Partial derivatives, Total differential and differentiability, Derivatives of composite and implicit functions, change of variables.</u>

Homogeneous functions, Euler's theorem, Jacobian, Taylor's & Maclaurin's series for functions of two variables (without proof), Errors and approximations, Maximaminima of functions of two variables, Lagrange's method of undetermined multipliers, Differentiation under the integral sign.

#### **MODULE – III**

<u>Multiple Integrals and their Applications</u>: Double integral, change of order of integration Double integral in polar coordinates, Applications of double integral to find area enclosed by plane curves and volume of solids of revolution.

Triple integral, volume of solids, change of variables, Beta and gamma functions and relationship between them.

#### **MODULE – IV**

**<u>Vector Calculus</u>** : Differentiation of vectors, scalar and vector point functions Gradient of a scalar field and directional derivative, divergence and curl of a vector field and their physical interpretations, Del applied twice to point functions, Del applied to product of point functions.

Integration of vectors, line integral, surface integral, volume integral, Green's, Stoke's and Gauss divergence theorems (without proof), and their simple applications.

#### **TEXT BOOKS:**

- 1. Advanced Engineering Mathematics : F. Kreyszig.
- 2. Higher Engineering Mathematics : B.S. Grewal.

#### **REFERENCE BOOKS:**

- 1. Engineering Mathematics Part-I: S.S. Sastry.
- 2. Differential and Integral Calculus : Piskunov.
- 3. Advanced Engineering Mathematics : R.K. Jain and S.R.K. Iyengar
- 4. Advanced Engg. Mathematics : Michael D. Greenberg

#### B.Tech. 1<sup>ST</sup> YEAR (SEMESTER I) (w.e.f.2019-20) EI-ES-105 Basic Electrical Engineering

#### **Course Outcomes**

- To understand and analyze basic electric and magnetic circuits
- To study the single phase and three phase electric circuits.
- To study the working principles of electrical machines.
- To introduce the components of low voltage electrical installations

|     | CO/PO Mapping |        |         |          |          |          |            |         |        |        |      |      |
|-----|---------------|--------|---------|----------|----------|----------|------------|---------|--------|--------|------|------|
|     | (S/N          | M/W in | dicates | strengtl | n of cor | relation | ) S-Stro   | ong, M- | Mediur | n, W-W | 'eak |      |
| COs |               |        |         |          | Pro      | gramme O | utcomes (I | POs)    |        |        |      |      |
|     | PO1           | PO2    | PO3     | PO4      | PO5      | PO6      | PO7        | PO8     | PO9    | PO10   | PO11 | PO12 |
| CO1 |               |        |         |          |          |          |            |         |        |        |      |      |
| CO2 |               |        |         |          |          |          |            |         |        |        |      |      |
| CO3 |               |        |         |          |          |          |            |         |        |        |      |      |
| CO4 |               |        |         |          |          |          |            |         |        |        |      |      |
| CO5 |               |        |         |          |          |          |            |         |        |        |      |      |

#### **Course Assessment methods:**

| Direct            | Indirect Course end survey |
|-------------------|----------------------------|
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |

| Course No. | Course title | Credits | Т | Teaching Schedule |   |       | Al                                       | lotment of    | ' marks   |       | Duration    |
|------------|--------------|---------|---|-------------------|---|-------|------------------------------------------|---------------|-----------|-------|-------------|
|            |              |         | L | L T P Tota        |   | Total | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of<br>Exams |
| EI-ES-105  | Basic        | 4       | 3 | 1                 | - | 4     | 40                                       | 60            |           | 100   | 3 Hrs       |
|            | Electrical   |         |   |                   |   |       |                                          |               |           |       |             |
|            | Engineering  |         |   |                   |   |       |                                          |               |           |       |             |

Note: The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions uniformly spread among the entire syllabus, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the entire syllabus, asking for the derivations, numericals and applications of the various topics covered therein. The student has to answer/ attempt all questions in Section-A, 2-questions out of 4-questions in Section-B and 2-questions out of 4-questions in Section-A carry12 marks. Section-B and Section-C carry 24 marks each.

EI-ES-105 Basic Electrical Engineering Details of the Course Contents:

#### DC Circuits (6 hours)

Electrical circuit elements (R, L and C), voltage and current sources, Kirchoff current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

#### AC Circuits (7 hours)

Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac

circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three- phase balanced circuits, voltage and current relations in star and delta connections. 3-phase power equation, measurement of power by two wattmeter method,

#### **Transformers (6 hours)**

Magnetic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

#### **Electrical Machines (8 hours)**

Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited dc motor. Construction and working of synchronous generators. **Electrical Installations (5 hours)** 

Components of domestic wiring and earthing system. Elementary calculations for energy consumption, power factor improvement.

#### **Suggested Text / Reference Books**

- 1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 3. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 4. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 5. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.
- 6. Electrical Technology (Vol-I) : B.L Theraja & A K Theraja, S.Chand

#### B.Tech. 1<sup>ST</sup> YEAR (SEMESTER I) (w.e.f.2019-20) EI-ES-107 Engineering Graphics and Design

#### **Course Outcomes**

All phases of manufacturing or construction require the conversion of new ideas and design concepts into the basic line language of graphics. Therefore, there are many areas (civil, mechanical, electrical, architectural and industrial) in which the skills of the CAD technicians play major roles in the design and development of new products or construction. Students prepare for actual work situations through practical training in a new state-of-the-art computer designed CAD laboratory using engineering software. This course is designed to address:

- to prepare you to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- to prepare you to communicate effectively
- to prepare you to use the techniques, skills, and modern engineering tools necessary for engineering practice

The student will learn :

- Introduction to engineering design and its place in society
- Exposure to the visual aspects of engineering design
- Exposure to engineering graphics standards
- Exposure to solid modelling
- Exposure to computer-aided geometric design
- Exposure to creating working drawings
- Exposure to engineering communication

#### **PROGRAM EDUCATIONAL OBJECTIVES**

- 1. To prepare graduates for a successful technical and/or professional career.
- 2. To prepare graduates for higher education and research.
- 3. To prepare graduates to engage in resolving industrial and social issues.

|     |                              |        |         |          | CO/I     | PO Maj   | pping    |         |        |        |      |      |  |  |  |
|-----|------------------------------|--------|---------|----------|----------|----------|----------|---------|--------|--------|------|------|--|--|--|
|     | (S/I                         | M/W in | dicates | strengtl | n of cor | relation | ) S-Stro | ong, M- | Mediun | n, W-W | 'eak |      |  |  |  |
| COs | COs Programme Outcomes (POs) |        |         |          |          |          |          |         |        |        |      |      |  |  |  |
|     | PO1                          | PO2    | PO3     | PO4      | PO5      | PO6      | PO7      | PO8     | PO9    | PO10   | PO11 | PO12 |  |  |  |
| CO1 |                              |        |         |          |          |          |          |         |        |        |      |      |  |  |  |
| CO2 | 201                          |        |         |          |          |          |          |         |        |        |      |      |  |  |  |
| CO3 |                              |        |         |          |          |          |          |         |        |        |      |      |  |  |  |
| CO4 |                              |        |         |          |          |          |          |         |        |        |      |      |  |  |  |
| CO5 |                              |        |         |          |          |          |          |         |        |        |      |      |  |  |  |

#### **Course Assessment methods:**

| Direct            | Indirect Course end survey |
|-------------------|----------------------------|
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |

| Course No. | Course title                    | Credits | T | eachi | ng Sc | hedule | Al                                       | lotment of    | f marks   |       | Duration    |
|------------|---------------------------------|---------|---|-------|-------|--------|------------------------------------------|---------------|-----------|-------|-------------|
|            |                                 |         | L |       |       |        | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of<br>Exams |
| EI-ES-107  | Engg.<br>Graphics<br>and Design | 1       | 1 | -     | -     | 1      | 20                                       | 30            |           | 50    | 3 Hrs       |

**Note:** The Examiner(s) will set the question paper in three sections, Section-A and Section-B, Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 2-questions uniformly spread among the entire syllabus, asking for conceptual questions, definitions, derivations, principles, construction and applications etc. of the various topics covered therein. The student has to **answer/ attempt 4-questions out of 4-questions in Section-A, 1-question out of 2-questions in Section-B Section-A carries 16 marks. Section-B carries 14 marks.** 

| Course code        | EI-E | ES-107                                        |   |   |  |  |  |  |  |  |  |  |  |  |
|--------------------|------|-----------------------------------------------|---|---|--|--|--|--|--|--|--|--|--|--|
| Category           | Engi | Engineering Science Courses                   |   |   |  |  |  |  |  |  |  |  |  |  |
| Course title       | Eng  | Engineering Graphics & Design (Theory & Lab.) |   |   |  |  |  |  |  |  |  |  |  |  |
| Scheme and Credits | L    | I T P credits Semester - I                    |   |   |  |  |  |  |  |  |  |  |  |  |
|                    | 1    | 0                                             | 0 | 1 |  |  |  |  |  |  |  |  |  |  |
| Pre-requisites (if | -    |                                               |   |   |  |  |  |  |  |  |  |  |  |  |
| any)               |      |                                               |   |   |  |  |  |  |  |  |  |  |  |  |

#### Engineering Graphics & Design [A total of 10 lecture hours & 60 hours of lab.] [[L : 1; T:0; P : 4 (3 credits)]

**Detailed contents** 

#### **Traditional Engineering Graphics:**

Principles of Engineering Graphics; Orthographic Projection; Descriptive Geometry; Drawing Principles; Isometric Projection; Surface Development; Perspective; Reading a Drawing; Sectional Views; Dimensioning & Tolerances; True Length, Angle; intersection, Shortest Distance.

#### **Computer Graphics:**

Engineering Graphics Software; -Spatial Transformations; Orthographic Projections; Model Viewing; Co-ordinate Systems; Multi-view Projection; Exploded Assembly; Model Viewing; Animation; Spatial Manipulation; Surface Modelling; Solid Modelling; Introduction to Building Information Modelling (BIM)

## (Except the basic essential concepts, most of the teaching part can happen concurrently in the laboratory)

#### B.Tech. 1<sup>ST</sup> YEAR (SEMESTER-I) (w.e.f.2019-20)

| Course            | Course title | Credits | Те | Teaching Schedule |   |       | A                                           | llotment o    | f marks   |       | Duration    |
|-------------------|--------------|---------|----|-------------------|---|-------|---------------------------------------------|---------------|-----------|-------|-------------|
| No.               |              |         | L  | Т                 | Р | Total | Minor test<br>+<br>Curricular<br>activities | Major<br>test | Practical | Total | of<br>Exams |
| EI-<br>HM-<br>109 | English      | 3       | 3  | -                 | - | 3     | 40                                          | 60            |           | 100   | 3 Hrs       |

#### **Course Outcomes**

The student will acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

| Course code                    | EI-HS   | EI-HSM-109                                          |   |         |          |  |  |  |  |  |  |  |  |
|--------------------------------|---------|-----------------------------------------------------|---|---------|----------|--|--|--|--|--|--|--|--|
| Category                       | Human   | Iumanities and Social Sciences including Management |   |         |          |  |  |  |  |  |  |  |  |
|                                | courses | ourses                                              |   |         |          |  |  |  |  |  |  |  |  |
| Course title                   | Engli   | English                                             |   |         |          |  |  |  |  |  |  |  |  |
| Scheme and Credits             | L       | Т                                                   | Р | Credits | Semester |  |  |  |  |  |  |  |  |
|                                | 3       | 0 2 3 - I                                           |   |         |          |  |  |  |  |  |  |  |  |
| <b>Pre-requisites</b> (if any) | -       | -                                                   |   |         |          |  |  |  |  |  |  |  |  |

#### **English Detailed contents**

#### 1. Vocabulary Building

- 1.1 The concept of Word Formation
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations.

#### 2. Basic Writing Skills

- 2.1 Sentence Structures
- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

#### 3. Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

#### 4. Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion

#### 5. Writing Practices

- 5.1 Comprehension
- 5.2 Précis Writing
- 5.3 Essay Writing
- 6. Oral Communication

(This unit involves interactive practice sessions in Language Lab)

- Listening Comprehension
- Pronunciation, Intonation, Stress and Rhythm
- Common Everyday Situations: Conversations and Dialogues
- Communication at Workplace
- Interviews
- Formal Presentations

#### **Suggested Readings:**

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007 (iii)On

Writing Well. William Zinsser. Harper Resource Book. 2001

- (iv) *Study Writing*. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (v) *Communication Skills*. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- (vi) *Exercises in Spoken English.* Parts. I-III. CIEFL, Hyderabad. Oxford University Press

#### Physics Lab EI-PR-01

#### **Course Outcomes**

It aims to get the practical ability to the students with standard concepts and tools at an intermediate to advanced level to perform the experiments related to the theory paper INE-BSC-101 Physics. The student will learn

- 1. Experiments in Optics/ principles
- 2. Experiments in acoustics/ applications
- 3. Experiments in Lasers/ optical principles
- 4. Experiments in Magnetism/ applications
- 5. Experiments in Semiconductor conductivity/ properties

| Course No. | Course title   | Credits | T | eachi | ng Sc | hedule | Al                                       |               | Duration  |       |             |
|------------|----------------|---------|---|-------|-------|--------|------------------------------------------|---------------|-----------|-------|-------------|
|            |                |         | L |       |       |        | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of<br>Exams |
| EI-PR-01   | Physics<br>Lab | 1.5     | - | -     | 3     | 3      | 30                                       |               | 45        | 75    | 3 Hrs       |

Suggested list of experiments from the following:

- 1. Frank-Hertz experiment; photoelectric effect experiment; recording hydrogen atom spectrum
- 2. LC circuit and LCR circuit;
- 3. Resonance phenomena in LCR circuits;
- 4. Magnetic field from Helmholtz coil; To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus
- 5. To find the wavelength of sodium light by Newton's rings experiment.
- 6. To find the wavelength of sodium light by Fresnel's biprism experiment.
- 7. To find the wavelength of various colours of white light with the help of a plane transmission diffraction grating.
- 8. To find the wavelength of sodium light by Michelson interferometer.
- 9. To find the resolving power of a telescope.
- 10. To find the specific rotation of sugar solution by using a polarimeter.
- 11. To compare the capacitances of two capacitors by De'sauty bridge and hence to find the dielectric constant of a medium.
- 12. To find the frequency of A.C. mains by using sonometer.
- 13. To Find Value of high Resistance by substitution method
- 14. To Find the value of high resistance by leakage method
- 15. To Convert a galvenometer in to an Ammeter of given range.
- 16. To study He Ne laser
- 17. To find the value of e/m for electrons by Helical method, Measurement of Lorentz force in a vacuum tube.
- 18. To find the ionization potential of Argon/Mercury using a thyratron tube..
- 19. To study the characteristics of (Cu-Fe, Cu-Constantan) thermo couple.
- 20. To find the value of Planck's constant by using a photo electric cell.
- 21. To find the value of co-efficient of self-inductance by using a Rayleigh bridge.
- 22. To find the value of Hall Co-efficient of semi-conductor.
- 23. To find the band gap of intrinsic semi-conductor using four probe method.
- 24. To calculate the hysteresis loss by tracing a B-H curve.
- 25. To find the temp coeff. of resistance by using Pt resistance thermometer by post office box

#### **RECOMMENDED BOOKS:**

- 1. Advanced Practical Physics B.L. Worshnop and H.T. Flint (KPH)
- 2. Practical Physics S.L.Gupta & V.Kumar (Pragati Prakashan).
- 3. Advanced Practical Physics Vol.I & II Chauhan & Singh (Pragati Prakashan).

EI-PR-03 Engineering Drawing lab

| Course No. | Course title                  | Credits | T | eachi | ng Sc | hedule | Al                                       |               | Duration  |       |             |
|------------|-------------------------------|---------|---|-------|-------|--------|------------------------------------------|---------------|-----------|-------|-------------|
|            |                               |         | L |       |       |        | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of<br>Exams |
| EI-PR-03   | Engineering<br>Drawing<br>lab | 2       | - | -     | 4     | 4      | 40                                       |               | 60        | 100   | 3 Hrs       |

EI-PR-03 Engineering Drawing lab: Course Contents

#### Module 1: Introduction to Engineering Drawing covering,

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

#### Module 2: Orthographic Projections covering,

Principles of Orthographic Projections-Conventions - Projections of Points and lines inclined to both planes; Projections of planes inclined Planes - Auxiliary Planes;

**Module 3: Projections of Regular Solids covering,** those inclined to both the Planes- Auxiliary Views; Draw simple annotation, dimensioning and scale. Floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc.

#### Module 4:Sections and Sectional Views of Right Angular Solids covering,

Prism, Cylinder, Pyramid, Cone – Auxiliary Views; Development of surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone; Draw the sectional orthographic views of geometrical solids, objects from industry and dwellings (foundation to slab only)

#### Module 5: Isometric Projections covering,

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions;

#### Module 6: Overview of Computer Graphics covering,

listing the computer technologies that impact on graphical communication, Demonstrating knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and compound Solids];

#### Module 7: Customisation & CAD Drawing

consisting of set up of the drawing page and the printer, including scale settings, Setting up of units and drawing limits; ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles;

#### Module 8: Annotations, layering & other functions covering

applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command; orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation, Computer-aided design (CAD) software modeling of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises. Dimensioning guidelines, tolerancing techniques; dimensioning and scale multi views of dwelling;

#### Module 9: Demonstration of a simple team design project that illustrates

Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed

topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid-modeling software for creating associative models at the component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modelling (BIM).

#### Suggested Text/Reference Books:

- 1. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House
- 2. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication
- 4. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers
- 5. (Corresponding set of) CAD Software Theory and User Manuals

#### EI-PR-05 Basic Electrical Lab

#### Laboratory Outcomes

- Get an exposure to common electrical components and their ratings.
- Make electrical connections by wires of appropriate ratings.
- Understand the usage of common electrical measuring instruments.
- Understand the basic characteristics of transformers and electrical machines.

• Get an exposure to the working of power electronic converters.

| Course No. | Course title               | Credits | T | Teaching Schedule |   |       | Al                                       |               | Duration  |       |             |
|------------|----------------------------|---------|---|-------------------|---|-------|------------------------------------------|---------------|-----------|-------|-------------|
|            |                            |         | L | L T P             |   | Total | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of<br>Exams |
| EI-PR-05   | Basic<br>Electrical<br>Lab | 1       | - | -                 | 2 | 2     | 20                                       |               | 30        | 50    | 3 Hrs       |

#### EI-PR-05 Basic Electrical Lab

#### Basic Electrical Engineering Laboratory [L:0; T:0; P:2(1 credit)] LIST OF EXPERIMENTS

1. To verify KCL and KVL.

2.

- 3. To verify Superposition theorems.
- 4. To study frequency response of a series R-L-C circuit and determine resonant frequency& Q- factor for various Values of R,L,C.
- 5. To study frequency response of a parallel R-L-C circuit and determine resonant frequency & Q -Factor for various values of R,L,C.
- 6. To perform direct load test of a transformer and plot efficiency Vs load characteristic.
- 7. To perform O.C. and S.C. tests on transformer.
- 8. To perform speed control of DC motor.
- 9. To perform O.C. and S.C. tests of a three phase induction motor.

10. Measurement of power in a 3 phase system by two watt meter method.

#### **Demonstrations:**

- Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors.
- Measuring the steady-state and transient time-response of R-L, R-C, and R-L-C circuits to a step change in voltage (transient may be observed on a storage oscilloscope). Sinusoidal steady state response of R-L, and R-C circuits impedance calculation and verification. Observation of phase differences between current and voltage. Resonance in R-L-C circuits.
- Transformers: Observation of the no-load current waveform on an oscilloscope (non- sinusoidal wave-shape due to B-H curve nonlinearity should be shown along with a discussion about harmonics). Loading of a transformer: measurement of primary and secondary voltages and currents, and power.
- Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents). Phase-shifts between the primary and secondary side. Cumulative three-phase power in balanced three-phase circuits.
- Demonstration of cut-out sections of machines: dc machine (commutator-brush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging - slip ring arrangement) and single-phase induction machine.
- Torque Speed Characteristic of separately excited dc motor.
- Synchronous speed of two and four-pole, three-phase induction motors. Direction reversal by change of phase-sequence of connections. Torque-Slip Characteristic of an induction motor. Generator operation of an induction machine driven at super- synchronous speed.
- Synchronous Machine operating as a generator: stand-alone operation with a load. Control of voltage through field excitation.

#### EI-PR-07 LANGUAGE LAB: COMMUNICATION SKILLS LABORATORY

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

CO1: Imparting the role of communicative ability as one of the soft skills needed for placement

CO2: Developing communicative ability and soft skills needed for placement

CO3: Making students Industry-Ready through inculcating team-playing capacity

#### **Pre-requisite courses:**

- Functional English I

- Functional English II

#### PROGRAM OUTCOMES

1. Graduates will attain skills to conduct experiments/investigations and interpret data with reference to systems and standards

2. Graduates will have ability to communicate effectively in written, oral and instrumentation formats to put forth solutions and prepare detailed engineering report in the process and automation industries.

3. Graduates will be able to apply the knowledge, skill and attitude as a team player in initiating, executing and managing projects in the areas of design, manufacture, marketing and entrepreneurship in multi-disciplinary environments.

|            |                                                                                                                                            |        |          |        | CO       | /PO M     | apping   |          |         |         |      |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------|----------|-----------|----------|----------|---------|---------|------|--|--|--|--|
|            | (S/                                                                                                                                        | M/W in | ndicates | streng | th of co | orrelatio | on) S-St | trong, N | /I-Medi | um, W-Y | Weak |  |  |  |  |
| COs        | 8                                                                                                                                          |        |          |        |          |           |          |          |         |         |      |  |  |  |  |
|            | PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12 |        |          |        |          |           |          |          |         |         |      |  |  |  |  |
| CO1        |                                                                                                                                            |        |          | Μ      |          |           |          |          |         |         | Μ    |  |  |  |  |
| CO2        |                                                                                                                                            |        |          | W      |          |           |          |          |         | Μ       | S    |  |  |  |  |
| <b>CO3</b> |                                                                                                                                            |        |          | S      |          |           |          |          |         | W       | S    |  |  |  |  |

#### **Course Assessment methods:**

Direct

#### Indirect

Course end survey

Presentation, Role Play, Mock interview, GD etc.

#### **GRAMMAR IN COMMUNICATION 9 periods**

Grammar and Usage – Building Blocks, Homonyms, Subject and Verb Agreement, Error Correction -Grammar Application, Framing Questions – Question words, Verbal Questions, Tags, Giving Replies –Types of Sentences, Listening Comprehension –Listening and Ear training.

#### **ASSERTIVE COMMUNICATION 9 periods**

Listening Comprehension in Cross–Cultural Ambience, Telephonic Conversations/Etiquette, Role Play Activities, Dramatizing Situations- Extempore – Idioms and Phrases

#### **CORPORATE COMMUNICATION 9 periods**

Video Sensitizing, Communicative Courtesy – Interactions – Situational Conversations, Time Management, Stress Management Techniques, Verbal Reasoning, Current Affairs – E Mail Communication / Etiquette.

PUBLIC SPEAKING 9 periods

Giving Seminars and Presentations, Nuances of Addressing a Gathering - one to one/ one to a few/ one to many, Communication Process, Visual Aids & their Preparation, Accent Neutralization, Analyzing the Audience, Nonverbal Communication.

#### **CHAPTER TITLE 5 INTERVIEW & GD TECHNIQUES 9 periods**

Importance of Body Language –Gestures & Postures and Proxemics, Extempore, Facing the Interview Panel, Interview FAQs, Psychometric Tests and Stress Interviews, Introduction to GD, Mock GD Practices.

Total Hrs: 45

#### REFERENCES

1. Bhatnagar R.P. & Rahul Bhargava, "English for Competitive Examinations", Macmillian Publishers, India, 1989, ISBN: 9780333925591

2. Devadoss K. & Malathy P., "Career Skills for Engineers", National Book Publishers, Chennai, 2013.

3. Aggarwal R.S., "A Modern Approach to Verbal & Non–Verbal Reasoning", S.Chand Publishers, India, 2012, ISBN : 8121905516

| Co | ourse No. | Course title | Cred | Teaching Schedule |   |   |       | Al                                       |               | Duration  |       |          |
|----|-----------|--------------|------|-------------------|---|---|-------|------------------------------------------|---------------|-----------|-------|----------|
|    |           |              | its  | L                 | Т | Р | Total | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |
| E  | I-BS-102  | Chemistry    | 4    | 3 1 4             |   |   | 4     | 40 60 100                                |               |           |       | 3 Hrs    |

#### **Course Outcomes**

The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the 10+2 levels in schools. Technology is being increasingly based on the electronic, atomic and molecular level modifications.

Quantum theory is more than 100 years old and to understand phenomena at nanometer levels, one has to base the description of all chemical processes at molecular levels. The course will enable the student to:

• Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.

• Rationalise bulk properties and processes using thermodynamic considerations.

• Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques

• Rationalise periodic properties such as ionization potential,

electronegativity, oxidation states and electronegativity.

List major chemical reactions that are used in the synthesis of molecules.

| CO/PO | Mapping |
|-------|---------|
|-------|---------|

| CO/I  | U Maj                                                               | mapping |     |     |     |     |     |     |     |      |      |      |
|-------|---------------------------------------------------------------------|---------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| (S/M/ | S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak |         |     |     |     |     |     |     |     |      |      |      |
| COs   | COs Programme Outcomes (POs)                                        |         |     |     |     |     |     |     |     |      |      |      |
|       | PO1                                                                 | PO2     | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1   |                                                                     |         |     |     |     |     |     |     |     |      |      |      |
| CO2   |                                                                     |         |     |     |     |     |     |     |     |      |      |      |
| CO3   |                                                                     |         |     |     |     |     |     |     |     |      |      |      |
| CO4   |                                                                     |         |     |     |     |     |     |     |     |      |      |      |
| CO5   |                                                                     |         |     |     |     |     |     |     |     |      |      |      |

# DirectIndirect Course end surveyInternal test IInternal test IIIInternal test IIIInternal test IIIAssignmentInternalTutorialSeminarEnd Semester ExamInternal

#### **Course Assessment methods:**

| Course No. | Course title | Cred<br>its | Teaching Schedule |   |   |       | Al                                       | Duration<br>of Exams |           |       |          |
|------------|--------------|-------------|-------------------|---|---|-------|------------------------------------------|----------------------|-----------|-------|----------|
|            |              | ns          | L                 | Т | Р | Total | Minor test +<br>Curricular<br>activities | Major<br>test        | Practical | Total | of Exams |
| EI-BS-102  | Chemistry    | 4           | 3                 | 1 |   | 4     | 40                                       | 60                   |           | 100   | 3 Hrs    |

**Note:** The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions uniformly spread among the entire syllabus, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the entire syllabus, asking for the derivations, numericals and applications of the various topics covered therein. The student has to **answer/ attempt 4-questions out of 4-questions in Section-A**, **2-questions out of 4-questions in Section-B** and **2-questions out of 4-questions in Section-C**. Section-A carry12 marks. Section-B and Section-C carry 24 marks each.

| Course code             | EI-BS-1 | EI-BS-102                                               |       |          |              |  |  |  |  |  |  |
|-------------------------|---------|---------------------------------------------------------|-------|----------|--------------|--|--|--|--|--|--|
| Category                | Basic S | cience Co                                               | ourse |          |              |  |  |  |  |  |  |
| Course title            | Chem    | istry-I                                                 | (Theo | ry & Lal | b.)          |  |  |  |  |  |  |
|                         | Conter  | nts                                                     |       |          |              |  |  |  |  |  |  |
|                         | (i)     | (i) Chemistry-I (Concepts in chemistry for engineering) |       |          |              |  |  |  |  |  |  |
|                         | (ii)    | (ii) Chemistry Laboratory                               |       |          |              |  |  |  |  |  |  |
| Scheme and Credits      | L       | Т                                                       | Р     | Credits  | Semester –II |  |  |  |  |  |  |
|                         | 3       | 1                                                       | 3     | 5.5      |              |  |  |  |  |  |  |
|                         |         |                                                         |       |          |              |  |  |  |  |  |  |
| Pre-requisites (if any) | -       |                                                         |       |          |              |  |  |  |  |  |  |

## (i) EI-BS-102 Chemistry-I (Concepts in chemistry for engineering) [L : 3; T:1; P : 0 (4 credits)]

#### **Detailed contents**

#### (i) Atomic and molecular structure (12 lectures)

Schrodinger equation. Particle in a box solutions and their applications for conjugated molecules and nanoparticles. Forms of the hydrogen atom wave functions and the plots of these functions to explore their spatial variations. Molecular orbitals of diatomic molecules and plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

#### (ii) Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance and magnetic resonance imaging, surface characterisation techniques. Diffraction and scattering.

#### (iii) Intermolecular forces and potential energy surfaces (4 lectures)

Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and critical phenomena. Potential energy surfaces of  $H_3$ ,  $H_2F$  and HCN and trajectories on these surfaces.

#### (iv) Use of free energy in chemical equilibria (6 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Water chemistry. Corrosion.

Use of free energy considerations in metallurgy through Ellingham diagrams.

#### (v) Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries

#### (vi) Stereochemistry (4 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

#### (vii) Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule.

#### Suggested Text Books

(i) University chemistry, by B. H. Mahan

(ii) Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane (iii)Fundamentals of Molecular Spectroscopy, by C. N. Banwell

(v) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.

Krishnan

(vi) Physical Chemistry, by P. W. Atkins

(vii) Organic Chemistry: Structure and Function by K. P. C. Volhardt and N.

E. Schore, 5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

#### **Course Outcomes**

The objective of this course is to familiarize the prospective engineers with techniques in matrices/ linear algebra, ordinary and partial differential equations. It aims to equip the students to deal with advanced level of mathematics and applications that would be essential for their disciplines. The students will learn:

• The mathematical tools needed in matrices and their usage.

• The effective mathematical tools for the solutions of differential equations that model physical processes.

• The tools of differentiation and functions of PDE variables that are used in various techniques dealing engineering problems.

|     | CO/PO Mapping                                                        |                          |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------------|--------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak |                          |     |     |     |     |     |     |     |      |      |      |
| CO  |                                                                      | Programme Outcomes (POs) |     |     |     |     |     |     |     |      |      |      |
|     | PO1                                                                  | PO2                      | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO  |                                                                      |                          |     |     |     |     |     |     |     |      |      |      |
| CO  |                                                                      |                          |     |     |     |     |     |     |     |      |      |      |
| CO. |                                                                      |                          |     |     |     |     |     |     |     |      |      |      |
| CO4 |                                                                      |                          |     |     |     |     |     |     |     |      |      |      |
| CO  |                                                                      |                          |     |     |     |     |     |     |     |      |      |      |

| Course Assessment | methods:                   |
|-------------------|----------------------------|
| Direct            | Indirect Course end survey |
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |
|                   |                            |

| Course No. | Course title   | Credit | Te | Teaching Schedule |  |                                          | Al            | Duration  |       |          |       |
|------------|----------------|--------|----|-------------------|--|------------------------------------------|---------------|-----------|-------|----------|-------|
|            |                | S      | L  |                   |  | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |       |
| EI-BS-104  | Mathematics-II | 4      | 3  | 1                 |  | 4                                        | 40            | 60        |       | 100      | 3 Hrs |

Note: The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions uniformly spread among the entire syllabus, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the entire syllabus, asking for the derivations, numericals and applications of the various topics covered therein. The student has to answer/ attempt 4-questions out of 4-questions in Section-A, 2-questions out of 4-questions in Section-B and 2-questions out of 4-questions in Section-C. Section-A carry12 marks. Section-B and Section-C carry 24 marks each.

| Course code        | EI- | EI-BS-104                                                        |   |         |             |  |  |  |  |  |
|--------------------|-----|------------------------------------------------------------------|---|---------|-------------|--|--|--|--|--|
| Category           | Bas | Basic Science Course                                             |   |         |             |  |  |  |  |  |
| Course title       | (Ca | Mathematics -2<br>(Calculus, Ordinary Differential Equations and |   |         |             |  |  |  |  |  |
|                    | Cor | Complex Variable )                                               |   |         |             |  |  |  |  |  |
| Scheme and         | L   | Т                                                                | P | Credits | Semester-II |  |  |  |  |  |
| Credits            | 3   | 1                                                                | 0 | 4       |             |  |  |  |  |  |
| Pre-requisites (if | -   | -                                                                |   |         |             |  |  |  |  |  |
| any)               |     |                                                                  |   |         |             |  |  |  |  |  |

#### Module-I

<u>Matrices & its Applications</u> : Rank of a matrix, elementary transformations, elementary matrices, inverse using elementary transformations, normal form of a matrix, linear dependence and in dependence of vactors, consistency of linear system of equations, linear and orthogonal transformations, eigen values and eigen vectors, properties of eigen values.

#### Module -II

<u>Ordinary Differential Equations & its Applications</u> : Exact differential equations. Equations reducible to exact differential equations. Applications of Differential equations of first order & first degree to simple electric circuits, Newton's law of cooling, heat flow and orthogonal trajectories.

Linear differential equations of second and higher order. Complete solution, complementary function and particular integral, method of variation of parameters to find particular Integral, Cauchy's and Legender's linear equations, simultaneous linear equations with constant co-efficients.

#### Module -III

<u>Laplace Transforms and its Applications</u> : Laplace transforms of elementary functions, properties of Laplace transforms, existence conditions, transforms of derivaties, transforms of integrals, multiplication by t<sup>n</sup>, division by t. Evaluation of integrals by Laplace transforms. Laplace transform of Unit step function, unit impulse function and periodic function. Inverse transforms, convolution theorem, application to linear differential equations and simultaneous linear differential equations with constant coefficients.

#### Module -IV

<u>Partial Differential Equations and Its Applications</u> : Formation of partial differential equations, Lagrange's linear partial differential equation, First order non-linear partial differential equation, Charpit's method. Method of separation of variables and its applications to wave equation and one dimensional heat equation, two dimensional heat flow, steady state solutions only.

#### **TEXT BOOKS:**

- 1. Advanced Engg. Mathematics F Kreyszig
- 2. Higher Engg. Mathematics B.S. Grewal

#### **REFERENCE BOOKS :**

- 1. Differential Equations H.T.H. Piaggio.
- 2. Elements of Partial Differential Equations I.N. Sneddon.
- 3. Advanced Engineering Mathematics R.K. Jain, S.R.K.Iyengar.
- 4. Advanced Engg. Mathematics Michael D. Greenberg.

#### **Course Outcomes**

The student will learn

2

- To formulate simple algorithms for arithmetic and logical problems.
- To translate the algorithms to programs (in C language).
- To test and execute the programs and correct syntax and logical errors.
- To implement conditional branching, iteration and recursion.
- To decompose a problem into functions and synthesize a complete program using divide and conquer approach.
- To use arrays, pointers and structures to formulate algorithms and programs.
- To apply programming to solve matrix addition and multiplication problems and searching and sorting problems.
- To apply programming to solve simple numerical method problems, namely rot finding of function, differentiation of function and simple integration.

|     | CO/PO Mapping                                                        |                          |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------------|--------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak |                          |     |     |     |     |     |     |     |      |      |      |
| CO  |                                                                      | Programme Outcomes (POs) |     |     |     |     |     |     |     |      |      |      |
|     | PO1                                                                  | PO2                      | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO  |                                                                      |                          |     |     |     |     |     |     |     |      |      |      |
| CO2 |                                                                      |                          |     |     |     |     |     |     |     |      |      |      |
| CO  |                                                                      |                          |     |     |     |     |     |     |     |      |      |      |
| CO4 |                                                                      |                          |     |     |     |     |     |     |     |      |      |      |
| CO  |                                                                      |                          |     |     |     |     |     |     |     |      |      |      |

| Direct            | Indirect Course end survey |
|-------------------|----------------------------|
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |

41

| Course No. | Course title                              | Credit | Te | achiı | ng Sch | nedule | Al                                       | lotment of    | Allotment of marks |       |          |  |  |
|------------|-------------------------------------------|--------|----|-------|--------|--------|------------------------------------------|---------------|--------------------|-------|----------|--|--|
|            |                                           | S      | L  | Т     | Р      | Total  | Minor test +<br>Curricular<br>activities | Major<br>test | Practical          | Total | of Exams |  |  |
| EI-ES-106  | Programmin<br>g for<br>Problem<br>Solving | 4      | 3  | 1     |        | 4      | 40                                       | 60            |                    | 100   | 3 Hrs    |  |  |

Note: The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions uniformly spread among the entire syllabus, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the entire syllabus, asking for the derivations, numericals and applications of the various topics covered therein. The student has to answer/ attempt 4-questions out of 4-questions in Section-C. Section-A, 2-questions out of 4-questions in Section-C. Section-A carry12 marks. Section-B and Section-C carry 24 marks each.

| Course code  | EI-ES-106                                       |
|--------------|-------------------------------------------------|
| Category     | Engineering Science Course                      |
| Course title | Programming for Problem Solving (Theory & Lab.) |

| Scheme and         | L | Т | Р | Credits | Semester – II                                                               |
|--------------------|---|---|---|---------|-----------------------------------------------------------------------------|
| Credits            | 3 | 0 | 4 | 5       | [The lab component should have                                              |
|                    |   |   |   |         | one hour of tutorial followed or<br>preceded by laboratory<br>assignments.] |
| Pre-requisites (if | - |   |   |         |                                                                             |
| any)               |   |   |   |         |                                                                             |

## i)Programming for Problem Solving

## **Detailed contents**

## Unit 1 Introduction to Programming (4 lectures)

Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.) - (1 lecture).

Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm: Flowchart/Pseudocode with examples. (1 lecture)

From algorithms to programs; source code, variables (with data types) variables and memory locations, Syntax and Logical Errors in compilation, object and executable code- (2 lectures) *Unit 2*: Arithmetic expressions and precedence (2 lectures)

Unit 2: Conditional Branching and Loops (6 lectures)

Writing and evaluation of conditionals and consequent branching (3 lectures)

## Iteration and loops (3 lectures)

Unit 3Arrays (6 lectures)

Arrays (1-D, 2-D), Character arrays and Strings

## *Unit 4*Basic Algorithms (6 lectures)

Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required)

## *Unit 5*Function (5 lectures)

Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference

## *Unit 6*Recursion (4 -5 lectures)

Recursion, as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.

## Unit 7Structure (4 lectures)

Structures, Defining structures and Array of Structures

## Unit 8Pointers (2 lectures)

Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no implementation)

*Unit 9*File handling (only if time is available, otherwise should be done as part of the lab) **Suggested Text Books** 

## **Text Books:**

- 1. The C Programming Language by Dennis M Ritchie, Brian W. Kernigham, 1988, PHI.
- 2. C Programming A modern approach by K.N. King, 1996, WW Norton & Co.
- 3. Theory and problems of programming with C, Byron C Gotterfried, TMH

4. Teach yourself all about computers by Barry Press and Marcia Press, 2000, IDG Books India.

- 5. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill
- 6. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill

## Suggested Reference Books

i) Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

#### B.Tech. 1<sup>ST</sup> YEAR (SEMESTER–II) (w.e.f.2019-20) Basic Electronics Engineering

#### EI-ES-108 Course Outcomes:

It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of electronics and semiconductor applications that they would find useful in their disciplines.

At the end of this course students will demonstrate the ability to

- 1. Understand the principles of semiconductor Physics
- 2. Understand and utilize the mathematical models of semiconductor junctions and MOS transistors for circuits and systems.

### **PROGRAM EDUCATIONAL OBJECTIVES**

- 1. To prepare graduates for a successful technical and/or professional career.
- 2. To prepare graduates for higher education and research.
- 3. To prepare graduates to engage in resolving industrial and social issues.

|     |                                                                      |                                                                                                                                            |  |  | CO/I | PO Maj | pping |  |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|------|--------|-------|--|--|--|--|--|--|--|
|     | (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak |                                                                                                                                            |  |  |      |        |       |  |  |  |  |  |  |  |
| Cos | s Programme Outcomes (POs)                                           |                                                                                                                                            |  |  |      |        |       |  |  |  |  |  |  |  |
|     | PO1                                                                  | PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12 |  |  |      |        |       |  |  |  |  |  |  |  |
| CO1 |                                                                      | S S S S S S S S S S S S S S S S S S S                                                                                                      |  |  |      |        |       |  |  |  |  |  |  |  |
| CO2 |                                                                      |                                                                                                                                            |  |  |      |        |       |  |  |  |  |  |  |  |
| CO3 |                                                                      |                                                                                                                                            |  |  |      |        |       |  |  |  |  |  |  |  |
| CO4 |                                                                      |                                                                                                                                            |  |  |      |        |       |  |  |  |  |  |  |  |
| CO5 |                                                                      |                                                                                                                                            |  |  |      |        |       |  |  |  |  |  |  |  |

#### Course Assessment methods:

| Direct            | Indirect Course end survey |
|-------------------|----------------------------|
| Internal test I   |                            |
| Internal test II  |                            |
| Internal test III |                            |
| Assignment        |                            |
| Tutorial          |                            |
| Seminar           |                            |
| End Semester Exam |                            |

| Course No. | Course title                        | Credits |   |   | Teaching Sch                                | edule      |           |       |  | Allotment<br>of marks |
|------------|-------------------------------------|---------|---|---|---------------------------------------------|------------|-----------|-------|--|-----------------------|
|            |                                     |         | L | Т | Minor test<br>+<br>Curricular<br>activities | Major test | Practical | Total |  | of marks              |
| EI-ES-108  | Basic<br>Electronics<br>Engineering | 3       | 2 | 1 | 40                                          | 60         |           | 100   |  | 3 Hrs                 |

**Note:** The Examiner(s) will set the question paper in three sections, Section-A, Section-B, and Section-C. Section-A is compulsory. Section-A comprises 4-short answer type questions uniformly spread among the entire syllabus. Section-B comprises 4-questions among the 4-modules, asking for conceptual questions, definitions, derivations, principles, construction and working etc. Section-C comprises 4-questions uniformly spread among the 4-modules, asking for the derivations, numericals and applications of the various topics covered therein. The student has to **answer/ attempt 4-questions out of 4-questions in Section-A**, **2-questions out of 4-questions in Section-C**. Section-A carry12 marks. Section-B and Section-C carry 24 marks each.

| Course code  | EI-ES-108                  |
|--------------|----------------------------|
| Category     | Engineering Science Course |
| Course title |                            |

| Scheme and Credits | L | Т | Р | Credits | Semester-II |
|--------------------|---|---|---|---------|-------------|
|                    | 2 | 1 | 2 | 3       |             |
| Pre-requisites     |   |   |   |         |             |

#### EI-ES-108

**Basic Electronics Engineering -** Detailed contents

#### MODULE-I

Semiconductors p-type, n-type, pn junction diodes, pn junction as a circuit element, its characteristics, half wave and full wave and bridge type rectifier circuits basic filter circuits, Doide as voltage multiplier, clipper & clamper circuit. Zener diode as a voltage regulator. LED its characteristics construction & applications

#### MODULE - II

Characteristics of transistors in different configuration. Concept of d.c. and a.c. load line and operating point selection. Various amplifiers configurations their h-parameter equivalent circuits determination of voltage gain current gain input resistance and output resistance & power gain. Concept of feedback in amplifiers, different oscillators circuits (without analysis)

#### **MODULE - III**

Differential amplifier and its transfer characteristics. IC Op-Amps, its ideal & practical specifications and measurement of parameters. Op-Amp in different modes as inverting amplifier non inverting amplifier scale changer, differentiator & integrator.

#### **MODULE -IV**

Characteristics of JFET, MOSFET, Various amplifier configurations using FET. Characteristics and Construction of SCR, TRIAC, UJT. Their basic areas applications.

#### Reference :

- 1. Electronic Devices & Circuits Boylstad & Nashelsky.
- 2. Integrated Electronics By Millman & Halkias.
- 3. Electronic Principles Malvino
- 4. Principles of Electronics V.K. Mehta, Shalu Melta.
- 5. Electronic Circuits Donald L. Shilling & Charles Belowl

#### major test: 60 marks

#### Minor test + curricular activities: 30 + 10 Marks

### 3

#### Total: 100 marks Duration of exam : 3 Hrs.

Sessional of 15 marks for Field report evaluation (internal assessment)

Unit 1 : The Multidisciplinary nature of environmental studies

Definition, scope and importance.

Need for public awareness.

## **Unit 2 : Natural Resources**

### Renewable and non-renewable resources :

Natural resources and associated problems.

- a) Forest resources : Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
- b) Water resources : Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- c) Mineral resources : Use and exploitation, environmental effects of extracting and mineral resources, case studies.
- d) Food resources : World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- e) Energy resources : Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- f) Land resources : Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
- Role of an individual in conservation of natural resources.

• Equitable use of resources for sustainable lifestyles.

#### Unit 3 : Ecosystems

- Concept of an ecosystem.
- Structure and function of an ecosystem.
- Producers, consumers and decomposers.
- Energy flow in the ecosystem.
- Ecological succession.
- Food chains, food webs and ecological pyramids.
- Introduction, types, characteristic features, structure and function of the following ecosystem :
- a) Forest ecosystem
- b) Grassland ecosystem
- c) Desert ecosystem
- d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

#### Unit: 4 Biodiversity and its conservation

- Introduction Definition : genetic, species and ecosystem diversity.
- Biogeographical classification of India.
- Value of biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values.
- Biodiversity at global, National and local levels.
- India as a mega-diversity nation.
- Hot-spots of biodiversity.
- Threats to biodiversity : habitat loss, poaching of wildlife, man-wildlife conflicts.
- Endangered and endemic species of India.
- Conservation of biodiversity : in-situ and ex-situ conservation of biodiversity.

## Unit 5 : Environmental Pollution Definition

- Causes, effects and control measures of :
  - a) Air pollution
  - b) Water pollution
  - c) Soil pollution
  - d) Marine pollution
  - e) Noise pollution
  - f) Thermal pollution
  - g) Nuclear hazards
- Solid waste Management : Causes, effects and control measures of urban and industrial wastes.
- Role of an individual in prevention of pollution.
- Pollution case studies.
- Disaster management : floods, earthquake, cyclone and landslides

## Unit 6 : Social Issues and the Environment

- From Unsustainable to Sustainable development
- Urban problems related to energy
- Water conservation, rain water harvesting, watershed management
- Resettlement and rehabilitation of people; its problems and concerns. Case studies.
- Environmental ethics : Issues and possible solutions.
- Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies.
- Wasteland reclamation.
- Consumerism and waste products.
- Environment Protection Act.
- Air (Prevention and Control of Pollution) Act.
- Water (Prevention and Control of Pollution) Act
- Wildlife Protection Act
- Forest Conservation Act
- Issues involved in enforcement of environmental legislation
- Public awareness.

## Unit 7 : Human Population and the Environment

- Population growth, variation among nations
- Population explosion Family Welfare Programme
- Environment and human health.
- Human Rights.
- Value Education.
- HIV/AIDS
- Women and Child Welfare.
- Role of Information Technology in Environment and human health.
- Case Studies.

Drugs and their effects; Useful and harmful drugs; Use and abuse of drugs; stimulant and depressant drugs. Concept of drug de-addiction. Legal position on drugs and laws related to drugs.

#### Unit 8 : Field Work

- Visit to a local area to document environmental assets-river / forest / grassland / hill / mountain.
- Visit to a local polluted site Urban / Rural / Industrial / Agricultural.
- Study of common plants, insects, birds.
- Study of simple ecosystems pond, river, hill slopes, etc.

Examination Pattern : The question paper should carry 60 marks The structure of the question paper being.

PART – A : Short Answer Pattern

| PART – B | : | Essay type with inbuilt choice |
|----------|---|--------------------------------|
| PART – C | : | Field Work                     |

#### **INSTRUCTIONS FOR THE EXAMINERS**

- Part A Question 1 is compulsory and will contain ten short-answer type question of 2 marks each covering the entire syllabus.
- Part B Eight essay type questions (with inbuilt choice) will be set from the entire syllabus and the candidates will be required to answer, any four of them. Each essay type question will be of the 10 marks.

The examination will be conducted by the college concerned at its own level earlier than the annual examination and each student will be required to score minimum of 35% marks each in theory and Practical. The marks obtained in this qualifying paper will not be included in determining the percentage of marks obtained for the award of degree. However, these will be shown in the detailed marks certificate of the student.

## Chemistry Lab EI-PR-02

#### Laboratory Outcomes

- The chemistry laboratory course will consist of experiments illustrating the principles of chemistry relevant to the study of science and engineering. The students will learn to:
- Estimate rate constants of reactions from concentration of reactants/products as a function of time
- Measure molecular/system properties such as surface tension, viscosity, conductance of solutions, redox potentials, chloride content of water, etc
- Synthesize a small drug molecule and analyse a salt sample

| Course No. | Course title     | Credit | Teaching Schedule |   |   | nedule | Al                                       |               | Duration<br>of Exams |       |          |
|------------|------------------|--------|-------------------|---|---|--------|------------------------------------------|---------------|----------------------|-------|----------|
|            |                  | S      | L                 | Т | Р | Total  | Minor test +<br>Curricular<br>activities | Major<br>test | Practical            | Total | of Exams |
| EI-PR-02   | Chemistry<br>Lab | 1.5    |                   |   | 3 | 3      | 30                                       |               | 45                   | 75    | 3 Hrs    |

#### B.Tech. 1<sup>ST</sup> YEAR (SEMESTER-II) (w.e.f.2018-19)

#### Chemistry Laboratory[L:0;T:0;P:3(1.5 credits)] Choice of 10-12 experiments from the following:

- Determination of surface tension and viscosity
- Thin layer chromatography
- Ion exchange column for removal of hardness of water
- Determination of chloride content of water
- Colligative properties using freezing point depression
- Determination of the rate constant of a reaction
- Determination of cell constant and conductance of solutions
- Potentiometry determination of redox potentials and emfs
- Synthesis of a polymer/drug
- Saponification/acid value of an oil
- Chemical analysis of a salt
- Lattice structures and packing of spheres
- Models of potential energy surfaces
- Chemical oscillations- Iodine clock reaction
- Determination of the partition coefficient of a substance between two immiscible liquids
- Adsorption of acetic acid by charcoal
- Use of the capillary viscosimeters to the demonstrate of the isoelectric point as the pH of minimum viscosity for gelatin sols and/or coagulation of the white part of egg.

## LIST OF EXPERIMENTS

- 1. Determination of  $Ca^{++}$  and  $Mg^{++}$  hardness of water using EDTA solution.
- 2. Determination of alkalinity of water sample.
- 3. Determination of dissolved oxygen (DO) in the given water sample.
- 4. To find the melting & eutectic point for a two component system by using method of cooling curve.
- 5. Determination of viscosity of lubricant by Red Wood viscometer (No. 1 & No. 2).
- 6. To determine flash point & fire point of an oil by Pensky -Marten's flash point apparatus.

- 7. To prepare Phenol-formaldehyde and Urea formaldehyde resin.
- 8. To find out saponification No. of an oil.
- 9. Estimation of calcium in lime stone and dolomite.
- 10. Determination of concentration of KMnO<sub>4</sub> solution spectrophotometrically.
- 11. Determination of strength of HCl solution by titrating it against NaOH solution conductometerically.
- 12. To determine amount of sodium and potassium in a, given water sample by flame photometer.
- 13. Estimation of total iron in an iron alloy.

#### **SUGGESTED BOOKS :**

- 1. A Text Book on Experimental and Calculation Engineering Chemistry, S.S. Dara, S. Chand & Company (Ltd.)
- 2. Essential of Experimental Engineering Chemistry, Shashi Chawla, Dhanpat Rai Publishing Company.
- 3. Theory & Practice Applied Chemistry O.P. Virmani, A.K. Narula (New Age)

### Computer Programming Lab EI-PR-04

#### Laboratory Outcomes

- To formulate the algorithms for simple problems
- To translate given algorithms to a working and correct program
- To be able to correct syntax errors as reported by the compilers
- To be able to identify and correct logical errors encountered at run time
- To be able to write iterative as well as recursive programs
- To be able to represent data in arrays, strings and structures and manipulate them through a program
- To be able to declare pointers of different types and use them in defining self- referential structures.

| Course No. | Course title                    | Credit | Te | achiı | ng Sch | nedule | Al                                       |               | Duration  |       |          |
|------------|---------------------------------|--------|----|-------|--------|--------|------------------------------------------|---------------|-----------|-------|----------|
|            |                                 | S      | L  | Т     | Р      | Total  | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |
| EI-PR-04   | Computer<br>programmin<br>g Lab | 1.5    | -  | -     | 3      | 3      | 30                                       |               | 45        | 75    | 3 Hrs    |

• To be able to create, read and write to and from simple text files.

(ii) Laboratory - Programming for Problem Solving[L:0;T:0;P:4 (2credits)]

### [The laboratory should be preceded or followed by a tutorial to explain the approach or algorithm to be implemented for the problem given.]

**Tutorial 1:** Problem solving using computers:

Lab1: Familiarization with programming environment

**Tutorial 2:** Variable types and type conversions:

Lab 2: Simple computational problems using arithmetic expressions

**Tutorial 3:** Branching and logical expressions:

Lab 3: Problems involving if-then-else structures

**Tutorial 4:** Loops, while and for loops:

Lab 4: Iterative problems e.g., sum of series

**Tutorial 5:** 1D Arrays: searching, sorting:

Lab 5: 1D Array manipulation

**Tutorial 6:** 2D arrays and Strings

Lab 6: Matrix problems, String operations

Tutorial 7: Functions, call by value:

Lab 7: Simple functions

Tutorial 8 &9: Numerical methods (Root finding, numerical

differentiation, numerical integration):

Lab 8 and 9: Programming for solving Numerical methods problems

Tutorial 10: Recursion, structure of recursive calls

Lab 10: Recursive functions

Tutorial 11: Pointers, structures and dynamic memory allocation

Lab 11: Pointers and structures

**Tutorial 12:** File handling:

Lab 12: File operations

| Course No. | Course title            | Credit | Te | achir | ng Scl | nedule | Al                                       | Duration      |           |       |          |
|------------|-------------------------|--------|----|-------|--------|--------|------------------------------------------|---------------|-----------|-------|----------|
|            |                         | S      | L  | Т     | Р      | Total  | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total | of Exams |
| EI-PR-06   | Basic Electronic<br>lab | 1      | -  | -     | 2      | 2      | 20                                       |               | 30        | 50    | 3 Hrs    |

#### **Course Outcomes**

After successful completion of this course, the students should be able to Design biasing circuits using BJT and FET.

- Apply this knowledge to the analysis and design of basic amplifiers.
- Design and analyze the response of differential and power amplifiers.
- Identify faults in Electronic circuits.
- Design and implement single stage power amplifier

#### **LIST OF EXPERIMENTS :** Experiments beyond the syllabus should be conducted.

- 1. To study the half wave & full wave rectifier.
- 2. To study the effect of various filters circuits.
- 3. To study the characteristics of pnp & npn transistor in common emitter & determine H- parameter from characteristics
- 4. To study the characteristics of pnp & npn transistor in CB & determine h-parameter from characteristics
- 5. To determine the Av, Ai of RC coupled CE transistor amplifier
- 6. Determine the frequency of oscillation in Hartley oscillator
- 7. Determine the frequency of oscillation in phase shift oscillator
- 8. Determine the effect of negative feedback on bandwidth & gain in CE, RC coupled amplifier
- 9. Study IC Op-Amp as a inverting amplifier & scale changer
- 10. Study IC Op-Amp as a non inverting amplifier
- 11. Study IC Op-Amp as an integrator
- 12. Study IC Op-Amp as a differentiator
- 13. Design of BJT Amplifier using Voltage divider bias.
- 14. Design of FET Amplifier using Voltage divider bias.
- 15. Design of transistorized series and shunt regulator
- 16. Design of HEARING AID with PUSH PULL OUTPUT

| Course                  | EI- | PR- 08                                     |           |         |             |  |  |  |  |  |  |  |  |
|-------------------------|-----|--------------------------------------------|-----------|---------|-------------|--|--|--|--|--|--|--|--|
| code                    |     |                                            |           |         |             |  |  |  |  |  |  |  |  |
| Category                | Eng | ineering S                                 | Science C | Courses |             |  |  |  |  |  |  |  |  |
| Course                  | Wo  | Workshop/Manufacturing Practices (Theory & |           |         |             |  |  |  |  |  |  |  |  |
| title                   |     | Lab.)                                      |           |         |             |  |  |  |  |  |  |  |  |
| Scheme and              | L   | Т                                          | Р         | Credits | Semester-II |  |  |  |  |  |  |  |  |
| Credits                 | 1   | 0                                          | 2         | 1       |             |  |  |  |  |  |  |  |  |
| Pre-requisites (if any) | -   |                                            |           |         |             |  |  |  |  |  |  |  |  |

## Workshop/Manufacturing Practices<sub>[L:1;T:0;P:0(1 credit)]</sub>

## Lectures & videos: (10 hours) Detailed contents

- **1.** Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods (**3 lectures**)
- 2. CNC machining, Additive manufacturing (1 lecture)
- 3. Fitting operations & power tools (1 lecture)
- 4. Electrical & Electronics (1 lecture)
- **5.** Carpentry (**1 lecture**)
- 6. Plastic molding, glass cutting (1 lecture)
- 7. Metal casting (1 lecture)
- 8. Welding (arc welding & gas welding), brazing (1 lecture)

Workshop Practice Lab. EI-PR-08

### List of experiments

- 1. To study different types of measuring tools used in metrology and determine least counts of vernier calipers, micrometers and vernier height gauges.
- 2. To study different types of machine tools ( lathe, shape or planer or slotter, milling, drilling machines )
- 3. To prepare a job on a lathe involving facing, outside turning, taper turning, step turning, radius making and parting-off.
- 4. To study different types of fitting tools and marking tools used in fitting practice.
- 5. To prepare lay out on a metal sheet by making and prepare rectangular tray, pipe shaped components e.g. funnel.
- 6. To prepare joints for welding suitable for butt welding and lap welding.
- 7. To perform pipe welding.
- 8. To study various types of carpentry tools and prepare simple types of at least two wooden joints.
- 9. To prepare simple engineering components/ shapes by forging.
- 10. To prepare mold and core assembly, to put metal in the mold and fettle the casting.
- 11. To prepare horizontal surface/ vertical surface/ curved surface/ slots or V-grooves on a shaper/ planner.
- 12. To prepare a job involving side and face milling on a milling machine.

#### Suggested Text/Reference Books:

 (i) Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.

- (ii) Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4<sup>th</sup> edition, Pearson Education India Edition, 2002.
- (iii) Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- (iv) Roy A. Lindberg, "Processes and Materials of Manufacture", 4<sup>th</sup> edition, Prentice Hall India, 1998.

Vol. I and Vol. II, Tata

McGrawHill House, 2017.

#### **Course Outcomes**

(v)

Upon completion of this course, the students will gain knowledge of the different manufacturing processes which are commonly employed in the industry, to fabricate components using different materials.

### (ii) Workshop Practice:(60 hours)[L:0;T:0;P:4(2 credits)]

- 1. Machine shop (10 hours)
- **2.** Fitting shop (**8 hours**)
- **3.** Carpentry (**6 hours**)
- 4. Electrical & Electronics(8 hours)
- 5. Welding shop ( 8 hours (Arc welding 4 hrs + gas welding 4 hrs)
- 6. Casting (8 hours)
- 7. Smithy (6 hours)
- 8. Plastic molding& Glass Cutting (6 hours)

Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.

### Laboratory Outcomes

- Upon completion of this laboratory course, students will be able to fabricate components with their own hands.
- They will also get practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.
- By assembling different components, they will be able to produce small devices of their interest.

# Department of Instrumentation Kurukshetra University Kurukshetra



## **M. Tech. Electrical and Instrumentation**

## Engineering

## SCHEME OF EXAMINATIONS Session 2019-2020

## DEPARTMENT OF INSTRUMENTATION KURUKSHETRA UNIVERSITY KURUKSHETRA

Proposed Scheme for M. Tech. Electrical and Instrumentation Engineering

## Semester 1

| Course No.   | Course title                      | Credits |    | Teach<br>Sched |                                          | 1             | Allotment of 1 | marks |     | Duration<br>of Exams |
|--------------|-----------------------------------|---------|----|----------------|------------------------------------------|---------------|----------------|-------|-----|----------------------|
|              |                                   | L       | Р  | Total          | Minor test +<br>Curricular<br>activities | Major<br>test | Practical      | Total |     |                      |
| EI-PC-1101   | Program<br>Elective 1             | 3       | 3  | 0              | 4                                        | 40            | 60             | -     | 100 | 3 Hrs                |
| EI-PE -1102  | Program<br>Elective 2             | 3       | 3  | 0              | 4                                        | 40            | 60             | -     | 100 | 3 Hrs                |
| EI-PC -1103  | Advanced<br>Electric<br>Drive     | 3       | 3  | 0              | 4                                        | 40            | 60             | -     | 100 | 3 Hrs                |
| EI-PC-1104   | Advance<br>Process<br>Control     | 3       | 3  | 0              | 4                                        | 40            | 60             | -     | 100 | 3 Hrs                |
| EIPR-PC-1105 | Process<br>Control Lab            | 3       | 0  | 6              | 6                                        | 40            | -              | 60    | 100 | 3 Hrs                |
| EIEP -1106   | Advanced<br>Electric<br>Drive Lab | 2       | 0  | 4              | 4                                        | 40            | -              | 60    | 100 | 3 Hrs                |
| EIRM-1107    | Research<br>Methodolog<br>y & IPR | 2       | 2  | -              | 2                                        | 15+5          | 30             | -     | 50  |                      |
|              | Audit<br>Course-1                 | 0       | 2  | -              | 2                                        | 50*           | -              | -     | 0   |                      |
|              | Total                             | 19      | 16 | 10             | 26                                       | 260           | 270            | 120   | 650 |                      |

## Semester 2

| Course No.        | Course title Credits                            |    | Teaching<br>Schedule |    |       | Allotment of marks                       |               |           |       | Duration<br>of<br>Exams |
|-------------------|-------------------------------------------------|----|----------------------|----|-------|------------------------------------------|---------------|-----------|-------|-------------------------|
|                   |                                                 |    | L                    | Р  | Total | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total |                         |
| EI-PC -1201       | Power Quality<br>Monitering and<br>Conditioning | 3  | 3                    | 0  | 4     | 40                                       | 60            | -         | 100   | 3 Hrs                   |
| EI-PC -1202       | PLC & DCS                                       | 3  | 3                    | 0  | 4     | 40                                       | 60            | -         | 100   | 3 Hrs                   |
| EI-PC -1203       | Advanced<br>Power System                        | 3  | 3                    | 0  | 4     | 40                                       | 60            | -         | 100   | 3 Hrs                   |
| EI-PC-1204        | Biomedical<br>Instrumentation                   | 3  | 3                    | 0  | 4     | 40                                       | 60            | -         | 100   | 3 Hrs                   |
| EIPR-PC -<br>1205 | Advanced<br>Power System<br>Lab.                | 2  | 0                    | 4  | 4     | 40                                       | -             | 60        | 100   | 3 Hrs                   |
| EIPR-PC-<br>1206  | Power Quality<br>and FACTS<br>Lab.              | 3  | 0                    | 6  | 6     | 40                                       | -             | 60        | 100   | 3 Hrs                   |
|                   | Audit Course-1                                  | 0  | 2                    | -  | 2     | 50*                                      | -             | -         | -     |                         |
|                   | Total                                           | 17 | 14                   | 10 | 24    | 240                                      | 240           | 120       | 600   |                         |

#### Semester 3

| Course No.      | Course title                           | Credits | Teaching<br>Schedule |    |       | Allotment of marks                       |               |           |       | Duration<br>of<br>Exams |
|-----------------|----------------------------------------|---------|----------------------|----|-------|------------------------------------------|---------------|-----------|-------|-------------------------|
|                 |                                        |         | L                    | Р  | Total | Minor test +<br>Curricular<br>activities | Major<br>test | Practical | Total |                         |
| EI-PC-<br>2301  | Smart & Micro<br>Sensor Design         | 3       | 3                    | 0  | 4     | 40                                       | 60            | -         | 100   | 3 Hrs                   |
| EI-PE<br>2302   | Program Elective 3                     | 3       | 3                    | 0  | 4     | 40                                       | 60            | -         | 100   | 3 Hrs                   |
| EI-PC-<br>2303  | Program Elective<br>Lab.               | 2       | 0                    | 4  | 4     | 40                                       | -             | 60        | 100   | 3 Hrs                   |
| EI-SEM-<br>2301 | Current Literature<br>Report & Seminar | 3       | 0                    | 6  | 6     | 50                                       | -             | -         | 50    | 3 Hrs                   |
|                 | Dissertation<br>phase-1                | 7       | 0                    | 14 | 14    | 100                                      | -             |           | 100   |                         |
|                 | Total                                  | 18      | 6                    | 24 | 30    | 170                                      | 120           | 60        | 450   |                         |

### Semester 4

| Code       | Subject<br>Name | Hours per week |   |    | Minor | Major | TOTAL | Credits |
|------------|-----------------|----------------|---|----|-------|-------|-------|---------|
|            |                 | L              | Т | р  | Minor | Major | Total |         |
| EI-PC-2401 | Dissertation    | 0              | 0 | 32 | 100   | 300   | 400   | 16      |

Students can choose PE (Program Electives) from the respective lists of electives. The option to be offered, however, will be decided by the department each year depending on the facilities available.

|   | ***LIST OF AUDIT COURSES – 1 for 1 <sup>st</sup> Semester |                                    |  |  |  |  |  |
|---|-----------------------------------------------------------|------------------------------------|--|--|--|--|--|
| 1 | EIAD-101                                                  | English for Research Paper Writing |  |  |  |  |  |
| 2 | EIAD-103                                                  | Disaster Management                |  |  |  |  |  |
| 3 | EIAD-105                                                  | Sanskrit for Technical Knowledge   |  |  |  |  |  |
| 4 | EIAD-107                                                  | Value Education                    |  |  |  |  |  |

|   | ***LIST OF AUDIT COURSES – 2 for 2 <sup>nd</sup> Semester |                                                           |  |  |  |  |  |
|---|-----------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
| 1 | EIAD-102                                                  | Constitution of India                                     |  |  |  |  |  |
| 2 | EIAD-104                                                  | Pedagogy Studies                                          |  |  |  |  |  |
| 3 | EIAD-106                                                  | Stress Management by Yoga                                 |  |  |  |  |  |
| 4 | EIAD-108                                                  | Personality Development through Life Enlightenment Skills |  |  |  |  |  |

\*Audit courses are mandatory and qualifying in nature.

## **Program Elective 1**

EI-PC-1101(i) Control system Design EI-PC-1101(ii) Process Equipment Design EI-PC-1101(iii) Industrial Environmental Engineering EI-PC-1101(iv) Power Plant Engineering EI-PC-1101(v) Process Modeling and Control EI-PC-1101(vi) Energy Auditing and methodology EI-PC-1101(vii) Energy Efficient Machines

## **Program Elective 2**

EI-PE-1102(i) Renewable & non conventional energy EI-PE-1102(ii) Theory and Design of Neuro fuzzy controllers EI-PE-1102(iii) Digital Control System EI-PE-1102(iv) HVDC Transmission System EI-PE-1102(v) Energy Management

## **Program Elective 3**

EI-PE-2302(i) Digital Signal Processing EI-PE-2302(ii) Sensors and Transducers EI-PE-2302(iii) Reliability Engineering EI-PE-2302(iv) System Theory EI-PE-2302(v) Research Methodology EI-PE-2302(vi) Intelligent Instrumentation EI-PE-2302 (vii) -- Industrial Electronics

## N.B

- 1. The syllabus for each theory paper will contain four units and examiner will set eight questions by selection two questions from each unit. The student will answer any five questions in all, selecting at least one from each unit
- 2. The Internal assessment in each theory paper will be 40 marks, out of which 30 marks will be assigned on the basis of two written test and 10 marks will be assigned on the basis of curricular activities.
- 3. Dissertation report will be examined by external as well as internal examiners.

## **Programme Outcomes**

**PO1** Apply the knowledge of science and basic control theories in designing, analyzing the various industrial and domestic applications.

PO2 Design the modern control circuits for specific applications and process automation.

**PO3** Use modern tools, professional software platforms, embedded systems for the diversified applications.

PO4 Explore ideas for inculcating research skills.

**PO5** Solve the problems which need critical and independent thinking to show reflective learning.

**PO6** Imagine the larger picture and correlate the domain knowledge with the global industrial problems.

L T P 3 0 0

Minor test+ curricular activities = 30 + 10

Major test: 60

Total: 100 Marks

Time : 3hrs.

There will be 8 questions in all. Two questions from each unit. Answer five questions in all selecting one from each unit.

#### UNIT - I

INTRODUCTION: Control System Architecture, Design Specifications Functional in-equally specifications, multi-criteria optimization, norms of scalar & vector signals, norms of SISO LTI & MIMO LTI systems, state space methods for computing norms, design specifications as sets, affine & convex sets and functions, closed loop convex design specifications, convexity & duality.

#### UNIT - II

DESIGN SPECIFICATIONS: Reliability & closed loop stability, I/O specifications, regulation specifications, actuator effort, combined effect of disturbances & commands, differential sensitivity specifications, robustness specifications via gain bounds.

### UNIT - III

COMPENSATORS & CONTROLLERS DESIGN: Selection criteria and design of lead, lag, lead-lag and cascade type of compensators using Root locus & Bode plots, Rate feedback. Controllers – configuration and fundamentals of design, cascade and feed back compensation using various controllers.

#### UNIT – IV

STATE VARIABLE FEED BACK DESIGN: Introduction to state variable analysis, controllability and observabilty, state feed back for SISO system, state feed back design of SISO system using control canonical form. State variable feedback \_ steady state error analysis, Use of steady state error coefficients, design of state observers, Introduction to design of MIMO systems. Introduction to design of non-linear system and software.

## **Reference Books:**

- 1. Modern Control Systems A manual of design methods by John A. Borrie (Prentice Hall International)
- 2. Control Systems Principle & Design by M. Gopal (TMH publication)
- 3. Introduction to feed back control system by Pericles E. Manuel & Edward leff (International Student Edition)
- 4. Linear controller designs limits of performance by Stephen P. Boyd & Craig H. Barratt (Prentice Hall International).
- 5. Linear control analysis & design By John J. D'azzo & C. H. Houpis (Mc-graw Hill)

L T P 300

Minor test+ curricular activities = 30 + 10

Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be 8 questions in all. Two questions from each unit. Answer five questions in all selecting one from each unit.

## UNIT I

Valve Noise calculation and reduction: Sources of valve noise, noise control, path treatment, valve treatment, valve noise calculation. Design & construction of Globe valve: valve trends, trim design, trim flow characteristics, flow range ability, standard trim configuration, valve plug stems, Body form of single and double seated globe valve, Bonnet design of global valve.

Construction and flow characteristics of butterfly valve.

### UNIT - II

Boiler control and optimization, compressor control and optimization, cooling tower control and optimization, distillation controls, evaporator controls, , reactor control and optimization Basics of Process Equipment Design: General design procedure, Computer design, Fabrication techniques, Equipment classification, Power of rotational motion, Drives for process equipment.

### UNIT - III

Pressure Vessels: Pressure vessel code, Operating conditions – at low temperatures, at elevated temperatures, Design considerations and stresses, fabrication, inspection and tests, unfired vessel codes, High pressure vessels: Constructional features, materials, solid walled, multi shell, vessel closures, Jacket for vessels, Examples. Storage Vessels: Storage of fluids, Non-volatile liquids, volatile liquids and gases, Design of tanks, rectangular tanks, nozzles and mounting, Large capacity storage tanks, Examples. Reaction Vessels: Materials for construction, agitation, classification of reaction vessels, heating systems.

## UNIT - IV

Heat Exchangers: Types of heat exchangers, design of shell and tube heat exchangers. Evaporators and Crystallisers: Types of evaporators, entrainment separators, materials and design considerations, crystallisers, Examples.Process Hazards and Safety Measures in Equipment design. Process flow diagrams.

Reference Books:

- Instrument Computer Aided Process control by S.K. Singh PHI
- Computer Based Industrial Control by Krishna Kant PHI
- Instrument Engineers Handbook- Process Control by Bela G. Liiptak

L T P 3 0 0

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be 8 questions in all. Two questions from each unit. Answer five questions in all selecting one from each unit.

#### UNIT I

INTRODUCTION: Source and classification of Air Pollution, Effect of Air Pollution in Human Health, Effect of Air Pollution on Animals, Effect of Air Pollution on Plants, Economics Effects of Air Pollution, Control of Air Pollution by Equipment, Control of Air Pollution by Process Changes, Air Pollution from Major Industrial Operations, Air Pollution legislation and regulation, Environment Protection Act, Air Pollution in Indian cities, Water & Noise Pollution. & its control, Green House effects & its control.

#### **UNIT II**

POLLUTION CONTROL FOR SPECIFIC POLLUTANTS: Industrial Pollution Emission and Indian Standards, Analysis of Pollutants, Control of BOD, Removal of Chromium, Removal of Mercury, Removal of Ammonia / urea, Treatment of Phenolic Effects, Removal of particular matter, Removal of Sulphur Dioxide, Removal of Oxides of Nitrogen, Removal of Vapour from Efficient case, Control of CO2 and CO.

### UNIT III

POLLUTION CONTROL IN SELECTED PROCESS INDUSTRIES: General considerations of Pollution Control in Chemical Industries, Pollution Control aspects of fertilizer industries, Pollution Control in Petroleum & Petrochemical Units,

#### UNIT IV

Pollution Control in Pulp & Paper Industries, Tanning Industries, Sugar Industries, Alcohol Industries, Electroplating & Metal Finishing Industries, Radioactive Wastes, Pollution Control methods used in Power Plants.

Reference Books:

1. Air Pollution by H V Rao, McGraw Hill

2.Pollution Control in Process Industries by S P Mahayar, McGraw Hill

3.Encyclopedia of Environmental Pollution & Control, Vol. 1 & 2, Enviro Media, Karad, India.

4.Envoronmental Water Pollution & its control by G R Chhatwal, M.C. Mehra & Others, Anmol Publication, Delhi.

5. Environmental Air Pollution & its control by G.R. Chhatwal & Others, Anmol Publication, Delhi.

## EI-PC-1101 (iv) -- POWER PLANT ENGINEERING

LTP 300

Minor test+ curricular activities = 30 + 10Major test: 60 Marks Total : 100 Marks Time : 3hrs.

#### UNIT-I

Steam generators, condensers and turbines: Classification of steam generators, selection, operation of locomotive, Babcock Wilcox, Cochran boilers, Types of condensers, effect of air in condensers, Dalton's law of partial pressure, cooling water calculations, steam nozzles, types of steam turbine efficiencies, compounding, governing and control.

Steam power plant: Classification, Operation, Description of Rankin cycle, Regenerative cycle, Reheat-Regenerative Cycle, Binary Vapour Cycle, Selection of plant site and its layout, coal handling system, combustion system, Fluidised bed combustion, Ash handling, Feed pumps, Heat exchangers, Economizers, Super heaters, Reheaters, Air preheaters, Feed water heaters, Evaporators.

#### **UNIT-II**

Hydro-electric power plants: Hydrological Cycle, Hydrograph, Flow duration curve, Selection of site, Essential features, Classification of hydro plants, Selection of water turbines for hydro power plant, Automatic and remote control of hydro-station, layout of hydro power plant. Nuclear power plants: Nuclear physics, Binding energy, Radioactive decay. Fertile material, Mass defect, Nuclear reactions type and application, Generation of nuclear energy by fission, Nuclear reactors. Site selections, safety measures, plant layout, Fusion reaction, Future of nuclear power.

**UNIT-III** 

Gas turbine: Elements of gas turbines, Open and closed cycles for gas turbines, Performance terms, Thermal refinement to gas turbines cycle, Plant layout, applications, gas turbines Cycle calculations. Diesel power plants: Classifications of IC Engines and their performance, Four stroke and two stroke diesel engines, combustion phenomenon; Essential components, Celane number, knocking, super charging, operation and layout of diesel power plant.

#### **UNIT-IV**

Combined operation of different power plants: Advantages of combined operation of plants, load division between power stations, coordination of different types of Power Plants. Pollution control: Pollution from thermal & nuclear plants, Particulate emission and control, electrostatic precipitator, solid waste disposal.

#### Recommended books:

1. Chakrabarti A., Soni, M.L. Gupta P.V. and Bhatanagar U.S., A Textbook on Power System Engineering, Dhanpat Rai & Co.

2. EI-Wakit M.M., Power Plant Engineering, McGraw Hill, USA

3. Rajput R.K., Power Plant Engineering, Luxmi Publications

4. Sharma P.C., Power Plant Engineering, Kataria & Sons

5. Skrotzki B.G.A. and Vapot W.A., Power Station Engineering and Economy, Tata McGraw-Hill

## EI-PC-1101(v) -- PROCESS MODELLING AND CONTROL

L T P 3 0 0

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be Eight questions in all. Two questions from each Unit. Answer five questions in all, selecting at least One from each Unit.

#### UNIT- I

Simulation and Modelling: Importance of Simulation, Mathematical Modelling, Process dynamic of fluid flow and heat transfer system, Mass transfer dynamics and distillation column, Reaction kinetics of chemical processes. Process control aim and objectives classification of process control system, techniques for process control. Modelling and simulation for plant Automation-case studies.

#### UNIT- II

PREDICTIVE CONTROL SYSTEM: Model based control system (Internal mode control, Model Predictive control and Process Model based control), Plant wide Control, Inferential control, Multiple-loop (Multivariable) control system. Interaction and Decoupling of control loops. Design of cross controllers and selection of loop using RGA. Prosperities and application of RGA.

#### UNIT- III

ADAPTIVE AND LEARNING CONTROL SYSTEM: Basic principles of Adaptive and learning systems, MRAC & STAC, Adaptive control techniques, Types of Learning-Supervised and Unsupervised Learning control system, On-line and Off-line Learning control system.

#### **UNIT-IV**

Real time control system: Characteristics and classes of real time systems, program classification: Sequential, multitasking real time, concurrency and synchronization. Design strategies, Reability, fault detection, fault tolerance real time operating system, Distributed computing systems, Software Process models (Build and mix model, waterfall, rapid prototyping, Incremental and Spiral model) Design techniques and tools

Reference Books:

- Techniques of Process Modelling, Simulation and Control for Engineer by Astrom, Luyben, McGraw Hill.
- Computer Controlled System by Astrom, K.J and B. Wittenmark PHI
- Chemical Process Control by Stephanopolous PHI
- Process Control Modeling ,Design and Simulation by B.Wayane Bequette, PHI

### EI-PC-1101(vi) -- ENERGY AUDITING AND METHODOLOGY

L T P 3 0 0

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be Eight questions in all. Two questions from each Unit. Answer five questions in all, selecting at least One from each Unit.

#### UNIT- I

**Energy Scenario:** Energy needs of growing economy, Long term energy scenario, Energy pricing, Energy sector reforms, Energy and environment: Air pollution, Climate change, Energy security, Energy conservation and its importance, Energy strategy for the future, Energy conservation Act- 2001 and its features. **Energy Management and Audit:** Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution, Energy audit instruments

#### **UNIT-II**

**Material and Energy balance:** Facility as an energy system, Methods for preparing process flow, Material and energy balance diagrams. **Financial Management:** Investment-need, Appraisal and criteria, Financial analysis techniques- Simple payback period, Return on investment, Net present value, Internal rate of return, Cash flows, Risk and sensitivity analysis, Financing options, Energy performance contracts and role of energy savings companies (ESCOs).

#### **UNIT-III**

**Electrical system:** Electricity tariff, Load management and maximum demand control, Power factor improvement, Distribution and transformer losses. Losses in induction motors, Motor efficiency, Factors affecting motor performance, Rewinding and motor replacement issues, energy efficient motors. Light source, Choice of lighting, Luminance requirements, and Energy conservation avenues **Compressed air system:** Types of air compressors, Compressor efficiency, efficient compressor operation, Compressed air system components, Capacity assessment, Leakage test Factors affecting the performance and efficiency.

#### **UNIT-IV**

**High Voltage Alternating Current and Refrigeration System:** Vapor compression refrigeration cycle, Refrigerants, Coefficient of performance, Capacity, Factors affecting refrigeration and air conditioning system performance and savings opportunities, Vapor absorption refrigeration system: Working principle, Types and comparison with vapor compression system, Saving potential, Fans, Blowers and pumps- Types, Performance evaluation, Efficient system operation, Flow control strategies and energy conservation opportunities.

Reference books recommended:

1. Abbi, Y.P. and Jain, S., Handbook on Energy Audit and Environment Management, Teri Bookstore

2. Diwan, P., Energy Conservation, Pentagon Press (2008).

- 3. Younger, W., Handbook of Energy Audits, CRC Press (2008)
- 4. Sawhney and Maheshwari, Solar Energy and Energy Conservation, Prentice Hall (India)
- 5. Rao S. and B. B. Parulkar, Energy Technology, Khanna Publishers
- 6. Sukhatme S. P., Solar Energy, Tata McGraw Hill
- 7. David S., Hand Book of Industrial Energy Conservation, Van Nostrand Reinhold Publishing Company.

10(850)

L T P 3 0 0

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be Eight questions in all. Two questions from each Unit. Answer five questions in all, selecting at least One from each Unit.

## UNIT- I

**INTRODUCTION**: Need for energy efficient machines, energy cost and two part tariff, energy conservation in industries and farms -a necessity, introduction to energy management and energy audit system. Review of induction motor characteristics.

## UNIT- II

**ENERGY EFFICIENT MOTORS:** Standard motor efficiency, why more efficient motors? An energy efficient motor, efficiency determination methods, Direct Measurement method, Loss segregation method, Comparison, motor efficiency labelling, energy efficient motor standards. Motor life cycle

## UNIT- III

**POWER FACTOR:** The power factor in sinusoidal systems, power factor improvement, power factor with nonlinear loads, Harmonics and the power factor

## UNIT- IV

## INDUCTION MOTORS AND ADJUSTABLE DRIVE SYSTEMS: Energy Conservation,

adjustable speed systems, Application of adjustable speed systems to fans, pumps and constant torque loads.

## **REFERNCE BOOKS RECOMMENDED:**

1. Andreas John C., Energy efficient electric motors, Marcel Dekker Inc. 1992.

2. Thuman Albert, Introduction to Efficient Electric System Design, The Fairmount Press Prentice Hall.

3. Tripathi S.C., Electric Energy Utilization and Conservation, Tata McGraw-Hill 1991.

4. Belove Charles, Handbook of Modem Electronics and Electrical Engineering, John Wiley & Sons.

## EI-PE-1102 (i) -- RENEWABLE & NON CONVENTIONAL ENERGY

L T P 300

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be Eight questions in all. Two questions from each Unit. Answer five questions in all, selecting at least One from each Unit.

### Unit -I

**Introduction to Energy sources:** Renewable and non-renewable energy sources, energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements Global and National scenarios, Prospects of renewable energy sources. Impact of renewable energy generation on environment, Kyoto Protocol.

#### Unit -II

**Solar Energy:**Solar radiation - beam and diffuse radiation, solar constant, earth sun angles, attenuation and measurement of solar radiation, local solar time, derived solar angles, sunrise, sunset and day length. flat plate collectors, concentrating collectors, Solar air heaters-types, solar driers, storage of solar energy-thermal storage, solar pond , solar water heaters, solar distillation, solar still, solar cooker, solar heating & cooling of buildings, photo voltaics - solar cells, different types of PV Cells, Mono-poly Crystalline and amorphous Silicon solar cells. Design of PV array. Efficiency and cost of PV systems & its applications. PV hybrid systems.

## Unit -III

**Wind Energy:**Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations

**Energy from Biomass:**Biomass conversion technologies, Biogas generation plants, classification, advantages and disadvantages, constructional details, site selection, digester design consideration, filling a digester for starting, maintaining biogas production, Fuel properties of bio gas, utilization of biogas.

#### Unit -IV

**Hydrogen Energy:**Introduction, Hydrogen Production methods, Hydrogen storage, hydrogen transportation, utilization of hydrogen gas, hydrogen as alternative fuel for vehicles.

**Fuel cell:**Introduction, Design principle and operation of fuel cell, Types of fuel cells, conversion efficiency of fuel cell, application

of fuel cells.

## **Reference Books:**

1. Non conventional Energy sources, G.D. Rai, Khanna Publishers.

2. Renewable energy sources and conversion technology, Bansal Keemann, Meliss, Tata Mc Graw Hill.

3. Non conventional Energy, Ashok V. Desai, New Age International Publishers Ltd.

4. Renewable energy resources and emerging technologies, D.P. Kothari, Prentice Hall of India Pvt. Ltd.

## Unit -I

## **NEURAL NETWORK**

selecting at least One from each Unit.

Introduction - Biological neurons and their artificial models – Learning, adaptation and neural networks learning rules types of neural networks – Single layer, multiplayer – Feed forward, feedback networks; back propagation – Learning and training – Hop field network.

#### Unit -II

## NEURAL NETWORKS IN CONTROL

Neural network for non-linear systems – Schemes of neuro control – System identification forward model and inverse model – Indirect learning neural network control applications – Case studies.

## Unit -III

## FUZZY LOGIC

Fuzzy sets – Fuzzy operation – Fuzzy arithmetic – Fuzzy relations – Fuzzy relational equations – Fuzzy measure – Fuzzy functions – Approximate reasoning – Fuzzy propositions – Fuzzy quantifiers – If-then rules.

#### Unit -IV

## NEURAL NETWORKS IN CONTROL

Structure of fuzzy logic controller – Fuzzification models – Database – Rule base – Inference engine defuzzification – Module - Non-linear fuzzy control – PID like FLC – Sliding mode FLC – Sugeno FLC – Adaptive fuzzy control – Fuzzy control applications case studies.

## **REFERENCE BOOKS**

- 1. Jacek. M. Zurada, "Introduction to Artificial Neural Systems", Jaico Publishing House, 1999.
- 2. Kosko, B. "Neural Networks and Fuzzy Systems", Prentice Hall of India Pvt. Ltd., 1994.
- 3. Klir G.J. & Folger T.A. "Fuzzy sets, uncertainty and information", Prentice Hall of India Pvt. Ltd., 1993.
- 4. Zimmerman H.J., "Fuzzy set theory and its application" Kluwer Academic Publishers, 1994.
- 5. Driankov, Hellendroon, "Introduction to Fuzzy Control", Narosa Publishers.
- 6. Farin Wah S.S., Filev, D. Langari, R. "Fuzzy control synthesis and analysis", John Wiley and Sons, 2000.

## EI-PE-1102 (ii) -- THEORY AND DESIGN OF NEURO - FUZZY CONTROLLERS

L T P 300

3 0 0 Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs. There will be Eight questions in all. Two questions from each Unit. Answer five questions in all,

## EI-PE-1102 (iii) -- DIGITAL CONTROL SYSTEMS

L T P 3 0 0

There will be 8 questions in all. Two questions from each unit. Answer five questions in all selecting one from each unit.

## UNIT - I

DIGITAL CONTROL: Introduction to digital control, sampling, Data reconstruction principles, Pulse transfer functions, Block diagram & signal flow graph, Digital Control Techniques-PID, Deadbeat. Time domain analysis, correlation between time response & root location in S & Z transform, effect of pole-zero configuration in Z-plane on maximum overshoot & peak time transient response, Stability in Z-plane using modified Rouths criteria, Jury's criteria. UNIT - II

Digital control system design : Design by Emulation, Direct design by root locus in z-plane, Frequency response method, Direct design method by Ragazzini.

NON LINEAR CONTROL SYSTEM: Introduction to non linear feedback control system, special features of linear system; limit cycle, jump response, sub harmonics etc., describing function and phase plane techniques for analysis of non linear system, concept of local, global, asymptotic and total stability of non linear system, Liapunov's stability criterion. UNIT - III

PID CONTROL AND ROBUST CONTROL:

Tuning procedure for PID controllers, modification of PID control schemes, two degrees of freedom control. Design considerations for Robust control

## UNIT - IV

ADAPTIVE AND LEARNING CONTROL SYSTEMS: Basic Principles of Adaptive and Learning Control Systems, Model Reference Adaptive Control, Types of Learning-Supervised and Unsupervised Learning Control Systems, On-line and Off-line Learning Control Systems. Reference Books:

- 1. Digital control system By B. C. Kuo (PHI)
- 2. Modern control engineering By Ogata (PHI)
- 3. Control System Engineering By Nagrath & Gopal (Wiley Eastern)
- 4. Control System Engineering By Phillips and Nagle (PHI Publications)
- 5. Control System Engineering by Norman S Nise, Wile
- 6. Modern Control System by R C Dorf, R H Bishop, Addision Wesley
- 7. Systems, Modeling & Analysis by I J Nagrath, M Gopal, TMH
- 8. Digital Control & State Variable Methods by M Gopal, TMH

## EI-PE-1102 (iv) -- HIGH VOLTAGE DIRECT CURRENT TRANSMISSION SYSTEM L T P 3 0 0 Minor test+ curricular activities = 30 + 10

Minor test+ curricular activities = **30** + **10** Major test: 60 Total Marks : 100 Marks Time : 3hrs.

There will be 8 questions in all. Two questions from each unit. Answer five questions in all selecting one from each unit.

#### UNIT - I

**Direct Current (DC) power transmission technology:** Introduction, comparison of Alternating Current (AC) and Direct Current (DC) transmission, application of DC transmission, application of DC transmission, description of DC transmission system, Configurations, planning for High Voltage Direct Current (HVDC) transmission, modern trends in DC transmission. Introduction to Device: Thyristor valve, valve tests, recent trends.

#### UNIT -II

Analysis of High Voltage Direct Current (HVDC) converters: Pulse number, choice of converter configuration, simplified analysis of Graetz circuit, converter bridge characteristics, characteristics of a twelve-pulse converter, detailed analysis of converters with and without overlap.

## UNIT - III

**Converter and HVDC system control:** General, principles of DC link control, converter control characteristics, system control hierarchy, firing angle control, current and extinction angle control, starting and stopping of DC link, power control, higher level controllers, telecommunication requirements. **Converter faults and protection:** Introduction, converter faults, protection against over-currents, over-voltages in a converter station, surge arresters, protection against over-voltages.

#### UNIT - IV

**Smoothing reactor and DC line:** Introduction, smoothing reactors, DC line, transient over voltages in DC line, protection of DC line, DC breakers, Monopolar operation, effects of proximity of AC and DC transmission lines. **Component models for the analysis of AC/DC systems:** General, converter model, converter control, modelling of DC network, modelling of AC networks.

#### **REFRENCE RECOMMENDED BOOKS:**

1. Bagamudre, Rakesh Das Extra High Voltage A.C. Transmission Engineering, New Age International Publishers.

- 2. Kimbark E.W., High Voltage DC Transmission, Wiley-Interscience
- 3. Kamaraju V. and Naidu M.S., High Voltage Engineering, Tata McGraw-Hill Education
- 4. Jha R.S., High Voltage Engineering, Dhanpat Rai
- 5. Kuffel, E. and Abdullah, M. High Voltage Engineering, Pergamon Press
- 6. Wadhwa C. L., High Voltage Engineering, New Age Publications.
- 7. Padiyar, K.R. HVDC Power Transmission Systems: Technology and System Interactions, New Age International

## EI-PE-1102(v) --ENERGY MANAGEMENT

L T P 300

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be 8 questions in all. Two questions from each unit. Answer five questions in all selecting one from each unit.

## UNIT I

INTRODUCTION: Various Sources of Energy, Conventional and non- Conventional energy, Concept and Classification of Renewable energy, Concept of Energy Conservation and Energy Management, Present Energy Scenario in India (Conventional and non- Conventional energy)

## UNIT II

RENEWABLE ENERGY SOURCES: Potential and Utilization status of Renewable Energy in India, Solar Energy: Solar Water Heater Systems, Solar Air dryer Systems, Solar Photo-voltaic Systems, Solar Cookers and Solar ponds, Wind Energy: Selection Criteria for Wind farms, Wind Mills, Bio Gas Plants-Construction and Operation, Bio Mass Gasification, Bio Mass Briquetting; Mini and Micro Hydel Power Plants, Geo-Thermal Energy, Ocean Energy.

## UNIT III

ENERGY CONSERVATION AND MANAGEMENT: Actual energy requirement assessment techniques of any industry and energy consumption status, possibility of reduction of energy consumption by using various energy conservation techniques or equipments e.g. variable speed drives, constant voltage transformers, electronic chokes, CFLs etc.

## UNIT IV

Importance of instrumentation and control techniques in the energy conservation and management, SCADA systems, Instruments required to carry out energy audit exercise, optimal mixing of renewable energy sources and load rationalization for reducing load on conventional energy sources.

## Reference Books:

1. Hand Book of Industrial Energy Conservation by S David; Van Nostrand Reinhold Publishing Company.

- 2. Energy Technology by S Rao & B. B. Parulkar; Khanna Publishers
- 3. Solar Energy by S. P. Sukhatme; TMH publications
- 4. Solar Energy & Energy Conservation by Sawhney & Maheshwari; PHI publication.

L T P 3 0 0

Minor test+ curricular activities = 30 + 10

Major test: 60

Total: 100 Marks

Time : 3hrs.

There will be 8 questions in all. Two questions from each unit. Answer five questions in all

## UNIT-I

**Electric Drive:**Concept, classification, parts and advantages of electrical dives. Types of Loads, Components of load toques, Fundamental torque equations, Equivalent value of drive parameters for loads with rotational and translational motion. Determination of moment of inertia, Steady state stability, Transient stability. Multiquadrant operation of drives. Load equalization.

#### **UNIT-II**

**Motor power rating:** Thermal model of motor for heating and cooling, classes of motor duty, determination of motor rating for continuous, short time and intermittent duty, equivalent current, torque and power methods of determination of rating for fluctuating and intermittent loads. Effect of load inertia & environmental factors.

**Starting of Electric Drives**:Effect of starting on Power supply, motor and load. Methods of stating of electric motors. Acceleration time Energy relation during stating, methods to reduce the Energy loss during starting.

**Braking of Electric Drives:** Types of braking, braking of DC motor, Induction motor and Synchronous motor, Energy loss during braking.

## **UNIT-III**

**DC motor drives:** Modeling of DC motors, State space modeling, block diagram & Transfer function, Single phase, three phases fully controlled and half controlled DC drives. Dual converter control of DC drives. Power factor, supply harmonics and ripple in motor current chopper controlled DC motor drives.

**Induction motor drives:**Stator voltage variation by three phase controllers, Speed control using chopper resistance in the rotor circuit, slip power recovery scheme. Pulse width modulated inverter fed and current source inverter fed induction motor drive. Volts/Hertz Control, Vector or Field oriented control.

## **UNIT-IV**

**Synchronous motor drives:** Variable frequency control, Self Control, Voltage source inverter fed synchronous motor drive, Vector control.

Introduction to Solar and Battery Powered Drive, Stepper motor, Switched Reluctance motor drive.

**Industrial application:**Drive consideration for Textile mills, Steel rolling mills, Cement mills, Paper mills, Machine tools. Cranes & hoist drives.

## **Reference & Text Books:**

1. Fundamental of Electrical Drives, G.K. Dubey, New Age International Publication.

- 2. Electric Drives, Vedam Subrahmanyam, TMH
- 3. A first course on Electrical Drives, S.K. Pillai, , New Age International Publication.
- 4. Electric motor drives, R. Krishnan, PHI
- 5. Modern Power Electronics & Ac drives, B.K. Bose, Pearson Education.
- 6. Electric Motor & Drives. Austin Hughes, Newnes.

L T P 3 0 0

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be 8 questions in all. Two questions from each unit. Answer five questions in all selecting one from each unit.

UNIT – I

PID controller tuning procedures: Close loop oscillation based tuning, Ziegler-Nichol close-loop method. Tuning rules for first order + dead time processes: step testing quarter decay ratio response, Ziegler-Nichol open loop method, Cohen-Coon parameters. Synthesis of feedback controllers: Development of the controller synthesis formula, specifications of close loop response, direct synthesis for minimum and non-minimum phase processes, controller modes and tuning parameters derivative mode for dead time process. Dead Time Compensation (Algorithms for Smith Predictor), & effect of process modeling error.

UNIT – II

Control Valve Design: Control valve flow characteristics, Valve & process characteristics, range availability of control valve, control valve sizing for gas, liquid, vapors and steam, Control valve cavitation and flashing, flow control cavitation index, vibration curve cavitation index, calculation of flash fraction, Control valve gain, sequencing of control valve . Valve application, selection, valve capacity testing.

UNIT - III

Additional control techniques: Cascade control, Selective control & Split range control, Cascade control for various processes , dynamic characteristics of Cascade control system and its tuning. Override and Auctioneering control system for various processes, Feedforward control system, Feedforward control of various processes. Design of Feedforward controllers, Feedforward – Feedback control & their relative advantages & disadvantages. UNIT -IV

Ratio control system, Predictive control control Statistical control Adaptive and Inferential control system: Programmed Adaptive control, gain scheduling Adaptive control, Self tuning regulator (STR), MRAC, Multivariable Process Control.

## **Reference Books**:

- Principles and Practice of Automatic Process Control by Carlos A Smith, John wiley & sons
- Computer Aided Process control by S.K. Singh PHI
- Process Control Modeling, Design, and Simulation by B.Wayane Bequette PHI
- Chemical Process control by Stephanopolous PHI

## EI-PC-1201 POWER QUALITY MONITORING AND CONDITIONING

## L T P 3 0 0

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be 8 questions in all. Two questions from each unit. Answer five questions in all selecting one from each unit.

#### UNIT-I

**Overview and definition of power quality (PQ):** Sources of pollution, and regulations, Power quality problems rapid voltage fluctuations voltage unbalance, Voltage dips and voltage swells, Short duration outages, **Definitions Voltage sag analysis and mitigation:** Sag caused by motor starting, Sag caused by utility fault clearing, Sag mitigation, Sag magnitude and duration calculations in single-phase systems, Equipment performance in presence of sag, Computers, Alternating current (AC) and direct current (DC) drives.

#### **UNIT-II**

**Harmonics:** Effects-within the power system, Interference with communication Harmonic measurements. Harmonic elimination. **Harmonic distortion:** Power system harmonics: harmonic analysis, Harmonic sources-the static converters, Transformer magnetization and non-linearities, Rotating machines, arc furnaces, Fluorescent lighting. Introduction to power converters, Fourier analysis, Total harmonic distortion, rms and average value calculations, Arcing and saturable devices, Effects of harmonic distortion, System response characteristics.

#### **UNIT-III**

**Principles for controlling harmonics:** Locating sources of harmonics, Passive and active filters, Harmonic filter design. **Monitoring power quality:** Monitoring essentials, Power quality measuring equipment, Current industry trends.

#### **UNIT-IV**

**Power Conditioning:** Electric power conditioning, Active and passive filters, IEEE, IEC, ANSI standards, Power Acceptability Curves, Various standards

## **REFRENCE BOOKS:**

1. Beaty, H. and Santoso, S., Electrical Power System Quality

- 2. Kennedy, B., Power Quality Primer, McGraw Hill (2000).
- 3. Bollen, M.H.J., Power Quality Problems: Voltage Sag and Interruptions, IEEE Press (2007).

4. Mohan, N., Power Electronics, New Age International (P) Limited, Publishers (2007).

## EI-PC-1202 PROGRAMMABLE LOGIC CONTROLLERS AND DISTRIBUTED CONTROL SYSTEM

L T P 300

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be 8 questions in all. Two questions from each unit. Answer five questions in all selecting one from each unit.

## UNIT - I

Direct Digital Control – Structure and Software: The position algorithm (simplifying PID control equation, deriving position algorithm); the velocity algorithm (velocity algorithm, deriving the velocity algorithm); Multi variable control (Cascade control using velocity algorithm, radio control using velocity algorithm).

## UNIT - II

Discrete State Process Control System: Development and analysis of ladder diagram, logic diagram from ladder diagram, Function description of PLC, Programming fundamentals, hardware and system sizing and selection, PLC peripherals, programming, PLC networking, PLC programmable languages, ladder diagrams language, Boolean mnemonics language, functional block language, PLCs.

## UNIT - III

Distributed Process Control System: Functional requirement of DPCS, DCS configurations/ architecture, data highway cables, field buses, protocols used in DCS, Software configuration: controller function configuration, multiplexer and party line system.

## UNIT - IV

Supervisory control and Data Acquisition system (Functions of SCADA, channel scanning, conversion to engineering units, data processing, distributed SCADA system, Remote terminal unit). DCS supervisory computer and configurations: supervisory computer function, supervisory control techniques and consideration, Supervisory control algorithm, DCS system integration with PLC and computer. Fiber optic local area networks – map and top.

Popular Distributed Control Systems: CP 80 system.

Reference Books:

- 1. Computer Aided Process control by S.K. Singh PHI
- 2. Computer Based Industrial Control by Krishna Kant PHI
- 3. Instrument Engineers Handbook- Process Control by Bela G. Liiptak
- 4. Microprocessor in Process control by C.D. Johnson
- 5. Principles and Practice of Automatic Process Control by Carlos& A Smith

## EI-PC-1203 ADVACED POWER SYSTEM

L T P 3 0 0

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be 8 questions in all. Two questions from each unit. Answer five questions in all selecting one from each unit.

### UNIT - I

**SYSTEM MODELLING:** System modelling of synchronous machines, transformers, loads etc, per unit system, single line diagram of electrical networks, single phase impedance diagrams. Formulation of impedance and admittance matrices for the electrical networks.

#### UNIT - II

**LOAD FLOW STUDIES:** Data for the load flow studies, Swing Bus, Formulation of simultaneous equations, Iterative solutions by the Gauss-Seidal method and Newton Raphson Method.

#### UNIT - III

**FAULT ANALYSIS:** Transients on transmission line, short circuit of synchronous machine, selection of circuit breakers, Algorithm for short circuit studies, Symmetrical Component transformation, construction of sequence networks of power systems. Symmetrical Analysis of Unsymmetrical Line-to-ground (LG), Line-to line (LL), double line to ground (LLG) faults using symmetrical components.

### UNIT - IV

**POWER SYSTEM STABILITY:** Steady state stability, Dynamics of a synchronous machine, Power angle equations, Transient stability, equal area criterion, Numerical solution of swing equation, factors effecting transient stability.

## **REFRENCE BOOKS RECOMMENDED:**

1. Elgerd O.I., Electric Energy Systems Theory, Tata McGraw Hill

2. Nagrath I.J., Kolthari D.P., Modern Power System Analysis, Tata McGraw Hill

3. Stevenson W.D., *Elements of Power System* Analysis, McGraw Hill

4. Nagrath I.J. and Kothari D.P., Power System Engineering, Tata McGraw Hill

5. Arrillaga J. and Arnold C.P., Computer Analysis of Power Systems, John Wiley & Sons

6. Stagg Glenn W. and Ei-Abiad Ahmed H., *Computer Methods in Power System Analysis, Tata* McGraw Hill

7. Kusic G.L., Computer Aided Power System analysis, Prentice Hall, India

## EI-PC-1204 BIO-MEDICAL INSTRUMENTATION

L T P 3 0 0

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be 8 questions in all, two from each unit. Answer five questions selecting one from each unit.

## UNIT - I

Characteristics of Transducers and Electrodes for Biological Measurement: Introduction to human body; block diagram, classification, characteristics, various physiological events and suitable transducer for their recording, bioelectric potentials.

## UNIT - II

Cardiac & System: Cardiac musculature, Electro cardiography, ECG recording, Phonocardiography, holter recoding ECG lead system, Heart rate meter, vector cardiography, Pacemakers, Defibrillators. Blood Pressure and Blood Flow Measurement: Invasive and noninvasive methods of Blood pressure, Characteristics of blood flow and heart sound, Cardiac output measurement, Plethysmography. Respiratatory System: Mechanics of breathing, Parameters of respiration, Respiratory system measurements, Respiratory therapy instruments.

## UNIT - III

Instrumentation for Measuring Nervous Function: EEG signal, frequency band classification, Lead systems, EEG recording, Clinical applications of EEG signal, X-ray CT scan, MRI, PET. Muscoskeletal systems: EMG, Clinical applications, and Muscles stimulator. Clinical Laboratory Instrumentation: Test on blood cell, Blood cell counter, Blood glucose monitors, auto analyzer, Pulse-oximeter.

## UNIT - IV

Recent Trends in Biomedical Engg.: Patient care and monitoring, Non-invasive diagnostic instrumentation, Biotelementry, Telemedicine, Prosthetic devices, Lie detector test, Application of lasers and ultrasonic in biomedical field. Troubleshooting & Electrical Safety of Biomedical Instruments: Physiological effect of current and safety measurement.

## **REFERENCE BOOKS**:

- 1. Medical instrumentation application & design, John G Webster, John wiley, 1998.
- 2. Review of medical physiology, W.F. Ganong, Medical publisher, 1977
- 3. Biomedical instrument and measurement, Cromwell, PHI, 2000
- 4. Handbook of biomedical instrument, R S Khandpur, TMH

## EI-PC-2301 SMART & MICRO-SENSORS DESIGN

L T P 300

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be Eight questions in all. Two questions from each Unit. Answer five questions in all, selecting at least one from each Unit.

## UNIT I

MEMS: Introduction, principle of MEMS, Example of Mems, small and large scaling, fabrication technology, micromachining: photolithography, thin film deposition and doping, wet chemical etching, waferonding, plasma etching, surface micromachining.

## UNIT II

Mechanics of Membrane and beams: dynamics, string, beams, diaphragms and membrane Transduction of Deformation: Metal strain gauges, Semiconductor Strain Gauges, Capacitive Transducers, Force and Pressure sensors: Force Sensors, Pressure sensors, Thermocouples Semi conducting Thermo resistors, Fiber Optical sensors, concept of smart and intelligent sensor, bio sensors.

## UNIT-III

Acceleration Sensors: introduction, Bulk Michromachined Accelerometers, surface Michromachined accelerometers, force feedback, angular rate sensors, Flow Sensors: The laminar boundary layer, Heat Transport in the limit of very small Reynolds Numbers, Thermal Flow Sensors, Skin Friction Sensors, Dry fluid Flow Sensors, wet fluid flow sensors, Resonant Sensors: Basic principle and physics.

## UNIT IV

Definition of intelligence and of intelligent instrumentation system: Features characterizing intelligence and Features intelligent instrumentation, component of intelligent instrumentation. Design of intelligent instrumentation systems.

Smart and Intelligent transmitters, smart features standard for smart sensing, setting standards for smart sensors and system, IEEE 1451.1, IEEE 1451.2, STIM, IEEE P1451.3, IEEEP 1451.4, Field buses systems.

Reference Books:

- 1. E.O. Doeblin Measurement System Application and Design, McGraw Hill
- 2. Beeweth and Buck- Mechanical Measurement, Nares Puti
- 3. Nortan- Hand Book of transducers, PHI
- 4. Conside-Process and industrial instrumentation, McGraw Hill
- 5. Mechanical Microsensors, M.Elwenspoek, R. Wiegerink, Springer

L T P 3 0 4

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be 8 questions in all. Two questions from each unit. Answer five questions in all selecting one from each unit.

#### UNIT – I

**Introduction:** Signals, Systems and Signal processing, Classification of Signals, Concept of frequency in continuous time and discrete time signals. **Discrete Time Signals and Systems:** Discrete time signals, Discrete time systems, Analysis of discrete time linear time-invariant systems, Discrete time systems described by difference equations, Implementation of discrete system, Correlation of discrete time signals. **Z-Transform:** The Z-transformation, properties of Z-transformation, Rational Z-transformation, Inversion of Z-transform, Analysis of linear time invariant systems in Z-domain.

#### UNIT – II

**Frequency Analysis of Signals and Systems:** Frequency analysis of continuous time signals, Frequency analysis of discrete time signals, Properties of Fourier Transform for discrete time signals, Frequency domain characteristics of linear time invariant systems, linear invariant systems as frequency selective filters, Inverse systems and de-convolution.

**The Discrete Fourier Transform:** Frequency domain sampling, Properties of Discrete Fourier Transform (DFT), Linear filtering methods based on DFT, Frequency analysis of signals using the DFT. FFT algorithm : Decimation-in-time (DIT) algorithm and Decimation-in-frequency(DIF) algorithm.

#### UNIT – III

**Design of Digital Filters:** General considerations, Design of Finite Impulse Response (FIR) filters, FIR digital filter design using Fourier series method, window design techniques. Optimal equiripple desgn techniques, frequency sampling design techniques. Design of Infinite Impulse Response (IIR) filters from analog filters, Comparison of IIR and FIR filters.

#### $\mathbf{UNIT} - \mathbf{IV}$

Realization of digital systems: FIR and IIR system realization. Two-dimensional Discrete time Signals and systems, Two-dimensional Z-Transform theorems and properties. Wavelets and Wavelets transform.

Reference Books:

- 1. Digital filter analysis and Design by Andreas Antoniou McGraw Hill
- 2. Digital Signal Processing by David J. Defalta
- 3. Digital Signal Processing by A.V. Oppenhein and Schafer PHI
- 4. Digital Signal Processing by J.G.Proakin, D.G. Manolakis, PHI
- 5. Modern filter theory by Johnson and Johnson
- 6. Wavelets and Signal Processing by Lokenath Debnath, Birkhauser Boston Basel Berlin

L T P 3 0 0

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be 8 questions in all, two from each unit. Answer five questions selecting one from each unit.

#### UNIT - I

Controllability & Observability: Introduction, general concept of controllability, general concept of observability, controllability tests for continuous time systems, observability tests for continuous time systems, controllability & observability for discrete time systems, controllability & observability for discrete time systems, controllability due to sampling, controllability & observability canonical forms of state model.

#### UNIT - II

State variables and input output descriptions: introduction, input output maps from state models, LTI continuous time systems, LTI discrete time systems, linear time varying systems, output controllability, reducibility, state model from input output maps realization of scalar transfer functions, phase variable canonical forms, realization of transfer function matrices, realization of pulse transfer functions.

#### UNIT - III

Stability: Introduction, equilibrium points, stability concepts and definitions, stability of linear time invariant systems, equilibrium stability of non-linear continuous time autonomous systems, direct method of Lyapunov and the linear continuous time autonomous systems, aids to find Lyapunov functions for non-linear continuous time autonomous systems, use of Lyapunov functions to estimate transients, the direct method of Lyapunov and discrete time autonomous systems.

#### UNIT - IV

Model control: Introduction, controllable and observable companion forms for single input/single output systems & multi-input/multi-output systems, the effect of state feedback on controllability & observability, pole placement by state feedback, full order observers, the separation principle, reduced order observers, deadbeat control by state feedback, deadbeat observers.

#### **REFERENCE BOOKS**:

- **1.** Modern control system theory by M. Gopal (New age international)
- **2.** Modern control systems a manual of design methods by John A Borrie (Prentice hall international)
- 3. Digital control and state variable methods by M. Gopal (Tata McGraw Hill)

#### EI-PE-2302 (v) -- RESEARCH METHODOLOGY

L T P 300

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

There will be 8 questions in all. Two questions from each unit. Answer five questions in all selecting one from each unit.

#### UNIT I

#### Nature and objective of the research

Methods of Research: Historical, descriptive and experimental. Alternative approaches to the study of the research problem and problem formulation. Formulation of hypotheses, Feasibility, preparation and presentation of proposal.

#### UNIT II

Introduction to statistical analysis: Probability and probability distributions, binomial, Poisson, exponential and normal distributions, and their applications.

Sampling: Primary and secondary data, their collection and validation, methods of sampling, stratified random sampling, and systematic sampling.

#### **UNIT III**

Regression and correlation analysis: Tests of significance based on normal, t and chi square distributions, analysis of variance.

Basic Principles of design of experiments, completely randomized and randomized block designs.

#### UNIT IV

Edition, tabulation, & testing of hypotheses, Interpolation of results, presentation, styles for figures, tables, text, quoting of reference and bibliography. Use of software for statistical analysis like SPSS, Mini tab or MAT lab, Report writing, preparation of thesis.

Reference Books:

- Research Methodology by C.R Kothari, Wishwa Prakashan
- Research Methodology by P.G. Tripathi
- Research Methodology in Social Science by Sadhu Singh, Himalya Publishers
- Business Research Methods, Donald cooper, Tata McGraw Hill Statistical analysis for Engineers & Scientists, J. W. Barnes, McGraw Hill

Minor test+ curricular activities = **30** + **10** Major test: 60 Marks Total : 100 Marks Time : 3hrs.

#### UNIT-I

**Introduction:** Definition of intelligence and of an intelligent instrumentation system; features characterizing intelligence and features of intelligent instrumentation; components of intelligent instrumentation; Block diagram of an intelligent instrumentation system.

#### UNIT-II

**Smart Sensors:** Primary sensors; Excitation; Amplification; Filters; Converters; Compensation (Nonlinearty: look up table method, polygon interpolation, polynomial interpolation, cubic spline interpolation, Approximation & regression; Noise & interference; Response time; Drift; Cross-sensitivity); Information Coding/ Processing; Data Communication; Standards for smart sensor interface; The automation.

#### **UNIT-III**

**Interfacing Instruments & Computers:** Basic issues of interfacing; Address decoding; Data transfer control; A/D converter; D/A converter; Other interface considerations.

#### **UNIT-IV**

**Software Filters (Digital Filters)** : Description of Spike Filter, Low pass filter, High pass filter etc.

**Recent Trends in Sensor Technologies:** Introduction; Film sensors (Thick film sensors, Thin film sensors); Semiconductor IC technology – standard methods; Microelectro-mechanical systems (Micro-machining, some application examples); Nano-sensors.

#### **Reference Books:**

- Alan S. Morris, 'Principles of measurement & Instrumentation', PHI.
- Wai-Kai Chen, 'Passive and Active Filters: Theory and Implementations', John Willey & Sons (Asia) Ptr. Ltd., New Delhi.
- D. Patranabis, 'Sensors & Transducers', PHI, 2003.
- Roman Kuc, 'Introduction to Digital Signal Processing', Mc Graw Hill Introduction Edition N.York.

L T P 3 0 0 L T P 3 0 0

Minor test+ curricular activities = **30** + **10** Major test: 60 Total : 100 Marks Time : 3hrs.

There will be 8 questions in all. Two questions from each unit. Answer five questions in all selecting one from each unit.

#### **UNIT-I**

INTRODUCTION: Review of semiconductor power devices (Power diodes, Power Transistors, MOSFETS, IGBT, SCR, GTO, MCT, DIAC, TRAIC, PUT, SUS, SCS), Review of choppers, converters, inverters, cyclo-converters.

CLOSED LOOP CONTROL OF DC DRIVES: Single Quadrant variable speed drives; Four Quadrant variable speed drives, Armature voltage control at constant field, field weakening, details of various blocks of closed loop drives; drive employing armature reversal by a contactor, drive employing a dual converter with non- simultaneous and simultaneous control.

#### **UNIT-II**

Industrial application of Industrial Electronic Devices: Control of electric drives used in manufacturing and process industries, protection of electric drives using solid state devices and controllers, analysis of drive systems. Testing for drive controllers: Design and testing if microprocessor based drive controllers, analysis of solid state control of industrial drives, design and testing of thyristor based controllers for electric drives.

#### UNIT-III

FREQUENCY CONTROLLED INDUCTION MOTOR DRIVES: Control of IM by VSI-3 phase VSI, six step inverter voltage control, PWM inverter, breaking and multiquadrant control, VSI variable frequency drives; control of IM by CSI- 3 phase CSI, current sources, Braking, PWM in a thyristor CSI, PWM GTO CSI, CSI variable frequency drives.

#### UNIT- IV

SELF -CONTROLLED SYNCHRONOUS MOTOR DRIVES: Self control, brushless & commutatorless, DC & AC motors synchronous motor control-operation of a wound field and permanent magnet synchronous motor from a variable frequency current source; source, permanent magnet, operation of a permanent magnet motor at the maximum torque to armature current ratio and at the maximum torque to flux ratio; operation of self controlled synchronous motor drives- CSI drives, VSI drives, cyclo-converters drives, brush-less and commutator-less AC & DC motor drives and their applications.

Reference Books:

- 1. Industrial Electronics by Frank D. Petruzella (Mc Graw-Hill)
- 2. Industrial Electronics by Morris (McGraw-Hill)
- 3. Power semiconductor drives by G.K.Dubey, Prentice Hall Inc, New Jersey

L T P 2 0 0

#### UNIT-1

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

#### UNIT-2

Effective literature studies approaches, analysis Plagiarism, Research ethics,

#### UNIT-3

Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

#### UNIT-4

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

#### UNIT- 5

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

#### UNIT- 6

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR

#### **References:**

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students""
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 ndEdition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

#### AUDIT 1 and 2:

#### **ENGLISH FOR RESEARCH PAPER WRITING**

LTP

200

#### **Course objectives:**

Students will be able to:

- 1. Understand that how to improve your writing skills and level of readability
- 2. Learn about what to write in each section
- **3.** Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission

#### UNIT - 1

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

#### UNIT - 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

#### UNIT - 3

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

#### UNIT - 4

key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

#### UNIT - 5

skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions

#### UNITS 6

useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

#### **Suggested Studies:**

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

Minor test: 50

#### AUDIT 1 and 2: DISASTER MANAGEMENT

L T P 2 0 0

**Course Objectives:** -Students will be able to:

- 1. learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- 2. critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- 3. develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- 4. critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in

#### UNIT - 1

**Introduction:** Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude. 4

#### UNIT - 2

**Repercussions Of Disasters And Hazards**: Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. 4

#### UNIT - 3

**Disaster Prone Areas in India:** Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics. 4

#### UNIT - 4

**Disaster Preparedness And Management:** Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

#### UNIT - 5

**Risk Assessment:** Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment. Strategies for Survival. 4

#### UNIT - 6

**Disaster Mitigation:** Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

#### **SUGGESTED READINGS:**

1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.

- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi.

#### SANSKRIT FOR TECHNICAL KNOWLEDGE

| L T P<br>2 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Minor test: | 50 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|
| <ul> <li>Course Objectives</li> <li>1. To get a working knowledge in illustrious Sanskrit, the scientific language in t</li> <li>2. Learning of Sanskrit to improve brain functioning</li> <li>3. Learning of Sanskrit to develop the logic in mathematics, science &amp; other subj</li> <li>4. enhancing the memory power</li> <li>5. The engineering scholars equipped with Sanskrit will be able to explore the</li> <li>6. huge knowledge from ancient literature</li> </ul> |             |    |
| UNIT - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |    |
| Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences                                                                                                                                                                                                                                                                                                                                                                                                                |             | 8  |
| UNIT - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |    |
| Order, Introduction of roots, Technical information about Sanskrit Literature<br>UNIT - 3                                                                                                                                                                                                                                                                                                                                                                                         |             | 8  |
| Technical constructs of Engine and Electrical Machanical Analytic stars. Mathematical                                                                                                                                                                                                                                                                                                                                                                                             |             |    |

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics 8

#### Suggested reading

1. "Abhyaspustakam" – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi

2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

#### Course Output

Students will be able to

1. Understanding basic Sanskrit language

2. Ancient Sanskrit literature about science & technology can be understood

3. Being a logical language will help to develop logic in students

#### VALUE EDUCATION

#### L T P 2 0 0

#### **Course Objectives**

Students will be able to

1. Understand value of education and self- development

- 2. Imbibe good values in students
- 3. Let the should know about the importance of character

#### UNIT - 1

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism, Moral and non- moral valuation. Standards and principles, Value judgements.

#### UNIT - 2

Importance of cultivation of values, Sense of duty. Devotion, Self-reliance. Confidence, 6 Concentration. Truthfulness, Cleanliness., Honesty, Humanity. Power of faith, National Unity, Patriotism.Love for nature,Discipline

#### UNIT - 3

Personality and Behavior Development - Soul and Scientific, attitude. Positive Thinking. 6 Integrity and discipline., Punctuality, Love and Kindness., Avoid fault Thinking., Free from anger, Dignity of labour., Universal brotherhood and religious tolerance., True friendship., Happiness Vs suffering, love for truth., Aware of self-destructive habits., Association and Cooperation., Doing best for saving nature

#### UNIT - 4

Character and Competence –Holy books vs Blind faith., Self-management and Good health. 6 Science of reincarnation., Equality, Nonviolence, Humility, Role of Women., All religions and same message., Mind your Mind, Self-control., Honesty, Studying effectively

#### Suggested reading

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University, Press, New Delhi

#### Course outcomes

Students will be able to

- 1. Knowledge of self-development
- 2. Learn the importance of Human values
- 3. Developing the overall personality

Minor test: 50

4

#### **CONSTITUTION OF INDIA**

4

L T P 2 0 0

#### **Course Objectives:**

Students will be able to:

1. Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.

2. To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.

3. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

#### UNIT - 1

| History of Making of the Indian Constitution: History, Drafting Committee, | 4 |
|----------------------------------------------------------------------------|---|
| ( Composition & Working)                                                   |   |
|                                                                            |   |

#### UNIT - 2

Philosophy of the Indian Constitution: Preamble, Salient Features

| UNITS - | 3 |
|---------|---|
|---------|---|

**Contours of Constitutional Rights & Duties:** Fundamental Rights, Right to Equality 4 Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

#### UNIT - 4

**Organs of Governance:** Parliament, Composition, Qualifications and Disqualifications 4 Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

#### UNIT - 5

Local Administration: District's Administration head: Role and Importance, Municipalities: 4 Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation., Pachayati raj: Introduction, PRI: Zila Pachayat., Elected officials and their roles, CEO Zila Pachayat: Position and role., Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy UNITS 6

**Election Commission:** Election Commission: Role and Functioning., Chief Election 4 Commissioner and Election Commissioners., State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

#### Suggested reading

1. The Constitution of India, 1950 (Bare Act), Government Publication.

2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.

3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.

4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

#### **Course Outcomes:**

Students will be able to:

1. Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.

2. Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.

3. Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.

4. Discuss the passage of the Hindu Code Bill of 1956.

#### **PEDAGOGY STUDIES**

Minor test: 50

L T P 2 0 0

#### **Course Objectives:**

Students will be able to:

4. Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.

5. Identify critical evidence gaps to guide the development.

#### UNIT - 1

**Introduction and Methodology:** Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions., Overview of methodology and Searching.

UNIT - 2

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

#### UNIT - 3

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: 4 quality assessment of included studies., How can teacher education (curriculum and practicum) and the school, curriculum and guidance materials best support effective pedagogy?, Theory of change., Strength and nature of the body of evidence for effective pedagogical practices., Pedagogic theory and pedagogical approaches., Teachers' attitudes and beliefs and Pedagogic strategies.

#### UNIT - 4

Professional development: alignment with classroom practices and follow-up support, 4 Peer support, Support from the head teacher and the community., Curriculum and assessment Barriers to learning: limited resources and large class sizes

#### UNIT - 5

**Research gaps and future directions,** Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

#### Suggested reading

1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.

2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.

3. Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic

maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

7. www.pratham.org/images/resource%20working%20paper%202.pdf.

4

2

2

#### **Course Outcomes**

Students will be able to understand:

1. What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?

2. What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?

3. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

#### AUDIT 1 and 2:

LTP

#### STRESS MANAGEMENT BY YOGA

Minor test: 50

8

8

8

| wintor test. | • |
|--------------|---|
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |

ii) Regularization of breathing techniques and its effects-Types of pranayam

#### Suggested reading

1. 'Yogic Asanas for Group Tarining-Part-I" :Janardan Swami Yogabhyasi Mandal, Nagpur 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

#### **Course Outcomes:**

Students will be able to:

1. Develop healthy mind in a healthy body thus improving social health also

2. Improve efficiency

#### PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

#### LTP Minor test: 50

200

#### **Course Objectives**

1. To learn to achieve the highest goal happily

2. To become a person with stable mind, pleasing personality and determination

3. To awaken wisdom in students

#### UNIT-1

Neetisatakam-Holistic development of personality, Verses- 19,20,21,22 (wisdom) 8 Verses- 29,31,32 (pride & heroism), Verses- 26,28,63,65 (virtue), Verses- 52,53,59 (dont's) Verses- 71,73,75,78 (do's)

#### UNIT-2

Approach to day to day work and duties., Shrimad Bhagwad Geeta: 8 Chapter 2 - Verses 41, 47, 48, Chapter 3-Verses 13, 21, 27, 35, Chapter 6 - Verses 5, 13, 17, 23, 35, Chapter 18-Verses 45, 46, 48.

#### **UNIT - 3**

Statements of basic knowledge., Shrimad BhagwadGeeta: Chapter2-Verses 56, 62, 68 8 Chapter 12 -Verses 13, 14, 15, 16, 17, 18, Personality of Role model. Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36, 37, 42, Chapter 4-Verses 18, 38, 39, Chapter18 -Verses 37,38,63

#### Suggested reading

1. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication

- 2. Department), Kolkata
- 3. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath,
- 4. Rashtriya Sanskrit Sansthanam, New Delhi.

#### Course Outcomes

Students will be able to

1. Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life

- 2. The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- 3. Study of Neetishatakam will help in developing versatile personality of students.

### **B.A.** (Mass Communication)

**Syllabus** 

**Duration:** three year

**Eligibility:** 10+2 in any discipline

w.e.f. Academic Session: 2017-2018 Institute of Mass Communication and Media Technology

## Kurukshetra University

10(880)

#### B.A. (Mass Communication) Scheme of Examination w.e.f. Academic Session 2017-18

| w.e.i. Academic Session 2017-18                              | 1  | D  | ТА | T-( 1 |
|--------------------------------------------------------------|----|----|----|-------|
| First Semester                                               | T  | Р  | IA | Total |
| Paper-I: Introduction to Communication                       | 80 | -  | 20 | 100   |
| Paper-II: Language and Media(Hindi-I)                        | 80 | -  | 20 | 100   |
| Paper-III: Computer Applications for Mass Media              | 50 | 30 | 20 | 100   |
| Paper-IV: General Awareness and Current Affairs-I            | 80 | -  | 20 | 100   |
| Paper-V: Personality Development & Communication Skills      | 50 | 30 | 20 | 100   |
| Second Semester                                              |    |    |    |       |
| Paper-VI: Language and Media (English-I)                     | 80 |    | 20 | 100   |
| Paper-VII: Communication and Society                         | 80 | -  | 20 | 100   |
| Paper-VIII: Basics of Mass Communication                     | 80 | -  | 20 | 100   |
| Paper-IX: Introduction to Reporting                          | 50 | 30 | 20 | 100   |
| Paper-X: Media and Polity                                    | 80 | -  | 20 | 100   |
| Environment Studies                                          |    |    |    |       |
| Third Semester                                               |    |    |    |       |
| Paper-XI: Language and Media (Hindi-II)                      | 80 | -  | 20 | 100   |
| Paper-XII: Basics of Editing                                 | 50 | 30 | 20 | 100   |
| Paper-XIII: Fundamentals of Advertising and Public Relations | 80 | -  | 20 | 100   |
| Paper-XIV: Introduction to Photography                       | 50 | 30 | 20 | 100   |
| Paper-XV: Introduction to Audio-Visual Media                 | 80 | -  | 20 | 100   |
| Forth Semester                                               |    |    |    |       |
| Paper-XVI: Language and Media (English-II)                   | 80 | -  | 20 | 100   |
| Paper-XVII: New Media                                        | 50 | 30 | 20 | 100   |
| Paper-XVIII: Media Laws and Ethics                           | 80 | -  | 20 | 100   |
| Paper-XIX: Development Communication                         | 80 | -  | 20 | 100   |
| Paper-XX: Current Affair & Media Issues-II                   | 80 | -  | 20 | 100   |
| Fifth Semester                                               |    |    |    |       |
| Paper-XXI: Media Management                                  | 80 | -  | 20 | 100   |
| Paper-XXII: Radio Production                                 | 50 | 30 | 20 | 100   |
| Paper-XXIII: Writing for Radio and Television                | 50 | 30 | 20 | 100   |
| Paper-XXIV: Reporting Skills & Practice                      | 50 | 30 | 20 | 100   |
| Paper-XXV: Current affair & Media Issues-III                 | 80 | -  | 20 | 100   |
| Sixth Semester                                               |    |    |    | 100   |
| Paper-XXVI: Print Production                                 | 50 | 30 | 20 | 100   |
| Paper-XXVII: Television Production                           | 50 | 30 | 20 | 100   |
| Paper-XXVIII: Research Methodology                           | 50 | 30 | 20 | 100   |
| Paper-XXIX: Personality Development and Presentation Skills  | 80 |    | 20 | 100   |
|                                                              |    | -  |    |       |
| Paper-XXX: Current Affairs & Media Issues-IV                 | 80 | -  | 20 | 100   |

\* Environment studies paper is qualifying subject compulsory for all students of the UG course and the same will be conducted in the 2<sup>nd</sup> semester of the course.

| Optional paper for Foreign and non Hindi student | s in place of paper II and XI |
|--------------------------------------------------|-------------------------------|
| Basics of English language – I                   | 80+20                         |
| Basics of English language – II                  | 80+20                         |

10(881)

#### Paper-XVIII Media Law& Ethic

Time: 3 Hrs.

#### Theory Marks: 80 Internal Assessment: 20

Question paper for each theory paper will have two questions from each of the four units. Student will be required to answer any one question from each unit. Unit V of the question paper will have six questions out of which the student will be required to answer any four questions. Each unit will carry equal marks. Students have the option to answer some questions in Hindi and others in English but within an answer to a question the language should be pure (not bilingual) and correct

#### Unit-I

Freedom of Speech and Expression: Main features, Scope and Importance of Article 19 Interpretation of Article 19: Defining the freedom of the Press and Media Supreme Court Judgments related to Article 19 Fundamental Rights and Duties

#### Unit-II

Official secrets act 1923 Law of defamation Contempt of court act 1971 Copyright act. Right to privacy Cable TV network regulation Act 1995 Information technology Act 2000

#### Unit-III

Ethics in journalism, freedom and responsibility of press RTI act, 2005 with its importance and background Law relating to covering of election Guidelines for parliamentary coverage AIR code for election coverage.

#### **Unit-IV**

Press commissions Press Council of India, The Editor build of India, NBA, BCC of India Working Journalist Act Autonomy of public broadcasting **Reference Books:** 

- Universal Publishers Criminal Law Manual (relevant Sections of IPC)
- Universal Publishers Law Dictionary [Constitution of India (Article 19 (1) and 19 (2) 105, 194)]
- D D Basu Law of the Press, Wadhwa & Company, Nagpur
- Vidisha Barua Press and Media Law Manual, Universal Law Publishing Co. Pvt. Ltd. New Delhi
- P.K. Ravindranath Press Laws and Ethics of Journalism, Author Press, Delhi
- Pranjay Guha Takhurata, Media Law & Ethics, Sage Publication

10(882)

## B.Tech (Printing, Graphics & Packaging)

# Credit based system Syllabus

w.e.f. Academic Session: 2019-2020 for 5th to 8th semester

## Institute of Mass Communication and Media Technology

## Kurukshetra University

10(883)

## STUDIES & EXAMINATIONS 5<sup>th</sup>semester

#### w.e.f. 2019-20 in phased manner

#### B. Tech. (Printing, Graphic & Packaging) – 2019-20

| Subje      | Su                        | subject                                    | Te       | eacl | nir | ng                 | Cre       | Allotments of Marks |     |    |     | Duration |      |                   |                   |               |       |                      |
|------------|---------------------------|--------------------------------------------|----------|------|-----|--------------------|-----------|---------------------|-----|----|-----|----------|------|-------------------|-------------------|---------------|-------|----------------------|
| ct<br>Code | bj<br>ec<br>t<br>ar<br>ea | Title                                      | Schedule |      |     |                    |           |                     |     |    |     | le       | dits | Maj<br>or<br>Test | Min<br>or<br>Test | Pract<br>ical | Total | of<br>Exams(Hrs<br>) |
|            |                           |                                            | L        | Т    | Ρ   | Hour<br>s/We<br>ek |           |                     |     |    |     |          |      |                   |                   |               |       |                      |
| PGP<br>501 | PC                        | PRINTING<br>MATERIAL                       | 4        |      | 0   | 4                  | 4         | 60                  | 40  |    | 100 | 3        |      |                   |                   |               |       |                      |
| PGP<br>502 | PC                        | PRE PRESS<br>TECHNOLOG<br>Y                | 4        |      | 0   | 4                  | 4         | 60                  | 40  |    | 100 | 3        |      |                   |                   |               |       |                      |
| PGP<br>503 | PC                        | WEB<br>OFFSET<br>TECHNOLOG<br>Y            | 3        |      | 0   | 3                  | 3         | 60                  | 40  |    | 100 | 3        |      |                   |                   |               |       |                      |
| PGP<br>504 | PC                        | FLEXOGRAP<br>HY<br>TECHNOLOG<br>Y          | 4        |      | 0   | 4                  | 4         | 60                  | 40  |    | 100 | 3        |      |                   |                   |               |       |                      |
| PGP<br>505 | PC                        | PRINTING<br>IMAGE<br>GENERATIO<br>N        | 3        |      | 0   | 3                  | 3         | 60                  | 40  |    | 100 | 3        |      |                   |                   |               |       |                      |
| PGP<br>506 | PC                        | PLASTICS IN<br>PACKAGING<br>LAB            | 3        |      | 0   | 3                  | 3         | 60                  | 40  |    | 100 | 3        |      |                   |                   |               |       |                      |
| PGP<br>511 | PC                        | PREPRESS<br>TECHNOLOG<br>Y LAB             |          |      | 2   | 2                  | 1         |                     | 30  | 45 | 75  | 3        |      |                   |                   |               |       |                      |
| PGP<br>512 | PC                        | WEB<br>OFFSET<br>TECHNOLOG<br>Y<br>LAB     |          |      | 2   | 2                  | 1         |                     | 30  | 45 | 75  | 3        |      |                   |                   |               |       |                      |
| PGP<br>513 | PC                        | FLEXOGRAP<br>HY<br>TECHNOLOG<br>Y<br>LAB   |          |      | 2   | 2                  | 1         |                     | 30  | 45 | 75  | 3        |      |                   |                   |               |       |                      |
| PGP<br>514 | PC                        | PRINTING<br>IMAGE<br>GENERATIO<br>N<br>LAB |          |      | 2   | 2                  | 1         |                     | 30  | 45 | 75  | 3        |      |                   |                   |               |       |                      |
|            |                           | Total                                      |          |      |     |                    | 25/<br>25 | 360                 | 360 |    |     |          |      |                   |                   |               |       |                      |

501 PRINTING MATERIALS

> Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### Unit - I

#### Metals

Type of metals and characteristics of metals used for type alloys for foundry types, hot metal composition and stereos, Physical and chemical properties of aluminum, zinc, copper, nickel, chromium, magnesium in relation to printing applications.

#### **Photographic Materials**

Main kinds of films and photographic papers used in graphic orgination Films positives, mainbase, stripping, thickness, right and wrong reading, negatives; paper positive materials. Developers, Reducers, Intensifiers.

#### Unit - II

#### Light Sensitive Materials

Various sensitized materials, used and relationship with processes Silver halide emulsionsclassification according to speed, contrast and spectral sensitivity.

#### Paper and Ink

Fibrous and Non-fibrous materials used in paper and board manufacturing. General characteristics and requirements of printing inks formulations pigments, vehicles, varnishes, solvents, agents.

Unit - III

#### Adhesives

Classes and characteristics of adheisves used in binding and warehouse work and their range of applications selection for specific purpose.

#### Miscellaneous Materials

Book binding materials Different types of rubber used in printing. Use of leather, cloth, rexine, threads, tapes, stitching wire, metal foils and covering materials used for binding and print finishing.

#### Unit - IV

#### **Materials Handling**

A brief Survey of materials handling and storage, Handling and storage of paper, printing surfaces, films, chemicals and other printing materials. Systems and methods of storage. Precautions in handling, storage, use and care of various printing substrates, materials and chemicals. wastage reduction. Receiving, storage and delivery of raw, semi finished and finished products.

#### **Recommended Books :-**

• Printing Surface Praperation by C. S. Mishr

#### 502 PRE-PRESS TECHNOLOGY

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### Unit - I

#### Introduction to colour

Basic colour theory - additive and substractive colours, process colours, application of the colour theory to colour reproduction. Overview of colour reproduction from original to printing, Exposure, colour balance, memory colours; graining, contrast; Film transparency.

Unit - II

#### **Colour Reproduction**

Process camera, Parts of process camera and their types. Tone and colour controls - Gray scale and colour control patches , densitometers.

#### **Colour Separating methods**

Basic principles of colour separation, Direct separation method and Indirect colour separation method, Black Printer negative for the indirect method, for making continuous tone positives. Final Screened negatives and positives establishing a colour reproduction procedure.

#### Unit - III

#### **Colour correction**

Objectives of colour correction ; Hand correction, Purposes and procedure followed; retouching techniques; correcting colours, tones and shades given inks and paper. Dot etching, purposes and procedure, flat ethcing, staging and etching, local reduction, blending; Masking; purposes of masking types of maskings, their clarification and uses; Electronic colour seperation and correction.

#### Unit - IV

#### Colour proofing

Press proofing methods and various pre-press proofing systems; uses and limitations of prepress sheet, Interpreting pre press proofs and predicting, press results Control devices for proofing systems.

Planning for colour work

Scanner, Types of scanner - Drum, Flat Bed Scanners. Image Setters. Types of imagesetter. **Recommended Books :-**

1. Dr. R.W.G. Hont :- The reproduction of colour. Fountain Press, 4th edition.

2. Miles Southworth & Donna Southworth :- Colour Reproduction. Graphic Arts Publishing, 3.1 edition.

3. Gary G. Field :- Tone & Colour correction (GATF).

#### 503 WEB OFFSET TECHNOLOGY

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### Unit - I

#### Development and growth of web offset press

Full size and mini web press; four basic types of web offset press, Press specially used for newspaper and magazine production in single and multicolour, Factors to be considered for selecting the press.

#### Components of web offset press

Infeed, tension control Pre-conditioners, drier and chill rolls, folders, sheeters and winders, Adjustment, operation and maintenance of the major components.

#### Inking systems and dampening systems for web offset

Conventional and non-conventional dampening systems, UV inks and setting systems Causes and correction of ink-related problems, Properties and requirements of heat set inks.

#### Unit - II

#### Web Control

Roll stands and automatic pasters, Detection of web breaks and control of tension, Web Flutter, casues and correction of misregister, Control of fan out, Sidelay, cut-off, web-to-web and ribbon control.

#### . Auxiliary equipment

Various types of in-built and optional equipment availability for web-offset and their uses; -Remote control console, Plate scanners, scanning densitometer, closed-loop system, web preconditioners, sheet cleaners, ink agitators, water coded ink oscillators, fountain solution recirculation systems, fountain solution mixers, refrigerating fountain solution, automatic blanket washers, side lay sensors, web break defectors, remoisturizers-liquid applicator system, roller applicators systems, antistatic devices, Imprinters, Perfectors, cutoff controls, straboscope, synchroscope, counters-Denex laser counter, stobb counter.

#### Web-paper ,Plate and blankets

Properties and requirements of paper used for web offset Printability, Care and handling of rolls. Various types used for web-offset, their characteristics, merits and demerits for specific work, Cylinder pressures and Printing Make-ready.

#### Unit - III

#### Dry Offset

Dry-offset; advantages and disadvantages, Comparative study of dry offset, letterset and lithographic offset processes, difference between dry offset and letterset machines and inks job suitability.

Description of the process, Method of producing image and non-image areas, Importance of the correct formulation of waterless lithographic inks.

#### Unit - IV

#### Introduction to types of drives used in web offset machines Brief introduction to control panels of the web offset machines.

#### Folders

Introduction, folding principles, parts of folder, combination folder, ribbon folder, double-former folder, the me-chanics of folding process of jaw fold, chopper fold mechanism. Operation of collect cylinder, press folders, double former prefolder, flow folders, insert folders.

#### **Recommended Books :**

Web offset press operating- David B. CrouseOffset M/c II - C. S. MishraManual for Lithography Press Operation - A. S. Porter

#### 504 FLEXOGRAPHY TECHNOLOGY

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### Unit - I

#### Introduction to Flexography:

Definition. flexographic printing, flexographic market, flexographic products, growth potential, Advantages of flexography, Press development. Mechanical principles of flexography - Fountain roll, Anilox roll, plate cylinder, impression cylinder.

#### Image carriers for flexography:

Introduction. Thickness of flexo graphic plates. Photopolymer flexographic plates Advantages of photo polymer plates. Disadvantages of photo polymer plates. Solid photo polymer plates. Photo initiators and photo sensitizers. Washout solvents. Liquid photo polymer plates. Base material for photo polymer plates. Rubber flexo plates, photo engravings, duplicate plates. Rubber plate making process – Advantages of rubber plates, disadvantage of rubber plates. Photo polymer plate making process, sheet photo polymer plate making, liquid photo polymer plate making. Letter press plates – Introduction, photo polymer letterpress plates

#### Unit - II

#### The Printing press:

Flexo press types - Stack press, Central impression cylinder press, Inline press, Tension control in flexographic m/c, Unwind equipments - general, single-position unwind - flying-splice unwind, unwind tension systems, cooling drum a out feed unit. Rewind equipments - surface winders, center winders, rewind tension systems. Web guides. Printing stations - two roll, anilox roll, reverse angle doctor blade system, Deck control, Continuous inking, side and circumferential register control, Dryers. Mechanical components - CI drum, plate cylinders. Anilox roll - construction, cell structure, anilox roll wear, selecting the night anilox roll, chrome plating. Fountain rolls - formulating rubber for rolls, Flexo roller covering, Care of covered rolls.

#### Unit - III

#### Mounting and Proofing:

Introduction. Checking the equipment. Operation care of equipment. Understanding the mounting instructions. Mounting and proofing a complete line job - proofing the first set of plates, proofing for printability, methods of prepress makeready, wrapping mounted cylinders. Miscellaneous procedures - removing plates from the cylinder, mounting metal-backed plates, reusing sticky back, plate staggering, use of release agents. Tools for the operator. Basic requirements for process colour printing. Press room practices. Environment and safety concerns.

#### Flexography and Barcoding:

Barcode structures. Types. Verifying/Analyzing printed barcodes. UPC and flexographic printing. UDC film masters and printing capability tests. The shipping container symbol (SCS). SCS shipping contain Barcode printing.

#### Unit - IV

#### **Beyond the Horizon- Tomorrows Flexography:**

Flexographic substrates. Narrow web presses-Narrow web press components, Future narrow web flexography. Wide web presses. Corrugated presses. Pre printed liner presses. Future of Ink distribution system. Tomorrows flexographic plates. News print for water-base flexography. Markets for today and tomorrow.

#### **Recommended Books :**

Flexography principles and practices - Foundation of flexographic technical association.

#### 505 PRINTING IMAGE GENERATION

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### Unit - I

#### Assembly of film images:

Photographic film- camera film, contact film, room light handling films, duplicating films. Proofing materials - diazo papers, polymer papers, brown print paper, diffusion transfer material, Stripping supplies - screen tints, pressure sensitive tapes, adhesives opaques, cleaning solutions, starch filler, register tabs button & pins. Register masks, GATF image contact masks. Basic steps in planning a film image assembly Film assembly for single color printing. Assembly for film multiple color printing. Assembly for multiple imaging of plates and film.

#### Unit - II Planographic plates:

Introduction. Light sensitive coating -dicromated colloids, diazo compounds, photo polymers, diffusion and transfer methods, electrostatic. Sensitivity of coating to light. Dye-sensitized photo polymerization, dark reaction, post exposure, safe lights, reciprocity law. Action of light sources on coatings, stabilities of coatings. Positive working plates, Negative working plates- additive presensitized plates, subtractive diazo PS plates, photo polymer presensitized plates, aqueous developable plates, driographic plates, multi metal plates. Producing a multimetal plate. Types-bimetalic, trimetalic. Projection-speed negative plates. Positive working lithographic plates-Presensitized plates, Baking of positive plate Process of making deep etch plate - counter etching, exposing, developing, deep etching, cleaning the image areas, stopping out unwanted areas, copperizing the image areas on aluminum plate, applying non blinding lacquer applying deep etch developing ink, remaining the gum stencil, desensitizing, gumming up, **Unit – III** 

Driography- Outline, system, structure, processing and use, precautions.

Waterless plates – outline, structure, processing and use, advantages and disadvantages.

Role of photopolymer in Image formation – Raised and Recessed.

Diffusion processes – Reflex and Projection plates.

Electro photography – Introduction, process, toner transfer theory, Equipment.

Water soluble photosensitive resin plates – introduction, characteristics, structure, processing, image reproductivity.

Laser plate making – introduction, system outline, system performance, implifications. Computer-to-plate: – Thermal plate, Polyester plate.

#### Unit - IV

#### **Digital Image Carriers:**

Image generation of a Digital Offset Machine. Basics of other digital image carriers. Auto plate processor ,Troubleshooting for plates,Quality control aids for plate making.

#### **Recommended Books:-**

Heidelberg DI Press- Manual Chemistry for Graphic Arts - Dr. Nelson R. Eldred.
Offset Plate Making - Robert F. Reed.
Printing Technology 3rd Edition. - Adams, Fax &Rieber.
Screen Process Printing - John Stephens.
Sheetfed Offset Press Operating - Lloyd P. Dejidas.
Flexography Premier - Donna C. Mulvihill.
Stripping - Harold L. Peck.
Gravure Process And Technology –GAA.
Selecting The Right Litho Plate - BPIF.
A. L. Gatehouse; Manual for film planning and plate making; roper – GATF Publication, 1983 edition.
Lithographers manual – GATF seventh edition.
Paul J.Hartsuch Chemistry for the Graphic Arts, GATF, 1983 edition.

Lan Faux, Modern lithography, MacDonald & Evans Publication, 1973. Edition.

W.R. Durrant Printing – A guide to systems and their uses, Heinemann Professional Publishing, 1989 edition.

D.C. MulvihillFlexo Primer, GATF & Foundation of FTA 1985 editon

#### **Plastics in Packaging (506)**

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### Unit I

#### **Plastic Introduction**

Packaging, Types of packaging, Purposes of packaging. Plastic-introduction, Classification of synthetic polymer. Techniques of polymerization, Distinction between Plastic, Fibres and Elastomers. Application of plastic in packaging

#### Unit II

#### **Classification of Plastic**

Miscellaneous plastics - polycarbonate, nylon , Low-Density Polyethylene (LDPE), Linear low-density polyethylene (LLDPE) High-Density Polyethylene (HDPE) High molecular high density Polyethylene(HM HDPE)Polyethylene Terephthalate (PETE or PET), Polyvinyl Chloride (PVC) - Introduction, properties and applications.

#### Unit III

#### **Environment and pollution in plastic industry**

Plastic Industry effects on environment and its components; water, soil, air and living things, Storage and handling of plastics, Pollution and Hazards related to Plastics, Plastic Waste Management- Public awareness regarding hazards caused by indiscriminate use of plastics, proper disposal of plastics. Alternate Packaging material.

#### Unit IV

#### **Testing and Recycling of plastic**

Introduction, Process, Solubility test, Lenition test, Dry distillation test, Chemical color identification test, Pyrolysis test, Refractive index. Recycling of plastic-Processes–Thermal depolymerization, distributed recycling, plastic identification code

#### **RECOMMENDED BOOKS**

- 1. Handbook of Plastics, Elastomers and Composites by Charles A. Harper; Published by McGraw Hill Company, New Delhi
- 2. Plastic Waste Management by Nabil Mustufa; Marcel Dekker
- 3. Introduction to Environmental Engineering and Science by Gilbert M Masters; Prentice Hall of India, New Delhi
- 4. Recycling and Recovering of Plastics by Brandrup (Hanser Publications)

#### 511 PRE PRESS TECHNOLOGY- LAB

Total Credit: 1 Max. External: 45 Internal: 30 Time Allowed: 3 Hrs. Marks: 75

LIST OF EXPERIMENTS

- 1. Making of Half tone negative using process camera.
- 2. making of own colour control patches.
- 3. Gray Scale (Drawing).
- 4. Drawings spectrophotometric curve by using spectrodensitometre.
- 5. How to make colour separtion negative of a four coloured original by using Electronic colour separation system.
- 6. Working of Image Setter and obtaining output on Image Setter.
- 7. colour Correction by using photography masking.
- 8. Six Colour Wheel.
- 9. Planning for four Colour Newspapers designs.
- 10. Software for colour seperationphotoshop, coreldraw, quark express.
- 11. Preparation of originals for separation reflection type and transparency.
- 12. Exposing tonal correction mask, making UCR mask/GCR mask etc.

#### 512

#### WEB OFFSET TECHNOLOGY- LAB

Total Credit: 1 Max. External: 45 Internal: 30 Time Allowed: 3 Hrs. Marks: 75

- 1. Premake ready operations.
- 2. Make ready operations.
- 3. Multicolour job printing.
- 4. Trouble shooting during printing.
- 5. Study of electronic panel.
- 6. Blanket and plate cylinder setting.
- 7. Damping roller setting.
- 8. Inking roller setting.
- 9. Study of Web-breaks.
- 10. Operations of Folding machine.

513

#### FLEXOGRAPHY TECHNOLOGY - LAB

Total Credit: 1 Max. External: 45 Internal: 30 Time Allowed: 3 Hrs. Marks: 75

LIST OF EXPERIMENTS

- 1. Introduction and familiarizing flexo machine and other related elements.
- 2. Preparation of rubber plates.
- 3. Preparation of I. Liquid photo polymer plates, II. Sheet photo polymer plates.
- 4. Registering and plate mounting on flexo plate cylinder.
- 5. Make ready procedures a flexo machine.
- 6. Printing i.singlecolor, ii.twocolor, iii.fourcolor.
- 7. Studying of 6 color and 8 colorflexomachines.

#### 514 PRINTING IMAGE GENERATION - LAB

Total Credit: 1 Max. External: 45 Internal: 30 Time Allowed: 3 Hrs. Marks: 75

LIST OF EXPERIMENTS

- 1. Comparative study of various materials and equipments used in Image Generation Department.
- 2. Preparation of wipe-on plates, Albumin plates.
- 3. Preparing deep-etch plates ,pre-sensitized plate,
- 4. Preparation of letter set plates.
- 5. Study of gripper margin and registration processes,
- 6. Positioning of images for plate making,
- 8. Page makeup -folders, pamplets, journals/magazines, newspaper, book work.
- 9. Layout preparation Single page layout, 2 page layout, 4 page layout, 8 page layout, 16 page layout, 32 page layout, 64 page layout for work & turn, work & tumble, work & twist.

#### SCHEME OF STUDIES & EXAMINATIONS

| 6th semester                                       |
|----------------------------------------------------|
| w.e.f. 2019-20 in phased manner                    |
| B. Tech. (Printing, Graphic & Packaging) – 2019-20 |

| Subje      | Su | B. Tech. (I<br>subject Title  |          |          | ng,<br>hir |      | Cre       |      |      | of Marks |       | Duration  |
|------------|----|-------------------------------|----------|----------|------------|------|-----------|------|------|----------|-------|-----------|
| ct         | bj | subject fille                 |          |          | du         |      | dits      | Maj  | Min  | Pract    | Total | of        |
| Code       | ec |                               |          |          |            |      | unto      | or   | or   | ical     | lotal | Exams(Hrs |
| 0000       | t  |                               |          |          |            |      |           | Test | Test | ioui     |       | )         |
|            | ar |                               |          |          |            |      |           |      |      |          |       | ,         |
|            | ea |                               |          |          |            |      |           |      |      |          |       |           |
|            |    |                               | L        | Τ        | Ρ          | Hour |           |      |      |          |       |           |
|            |    |                               |          |          |            | s/We |           |      |      |          |       |           |
|            |    |                               |          |          |            | ek   |           |      |      |          |       |           |
| PGP        | PC | PRINTING                      | 4        |          | 0          | 4    | 4         | 60   | 40   |          | 100   | 3         |
| 601        |    | SUBSTRATE                     |          |          |            |      |           |      |      |          |       |           |
| PGP        | PC | SECURITY AND                  | 4        |          | 0          | 4    | 4         | 60   | 40   |          | 100   | 3         |
| 602        |    | STATIONARY<br>PRINTING        |          |          |            |      |           |      |      |          |       |           |
| PGP        | PC | Food Packaging                | 3        |          | 0          | 3    | 3         | 60   | 40   |          | 100   | 3         |
| 603        | 10 | 5.5                           | Ŭ        |          | Ŭ          | 0    |           | 00   | 10   |          | 100   | Ũ         |
| PGP        | PC | NEWSPAPER                     | 4        |          | 0          | 4    | 4         | 60   | 40   |          | 100   | 3         |
| 604        |    | PUBLISHING                    |          |          |            |      |           |      |      |          |       | -         |
| PGP        |    | a. SALES AND                  | 3        |          | 0          | 3    | 3         | 60   | 40   |          | 100   | 3         |
| 605        |    | ADVERTISING                   | 5        |          | Ŭ          | 5    | J         | 00   | 70   |          | 100   | 5         |
| 000        |    | b). RESEARCH &<br>DEVELOPMENT |          |          |            |      |           |      |      |          |       |           |
|            |    | C)PLANNING                    |          |          |            |      |           |      |      |          |       |           |
|            |    | &COORDINATIO                  |          |          |            |      |           |      |      |          |       |           |
| PGP        | PC | N<br>COSTING AND              | 3        |          | 0          | 3    | 3         | 60   | 40   |          | 100   | 3         |
| 606        | ΓŪ | ESTIMATING                    | 5        |          | 0          | 5    | 5         | 00   | 40   |          | 100   | 5         |
| 000        |    | LAB                           |          |          |            |      |           |      |      |          |       |           |
| PGP        | PC | PRINTING                      |          |          | 2          | 2    | 1         |      | 30   | 45       | 75    | 3         |
| 611        |    | SUBSTRATE                     |          |          | -          | -    |           |      |      | 10       | , 0   | Ū         |
| PGP        |    | LAB<br>FOOD                   |          |          | 2          | 2    | 1         |      | 30   | 45       | 75    | 3         |
| РGР<br>612 |    | PACKAGING LAB                 |          |          | 2          | 2    | '         |      | 30   | 45       | 10    | S         |
| PGP        | PC | Newspaper                     |          |          | 2          | 2    | 1         |      | 30   | 45       | 75    | 3         |
| 613        |    | Publishing                    |          |          | 2          | 2    | '         |      | 50   | 45       | 15    | 5         |
| PGP        | PC | SECURITY AND                  | $\vdash$ | -        | 2          | 2    | 1         |      | 30   | 45       | 75    | 3         |
| 614        |    | STATIONARY                    |          |          | 2          | 2    | '         |      |      |          |       | Ĭ         |
| 511        |    | PRINTINGLAB                   | _        |          |            |      |           |      |      |          |       |           |
|            |    | Total                         | $\vdash$ | <u> </u> |            |      | 25/       | 360  | 360  |          |       |           |
|            |    | i otai                        |          |          |            |      | 257<br>25 | 300  | 300  |          |       |           |
|            |    | l                             |          |          |            |      | 20        | 1    | I    | L        |       |           |

#### A Special Paper of Environment Studies will be the part of 6<sup>th</sup> semester curriculum

#### **PRINTING SUBSTRATE**

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### Unit - I

#### Paper:

Introduction, Paper fibers& Non Fibers materials, Fiber structure- cellulose, hemi celluloses and lignin, Paper manufacture – Stage 1 - pulp preparation, mechanical pulp - refiner mechanical pulp, thermo mechanical pulp, chemical pulp processes - sulfate or Kraft process, sulfite process, Semi - chemical process. Screeing, Cleaning Bleaching: Stage 2- stock preparation, Stage 3- Paper Making Machine. Wet-end, Head box and slice. MD: CD ratio. Wire section, Press and drier sections. Calendaring and Finishing- Hard calendaring, soft nip calendaring, super calendaring, machine glazing, paper coatings - coated papers and boards.

#### Unit - II

#### Recycled paper:

Recycling Process, fiber preparation- screening, centrifugal cleaning, flotation, washing, deinking plant function, continuous drum pulper, prescreening and cleaning, primary flotation, cleaning, fine screening, thickening, dispersing, brightness control, washing, thickening and storage. Deinking chemistry - Bleaches - Hydrogen peroxide, Oxygen & Ozone bleaching, reductive bleaching agents, chelating agents, sodium silicate, catalase enzyme, agglomerating chemicals, surfactants. Biodegradation of surfactants, dispersants and the principles of washing.

#### Choosing a suitable paper:

Characteristics of paper. Paper varieties for printing. Printing defects associated with paper. Reel defects. Ppaer Testing, Measurement and calculations: - Paper sizes. Influence of moisture and RH on paper and boards. Paper storage – Requirement. Methods. Variables affecting paper storage. Paper properties -, printability, runnability. Surface and directional properties of paper & board – substance, caliper, bulk, compressibility, surface smoothness/roughness, air permeance, static and dynamic friction. Surface strength and internal bond strength - picking, fluffing, splitting. Strength properties - stiffness, folding endurance, bursting strength, tear resistance. Optical properties - gloss, brightness, whiteness, yellowness and tint indices, flurescence, opacity.

#### Unit - IV

#### Introduction to Non Paper substrates

Surface preparation – Coating , plastics-properties. Metalized films - Aluminum foil, Foil laminations. Advantages, limitations. Future in Printing & Packaging.

#### 602 SECURITY AND STATIONARY PRINTING

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### Unit-I

#### Introduction:

Security Printing its definition and requirement, currency printingIntroduction to Security Printing, Optical document security, importance of security printing of bank note papers and boards, passports and government documents. UV visible Printing, rainbow printing, micro lines, guilloches, numbering, Line-printing, stamp embossing, hot-foil-embossing, embossing / punching, fibres, hologram, solvent colour, multi colour UV-fluorescence stitching thread, holographic foil or lamination of a page, Digital Watermark.

#### Unit-II

#### Inks and Brand Security Inks:

Invisible inks, Specialist security printers inks; such as thermo chromic, UV fluorescing, water fugitive, solvent sensitive inks, combifuge, photo chromic, Fluorescent Inks, Watermarks, Testing, Deterrent measures Brand Security: First line inspection of documents using optical elements such as Holograms, optical variable graphics, diffraction structures, liquid crystal materials, optical security in laminates etc., invisible document security and Brand protection.

Unit-III

#### Security Products:

Credit Cards, Smart cards, club cards, credit / debit cards, Plastic ID cards, Water mark cards, RFID technology, Bar codes, Printers used for bar codes, Cheques and their value documents, MICR/OCR/Cheque printing technology Counterfeit, fraud prevention, Cheque fraud prevention, method and arrangement for processing negotiable instruments. First line inspection of documents using optical elements such as Holograms, optical variable graphics, diffraction structures, liquid crystal materials, optical security in laminates etc. invisible document security and Brand protection.

Unit-IV

#### Applications

Security design and processes for various print products: Barcodes, Holograms, cheque printing-MICR cheques and Reserve Bank of India (RBI) specifications, finishing, paper specifications-Manufacturing process of – Bank Notes – Business forms – CertificatesPassports – Packaging - Card printing. Different types of machines used for producing various security products. Recent trends and developments in security printing.

#### Recommended Books :

#### 603

#### **FOOD PACKAGING**

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### UNIT-1

#### Introduction

- Food packaging: Definition,
- Functions of food packaging,
- Need of food packaging
- Role of packaging in extending shelf life of foods
- Safety assessment of food packaging materials
- Different forms of packaging.
- Rigid, semi-rigid, flexible forms of packaging in food industries...
- Different packaging system for-Dehydrated foods, Frozen foods, Dairy products, Fresh fruits, Vegetables, Meat, Poultry, Sea foods.

#### UNIT 2

#### Aseptic packaging of foods

- Principles of sterilization,
- sterilization of packaging material,
- verification of sterilization processes,
- aseptic packaging systems: carton systems, can systems,
- bottle systems, sachet and pouch systems, cup systems

#### UNIT 3

#### Active and Smart packaging

- Definition
- Smart packaging systems
- intelligent packaging systems: Quality Indicators, Time-temperature indicators, gas concentration indicators, RFID;
- Safety and Regulatory issues

#### UNIT 4

#### Properties & selection of packaging materials

- Tensile strength, bursting strength, tearing resistance, puncture
- resistance, impact strength, tear strength,
- Barrier properties of packaging materials,,
- prediction of shelf life of foods,

#### **REFERENCE BOOKS:**

- Gordon L. Robertson, Food Packaging: Principles and Practice, Third Edition, 2013.
- Gordon L. Robertson, Food Packaging and Shelf Life: A Practical Guide, 2010.
- Ruben Hernandez, Susan E. MSelke, John Culter, John D. Culter, Plastics Packaging: Properties, Processing, Applications, and Regulations, 2000.
- Walter Soroka, Fundamentals of Packaging Technology-Fourth Edition,

#### 604 NEWS PAPER PUBLISHING

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### UNIT-1

#### Introduction to Newspaper organization

Newspaper Hierarchy - editorial organization, sources of news; mechanical aspects of newspaper organization-composition, printing the newspaper, basic operations, business aspects of newspaper organization, flowcharts of staff in newspaper organization, Circulation and Advertisement departments, distribution channels.

#### UNIT-II

**Policy of a newspaper**. Headlines. History and their significance. Functions of headlines, kickers, blurbs. Thegrammar of headlines. Unit count in headlines. Treating photographs; cropping. Captions for photographs. The aesthetics of design. Achieving symmetry/asymmetry, balance/off-balance, use of colour, placement of various elements in design. The written word and illustration. Principles of adapting content to form.

Attracting attention.

#### UNIT-III

#### Newspaper layout & designing

Difference between design and layout. The various kinds of layout. The importance of visual appeal in pagemaking. Playing up/down a story. Colour, boxing, verbal and non-verbal languages in design. Graphics/diagrams and illustrations and their importance.

Flow of stories into a newspaper office, The various sources and copy for each page. Reporters, correspondents, agencies, syndicates, columnists, readers. Fascimiles copy & photographs.

#### UNIT-IV

Editorial content and news. The OP-ED page. Thegatekeeping function.

Editorial Organization Newspaper PublishingSources of news wire services, syndicates The role of copy editors, city editors, news editors, editorialcartoonist, artists, Sunday editors, sports editor, business editor, journalist & reporters, Information to aprinter by editor.

**Recommended Books:** 

News Reporting and writing - Melvin Mecher

The Journalist; Handbook - M. V. Kamath

Editing; A Handbook for Journalists - TJS George

Editing; A Handbook for Journalists - TJS George, Indian Institute of Mass communication, Delhi.

Telling Stories, Taking Risks - Klement/Mataline

Journalism in India - R. Parthasarathy

Headlines and Deadlines - Baskette, Floyd

## 605 (A) SALES & ADVERTISING

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

## UNIT-I

Advertising as a tool of communication, Role of Advertising in marketing mix. Types of Advertising – Product advertising, Service advertising, Institutional Advertising, Public Relations advertising, Public Service Advertising, Financial Advertising Sales Management: Introduction, Sales Management, Sales organization, functions of sale department, duties of sales manager. The selling concept vs marketing concept. Sales forcasting, advertising, sale promotion, channels of distribution, product packaging.

### UNIT-II

**Market & Advertising Research** – Types / Scope of research, Market Research – Market surveys – Audience surveys Market segmentation Targeting, Advertising Research, Advertising evaluation, ADGMAR approach, Types of Advertising evaluation

#### UNIT-III

**Media & Product** Types of media, Media Vehicles, Functions, Audience surveys, TRP, NRS, ABC, Product research meaning & scope, Analyzing& Testing of products, Important of product research, Limits, Product Positioning

## **UNIT-IV**

**Construction of advertisement** Construction of effective advertising, Visualization, cope writing, Headlines, slogan, Types of copy, Requisites of an effective layout, Advertising agency structure, Responsibilities of personnel, Advertising Budget, methods of budgeting, Budgeting process.

## **Recommended Books:-**

Mass Communication Principal & Concept- SeemaHasan

Business Ethics Concepts & Cases - SadhriSorab.

Advertising Theory & Practice - Chunawalla, Kumar, Sethia, Subramanian, Suchak.

The Concept of Marketing-By Philip Kotler

Advertising and Promotion-By Belch & Belch

## 605(B)

#### **Research & Development**

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

#### Unit-I

**Introduction**:Introduction of Research& Development, types of R & D-Basic Research, Applied research, development. R&D in business,Innovation, New product development, Design ,Product design, R& D Decision- Proprietariness, Timing ,Risk ,Cost. Importance of R& D

#### Unit-II

**R&D Process:**Foster ideas, Focus ideas, Develop, Prototype and trials. Regulatory, Product development activities, Launch. An effective R& D Process, Advantages of R& D- Tax breaks, cost ,financing, recruitment,Patents. R&D challenges- High cost, Uncertain result, Market condition.

#### Unit-III

**R&D in the Printing Industry – Innovation in Printing**, Reducing the environmental impact of printing, Waste reduction of printing processes, Minimizing solvent use, Process and machine optimisation in offset and flexo printing, Quality evaluation and standardisation in digital printing, Packaging and label printing, Print finishing, Measurement and testing methods for controlling machine settings and the printing process, Functional coatings, Ink curing and migration

#### Unit IV

**R&D in Packaging Industry-**Packaging machinery research and development, especially paperboard forming, Converting of fibre-based packaging materials,Tool design and manufacturing, Sealing solutions for fibre-based packages, Package quality control development, Packaging material technology, Coating and dispersion barriers,Digital printing,Fibre engineering and technology,Nanothin functional coatings.

## 605(C)

## **PLANNING & COORDIANTION**

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

#### UNIT-I DECISION MAKIING

# TIME AND HUMAN RELATIONSHIPS IN DECISION MAKING, PROBLEM AND OPPORTUNITY FINDING **THE NATURE OF MANAGERIAL DECISION MAKING**

Programmed and Nonprogrammed Decision, Certainty, Risk, and Uncertainty.

## UNIT-II

### THE RATIONAL MODEL OF DECISION MAKING

Stage 1: investigate the Situation,Stage 2: Develop Alternatives , Stage 3:EvaluateAlternatives and Select the Best One Available , Stage 4: Implement and Monitor the Decision ,

#### UNIT-III

## PLANNING: AN OVERVIEW

### **THE IMPORTANCE OF PLANNING AT ORGANIZATIONS** The Hierarchy of Organization Plans

# HOW STRATEGIC AND OPERATIONAL PLANS DIFFER

The Strategic Management Process.

#### UNIT-IV

## THE CONTENT OF A CORPORATE STRATEGY

The corporate Portfolio Approach, "Five Forces" Corporate Strategy, Corporate Enterprise Strategy

## LEVELS OF STRATEGY:SOME KEY DISTINCTIONS

Corporate-Level Strategy ,Business-Unit Strategy ,Functional-Level Strategy

#### 606 COSTING AND ESTIMATING

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### UNIT-I

#### Printing Company Organization:

Printing management, principles, functions, Organizational criteria, Skills requirements, Types of business, Printing company management structures, Management team responsibilities, Business plan, Management styles, Management decisions, Communications, Print marketing and sales - marketing, sales.

#### UNIT-II

#### Human Resource Management Concepts:

HRM for printing, employment policy, evaluation of skills requirements for printing occupations, recruitment, job evaluation, staff appraisal, motivation training, human resources factors that limit productivity, staff flexibility. Manning and training requirements, States of industry, Analysis and development of human resources strategy. Management personal skills and development, job satisfaction through involvement.

#### UNIT-III

#### Estimating:

Purpose and functions of estimating from printer point of view & customers point of view. Difference between costing & estimating. Qualifications of an estimator, working environment, estimators tools, estimating paper - selection of paper, allowance for waste, allowance for trimming, weight of loose sheets, weight of a reel of paper. Estimating lnk - Ink consumption formula, Ink allowance for spoilage. Estimating binding materials - Board requirement, estimating covering materials, estimating sewing thread, estimating stitching wire, estimating adhesives. Terms and conditions-approved by AIFMD. Estimate Form and Computer Aided Estimating.

#### UNIT-IV

#### Costing:

Job costing, its need and procedures. Elements of cost and their method of recovery. Cost sheet. Daily Docket. Work Instruction Ticket and their importance in costing. Recommended Books : Principles of Accounting - B. S. Raman Fundamentals of Financial Management - Prasanna Chandra. Cost Accounting - B. R. Bhar Print Management - Derek Porter Printer's Costing & Estimating - B. D. Mendiratta Management Aspect of Printing Industry - T. A. Saifuddin. Estimating Methods and Cost Analysis for Printers - K. S. Venkataraman, K. S. Balaraman. Printing Estimating Principle & Practice - Philip Kent Ruggles Print Production Management - Gray G. Field Principles of Applied Costing for Printing Industry - K. S. Venkataraman.

## Special Paper

### **ENVIRONMENTAL STUDIES**

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions The students are required to attempt any five questions. All questions will carry equal marks.

#### Unit I :

The Multidisciplinary nature of environmental studies Definition, scope and importance. Need for public awareness.

## Unit II :

### Natural Resources

### Renewable and non-renewable resources :

Natural resources and associated problems.

- a) Forest resources : Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
- b) Water resources : Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- c) Mineral resources : Use and exploitation, environmental effects of extracting and mineral resources, case studies.
- d) Food resources : World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- e) Energy resources : Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- f) Land resources : Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
  - Role of an individual in conservation of natural resources.
  - Equitable use of resources for sustainable lifestyles.

## Unit III

#### Ecosystems

- Concept of an ecosystem.
- Structure and function of an ecosystem.
- Producers, consumers and decomposers.
- Energy flow in the ecosystem.
- Ecological succession.
- Food chains, food webs and ecological pyramids.
- Introduction, types, characteristic features, structure and function of the following ecosystem :
  - a) Forest ecosystem
  - b) Grassland ecosystem
  - c) Desert ecosystem
  - d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

## Biodiversity and its conservation

- Introduction Definition : genetic, species and ecosystem diversity.
- Biogeographical classification of India.
- Value of biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values.
- Biodiversity at global, National and local levels.
- India as a mega-diversity nation.
- Hot-spots of biodiversity.
- Threats to biodiversity : habitat loss, poaching of wildlife, man-wildlife conflicts.
- Endangered and endemic species of India.
- Conservation of biodiversity : in-situ and ex-situ conservation of biodiversity.

## **Unit 5 : Environmental Pollution**

Definition

- Causes, effects and control measures of :
  - a) Air pollution
  - b) Water pollution
  - c) Soil pollution
  - d) Marine pollution
  - e) Noise pollution
  - f) Thermal pollution
  - g) Nuclear hazards
- Solid waste Management : Causes, effects and control measures of urban and industrial wastes.
- Role of an individual in prevention of pollution.
- Pollution case studies.
- Disaster management : floods, earthquake, cyclone and landslides.

## Unit 6 : Social Issues and the Environment

- From Unsustainable to Sustainable development
- Urban problems related to energy
- Water conservation, rain water harvesting, watershed management
- Resettlement and rehabilitation of people; its problems and concerns. Case studies.
- Environmental ethics : Issues and possible solutions.
- Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies.
- Wasteland reclamation.
- Consumerism and waste products.
- Environment Protection Act.
- Air (Prevention and Control of Pollution) Act.
- Water (Prevention and Control of Pollution) Act
- Wildlife Protection Act
- Forest Conservation Act
- Issues involved in enforcement of environmental legislation
- Public awareness.

## Unit 7 : Human Population and the Environment

- Population growth, variation among nations
- Population explosion Family Welfare Programme
- Environment and human health.
- Human Rights.

- Value Education.
- HIV/AIDS
- Women and Child Welfare.
- Role of Information Technology in Environment and human health.
- Case Studies.

## Unit 8 : Field Work

- Visit to a local area to document environmental assets-river / forest / grassland / hill / mountain.
- Visit to a local polluted site Urban / Rural / Industrial / Agricultural.
- Study of common plants, insects, birds.
- Study of simple ecosystems pond, river, hill slopes, etc.

# 611 PRINTING SUBSTRATE LAB.

Total Credit: 1 Max. External: 45 Internal: 30 Time Allowed: 3 Hrs. Marks: 75

LIST OF EXPERIMENTS

- 1. Different samples of Papers and their study.
- 2. Light fastness test.
- 3. Machine Direction and Cross Direction of paper.
- 4. Effect of Humidity and Temperature on paper.
- 5. GSM Test.
- 6. Printed samples of different printing processes and their study.
- 7. Ink Viscosity Test.
- 8. Introduction to various chemicals used in printing.
- 9. Consumables and miscellaneous used in printing.
- 10. Study of different printing defects associated with paper

## 612 FOOD Packaging

Total Credit: 1 Max. External: 45 Internal: 30 Time Allowed: 3 Hrs. Marks: 75

LIST OF EXPERIMENTS

- 1. Identification of different types of packaging and packaging materials
- 2. Determination of tensile strength of given material
- 3. Determination of tearing strength of paper
- 4. Determination of bursting strength of packaging material
- 6. Determination of drop test of food package
- 7. Visit to relevant industries

8 Introducing the students with the latest trends in packaging consulting the web sites and magzines

## 613 NEWS PAPER PUBLISHING -LAB

Total Credit: 1 Max. External: 45 Internal: 30 Time Allowed: 3 Hrs. Marks: 75

## LIST OF EXPERIMENTS

1. Introduction to type of Web Presses as per the configuration & end products.

2. Study of various units & their setting.

3. Study of pre-make ready & makeready operations.

4. Printing single & multicolour jobs.

5. Introduction to Digital Web presses & their working.

## 614 SECURITY AND STATIOARY PRINTING LAB

- Total Credit: 1 Max. External: 45
   2. Internal: 30
   3. Time Allowed: 3 Hrs.
   4. Marks: 75
- 5. Design of fan fold forms computer letter & mailers
- 6. Design of computer envelops and snap-out-forms
- 7. Various types of web offset printing
- 8. Processes use for packaging and dispatch
- 9. Study of collators
- 10. Dot loss and dot gain in film imaging
- 11. Plate making
- 12. Colour sequence for security printing

## SCHEME OF STUDIES & EXAMINATIONS 7th semester w.e.f. 2019-20 in phased manner B. Tech. (Printing, Graphic & Packaging) – 2020-21

| Subje      | Su                        | subject                                                 | Teaching |    |                    | Cre  | Allotments of Marks |                   |               |       | Duration             |
|------------|---------------------------|---------------------------------------------------------|----------|----|--------------------|------|---------------------|-------------------|---------------|-------|----------------------|
| ct<br>Code | bj<br>ec<br>t<br>ar<br>ea | Title                                                   | Schedule |    |                    | dits | Maj<br>or<br>Test   | Min<br>or<br>Test | Pract<br>ical | Total | of<br>Exams(Hrs<br>) |
|            |                           |                                                         | L        | TP | Hour<br>s/We<br>ek |      |                     |                   |               |       |                      |
| PGP<br>701 | H<br>C                    | MANAGEME<br>NT<br>PROCESS                               | 4        | 0  | 4                  | 4    | 60                  | 40                |               | 100   | 3                    |
| PGP<br>702 | PC                        | PRINTING<br>PLANT<br>LAYOUT                             | 4        | 0  | 4                  | 4    | 60                  | 40                |               | 100   | 3                    |
| PGP<br>703 | PC                        | GRAVURE<br>TECHNOLOG<br>Y                               | 3        | 0  | 3                  | 3    | 60                  | 40                |               | 100   | 3                    |
| PGP<br>704 | PC                        | Printing<br>INK<br>Technolog<br>Y                       | 4        | 0  | 4                  | 4    | 60                  | 40                |               | 100   | 3                    |
| PGP<br>705 | PC                        | PRINT<br>FINISHING                                      | 3        | 0  | 3                  | 3    | 60                  | 40                |               | 100   | 3                    |
| PGP<br>706 | PC                        | QUALITY<br>CONTROL IN<br>PRINTING &<br>PACKAGING<br>LAB | 3        | 0  | 3                  | 3    | 60                  | 40                |               | 100   | 3                    |
| PGP<br>711 | PC                        | GRAVURE<br>TECHNOLOG<br>Y<br>LAB                        |          | 2  | 2                  | 1    |                     | 30                | 45            | 75    | 3                    |
| PGP<br>712 | PC                        | PRINTING<br>INK<br>TECHNOLOG<br>Y<br>LAB                |          | 2  | 2                  | 1    |                     | 30                | 45            | 75    | 3                    |
| PGP<br>713 | PC                        | PRINT<br>FINISHING<br>LAB                               |          | 2  | 2                  | 1    |                     | 30                | 45            | 75    | 3                    |
| PGP<br>714 | PC                        | QUALITY<br>CONTROL IN<br>PRINTING &<br>PACKAGING<br>LAB |          | 2  | 2                  | 1    |                     | 30                | 45            | 75    | 3                    |
| PGP<br>770 | PC                        | MINOR<br>PROJECT                                        |          |    | 2                  | 1    |                     | -                 | -             | 50    | 3                    |
|            |                           | Total                                                   |          |    |                    | 26   | 360                 | 360               |               | 950   |                      |

## 701 MANAGEMENT PROCESS

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### UNIT-I

Business Environment – Printing Industry in India & Abroad. Impact of globalization & IT. Management – Nature scope and importance of Management, Functions of Management – Scientific, Management, CPM & PERT (Introduction)

### UNIT-II

Production and operations Management – Locations and Layout of plant, Maintenance management. Quality assurance, Total quality management (TQM), ISO. Marketing management – Marketing and its functions, distribution channels, salesmanship

# UNIT-III

Human resource management: Manpower planning – recruitment, selection, Training performance appraisal Wage and salary administration.

Financial Management, Nature, Scope objectives and functions of Financial Management.

#### UNIT-IV

Work flow and organizational structure in a printing press.

Cost Accounting: Cost concept, cost sheet, B.E.P.analysis, cost reduction and cost control. Depreciation – Introduction to different methodes and their comparison.

#### **Recommended Books :-**

and advertising.

- 1. T.A. Saifuddin Management aspects of printing industry by NirmalSadanadn Publishers, Mumbai, Ist edition.
- 2. G.G. Field- Printing Production Management by Graphic Arts Publishing, 1996.
- 3. Balaraman PMCA by Ramaya Features & publications, 1987.
- 4. Mendiratta B.D. Estimating & Costing by Print Trade Publications, 1999-2000.
- 5. Ruggles Printing Estimating Principles and Practices by Delmer Publication 1985.
  - (a.) Maintenance Engineering Handbook
  - (b.) Lindley R. Higging, McGraw Hill International Edition.
  - (c.) Operator's Manually by GATF.
- 6. R.D. Aggarwal-Organisation and Management-Tata McGraw Hill Publishing Ltd., New Delhi

702 PRINTING PLANT LAYOUT

> Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### UNIT-I

### Site Selection:

Strategic issues of location. The supply-distribution system, Dynamic nature of plant location, strategyfactors influencing choice of location. State regulations on location. Backward areas and Industrial policy. Govt. Policies fordecentralization, Industrial estates, comparison of locations-urban v/s rural areas advantages, sub-urban area. Economic survey of site selection. Analytical approach.

#### UNIT-II

### Plant Layout:

Objectives of good plant layout, principles of plant layout, importance of plant layout, situations in which layout problem may arise, factors influencing plant layout, Methods of plant and factory layout-operation process chart, flow processchart, flow diagrams, string diagrams, machine data cards, templates three dimensional models, correlation chart, travel chart, load path matrix method. Types of plant layout –product layout or live layout – process layout or functional layoutcombination layout – static layout or fixed position layout. Symptoms of bad layout. flow pattern-line flow, L type flow, circular flow, U type flow, S or inverted S combination of U and line flow pattern. Characteristics and place of application

#### UNIT-III

#### Factors governing flow patterns:

Combination of line flow and S type of pattern. Combination of line flow and circular type. Processing upwards. Retration type, Inclined flow. Workstation design-Storage Space requirements. **Plant layout procedure:** 

Accumulate basic data, Analysis and coordinate basic data, decide the equipment and machinery required, Select the material handling system, sketch plan of the plot for making factory building. Determine a general flow pattern, Design the individual workstation. Assemble the individual layout into the total layout calculate storage space required, Make flow diagrams In work stations and allocate them to areas on plot plan, Plan and locate service areas, make master layout. Check final layout, Get official approval of the final layout, install the approved layout.

#### UNIT-IV

## Factory Building (Press Building):

Introduction, Advantages of a good factory building, Factors affecting the factory building – nature of manufacturing process, flexibility, expandability, service facilities, employee facilities, lighting, heating, ventilating, air conditioning, appearancedurable construction-security measures-noise control. Types of factory building – single story building, high bay and monitor type buildings, multi storey buildings, building of special types. Comparison between single storey and multistory building. Types of construction of factory building Wood frame construction, Brick construction, Slow burning mill construction, Steel

frame construction, Reinforced concrete construction, Precast concrete construction. Specific parts of factory buildingroof, walls, floor.

## Plant layout-An analytical approach:

Heuristic and other methods of line balancing. Planer single facility location problems. Minisum examples, insights for minisum problem, minisum location problem with distance. MLP with Euclidean distance.

## **Recommended Books :**

Facility layout and location-Richard L.Francis, John A. White. Computer Aided Production Management – Mahapatra

Production and Operations Management - Mchelmann Oakland, Lockyer

Practical Plant Layout – HeroldB.Maynard

Industrial Engineering Management System- Dr. S. Dalela, Dr. Mansoor Ali

Industrial Engineering & Management – O. P. Khanna

Industrial Engineering and Production Management-M. Mahajan.

Materials handling for Printer – A. John Geis, Paul L. Addy.

## 703 GRAVURE TECHNOLOGY

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

## UNIT-I

## Gravure:

History of gravure, Gravure products and markets – Publication gravure – gravure packaging and converting – product gravure. Gravure Screens. Gravure cylinder preparation – Diffusion etch – Direct Transfer-Electromechanical process – Laser cutting. Electronic engraving systems today. Chemical engraving methods and equipments – cell configurations-advantages and disadvantages. Cylinder correction methods – Re-etching electro mechanical engravings, Colour balance etches, spot plating. Well formation – variables, basic types. Cylinder construction and preparation – Cylinder design, types. Balancing the cylinder. Copper plating and polishing, Reuse of cylinders.

#### UNIT-II

#### GravureDoctor blade assembly –

Blade angles. Blade distance from Nip, Blade edge, Blade mounting. Doctor Blade wear – Fatigue, Corrosion, Abrasive, Adhesive wear, Doctor blade materials, Doctor blade Holder configurations, Blade setting procedures, Preparing blade for use, Doctor blade problems. Gravure Impression Roller – function, Roller covering, Roller pressure, Cylinder diameter, Roller design & configuration. Balance-static & Dynamic. Roller setting. New developments. Storage of impression rollers. Impression rollers. Impression mechanismsmechanical, Hydraulic, Pneumatic.

#### UNIT-III

## Gravure Press and Its components:

A generic printing unit.Sleeve&solid cylinder,single and two revolution ,sheet fed and web fed machines, Typical press configurations.Gravure publication press-characteristics. Packaging Gravure Press – Folding carton Press. Flexible Packaging press, Label press. Product gravure. Other gravure press – Intaglio plate printing, offset gravure and flexogravure. Gravure with flexo units. Gravure units as other equipment. Gravure roller coating. Gravure folders – types. Gravure Ink Dryers – Need for ink dryers,Drying water based inks, Dryers functioning,Dryer limitations, supply air valves, balancing the dryer, filters & dampers, roller condition vital. Heat Sources – steam, electric and gas, combination gas/oil, thermic oil, waste heat form incinerators. Solvent Recovery Methods. Gravure cylinder preparation- basic construction, surface finishing, sleeve and integral shafting of cylinder, Electo-mechanical, electron beam & Laser engraving.

#### UNIT-IV

#### Gravure Substrates:

Paper substrates-Rotonews papers, Coated papers, Gravure packaging paper substrates – properties. Label stock, Paper board. Non Paper substrates – surface preparation, plastics-properties. Metalized films – Aluminium foil, Foil laminations. Gravure advantages, limitations. Future of Gravure Printing Industry.

#### **Recommended Books :**

Gravure process and technology – GAA. Printing Technology – Adams, Faux, Rieber.

## 704 PRINTING INK TECHNOLOGY

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

## UNIT-I

### Printing Inks

Solvent Based Inks, Water Based Ink, Ingredients in Ink- pigments Vehicles, Additives . Drying mechanisms – physical drying mechanisms, absorption drying, evaporation drying, chemical drying systems, oxidation polymerization drying, radiation drying and curing, microwave drying, infrared drying. Viscosity – Newtonian flow, units of viscosity, viscosity & temperature, factors influencing viscosity, simple low viscosity inks, complex high viscosity inks. Ink requirements for printing processes – offset, letterpress, flexography, gravure, screen printing. Optical properties of ink films, rheology and ink transfer requirements, ink distribution and transfer on the press, method for the direct measurement of ink setting on coated paper.

#### UNIT-II

### Printing Ink manufacturing machines & equipments

Paste inks – single roll mill, twin roll mill, triple roll mill, ball mill, twin horizontal mixer, uni-roll mill, high speed stirrer milling. Liquid inks – ball mill, pearl mill, sand mill, bead mill, shot mill. Trends and developments in ink manufacturing process. UNIT-III

## **Radiation curing**

Introduction, radiation curing inks, ink cure considerations, chemistry of uv curing-photo initiation, propagation, termination. Cationic curing, electron beam curing UNIT-IV

## Security Inks

Range of security inks, Special Security Features – fluorescence, phosphorescence, reflected by improved filters, magnetism, Different types of security printing inks. Application of security printing inks. Security inks conformity tests and Q.C.tests – tests for chemical resistance, light fastness, rub resistance test, crumpling resistance test, grinding control, colour control, control of the rheological properties, control of drying time, control of various specific properties. Environmental considerations in security printing.

## **Recommended Books :-**

Printing materials science & technology – Bob Thompson-PIRA Advances in printing science & technology Vol.24 – J. Anthony Bristow Hand book of Print & Production – Micheal Barnard, John Peacock Introduction to Printing Technology – Hugh M.Speirs. SIGPA – 1987

## 705 PRINT FINISHING

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### UNIT-I

### Introduction:

Latest Developments in Print Finishing. Organization and Workshop Layout. Growths Factors in Print Finishing. Book Binding Tools & Equipments, Book Binders Materials & Quality Control.. Kinds of Paper and Boards. Reinforcing Materials. Securing Materials, Covering Materials, Adhesives and Types of Adhesives in Print Finishing, Solvent Based Adhesives, Water Based Adhesives, Pressure Sensitive Adhesives.Adhesion- Physical, Specific. Miscellaneous Material.

#### UNIT-II

### Structure Of A Book:

Physical Parts of a Hard Bound Book.Forwarding Operations, Finishing Operations. Planning Imposition, Folding Schemes. Hand Folding- Folding To Paper, Folding To Print, Lump Folding, Puckering, Advantages & Limitations Of Hand Folding. Machine Folding – Knife Principles, Buckle Principle, Combination of Knife & Buckle. Folding & Machine Direction. Advancements & Developments On Folding Machine, Folding Machine Paper Feeders. Gathering, Collating – Collating Marks,Insetting and Inserting.

#### UNIT-III

#### Securing Methods:

Kinds of Stitching and SewingAdhesive Binding/Perfect Binding – Advantages. Quality Control in Adhesive Binding. Lay-Flat Adhesive Binding. Mechanical Binding – Loose Leaf Binding – Traditional Styles Used. Spiral Binding. Wire 'O' Binding, Plastic Comb Binding. Case Binding. –Stages in Case. Ring Binding – Inter Screw, Ring Metal – Types, Loose Leaf Ring Binding. Ring Shapes. Burst Binding, On Demand Booklet Binding.

#### End Papers:

Purposes, Kinds of end Rapers, Quality of Paper Required for Pasting End Papers. Pressing, Gluing The Spine, Smashing the Spine, trimming the Book Edges, Rounding, Backing, Lining – Advantages. Head-Tail Bands, Caps, Book Marker. Method Of Attaching Head & Tail Bands. Covering – Covering Styles. Pasting Down, Pressing,

## UNIT-IV

#### Finishing Processes:

Cover Decoration & other Processes. Print Finishing Operations – Embossing &Debossing, Blind Embossing, Gold Blocking /Foil Stamping. Die Printing. Thermography, Velvet Printing, Marbling, Varnishing, Graining, Laminating, Gumming, Gluing, Punching, Perforating, Drilling. Label Puching, Appliqué. Edge Decoration – Requirement, Colouring The Edges, Marbling Edges, Edge Guilding. Round Corner Cutting.

## Numbering

Folio Numbering, Double Numbering, Duplicate Numbering. Principle of Rotary Numbering. Skip Numbering, Automatic Numbering.

Kindes of Indexes. Ruling – Principle of Pen & Disk Ruling, M.C. Ruling Terms. Banding & Lacing, Poly Bagging, Mailing, Creasing, Bundling, Tacketing. Ultra Violet Curing &Infra Red Curing. **Binding & Finishing Machines:** 

## 10(916)

Study of Various Modern Machines. Modern Guillotines – Single Knife Guillotines. Three Knife Trimmers. Knife Grinding M/C. Gold Blocking/Foil Stamping M/C. Wire Stitching M/C. Straw Board Cutter. Laminating M/C – Small Laminating M/C. Pouch Laminating M/C. Tunnel Laminating M/C. Tipping M/C. Smashing M/C. Back Gluing M/C. Roller Gliding M/C. Inline Rounding M/C. Lining M/C. Modern Lining M/C. Cloth Cutting M/C. Foil Blocking M/C. Rotary Blocking M/ C. Casing In M/C. Case Making M/C. Box Waste Disposal Process. Adhesive binding machine.

## **Recommended Books :-**

Binding And Finishing – Ralph Lyman Binding And Finishing Part-1 – B.D.Mendiratta Binding Finishing Mailing – T.J.Tedesco Introduction to Printing & Finishing – Hugh Speirs Finishing Process in Printing – A.G.Martin. 706

#### **QUALITY CONTROL IN PRINTING AND PACKAGING**

Total Credit: 4 Max. External: 60 Internal: 40 Time Allowed: 3 Hrs. Marks: 100

**Note:** The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

#### UNIT-I

#### Introduction

Definition of Quality, Quality control, its meaning and purpose setting up a Quality Control Programme, and establishing necessary System and procedures, economic consideration.

#### UNIT-II

#### Management Consideration

Quality Control as an attitude and management tool, management's responsibility, organization and personnel functions, getting everybody involved. Total Quality Control. Quality Control procedures and methods. Different shapes of quality control.

## UNIT-III

#### Materials Control

Establishing clear specifications and standardization of materials to be purchased – particularly paper, ink, plates, blankets and rollers, Inspection and testing of incoming materials as part of quality control; importance of proper handling and maintaining records of performance of materials Sampling and sampling plans.

Establishing Quality control programme in different departments of Printing organization.

#### UNIT-IV

#### **Quality Control Instrumentation**

Paper and paper board testing instruments for testing printability, print quality and end-use requirements, lnk testing instruments for testing optical and working properties and end-use requirements Process control instruments, devices and aids used in the galley and dark-room, striping department, plate room and press room for specific processes and for general purposes Press sheet control devices used for production of multicolor printing jobs Basic principles of these instruments and devices how they function and what they measure, minimum instrumentation necessary to produce a product consistent with the appropriate quality level.

#### c. Introduction to ISO:9000 and ISO:14000 series.

## Recommended Books:

- 1. W.H. Banks, Inks, Plates and Print Quality, Pergamon Press
- 2. Quality Control for quality printing, Graphic Arts, Technical Foundations.

## 711 GRAVURE TECHNOLOGY LAB.

Total Credit: 1 Max. External: 45 Internal: 30 Time Allowed: 3 Hrs. Marks: 75

## LIST OF EXPERIMENTS

- 1. Study of various Gravure printing machine configurations.
- 2. Study of various components of a Gravure printing machine.
- 3. Pre-make ready in Gravure Printing Process.
- 4. Plate preparation/ Cylinder preparation.
- 5. Make-ready in Gravure Printing Process.
- 6. Study of feeding unit of a Sheet-fed/ Web-fed Gravure printing machine.
- 7. Single and Multi colour printing by using Grauvre Printing Process.
- 8. Printing on different substrates by using Grauvre Printing Process.
- 9. Study of delivery unit of a Sheet-fed/ Web-fed Gravure printing machine.
- 10. Cylinder setting in a Gravure printing machine.
- 11. Check the practical problems in a Gravure printing process.

## 712 PRINTING INK TECHNOLOGY LAB

Total Credit: 1 Max. External: 45 Internal: 30 Time Allowed: 3 Hrs. Marks: 75

#### LIST OF EXPERIMENTS

- 1. Printed samples of different printing processes and their study.
- 2. Different samples of Inks and their study.
- 3. Study of various component of ink.
- 4. Effect of Humidity and Temperature on INK.
- 5. Ink tackiness Test.
- 6. Light fastness test.
- 7. Ink Viscosity Test.
- 8. 8Introduction to various chemicals used in printing.
- 9. Consumables and miscellaneous used in printing.

## 713 PRINT FINISHING LAB

Total Credit: 1 Max. External: 45 Internal: 30 Time Allowed: 3 Hrs. Marks: 75

## LIST OF EXPERIMENTS

## I. Preparation of the following types of books.

- 1. Quarter bound a/c books,Half bound a/c books,Full bound a/c books by French sewing method, Tape sewing method, Cord sewing method, Saddle sewing method, Side sewing method, Whip sewing method..
- 2. Preparation of Receipt books with numbers in duplicate & triplicate.
- 3. Preparation of Cheque books with 25 leaves.
- 4. Preparation of following type of Mechanical binding Spiral wire binding, Wire 'O' binding, Ring binding.
- Preparation of files of following designs Loose leaf file single piece, Loose leaf file – Two piece tab binder, Loose leaf guard file – Boards joined with spine strip, Court case file, Portfolio – Closed file to keep confidential loose sheets.
- 6 Preparation of these types of End papers Single End paper, Double or Inserted End paper, Made end paper, Cloth joint end paper, ZigZag end paper, Cloth joint ZigZag end paper.
- 7. Preparation of telephone directory with Indexes and Tabs.
- 8. Study of various controls, operations and mechanisms of the following machines: Folding machine, Guillotine machine, Cutter and Creaser, Varnishing machine, Laminating machine, Sewing & Stitching machine, Miscellaneous machine.

714

# QUALITY CONTROL IN PRINTING AND PACKAGING LAB.

Total Credit: 1 Max. External: 45 Internal: 30 Time Allowed: 3 Hrs. Marks: 75

## LIST OF EXPERIMENTS

- 1. Paper testing checking grain direction.
- 2. Tensile strength of paper, burst strength of paper.
- 3. Substance, caliper, porosity test, cob sizing value test.
- 4. Tearing testing of paper, brightness test of paper.
- 5. Operating test, gloss test, lighting color filter sensor.
- 6. G.S.M. testing, folding endurance.
- 7. Moisture contents test, ash contents test.
- 8. Hot air oven tester, absorbing test.
- 9. Pick strength, humidity control test, room temp testing.
- 10. Ink film thickness test.
- 11. Investigation of pigment properties.
- 12. Investigation of solvent properties.
- 13. Measurement of viscosity, tack measurement.
- 14. Test a printed sheet proof printing and measurement of colour using spectro photometer, resistancetesting of prints.
- 15. Measurement of ink film thickness.