c		_
(
1	7	2

Roll No. OMR Sheet No.

Ph.D.-2005 CHEMISTRY ENTRANCE TEST, MARCH 2020

Time: 2 Hours

Maximum Marks: 200

Number of Pages in this Booklet: 20

Number of Questions in this Booklet: 100

INSTRUCTIONS FOR THE CANDIDATES

- (i) Check this booklet carefully for the sequence of pages and questions. If it is defective due to pages/questions missing or not in serial order or any other discrepancy it should be got replaced immediately from the invigilator within the period of 5 minutes. Afterwards neither the Question Booklet will be replaced nor any extra time will be given.
- (ii) After this verification write your Roll No. and OMR Sheet Number on this Question Booklet.
- (iii) <u>Use only Black or Blue ball point pen.</u>
- (iv) This paper consists of <u>100</u> multiple choice type questions. Each question has four alternative answers (a), (b), (c) and (d). <u>Only one of these alternative answer is correct</u>. You are required to darken completely the circle of correct answer in the OMR Sheet.
- (v) There is no negative marking.
- (vi) Do not write anything other than relevant entries or put any mark on any part of the OMR Sheet, which may disclose your identity, otherwise you will render yourself liable to disqualification.
- (vii) Use of electronic gadgets such as pager, cell phone, calculator and log table etc. is prohibited.
- (viii) Rough Work may be done in the end of this booklet.
- (ix) You have to <u>return the OMR Sheet</u> to the invigilator at the end of the examination compulsorily.

Ph.D.-2005 / 100 / KD / 41

[P.T.O.

41 / 1

N

The correct relationship between $^{\circ}m$ and $^{\circ}eq$, of $Al_2(SO_4)_3$ solution is

(a)
$$\wedge^{\circ}_{m} = 6 \times \wedge^{\circ}_{eq}$$

<u>ල</u>

(b)
$$^{\circ}_{m} = \frac{^{\wedge} ^{\circ}_{oq}}{3}$$
 (d) $^{\circ}_{m} = 3 \times ^{\circ}_{oq}.$

(a) Fe³⁺/Fe

Which is reduced most easily electrochemically?

(c) Fe²⁺/Fe

(b) Fe³⁺/Fe²⁺ (d) None is reduced.

Cell constant is determined by using which standard solution?

(a) NaCl

(c) HCI

(KCI. (b) Na₂SO₄

Which is correct for galvanic cell?

(a) $E_{cell}^{\circ} = E_{red}^{\circ}$ (cathode) $-E_{red}^{\circ}$ (anode)

 $E^{\circ}_{cell} = E^{\circ}_{ox}(anode) + E^{\circ}_{red}(cathode)$

 $E^{\circ}_{cell} = E^{\circ}_{ox}(anode) - E^{\circ}_{ox}(cathode)$

<u>ଚ</u> 3

All the above.

In concentration cells which is correct

(a) $E_{cell}^{\circ} = E_{cell}$

<u></u>

 $E^{\circ}_{cell} = 0$

<u>a</u> ट $E_{call} = 0$ None of these.

9 Oxidation state of chlorine in CaOCl2 is

(a) Zero

(d) +1 and -1.

±

Ph.D.-2005 / 100 / KD / 41

3

41/3 P.T.O.

Ph.D2005/100/KD/41 (4)	 13. The section of CPU that selects, interprets and sees to the execution of program instructions is (a) Control unit (b) Register unit (c) ALU (d) Memory. 	 12. Computer program that converts assembly language to machine language is (a) Compiler (b) Assembler (c) Interpretor (d) Comparator. 	(a) ALU (b) Memory (c) CPU (d) Control unit.	(c) 6.9 (d) cannot be predicted.	10. pH of 10-8 N HCl is (b) (c) (d) (d) (d) (d) (d) (d) (d)	 9. pH of 0.1 N NH₄Cl solution (pK_b = 4.74) is (a) 4.13 (b) 5.13 (c) 6.13 	 8. Calomel electrode contains which compound? (a) Mercuric nitrate (b) Mercuric chloride (c) Mercurous chloride (d) None of these. 	 7. At half neutralization which is correct (a) pH = pK_a (b) pH = pK_a +1 (c) pH = pK_a ±1 (d) None of these.
Ph.D2005 / 100 / KD / 41 (5) P.T.O. 41 / 4	19. The most commonly used nuclide material for generation of γ -rays in Mossbauer spectroscopy is (a) Fe ⁵⁷ (b) C ¹² (c) U ²³⁵ (d) None of these.	(c) (a)	weeds then arrows at guitar yet associated at the outer solutions and an abyeighteened . δ 18. Chemical shift (δ) of H NMR in Benzene is at the outer solutions as quickers the life.	(a) 1 (c) 1 (c) (d) 2 (e) 2 (e) 3 (e) 4 (e	(c) Chi-Square-test (d) None of these. 17. In the Ilkovic Equation, Diffusion coefficient, D ² ; x is equal to	ers to	15. Computer Program consists of (a) System flow chart (b) Program flow chart (c) Discrete logical steps (d) Algorithms written in Computer's Language.	14. A modern digital computer has (a) Extremely high speed (b) Large Memory (c) Almost unlimited array (d) All the above.

20. In HPLC which of the following is generally used	
(a) N ₂ (b) O ₂ (c) He (d) None of these.	(p)
	(c) UV-Visible radiations (d) A-rays.
21. TGA technique refers to	27. Optical density or Absorbance is quual to
(a) Pressure and Volume (b) Pressure and Weight loss	
(c) Temperature and Weight loss (d) None of these.	(a) $\frac{T_t}{I_0}$
sges that a takegors have about a polyment of the second to tell about the tell and the second of th	(c) $\log \frac{I_t}{I}$ (d) $\log \frac{I_c}{I}$
22. In the application of DTA and DSC which of the following parameters is measured for the	*60.0 - (4)
glasses	
(a) Transition Temperature (b) Concentration of the glass	28. Flame photometry can be used for the analysis of
	(a) Na ⁺ (b) K ⁺ (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d
The state of the s	(c) Ca^{2+} (d) All of these.
23. While taking IR spectrum of a compound nujol is used, the absorption bands (in cm ⁻¹) of nujol mainly occurs around	29. In conductometric titrations of acetic acid versus sodium hydroxide, the conductance
(a) 4000, 400 (b) 3000, 1400	(when sodium hydroxide is added from Burette)
(c) 2000, 1800 (d) 1200, 1800.	(a) Decreases first and then becomes constant
	(b) Decreases first and then increases
24. Benzaldehyde and Acetophenone can be distinguished by using IR spectra, both show	(c) Increases first and then decreases
X=0 streeting assorption around 1/00 cm., but benzaidenyde snows C-H stretching absorption around	(d) None of the above
	30. Which has Minimum molar conductivity
(c) 2800 cm ⁻¹ (d) None of these.	(a) $Mg[Cr(NH_3)(NO_2)_5]$ (b)
25. In mass spectrometer which energy source is used	(c) $K[Co(NH_3)_2(NO_2)_4]$ (d) $[Cr(NH_3)_3(NO_2)_3]$.
(a) X-rays (b) UV radiations	
(c) Microwaves (d) Electron Bombardment.	(b)
Pn.D-2005/100/KD/41 (6)	Ph.D2005/100/KD/41

5		41 (10)	Ph.D2005 / 100 / KD / 41	Ph.D2
(c)) UV-visible.	(b)	Mossbauer	(c)
(a)) ESR ON A SERVICE OF THE SERVICE OF	(b)		(a)
	y: He syllon was a long	D ₂ O Exchange is used in which spectroscopy:	O Exchange is i	30. D
56. The				
(c)	d) None of these.	(d)	$\frac{1}{2\pi}\sqrt{\frac{k}{\mu}}$	(c)
(a)	(b) $\overline{2}\sqrt{\mu}$	(6	۽ آ	(a)
55. For				a a
	In IR spectroscopy the fundamental vibration frequency (v) is given by:	the fundamental vibration	IR spectroscopy	49. Ir
(c)				
(a)	(d) None of these.	Ion exchange chromatography ((c)
54. AG	(b) GC		(a) HPLC	•
		Donnan membrane is concerned with:	onnan membran	48. I
3				
D (The second state of the second	above.	(d) None of the above.	0
	the other	One of the liquids is Immiscible with the other	(c) One of the I	•
53. Whi		Both liquids are Miscible	(b) Both liquids	
		Emulsion formation takes place	(a) Emulsion fo	_
(c) (£	efficiently when:	Solvent Extraction technique is applicable efficiently when:	Solvent Extractio	47.
52. Bas	(d) 10.1.		(c) 31.4	
	(b) 54.1			
(c)	In gas chromatography, during separation of mixture of Benzene, toluene and xylene, the areas under the peak were noted to be 31.0, 14.5 and 53.2 cm respectively. The % composition of Benzene will be:	graphy, during separation overe noted to be 31.0, 14.4	In gas chromatogr under the peak wa Benzene will be:	. \$
(ъ)			•	
(a)	(d) None of these.	m - 124 to 18	(c) 170-190 nm	
51. In	(b) 120–140 nm	m = 3.24	(a) 100-120 nm	
	In unconjugated alkene the lowest energy transition of $\pi \to \pi^*$ occurs in	alkene the lowest energy	In unconjugated	45.

PART-II

51.
In the t
hermodyn
amic literature which is con
which i
s correct
statement?

- Diamond is more stable than Graphite
- Graphite is more stable than Diamond
- Both have same stability
- None of the above.
- ic hydrolysis of Ester is:
- Zero order reaction
- (b) First order reaction
- Second order reaction
- (d) None of these.
- ich is correct statement for Activation Energy?
- It is always positive
- (b) It can be zero
- It can be negative
- (d) All are correct.
- for the process of Rusting of Iron is nearly equal to
- -76 kJ/mole

- (b) -161 kJ/mole
- -322 kJ/mole
- (d) None of these.
- boric acid, H₃BO₃, in water, which is correct?
- It can accept H+

It accepts OH-

(b) It can donate H+

(d) None of these.

- mobility of Na⁺ ion is 7.623×10^{-8} m² V⁻¹ s⁻¹, the ionic conductivity of Na⁺ ion is :
- $7.623 \times 10^{-4} \text{ ohm}^{-1} \text{m}^2 \text{eq}^{-1}$ 3 7.623×10⁻⁸ ohm⁻¹m²cq⁻¹
- 53.55×10⁻⁴ohm⁻¹m²eq⁻¹ <u>a</u>
- Ξ 73.55×10^{-4} ohm $^{-1}$ m 2 eq $^{-1}$.

Ph.D.-2005 / 100 / KD / 41

(10)

77	
1	
'n.D	
1	
10	
0	
\simeq	
\sim	
C7	
-	
-	
\simeq	
0	
100/KD/4	
_	
0	
-	16
+	
-	100
	34
	1
	1.00
	port.
	- 590
	2435
(12)	
-	
20	
10	
1	
	** (A)
	80
land.	
10.00	
	1000
	-
Carried Contract	77.5
4000	

63. For first order reaction a graph is drawn between log k and $\frac{1}{T}$, the value of tan $\theta = \frac{1}{2.303}$ then value of E_a in calories will be equal to:

*5*7.

a

It is Ferromagnetic substance

9

It is Diamagnetic substance

(d) It is Antiferromagnetic substance.

It is Ferrimagnetic substance

Which is correct for MnO

- (a) 2.303×2
- Э 2.303 2

<u>ල</u>

 $t_{1/2} = \frac{A_0}{2}$

<u>a</u>

 $t_{1/2} = \frac{A_0}{2K}.$

a

58.

Which is correct for half Life period for zero order reaction?

- 9 $t_{1/2} = \frac{K}{2A_0}$
- 59. pH of 0.1 N KCl solution will be nearly equal to:
- **a**

<u>ල</u>

- € 13
- **a** First order phase transition 9

The transition from one liquid form to another liquid form in Helium is called:

8

- (d) zero.
- Third order phase transition Second order phase transition
- (d) None of these.

- 61. component will be nearly equal to: of 1.5 (The conc. of all other components are held constant), the order of reaction w.r.t. this Rate of reaction doubles when concentration of one of the components increased by a factor
- (a) 1.5

3 1.2

1.7

- <u>a</u> 1.9.
- 62. The factor by which a reaction speeds up if the temperature changes from 500°C to 600°C
- (a)
- 3 210
- and its E_a is 300 kJ/mole, will be nearly equal to:
- 1024

- 9 512

- <u>a</u> 310.

ত $B_3N_3H_6$

Scanned by CamScanner

- **a**
- 2 In presence of catalyst, E_a is lowered by 2 kcal at 27°C so rate will be increased nearly:
- **a** 20 times

(b) 14 times

<u>ල</u> 2 times

- <u>a</u> 28 times
- 65. $k = Ae^{-E_a/RT}$, k has smallest value under conditions of
- (a) High Temp. and Large E_a
- (b) High Temp. and Small E_a
- ত Low Temp. and Large E_a
- <u>a</u> Low Temp. and Small E_a
- 8 PCl₅ in the solid state exists as:
- Individual PCl₅ molecules

(a)

- ි ල Mixture of PCl3 and Cl2
- <u>ⓒ</u> Mixture of PCI₄⁺ and PCI₆⁻
- **(a)** Mixture of PCI4- and PCI6+
- 67. In which Bond Angle is maximum:
- (a) Br_2O

<u>o</u>

 OF_2

- (b) CI₂O
- (d) H₂O.
- 68. Inorganic Benzene (Borazine) has molecular formula:
- (a) $C_6H_6N_6$

- B6N3H6
- (d) None of these. **(b)**
- (13)

Ph.D.-2005 / 100 / KD / 41

		73.				72.			71.				70.			<u>.</u>
(c) $d_{x^2-y^2}$	(a) d_{z^2}	In square Pyramid compound having dsp3 hybridization, 'd-orbital involved is		(c) 2	(a) 3	In Sulfur trioxide, S_3O_9 , each sulfur is surrounded by how many oxygen atoms:	(c) Chlorophyll	(a) Vitamin B ₁₂	Which biomolecule contains a non-transition metal ion?		(c) d_{xy} , d_z^2	(a) $d_{x}, d_{x^2-y^2}$	In octahedral complex, the pair of d-orbitals during d ² sp ³ hybridization is:	(c) I ₂ -	(a) I ₃ -	Which is L-shaped species?
(d)	(c) (d)	und having <i>dsp</i> ³ hybridi	(a) Martin of 1936	(p) (p)	(b)	each sulfur is surrounde	(b) (b) (c) (d) (d)	(d) (a) (d) (d)	ins a mon-transition met	Jones III (b)	(p) 1.14 14 14 14 14 14 14 14	A THE SE	e pair of d-orbitals duri	(d)	(b)	State of the articles are
Any d-orbital.	d shankarin zi shanA bi	ization, 'd'-orbital invo	8C1, 444,5C1	5. Jakobkan ji Yi	4 The swight note bios	ed by how many oxyg	None of these.	Hacmoglobin	al ion?		None of these.	(b) $d_{x^2-y^2}, d_{z^2}$	ng d ² sp ³ hybridization	None of these.	ICL THE SUPPLE OF	
		olved is		de dividinal	Billion Said A	en atoms :	Arrolf Infil	7 3			Sentit Of		is:	5 × 5/5/5		e editio

(a) ⁴ S _{1/2}	(c) I_5^- (d) None of these. (c) ${}^1S_{3/2}$ (d) N	In octahedral complex, the pair of d-orbitals during d ² sp ³ hybridization is:	—	(CA) 10 March	(a) 211 denote:	Which biomolecule contains a non-transition metal ion?	 (a) I₃⁻ (b) ICl₂⁻ (c) I₅⁻ (d) None of these. In octahedral complex, the pair of d-orbitals during d²sp³ hybridization is: (a) d_x, d_x, d_x, d_x (b) d_x, d_z (c) d_x, d_z (d) None of these. (e) d_x, d_z (f) Haemoolobin (h) Haemoolobin 	(a) $^4S_{1/2}$ (b) $^4S_{3/2}$ (c) $^1S_{3/2}$ (d) None of th 76. Fullerene, C_{60} contains: (a) 20-hexagons and 10 Pentagons of C-atoms (b) 20-hexagons and 12 Pentagons of C-atoms (c) 12-hexagons and 20 Pentagons of C-atoms (d) None of these.
	(b) ICL ₂ and supplies of the second state of	(a) ⁴ S _{1/2} (d) None of these. (c) ¹ S _{3/2}	(a) ⁴ S _{1/2} 20 10 10 10 10 10 10 10 10 10 10 10 10 10	(a) ⁴ S _{1/2} (c) ¹ S _{3/2} 76. Fullerene, C ₆₀ contains: (a) 20-hexagons and 10 Pentagons of C-2	(a) ⁴ S _{1/2} (c) ¹ S _{3/2} 76. Fullerene, C ₆₀ contains: (a) 20-hexagons and 10 Pentagons of C-a (b) 20-hexagons and 12 Pentagons of C-a	(a) ⁴ S _{1/2} (c) ¹ S _{3/2} 76. Fullerene, C ₆₀ contains: (a) 20-hexagons and 10 Pentagons of C-a (b) 20-hexagons and 12 Pentagons of C-a (c) 12-hexagons and 20 Pentagons of C-a	Which is L-shaped species?	75. The lowest energy electronic level for the nitrogen atom is:
(c) 1 _{S_{3/2}} 76. Fullerene, C ₆₀ contains: (a) 20-hexagons and 10 Pentagons of C-a (b) 20-hexagons and 12 Pentagons of C-a (c) 12-hexagons and 20 Pentagons of C-a (d) None of these.	76.	(b) $d_{x^2-y^2}$, d_z^2 (d) None of these. (ecule contains a non-transition metal ion?	(d) None of these.	ecule contains a non-transition metal ion?	(d) None of these.			The state of the s

Ph.D.-2005/100/KD/41

(14)

<u>c</u>

Cz

3

 $D_{2\lambda}$.

9

S

80. Chlorophyl contains:

(a) Ca (II)

ত

Co (II)

(a)

3

Mg (II)

Cy

74. Symmetry point group of trans N₂F₂ molecule is:

(d) Any d-orbital.

(a) Trisilylamine

3

Hexamine

None of these.

Nitrogen trifluoride

(d) None of these.

Ph.D2005 / 100 / KD / 41 (16)	86. Which can be possible in chemical equilibrium? (a) $K_p = K_c$ (b) $K_p > K_c$ (c) $K_c > K_p$ (d) All are possible. (1) (1) (2)	85. The compound which is not hydrolysed is (a) P ₂ O ₅ (b) BaO ₂ (c) Mg ₃ N ₂ (d) CaC ₂ (e) Mg ₃ N ₂ (f) CaC ₃ (f) CaC ₄ (f) CaC ₅ (f) CaC ₆ (f) CaC ₇ (f) CaC ₇ (f) CaC ₈ (f) CaC ₉ (f	 (b) if ΔG°<0, then K>1, forward reaction is favoured (c) if ΔG°<0, then K < 1 backward reaction is favoured (d) None of the above. 	 (a) BF₃, NH₃ (b) CO₂, SO₂ (c) H₂O, C₂H₂ (d) NH₃, PH₃. 84. Which is correct: (a) if ΔG°<0, then K=0, reaction is at Equilibrium 	atalyst contains metal: (b) Zirconium (d) Titanium. Similar Geometry is:	81. Which is explosive in nature? At Mois Asserting and the local distances are local distances.
Ph.D2005/100/KD/41 (17)	 93. In Reimer-Tiemann reaction the species that attacks on Benzene ring is (a) CCl₂ (b) CCl₂ (c) CCl₃ (d) CHCl₃. 	92.	 91. The strongest oxidising agent in the following is (a) F₂ (b) O₂ (c) Br₂ (d) Au³⁺ 	90. Meso tartaric acid has configurational descriptions of (a) 2R, 3R (b) 2R, 3S (c) 2S, 3S (d) 3R, 2R.	compound which obeys 18-electron rule is: $Mn(CO)_5$ $V(CO)_6$ (d) C4 and C4 epimers (b)	87. Mercury poisoning occurs easily with the amino acid: (a) Glycine (b) Alanine (c) Valine (d) Cystine.

(19)

Ph.D.-2005 / 100 / KD / 41

95. In Knoevenagel reaction the compound formed is

α, β-unsaturated acid

(c) β-keto acid

<u>a</u>

 β -keto ester.

(b) α, β-unsaturated ester

94. In Baeyer-Villiger reaction ketone is converted into

(c) Alkane

(d) Ester.

(b) Amide

(a) Carboxylic acid

Note; Discrepancy if any may be brought to the notice of Chairman, Department of Chemistry, k.U.k on given E-mail ID before 5.50PM on 12th March, 2020 [E-mail ID; Chemdepttkuk@gmail.com].

ANSWER KEY OF PH.D. (CHEMISTRY) 2020

10 - C	9 - B	& I C	7 - A	6 - D	П С	4 - D	3 - D	2 - B	1 - A	QNO. ANS
20 - C	19 - A	18 - B	17 - C	16 - B	15 - D	14 - D	13 - A	12 - B	11 - C	QNO. ANS
30 - D	29 - B	28 - D	27 - D	26 - C	25 - D	24 - C	23 - B	22 - A	21 - C	QNO. ANS
40 - C	39 - C	38 - C	37 - A	36 - C	35 - C	34 - C	33 – B	32 - D	31 - C	QNO. ANS
50 - A	49 - C	48 - C	47 - C	46 - C	45 - C	44 - C	43 - C	42 - B	41 - D	QNO. ANS
60 - B	59 1 C	58 - D	57 - D	56 - D	55 - C	54 - C	53 - D	52 - C	51 – B	QNO. ANS
70 - B	69 – C	C 89	67 - A	66 - C	65 - C	64 - D	63 - D	62 - C	61 - C	QNO. ANS
80 - B	79 - A	78 - в	77 - C	.76 - в	75 – в	74 Discrepand84	73 - C	72 - B	71 - C	QNO. ANS QNO. ANS
90 - B	89 - C	B8 - D	87 - D	86 - D	85 - B	7684 - B	83 - D	82 - D		QNO. ANS
100 в	99 - C	98 - C	97 - B	96 - C	95 - B	94 - D	93 - B	92 - B	91 - A	QNO. ANS

Key checked with original key and with question booklet and jumbling chart.
Original answer booklets and answer key received

Signature Mountain

Scanned by CamScanner