Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination

Semester V (w.e.f. session 2021-2022)

S.No	Course No.	Subject	L:T:P	Hours/ Week	Credits	Exa (Ma	minatio rks)	n Schedu	le	Duration of Exam
						Major Test	Minor Test	Practica I	Total	(Hrs.)
1	HTM-901A	Universal Human Values II : Understanding Harmony	3:0:0	3	3	75	25	0	100	3
2	EC-303LA	Electromagnetic Waves Lab	0:0:2	2	1	-	40	6 0	100	3
3	EC-305A	Computer Organization & Architecture	3:0:0	3	3	75	25	0	100	3
4	EC-307A	Information Theory and Coding	3:0:0	3	3	75	25	0	100	3
5	EC-309A	Digital Signal Processing	3:0:0	3	3	75	25	0	100	3
6	EC-311LA	Digital Signal Processing Lab	0:0:2	2	1	0	40	6 0	100	3
7	ECP*	Program Elective-I	3:0:0	3	3	75	25	0	100	3
8	ECO*	Open Elective-I	3:0:0	3	3	75	25	0	100	3
9	**EC-313A	Industrial Training-II	2:0:0	2	-	-	*100	-	*100	3
10	***MC- 903A	Essence of Indian Traditional Knowledge	3:0:0	3	-	100	-	0	100	3
		Total		27	20	550	230	120	900	

* The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section. **EC-313A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

***MC-903A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

HTM-901A		Universal Human Values II: Understanding Harmony											
Lecture	Tutorial	al Practical	Credit	Major Test	Minor Test	Total	Time						
3	0	0	3.0	75	25	100	3 Hours						
Purpose	Purpose and motivation for the course, recapitulation from Universal Human Values-I												
Course Out	comes (CC))											
CO 1	Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.												
CO 2	Understa family, sc	anding (or o pciety and r	developing nature/exist	clarity) of t tence.	the harmony	n the hu	man being,						
CO 3	Strengthening of self-reflection.												
CO 4	Develop	ment of co	mmitment a	and courag	ge to act.								

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrarinessin choice based on liking-disliking Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'I' and harmony in 'I'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in

Human-HumanRelationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship
- 16. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Orderfromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations

28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. todiscuss the conduct as an engineer or scientist etc. READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at handand motivating students to reflect, explore and verify them. Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration. Scenarios may be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemed essential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example:

Assessment by

faculty mentor: 5 marks

Self-assessment: 5 marks

Assessment by peers: 5 marks

Socially relevant project/Group Activities/Assignments: 10 marks

Semester End Examination: 75 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester VII (w.e.f. session 2021-2022)

S. No.	Course	Subject	L:T:P	Hours/	Credits	Examination Schedule (Marks)				Duration of
	No.			Week						Exam (Hrs)
						Major	Minor	Practical	Total	
						Test	Test			
		Intellectual Property Rights	3:0:0	3	3	75	25	0	100	3
1	HM-	for								
	904A	Technology								
		Development &								
		Management								
2	ECP*	Program Elective-III	3:0:0	3	3	75	25	0	100	3
3	ECP*	Program Elective-IV	3:0:0	3	3	75	25	0	100	3
4	ECP*	Program Elective Labs-V	0:0:4	4	2	-	40	60	100	3
5	ECO*	Open Elective-III	3:0:0	3	3	75	25	0	100	3
6	EC-	Project Stage-I	0:0:8	8	4	-	40	60	100	3
	401LA									
7	**EC-	Industrial Training-III	2:0:0	2	-	-	*100	-	*100	3
	403A									
		Total		26	18	300	180	120	600	

* The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

**EC-403A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify.

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination Semester VIII (w.e.f. session 2021-2022)

S. No.	Course No.	Subject	L:T:P	Hours/ Week	Credits	Examination Schedule (Marks)				Duration Of Exam. (Hrs.)
						Major Test	Minor Test	Practical	Total	
1	ECP*	Program Elective-VI	3:0:0	3	3	75	25	0	100	3
2	ECP*	Program Elective-VII	3:0:0	3	3	75	25	0	100	3
3	ECO*	Open Elective-IV	3:0:0	3	3	75	25	0	100	3
4	ECO*	Open Elective-V	3:0:0	3	3	75	25	0	100	3
5	EC-402LA	Project Stage-II	0:0:10	10	5	-	40	60	100	3
6	ECP*	Program Elective Labs-VIII	0:0:4	4	2		40	60	100	3
		Total		26	19	300	180	120	600	

*The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination

	LIST O	F OPEN ELECTIVES (B.TECH. ECE)					
SEM	CODE	SUBJECT					
VII	Open Electi	ive-III					
	ECO-9A	Bio-informatics					
	ECO-10A	Electromechanical Energy Conversion					
	ECO-11A	Operating Systems					
VIII	Open Electi	Open Elective-IV					
	ECO-12A	Wavelets					
	ECO-13A	Soft Computing					
	ECO-14A	Neural Networks and Fuzzy Logic					
	Open Electi	ive-V					
	ECO-15A	Statistics and Operational Research					
	ECO-16A	Mixed Signal Design					
	ECO-17A	Blockchain Technology					

	LIST	OF PROGRAM ELECTIVES
GEN	CODE	(B.TECH. ECE)
SEM	CODE	SUBJECT
VII	Program E	lective-III
	ECP-10A	Fiber Optic Communications
	ECP-11A	Mobile Communication and Networks
	ECP-12A	Adaptive Signal Processing
	ECP-13A	Nano electronics
	Program E	lective-IV
	ECP-14A	Microwave Theory and Techniques
	ECP-15A	Embedded systems
	ECP-16A	Robotics
	ECP-17A	Digital Image Processing
	Program E	lective Labs-V
	ECP-14LA	Microwave Communication Lab
	ECP-15LA	Embedded System Lab
	ECP-16LA	Robotics Lab
	ECP-17LA	Digital Image Processing Lab
VIII	Program E	lective –VI
	ECP-18A	Wireless Communication
	ECP-19A	Biomedical Signal Processing
	ECP-20A	Machine Learning
	ECP-21A	Artificial Intelligence
	ECP-22A	Internet of Things
	Program E	lective –VII
	ECP-23A	Error correcting codes
	ECP-24A	Satellite Communication
	ECP-25A	High Speed Electronics
	ECP-26A	Software Defined Radio
VIII	Program E	lective Labs-VIII
	ECP-18LA	Wireless Communication Lab
	ECP-19LA	Biomedical Lab
	ECP-20LA	Machine Learning Lab
	ECP-21LA	Artificial Intelligence Lab
	ECP-22LA	Internet of Things Lab
1		<u> </u>

HM-904A Intellectual Property Rights for Technology Development & Management											
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time				
				Test	Test						
3	0	0	3	75	25	100	3 Hr.				
Course Outcomes											
CO1 [Inderstandi	ng that wh	en IPR w	ould take	such importa	int place in	n growth of				
in	individuals & nation, it is needless to emphasis the need of information about										
I	Intellectual Property Right to be promoted among students in general &										
e	ngineering	in particul	ar.	r		8					
CO2 (Inderstand 1	that IPR p	rotection p	provides a	in incentive to	o inventor	s for further				
	esearch woi	rk and inve	estment in	K & D, V	vnich leads to	creation	or new and				
	etter produ	cts, and in	turn bring	gs about, e	economic gro	wth and so	ocial				
b	enefits.										
СОЗ Л	'o understar	nd differen	t laws rel	ated to the	e Intellectual	Property,	copyright				
a	ct,trademar	ks,patent a	ct,duratio	on of pater	nts law and p	olicy cons	iderations				
CO4 (Inderastand	New De	velopmen	ts in IPR	administra,	tion of pa	atent system, IPR of				
b	iological sy	stems etc.				_					

Unit-I

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit-II

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

Unit-III

Law relating to Intellectual property: Introduction – meaning of intellectual property, main forms of IP, Copyright, Trademarks, Patents and Designs, Secrets; Law relating to Copyright in India including Historical evolution of Copy Rights Act, 1957, Meaning of copyright – computer programs, Ownership of copyrights and assignment, Criteria of infringement, Piracy in Internet –Remedies and procedures in India; Law relating to Patents under Patents Act, 1970 including Concept and historical perspective of patents law in India, Patentable inventions with special reference to biotechnology products, Patent protection for computer programs, Process of obtaining patent – application, examination, opposition and sealing of patents, Patent cooperation treaty and grounds for opposition, Rights and obligations of patentee, Duration of patents – law and policy considerations, Infringement and related remedies;

Unit-IV

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

Text Books/Reference Books:-

- T. Ramappa (2010), Intellectual Property Rights Law in India, Asia Law House
- Wadhera (2004), Intellectual Property Rights, Universal Law Publishing Co
- Bare text (2005), Right to Information Act
- O.P. Malhotra, Law of Industrial Disputes, N.M. Tripathi Publishers
- Rustamji R.F., Introduction to the Law of Industrial Disputes, Asia Publishing House Ethics in Engineering- M.W.Martin& R.Schinzinger, McGraw-Hill

ECO-9A	CO-9A BIOINFORMATICS											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	-	-	3	75	25	100	3 Hrs.					
Purpose	The Purpo biological Primer Des	The Purpose of this course to provide focus on the key concepts of Bioinformatics like biological databases, Sequence Alignment, Phylogenetic Analysis, Plasmid Mapping And Primer Design and Predictive Methods using nucleotide sequences and protein sequences										
Course Ou	itcomes											
CO1	Students wi	ill be able to illu	strate with t	he basic princ	iples of various ty	pes of data	bases					
CO2	Students wi significance	ill be able to per e of alignment	rform variou	s tools related	to sequence align	ment and s	tatistical					
CO3	Student wil designing	Student will develop the knowledge of various software tools for sequence analysis and primer designing										
CO4	Students w sequence ar	ill be able to on alysis	differentiate	between pred	ictive methods for	or nucleotic	les and protein					

UNIT I

Databases

a. Sequence Databases: introduction of Databases, primary and secondary databases, nucleotide and protein sequence databases: Genbank, EMBL, DDBJ, Swissprot, pfam, PIR

b. Structure Databases: Introduction to structures. PDB (Protein Data bank) Molecular Modeling database at NCBI. , visualizing structural information.

c. Sequence and Structure File Formats.

The Entrez system: Integrated information axis, Information retrieval from biological database, sequence database beyond NCBI. Medical databases.

UNIT II

Sequence Alignment AND Database Searches

Introduction, the evolutionary basis of sequence alignment, Type of Aligmnents, Pair-wise Alignment, Multiple Alignment, The modular nature of proteins, Optimal alignment methods, substitution scores and gap penalties, statistical significance of alignment. FASTA, BLAST, low-complexity regions, repetitive elements, Tool of multiple sequence alignment: CLUSTAL W/X, progressive alignment method.

Phylogenetic Analysis:

Elements of phylogenetic models, phylogenetic data analysis: alignment, substitution model building, tree building and tree evaluation, building the data model (alignment), determining the substitution model, tree-building methods, searching for trees, rooting trees, evaluation trees and data, phylogenetic software (PHYLIP). phylogenetics online tool.

UNIT III

Sequence Analysis Using Software Resources :

Introduction. The Wisconsin package, the Seq Lab environment, analyzing sequences with operations and Wisconsin package programmes, viewing output, monitoring programme progress and troubleshooting problems, annotating sequences and graphically displaying annotations in the Seqlab Editor, saving sequences in the Seq Lab Editor, Example of analysis that can be undertaken in Seqlab,

UNIT IV

Plasmid Mapping And Primer Design

Restriction mapping, Mac Vector and OMIGA. primer design for PCR Sequencing, primer design programs and software.

Predictive Methods using nucleotide sequences and protein sequences: Predictive methods using nucleotide sequences: Introduction, Gene prediction methods, Computational gene prediction in eukaryotes, identity based on composition, physical properties based on sequence, prediction of protein secondary and tertiary structures. Related software.

Text Books-

1. Bioinformatics by Andreas D.Boxevanis. Wiley Interscience, 4th edition 2020.

2. Essential bioinformatics by Jin Xiong. Cambridge Uni Press 2020

3. Biocomputing Informatics and The Genome Projects by Smith D.W., Academic Press, 2014.

4. Bioinformatics: A Biologists Guide to Computing and the Internet. by Stuart M. Brown, NKU Medical Center, NY USA, 2000.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

ECO-10A Electro-Mechanical Energy Conversion										
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time			
				Test	Test					
3	-	-	3	75	25	100	3			
Purpose	To provide the constructional and working knowledge of various EMEC									
	Devices.									
Course O	outcomes									
CO 1	То	study variou	s fundamen	tal concepts	of EMEC8	& DC machi	nes.			
CO 2	To study fundamental concepts and characteristics of Induction Machines.									
CO 3	To study the	e basics of Sy	nchronous N	Aachines						
CO 4	To study wo	orking idea of	f some speci	al electric n	notors with a	applications	5.			

UNIT-I(Qualitative analysis only)

Introduction: Basic principles, conservation of energy, physical phenomenon involved in conversion, energy balance, energy stored in magnetic field, principles of Generating and motoring, prime movers, necessity of starters in motoring.

DC MACHINES:

DC generator: Basic construction, theory and working, commutation, generated EMF equation, Demagnetizing and cross magnetizing ampere turns, armature reaction, voltage build-up, brief idea of load characteristics of shunt, series and compound generator.

DC motor: Basic construction, theoryand working, concept of back EMF, torque and power equations, brief idea of load characteristics of shunt, series and compound motor, armature and field control methods of speed control of a DC shunt motor, 3 point starter.

UNIT-II(Qualitative analysis only) INDUCTION MACHINES:

3-phase induction motors:Rotating magnetic field, Basic construction, theory and working ofsquirrel cage and phase wound rotor types of3-phase I.M., slip, Torque- slip and load characteristics. Blocked rotor tests power and BHP developed at shaft. Star delta starting.

Single phase Induction Motor: Basic construction of, double revolving field theory, working of a capacitor start capacitor run Single phase Induction motor.

UNIT-III (Qualitative analysis only)

SYNCHRONOUS MACHINES:

Synchronous generator (alternator): Basic construction, theory and working, types of rotors&excitation systems. Synchronous motor:Basic construction, theory and working of, locking operation, speed torque characteristics, V- Curves. Hunting -causes and remedies.

UNIT-IV(Qualitative analysis only)

SPECIAL ELECTRICAL MACHINES:

Basic concept and workingideas of:Stepper motor, permanent magnet brushless DC motor, permanent magnet synchronous motor, hysteresis motor, synchronous reluctance motor, repulsion motor.

Industrial and domestic applications and comparison of various types of motors.

Text/Reference Books

- 1. D.P Kothari and I.J Nagrath, "Electric Machines", Tata McGraw Hill Publishers
- 2. P.S Bhimbra, "Electric Machines", Khanna Publisher
- 3. AshfaqHussain, "Electric Machines", DhanpatRai and Company
- 4. Fitzgerald & Kingsley, Electrical Machines, MGH publications.

ECO-11A		Operating Systems										
			Credits	Major	Minor							
Lecture	Tutorial	Practical		Test	Test	Total	Time					
3	0	0	3	75	25	100	3 Hr.					
			Course	e Outcome	S							
CO1		Student will be a	ble to unde	erstand struc	cture and fu	inction of O	S.					
CO2		Student will be able to understand the concept of OS										
CO3		Student will be able to understand the concurrent processing										
CO4		Student will be a	ble to unde	erstand sche	duling and	deadlock in	n OS.					

Unit- I

Introduction:OS functions: as user/computer interface, interaction with OS, commands, efficient resource manager, security and protection, evolution of OS, OS structure and future trends.

Unit- II

OS Prerequisites: Important software resources, interaction with OS in mainframe systems: PSW,controlling i/o, interrupt, interrupt priority, interrupt cycle. Fundamental concept related to IPC.

Unit -III

Concurrent Processing : Introduction, process concept, process control block, exec sys, concurrent program, process state transitions, hierarchy of processes.

Unit-IV

Scheduling: CPU scheduling algorithms: allocation of different resources, scheduling queues, different scheduling algorithms.

Deadlock: Introduction, deadlock and starvation, resource allocation graph, way to solve dedlock.

Text Books:

1. P. P Choudhary, Operating Systems by PHI Learning Pvt Ltd.

Reference Books:

1. Operating Systems : Internals and Design Principles, William Stallings, Pearson 2.Operating System Concepts", Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne, Wiley

Note: Question paper template will be provided to the paper setter.

ECO-12A		Wavelets												
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time							
3	-	-	3	75	25	100	3							
Purpose	To unders	stand the co	ncept of wa	avelet theory a	nd applicati	ons.								
Course Ou	itcomes													
At the end	of this cou	rse, student	will be abl	e to										
CO 1	Interpret s	tationary and	non-statio	nary signals										
CO 2	Construct	continuous w	avelet tran	sform										
CO 3	Develop d	iscrete wavel	et transform	m										
CO 4	Apply way	velets in diffe	rent applic	ations										

Unit-I

Introduction Stationary and non-stationary signals, Signal representation using basis and frames, Brief introduction to Fourier transform and Short time Fourier transform, Time- frequency analysis, Bases of time frequency: orthogonal, Filter banks, Multi resolution formulation: Wavelets from filters, Classes of wavelets: Haar, Daubechies, bi-orthogonal.

Unit-II

Continuous Wavelet Transform Continuous wavelet transform (CWT), Time and frequency resolution of the continuous wavelet transform, Construction of continuous wavelets: Spline, orthonormal, bi-orthonormal, Inverse continuous wavelet transform, Redundancy of CWT, Zoom property of the continuous wavelet transform, Filtering in continuous wavelet transform domain.

Unit-III

Discrete Wavelet Transform And Filter banks Orthogonal and bi- orthogonal two-channel filter banks, Design of two-channel filter banks, Tree-structured filter banks, Discrete wavelet transform, Non-linear approximation in the Wavelet domain, multi resolution analysis, Construction and Computation of the discrete wavelet transform, the redundant discrete wavelet transform.

Unit-IV

Multi Resolution Analysis Multirate discrete time systems, Parameterization of discrete wavelets, Biorthogonal wavelet bases, Two dimensional, wavelet transforms and Extensions to higher dimensions, wave packets, Application of wavelets in signal de-noising.

TEXT BOOKS:

- 1. A Wavelet Tour of Signal Processing, 2nd edition, S. Mallat, Academic Press, 1999.
- 2. Wavelets and Sub band Coding, M. Vetterli and J. Kovacevic, Prentice Hall, 1995.
- 3. Wavelet transforms: Introduction, Theory and applications, Raghuveer rao and Ajit S.Bopardikar, Pearson Education Asia, 2000.

REFERENCES:

- 1. Fundamentals of Wavelets: Theory, Algorithms, and Applications, J.C. Goswami and A.K. Chan, 2nd ed., Wiley, 2011.
- 2. Wavelets and their Applications, Michel Misiti, Yves Misiti, Georges Oppenheim, Jean-Michel Poggi, John Wiley & Sons, 2010.
- 3. A premier on Wavelets and their scientific applications, J S Walker, CRC press, 2002.
- 4. Wavelets and signal processing: An application based introduction, Stark, Springer, 2005.
- 5. A friendly guide to Wavelets, Gerald keiser, Springer, 2011.
- 6. Multirate Systems and Filter Banks, P. P. Vaidyanathan, Pearson Education, 2004. Wavelets : from math too practice, Desanka.P.Radunovik, springer, 2009.
- 7. Insight into wavelets from theory to practice, K P Soman and KL Ramachandran, PHI, 2008.

ECO-13A		Soft Computing											
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time						
(Hrs.)	(Hrs.)	(Hrs.)		Test	Test								
3	-	-	3	75	25	100	3Hr						
Purpose		To familiarize the students with the basics of Soft Computing											
			Course C	Outcomes									
CO1	Motivation	n and historic	al backgrou	nd of Soft Co	omputing.								
CO 2	Applicatio	n of Fuzzy lo	ogic.										
CO 3	Biological	ly inspired a	lgorithm su	ch as neural	l networks,	genetic algo	rithms, ant						
	colony opt	imization, ar	d bee colon	y optimizatic	on.								
CO 4	Hybrid sys	stems of neur	al network,	genetic algor	ithms and fu	zzy systems.							

Unit-I

Soft Computing and Artificial Intelligence: Introduction of Soft Computing, Soft Computing vs. Hard Computing, Various Types of Soft Computing Techniques, Applications of Soft Computing, AI Search Algorithm, Predicate Calculus, Rules of Interference, Semantic Networks, Frames, Objects, Hybrid Models

Unit-II

Artificial Neural Networks and Paradigms: Introduction to Neuron Model, Neural Network Architecture, Learning Rules, Perceptrons, Single Layer Perceptrons, Multilayer Perceptrons, Back propagation Networks, Kohnen'sself-organizing networks, Hopfield network, Applications of NN.

Unit-III

Fuzzy Logic: Introduction, Fuzzy sets and Fuzzy reasoning, Basic functions on fuzzy sets, relations, rule-based models and linguistic variables, fuzzy controls, Fuzzy decision making, applications of fuzzy logic.

Unit-IV

Genetic Algorithms and Swarm Optimizations: Introduction, Genetic Algorithm, Fitness Computations, Cross Over, Mutation, Evolutionary Programming, Classifier Systems, Genetic Programming Parse Trees, Variants of GA, Applications, Ant Colony Optimization, Particle Swarm Optimization, Artificial Bee Colony Optimization.

Text Books:

1. Simon S. Haykin, Neural Networks, Prentice Hall, 2nd edition.

2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", McGraw Hill.

3. D.E. Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y.

Reference Books:

1. Zimmermann, "Fuzzy Set Theory and its Application", 3rd Edition.

- 2. B. Yegnanrayana, "Artificial Neural Networks", PHI.
- 3. Jacek M. Zurada, Introduction to Artificial Neural Systems, Jaico Publishing House.
- 4. Jang J.S.R., Sun C.T. and Mizutani E, "Neuro-Fuzzy and Soft computing", Prentice Hall.

ECO-14A	\		Neu	ral Netw	orks and	Fuzzy Logic			
Lecture	Tutori al	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0	0	3	75	25	100	3 Hr.		
Course O	utcomes				-				
CO1	Understand the concept of Artificial Intelligence, search techniques and knowledge representation issues								
CO2	Understa	nding reaso	oning and	d fuzzy le	ogic for a	rtificial intelli	igence		
CO3	Students	udents will be able to learn defuzzification and fuzzy measures							
CO4	Students computin	will be abl g techniqu	e to learn es	n the app	lications of	of fuzzy logic	and hybrid soft		

UNIT I – INTRODUCTION

Artificial neural network: Introduction, characteristics- learning methods - taxonomy - Evolution of neural networks- basic models - important technologies - applications. Fuzzy logic: Introduction - crisp sets- fuzzy sets - crisp relations and fuzzy relations: cartesian product of relation - classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets. Genetic algorithm- Introduction - biological background traditional optimization and search techniques - Genetic basic concepts.

UNIT II - NEURAL NETWORKS

McCulloch-Pitts neuron - linear separability - hebb network - supervised learning network: perceptron networks – adaptive linear neuron, multiple adaptive linear neuron, BPN, RBF, TDNN- associative memory network: auto- associative memory network, hetero-associative memory network, BAM, hop field networks, iterative auto associative memory network & iterative associative memory network – unsupervised learning networks: Kohonen self organizing feature maps, LVQ – CP networks, ART network.

UNIT III - FUZZY LOGIC

Membership functions: features, fuzzification, methods of membership value assignments- Defuzzification: lambda cuts - methods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - extension principle - fuzzy measures - measures of fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning : truth values and tables, fuzzy propositions, formation of rules-decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning-fuzzy inference systems-overview of fuzzy expert system-fuzzy decision making.

UNIT IV - HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS Neuro-fuzzy hybrid systems - genetic neuro hybrid systems - genetic fuzzy hybrid and fuzzy genetic hybrid systems – simplified fuzzy ARTMAP - Applications: A fusion approach of multispectral images with SAR, optimization of traveling salesman problem using genetic algorithm approach, soft computing based hybrid fuzzy controllers.

References:

- Elaine Rich and Kevin Knight "Artificial Intelligence", 2nd Edition, Tata Mcgraw-Hill, 2005.
- Stuart Russel and Peter Norvig, "Artificial Intelligence: A Modern Approach", 3rd

Edition, Prentice Hall, 2009.

Text book(s) and/or required material

1. T1. Kliryvan- Fuzzy System & Fuzzy logic Prentice Hall of India, First Edition.

2. Lawrence Fussett- fundamental of Neural network Prentice Hall, First Edition. Reference Books: 1. Bart Kosko, —Neural network and Fuzzy System - Prentice Hall-1994.

2. J.Klin and T.A.Folger, -Fuzzy sets University and information- Prentice Hall -1996.

3. J.M.Zurada, —Introduction to artificial neural systems-Jaico Publication house, Delhi 1994.

4. VallusuRao and HayagvnaRao , —C++ Neural network and fuzzy logic -BPB and Publication, New Delhi, 1996.

5. Intelligent Systems and Control-http://nptel.ac.in/courses/108104049/16

ECO-15A		Statistics a	nd Opera	tional R	esearch					
Lecture	Tutoria I	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	75	25	100	3 Hr.			
Course Ou	itcomes	•								
CO1	The Objective of the paper is to introduce the basic concepts of Operational Research and linear programming to the students									
CO2	Student Programr	will be ab ning Proble	ole to lea em.	arn and	apply d	lifferent n	nethods to solve Linear			
CO3	Student v	vill be able	to learn m	noments,	standard	deviation	,correlation ,regression			
CO4	Students will be able large sample test for single proportion ,difference of means, difference of proportions									

UNIT-I

Basics of Operational Research: Origin & Development of Operational Research, Definition and Meaning of Operational Research, Different Phases of an Operational Research Study, Scope and Limitations of Operational Research, Mathematical Modeling of Real Life Problems.

UNIT-II

Linear Programming Problem: Formulation, solution by Graphical Method, Theory of Simplex Method, Simplex Algorithm, Two phase Method, Charnes-M Method, Degeneracy,

UNIT-III

Basic Statistics: Measures of Central tendency: Mean, median, quartiles, mode, Geometric mean, Harmonic mean, Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, coefficient of variation, Moments, Skewness and Kurtosis, Correlation, Coefficient of correlation, methods of calculations, Lines of regression, Rank correlation.

UNIT-IV

Test of significance: Basic terminology, large sample test for single proportion, difference of proportions, single mean, difference of means, Small samples test for single mean, difference of means, Chi-square test for goodness of fit

References /Suggested Readings:

- 1. G. Hadley: Linear Programming. Narosa, Reprint, 2002.
- 2. G. Hadley: Linear Algebra, Narosa, Reprint, 2002.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010.
- 6. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005.

F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010.

ECO-16A	Mixed Signal Design										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	75	25	100	3 Hr.				
Purpose	This course teaches how in real life applications both analog and digital circuits can be implemented for various system design.										
Course Out	comes										
CO1	To know b	basics and wo	orking of va	rious Switche	d-Capacitor C	Circuits.					
CO2	To underst	tand various	PLL circuit	ES.							
CO3	To gain knowledge on various D/A and A/D converters.										
CO4	To apply k life proble	knowledge of ms.	f different a	rchitectures in	n mixed signal	circuits f	or real				

Unit-I

Switched-Capacitor Circuits

Introduction to Sampling Switches: MOSFETS as switches, speed considerations, precision considerations, charge injection cancellations. Switched-Capacitor Amplifiers: Unity Gain Sampler-Buffer, Noninverting Amplifier, Precision Multiply-by-Two Circuit. Switched-Capacitor Integrator, Switched-Capacitor Common-Mode Feedback.

Unit- II

Phase Locked Loop

Characterization of a comparator, basic CMOS comparator design, analog multiplier design, PLL-simple PLL, charge-pump PLL, Applications of PLL

Unit- III

D/A Converter

Sample-and-Hold Characteristics, DAC Specifications, DAC Architectures: Digital input Code, Resister Steering, R-2R Ladder Networks, Current Steering, Charge-Scaling DACs, Cyclic DACs, Pipeline DACs.

Unit- IV

A/D Converter

ADC Specifications, ADC Architectures: Flash, The Two-Step Flash ADC, The Pipeline ADC, Integrating ADCs, The Successive Approximation ADC, The Oversampling ADC. Applications of DACs and ADCs.

TEXT BOOKS:

- 1. Jacob Baker, "CMOS circuit design, layout and simulation", John Wiley India.
- 2. Razavi, "Design of analog CMOS integrated circuits", McGraw Hill, Edition 2002.

REFERENCE BOOKS:

- 1. CMOS Analog Circuit Design –Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition.
- Gregorian, Temes, "Analog MOS Integrated Circuit for signal processing", John Wiley & Sons, 1986.
- 3. Analog Integrated Circuit Design- David A. Johns, Ken Martin, Wiley Student Edition

ECO-17A	Blockchain Technology										
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time				
(Hrs.)	(Hrs.)	(Hrs.)		Test	Test						
3	-	-	3	75	25	100	3Hr				
Course Out	Course Outcomes										
CO1	Understar	Understand how blockchain systems (mainly Bitcoin and Ethereum) work									
CO 2	To secure	ly interact w	ith them								
CO 3	Design, b	Design, build, and deploy smart contracts and distributed applications									
CO 4	Integrate	ideas from b	lockchain te	echnology in	nto their own	n projects.					

Unit I

Basics: Distributed Database, Two General Problem, Byzantine General problem and Fault Tolerance, Hadoop Distributed File System, Distributed Hash Table, ASIC resistance, Turing Complete. • Cryptography: Hash function, Digital Signature - ECDSA, Memory Hard Algorithm, Zero Knowledge Proof.

Unit II

Blockchain: Introduction, Advantage over conventional distributed database, Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of Blockchain application, Soft & Hard Fork, Private and Public blockchain.

Unit III

Distributed Consensus: Nakamoto consensus, Proof of Work, Proof of Stake, Proof of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate.

Unit IV

Cryptocurrency: History, Distributed Ledger, Bitcoin protocols - Mining strategy and rewards, Ethereum - Construction, DAO, Smart Contract, GHOST, Vulnerability, Attacks, Sidechain, Namecoin

Text Book

1. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University Press (July 19, 2016).

2. Reference Books

- 1. Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurrencies
- 2. Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System
- 3. DR. Gavin Wood, "ETHEREUM: A Secure Decentralized Transaction Ledger," Yellow paper.2014.
- 4. Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli, A survey of attacks on Ethereum smart contracts

ECP-10A]	Fiber Op	tic Comm	unication	5
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time
3	0	0	3	75	25	100	3 Hr.
Course O	utcomes			·			
CO1 CO2	Student of light Student	ts will be a travelling ts will be a	ble to u in the f	nderstan iber. nalvze va	d the stru	icture of fi	ber and the mechanism ted with fibers.
CO3	Student	ts will lear	n about	the optio	cal source	s and opti	cal detecters.
CO4	Student require	ts will be a d in maki	ible to u ng optic	nderstan al netwoi	d the vari sks	ious comp	onents and devices

UNIT – I

INTRODUCTION : Optical Fibers: Structure, Propagation within the fiber, Numerical aperture of fiber, acceptance angle, step index and graded index fiber, Modes of propagation in the fiber, Single mode and multi mode fibers. Splices and connectors. Optical Power Launching and Coupling. Fiber-to-fiber joints.

UNIT –II

LOSSES IN OPTICAL FIBER : Attenuation, Absorption Losses, Scattering Losses, Leaky modes, Mode coupling losses, Bending Losses, Combined Losses in the fiber.

DISPERSION EFFECT : Effect of dispersion on the pulse transmission Intermodal dispersion, Material dispersion, Wave guide dispersion, Polarization Mode Dispersion, Total dispersion, Transmission rate. Dispersion Shifted Fibers, Dispersion Compensating Fibers.

UNIT – III

LIGHT SOURCES : LEDS, Laser Action in semiconductor Lasers, Semiconductor Lasers for optical communication – Laser modes, Spectral Characteristics, Power Voltage Characteristics, Frequency response. **DETECTORS** : P-I-N Photodiode, APD, Noise Analysis in detectors, Coherent and non-coherent detection, Infrared sensors. Bit error rate.

UNIT – IV

The fiber-optic Communication System: Design considerations of fiber optic systems: Analog and digital modulation. Optical Devices: Optical coupler, space switches, linear divider-combiners, WDM: strategy, wavelength division multiplexer and demultiplexer, optical amplifier

OPTICAL NETWORKS: Elements and Architecture of Fiber-Optic Network, Optical link network-single hop, multihop, hybrid and photonic networks.

Suggested Books:

John Power, An Introduction to Fiber optic systems, McGraw Hill International.John Gowar, Optical communication Systems.R. Ramaswamy, Optical Networks, Narosa PublicationJohn M. Senior, Optical Fiber CommunicationGerd Keiser, Optical Fiber Communication

ECP-11A		Mobile Communication and Networks										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
(Hrs.)	(Hrs.)	(Hrs.)										
3	-	-	3	75	25	100	3 Hrs.					
Course Outcomes (CO)												
To expose the s	students to	o the most	recent te	chnological devel	lopments in Mobile							
communication	systems.											
CO1	To famil	liarize the	students	with the fundame	ntal concepts of wir	eless, cellu	lar					
	technology											
	And sign	And signal propagation in mobiles										
CO1	Ct1t-			1	····· f CCM ···· 1 CD	DC						

CO2 Students will able to learn the detail knowledge of GSM and GPRS. CO3 After this unit students will understand the wireless access techniques and standards CO4 Students will understand the concept of mobile receivers.

UNIT-I

Cellular concepts: Cell structure, frequency reuse, cell splitting, channel assignment, handoff, interference, capacity, power control; Wireless Standards: Overview of 2G and 3G cellular standards.

Signal propagation: Propagation mechanism- reflection, refraction, diffraction and scattering, large scale signal propagation and lognormal shadowing. Fading channels-Multipath and small scale fading- Doppler shift, statistical multipath channel models, narrowband and wideband fading models

UNIT-II

Mobile System and Network Architectures GSM Services and Features – GSM system Architecture, GSM radio subsystem, Frame structure for GSM, Signal processing in GSM, GPRS Network architecture, GPRS services and features, 3G UMTS network architecture, UMTS services and features.

UNIT-III

Wireless Standards Multiple access techniques: FDMA, TDMA and CDMA, Wireless networking, Design issues in personal wireless systems, Cordless systems and Wireless Local Loop (WLL), IEEE 802.16 Fixed Broadband Wireless Access standard, Mobile IP and Wireless Application protocol.

UNIT-IV

Receiver structure: Diversity receivers- selection and MRC receivers, RAKE receiver, equalization: linear-ZFE and adaptive, DFE. Transmit diversity-Altamonte scheme.

Text Books

1. Rappaport, T.S., "Wireless Communications", Principles and Practice, Prentice Hall, NJ, 1996. 2. William Stallings, "Wireless Communication and Networking", Pearson Education, 2002.

ECP – 12A	12A Adaptive Signal Processing									
Lecture	Tutorial	Practical	Credit	MajorTest	MinorTest	Total	Time			
3	0	0	3	75	25	100	3 Hr.			
CourseOut	comes									
CO1	To unders	o understand various stochastic processes and models in adaptive signal processing.								
CO2	To unders steepest descent al	stand the ana gorithms.	lysis of w	iener filters, the	e concept of the	e linear p	rediction and			
CO3	To use Le specific en	To use Least-Mean-Square (LMS) & Recursive Least-Squares (RLS) algorithms for apecific engineering problems.								
CO4	To apply RLS algor	the concept rithms.	robustness	and analysis th	ne Finite-Precis	sion effec	ets on LMS and			

Unit -I

Stochastic Processes and Models: Partial Characterization of a Discrete-Time Stochastic Process, Mean Ergodic Theorem, Correlation Matrix, Correlation Matrix of Sine Wave Plus Noise, Stochastic Models, Wold Decomposition, Asymptotic Stationarity of an Autoregressive Process, Yule—Walker Equations.

Wiener Filters: Linear Optimum Filtering: Statement of the Problem, Principle of Orthogonality, Minimum Mean-Square Error, Wiener-Hopf Equations, Error-Performance Surface, Multiple Linear Regression Model.

Unit -II

Linear Prediction: Forward Linear Prediction, Backward Linear Prediction, Levinson-Durbin Algorithm, Properties of Prediction-Error Filters, Schur-Cohn Test.

Method of Steepest Descent: Basic Idea of the Steepest-Descent Algorithm, The Steepest-Descent Algorithm Applied to the Wiener Filter, Stability of the Steepest-Descent Algorithm, Example, The Steepest-Descent Algorithm as a Deterministic Search Method, Virtue and Limitation of the Steepest-Descent Algorithm.

Unit -III

The Least-Mean-Square (LMS) Algorithm: Signal-Flow Graph, Optimality Considerations, Applications, Statistical Learning Theory, Transient Behavior and Convergence Considerations, Efficiency. **The Recursive Least-Squares (RLS) Algorithm:** Some Preliminaries, The Matrix Inversion Lemma, The Exponentially Weighted RLS Algorithm, Selection of the Regularization Parameter, Update Recursion for the Sum of Weighted Error Squares, Example: Single-Weight Adaptive Noise Canceller.

Unit -IV

Robustness: Robustness, Adaptation, and Disturbances, Robustness: Preliminary Considerations Rooted in $H\infty$ Optimization, Robustness of the LMS Algorithm, Robustness of the RLS Algorithm, Comparative Evaluations of the LMS and RLS Algorithms from the Perspective of Robustness.

Finite-Precision Effects: Quantization Errors, Least-Mean-Square (LMS) Algorithm, Recursive Least- Squares (RLS) Algorithm, Summary and Discussion.

TEXT BOOKS:

1. S. Haykin, Adaptive filter theory, Pearson

REFERENCE BOOKS:

- 1. T. Adali and S. Haykin, Adaptive Signal Processing, WileyIndia
- 2. B. Widrow and S.D. Stearns, Adaptive signal processing, PrenticeHall.

Course No.	Course Title	Teaching Schedule			Allotmer	Duration of Exam		
		L	L T P		Major Test	Minor Test	Total	(Hrs.)
ECP-13A	Nano electronics	3	0	0	75	25	100	3
Course Out	comes							-
CO 1	Students will Understand t	the	basic	physic	s behind th	ne nanoelec	tronics de	evices
CO 2	Students be able learn varie	ous	class	ificatio	on of the na	no-materia	ls.	
CO 3	To Understand various fabrication methods of nonmaterials.							
CO 4	Students will learn to chara	acte	rize v	arious	nanomater	rials using v	arious ch	aracterization
	tools.							

UNIT-I

Introduction to nanotechnology, Impacts, Limitations of conventional microelectronics, Trends in microelectronics and optoelectronics, Mesoscopic physics, trends in microelectronics and optoelectronics, characteristic lengths in mesoscopic systems, Quantum mechanical coherence

UNIT- II

Classification of Nano structures, Low dimensional structures Quantum wells, wires and dots, Density of states and dimensionality, Basic properties of two dimensional semiconductor nanostructures, square quantum wells of finite depth, parabolic and triangular quantum wells.

UNIT-III

Introduction to methods of fabrication of nanomaterials, different approaches, physical vapour deposition, chemical vapour deposition, Molecular Beam Epitaxy, Ion Implantation, Formation of Silicon Dioxide-dry and wet oxidation methods.

UNIT-IV

Introduction to characterization of nanostructures, tools used for of nano materials characterization: Principle of operation of Scanning Tunnelling Microscope, Atomic Force Microscope, Scanning Electron microscope, Transmission Electron Microscope.

Text Books:

1. J.M. Martinez-Duart, R.J. Martin Palma, F. Agulle Rueda Nanotechnology for Microelectronics and optoelectronics, Elsevier, 2006

2. W.R. Fahrner, Nanotechnology and Nanoelctronics, Springer, 2005 References:

- 1. Chattopadhyay, Banerjee, Introduction to Nanoscience & Technology, PHI, 2012
- 2. George W. Hanson, Fundamentals of Nanoelectronics, Pearson Education, 2009.
- 3. K. Goser, P. Glosekotter, J. Dienstuhl, Nanoelectronics and nanosystems, Springer 2004.
- 4. Murty, Shankar, Text book of Nanoscience and Nanotechnology, Universities Press, 2012.
- 5. Poole, Introduction to Nanotechnology, John Wiley, 2006.
- 6. Supriyo Dutta, Quantum Transport- Atom to transistor, Cambridge, 2013.

ECP-14A			Microwav	e Theory	and Tech	niques			
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0	0	3	75	25	100	3 Hr.		
Course O	utcomes								
CO1	Learner will be able to mathematically design basic resonator cavities and will be able to measure microwave parameters such as impedance, frequency and VSWR etc								
CO2	Learner wi	ill learn the	conventional r	nethods to	generate the	e microwav	es.		
CO3	Learner will know about the importance of scattering parameters along with its applications in the analysis of basic microwave components.								
CO4	Learner wi	ill learn abo	out transferred of	electron an	d avalanche	e transit time	e devices in detail.		

UNIT-I

Introduction to Microwaves-History of Microwaves, Microwave Frequency bands, Applications of Microwaves: Civil and Military, Medical, EMI/ EMC, Effect of Microwaves on Human Body. Mathematical Model of Microwave Transmission-Concept of Mode, Features of TEM, TE and TM Modes, Losses associated with microwave transmission, Concept of Impedance in Microwave Transmission. Review of waveguides in brief, Coaxial Transmission Line, Strip line, Microstrip line. Microwave Resonators: Cavity Resonators: Rectangular, Cylindrical, and Coaxial, Excitation and Coupling of cavities, Q factor.

UNIT-II

Microwave Measurements: Measurement of frequency, impedance (using slotted section) Attenuation, power, dielectric constant, measurement of V.S. W. R., Insertion loss and Permeability.

Microwave Generators: Construction, characteristics, operating principle and typical applications of Klystron(two cavity, multicavity), Reflex Klystron, Magnetron(Cylindrical magnetron and description of Птоде applications) and Traveling Wave Tube(TWT).

UNIT-III

Matrix Description of Microwave Circuits: Scattering Matrix: properties, measurement of scattering coefficients, scattering matrices for common microwave systems.

Passive and Active Microwave Devices- Microwave passive components: Directional Coupler, Power Divider, E Plane and H-Plane Tee, Magic Tee, Attenuator, Isolators, Circulator and Phase Shifter. Microwave Active Components: Diodes, Transistors, Design Considerations of Filters, Amplifiers, Oscillators and Mixers (in Brief).

UNIT-IV

Solid State Microwave Devices: Transferred Electron Devices-Gunn Diode: Negative Differential Resistance Phenomenon, High Field Domain Formation. Avalanche Transit Time Devices: IMPATT, TRAPATT, BARITT diodes, Tunnel Diode, PIN Diode, Parametric amplifiers

Text Book: David M. Pozar, Microwave Engineering, John Wiley and sons Inc.

Reference Books:

- 1. Samuel Y. Liao, Microwave Devices and Circuits, Prentice-Hall of India.
- 2. Das. Annapurna & Sisir K. Das, Microwave Engineering, Tata McGraw-Hill.
- 3. R.E. Collins, Microwave Circuits, McGraw Hill.

ECP-15A		EMBEDDED SYSTEMS											
Lecture	Tutorial	torial Practical Credit Major Test Total Time(Hrs)											
3	0	0 3 75 25 100 3											
Course Outo	comes	comes											
At the end o	f the cours	e students v	will be ab	le to									
CO1	Acquire	knowledge	about diff	erent types	of Microcontroll	ers and var	ious Embedded						
	System	design exam	ples of re	al- life prob	lems.								
CO2	Underst	and the PIC,	AVR, AF	RM and SH	ARC architecture	es.							
CO3	Underst	Understand different types of I/O devices, Timer Devices and Communication Interfaces.											
CO4	Acquire	knowledge	about the	design of R	TOS and various	operating	systems.						

UNIT I

INTRODUTION: Different types of Microcontrollers, 4-bit, 8-bit, 16-bit, and 32-bit Microcontrollers, Processor Architectures: Harvard & Princeton, CISC & RISC, Microcontrollers Memory Types, Microcontrollers Features, Criteria for Choosing a Microcontroller, Applications of Microcontrollers, Embedded System: Definition, Embedded Processors; Hardware Units, Devices and Software Tools in a System, Embedded System on Chip, Complex Systems Design and Processors, Design Challenges, Design Process and Design Examples.

UNIT II

PIC MICROCONTROLLER: Introduction to PIC16 Microcontroller Family, Features of PIC16C74, Architecture and Pin diagram of PIC16C74, Pipelining, Program Memory Considerations, Register File Structure, Addressing Modes, Instruction Sets; Advanced Architectures: Only Brief General Architecture of AVR, ARM and SHARC.

UNIT III

COMMUNICATION INTERFACES: I/O Devices Types and Examples, Serial Communication Devices, Parallel Device Ports, Wireless Devices, Timer and Counting Devices, Distributed Networked Embedded System Architecture, Serial Bus Communication Protocols-I²C, CAN, USB, FireWire and Advanced Buses; Parallel Bus Device Protocols- ISA, PCI, ARM and Advanced Buses; Network Protocols-HTTP, TCP, UDP, IP and Ethernet; Wireless and Mobile System Protocols- IrDA, Bluetooth, 802.11 and Zigbee; Device Drivers.

UNIT IV

RTOS: Architecture of Kernel, Processes, Threads, Task and Thread States, Task and Data, Distinction Between Function, ISR, IST and Task; Semaphores, Mutex, Event Registers, Pipes, Signal, Timers, Memory Management, Priority Inversion Problem, Disabling and Enabling Function, Queues and Mailboxes, Pipe and Sockets Functions;

Basic Design using a RTOS, RTOS Task-Scheduling Model, OS Standards: POSIX, Off- the-Shelf Operating System, Embedded Operating Systems, Real –Time Operating Systems, Handhold Operating Systems.

Text Books:

1. Raj Kamal, "Embedded systems architecture, programming and design", 3rd Ed., McGraw-Hill Companies.

- 2. John. B. Peatman, "Design with PIC Microcontroller", Pearson Education, 2003.
- 3. Dr. K.V.K.K. Prasad, "Embedded/Real-Time Systems: Concepts, design and programming", DreamTech Press.

References Books:

- 1. Myke Predko, "Programming and Customizing the 8051 Microcontroller", TMH.
- 2. M.A. Mazidi, R. D. McKinlay, Causey," The PIC microcontroller and Embedded Systems using assembly and C for PIC18", 2nd Ed., Pearson.
- 3. D.P. Kothari, Shriram K. Vasudevan, Sundaram R. M. D., Murali N., "Embedded System", New Age International (P) Limited, Publishers.
- 4. Shibu K V, "introduction to Embedded Systems", 2nd Ed., McGraw Hill Education(India) private Limited.

Note: Separate question paper template will be provided to the paper setter for setting the question paper of end term semester examinations.

ECP-16A				ROBO	OTICS						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)				
3	0	0	3	75	25	100	3				
Course Prerequisites	Transduce	Transducers and Microprocessors.									
Course Objectives	To enligh	Γο enlighten the students about the fundamentals of robotic systems.									
	Course Outcomes										
At the end of	this cours	e the studen	t should be	e able to unders	stand						
CO1	The basic the variou	concepts re s Drive syst	lated to the ems for Rob	Robot, parts of oot.	Robots, End Effe	ectors and to 1	make familiar with				
CO2	The operation	ation of vario	ous Sensors	and their Applic	cations in Robots						
CO3	The Macl	nine Vision a	and its Appl	ications, and va	rious Control Sys	tems used in I	Robots.				
CO4	The Robe Industrial	ot Programn and Non-In	ning, Artific dustrial app	cial Intelligence lications of Rob	e, Fuzzy Logic, S	Safety Standar	rds of Robots and				

UNIT I

FUNDAMENTALS OF ROBOT: Definition, History and Development in Robot Technology, Robot Technology: Characteristics, Basic Components, Robot Anatomy, Robot Generations, Robot Selection, Present and Future Applications.

ROBOTS DRIVE SYSTEMS AND END EFFECTORS: Robot Classification: Arm Geometry, Degrees of Freedom, Power Sources, Types of Motion, Path Control; Robot End Effectors: Mechanical Grippers, Vacuum, Magnetic, Adhesive; Special Purpose Grippers, Process Tooling, Compliance, Robot Drive Systems: Hydraulic, Pneumatic and Electric System.

UNIT II

SENSORS : Requirements of a Sensor, Sensor Classification; **Principle, Advantages, Disadvantages and Applications of the following Sensors**: Position Sensors - Potentiometer, Encoder, LVDT, Resolvers, LMDT and Hall–Effect Sensors; Velocity Sensors: Encoder, Tachometer and Differentiation of position signal; Acceleration Sensors, Force, Pressure Sensors: Piezoelectric, Force Sensing Resistor, Strain Gauge and Antistatic Foam; Torque Sensors, Micro Switches, Visible Light and Infrared Sensors, Touch and Tactile Sensors, Proximity Sensors: Magnetic, Optical, Ultrasonic, Inductive, Capacitive and Eddy Current; Range Finder: Ultrasonic, Light-base and GPS; Sniff Sensors, Taste Sensors, Vision Sensors, Voice Recognition Devices, Voice Synthesizers, RCC.

UNIT III

MACHINE VISION AND CONTROL SYSTEM: Visual Sensing, Architecture of Robotics Vision System, Machine Vision: Image Acquisition - Vidicon Tube and CCD; Digitization, Image Processing: Spatial Domain Operations, Noise Reduction and Edge Detection etc.; Image Analysis: Object Recognition by Features-Template Matching, Discrete Fourier Descriptors and Computed Tomography; Depth Measurement with Vision System, Image Interpretation, Segmentation by Region Growing and Region Splitting, Image Data Compression, Machine Vision Application, Other Optical Methods; Control Systems: Basic Robot Control System, PLC, PID, CNC, MPU, and URC.

UNIT IV

ROBOT PROGRAMMING, ARTIFICIAL INTELLIGENCE AND ROBOTS APPLICATIONS: Robot Programming: Programming Methods and Languages, Levels of Robot Programming, Space Position Programming, and Program Statements; Elements of Artificial Intelligence, System Architecture; Fuzzy Logic Control, Application of Fuzzy Logic in Robotics; Robot Safety, Safety Standards; Industrial Applications: Automation in Manufacturing, Robot Applications: Material Handling, Processing Application, Assembly Application and Inspection Application; Evaluating the Potential of a Robot Application, Future Applications, Challenge, Innovations; Non-Industrial Application.

Text Books:

- 1. James G. Keramas, "Robot technology fundamentals", Delmar Publishers.
- 2. Saeed B. Niku, "Introduction to robotics analysis, control and applications", 2nd ed., Wiley India.
- 3. R. K. Mittal, I. J. Nagrath, "Robotics and Control", TMH Education Pvt.

Note: Separate question paper template will be provided to the paper setter for setting the question paper of end term semester examinations.

ECP-17A		Digital Image Processing										
Lecture	Tutorial	Major Minor Futorial Practical Test Test Total Time										
3	0	0 0 75 25 100 3 Hr.										
		Cours	e Outcome	es								
CO1	Student wi	ll be able to exp	lain basic c	oncepts of i	image proc	cessing						
CO2	Student wi	ll be able to desi	ign evaluate	e image enh	ancement	techniques						
	Student wi	Student will be able to analyze various compression and morphological										
CO3	operations	operations										
CO4	Student wi	ll be able to desc	cribe variou	is video pro	cessing sy	stems						

Unit – I

Digital image processing fundamentals: Introduction, Image processing applications, Fundamental Steps in Digital Image Processing, Image Sampling and Quantization, Relationships between pixels, Color Fundamentals, color models.

Unit - II

Image Enhancement: Basics of intensity Transformations, Histogram processing, Spatial Domain filtering -Basics of Spatial Filtering, Smoothing and Sharpening Spatial Filtering.

Frequency Domain Filtering- Sampling and Fourier Transform of sampled functions, 2-D Sampling, Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters.

Unit - III

Image Compression: Fundamentals, Image Compression models, Error Free Compression – Huffman Coding, Arithmetic Coding, LZW Coding, Lossy Compression – Block transform coding.
Morphological Image Processing: Introduction, Erosion and Dilation, Opening and Closing, Hit or Miss

Transformations, Boundary Extraction. Image Segmentation: Fundamentals of image segmentation, Point, Line, and Edge Detection.

Unit - IV

Video Processing: video formation, Video Frame classifications- I, P and B frames, Application of motion estimation in video coding, Patterns and Pattern classes - Recognition based on matching.

Text Books:

1. Rafael C. Gonzales, Richard E. Woods, "Digital Image Processing", Third Edition, Pearson Education, 2018.

Reference Books:

1.Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, "Digital Image Processing Using MATLAB", Third Edition Tata Mc Graw Hill Pvt. Ltd., 2011

Anil Jain K. "Fundamentals of Digital Image Processing", PHI Learning Pvt. Ltd., 2011.
M. Tekalp, Digital Video Processing. Signal Processing Series, Prentice Hall, 1995.

4. Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", First Edition, PHI Learning Pvt. Ltd., 2011.

Note: Question paper template will be provided to the paper setter.

ECP-14LA	Microwave Communication Lab							
Lecture	TutorialPracticalCreditPracticalMinor Test						Time	
(Hrs.)	(Hrs.) (Hrs.)							
-	- 4 2 60 40 100 3 H							
Course Outcomes (CO)								
To give the students an idea about the study and analysis of components used in Microwave								
Engg.								

CO1	Students will learn the steps to analyze microwave components.
CO2	Students will be able to find the characteristics of microwave components.
CO3	Students will learn the steps to analyze various antennas.
CO4	Students will be able to find the characteristics of various antennas.

List of Experiments:

- 1. To study microwave components.
- 2. To study the characteristics of the reflex Klystron tube and to determine its electronic tuning range.
- 3. To determine the frequency and wavelength in a rectangular waveguide working in TE 10 mode.
- 4. To determine the standing wave ratio and reflection coefficient.
- 5. To study the I-V characteristics of gunn diode.
- 6. To study the magic Tee.
- 7. To study the isolator and attenuator.
- 8. To measure the coupling coefficient and directivity of a waveguide directional coupler.
- 9. To measure the polar pattern and the gain of a waveguide horn antenna.
- 10. To measure the insertion loss and attenuation.

ECP-15LA	Embedded Systems Lab								
Lecture (Hrs.)	Tutorial (Hrs.)	Practical (Hrs.)	Credit	Practical	Minor Test	Total	Time		
-	-	4	2	60	40	100	3 Hrs.		
Course Outcon	mes (CO)			·	·				
To give the stu	idents an i	dea about	the 8051	/PIC/AVR/ARN	M microcontrollers				
CO1	To familiarization with 8051, PIC, AVR and ARM Microcontrollers.								
CO2	Ability to write an embedded C language and assembly language program for 8051, PIC and AVR Microcontrollers.								
CO3	Ability to interfacing the various Peripheral to 8051, PIC and AVR Microcontrollers.								
CO4	Ability to design the embedded systems based on 8051, PIC and AVR Microcontrollers.								

List of Experiments

- 1. Write an embedded C program using 8051/PIC/AVR Microcontroller for interfacing DC motor to rotate clockwise and anticlockwise directions.
- 2. Write an embedded C program using 8051/PIC/AVR Microcontroller for interfacing stepper motor to rotate clockwise and anticlockwise directions.
- **3.** Write an embedded C program using 8051/PIC/AVR Microcontroller for interfacing LCD to display message "WELCOME" on LCD screen.
- 4. Write an embedded C program using 8051/PIC/AVR Microcontroller for interfacing a switch and a buzzer at two different pins of a Port such that the buzzer should sound as long as the switch is pressed.
- 5. Write an embedded C program using 8051/PIC/AVR Microcontroller for interfacing keypad to port P0.Whenever a key is pressed; it should be displayed on LCD screen.
- 6. Write an embedded C program using 8051/PIC/AVR Microcontroller for interfacing LEDs to glow them in different pattern.
- 7. Write an embedded C program for 8051/PIC/AVR Microcontroller to display 0 to 9 on 7 segment display.
- 8. Write an embedded C program using 8051/PIC/AVR Microcontroller for interfacing RTC module to display current date and time on LCD screen
- 9. Write an embedded C program using 8051/PIC microcontroller for interfacing temperature sensor LM35 to display the current temperature on LCD screen.
- 10. Design an embedded system for traffic light controller using 8051/PIC Microcontroller

ECP-16LA				Robotics la	b			
Lecture (Hrs.)	Tutorial (Hrs.)	Practical (Hrs.)	Credit	Practical	Minor Test	Total	Time	
-	-	4	2	60	40	100	3 Hrs.	
Course Outco To expose the Robot.	mes (CO) students): to the mos	st recent	technological (developments in in	dustrial		
CO1	To fami	To familiarization with FIRE BIRD Robot.						
CO2	Abilities	Abilities to interfacing various peripherals.						
CO3	Student	Student will be able to write embedded C language programming						
CO4	Ability to design the automatic system for robotics based application.							

List of Experiments:

- 1. To get familiar with the AVR Studio 4.17 IDE and Fire Bird Robot.
- 2. Write a program for I/O interfacing to sense the pressing of push button Switch.
- 3. Write a program to alternately blink the set of LED
- 4. Write a program to display two digit numbers on LCD.
- 5. Write a program for obstacle detection of Robot
- 6. Write a program for controlling the speed of Fire Bird Robot.
- 7. Write a program for PWM based speed control of motor.
- 8. Write a program to design white line Follower Robot
- 9. To implement and design social distancing indicator and alarming system.
- 10. To Study implement the temperature based Fan speed controller.

ECP-17LA	Digital Image Processing Lab								
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time		
(Hrs.)	(Hrs.)	(Hrs.)							
-	-	4	2	60	40	100	3 Hrs.		
Course Outcon	nes (CO)								
To give the stu	dents an i	dea about	the study	y and analysis of	digital image proce	essing			
CO1	Students	will be abl	e to expla	in the basics of E	Digital Image process	sing			
CO2	Student will be able to explain sampling and quantization of digital image.								
CO2									
003	Student will be able to analyze the image enhancement operations on digital image.								
CO4	Students will be able to analyze various image analysis and computer vision								
	algorithm								

List of Experiments

- 1. Study of Image processing toolbox of MATLAB.
- 2. WAP to read and show various images of at least five different formats.
- 3. WAP to extract R, G, B component of Color Image.
- 4. WAP to convert a color image into gray scale and save it in new format.
- 5. WAP to invert a gray scale image.
- 6. WAP to implement Morphological operations on an image.
- 7. WAP to implement Histogram equalization.
- 8. WAP to implement various edge detection algorithms.
- 9. WAP to implement image segmentation.
- 10. WAP to implement boundary extraction of basic structure.

ECP-18A	Wireless & Mobile Communication									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	75	25	100	3 Hr.			
Purpose	To introduce environmente technique mobile co	To introduce the concepts of wireless / mobile communication using cellular environment. To make the students to know about the various modulation techniques, propagation methods, and multi access techniques used in the mobile communication.								
	Course Outcomes									
CO 1	It deals with the fundamental cellular radio concepts and generations of modern wireless communication.									
CO 2	This also demonstrates the principle of trunking efficiency and how trunking and interference issues between mobile and base stations combine to affect the overall capacity of cellular systems.									
CO 3	It provides idea about Multiple access techniques used in wireless communication.									
CO 4	It presents different ways to Wireless Standards and mobility management.									

Unit–I

Introduction to Wireless Communication Systems: Evolution of mobile radio communications, examples of wireless comm. systems, paging systems, Cordless telephone systems, comparison of various wireless systems.

Modern Wireless Communication Systems: Second generation cellular networks, third generation wireless networks, wireless in local loop, wireless local area networks, Blue tooth and Personal Area networks.

Unit–II

Introduction to Cellular Mobile Systems: Spectrum Allocation, basic Cellular Systems, performance Criteria, Operation of cellular systems, analog cellular systems, digital Cellular Systems.

Cellular System Design Fundamentals: Frequency Reuse, channel assignment strategies, handoff Strategies, Interference and system capacity, tracking and grade off service, improving coverage and capacity.

Unit– III

Multiple Access Techniques for Wireless Communication: Introduction to Multiple Access, FDMA, TDMA, Spread Spectrum multiple Access, space division multiple access, packet ratio, capacity of a cellular systems.

Unit-IV

Wireless Standards-GSM, IS-95, UMTS-IMT-2000, Signaling, Call Control, Mobility Management and location Tracing.

Suggested Books:

1. Theodore S.Reppeport, Wireless Communications Principles and Practice, IEEEPress, Prentice Hall.

2. William C.Y.Lec, Mobile Cellular Telecommunications, Analog and Digital Systems, Mc-Graw Hill Inc.

3 Kamilo Feher, Wireless Digital Communications, Modernization & Spread SpectrumApplications, Prentice Hall of India, New Delhi.

4 Kaveh Pahlavan and Allen H. Levesque "Wireless Information Networks", WileySeries, John Wiley and Sons Inc.
ECP-19A			Bio-I	Medical Signal	Processing						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	-	-	3	75	25	100	3				
Purpose	To unders	Fo understand the concept of Bio-Medical Signal Processing.									
Course Ou	itcomes										
At the end	of this cou	rse, student	will be abl	le to							
CO 1	Interpret s	ignals and sy	stems								
CO 2	Acquire B	iomedical Sig	gnals such	as ECG							
CO 3	Apply ada	ptive filtering	g algorithm	is in biomedical	l applications	5					
CO 4	Analyze d	ifferent kinds	s of events	and waveforms	of biomedic	al origin					

Unit – I

Signals and Information: Definitions and properties of Laplace transform, Basic of DFT and FFT, z-transform, Sampling theorem.

Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros, frequency response, group delay, phase delay, Applications of Digital Signal Processing.

Unit – II

Introduction to Biomedical Signal: General measurement and diagnostic system, classification of signals, introduction to biomedical signals, Biomedical signal acquisition and processing. **ECG**: ECG signal origin, ECG parameters-QRS detection different techniques, ST segment analysis, Arrhythmia, Arrhythmia analysis, Arrhythmia monitoring system.

Unit – III

Adaptive Filtering: Introduction, General structure of adaptive filters, LMS adaptive filter, adaptive noise cancellation, cancellation of ECG from EMG signal, Cancellation of maternal ECG in fetal ECG. **EEG**: EEG signal characteristics, Sleep EEG classification and epilepsy.

Unit – IV

Event Detection and waveform analysis: Need for event detection, Detection of events & waves, Correlation analysis of EEG signals, Identification of heart sounds, Morphological analysis of ECG waves. **Frequency Domain Analysis:** Introduction, Spectral analysis, linear filtering, Removal of high frequency noise (power line interference), motion artifacts (low frequency) and power line interference in ECG.

Text Book:

- 1. Biomedical Signal Analysis" A case study approach, Rangaraj M Rangayyan, John Wiley publications. **Reference Books:**
- 1. "Biomedical Signal Processing Time and Frequency Domains Analysis (Volume I)", Arnon Cohen, CRC press.
- 2. "Biomedical Signal Processing Principles and Techniques" D.C.Reddy, Tata Mc Graw-Hill
- 3. "Biomedical Digital Signal Processing", Willis J. Tompkins, PHI

ECP-20A			Machin	e Learning	5				
Lecture	Tutorial	Practical	Major Test	Minor Test	Total	Time			
3	0	0	75	25	100	3 Hr.			
Course Outcomes									
	Recite and understand the knowledge of classification and associated								
CO1	algorithms								
COA	Explain and	apply algorith	ms of statis	tical pattern	recognition	and supervised			
CO2	Learning								
	Explain, im	plement and ap	ply algorith	ims of non-	parametric le	earning, feature			
CO3	extraction a	nd selection							
	Understand	explain and ap	ply un-sup	ervised lear	ning, estima	tion and			
CO4	comparison	of different cla	ssifiers						

UNIT-I

Classification: The Classification Process, Features, Training and Learning, Supervised Learning and Algorithm Selection, Approaches to Classification, Examples. **Nonmetric Methods:** Introduction, Decision Tree Classifier, Information, Entropy, Impurity,

Information Gain, Decision Tree Issues, Strengths and Weaknesses, Rule-Based Classifier, Other Methods.

UNIT-II

Statistical Pattern Recognition: Measured Data and Measurement Errors, Probability Theory, Simple Probability Theory, Conditional Probability and Bayes' Rule, Naive Bayes Classifier, Continuous Random Variables, The Multivariate Gaussian, The Covariance Matrix, The Mahalanobis Distance.

Supervised Learning: Parametric and Non-parametric Learning, Parametric Learning, Bayesian Decision Theory, Discriminant Functions and Decision Boundaries, MAP (Maximum A Posteriori) Estimator.

UNIT-III

Nonparametric Learning: Histogram Estimator and Parzen Windows, k-Nearest Neighbor (k-NN) Classification, Artificial Neural Networks, Kernel Machines.

Feature Extraction and Selection: Reducing Dimensionality, Preprocessing, Feature Selection, Inter/Intraclass Distance, Subset Selection, Feature Extraction, Principal Component Analysis, Linear Discriminant Analysis.

UNIT-IV

Unsupervised Learning: Clustering, k-Means Clustering, Fuzzy c-Means Clustering, (Agglomerative) Hierarchical Clustering.

Estimating and Comparing Classifiers: Comparing Classifiers and the No Free Lunch Theorem , Bias and Variance, Cross-Validation and Resampling Methods: The Holdout Method , k-Fold Cross-Validation, Bootstrap, Measuring Classifier Performance, Comparing Classifiers, ROC Curves, McNemar's Test, Other Statistical Tests, The Classification Toolbox, Combining Classifiers.

Text/References Books:

1. Geoff Dougherty: Pattern Recognition and Classification An Introduction, 2013, Springer.

2. Christopher M. Bishop: Pattern Recognition and Machine Learning, Springer.

10(1717)

ECP-21A				Artificia	l Intelligen	ce					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	75	25	100	3 Hr.				
	Course Outcomes										
CO1	To familiarize the students with the fundamental concepts of Artificial Intelligance.										
CO2	Students w	ill able to le	arn the det	ail knowledg	ge of Superv	vised and U	nsupervised Learning.				
CO3	After this u Object Dete	nit students ction and T	will be ab	le to underst	and the cond	cepts of Gei	netic Algorithm and				
CO4	Students wireinforceme	ill be able to nt learning.	understan	d the conce	pt of Artifici	al Neural N	letworks and				

UNIT-I

Introduction to Artificial Intelligence, need of AI, Applications of AI, Branches of AI, Defining intelligence using Turing Test, Classification, Preprocessing data, Label encoding, Logistic Regression classifier, Naïve Bayes classifier, Support Vector Machines.

UNIT-II

Regression, Building a single variable regressor, Building a multivariable regressor, Supervised and Unsupervised Learning, Detecting Patterns with Unsupervised Learning, Clustering data with K-Means algorithm, Estimating the number of clusters with Mean Shift algorithm,

UNIT-III

Genetic Algorithms, Fundamental concepts in genetic algorithms, Generating a bit pattern with predefined parameters Object Detection and Tracking: Frame differencing, Tracking objects using colorspaces, Object tracking using background subtraction, Face detection and tracking, Eye detection and tracking.

UNIT-IV

Artificial Neural Networks, Building a Perceptron based classifier, Constructing a single layer neural network, Constructing a multilayer neural network, Reinforcement Learning, Reinforcement learning versus supervised learning, Building blocks of reinforcement learning.

Text Book:

1. Introduction to Artificial Intelligence by Philip C. Jackson · 1974

Reference Book:

- 2. Artificial Intelligence by Chris Neil · 2020
- 3. Artificial Intelligence with Python by Prateek Joshi.

ECP -22	A			Internet	of Things					
Lecture	Tutori al	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	75	25	100	3 Hr.			
Course										
		Outcom	es							
CO1	CO1 Understand what IoT technologies are used for today, and what is required in certain scenarios.									
CO2	Understand utilized to i	the types implement	of technolo loT solutio	ogies that a ns.	re available ai	nd in use toda	y and can be			
CO3	Understand	I the type of	f protocols	and challer	nges for design	ning IoT syste	ms.			
CO4	Apply thes platform for Understand	se technolo or impleme l operating	gies to tac enting prot system req	ckle scenar otypes and uirements o	ios in teams l testing then of IOT.	of using an as running	experimental applications.			

Unit 1

Introduction to IoT: Defining IoT, Characteristics of IoT, Functional blocks of IoT, Physical and logical design of IoT, Smart cities and IoT revolution, ,Difference between IoT and M2M, M2M and peer networking concepts Ipv4 and IPV6, Software Defined Networks SDN,

Unit 2

Developing IoTs: IoT design methodology, case study on IoT system for weather monitoring. IoT system Management,

Developing IoT applications through embedded system platform: Introduction to sensors, IoT physical devices and endpoints, Raspberry pi, Raspberry pi interfaces, Arduino, arduino interfaces.

Unit 3

Protocols for IoT- messaging protocols, transport protocols, Ipv4, Ipv6, URI, Cloud for IoT: IoT with cloud, challenges, introduction to fog computing, cloud computing,

Challenges in IoT: Design challenges, development challenges, security and legal considerations.

Unit 4

Logic design using Python: Introduction to python, data types, data structures, control flow, functions, modules, file handling and classes., implementing IotT concepts with python,

Applications of IoT, Connected cars IoT Transportation, Smart Grid and Healthcare sectors using IoT,

References:

- 1) A Bahaga, V. Madisetti, "Internet of Things- Hands on approach", University press, 2014.
- 2) S.K.Vasudevan, A.S.Nagarajan, "Internet of Things", Wiley, 2019.
- CunoPfister, "Getting started with Internet of Things", Maker Media, 1st edition, 2011. Samuel Greenguard, "Internet of things", MIT Press, 2015.

Web resources:

- 1) http://www.datamation.com/open-source/35-open-source-tools-for-the-internet-of-things-1.html
- 2) https://developer.mbed.org/handbook/AnalogIn
- 3) http://www.libelium.com/50_sensor_applications
- 4) M2MLabs Mainspring http://www.m2mlabs.com/framework Node-RED http://nodered.org/

ECP-23A		Error Correcting Codes										
Lecture	Tutorial	Practical	Major Test	Minor Test	Total	Time						
3	0	0	75	25	100	3 Hr.						
		Cour	se Outcom	es								
C01	Student wi	ll be able to eva	luate linear	codes								
<u>CO2</u>	Student wi	ll be able to eva	luate cyclic	c codes								
CO3	Student wi	ll be able to eva	luate BSH	and RS cod	es							
CO4	Student wi	ll be able to eva	iluate convo	olution code	es							

Unit- I

Basic concepts of linear codes: Three fields, linear codes, generator and parity matrix, dual codes, weights and distances, puncturing codes, extending codes, shortening codes, direct sums, permutation equivalent codes, Golay codes, RM Codes

Unit- II

Cyclic Codes: polynomials and euclidean algorithm, primitive elements, finite fields, subfields, field automorphism. clotomic cosets and minimal polynomials, factoring x^n -1, zeros of cyclic code, minimum distance of cyclic codes.

Unit -III

BCH and RS codes: BCH codes, RS Codes, generalized RS codes, decoding BCH codes, burst error, concatenated and interleaving codes.

Unit-IV

Convolution codes: generator matrices and encoding, veterbi decoding: state diagram, trellis, diagram and viterbi algorithm, canonical generator matrices, free distance.

Soft decision and iterative decoding: AWGN, soft decision viterbi decoding, general viterbi algorithm, two way app decoding.

Text Books:

1.W. Cary Huffman, Fundamentals of Error-Correcting Codes by Cambridge University Press

Reference Books:

- 1. Ranjan Bose, Information Theory and Coding, McGraw Hill
- 2. W. Wesley Peterson and E. J. Weldon, Error-Correcting Codes, The MIT Press

Note: Question paper template will be provided to the paper setter.

ECP-24A			Satell	ite Commun	ication					
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time			
				Test	Test					
3	0	0	3	75	25	100	3 Hr.			
Purpose	e To familiarize the students with the concepts of Satellite communication and various									
	terms, laws and multiple access schemes used in its working.									
Course Ou	itcomes									
CO1	To understa	nd the conce	pt of basics o	of satellite con	mmunicatior	n and various	basic laws			
	and terms of	f satellite con	imunication.							
CO2	To understa	nd the conce	pt and proce	sses of variou	us communic	cation satellite	es used in			
	satellite com	munication.								
CO3	To familiariz	ze with the co	oncept and d	esign issues o	of satellite lir	nk design and	satellite			
	access.									
CO4	To familiariz	ze with the co	oncepts of M	ultiple access	s schemes us	ed in satellite				
	communicat	ion.								

Unit -I

SATELLITE ORBITS: Orbital Mechanics- Kepler's laws ,locating the satellite in the Orbit, locating the satellite with respect to the earth, Orbital elements, look angle determination, Sub satellite point, Azimuth and elevation angle calculation, Orbital perturbations, Longitudinal and Inclination changes; Launches and launch vehicles-ELV's, Placing the satellite into geostationary orbit, Doppler shift, range variations, solar eclipse, sun transit outage.

Unit -II

COMMUNICATION SATELLITES: Satellite Subsystems, Attitude and Orbit Control system(AOCS), Telemetry, Tracking, Command and Monitoring (TTC&M), Power System, Communication Subsystems-description, Transponders, satellite antennas-basic antenna types, basic antennas in practice.

Unit -III

Satellite link design and Satellite access: Basic transmission theory, system noise temperature and G/T ratio; Downlink design-link budget; Uplink design; design for specified C/N, uplink and downlink attenuation in rain, communication link design procedure; system design examples.

Unit –IV

Multiple access schemes: FDMA, TDMA, CDMA, DAMA; VSAT systems-basic techniques, VSAT earth station engineering, system design; DBS systems-C-band and Ku band home TV, digital DBS; satellite mobile systems; GPS

Text Books:

1. Timothy Pratt, Satellite Communications, Wiley India edition

Reference Books:

- 2. Anil K Maini, Satellite Communication, Wiley India edition.
- 3. Siegmund M. Redl, Mathias K. Weber, Malcolm W. Oliphant, "An Introduction to GSM", Artech House Publishers, 1995.
- 4. Kraus, J.D., "Antennas", II Edition, John Wiley and Sons, NY, 1977. 5. Collin, R.E. and Zucker, F., "Antenna theory: Part I", Tata McGraw Hill, NY, 1969.

ECP-25A	High Speed Electronics											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	-	-	3	75	25	100	3 Hour					
Course O	utcomes						·					
CO 1	Understa electronic	Understand significance and the areas of application of high-speed electronics circuits.										
CO 2	Understa electronic	nd the prop es	perties of v	various con	nponents u	sed in high	speed					
CO 3	Design Hig	h-speed elect	ronic systen	n using appro	opriate comp	onents.						
CO 4	To be abl	e to unders	tand the e	effect of sca	ling on hig	h speed V	LSI circuits.					

UNIT-I

Transit time of charge carriers, junction capacitances, ON-resistances and their dependence on the device geometry and size, carrier mobility, doping concentration and temperature. Contact resistance and interconnection/interlayer capacitances in the Integrated Electronics Circuits.

UNIT-II

Introduction to high-speed digital design: Frequency, time and distance - Capacitance and inductance effects - High seed properties of logic gates - Speed and power - Modelling of wires -Geometry and electrical properties of wires - Electrical models of wires - transmission lines - lossless LC transmission lines - lossy LRC transmission lines

UNIT-III

Devices: Passive and active, Lumped passive devices, Active : low frequency and high frequency models RF Amplifier Design, Stability, Low Noise Amplifiers, Broadband Amplifiers and Power Amplifiers, Class A, B, AB and C, D, E.

UNIT-IV

Impact of scaling on High Speed VLSI Circuit, Inter-Die Variation, Intra-Die Variation, Fail Causes Optimization

Techniques for High Speed VLSI: Mathematic Optimization, Circuit optimization, CAD tool for optimization

Books:

- 1. Stephen H. Hall, Garrett W. Hall, James A. McCall "High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices", August 2000, Wiley-IEEE Press
- 2. Kerry Bernstein & et. al., High Speed CMOS Design Styles, Kluwer, 1999
- 3. William S. Dally & John W. Poulton; Digital Systems Engineering, Cambridge University Press, 1998
- 4. Howard Johnson & Martin Graham; High Speed Digital Design: A Handbook of Black Magic, Prentice Hall PTR, 1993
- 5. Masakazu Shoji; High Speed Digital Circuits, Addison Wesley Publishing Company, 1996
- 6. William S. Dally & John W. Poulton; Digital Systems Engineering, Cambridge University Press, 1998
- 7. Howard Johnson & Martin Graham; High Speed Digital Design: A Handbook of Black Magic, Prentice Hall PTR, 1993
- 8. Thomas H. Lee, "The Design of CMOS Radio-Frequency Integrated Circuits", CambridgeUniversity Press, 2004, ISBN 0521835399.
- 9. Behzad Razavi, "RF Microelectronics", Prentice-Hall 1998, ISBN 0-13-887571-5.
- 10. Guillermo Gonzalez, "Microwave Transistor Amplifiers", 2nd Edition, Prentice Hall.

- Kai Chang, "RF and Microwave Wireless systems", Wiley.
 R.G. Kaduskar and V.B.Baru, Electronic Product design, Wiley India, 2011 Course Outcomes:

ECP-26A	Software Defined Radio											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	-	3 Hrs.										
Purpose	To understand the underlying principles of Software Defined Radios and Cognitive Radio Networks.											
Course Ou	utcomes											
CO1	Understand conventior	Understand the principles behind the Software Defined Radios over the conventional Cognitive Radios										
CO2	Ability to techniques	analyze Sof	tware Defi	ined Netwo	orking protoc	ols and co	gnitive radio					
CO3	Understand	d the data tra	versal over	SDN								
CO4	Design alg	orithms for S	Software De	efined Radi	o and cogniti	ve radio en	vironments					
CO5	Understand adaptive n	d the various etworks.	types of ke	ey routing a	nd switching	techniques	used in					

UNIT I

SOFTWARE DEFINED RADIO CONCEPTS

Need for Software Radios - Characteristics and Benefits of a Software Radio - Design Principles of a Software Radio - RF Receiver Front-End Topologies - Importance of the Components to Overall Performance - Transmitter Architectures and Their Issues - Noise and Distortion in the RF Chain ADC and DAC Distortion - Flexible RF Systems

UNIT II

SDR AS A PLATFORM FOR COGNITIVE RADIO

Hardware Architecture: Baseband Processors - Hardware Architecture: Multi-Core Systems - Software Architecture: Design Philosophies - GNU Radio - Software Communications Architecture - Application Software - Component Development - Waveform Development - Cognitive Waveform Development

UNIT III

COGNITIVE RADIO: TECHNOLOGIES REQUIRED

Software Capable Radios - Software Programmable Radios - SDR Examples - Aware Adaptive and CRs - Radio Capabilities and Properties Comparison - Spectrum Awareness and Frequency Occupancy - Software Technology - Funding and Researches in CRs - Directions and Standards

UNIT IV

OBJECT ORIENTED REPRESENTATION OF RADIOS

Introduction to Network Resources - Network Resources - Object Oriented Programming - Object Request Broker Architecture - Object Brokers and Software Radios - Mobile Application Environments - Security in Software Radios - Joint Tactical Radio Systems - SCA Architectures. REFERENCES

1. Software Radio: A Modern Approach to Radio Engineering By Jeffrey H. Reed Pearson Education Low Price Edition

2. "Cognitive Radio Technology", Bruce A Fette, Academic Press, 2009

3. Cognitive Radio Networks by Wyglinski, Alexander M. Nekovee, Maziar, Hou, Y. Thomas, 2010 Elsevier.

4. "Cognitive Radio, Software Defined Radio and Adaptive wireless system, Huseyin Arslan, Springer, 1 edition, September 24, 2007

ECP-18LA		Wireless Communication Lab									
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time				
(Hrs.)	(Hrs.)	(Hrs.)									
-	-	4	2	60	40	100	3 Hrs.				

Course Outcomes (CO)

To give the students an idea about the Wireless communication theory and technology using the NI-Labview software and RF communication module.

CO1	To study the wireless communication using NI-Labview
CO2	To learn about the functioning of Universal Software Radio Peripheral (USRP)
CO3	To learn the implementation of different analog modulation schemes using the USRP
CO4	To learn the implementation of different digital modulation schemes using the USRP.

List of Experiments:

- 1. Introduction to NI-LabVIEW and familiarization with its basic functions.
- 2. Study of modulation toolkit and its usage in Wireless Communication.
- 3. Study the interfacing of hardware (USRP module) with the PC and configuring the same.
- 4. Implementation of AM using Software Defined Radio (SDR).
- 5. Implementation of FM using SDR with application such as transfer of files
- 6. Implementation of M-PSK transmitter using SDR concept.
- 7. Implementation of M-PSK receiver using SDR
- 8. Implementation of M-QAM transmitter using SDR.

9. Demonstrates the use of the Bluetooth functions to set up data transfer via Bluetooth between a server VI and a client VI.

- 10. Design two-dimensional convolution to perform image edge detection.
- 11. Implementation of M-QAM receiver using SDR.
- 12. Implementation of PSK Modulation system with Convolutional Coding.
- 13. Implementation of FSK Modulation system with BCH Coding.
- 14. Implementation of QAM Modulation system with Golay Coding

ECP-19LA		Biomedical lab								
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time			
(Hrs.)	(Hrs.)	(Hrs.)								
-	-	4	2	60	40	100	3 Hrs.			
Course Outcomes (CO)										
At the end of th	ne course,	student wi	ll be able	to						
CO1										
	Elaborat	te various l	biomedica	al signals						
CO2	Acquire	and simula	te ECG ,	EMG and EEG bio	omedical signals					
CO3	Simulat	e ECG Pul	se missin	g detector						
CO4	Demonst	trate the fu	nctions o	f defibrillator and	pacemaker					

List of Experiments:

- 1. Familiarization of various biomedical signals.
- 2. To simulate Electrocardiogram Waveform
- 3. To simulate Electroencephalogram Signal
- 4. To simulate Electromyogram Signal
- 5. To Simulate Defibrillator
- 6. To simulate Pacemaker
- 7. To simulate Haemodialysis Machine
- 8. To simulate Biopotential Amplifier
- 9. To simulate ECG Pulse missing detector.
- 10. To simulate 12 Lead ECG Signals.

ECP-20LA			I	Machine Learn	ing Lab						
Lecture (Hrs.)	Tutorial (Hrs.)	Practical (Hrs.)	Credit	Practical	Minor Test	Total	Time				
-	-	4	2	60	40	100	3 Hrs.				
Course Outcon	Course Outcomes (CO)										
At the end of the course, student will be able to											
CO1	Elaborate	machine l	earning f	undamentals							
CO2	Impleme	nt different	classific	ation/regressior	algorithms						
CO3	Design a	Design and develop artificial neural networks for different applications									
CO4	Develop	clustering	algorithm	าร							

List of Experiments:

- 1. To get familiarize with machine learning.
- 2. Implement and demonstrate the FIND-Salgorithm for finding the most specific hypothesis based on

a given set of training data samples. Read the training data from a .CSV file

3. For a given set of training data examples stored in a .CSV file, implement and demonstrate

the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent

with the training examples.

- 4. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 5. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
- 6. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 7. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in MATLAB/Python/Java classes/API can be used to write the program.

Calculate the accuracy, precision, and recall for your data set

10(1727)

- 8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add MATLAB/Java/Python ML library classes/API in the program.
- 9. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. MATLAB/Java/Python ML library classes can be used for this problem
- Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points.
 Select appropriate data set for your experiment and draw graphs.

ECP-21LA		Artificial Intelligence Lab					
Lecture	Tutorial	Practical	Credit	Practical	Minor test	Total	Time
0	0	4	2	60	40	100	3 Hr.
		(Course Out	comes			
		At the end of th	ne course st	udent will l	be able to		
CO1	Implement	AND/OR&NOT	gate using	single layer	perceptio	n	
CO2	CO2 Implement XOR gate using multilayer perception						
CO3	CO3 Demonstrate the function of fuzzification/defuzzification processes						
CO4	Demonstrate different case studies in the domain						

List of Experiments:

- 1. Implementation of AND/OR/NOT Gate using Single Layer Perceptron
- 2. Implementation of XOR Gate Using Multi-Layer Perceptron/ Error Back Propagation
- 3. Implementation of XOR Gate Using Radial Basis Function Network
- 4. Understanding the concepts of Perceptron Learning Rule
- 5. Understanding the concepts of Hebbiann Learning Rule
- 6. Understanding the concepts of Correlation Learning Rule
- 7. Understanding the working of Kohonen's Self Organising Maps
- 8. Understanding the functioning of Fuzzification process
- 9. Implementation of different method of Defuzzification process
- 10. Case study explaining function of Fuzzy Inference System
- 11. Case study explaining function of Optical Character Recognition

		Internet of Things Lab						
ECP-22LA								
Lecture	Tutorial	TutorialPracticalCreditPracticalMinorTotalTime						
					test			
-	0	4	2	60	40	100	3 Hr.	
Course Outcon	ne: Students	will be able to g	et the idea	of Internet	of Thing	s technol	logy.	
CO1	Student w	ill be able to get :	familiarize	with Ardu	ino and R	aspberr	y Pi	
	Student w	Student will be able to implement interfacing different sensorss with Arduino and						
CO2	Raspberry Pi							
CO3	Student w	Student will be able to understand the concept of cloud						
CO4	Student w	ill be able to desi	gn module	based on	Internet o	of Thing	s application	

List of Experiments

- 1. Familiarization with concept of IoT, Arduino/Raspberry Pi and perform necessary software installation.
- 2. To interface LED/ Buzzer using relay with Arduino/Raspberry Pi and write a program to turn ON/OFF LED/Buzzer.
- 3. To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a program to turn ON LED when push button is pressed.
- 4. To interface Analog sensors(Temperature/Humidity/ Ultrasonic) with Arduino/Raspberry Pi and write a program to display sensors data on the computer screen.
- 5. To interface OLED with Arduino/Raspberry Pi and write a program to print sensor data on it.
- 6. To interface sensor with Arduino/Raspberry Pi and write a program to turn ON/OFF Relay when sensor data is detected.
- 7. To interface motor using relay with Arduino/Raspberry Pi and write a program to turn ON/OFF motor when push button is pressed.
- 8. To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data on smart phone using Bluetooth.
- 9. To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when a 1/0 is received from smartphone using Bluetooth.
- 10. Write a program to upload sensor data on cloud.
- 11. Write a program to retrieve sensor data from cloud.

Components required-

- 1. Arduino with cable
- 2. Raspberry Pi with cable and memory card
- 3. Node MCU
- 4. Sensors-IR, LDR, DHT11 sensor, Push button, Pressure senser, Temperature sensor, Vibration, Rotation, Location, Torque, Sound, Weight etc.
- 5. Actuators-LED, Buzzer, Relay Switch, Motors, Motor Drivers, OLED, Display, Linear Actuator,
- 6. Bluetooth Module, Wi-fi Module, Ethernet Module
- 7. Smart Phone
- 8. Computer
- 9. Power Supply-5V, 12V, 3.3V
- 10. Internet facility

ECP-23LA	Augmented Reality/Virtual Reality Lab							
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time	
(Hrs.)	(Hrs.)	(Hrs.)						
-	-	4	2	60	40	100	3 Hrs.	
Course Outcon	nes (CO)							
To expose the s	tudents to	o the most	recent tecl	hnology i.e. Augm	ented Reality and	Virtual		
Reality.								
CO1	Student v	will be abl	e to fami	liarization of ba	sics of Augmented	Reality a	nd Virtual	
	Reality							
CO2	Student will be able to Design 3D Objects							
CO3	Student will be able to get an idea about the Vuforia .							
CO4	Student will be able to design Game in Unity 3D Project.							

List of Experiments

- 1. To get familiarization with the basics of AR/VR
- 2. Introduction to Unity 3D, and its game objects, materials, cameras, standard assets, asset store, adjusting size, position and rotation of game objects .
- 3. Program to Design 3D Modelling, Importing 3D models in Unity 3D, and to add buttons.
- 4. Program to Design of animating 3D models, adding material to 3d models
- 5. Program to Design User Interface using Unity 3D and customizing the colour, size, background, text etc. of the UI elements
- 6. To learn about Scripting, Adding scripts to game objects, controlling objects with scripts, button functionality with scripting.
- 7. Program to design Prefabs/Physics Elements, Creating prefabs, adding physics to game objects.
- 8. To learn about Vuforia SDK, Vuforia integration with Unity 3D, selecting a perfect image for AR development.
- 9. To design 2D game on Unity 3D
- 10. To learn about Scene Management in Augmented Reality Applications, MultiScene Arrangement in Augmented Reality Applications

Note: the above mentioned experiments are not limited. Teacher may introduce new experiments

Sr. No.	Course No./Code	Subject	L:T:P	Hours/ Week	Credits	Exam	Examination Schedule (Marks)			Duration of Exam
						Major Test	Minor Test	Practical	Total	(118)
1	HTM-901A	Universal Human Values II : Understanding Harmony	3:0:0	3	3	75	25	0	100	3
2	PCC-TEX-203A	Yarn Manufacturing-I	3:1:0	4	4	75	25	0	100	3
3	PCC-TEX-205A	Fabric Manufacturing-I	3:1:0	4	4	75	25	0	100	3
4	PCC-TEX-207A	Textile Chemical Processing-I	3:1:0	4	4	75	25	0	100	3
5	PCC-TEX-209LA	Textile Fibre - I Lab	0:0:4	4	2	-	40	60	100	3
6	PCC-TEX-211LA	Yarn Manufacturing-I Lab	0:0:2	2	1	-	40	60	100	3
7	PCC-TEX-213LA	Fabric Manufacturing-I Lab	0:0:2	2	1	-	40	60	100	3
8	PCC-TEX-215LA	Textile Chemical Processing-I Lab	0:0:2	2	1	-	40	60	100	3
Total				25	20	300	260	240	800	
9	*MC-901A	Environmental Sciences	3:0:0	3	-	75	25	0	100	3

Bachelor of Technology (Textile Technology) (Credit Based) Scheme of Studies/Examination (Modified) Semester III (w e f. session 2021-2022)

HTM-901A	Universal Human Values II: Understanding Harmony						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time
3	0	0	3.0	75	25	100	3 Hours
Purpose	Purpose and motivation for the course, recapitulation from Universal Human Values-I						
Course Out	comes (CO)						
CO 1	Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.						
CO 2	Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.						
CO 3	Strengthening of self-reflection.						
CO 4	Developm	ent of comn	nitment and	courage to a	ict.		

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrarinessin choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'I' and harmony in 'I'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-HumanRelationship

10(1733)

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship
- 16. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- fromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations
- 28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. to discuss the conduct as an engineer or scientist etc.

10(1734)

READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them.

Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration. Scenarios may be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extraordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based onbasic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemed essential.

10(1735)

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example:

Assessment by

faculty mentor: 5 marks

Self-assessment: 5 marks

Assessment by peers: 5 marks

Socially relevant project/Group Activities/Assignments: 10 marks

Semester End Examination: 75 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

10(1736)

Programme Name	Bachelor of Technology in Textile Technology	Semester VII		
Course Title	TECHNICAL TEXTILES - I			
Course Code	PCC-TEX-401A			
Course Purpose	- To make student aware of non-apparel functions p	erformed by textile		
	substrates			
	After completing this course, students will be able to):		
	CO1 – Define and classify the technical textile.			
Course Outcomes	CO2 – Explain the properties of technical textile materials. CO3–			
Course Outcomes	Explain the functioning and applications of textile material infiltration,			
	geotextile and transportation.			
	CO4 – Design the fabric for technical textile application			
Prerequisite	Knowledge of textile materials and their production	methods.		

PCC-TEX-401A

TECHNICAL TEXTILES - I

L	Т	Р	Sessional: 25 Marks
4	1	-	Exam: 75 Marks
			Total: 100 Marks
			Time: 3 hrs

Note- Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type 10 questions of multiple choices covering the entire four units.

Unit I

Introduction, definition and growth of technical textiles, Classification of Technical Textiles. Brief idea about technical fibres. Role of yarn construction, fabric construction and composite materials. Differentiate technical textile from traditional textile. Present market and future market trends of technical textile.

Unit II

Filtration:

Textile and other filter media for dry and wet filtration. Filtration parameters. Theory of dust collection and solid liquid separation. Filtration requirements. Role of fibre, fabric construction and finishing treatments. Concept of pore size and particle size. Nano filters. Fabric test equipments. Types of nonwoven filter media available in market and their usages and efficiencies.

Unit III

Geotextiles:

Scope, definition, Types of geo textiles and their uses. Functions and application areas of Geotextiles. Essential properties. Fibre and fabric selection criteria for geotextile applications. Advantages and disadvantages of woven, non-woven geotextiles, Mechanics of reinforcement, filtration and drainage by Geotextiles.

Natural fibre Geotextiles.

Methods of long term prediction of geotextile life and survivability in soil. Geotextile testing and evaluation.

10(1737)

Unit IV

Textiles in Transportation:

Introduction to automotive textile. Application of textiles in automobiles. Fibre requirements. Textile in passenger cars, tyres, airbags, seat belts, hoses and filters. Requirement and design options Textiles in other road vehicles. Railway application. Application in aircraft and marine. Textile as structural elements in transport vehicles.

Suggested Text Books & References

- "Handbook of Technical Textiles", Ed. A R Horrcks and S C Anand, Woodhead Publication Ltd, Cambridge, 2000
- 2. "Handbook of Industrial Textiles", Ed. Sabit Adanur, Technomic Publishing Co. INC

10(1738)

Programme Name	Bachelor of Technology in Textiles Technology	Semester VII		
Course Title	ADVANCED CHEMICAL PROCESSI	NG		
Course Code	PCC-TEX-403A			
Durnoso	-To study the advance chemical processes and computer	r colour		
i ui pose	matching(CCM) system for textile materials			
	After completing this course student will be able to:			
	CO1- Adapt the advance and ecofriendly methods of pretreatment and			
	dyeing processes for superior processing quality.			
Course Outcomes	CO2-Explain the novel printing techniques and functional finishes. CO3-			
Course Outcomes	Understand the various light sources and colour matching functionsused			
	in CCM.			
	CO4-Understand the working principle and use of spectrophotometer in			
	colour matching and recipe prediction for textile materi	ials.		
Prerequisite	Basic knowledge of textile chemical processing			

PCC-TEX-403A

ADVANCED CHEMICAL PROCESSING

LTP	Sessional: 25 Marks
41-	Exam: 75 Marks
	Total: 100 Marks
	Time: 3 hrs

Note-*Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type 10 questions of multiple choices covering the entire four units.*

<u>Unit I:</u>

Continuous open width processing, use of eco-friendly enzymes in wet processing, Super critical CO₂ dyeing, New reactive and disperse dyes, Grading and methods to determine fastness relating to washing, light, perspiration, sublimation and hot-pressing treatment.

Unit II:

Novel printing techniques like Ink Jet printing or digital printing, zero formaldehyde easy-care finishes, polysiloxanes based softener, Breathable water-proof fabrics, Antimicrobial finishing of textiles, Self-cleaning and Low wet pick-up techniques.

Unit III:

Fundamentals of colour science, Sources of natural and artificial light, CIE illuminants, absorption and scattering of light, Beer-Lambert law, Additive and subtractive mixing, Standard observer color matching function, Tristimulus values, Chromaticity coordinates, Kubelka-Munk equation, Metameres.

Unit IV:

Principle of spectrophotometer, Colorimeter, Munsell system of color specification, Whiteness and yellowness indices, Computer aided color matching and recipe prediction.

10(1739)

Suggested Text Books & References

- 1 "Instrumental Colour Measurements and Computer Aided Colour Matching for Textiles", Shah H.S. & Gandhi R.S., Mahajan Book Distributors.
- 2 "Computer Colour Analysis: Textile Applications" by Sule A.D.
- 3 "Computer Aided Colour Matching", by Shore J, SDC U.K 1998, ISBN.
- 4 "Textile Finishing", Heywood D.,
- 5 "Chemical Finishing of Textiles", by Schindler W.D & and Hauser P.J.
- 6 Colourage Journal.
- 7 Asian Dyer
- 8 Asian Textile Journal
- 9 Man-made Textiles in India
- 10 AATCC Technical Manual.

10(1740)

Programme Name	Bachelor of Technology in Textile Technology	Semester VII	
Course Title	PROCESS CONTROL IN SPINNING & WE	CAVING	
Course Code	PEC-TEX-409A		
Purpose	achieving desired		
Course Outcomes	After completing this course, students will be able to: CO1- Understand the approach and methodology of process control. CO2- Identify various performance parameters to control spinning process. CO3-Identify various performance parameters for controlling weaving process. CO4-Calculate the machine productivity index, efficiency, labour and machine allocation in spinning and weaving		
Prerequisite	Knowledge of textile manufacturing and process		

PEC-TEX-409A

PROCESS CONTROL IN SPINNING & WEAVING

L	Т	Р	Sessional: 25 Marks
3	1	-	Exam: 75 Marks
			Total: 100 Marks
			Time: 3 hrs

Note-*Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type questions of multiple choices covering the entire four units.*

Unit I

Introduction, importance of process control in spinning, key variables, establishing norms, collection & interpretation of data for process control, maximizing quality & cost evaluation of fibre quality, linear programming for cotton mixing, yarn realization, estimation & control of yarn realization, waste & their norms.

Unit 2

Process control in preparatory: Control of cotton contamination, control of cleaning efficiency and waste in blow room and card, comber, control of neps in sliver at card draw-frame and comber stage. **Process control at yarn stage**: Control of yarn imperfections and faults in yarns, control of yarn count and count CV%., control of strength, and strength CV%., control of periodic mass variations, package faults, calculations pertaining to production, productivity indices and evaluation of indices in spinning efficiency and machine allocation in preparatory and ring spinning

Unit 3

Weaving:

Approach, methodology and scope for process control in weaving.

Process control in winding: Knot quality, efficient removal of yarn faults and the control of productivity.

Process control in warping: Control of end breaks, tension levels, quality and the productivity in warping.

Process control in sizing: Choice and the control of size pick-up, yarn stretch and moisture in sized yarns. Improving weavability of the sized yarn and the control of productivity and size losses.

Process control in pirn winding: Minimizing end breaks and stoppages. Improving the build of the pirn and the productivity. Process control in Loomshed

10(1741)

Unit 4

Productivity

Definition, idea of productivity calculations of weaving mill and factors affecting productivity, productivity indices used in weaving, relation between machine allocation and machine efficiency, calculations pertaining to production, efficiency and machine allocation in winding, warping, pirn winding, sizing and loom shed.

Material handling in spinning / weaving department, humidification and air-conditioning provisions, ventilation & air changes

Suggested Text Books & References

- 1. Garde A R and Subramanian T A, "Process Control in Cotton Spinning," ATIRA, Ahmedabad, 2nd Ed., 1978.
- 2. Paliwal M C and Kimothi P D," Process Control in weaving", ATIRA, Ahmedabad 2ndEd, 1978.
- 3. Gokhale S V and Modi J R, "Process and Quality Control in Chemical Processing of Textiles", ATIRA, Ahmedabad, 1992
- 4. Ratanam T V, "Quality control in spinning", SITRA, Coimbatore, 1994.
- 5. Salhotra K R, Chattopadhyay R and Ishtiaque S M, "Process control in spinning", IIT, Delhi, CD cell, 2001
- 6. Thilagvathy G. and Kartik T., "Process control and yarn quality in spinning

10(1742)

Programme Name	Bachelor of Technology in Textile Technology	Semester VII			
Course Title	Process Control in Garment				
Course Code	PEC-TEX-411A				
Durnoso	-To understand the concept of automation based garment manufacturing.				
i ui pose	-To study quality control aspects in garment manufacturing.				
	After completing this course students will be able to:				
	CO1: Understand latest garment manufacturing technologies.				
Course Outcome	CO2: Discuss the concept of production, planning and cont	rol.			
Course Outcome	CO3: Select the sewing thread, stitch and seam for various	applications.			
	seam				
	CO5: Understand the quality management in garment industry.				
Prerequisite	Students should have basic knowledge of Garment Technol	logy.			

PEC-TEX-411A

PROCESS CONTROL IN GARMENT

L	Т	Р	Sessional: 25 Marks
3	1	-	Exam: 75 Marks
			Total: 100 Marks
			Time: 3 hrs

Note-*Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type 10 questions of multiple choices covering the entire four units.*

UNIT-I

Automation in Garment Industry- Latest machinery in design, pattern making, marker making, cutting, sewing, embroidery and programmable machines.

Production planning in garment manufacturing-Apparel production systems and their comparative assessment, Quantitative Production Analysis viz. check list, Ergonomics in apparel industry.

UNIT-II

Stitch application for woven and knitted garment, Proper stitch formation. Common seam quality defect: Seam rupture on stretch knits, Seam grinning, Skipped stitches, Stitch Cracking and Seam slippage.

Seam puckering: Types, major causes and solution to puckering.

UNIT-III

Sewing Thread selection: Right thread to optimize seam quality, fibre type, thread construction, thread size. Advantages of core-spun sewing thread, Quality aspect of industrial sewing thread, Needle size, needle numbering system, Needle cutting, Causes and remedies Quality parameters for assessing sewability.

UNIT-IV

Define Quality, Quality Control and Quality Assurance, Different quality control methods used in garment industry, Quality tools viz. Control charts, Pareto charts, Fish bone diagram, Scatter plots, Histogram and Six Sigma

Inspection systems-raw material inspection, in process inspection, final inspection, Inspection standards

10(1743)

Suggested Text Books & References

- 1. An Introduction to Quality Control for Apparel Industry by PV Mehta
- 2. Managing Quality for Apparel Industry by PV Mehta & SK Bhardwaj
- 3. Garment Technology, NCUTE Publication
- 4. Testing and Quality Management (Vol-1) by V.K. Kothari

10(1744)

Programme Name	Bachelor of Technology in Textile Technology	Semester VII	
Course Title	Process Control in Chemical Processing		
Course Code	PEC-TEX-413A		
Dumposo	To understand the various aspects of process and qua	ality control in wet	
rurpose	processing of textiles.		
	After completing this course students will be able to:		
	CO1: Understand process control parameters in grey fabric.		
Course Outcome	CO2: Discuss the process control parameters in pretreatment process.		
	CO3: Explain quality control parameters for dyeing, printing and finishing.		
	CO4: Summarise evaluation test methods for dyes, chemicals, auxiliaries		
	and pretreated fabrics.		
Dronoquigito	Students should have knowledge of Textile Chemical P	rocessing I and	
rrerequisite	Textile Chemical Processing II		

PEC-TEX-413A

PROCESS CONTROL IN CHEMICAL PROCESSING

L	Т	Р					Sessional	: 25 Marks
3	1	-					Exam: 75	Marks
							Total: 10	0 Marks
							Time: 3 ł	nrs
Not	e- Ni	ne <i>auestion</i>	s will be set	t in the auestion	ı paper	i.e. two	from each unit.	The students

Note-*Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type 10 questions of multiple choices covering the entire four units.*

Unit I

Importance of process and quality control in chemical processing. Quality of grey fabrics, selvedge quality, stains in grey fabric, overall assessment of quality of grey fabrics. Stitching of grey pieces, common stitching defects and method for assessing stitching quality. Process control in shearing and cropping.

Unit II

Singeing - Process control in singeing, parameters to control the singeing process

Desizing - Enzyme desizing, parameters to control the enzyme desizing process

Scouring - Parameters to control the pressure boil scouring

Mercerizing – Parameters to control the mercerization process,

Bleaching – Sodium hypochlorite & Hydrogen peroxide, treatment on J-Box, pad roll bleaching, washing and drying.

Process control in Heat Setting process.

Unit III

Process control in Dyeing - Fiber and yarn package dyeing.

Fabric dyeing - Satisfying basic needs, selection of dyes, process control in jigger dyeing, high temperature beam or jet dyeing, continuous dyeing.

Process control in Printing: Selection of thickening agent and preparation of printing paste, printing recipe, printing, fixation, after treatments.

Process control in Finishing: Stenter or felt calendar for temporary finishes. durable finishes: resin finishing, calendaring, weight reduction and carbonization.

10(1745)

Unit IV:

Evaluation of dyes, textile chemicals and auxiliaries - Dyestuff performance test, Wetting agents, Levelling Agents, Cross linking Agents, Thickeners & Binders for printing, OBA, Softeners etc. **Evaluation of processed fabric at different stages**: desizing, scouring, bleaching mercerization, heat setting, dyed printed and finished fabric.

References

- 1. ATIRA / BTRA Books and Journals.
- 2. "Process Control in Processing" by ATIRA.
- 3. Testing and Quality Management Vol.-I by Dr. V.K. Kothari, IAFL Publication, S-351, Greater Kailash Part-I, New Delhi.

10(1746)

Programme Name	Bachelor of Technology in Textile Engineering	Semester – VII
Course Code	OEC-TEX-415A	
Course Title	Fundamental of Management	
Purpose	To study the principles and practices of management.	
Course Outcomes	After completing this course, students will be able to:	
	CO1 – Understand the concept of Financial management.	
	CO2- Enumerate the various functions performed by person	nel management.
	CO3 – Get idea of production management.	
	CO4 – Describe nature, scope and importance of marketing	management
Prerequisites	Basic idea of fundamental of management	

OEC-TEX-415A

FUNDAMENTAL OF MANAGEMENT

L T P 4 1 - Sessional: 25 Marks Exam: 75 Marks Total: 100 Marks Time: 3 hrs

Note:

Nine questions will be set in the question paper i.e. two from each unit. The student will be required to attempt one question from each unit. Question No.1 is compulsory. It is objective type 15 questions of multiple choice covering all the four units.

UNIT-I Financial Management

Introduction of Financial Management, Objectives of Financial Decisions, Status and duties of Financial Executives. Financial Planning – Tools of financial planning. Management of working capital, Factors affecting requirements of working capital. Capital structure decisions. Features of appropriate capital structure. Sources of finance.

UNIT-II Personnel Management

Personnel Management – Meaning, Nature and Importance; Functions of Personnel Management – (a) Managerial Functions and (b) Operative functions. Job Analysis: Meaning and Importance; Process of Job Analysis; Job Description and Job specification. Human Resource Development- Meaning and concept.

UNIT-III Production Management

Production Management: Definition and Objectives
Plant location: Ideal plant location. Factors affecting plant location. Plant
Layout: Ideal plant layout, factors affecting plant layout.
Work Measurement: Meaning, Objectives and Essentials of work measurement.
Production Control: Meaning and importance of production control and steps involved in production control.

UNIT-IV Marketing Management

Modern Nature, scope and importance of marketing management. Marketing concepts. Role of marketing in economic development. Marketing Mix. Marketing Information System. Meaning, nature and scope of International Marketing.

10(1747)

Suggested Text Books and References

- 1. Principles and Practice of Management R.S. Gupta, B. D. Sharma, N.S. Bhalla. (Kalyani Publishers)
- 2. Organization and Management R.D. Aggarwal (Tata Mc Graw Hill)
- 3. Principles & Practices of Management L.M. Prasad (Sultan Chand & Sons)
- 4. Management Harold, Koontz and Cyrilo Donell (Mc.Graw Hill).
- 5. Financial Management I.M. Pandey (Vikas Publishing House, New Delhi)
- 6. Management James A.F. Stoner & R. Edward Freeman, PHI.
- 7. Marketing Management- Philip Kotler, PHI

10(1748)

Programme Name	Bachelor of Technology in Textile Engineering	Semester – VII	
Course Code	OEC-TEX-417A		
Course Title	Statistics Analysis		
Purpose	To study different statistical tools useful for solving e	engineering problems.	
Course Outcomes	After completing this course, students will be able to:		
	CO1-Apply fundamentals of statistics in solving engin	neering problems. CO2-	
	Understand concepts of probability theory and probal	oility distributionsCO3-	
	Test for statistical hypothesis and its significance		
	CO4-Make use of control chart and ANOVA to solve	the statistical problems.	
	CO4- Analyse correlation and regression of given data	1.	
Prerequisites	Knowledge of Mathematics		

OEC-TEX-417A

STATISTICAL ANALYSES

L T P 4 1 - Sessional: 25 Marks Exam: 75 Marks Total: 100 Marks Time: 3 hrs

Note:

Nine questions will be set in the question paper i.e. two from each unit. The student will be required to attempt one question from each unit. Question No.1 is compulsory. It is objective type questions of multiple choice covering all the four units.

Unit I

Foundations of statistics:

Basic concepts of statistics, collection sampling, classification and graphical representation of data, Measures of central tendency. Numerical problems.

Sampling Theory:

Population and sample, types of sampling, sampling classification and graphical representation of data, measures of central tendency, control charts.

Unit II

Measures of Dispersion Range, Quartile deviation, standard deviation, moments, skewness and kurtosis (Definition, properties and associated numerical only). Theory of Probability Different approaches to probability, Additive and Multiplicative, Laws of probability, Baye's theorem.

Unit III

Tests of hypothesis and significance:

Definition of Statistical hypothesis, Null hypothesis. Type me and II errors and Levels of significance, Standard error and sampling distribution, Tests of significance for Large and small Samples (discussion). Problems based on χ^2 -test for goodness of fit, Student's t-Test and Analysis of variance (one way and two way classifications.

Unit 4

Regression & correlation:

Karl Pearson's coefficient of correlation, Rank correlation coefficient and lines of regression, Numerical problems, factorial design and analysis.

10(1749)

Suggested Text Books and References

- 1. Ray and Sharma, "Mathematical Statistics"
- 2. Bowker, A.H., and Lieberman, G.J., "Engineering statistics", Prentice Hall, N.J.1972
- 3. Murray P Spiegel, "Theory & Problems of Probability & Statistics"
- 4. Bhattacharya, G.K., and Johnson, R.A.," Statistical concepts and methods", John Wiley, New Delhi, 2002.

5. Hogg, R.V, Elliot, A.T., "Probability and Statistical Inference", Pearson Education, 6th Edition

10(1750)

Programme Name	Bachelor of Technology in Textile Engineering	Semester – VII	
Course Code	OEC-TEX-419A		
Course Title	Theory and Design of Textile Machinery		
Purpose			
Course Outcomes CO1- To know about various machine parts, its mechanisms,			
	CO2- Illustrate benefits of different cams and follow	er motions scheme	
	CO3- To impart Knowledge on kinematic properties of	of gears	
	CO4- To understand the design of several types of be	elt and chain drives	
Prerequisites			

OEC-TEX-419A

THEORY AND DESIGN OF TEXTILE MACHINERY

L	Т	Р	Sessional: 25 Marks
4	1	-	Exam: 75 Marks
			Total: 100 Marks
			Time: 3 hrs

Note:

Nine questions will be set in the question paper i.e. two from each unit. The student will be required to attempt one question from each unit. Question No.1 is compulsory. It is objective type questions of multiple choice covering all the four units.

Unit I

Basic concepts: Kinematics of machine, kinematics link and their different type, types of kinematics pair, degree of freedom, kinematics chain, mechanism and inversion of four bar chain, single slider and double slider crank mechanism.

Velocity Analysis: Motion of a link, velocity of a point on a link by relative velocity method, velocities of four bar mechanism, single slider crank mechanisms, rubbing velocity at a pin joint. Velocity of a point on a link by instantaneous centre method, properties and types of I-centre, Kennedy theorem and methods of locating I-centres in a mechanism.

Unit II

Belt, rope and chain drive: Types of belt drives, velocity ratio, law of belting, concept of slip and creep, length of belt, ratio of driving tensions for flat belt and vbelt, power transmitted, effect of centrifugal tension on power transmission, condition for maximum power transmission, initial tension in the belt. Use of Vbelt, rope, chain, chain length and angular speed ratio, relative advantage and disadvantage of chain and belt drives.

Gears: Classification of gears, terminology used in gear, law of gearing, velocity of sliding, forms of teeth, construction, properties and comparison of an involute and cycloidal teeth, effect of centre distance variation on the velocity ratio, length of path of contact, arc of contact, number of pairs of teeth in contact, interference, minimum number of teeth on the pinion and wheel to avoid interference, minimum number of teeth on the pinion for involute rack to avoid interference, undercutting, terminology of helical and worm gears.

10(1751)
Unit III

Gear trains: Definition, types: simple, compound, reverted and epicyclic gear trains, velocity ratio of epicyclic and compound epicyclic gear trains.

Cams and follower: Types of cams and followers, cam terminology, types of motion of the follower, analysis of motion of the follower, analysis of motion of the follower for cams with specified contours.

Unit IV

Flywheels: Turning moment diagram for steam engine, four stroke internal combustion engines, fluctuation of energy, maximum fluctuation of energy, coefficient of fluctuation of energy, energy stored in flywheel, use of flywheel.

Application in Textiles: Belts, chains and gear drives in textile machines. Different types of cam and followers used in textile machines.

Suggested Text Books and References

- 1. Khurmi R.S and Gupta Theory of Machine S. Chand Publisher, New Delhi.
- 2. Bansal R K, -A text book of Theory of Machinesl, Laxmi Publication Pvt. Ltd, New Delhi.
- 3. Rattan S S, —Theory of Machinesl, Tata McGraw Hill, New Delhi, 2001.
- 4. Ghosh A and Mallik A K, —Theory of mechanism and machines^{||}, Affiliated East West Press Pvt. Ltd, New Delhi, 198
- 5. Bevan T, —The Theory of Machines, CBS Publishers and Distributors, New Delhi, 2002

10(1752)

Programme Name	Bachelor of Technology in Textiles Technology	Semester VII
Course Title	PCC-TEX-405LA	
Course Code	ADVANCED CHEMICAL PROCESSING LAB	
Purpose	To provide hands-on experience to use Computer Colour I in determination and evaluation of pretreated and dyed tex	Matching system xtile material.
Course Outcomes	After completing this course student will be able to: CO1. Make use of spectrophotometer for analysing proper pretreated and dyed fabric sample. CO2. Evaluate fastness properties using computer co system.	rties of plour matching
Prerequisite	Knowledge about basics of Textile Chemical Processing	

PCC-TEX-405LA

ADVANCED CHEMICAL PROCESSING LAB

LTP	Practical/viva: 60 marks
3	Sessional: 40 marks
	Total: 100 marks
	Duration of Exam:

hours

3

List of Experiment:

- 1. Calibration of a UV-visible reflectance and transmission-based spectrophotometer.
- 2. Identification of dye on a dyed cotton sample.
- 3. Assessment of color strength (K/S) of dyed samples.
- 4. Estimation of colour strength difference.
- 5. Determination L, a, b values and construction of hue and shades based on that.
- 6. Comparison of bleaching methods using CCM.
- 7. Assessment of whiteness and yellowness index of a scoured and bleached fabric.
- 8. Determination of wash fastness of a dyed sample.
- 9. Determination of rubbing fastness of a dyed sample.
- 10. To identify & predict the recipe formulation of dyed sample.

10(1753)

Programme Name	Bachelor of Technology in Textile Technology Semester VIII	
Course Title	TECHNICAL TEXTILES - II	
Course Code	PCC-TEX-402A	
Course Purpose	To make student aware of non-aesthetic application of textiles i.e.	
	medical textile, protective textile, sportech and e-textile.	
	After completing this course, students will be able to:	
	CO1 – Explain the applications of textile material in medical field.	
Course Outcomes	CO2–Understand the protective textile functions and their	
Course Outcomes	applications.	
	CO3 – Describe about sportech and agrotech.	
	CO4 – Illustrate the innovations in technical textiles.	
Prerequisite Knowledge of Technical Textile- I		

PCC-TEX-402A

TECHNICAL TEXTILE - II

L	Т	Р	Sessional: 25 Marks
4	1	-	Exam: 75 Marks
			Total: 100 Marks
			Time: 3 hrs

Note- *Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type questions of multiple choices covering the entire four units.*

<u>Unit I:</u>

Medical Textiles:

Introduction and classification of Medical Textiles, Fibres used for medical applications. Implantable – sutures, soft tissue implants, hard tissue implants, vascular implants. Non-implantable – surgical dressing, bandages. Extracorporeal devices, Healthcare and Hygiene products.

Unit II:

Protective Textiles:

Different types of protective clothing, Functional requirements of defense clothing including ballistic protection, parachute, temperature and flame retardant clothing, Chemical and Biological protective clothing, Clothing for extreme climatic conditions viz. high altitude clothing.

Unit III:

Sportech - Sport uniforms, sporting equipments, textiles in sport surfaces

Agrotech – General applications and fibres used in agriculture, horticulture, fishing and animal husbandry

Unit IV:

Applications and innovations in Technical Textile viz. e-textile, biomimetic, nano-technology

10(1754)

References and Text books

- 1. "Handbook of Industrial Textiles", Ed. Sabit Adanur, Technomic Publishing Co. INC
- "Handbook of Technical Textiles", Ed. A R Horrcks and S C Anand, Woodhead Publication Ltd, Cambridge, 2000
- 3. "Textiles for protection, Ed. Richard A. Scott, Woodhead Publication Ltd, Cambridge,
- 4. "Wearable Electronics and Photonics, Ed. Xiaoming Tao, Woodhead Publication Ltd, Cambridge

10(1755)

(Dr. Rajat Kumar Baldua)

Programme Name	Bachelor of Technology in Textile Technology	Semester VIII
Course Title	POST EXTRUSION PROCESS	
Course Code	urse Code PEC-TEX-408A	
Course Purpose	To illustrate the students about various post-spir	ining process for
	synthetic fibers	
	After completing this course, students will be able to	¢.
	CO1- Objective of post spinning operation	
Course Outcomes	CO2- Understanding operations involved in post spin	nning
course outcomes	CO3- Concept of drawing and heat-setting	
	CO4-Understanding process of production of bulk ya	arn
	CO5-Properties and applications of bulk yarn.	
Prerequisite	Knowledge of Textile Fiber –II	

PEC-TEX-408A

POST EXTRUSION PROCESS

L	Т	Р	Sessional: 25 Marks
4	1	-	Exam: 75 Marks
			Total: 100 Marks
			Time: 3 hrs

Note- *Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type questions of multiple choices covering the entire four units.*

Unit –I

Introduction: Introduction and objective of post spinning operation. Operations involved in post spinning.

Drawing: Introduction of drawing filament/fibre: Theoretical considerations of drawing, Concept of neck drawing, Prediction of neck formation, Significance and stabilization of neck, drawing unit, draw behavior of thermoplastic polymers. Influence of drawing parameters on structure and properties of fibres. High speed spinning and spin draw process, drawing of pre-oriented yarns and draw-warping.

Unit -2

Heat-setting: Introduction and concept of heat-setting, Objective of heat-setting, Different nature of set, Heat-setting behavior of fibres, Methods of heat-setting, Influence of heat setting parameters on structure and properties of fibres, Settability and measurement of set.

Unit 3

Tow conversion: Introduction of Tow to Top conversion, Different methods for tow to top conversion. **Bulk yarn**: Introduction of bulk yarn. Objectives of producing bulk yarns. Different methods of producing bulk yarns. Principles of manufacturing acrylic high bulk yarn.

Unit 4

Yarn Texturing: Concept and classification textured yarns. Different texturing methods and brief working principles of different texturing methods. Principles of false twist texturing. Material and Machine variables and their influence on the structure and properties of false twist textured yarn, Concept of air-jet texturing. Material and process variables in air-jet texturing and their influence on the structure and evaluation of textured yarns, recent developments in texturing, Air entanglement process.

10(1756)

Suggested Text Books and References

1. Gupta V B and Kothari V K, "Manufactured Fibre Technology", Chapman and Hall, London, 1999.

2. Vaidya A A, "Production of Synthetic Fibres"1nd Ed., Prentice Hall of India, New Delhi, 1988.

3. Hearle J W S, Hollick L and Wilson D K, "Yarn Texturing Technology", Woodhead Publishing Ltd., UK, 2002.

4. Goswami B C, Martindle J G and Scardino F L, "Textile Yarns Technology, Structure and Applications", Wiley-Interscience Publication, New York, 1976.

5. Mark H F, Atlas S M, Cernia E, "Man Made Fibre Science and Technology", 1st Ed., Vol. 1, 2, 3, Science Publishers, New York, 1967.

10(1757)

Programme Name	Bachelor of Technology in Textiles Technology	Semester VIII
Course Title	HIGH PERFORMANCE FIBRES	
Course Code	PEC-TEX-410A	
Purpose	se To study the high performance fibers	
	After completing this course student will be able to:	
	CO1-Understand polymerization, spinning properties	and applications
	of aromatic polyamide and ordered polymeric fibers.	
	CO2-Explain manufacturing process, structure and prop	perties of carbon
Course Outcomes	fibers.	
	CO3-Describe manufacturing process of optical fiber	rs, structure and
	properties of flexible chain high performance fit	pers and their
	application.	
	CO4-Understand glass fibers, membrane technology, pl	lasma treatment,
	and fibers used in medical textiles.	
Prerequisite Knowledge of Textile Fibers and basic chemistry		

PEC-TEX-410A

HIGH PERFORMANCE FIBRES

L	Т	Р	Sessional: 25 Marks
3	1	-	Exam: 75 Marks
			Total: 100 Marks
			Time: 3 hrs

Note- Total nine questions will be set in the question paper i.e two questions from each unit. The student will be required to attempt one questions from each unit. Question No.1 is compulsory. There will be questions of multiple choice covering entire four units.

<u>Unit I:</u>

Fully aromatic polyamide or aramid fibers: Nomex and Kevlar - Polymerization, spinning properties and applications

Ordered Polymeric Fibers: High molecular weight polyester, rigid rod and ladder polymers such as PBL, PBZT, PBO, PBI.

<u>Unit II:</u>

Carbon Fibers: Manufacturing of carbon fibres from PAN precursors, viscose and pitch fibres. Preoxidation, carbonization and graphitization. Chemical and structural changes in structure during these fibers. Structure and Properties of these fibers.

Liquid crystal fibres, Gel spinning

<u>Unit III:</u>

Flexible Chain based high performance fibers: High and ultramolecular weight polyethylene. Structure and properties of these fibers.

Optical Fibers: Definition, working principle of optical fibers, different materials used for

10(1758)

manufacturing of optical fibers, different types of optical fibers. Manufacturing process of optical fibers and their applications. Hollow and profile fibres, design of spinnerets for such fibres.

Unit IV:

Glass fibres. PEEK fibers, Soyabean fibers etc. Membrane technology. Blended and bicomponent fibres. Medical textiles (fibers used in Medical textiles). Superabsorbent fibres.

Plasma modification. Radiation processing. Industrial tapes. Biaxially oriented films and film fibres. Barrier films and coatings.

Suggested Text Books and References:

- 1. P. Bajaj & A.K. Sengupta, "High performance fibers"
- 2. M. Lewin & J. Preston, "High Technology Fibers (Part A, B, C,D)"
- 3. Lewin & Pearce, "Handbook of Fiber Chemistry". CRC Press LLC; 2 edition (Feb 26 998)

10(1759)

Programme Name	Bachelor of Technology in Textile Technology	Semester VIII
Course Title	NONWOVEN TECHNOLOGY	
Course Code	PEC-TEX-412A	
Purpose	pose - To study the manufacturing process and applications of nonwovens structures	
Course Outcomes	After completing this course, students will be able Discover the nonwoven technology. Classify the according to web formation techniques, bonding to applications. CO2–State the requirements of fibre properties formation. CO3–Understand the process of needle punching, s adhesive bonding, hot calendaring and fusion bon CO4 – Explain the finishing and applications of norm in different sectors CO5 – Identify the test methods for nonwoven pro-	e to: CO1– nonwoven echniques and es for web stitch bonding, ding. woven
Prerequisite	Knowledge of fibre properties and fabric formation	on.

PEC-TEX-412A

NONWOVEN TECHNOLOGY

L	Т	Р	Sessional: 25 Marks
3	1	-	Exam: 75 Marks
			Total: 100 Marks
			Time: 3 hrs

Note- Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type questions of multiple choices covering the entire four units.

UNIT-1

Web Formation Technique

Introduction, need for nonwovens in present scenario. History behind its origin, Definition of nonwoven as per INDA and ADNA, major fibres which are used for manufacturing of nonwovens, classification of nonwoven. Flowchart of its manufacturing technology.

Various web laying methods viz: dry, wet laying technique, spun-bond technique and melt-blown technique and their operating variables and products formed. Concept SMS fabrics.

UNIT-2

Bonding Techniques

Stitch Bonding

Needle Punching: Needle design, needle board parameters, process involved, various factors influencing needle punching process, properties and applications.

Hydro-entanglement: Principle and process technology, properties and applications.

Thermal Bonding: Principle, technologies such as calender bonding, thorough air bonding, ultrasonic & IR bonding.

10(1760)

Chemical Bonding: Chemical binders. Mechanism of chemical bonding. Factors that affect the properties of calendar bonded products.

Limitation, Application areas.

UNIT-3 Finishing

Dry finishing of nonwoven: Shrinkage, Wrenching, Creeping, and Glazing.

Wet finishing of nonwoven: Washing, Dyeing and Printing.

Chemical finishing: Antistatic, Antimicrobial, Water repellent, Flame retardant, Water absorbency. Methods of applying chemical finishes.

Developing technologies: Plasma micro-encapsulation, biomimetic finishes and electrochemical finishes.

UNIT-4

Test Methods

Defects of nonwoven fabrics. Test methods for nonwovens: weight, thickness, pore size, porosity, tensile properties, liquid permeability, water vapour permeability, liquid absorption, thermal conductivity and insulation. Usage of non-woven in different sector of technical textiles.

Suggested Text Books and References:

1. Madhavamoorthy, P., Shetty, G. S., NONWOVEN, Mahajan Publishers Pvt. Ltd., 2005 2. Lunenschloss J and Albrecht W, "Non-woven Bonded Fabric", Ellis and Harwood Ltd., UK(1985)

3. Krema Radco, "Manual of nonwovens", Textile trade Press, UK (1971)

4. Albrecht W, Fuchs H and Kittelmann, "Nonwoven Fabrics", Wiley-VCH Wenham (2003)

10(1761)

Programme Name	Bachelor of Technology in Textile Technology	Semester VIII
Course Title	COMPUTER AIDED DESIGN	
Course Code	e PEC-TEX-414A	
Course Purpose	Course Purpose To explain the latest developments of CAD in apparel industry	
	After completing this course, students will be able to:	
	CO1- Illustrate the concepts of CAD and its usage in garment	
	manufacturing.	
Course Outcomes	CO2- Discuss the computerized pattern making process.	
	CO3-Describe the computerized production planning and 3D	
	technology in garment manufacturing.	
	CO4- Understanding concept of e-marketing in apparel industry.	
Prerequisite	Basics knowledge of computer and garment manufactu	ring process

PEC-TEX-414A

COMPUTER AIDED DESIGN

LΤ	Г Р	Sessional: 25 Marks
4 1	-	Exam: 75 Marks
		Total: 100 Marks
		Time: 3 hrs

Note- *Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type 10 questions of multiple choices covering the entire four units.*

Unit 1

CAD definition, fundamentals of CAD - Introduction, general process of design, application of computers for design, benefits of CAD, CAD in today's fashion industry. Computer graphics software in apparel industry.

Unit 2

Design software - Introduction, features and its applications, resolution set up, saving files and file formats, vector graphics object vs raster graphics object.

Pattern design software (PDS), digitizing, grading and marker making systems.

Unit 3

3-D Modelling: Intelligent systems - 3D scanning technology.3Dbody scanners, imaging techniques for various designs. Automatic Pattern Generation Systems. 2D to 3D conversion technology. Draping 2D

Unit 4

Fashion trend forecasting websites - Introduction, leading online trend-analysis and research service on creative and business intelligence for the apparel. Applications of CAD in multimedia and 3D presentation.

Suggested Text Books and References:

- 1. Kathleen Colursy M, "Fashion Design on Computers", Prentice Hall, 2004.
- Radhakrishnan R, Subramanyan S, Raju V, "CAD/CAM/CIM Computer Aided Design & Manufacturing", New Age International Publications, 2000.
- 3. Renee Weiss Chase, "CAD for Fashion Design", Prentice Hall Publications, 1997.

10(1762)

- 4. Taylor P, "Computers in Fashion Industry", Heinemann Publication, 1990.
- 5. Voisinet Donald D. "Computer Aided Drafting & Design-Concept & Application", McGraw-Hill, 1987.
- 6. Winfred Aldrich, "CAD in Clothing & Textiles", Blackwell Science, 1994.

10(1763)

(Dr. Rajat Kumar Baldua)

Programme Name	Bachelor of Technology in Textile Technology	Semester VIII				
Course Title	APPAREL MARKETING & MERCHANDISING					
Course Code	PEC-TEX-416A					
Course Purpose	To describe the apparel marketing and merchandising process					
Course Outcomes	After completing this course, students will be able to: CO1- Describe the marketing and its mix CO2- Explain the organization of the apparel industry CO3- Understand the merchandising process					
Prerequisite	Knowledge of basic garment manufacturing process					

PEC-TEX-416A

APPAREL MARKETING & MERCHANDISING

L	Т	Р
4	1	-

Sessional: 25 Marks Exam: 75 Marks Total: 100 Marks Time: 3 hrs

Note- *Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type 10 questions of multiple choices covering the entire four units.*

Unit-I

Marketing:

Definition, steps involved in marketing, marketing evolution, selling vs marketing, marketing environment, marketing research, marketing objectives and strategies, marketing mix, fashion marketing planning.

Unit-II

Introduction to apparel industry – Different types of organization structure.

Various departments of garment unit:

Marketing, designing, merchandising, patternmaking, sampling, fabric & trim store, testing, cutting, sewing, finishing, IE, maintenance, quality control, account, HR, EDP

Unit III

Merchandising:

Introduction to fashion merchandising and its process, roles and responsibilities of merchandiser in different organizations, categories of apparel merchandising, Buying cycles and tools of merchandising–buying cycle, time and action calender, range planning, critical path, Costing techniques and Spec Sheets. Visual Merchandising

Unit IV

Export Documentation:

Various types of export documents, Pre-shipment Post-shipment documentation, Terms of sale,

Right kumar Boldy 10(1764)

payment, shipment etc. Export incentives: Duty drawback, DEPB, I/ E license - exchange control regulation – (FEMA) foreign exchange management acts - export management risk - export finance. Various INCO terms.

Suggested Text Books and References:

- 1. Marketing Management by Philip Kotler. 15th edition Pearson Education. ISBN: 978-9332557185
- Cooklin's Garment Technology for Fashion Designers, 2nd Edition by Gerry Cooklin, Steven Hayes, John McLoughlin, Dorothy Fairclough, Blackwell Publications, ISBN: 978-1-4051-9974-2
- 3. Garment Manufacturing: Processes, Practices and Technology by Prasanta Sarkar, Online Clothing Study. ISBN: 978-9383701759
- 4. Fashion Buying by Elaine Stone. McGraw-Hill In publication ISBN: 978-0070617469
- 5. Apparel Merchandising by Kumar. Abhishek Publications, ISBN: 978-8182473010
- 6. Fashion Marketing by Mike Easey. John Wiley & Sons publication. ISBN: 978-0632034598

Right Kumar Boldy 10(1765)

Programme Name	Bachelor of Technology in Textile Technology	Semester VIII				
Course Title	QUALITY ASSURANCE IN APPAREL INDUSTRY					
Course Code	PEC-TEX-418A					
Course Purpose	- To aware the students on about importance of quality in apparel sector					
	After completing this course, students will be able to:					
	CO1- Understanding the basic concept of quality					
Course Outcomes	CO2- Describe quality control and its commercial aspects					
	CO3- Discuss various inspection process					
	CO4- Illustrate different quality management system	S				
	CO5- List the various care labelling systems					
Prerequisite	Basic knowledge of textile testing and garment manufacturing process					

PEC-TEX-418A

QUALITY ASSURANCE IN APPAREL INDUSTRY

L	Т	Р	Sessional: 25 Marks
4	1	-	Exam: 75 Marks
			Total: 100 Marks
			Time: 3 hrs

Note- Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type questions of multiple choices covering the entire four units.

Unit I

Definition & importance of Quality, Tools of quality control,

Unit II

Quality Control – Principles of Quality Control, total quality control, statistical quality control, quality circle, quality and profitability.

Unit III

Inspection – Definition, inspection, loop, raw material inspection, in-process inspection, final inspection, comparability checks.

Unit IV

ISO-9000 series of standards. Quality assurance, TQM, Six Sigma. Care labeling of apparel and textiles – American care labeling system, British care labeling system, and Japanese care labeling system.

Suggested Text Books and References:

- 1. An Introduction to Quality Control for the apparel Pradip V Mehta
- 2. Industry Managing Quality in the Apparel Industry
- 3. Satish Bhardwaj & V Mehta, The Technology of Clothing Manufacture Harold Care & Barbara Latham

10(1766) Right Kumar Boldy

Programme Name	Bachelor of Technology in Textile Technology	Semester VIII				
Course Title	TEXTILE COSTING					
Course Code	OEC-TEX-420A					
Course Purpose	-To aware the students on costing of textile products in industry					
Course OutcomesAfter completing this course, students will be able to: CO1 – Understand the basic concept of costing CO2 – Explain the financial terms used in costing department. CO3 – Describe the cost structure in textile industry. CO4 – Explain labour allocation and rationalization of labo taytile industries.						
Prerequisite	Knowledge of textile production and management.					

OEC-TEX-420A

TEXTILE COSTING

LTP 41Sessional: 25 Marks Exam: 75 Marks Total: 100 Marks Time: 3 hrs

Note-*Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type 10 questions of multiple choices covering the entire four units.*

Unit I: Fundamentals of Costing

Cost concept. Classification of cost, elements of cost. Methods of costing. Unit and operating costing, preparation of cost sheet. Estimation of cost of production and component of total cost. Profit planning, job order, batch process, and conversion cost. Inventory costing.

<u>Unit II:</u>

Cost-Profit-Volume analysis, break-even point, contribution margin, margin of safety, angle of incidence. Capital budgeting.

Unit III: Cost Structure in Textile Industry

Cost structure, cost of raw material/labour /utilities. Cost control, standard costs, determination of cost per kg of yarn, per meter of fabric, cost of dyeing/printing per meter of fabric, yarn realization, measures of cost reduction, selling price decision for yarn/fabric. Concept of depreciation.

<u>Unit IV</u>: Labour Allocation and Rationalization of Labour

Labour allocation in different department of textile mill. Work-load standards for card tenters, speed frame and ring frame tenters, doffers and winders, weavers, etc. Costing of large package spinning and optimum package size. Costing of Open end spun and Air-jet spun yarns.

Waste and its control at spinning and weaving, Costing of shuttle-less looms like Sulzer, air-jet. Economics of shuttle loom,

Suggested Text Books and References:

1. Textile Costing by SITRA.

- Khan and Jain, "Management Accounting", Tata McGraw-Hill Publication.
 Owler, L. W. J., Brown, J. L., "Wheldon's Cost Accounting and Cost Methods", ELVS Publication.

Right Kurnar Boldig 10(1768)

Programme Name	Bachelor of Technology in Textile Technology	Semester VIII			
Course Title	MANAGEMENT OF TEXTILE PRODUCTION				
Course Code	OEC-TEX-422A				
Course Purpose	To make the students aware of textile production management				
Course Outcomes	After completing this course, students will be able CO1 – Define different sectors of Indian textile indu CO2 – Get idea about plant location and layout for CO3–Describe the concept of production planning of CO4–Understand the concept of air conditioning, po maintenance and work management in textile indus CO5- Explain different measures to be taken for the working environment in industry	to: istry textile industries. control and ERP wer consumption, itry maintaining good			
Prerequisite Basic knowledge of textile production processes					

OEC-TEX-422A

MANAGEMENT OF TEXTILE PRODUCTION

L T P 4 1 - Sessional: 25 Marks Exam: 75 Marks Total: 100 Marks Time: 3 hrs

Note- Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type 10 questions of multiple choices covering the entire four units.

Unit I: Indian Textile Industry

WTO / GATT / MFA - Functions and objectives, successes and failures.

Structure of Indian Textile Industry, Organized and Decentralized Sector, Handloom sector, Production and export, Sickness in Textile Industry.

Location and Layout : Plant location and site selection, Factors affecting location, plant lay- out, Different type of layouts, Layout plan for spinning, weaving and process house.

Unit-II: Production, Planning and Control

Product mix decision, linear programming concept, Supply chain management, Concept of zero defects, Management information system.

Inventory Management: Inventory concepts, techniques to reduce inventory, ABC analysis, EOQ, P and Q systems.

Enterprise Resource Planning: ERP concept, Applications of ERP, Ways to use ERP.

Unit-III:

Air Conditioning and humidification: Humidification systems used in textile mills, Development in humidification systems.

Power Consumption: Energy consumption in textile machines, Measure to reduce power

Right kumar Boldy 10(1769)

consumption.

Maintenance Management: Maintenance systems, Maintenance schedules.

Work Management: Basics of work load and work assignment, effect of end breaks on work assignment.

Unit-IV

Working Environment: Measures of good working environment, Measures to minimize noise, terms related to lighting, illumination level required for different departments, Material handling equipments, Accidents and safety engineering, Fire prevention and protection.

Suggested Text Books and References:

- 1. Dudeja V D, "Management of textile Industry" Textile Trade Press Ahmedabad (1981)
- 2. Ormerod A, "Textile Project Management" The Textile Institute, ManchesterUK(1992)
- 3. Talukdar M K ,Srirammulu P K and Ajgaokar D B , "Weaving Machine , Mechanism and Management ," Mahajan Publisher Private Ltd., Ahmedabad , India (1998)
- 4. Grade A R and Subramanian T A, "Process Control in Spinning," 3rd Edition., ATIRA Ahmedabad, (1987)
- 5. Higgins, "Handbook of Maintenance Management," Prentice Hall New York (1999).

Right Kumar Boldy 10(1770)

Programme Name	Bachelor of Technology in Textile Technology	Semester VIII					
Course Title	Course Title PRODUCT DESIGN AND DEVELOPMENT						
Course Code	OEC-TEX-424A						
Course Purpose	To make the students aware about of product design	and development					
	process						
	After completing this course, students will be able to:						
	CO1 -Basic concepts and critical factors for product design						
Course Outcomes	CO2 -Basic elements and tools for conceptualization of product design						
	CO3 –Understanding of product life cycle and its conceptualization						
	CO4 – Understand the various stages of sample developme	ent					
Prerequisite	Basic knowledge of textile production processes						

OEC-TEX-424A

PRODUCT DESIGN AND DEVELOPMENT

L	Т	Р	Sessional: 25 Marks
4	1	-	Exam: 75 Marks
			Total: 100 Marks
			Time: 3 hrs

Note- *Nine questions will be set in the question paper i.e. two from each unit. The students will be required to attempt one question from each unit. Question no. 1 is compulsory. It is objective type questions of multiple choices covering the entire four units.*

Unit 1

Introduction, Characteristics of successful product design, Product development, process tools, Understanding customer needs, establishing product function and product specification.

Unit 2

Product life cycle, phase of product development viz. Concept generation, Concept selection, Concept testing, Product architecture. Design for manufacturing.

Unit 3

Types of products, study apparel product lines, brand management, idea generation, screening, commercialization, product positioning, major reasons for product failure, Product design economics.

Unit 4

Merchandiser's role in product development, Pre-production & TNA meetings, sampling-developing samples, sample types, sample approvals, lab dip, yarn dip, bit loom, strike offs, pre-costing and order follow-up.

Suggested Text Books and References:

1. Otto Kevin, and Wood Kristin, Product Design Techniques in Reverse Engineering and New

product Development Pearson Education publication, Ist Ed, 2006.

2. Ulrich K T, Product Design and Development, TMG, 3rd Ed, 2004

10(1771)Right Kumar Bolding

(Dr. Rajat Kumar Baldua)

Bachelor of Technology (Biotechnology) Credit-Based SCHEME OF STUDIES/EXAMINATIONS (Modified) Semester – III (w.e.f. the session 2021-22)

S.	S. Course No. Course Title			Teaching Schedule			Credits	redits Allotmen			ent of Marks	
No.			L	Т	P	Hours /Week		Major Test	Minor Test	Practi cal	Total	n of Exam (Hrs.)
1	BTE-201A	Cell Biology & Genetics	3	0	0	3	3.0	75	25	0	100	3
2	BTE-203A	Microbiology	3	0	0	3	3.0	75	25	0	100	3
3	BTE-205A	Biochemistry	3	0	0	3	3.0	75	25	0	100	3
4	BTE-207A	Principles of Biostatistics	3	0	0	3	3.0	75	25	0	100	3
5	HTM-901A	Universal Human Values II : Understanding Harmony	3	0	0	3	3.0	75	25	0	100	3
6	BTE-209LA	Cell Biology & Genetics Lab	0	0	3	3	1.5	0	40	60	100	3
7	BTE-211LA	Microbiology Lab	0	0	3	3	1.5	0	40	60	100	3
8	BTE-213LA	Biochemistry Lab	0	0	3	3	1.5	0	40	60	100	3
		Total	15	0	9	24	19.5	375	245	180	800	
9	BTE-215A	Industrial Training-I	2	0	0	2	-	-	100	-	100	-
10	*MC-902A	Constitution of India	3	0	0	3		75	25	0	100	3

Note: BTE-215A is a mandatory credit less course in which the students to be evaluated for the industrial training undergone after 2nd semester and students will be required to get passing marks to qualify.

*MC-902A is a mandatory credit less course in which the student will be required to get passing marks in the major test

HTM-901A		Universal Human Values II: Understanding Harmony									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3.0	75	25	100	3 Hours				
Purpose	Purpose and motivation for the course, recapitulation from Universal Human Values-I										
Course Out	comes (CO)										
CO 1	Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.										
CO 2	Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.										
CO 3	Strengthening of self-reflection.										
CO 4	Developm	ent of comr	nitment and	d courage to	act.						

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for ValueEducation

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- Self-Exploration-what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for selfexploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrarinessin choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'I' and harmony in 'I'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-HumanRelationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship
- 16. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- fromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value inrelationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence asCoexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in allpervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on ProfessionalEthics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching

institutions and organizations

28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. todiscuss the conduct as an engineer or scientist etc.

READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books,New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at handand motivating students to reflect, explore and verify them.

Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration. Scenarios may be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses. This course is to be taught by faculty from every teaching department, including

HSS faculty. Teacherpreparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemedessential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example:

Assessment by

faculty mentor: 5 marks

Self-assessment: 5 marks

Assessment by peers: 5 marks

Socially relevant project/Group Activities/Assignments: 10 marks

Semester End Examination: 75 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

BTE-	Bioinforn	Bioinformatics (B. Tech. Biotechnology Semester VII)										
401A												
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
2	1	-	3	75	25	100	3 Hrs.					
Purpose	To familiarize the students with the basics of Bioinformatics											
Course Ou	tcomes											
CO1	Students	will learn b	asic prin	ciples of vario	us types of dat	tabases						
CO2	Students and statis	Students will come to know about various tools related to sequence alignment and statistical significance of alignment										
CO3	This unit analysis a	will enable nd primer o	the stud lesigning	ents to learn v g	arious softwaı	re tools fo	r sequence					
CO4	Students sequence	will be able analysis	e to learn	predictive me	ethods for nuc	leotides a	nd protein					

UNIT I

1. Databases

a. Sequence Databases: introduction of Databases, primary and secondary databases, nucleotide and protein sequence databases: Genbank, EMBL, DDBJ, Swissprot, pfam, Block, PRI

b. Structure Databases: Introduction to structures. PDB (Protein Data bank) Molecular Modeling database at NCBI., visualizing structural information, database structure viewers.

c. Sequence and Structure File Formats

2. The Entrez system: Integrated information axis, Information retrieval from biological database, sequence database beyond NCBI. Medical databases.

UNIT II

3. Sequence Alignment AND Database Searches

Introduction, the evolutionary basis of sequence alignment, Type of Aligmnents, Pairwise Alignment, Multiple Alignment, The modular nature of proteins, Optimal alignment methods, substitution scores and gap penalties, statistical significance of alignment. FASTA, BLAST, low-complexity regions, repetitive elements, Tool of multiple sequence alignment: CLUSTAL W/X, progressive alignment method.

4. Phylogenetic Analysis:

Elements of phylogenetic models, phylogenetic data analysis: alignment, substitution model building, tree building and tree evaluation, building the data model (alignment), determining the substitution model, tree- building methods, searching for trees, rooting trees, evaluation trees and data, phylogenic software (PHYLIP). Phylogenetic online

tool.

UNIT III

Sequence Analysis Using Software Resources:

Introduction. The Wisconsin package, the Seq Lab environment, analyzing sequences with operations and Wisconsin package programmes, viewing output, monitoring programme progress and troubleshooting problems, annotating sequences and graphically displaying annotations in the Seqlab Editor, saving sequences in the Seq Lab Editor, Example of analysis that can be undertaken in Seqlab, extending Seqlab by including programmes that are not part of the Wiscosin package.

Plasmid Mapping and Primer Design

Restriction mapping, Mac Vector and OMIGA. Gene construction kit. Vector NTI, primer design for PCR Sequencing, primer design programs and software.

UNIT IV

Predictive Methods using nucleotide sequences: Predictive methods using nucleotide sequences: Introduction, Gene prediction methods, Computational gene prediction in eukaryotes. Gene prediction programs: GRAIL, GeneID, GENSCAN, GENMARK, detecting functional sites in the DNA: Promoters, Intron Splice Sites, and Translation Initition Site.

Predictive methods using protein sequences: protein identity based on composition, physical properties based on sequence, secondary structure and folding classes, specialized structures or features, tertiary structure. Prediction of protein secondary and tertiary structures. Related software.

Reference/Text Books-

Bioinformatics by Andreas D.Boxevanis. Wiley Interscience, 4th edition 2020.

Bioinformatics: Sequence and genome analysis by David W.Mount, Cold Spring Harbor, 2004.

Biocomputing Informatics And The Genome Projects by Smith D.W., Academic Press, 2014.

Bioinformatics: A Biologists Guide to Computing and the Internet. by Stuart M. Brown, NKU Medical Center, NY USA, 2000.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

BTE-403A	Pharmaceutical Biotechnology (B.Tech. Biotechnology Semester VII)										
Lecture	Tutorial	Practical	Credit	Minor Test	Major Test	Total	Time				
3	0	-	3	25	75	100	3 Hrs				
Purpose	To learn various aspects of pharmaceutical biotechnology										
Course Out	comes										
CO1	tudents will l	learn the pr	ocedure fo	or discovery an	d development	of drugs					
CO2	Students will be able to understand the metabolism of drug in the body and effects of drug on the human body										
CO3	Students will learn the basic concepts involved in the preparation of various drugs and their formulations										
CO4	Students will understand the management of different Life Style Diseases and know the procedure of Ouality control and assurance.										

UNIT-I

1. Introduction and Different Disciplines of Pharmacy

2. Historical Background and New Drug Discovery and Development – Preclinical and Clinical trials of drugs. Pharmacogenomics, Types of Drug receptors.

UNIT-II

- **3. Pharmacokinetics and Pharmacodynamics:** Drug Bioavailability, Consideration in dosage form design, route of administration (oral, parental, inhalations, topical) Basic Principle of Drug Absorption, Distribution, Metabolism and Excretion.
- **4. Radiopharmaceuticals and Nanopharmaceuticals** Therapeutic applications of radioisotopes, Applications of Nano technology in Pharmaceuticals.

UNIT-III

- **5.** Basic concepts involved in the preparations of different Drugs and their Dosage forms. Solid Dosage Forms- Tablets, Capsules, Powders, Semisolid Dosage Forms Creams, Ointments, Pastes, lotions, Liquid Dosage Forms like Mixtures, Solutions, Emulsion, Ophthalmic etc.
- **6.** Additives and Excipients used in drug formulations- Colors , flavours, sweeteners, binders, Disintegrating agents and other additives used in prescriptions.

UNIT-IV

7. **Management of Life style diseases** like obesity, diabetes, B.P., cholesterol heart stroke and cancer, joint problems etc. Neutraceuticals: Sources, Types, Potential Benefits, Role in prevention and control.

8. Pharmaceutical products and their Types

Laxatives, Analgesics, Antiseptics, Antacids, Antibiotics.

9. Quality control and assurance- GMP, GLP, ISO- 9000, validation and Drug Regulatory affairs

Reference/Text Books:

- 1. Principles of Medicinal Chemistry Vol. 1 Dr. S.S.Kadam, Dr. K.R. Mahadik, Dr. K.G.Bothara
- 2. Principles of Medicinal Chemistry Vol. 1 Dr. S.S.Kadam, Dr. K.R. Mahadik, Dr. K.G.Bothara
- 3. Pharmaceutical Dispensing.(2010) Pratibha Anand and Roop K. Khar. CBS Publishers and Distributors Pvt. Ltd.
- 4. R. M. Mehta, "Dispensing Pharmacy", Vallabh Prakashan, New Delhi.
- 5. Brahmankar, CBS Publishers.
- 6. Lipin Cott's Illustrated Reviews Pharmacology. Richard Maria, Pamela, Mary, Sheldon.
- 7. Cooper and Guunn's, "*Dispensing for Pharmaceutical Students*", CBS Publishers, Delhi
- 8. A Owunwonne, "Hand Book of Radiopharmaceuticals", Narosa Publishing House, New Delhi.
- 9. H C Ansel, "Introduction to Pharmaceutical Dosage Forms", K M Varghese& Co., Mumbai.
- 10. S.N.Pandeya: A Textbook of Inorganic Medicinal Chemistry, S.G.Publishers, Varanasi.
- 11. Clarke, E. C. G., "Isolation and Identification of Drugs", The Pharmaceutical Press, London

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

BTE- 411A	Biosensor and Bioinstrumentation (B.Tech. Biotechnology Semester-VII)									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	1	-	3	75	25	100	3Hrs			
Purpose	To familiarize the students with basic and applied aspects of Biosensors and									
	Bioinstrumentation									
Course Outcomes										
CO1	To familiarize with basic concepts of general properties of transducers and									
	other analytical instruments									
CO2	Students will come to know about bioassay design and implementation and									
	basic concepts of automation and robotics									
CO3	This unit will enable the students to learn about data retrieval, handling and									
	integration of databases and basics of human cardiac and vascular system									
CO4	Students will be able to know the basic concepts and applications of various									
	types of b	iosensors								

UNIT – I

1. Introduction: Electrical quantities and units, functional elements of an instrumentation system, static and dynamic characteristics, principle of analog and digital meters, CRO, energy meters, time and frequency meters, multimeters.

- 2. **Transducers**: Classification, resistive strain gauges, RTD, LVDT, Piezoelectric transducers, Electromagnetic transducers, Optical transducers, Transducers for biomedical science and their applications.
- **3. Analytical Instruments:** pH meters, radiometric devices, fluorescence spectrophotometers, chromatology (chromatographic techniques- GC and HPLC), electrophoresis, lab on a chip related instrumentation, Validation, commissioning and maintenance of the above equipments.

UNIT-II

4. Assay Technologies and Detection methods: Introduction, bioassay design and implementation, radiometric assay, scintillation proximity assay, fluorescence methodology to cover all types of fluorescence measurements and instrumentation, Reporter gene assay applications. Bio-analytical applications.

5. Automation and Robotics: Introduction: management and services issues of a centralized robotics HTS (high throughput screening) core, flexible use of people and machines, Bar-code technology and a centralized database, factors for the successful integration of assays, equipment, robotics and software. Perspectives on scheduling.

UNIT-III

6. Data retrival, handling and integration: Database systems, systems integration, data management and tracking

7. Cardiac and Vascular system: Overview of cardiovascular system, types of blood pressure sensors, Lumped parameters modeling of a catheter- sensor/system, heart sounds, cardiac catheterization, indirect measurement of blood pressure, measuring blood flow rate, measuring blood volume, pacemakers, defibrillators, cardiac-assist devices and heart valves- related instrumentation of equipments and involved sensors.

8. **Respiratory system**: Modeling the respiratory system, measuring gas flow rate and lung volume, tests of respiratory mechanics, measuring gas concentration, tests of gas transport, ventilators, anesthesia machines- related instrumentation of equipments and involved sensors.

UNIT-IV

9. Biosensors: Introduction to biosensors: concepts and applications, biosensors for personal diabetes management, micro fabricated sensors and the commercial development of biosensors, electrochemical sensors, chemical fibrosensors, Ion-selective FETs, non-invasive blood-gas monitoring, blood-glucose sensors. Noninvasive biosensors in clinical analysis, Applications of biosensors based instruments to the bioprocess industry. Applications of biosensors to the environmental samples, Introduction to biochips and their application to genomics, BIA core- an optical biosensors

Reference Books

- 1. <u>M. K.Sezgintürk</u>. Commercial Biosensors and their applications: Clinical, Food and Beyond. Elsevier. 2020.
- 2. <u>G. Dutta, A. Biswas</u> and <u>A. Chakrabarti</u>. Modern Techniques in Biosensors: Detection Methods and Commercial Aspects. Springer. 2021.
- 3. Introduction to Bio-analytical Sensors by Alice J Cunningham New York, John Wiley, 1998.
- 4. Applied Biosensors by DolandL.Wise, 1989
- 5. Advances in Laboratory Automation Robotics, Eds. J.R.Strimataitis and J.N. Little, Zymark Corporation, Hopkinton, MA 1991.
- 6. Instrument methods of analysis by H W Willard, L LMerrit, J A Dean and F ASttle. 6/e, East- West publishers. 1992.
- Biosensors and their applications by C Yang Victor and TNgo That, Plenum Press NY, 2000

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

10(1782)

BTE-413A	DEC-I * Biochips and Microarray Technology (B. Tech. Biotechnology Semester VII)								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
2	1	-	3.0	75	25	100	3 Hrs.		
Purpose	The purpose of this course is to familiarize the students with different array techniques								
Course Outcomes									
CO1	To familiarize with basic concepts of biochips and microarray technology								
CO2	Students will be able to understand about RNA and Protein Chips and electrical detection methods for microarrays								
CO3	This unit will enable the students to learn about applications of biochip technology in various fields								
CO4	Students will be able to know the commercial aspects of biochip technology and DNA computing								

UNIT -1

1. **Introduction**: Basics of biochips and microarray technology, historical development of biochip technology .Why are Microarray important.

2. **Biochip and Microarray construction**: DNA microarrays, oligonuleotide, cDNA and genomics microarrays, microchip production technologies, megaclone technology for fluid microarray labels, microarray scanners./headers, microarray robotics. Microfluidics systems, chips and mass spectrometry.

UNIT- II

3. **Biochip and Microarray construction (Continued)**: Biochips, microarrays, Chromosome on a chip, tissue chip, RNA chip, Protein chip technology, glycochips, biochips assays, combination of microarray and biosensor technology, biochip versus gel-based methods, process flow for production and analysis of a chip, standardization of microarray analysis, bioinformatics and microarrays, integrated biochip system, evaluation of conventional microarray technology. Electrical detection methods for microarrays, SERS (Surface-Enhanced Raman spectroscopy)-based microarrays.

UNIT-III

4. Applications of Biochip Technology: Molecular diagnostics and pharmacogenomics, Application of microarray technology in drug discovery and development, Gene expression studies, use of DNA chip technology for drug safety, use of microchips for drug delivery, biochips as neural prostheses, use of biochips in health care, use of microarrays in population genetics and epidemiology, use of microarray in forensics. DNA chip technology for water quality management, Bioagent chip, Application of microarray in the agro-industry, use of microarray in genetic disease monitoring, point of care (POC) applications.

UNIT -IV

5. **Commercial aspects of Biochip technology:**Markets for biochip technologies, commercial support for the development of biochips, government support for biochip development, business strategies and patent issues

6. **DNA Computing:** Introduction, junctions, other shapes, biochips and large-scale structures. Discussion of Robinson and Kallenbach's methods for designing DNA shapes, DNA cube. Computing with DNA, Electrical analogies for biological circuits. Challenges and future trends. Gene ontology and pathway analysis

Reference / Text Books-

- 1. Arun Jogota, "Microarray Data Analysis and Visualization", The Bay Press, 2001.
- 2. Ernst Wit and John McClure, "Statistics for Microarrays Design", Analysis and Inference, John Wiley & Sons, 2004.
- Steen Knudsen, "Guide to analysis of DNA Microarray data", John Wiley & Sons, 2004.
- 4. Biochips and Microarrays-technology & Commercial Potential, Published by RCK Publishing, 2012.
- 5 DNA Arrays: Technology and Experimental strategies, Grigorenko (ed), CRC Press, 2002.
- 6. Microarray Analysis Mark Schena; J. Wiley & Sons (ed., New York), 2002.
- 7. Microarray Bioinformatics, Dov Stekel, Cambridge University Press, 2003.
- 8. Microarray Technology and Its Applications, Uwe R. Müller, Dan V. Nicolau, Springer, 2005.
- 9. DNA Microarrays: Current applications: Emanuele de Rinaldis, Armin Lahm,, Horizon Scientific Press, 2007.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

* The students should select two Departmental Elective Courses (DEC-I)

BTF-	Frzyme Technology (B. Tech Biotechnology semester VII)									
	Liizyine	recimology	(D . 1001	Diotecnin	nogy seme					
415A		T	T				1			
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time			
				Test	Test					
2	1	-	3.0	75	25	100	3 Hrs			
Purpose	To familiarise students about different aspects of enzyme technology									
Course out	Course outcome: After completion of this course the students will be able									
CO1	To articulate advantages and disadvantages of enzyme based production									
	processes.									
CO2	To compare different strategies used for protein engineering									
CO3	To explain the principles and parameters used for enzyme									
	immobilization.									
CO4	To diffe	rentiate b	etween s	solid state	e fermen	tation a	nd submerged			
	fermentation.									

UNIT I

Introduction to enzyme Technology: What are Biocatalysts? Bio- and Chemo catalysts – Similarities and Differences, Goals and Potential of Biotechnological Production Processes, The Use of Isolated or Intracellular

Enzymes as Biocatalysts, Advantages and Disadvantages of Enzyme-Based Production Processes, Goals and Essential System Properties for New or Improved Enzyme Processes, Essential System Properties for Rational Design of an Enzyme Process, Current Use and Potential of Enzyme Technology

UNIT-II

Enzyme Discovery and Protein Engineering: Enzyme Discovery, Strategies for Protein Engineering, Rational Protein Design, Directed (Molecular) Evolution Methods to Create Mutant Libraries, Assay Systems, Focused Directed Evolution, Computational Design of Enzymes

UNIT-III

Immobilization of Enzymes: Principles, Parameters of Immobilization, Carriers Inorganic Carriers, Polysaccharides, Synthetic Polymers, Binding Methods Adsorption, Covalent Binding, Application of Immobilized Enzymes Hydrolysis and Biotransformation of Carbohydrates, Amino Acid, Peptide Synthesis, Application of Lipases

UNIT-IV

Enzyme production and Purification: solid state fermentation, submerged fermentation, environmental factors affecting microbial enzyme production in SSF. Strategies to improve production of microbial cellulase.

Reference/Text Books

- 1. Klaus Buchholz, Volker Kasche, and Uwe T. Bornscheuer "Biocatalysts and Enzyme Technology" 2nd Edition, Wiley-Blackwell, 2012
- 2. M.Y Khan and Farah Khan "Principles of enzyme technology" PHI, 2015
- 3. Enzyme Technologies editors: Hsiu-Chiung Yang Wu-Kuang Yeh and James R. McCarthy, Wiley, 2014
- 4. "Biotechnology of Microbial Enzymes" Editor Goutam Brahmachari, Academic Press, 2017

Note: The Examiner will be given the question paper template and will have to set

the question paper according to the template provided along with the syllabus.

BTE-	Advanced Management Information system and Information								
417A	Technology (B. Tech Biotechnology semester VIII)								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0	0	3	75	25	100	3 Hour		
Purpose	To familiarize the students with Management Information System.								
Course Outcomes After completion of this course the students will be able									
CO1	To Understand and articulate fundamental concepts of information technology management.								
CO2	To Assess and apply IT to solve common business problems.								
CO3	To Suggest and defend effective solutions to business problems, and design a database application to solve a business problem.								
CO4	To Discuss the ethical aspects of information technology use in the organization and its governance issues.								

UNIT I

Introduction: Definition information system, role and impact of MIS, The challenges of Information system, Nature of

MIS, Characteristics of MIS, Myths regarding MIS, Requirements of MIS, Problems & Solutions in implementing MIS, Benefits of MIS, Limitations of MIS, Significance of MIS, Components of MIS. Role of MIS, Major Management challenge to building and using information system in Organization, functions of management.

UNIT II

Information system and Organizations: The relationship between Organization and Information System, Information needs of different organization levels: Information concept as quality product, classification and value of information, methods of data and information collection. Strategic role of information system, Salient features of Organization, Information, management and decision making, How Organization affect Information Systems, How Information system affect Organization, Ethical and Social impact of information system.

UNIT III

Business application of Information System: Foundation Concepts Information systems in Business: Information system and technology, Business Applications, Development and Management. The internetworked E-business Enterprise: Internet, and Extranet in business. Electronic Commerce System: Electronics commerce Fundamentals, Commerce Application and issues. E-business Decision Support: Decision support in E-Business, Artificial Intelligence Technologies in business.

UNIT IV

Strategic and Managerial Implications of Information Systems: Strategic Information System: Introduction, Characteristics of Strategic Information Systems, Strategic Information Systems (SISP), Strategies for developing an SIS, Potential Barriers to developing a Strategic Information System (SIS), Decision Support System (DSS): Decision making concepts, methods, tools and procedures. Managing Information Resources: Introduction, IRM, Principal of Managing Information Resources, IRM functions, Computer Security: Introduction, Computer Security, Types of Computer Security, Disaster Recovery Plan.

Reference/Text Books:

- 1. W.S. Jawadakar, "Management Information System", McGraw Hill,
- 2. J. O. Brien, "Management Information System", TMH, New Delhi
- 3. Uma G . Gupta, "Management Information System" Fifth Edition TMH.
- 4. Kenneth C. Laudon, "Management Information System Organisation and Technology" TMH.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.
BTE-	Stem Cell Technology (B.Tech. Biotechnology) Semester- VII										
419A											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	1	0	3	75	25	100	3				
Purpose	The objectiv	ve of this cou	irse is to e	enable students	to understand	l the princi	iples of				
	stem cells,	their isolatio	on and m	aintenance an	d their applica	ation in di	fferent				
	therapies										
Course Ou	itcomes										
CO1	Students wi	ll be able to	differentia	ate among the	different types	of stem cel	ls				
CO2	Students wi	ll be able to o	explain th	e concept of st	em cell cloning						
CO3	Students wi	ill be able to	compar	e the isolation	and maintena	ance metho	ods for				
	different ty	pe of stem ce	lls								
CO4	Students w	ill be able t	o recogni	ze the applica	tions of stem	cells in di	fferent				
	diseases		U								

UNIT I

Introduction: Basic concepts and properties of Stem cells, Totipotency and Pluripotency, Types of stem cells: Embryonic stem cells, germinal stem cells, Adult stem cells, Tumor stem cells.

UNIT II

Molecular Cell Biology and Cloning:Molecular mechanisms, Cell cycle regulation in stem cells. Stem cell niches, Stem cell lineage tracing

Therapeutic and reproductive cloning, Nuclear Transfer method, Application of nuclear transfer derived embryonic stem cells.

UNIT III

Stem Cells maintenance and transplant:Sources of stem cells; Cell types for transplantation: Bone marrow, Peripheral stem cells, cord blood stem cells

General methods of Isolation, Identification, Characterization and maintenance of different stem cells: Embryonic stem (ES) cells, Hematopoietic Stem Cells (HSC), Hematopoietic Stem Cells (HSC), Differentiation studies of Mesenchymal stem cells, Neural stem cell and Neural crest stem cell.

UNIT IV

Stem cells and Therapy Cell based therapy, organ factories, drug discovery and development, Medical applications in Leukemia, Immune deficiencies, diabetes, liver diseases, cardiovascular diseases, Neurological disorders

Reference/Text Books

- 1. Anthony Atala, Robert Lanza. Essentials of Stem Cell Biology. Netherlands: Elsevier/Academic Press, 2014.
- 2. Atala A & Lanza R, Stem Cells Handbook. Netherlands: Springer New York, 2013.
- **3.** Satish Totey and Kaushik D. Deb. Stem Cell Technologies: Basics and Applications (McGraw-Hill, 2010).
- 4. Robert A. Meyers Stem Cells: From Biology to Therapy (Current Topics from the Encyclopedia of Molecular Cell Biology and Molecular Medicine), 2013

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

BTE-	Herbal Drug Technology (B. Tech. Biotechnology Semester VII)										
421A											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	-	3	75	25	100	3 Hrs.				
Purpose	To familiari	ze the stude	nts with b	asic and appli	ied aspects of	Herbal Drug	g Technology				
Course Ou	irse Outcomes										
CO1	The contents of first unit will enhance the knowledge of students about traditional										
	herbs and h	erbal medici	ne.								
CO2	Students wi	ll come to k	now abou	ut the basic co	oncepts of var	rious system	s of medicine				
	and tradition	nal therapies	5								
CO3	This unit wi	ll learn the s	kills abou	it technology f	for production	n of crude di	rugs.				
CO4	To familiari	ze with basic	e knowled	lge of use of h	erbs in the ma	nagement o	f health.				
	Students wil	l learn abou	t the ecor	nomic aspects	of herbs and l	herbal drugs	5				

UNIT I

Herbs as raw materials: Definition of herb, herbal medicine, herbal medicinal product, Common herbals and herbal medicines of India. Sources of Herbs Selection, Identification and authentication of herbal materials. The need for the study of herbs and herbal medicine.

UNIT II

Systems of Medicine : Evolution of systems of medicine, Traditional Therapies and Types of therapies– Ayurveda , Unani, eight chikitsas , eight chakras, Naturopathy, Homeopathy, Aromotherapy, Faith healing, Religious beliefs and Ethnotherapeutics . Concept of Holistic medicine. Ayurvedic Pharmacopoeia of India.

UNIT III

Technology for production of crude drugs: Herbal drug preparation. Processing of herbal raw material, Principles of extraction and different methods of extraction. Formulation and Standardization of herbal extracts. Stabilization and stability of herbal formulations.

UNIT IV

Health Benefits: Evolution of conscious use of plants in the management of health and disease General aspects, scope and types of products available in the market. Health benefits and role of herbs in ailments like Diabetes, CVS diseases, Cancer, and various Gastro intestinal diseases. Role of herbs in cosmetics.

Economic Aspects of Herbal Drugs: Economic value of herbs and herbal drugs, Databases on herbals and herbal drugs. Rescue and Preservation of traditional medicinal knowledge and herbals. Development of herbal medicine industry- Present Scope and future prospects.

Reference Books-

- 1. A lexicon of medicinal plants in India. D.N.Guhabakshi, P.Sensarma and D.C.Pal, 1999.Naya prakash publications.
- 2. Glossary of Indian medicinal plants. R.N.Chopra, S.L.Nayar and I.C.Chopra,1956. C.S.I.R, New Delhi.
- 3. Ethnobotany The Renaissance of Traditional Herbal Medicine. Rajiv K. Sinha, 1996.Ina Shree publishers.
- 4. The indigenous drugs of India. Kanny, Lall, Dey and Raj Bahadur, 1984. International Book Distributors.
- 5. Herbal plants and Drugs Agnes Arber, 1999. Mangal Deep Publications.
- 6. New Natural products and Plant drugs with Pharmacological, Biological (or) Therapeutical activity. H.Wagner and P.Wolff , 1979. Springer, New Delhi.
- 7. Ayurvedic drugs and their plant source. V.V.Sivarajan and Balachandran Indra, 1994. Oxford IBH publishing Co.
- 8. Ayurveda and Aromatherapy. Miller, Light and Miller, Bryan, 1988. Banarsidass, Delhi.
- 9. Principles of Ayurveda. Anne Green, 2000. Thorsons, London.
- 10. Mukherjee, P.W. Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals. Business Horizons Publishers, New Delhi, India, 2002.
- 11. Pharmacopoeal standards for Ayurvedic Formulation (Council of Research in Indian Medicine & Homeopathy)

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus. * The students should select two Departmental Elective Courses (DEC-I)

BTE- 405LA	BIOINFO	BIOINFORMATICS LAB (B.Tech. Biotechnology Semester VII)										
Lecture	Tutorial	Practical	Credit	Major Test (Practical)	Minor Test	Total	Time					
-	-	3	1.5	60	40	100	3 Hrs.					
Purpose	To famili	To familiarize the students with applied aspects of Bioinformatics										
Course Out	comes											
CO1	To famili	arize with co	omputer ba	asics and search	ing of biologi	cal datał	Dases					
CO2	Students	will come to	know abo	ut data mining	techniques							
CO3	To learn	To learn the concepts of phylogenetic analysis using bioinformatics software										
CO4	Students prediction	will be at n	ole to kno	ow the basic	concepts of]	protein	structure					

List of Experiments:

- 1. Computer basics
- 2. Searching biological database for relevant information
- 3. Data mining techniques in Bioinformatics.
- 4. Searching, retrieval and similarity analysis of biological database.
- 5. Sequence retrieval from nucleic acid and protein database.
- 6. Restriction mapping
- 7. Sequence (FASTA & BLAST) searches.
- 8. Pair wise comparison of sequences.
- 9. Evolutionary studies/ Phylogenic analysis.
- 10. Identification of genes in genomes.
- 11. Protein databank retrieval and visualization.
- 12. Superposition of structures.
- 13. Secondary structure prediction of proteins.
- 14. Pattern searching in nucleic acids.
- 15. Validation of 3D structures.

Reference/Text Books-

Bioinformatics- A Practical Guide to the Analysis of Genes and Proteins by Andreas

D. Baxevanis and B.F.Francis Ouellette, 4th Edition, A John Wiley and Sons, Inc.

Publications, 2020.

Bioinformatics: Sequence and Genome Analysis by David W. Mount, Cold Spring Harbor, 2004.

Biocomputing Informatics and the Genome Projects by Smith D.W., Academic Press, 2014.

BTE-	Biocatalysis & Biotransformation (B.Tech. Biotechnology Semester											
402A	VIII)											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time										
3	0	-	3.0	75	25	100	3 Hrs					
Purpose	To fami	To familiarize the students with Concepts of Biocatalysis and										
-	Biotransf	Biotransformation										
Course	After con	pletion of	this cour	se the student	s will be able							
outcome												
CO1	To articu	late the con	cept of E	Biocatalysis an	d Biotransfor	mation.						
CO2	To differ	entiate bety	ween dif	ferent strateg	ies for produc	tion of s	succinic					
	acid.				-							
CO3	To explai	n the mech	anism of	pesticide tran	sformation.							
CO4	To compa	are comput	ational to	ools for enzym	e function pre	diction.						

UNIT I

- 1. **Introduction to biocatalysis**, Current market of biocatalysis, fermentation, concept of biotransformation and advantages and limitations of biotransformation.
- 2. Development of chemo enzymatic processes: synthetic route design and integration of biocatalysis, chemo-enzymatic process development

UNIT II

- 4. **Production of Dicarboxylic Acid Using Yeasts**: Current Uses and Production of Dicarboxylic Acids, Selection and Improvement of Yeast Strains, Selection and Improvement of Yeast Strains, Metabolic Engineering Strategies for Biotechnological Production of Succinic Acid
- 5. Engineering Proteases for Industrial Applications: Proteases in Industry, Serine Proteases and Subtilisins, Engineering Subtilisin Protease toward Increased Oxidative Resistance, Increasing Protease Tolerance against Chaotropic Agents.

UNIT III

- 6. **Transformation of pesticides**: Accumulation of pesticide, Mechanism of pesticide transformation, enzymatic reactions in pesticide metabolism
- 7. Transaminases: Transaminases as a Biosynthetic Route for Chiral Amines, Kinetic Resolution of Amines Employing ATAs, Recent Advances in Industrially Relevant Asymmetric Reductive Amination Reactions, ATA Screening Kit

UNIT IV

- 8. **Structural Bioinformatics and Biocatalysis Research**: Computational Tools for Function Prediction and Analysis of Enzymes.
- 9. **Recent development in biotransformation**: current challenges and future scopes of biotransformation process, practical consideration for enhancing efficiency of biotransformation

Reference/text books

- 1. Green Biocatalysis edited by Ramesh N. Patel, John Wiley and Sons, 2016.
- 2. Biotransformation of Agricultural Waste and By-Products edited by Palmiro Poltronieri and Oscar Fernando D'Urso, Elsevier Inc, 2016
- 3. Applied Biocatalysis edited by Lutz Hilterhaus, Andreas Liese, Ulrich Kettling, and Garabed Antranikian, Wiley-VCH, 2016.
- 4. Journal of Biocatalysis and Biotransformation.

Note: The Examiner will be given the question paper template and will have to set

the question paper according to the template provided along with the syllabus.

BTE- 404A	Metagenomics (B.Tech. Biotechnology Semester- VIII)											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time										
2	1	-	3.0	75	25	100	3Hr					
Purpose	The purpose of this course is to provide focus on next generation DNA sequencing technology and p how the metabolic functions, taxonomic distribution, diversity, evenness and species richness of microbial communities varies across environment											
<u>CO1</u>	Students y	rill become fo	Course milion with	Outcomes								
CO1 CO2	Students w	rill be able to	perform t	he phylogenetic	tree							
CO3	Students w of soil mic	rill develop tl robial comn	he knowled nunities	ge and able to p	erform Metag	enomic a	nalysis					
CO4	Students w	vill develop fo	ocus on the	application of n	netagenomics							

UNIT -1

What is metagenomics; Types of metagenomes: Amplicon, Shotgun, Functional; Amplicon metagenomics: History, phylogenetic marker, examples; Shotgun metagenomics: History and examples. Techniques subtractive hybridization (SSH); Differential expression analysis (DEA); Microarrays & Metagenome sequencing

UNIT- II

Direct linking of microbial populations to specific biodegradation and biotransformation processes by stable isotope probing of biomarkers- PhyloChip & GeoChip-Detection of xenobiotic-degrading bacteria by using oligonucleotide microarrays

Phylogenetic analysis and Comparative genomics Software's & Tools and Construction of a metagenomic library; Analysis of Metagenomic Libraries; Sequence-based Metagenomics Analysis; Function-based Metagenomics Analysis

UNIT -III

Metagenomic analysis of soil microbial communities; Metagenomic analysis of marine microbial communities; Metagenome of the Microbial Community in Acid Mine Drainage; Metagenomic Analysis of Bacteriophage; Metagenomics and Its Applications to the Study of the Human Microbiome; Archaeal Metagenomics: Bioprospecting Novel Genes and Exploring New Concepts.

UNIT -V

Application of Metagenomics to Bioremediation; Applications of Metagenomics for Industrial Bioproducts; Escherichia coli host engineering for efficient metagenomic enzyme discovery; Next-generation sequencing approaches to metagenomics; Stable isotope probing: uses in metagenomics; DNA sequencing of uncultured microbes from single cells.

Reference/Text Books

- 1. Diana Marco Universidad Nacional de Cordoba, Argentina, "*Metagenomics: Theory, Methods and Applications*", Caister Academic Press, 2010.
- 2. Diana Marco Universidad Nacional de Cordoba, Argentina "Metagenomics: Current Innovations and Future Trends", Caister Academic Press, 2011.
- **3**. Joanna R. Freeland, Heather Kirk, Stephen Petersen, "*Molecular Ecology*", Mc Graw Hill, 2nd Edition "2012.
- 4. Beebee T.J.C., D G. Rowe," An Introduction to Molecular Ecology", Mc Graw Hill, 2004.

Note: The Examiner will be given the question paper template and will have to set

the question paper according to the template provided along with the syllabus.

ВТЕ- 406А	Molecular Modelling and Drug Design (B.Tech. Biotechnology Semester VIII)											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time										
2	1	-	3	75	25	100	3Hrs					
Purpose	The cours	se will focus	on the M	olecular Mod	delling in cor	ntext of dru	g					
	designing	5										
	Course Outcomes											
CO1	To under	stand the cri	tical rela	tionship amo	ong biomolec	ular struct	ure,					
	function	and force fiel	d models	5.								
CO2	To be abl	e to utilize b	asic mod	elling technic	ques to explo	re biologica	al					
	phenome	na at the mo	lecular le	evel.								
CO3	To empha	asize Modelli	ing drug/	receptor inte	eractions in d	letail by mo	olecular					
	mechanic	s, molecular	dynamic	s simulations	s and homolo	ogy modelli	ng.					
CO4	An aware	eness of ratio	nal drug	design, base	d on underst	anding the	three-					
	dimensio	nal structure	s and ph	ysicochemica	l properties	of drugs ar	nd					
	receptors	will be creat	ted.			_						

UNIT I

 Introduction to Molecular Modelling: Introduction - Useful Concepts in Molecular Modelling: Coordinate Systems. Potential Energy Surfaces. Molecular Graphics. Surfaces. Computer Hardware and Software. The Molecular Modelling Literature.

UNIT II

 Force Fields: Fields. Bond Stretching. Angle Bending. Introduction to Non-bonded Interactions. Electrostatic Interactions. Van der Waals Interactions. Hydrogen Bonding in Molecular Mechanics. Force Field Models for the Simulation of Liquid Water.

UNIT III

3. **Energy Minimisation and Computer Simulation**: Minimisation and Related Methods for Exploring the Energy Surface. Non-Derivative method, 1st and 2nd order minimisation methods. Computer Simulation Methods. Simple Thermodynamic Properties and Phase Space. Boundaries. Analyzing the Results of a Simulation and Estimating Errors. GROMACS and CNS.

UNIT IV

- 4. Molecular Dynamics & Monte Carlo Simulation: Molecular Dynamics Simulation Methods. Molecular Dynamics Using Simple Models. Molecular Dynamics with Continuous Potentials. Molecular Dynamics at Constant Temperature and Pressure. Metropolis Method. Monte Carlo Simulation of Molecules. Models Used in Monte Carlo Simulations of Polymers. Molecular Modeling software: BIOSUITE
- 5. Structure Prediction and Drug Design: Structure Prediction Introduction to Comparative Modeling. Sequence Alignment. Constructing and Evaluating a Comparative Model. Predicting Protein Structures by 'Threading', Molecular Docking, AUTODOCK and HEX. Structure based De Novo Ligand design, Drug Discovery – Chemoinformatics – QSAR.

Reference/Text Books

- 1. S. Ramasamy. Molecular Modeling. Lambert Academic Publishing, USA. 2015
- V. Magnasco. Methods of Molecular Quantum Mechanics- An Introduction to Electronic Molecular Structure. Wiley. 2009
- 3. A.R.Leach, Molecular Modelling Principles and Application, Longman, 2001.
- 4. J.M.Haile, Molecular Dynamics Simulation Elementary Methods, John Wiley and Sons, 1997.
- 5. S. P. Gupta. QSAR and Molecular Modeling, Springer Anamaya Publishers, 2008.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

BTE- 408A	Cancer Biology (B.Tech. Biotechnology) Semester- VIII										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	1	0	3	75	25	100	3				
Purpose	To give complete overview of cancer as a disease detailed analysis of biological										
	changes of t	the tumor ce	lls. Analyze	the impact of	f the cell cycl	le (prolifera	ation),				
	gene muta	ations and	apoptosis	in cancer.	Discuss	the impac	ct of				
	applied/tran	applied/translational research in cancer diagnosis as well as the design of novel									
	targeted the	rapeutic age	nts in the tre	atment of car	ncer.						
			Course Out	comes							
CO1	Students wi	ll be able to c	ategorize the	e different fo	rms of cancer	•					
CO2	Students wi	ll be able to e	explain the g	enetic basis o	f cancer						
CO3	Students wi	ll be able to r	ecognize the	role of differ	ent proteins	in cancer a	nd				
	their clinica	l significance			_						
CO4	Students wi	ll be able to a	ssess/compa	re different d	liagnostic and	l therapy					
	methods		-		C						

UNIT I

Fundamentals of Cancer Biology and Principles of Carcinogenesis

Overview of the hallmarks of cancer, Different forms of cancers, Diet and cancer, Natural history of Carcinogenesis, Chemical Carcinogenesis, Metabolism of Carcinogenesis, Principles of Physical Carcinogenesis, X - Ray radiation - mechanism of radiation Carcinogenesis.

UNIT II

Molecular Cell Biology of Cancer: Tumor viruses and Oncogenes, Identification of Oncogenes, Mechanism of oncogene activation, Role of growth factors and receptors in carcinogenesis, RAS signaling in cancer

Regulation of Cell cycle, modulation of cell cycle in cancer, Tumor suppressor genes, pRb tumor suppressor, Apoptosis and p53 tumor suppressor

UNIT III

Principles of Cancer Metastasis: Three-step theory of Invasion, Proteinases and tumour cell, Basement Membrane disruption, The biology of angiogenesis, Metastatic cascade

UNIT IV

Detection of Cancer and Cancer Therapy: Fundamental principles behind cancer diagnosis, Advances in Cancer detection, Different forms of therapy: Chemotherapy, radiation Therapy, and Immuno therapy, Applications of omics technologies in diagnostics and treatment.

Reference/Text Books

- 1. Pecorino, Lauren. Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. United Kingdom: Oxford University Press, 2016.
- 2. Weinberg, Robert Allan. The Biology of Cancer. United Kingdom: Garland Science, 2014.
- **3.** <u>Vincent T. DeVita Jr. MD</u>, <u>Theodore S. Lawrence</u>, <u>Steven A. Rosenberg</u> Cancer: Principles and Practice of Oncology Primer of Molecular Biology in Cancer(3rd edition)

4 Oxford Textbook of Cancer Biology, edited by Pezzella, Francesco, Mahvash Tavassoli, and David J. Kerr. Oxford, UK: Oxford University Press, 2019-05. <u>https://oxfordmedicine.com/view/10.1093/med/9780198779452.001.0001/med-9780198779452</u>.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

BTE-	Developmental Biology (B. Tech. Biotechnology) Semester- VIII										
410A											
			T								
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time				
				Test	Test						
2	1	-	3.0	75	25	100	3h				
Purpose	This cours	This course will help the students to understand the basic knowledge of									
	morphoge	morphogenesis and organogenesis in plants and animals.									
			Course	Outcomes							
CO1	Students v	will be able	to illustra	ate the basi	c concept of d	levelopmer	nt.				
CO2	Students v	will be able	to classify	y Gametoge	enesis betwee	n plant and	l animal.				
CO3	Students v	will be able	to develop	p the know	ledge of morp	ohogenesis	in				
	animals.				_						
CO4	Students v	will be able	to develop	p the know	ledge of morp	ohogenesis	in plants.				

UNIT -1

Basic concepts of development : Potency, commitment, specification, induction, competence, determination and differentiation; morphogenetic gradients; cell fate and cell lineages; stem cells; genomic equivalence and the cytoplasmic determinants; imprinting; mutants and transgenics in analysis of development.

UNIT-II

Gametogenesis, fertilization and early development: Production of gametes, cell surface molecules in sperm-egg recognition in animals; embryo sac development and double fertilization in plants; zygote formation, cleavage, blastula formation, embryonic fields, gastrulation and formation of germ layers in animals; embryogenesis, establishment of symmetry in plants; seed formation and germination.

Unit –III

Morphogenesis and organogenesis in animals : Cell aggregation and differentiation in *Dictyostelium*; axes and pattern formation in Drosophila, amphibia and chick, organogenesis – vulva formation in *Caenorhabditis elegans*, eye lens induction, limb development and regeneration in vertebrates; differentiation of neurons, post embryonic development- larval formation, metamorphosis; environmental regulation of normal development; sex determination.

UNIT –IV

Morphogenesis and organogenesis in plants: Organization of shoot and root apical meristem; shoot and root development; leaf development and phyllotaxy; transition to flowering, floral meristems and floral development in Arabidopsis and Antirrhinum. Programmed cell death, aging and senescence.

Reference/Text Books

- 1. Developmental Biology by Gilbert SF and Sunderland MA. 6th Edition, 2000.
- **2.** Abu-Shaar M, Mann R S. Generation of multiple antagonistic domains along the proximodistal axis during *Drosophila* leg development. Development. 1998.
- 3. The Biology of Aging by Sinauer Associates, Sunderland, MA 2nd Ed 1998.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

BTE-	Protein Engineering* (B.Tech. Biotechnology Semester VIII)										
412A											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	1	-	3.0	75	25	100	3 Hrs.				
Purpose	To create	awareness v	with conce	pts of protein	engineering		-				
Course O	utcomes: A	fter complet	tion of thi	s course the st	udents will be	able					
CO1	To differ	entiate betw	een secon	dary and terti	ary structures	s of prot	ein				
CO2	To demo	nstrate struc	cture func	tion relationsh	nip of membra	ane prot	eins				
CO3	To explai	in the concep	ot of desig	ned protein							
CO4	To identi	fy protein- p	orotein int	eractions.							

UNIT I

1. **Structure Function Dynamics Correlation**. Basic structural concepts – Primary, secondary, tertiary and quaternary structures. Ramachandran plot, super secondary structures – motif and domain. Protein folding and mechanisms.

UNIT II

2. **Structure Function Engineering**. The correlation of structure and function in – transcription factors, serine proteinases, membrane proteins, signal transduction proteins and recognition in immune system.

UNIT III

3. Library Construction for Protein Engineering: Established methods for library construction, critical methods in evaluation of library construction methods. Designed proteins, examples of designed proteins (enzymes) with enhanced stability and efficiency, playing a significant role in industries.

UNIT IV

- 4. **Engineering of Therapeutic Proteins**: Sources of Protein Therapeutics, Strategies for Designing Effective Protein Therapeutics, Examples of Protein Therapeutics
- 5. Proteomics Application. Mining proteomes, protein expression profiling, identifying protein – protein Interactions and protein complexes, mapping- protein identification, new directions in proteomics.

References/Text Books

- Amit Kessel and Nir Ben-Tal, "Introduction to Protein" 2nd Edition, Chapman and Hall, 2018
- Anton Torres Editor "Protein Engineering and Design," Syrawood Publishing House, 2017
- Daniel C. Liebler, "Introduction to Proteomics Tools for the New Biology," Humana Press, 2001
- Protein Engineering and Design edited by Sheldon J. Park Jennifer R. Cochran, CRC Press, 2010
- 5 M.Romya and P. Ponmurugan, Protein Engineering, Narosa Publications, New Delhi, 2015

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

BTE-	Bioethics , IP	R and Biosaf	ety (B. Tech.	Biotechnology) Semester- Vl	II					
414A			-								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	1	0	3	75	25	100	3hrs				
Program	Students will a	Students will able to acquire knowledge of regulatory bodies, acts and organization									
Objective	indulge in creating a balancing force between advent in technology with monitoring										
(PO)	their impacts of	heir impacts on human and ecology alongwith biosafety measures with ethical conduct									
	to society.	to society.									
			Course Out	comes							
CO1	Students will b	be able to des	cribe the basi	c terms and pr	ocedure for IF	PR, patent fi	iling and				
	implications of	n society of c	ommercialize	ed products.							
CO2	Students will be	e able to learn a	and describe va	arious act, polic	ies, different or	rganizations	and				
	guidelines for b	iosafety.									
CO3	Students will de	evelop knowled	lge of outbreal	k and risk asses	sment and man	agement at la	aboratory				
	level along with	health impact	s.								
CO4	Students will de	evelop awarene	ess of ecologic	al impact of rele	ease of genetica	ally modified	1				
	organisms and i	nonitoring me	thods.								

UNIT -1

Introduction- Intellectual Property Rights, Copyrights, Trademarks, Trade secrets, Geographical indications, Patents, Patent Filing, Indian Patent act and amendments, Implications of intellectual property rights on the commercialization of Biotechnology products, Patented products in Market and Success story.

UNIT-II

Policies, Agreements and Organization -National biosafety policies and law, The Cartagena protocol on biosafety, Convention on biological diversity, Cross border movement of germplasm and agreements, World Trade Organization and agreements, Updated Regulatory frameworks.

UNIT-III

Biological Containment- Risk assessment, Risk management, General principal for biological containment at laboratory level, Health impact of containment issues-Allergenicity, Antibiotic resistance and Toxicology. Case studies.

UNIT –IV

Ecological Impacts-Genetically Modified organism and impact on biodiversity, gene flow, gene escape and creation of superweeds/ superviruses, Monitoring strategies and method of detecting transgenics(Radioactive /Non radioactive methods).Case studies.

Reference/Text Books

1. Padma Nambisan, An introduction to ethical safety and intellectual property rights issues in biotechnology, Academic Press, ISBN-978-0-12-809231-6, 2017.

2. Deepa Goel and Shomini Parashar, IPR, Biosafety and Bioethics, Pearson Education, India, ISBN-978933251429, 2013.

3. V. Sree Krishna, Bioethics and Biosafety in Biotechnology, New age international private ltd., 2007.

4. Gerald A. Urban, BioMEMS, Springer, 2010.

OEC-	Biomedical Electronics (B. Tech Biotechnology semester VIII)									
BT-										
418A										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Practical	Total	Time		
3	3 75 25 - 100 3									
Course O	Dutcomes									
At t	he end of th	nis course st	tudents w	vill demonstra	ate the ability	r to				
CO1	Understar	nd and expl	ain the co	oncept of bior	nedical signa	ls, electroc	les and			
	instrumentation									
CO2	Understand and explain the physiological transducers and recording systems									
CO3	Understar	nd and expl	ain biom	edical record	ers and patie	nt monitor	ring syste	ems		
CO4	Understar	nd and expl	ain cardi	ac pacemake	rs, defibrillat	or and pat	ient safe	ty		

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

UNIT-I

Introduction: Role of technology in medicine, physiological systems of the body, sources of biomedical signals, basic medical instrumentation and their performance requirements, intelligent medical instrumentation systems, consumer and portable medical equipment, implantable medical devices, role of engineers in healthcare facilities.

Bioelectric Signals and Electrodes: Origin of bioelectric signals, recording electrodes, silver- silver chloride electrodes, electrodes for ECG, electrodes for EMG, electrical conductivity of electrode jellies and creams, microelectrodes.

UNIT-II

Physiological Transducers: Definition, classification and performance characteristics of transducers, displacement, position and motion transducers, pressure transducers, transducers for body temperature measurement, photoelectric transducers, optical fiber sensors, biosensors, smart sensors.

Recording System: Basic recording system, general considerations for signal conditioners, preamplifiers, sources of noise in low level measurements, biomedical signal analysis and processing techniques, the main amplifier and driver stage, writing systems.

UNIT-III

Biomedical Recorders: Electrocardiograph, vectorcardiograph (Vcg), phonocardiograph (Pcg), digital stethoscope, electroencephalograph (Eeg), electromyograph. **Patient Monitoring Systems:** System concepts, cardiac monitor, bedside patient monitoring systems, central monitors, measurement of heart rate, measurement of temperature, measurement of respiration rate, catheterization laboratory instrumentation, ambulatory monitoring instruments.

UNIT-IV

Cardiac Pacemakers and Defibrillators: Need for cardiac pacemaker and defibrillator, external pacemakers, implantable pacemakers, pacing system analyzer, DC defibrillator, implantable defibrillators, types of defibrillators, defibrillator analyzer.

Patient Safety: Electric shock hazards, leakage currents, safety codes for electromedical equipment, electrical safety analyzer.

Text/Reference Books:

- 1. R S Khandpur: Handbook of biomedical instrumentation, 3rd ed., McGraw Hill Education.
- 2. Joseph D. Bronzino: The biomedical engineering handbook, 2nd ed., CRC Press.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

OEC-BT-	M	Matlab&Simulation (B.Tech Biotechnology Semester VIII)										
420A												
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 - 3 75 25 100 3 Hrs.										
Cours	Course Outcomes (CO) At the end of the course students will be able to											
CO1	Write ba	sic commar	nds and s	script files in M	IATLAB							
CO2	Solve ma	thematical	equation	IS								
CO3	Create 2	D and 3D a	nalysis p	lots								
CO4	Design S	imulink mo	dels									

UNIT I

Introduction to MATLAB: Introduction to MATLAB software, Key features, MATLAB window, Command window, Workspace, Command history, Setting directory, Working with the MATLAB user interface, Basic commands, Assigning variables, Operations with variables. Working with script tools, Writing Script file, Executing script files, The MATLAB Editor, Saving m files. Introduction to Graphical User Interface (GUI).

UNIT II

Matrix and Data files: Character and string, Arrays and vectors, Column vectors, Row vectors, Basic Mathematics, BODMAS Rules, Arithmetic operations, Operators and special characters, Mathematical and logical operators, Solving arithmetic equations, Operations on matrix, Crating rows and columns Matrix, Matrix operations, Finding transpose, determinant and inverse, Solving matrix, Trigonometric functions, Complex functions. Writing user defined functions.

UNIT III

2D and 3D Plots: Plots: Plotting vector and matrix data, Plot labelling, curve labelling and editing, 2D Plots: Basic Plotting Functions, Creating a Plot, Plotting Multiple Data Sets in One Graph, Specifying Line Styles and Colors, Graphing Imaginary and Complex Data, Figure Windows, Displaying Multiple Plots in One Figure, Controlling the Axes, 3D Plots: Creating Mesh and Surface, About Mesh and Surface Visualizing, Subplots.

UNIT IV

MATLAB Programming and Simulink: Automating commands with scripts, Writing programs with logic and flow control, Writing functions, Control statement Programming, Conditional Statement Programming, Control Flow Conditional Control — if, else, switch, Loop Control — for, while, continue, break, Program Termination — return. Introduction to Simulink, Simulink Environment & Interface, Study of Library, Circuit Oriented Design, Equation Oriented Design, Model, Subsystem Design, Connect Call back to subsystem, Application.

Text and Reference Books/Material:

- 1. Marvin Marcus, Matrices and MATLAB: A Tutorial, Prentice Hall, 2010
- 2. MATLAB Primer by MATHWORKS: http://www.mathworks.com/help/releases/R2014b/pdf_doc/matlab/getstart.pdf

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

OEC-	History of	III)									
BT-											
422A											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	-	3.0	75	25	100	3 Hr				
Purpose	Purpose The purpose of this course is to aware the students about development of science in India										
Course or	utcome : Af	ter complet	on of this	course the stu	dents will be ab	le					
CO 1	To articu developm	late the se	cope and y.	importance	of science an	d techno	logy in				
CO2	To apprec	ciate the dev	elopment	of science and	technology in A	Ancient In	dia.				
CO3	To explain	To explain the development of science and technology in Medieval India.									
CO4	To appreciate the Policy development in the field of science and Technology.										
			UNI	Г-Т							

Concepts and Perspectives: Meaning of History Objectivity, Determinism, Relativism, Causation, Generalization in History; Extent of subjectivity, contrast with physical sciences, interpretation and speculation, concept of historical inevitability, Historical Positivism.

Science and Technology-Meaning, Scope and Importance, Interaction of science, technology & society, Sources of history on science and technology in India.

UNIT-II

Science and Technology in Ancient India: Technology in pre-historic period, beginning of agriculture and its impact on technology, Science and Technology during Vedic and Later Vedic times.

UNIT-III

Science and Technology in medieval India: Legacy of technology in Medieval India, Interactions with Arabs, Astronomy and Mathematics: interaction with Arabic Sciences, Science and Technology on the eve of British conquest

UNIT-IV

Science and Technology in a post-independent India: Science, Technology and Development discourse Shaping of the Science and Technology, Policy Developments in the field of Science and Technology, Social implications of new technologies like the Information Technology and Biotechnology

Reference/Text Books

- 1. M. Bhardwaj "History of science and Technology in Ancient India" Publisher Bookwin, 2010
- 2. Bal Ram Singh, Nath Girish and Umesh Kumar Singh " Science and Technology in ancient Indian Text, D.K.Print world, 2012
- Kamlesh Mohan "Science and Technology in Colonial India, Aakar Publisher, 2014

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

OEC-BT- <i>424</i> A	Internet of Things (B.Tech. Biotechnology Semester VIII)										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	-	3.0	75	25	100	3 Hrs				
Purpose	To famili	arize stude	nts about	t basics of Inte	rnet of Thin	igs					
Course Ou	tcomes										
CO 1	Understa required	nd what Io' in certain s	T techno cenarios	logies are used	l for today, a	and what	is				
CO2	Understa and can b	nd the type be utilized to	s of tech o implen	nologies that a ient IoT soluti	re available ons.	and in us	se today				
CO3	Understa systems.	Understand the type of protocols and challenges for designing IoT systems.									
CO4	Apply the experime running a IOT.	ese technolo ntal platfor applications	ogies to ta rm for im s. Unders	ackle scenarios plementing pr stand operating	s in teams of cototypes an g system req	using an d testing uirement	them as ts of				

UNIT 1

Introduction to IoT: Defining IoT, Characteristics of IoT, Functional blocks of IoT, Physical and logical design of IoT, Smart cities and IoT revolution, ,Difference between IoT and M2M, M2M and peer networking concepts Ipv4 and IPV6, Software Defined Networks SDN,

UNIT 2

Developing IoTs: IoT design methodology, case study on IoT system for weather monitoring. IoT system Management,

Developing IoT applications through embedded system platform: Introduction to sensors, IoT physical devices and endpoints, Raspberry pi, Raspberry pi interfaces, Arduino, arduino interfaces.

UNIT 3

Protocols for IoT- messaging protocols, transport protocols, Ipv4, Ipv6, URI, Cloud for IoT: IoT with cloud, challenges, introduction to fog computing, cloud computing,

Challenges in IoT: Design challenges, development challenges, security and legal considerations.

UNIT 4

Logic design using Python: Introduction to python, data types, data structures, control flow, functions, modules, file handling and classes., implementing IotT concepts with python, Applications of IoT, Connected cars IoT Transportation, Smart Grid and Healthcare sectors using IoT,

References/Text Books:

- 1) A Bahaga, V. Madisetti, "Internet of Things- Hands on approach", University press, 2014.
- 2) S.K.Vasudevan, A.S.Nagarajan, "Internet of Things", Wiley, 2019.
- 3) CunoPfister, "Getting started with Internet of Things", Maker Media, 1st edition, 2011. Samuel Greenguard, "Internet of things", MIT Press, 2015.

Web resources:

- 1) http://www.datamation.com/open-source/35-open-source-tools-for-the-internetof-things-1.html
- 2) https://developer.mbed.org/handbook/AnalogIn
- 3) http://www.libelium.com/50_sensor_applications
- 4) M2MLabs Mainspring http://www.m2mlabs.com/framework Node-RED http://nodered.org/

BACHELOR OF TECHNOLOGY (MECHANICAL ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA

SCHEME OF STUDIES/EXAMINATION

SEMESTER V (w.e.f. session 2021-2022)

S. No.	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Examination	on Schedul	e (Marks)		Duration of Exam
						Major Test	Minor Test	Practical	Total	(113.)
1	HTM-901A	Universal Human Values II : Understanding Harmony	3:0:0	3	3	75	25	0	100	3
2	MEC-301A	Heat Transfer	3:1:0	4	4	75	25	0	100	3
3	MEC-303A	Production Technology	3:0:0	3	3	75	25	0	100	3
4	MEC-305A	Mechanical Vibrations and Tribology	3:0:0	3	3	75	25	0	100	3
5	MEC-307LA	Heat Transfer lab	0:0:2	2	1	0	40	60	100	3
6	MEC-309LA	Production Technology Lab	0:0:2	2	1	0	40	60	100	3
7	MEC-311LA	Mechanical Vibrations and Tribology Lab	0:0:2	2	1	0	40	60	100	3
8	MEC-313LA	Project-I	0:0:2	2	1	-	0	100	100	3
9	*MEC-315A	Industrial Training-II	2:0:0	2	-	-	100	-	100	-
10	**MC-903A	Essence of Indian Traditional Knowledge	3:0:0	3	-	100	-	-	100	3
			Total	26	17	300	220	280	800	

*MEC-315A is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

**MC-903A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

HTM-901A		Universal Human Values II: Understanding Harmony											
Lecture	Tutorial	FutorialPracticalCreditMajor TestMinor TestTotalTime											
3	0	0	3.0	75	25	100	3 Hours						
Purpose	Purpose a	and motiva	tion for the	course, red	capitulation	from Unive	ersal Human Values-I						
Course Out	comes (CO)												
CO 1	Developn themselve	nent of a ho es (human b	olistic persp peing),fami	ective base ly, society a	ed on self-e and nature/	exploration	about						
CO 2	Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.												
CO 3	Strengthening of self-reflection.												
CO 4	Developn	nent of com	mitment ar	nd courage	to act.								

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for ValueEducation

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrarinessin choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'l' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'l' and harmony in 'l'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in

Human-HumanRelationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship
- 16. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Orderfromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and

organizations

28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. to discuss the conduct as an engineer or scientist etc.

READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them.

Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration. Scenariosmay be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extraordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based onbasic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemed essential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example:

Assessment by

faculty mentor: 5 marks

Self-assessment: 5 marks

Assessment by peers: 5 marks

Socially relevant project/Group Activities/Assignments: 10 marks

Semester End Examination: 75 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

Seventh Semester

B. Tech. (7 th Semester) Mechanical Engineering												
MEO-401A	SMART MATERIALS											
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTime (Hrs.)										
3	0	0	3	75	25	100	3					
Purpose	The purpose materials, sn	The purpose of this course is to develop the understanding of various aspects of smart materials, smart structures and their applications.										
			Course Out	comes								
CO1	Students will of smart mat	be able to re erials and vari	cognize the k ous functions	ey concepts of intelligen	behind class t materials.	sification and	fabrication					
CO2	Students will actuators and	ll be able to d sensors.	categorize	the various	types of sm	nart structur	e systems,					
CO3	Students will be able to describe the various types of SMA based hybrid composites and smart battery materials.											
CO4	Students wi nanotubes.	ll be able to	perceive the	e structure	and propertion	es of variou	is types of					

UNIT-I

Smart materials: key concepts: Introduction to smart materials, definition of smart materials, define smart materials, basic principles behind smart properties, classification of smart materials according to their production technologies and applications in various industries, approaches to fabrication of smart materials, properties of smart materials, nanoscale and microscale structure property relationship, Intelligent materials, primitive functions of intelligent materials, intelligence inherent in materials, intelligent materials in harmony with humanity, intelligent biological materials, biomimetics.

UNIT-II

Smart materials and structural systems: Introduction, actuator materials, sensing technologies, sensing technologies, microsensors, intelligent systems, hybrid smart materials, passive sensory smart structures, reactive actuator based smart structures, active sensing and reactive smart structures, smart skins.

UNIT-III

Shape memory alloys: Phase transition, shape-memory effect, shape memory alloy fiber/metal matrix composites, shape memory alloy fiber/polymer matrix composites, SMA particulate / aluminum matrix composites.

Smart battery materials: Introduction, electrochemical concepts involved in a battery, types of batteries, lithium ion batteries, layered oxide cathodes, spinel oxide cathodes, olivine oxide cathodes, carbon anodes.

UNIT-IV

Nanoscale intelligent materials and structures: Introduction, nanotube geometric structures, structures of carbon nanotubes, structures of non-carbon nanotubes, designations of nanotubes and nanostructured materials, mechanical and physical properties of nanotubes; elastic properties, electrical conductivity,

magnetoresistance, piezo-resistance, electrokinetics of nanotube, piezoelectric properties, electrochemical effects, nanotube power generation, nanotube contact phenomena.

Text books:

- 1. Smart Materials and Structures M.V. Gandhi and B.S. Thompson, Chapman and Hall pub.
- 2. Encyclopedia of Smart Materials Mel Shwartz Vol.1 and 2, John Wiley & Sons, Inc.
- 3. Nano engineering of Structural, Functional, and Smart Materials Mark J. Schulz, Ajit D. Kelkar, and Mannur J. Sundaresan, Taylor and Francis Pub.

Reference books:

- 1.Micro and smart systems Ananthasuresh, Wiley India Ltd.
- 2. Coursera course Smart Materials: Microscale and Macroscale Approaches Peter the great St. Petersburg Polytechnic University.

Note: The paper setter will set the paper as per the question paper template provided.

	B. Tech. (7th Semester) Mechanical Engineering											
MEO-405A	NON-DESTRUCTIVE TESTING											
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTimeTestTestTestTest(Hrs.)										
3	0	0 0 3 75 25 100 3										
Purpose	The purpose of this course is to make the students understand about different inspection and testing methods of components safely and without damage.											
		Co	ourse Outco	nes								
CO1	Students w	ill be able to lear	n the fundan	nental conce	pts of NDT.							
CO2	Students w	ill be able to des	cribe the diff	erent method	ds of NDE.							
CO3	Students w testing.	Students will be able to describe the concept of thermography and eddy current testing.										
CO4	Students w	ill be able to exp	lain the ultra	sonic testing	and acoustic	emissions						

UNIT-I

Introduction to NDT: NDT vs destructive testing, overview of the don-destructive, Testing methods for the detection of manufacturing defects as well as material characterization, relative merits and limitations, various physical characteristics of materials and their applications in NDT, visual inspection – unaided and aided

UNIT-II

Surface NDE methods: Liquid penetrant testing – principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, testing procedure, interpretation of results, magnetic particle testing-theory of magnetism, inspection materials magnetization methods, interpretation and evaluation of test indications, principles and methods of demagnetization, residual magnetism.

UNIT-III

Thermography and eddy current testing (ET): Thermography- principles, contact and non-contact inspection methods, techniques for applying liquid crystals, advantages and limitations – infrared radiation and infrared detectors, instrumentations and methods, applications, eddy current testing-generation of eddy currents, properties of eddy currents, eddy current sensing elements, probes, instrumentation, types of arrangement, applications, advantages, limitations, interpretation/evaluation

UNIT-IV

Ultrasonic testing (UT) and acoustic emission (AE): Ultrasonic testing-principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan, phased array ultrasound, time of flight diffraction, acoustic emission technique–principle, AE parameters, applications.

Text books:

1. Non-Destructive Testing - Baldev Raj, T.Jayakumar, M.Thavasimuthu Narosa Publishing House.

2. Non-Destructive Testing Techniques - Ravi Prakash, 1st revised edition, New Age International Publishers.

Reference books:

- 1. ASM Metals Handbook, Non-Destructive Evaluation and Quality Control, American Society of Metals, Metals Park, Ohio.
- ASNT, American Society for Non Destructive Testing, Columbus, Ohio, NDT Handbook, Vol. 1, Leak Testing, Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared and Thermal Testing Vol. 4, Radiographic Testing, Vol. 5, Electromagnetic Testing, Vol. 6, Acoustic Emission Testing, Vol. 7, Ultrasonic Testing.
- 3. Handbook of Nondestructive evaluation by Charles, J. Hellier, McGraw Hill, New York 2001.
- 4. Introduction to Non-destructive testing: a training guide by Paul E Mix, Wiley, 2nd Edition New Jersey, 2005.

Note: The paper setter will set the paper as per the question paper template provided.

B. Tech. (7 th Semester) Mechanical Engineering													
MEO-407A	MANUFACTURING COST ESTIMATION												
Lecture	Tutorial	Γutorial Practical Credit Major Minor Total Time Test Test (Hrs.)											
3	0	0 0 3 75 25 100 3											
Purpose	The purpo estimating estimation	The purpose of this course is to impart the students with the knowledge of cost estimating function and controls, organizing and staffing for cost estimation and cost estimation of machining, joining and finishing processes.											
			Course Out	tcomes									
CO1	Students and estal	will be able to oblish staff and or	describe cos ganization fo	t reduction te or cost estime	echniques, co ation.	ost estimatir	ng functions,						
CO2	Students procedur	will be able t es.	o discuss c	ost estimatir	ng controls a	and various	s estimating						
CO3	Students processe	Students will be able to estimate the costs for different machining and casting processes.											
CO4	Students processe	will be able to s.	estimate the	e costs for d	ifferent joinin	g and surfa	ace finishing						

UNIT-I

The estimating function and costing studies: Explanation of terms, importance of the life of the product, target cost, product costs, purpose of estimating, types of estimates, a systematic approach to cost reduction, cost reduction examples, team efforts.

Organizing and staffing for estimating: Coordinated product cost estimating, cost estimating department, type of organization and cost estimating, qualifications of a cost estimator, development of a cost estimator.

UNIT-II

Cost estimating controls: Administrative controls, initiating cost requests, estimating methods, controlling the cost estimate, controlling estimate deviations, estimating in a changing cost environment, do's and don'ts of cost estimating.

Estimating procedures: Cost estimating analysis, part analysis, preliminary manufacturing plan, facilities, direct material cost, tooling costs, manufacturing time, direct labour costs, factory burden, total manufacturing cost.

UNIT-III

Cost estimation for machining: Traditional machining operations defined, gathering information, economical machining, cost modeling and calculations, grinding application, milling application, non-traditional machining applications.

Estimating casting costs: Casting materials, casting processes, determining material costs, foundry tooling defined, molding costs, core costs, machining and cleaning costs, heat treatment, inspection and shipping costs, foundry burden.

UNIT-IV

Estimation of cost: Joining Costs: Welding, Braze Welding, Brazing, Soldering, Electron Beam Welding, Laser Beam Welding, Plasma Arc Welding, Adhesive Bonding, Fastening, Ultrasonic Welding.

Estimating surface finishing costs:Deburring, ultrasonic cleaning, polishing, honing, hybrid finishing processes, painting, electroplating, cost modelling and calculations.

Text books:

- 1. Realistic cost estimating for manufacturing. Third Edition Lembersky, Michael Society of Manufacturing Engineers, 2016.
- 2. Process Planning and Cost Estimation, Second Edition R. Kesavan, C. Elanchezhian, B. Vijaya Ramanath, New age international publishers.

Reference books:

- 1. Process Planning And The Cost Estimation M. Adithan, New age international publishers.
- 2. Estimating and Costing for the Metal Manufacturing Industries Robert Creese (Author), M. Adithan (Author), CRC Press

Note: The paper setter will set the paper as per the question paper template provided.

B. Tech. (7th Semester) Mechanical Engineering												
MEO-409A	ERGONOMICS											
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTimeTestTestTest(Hrs.)										
3	0	0	3	75	25	100	3					
Purpose	The purpose of this course is to make the students aware of the human factor engineering principles and its application to different disciplines.											
			Course C	Outcomes								
CO1	Students w	ill be able to e	explain the erg	gonomics fund	damentals an	d anthropor	metry.					
CO 2	Students w behavior ar	vill be able to nd perception.	analyse the	e human post	ture, relative	movement	s and human					
CO 3	Students w designing.	Students will be able to apply the ergonomics principles in visuals display and product designing.										
CO 4	Students w	ill be able to d	escribe the v	vorkstation de	sign and occ	upational sa	afety.					

UNIT-I

Discipline approach: ergonomics/ human factors: Introduction to ergonomics, Fitting task to man their contractual structure, domain, philosophy and objective, mutual task comfort: two way dialogue, communication model, ergonomics/ human factors fundamentals, physiology (work physiology) and stress.

Human physical dimension concern: Human body- structure and function, anthropometrics, Anthropometry: body growth and somatotypes, static and dynamic anthropometry, stand posture-erect, Anthropometry landmark: sitting postures, Anthropometry: squatting and cross-legged postures, anthropometric measuring techniques, statistical treatment of data and percentile calculations.

UNIT-II

Posture and movement: Human body- structure and function, posture and job relation, posture and body supportive devices, chair characteristics, vertical work surface, horizontal work surface, movement, work counter

Behaviour and perception: Communication and cognitive issues, psycho-social behaviour aspects, behaviour and stereotype, information processing and perception, cognitive aspects and mental workload, human error and risk perception

UNIT-III

Visual Issues: Visual performance, visual displays, environments factors, environmental factors influencing human performance

Ergonomic design process: Ergonomics design methodology, Ergonomics criteria/check while designing, Design process involving ergonomics check, some checklists for task easiness.

UNIT-IV

Performance support and design intervention: Occupational safety and stress at workplace in view to reduce the potential fatigue, errors, discomforts and unsafe acts workstation design, furniture support, vertical arm reach and design application possibility

Humanising design: Design and human compatibility, comfort and adaptability aspects, Design Ergonomics in India: scope for exploration.

Text Books:

- 1. Introduction to Ergonomics R. Bridger-CRC Press, Taylor & Francis Group.
- 2. Human Factors in Engineering and Design-M. Sanders, E. McCormick, McGraw-Hill International Editions: Psychology Series.
- 3. An Introduction to Human Factors Engineering-C. Wicknes, S. Gordon, Y. Liu and S. Gordon-Becker, New York.
- 4. Indian Anthropometric Dimensions for Ergonomic Design Practice-D. Chakrabarti, National Institute of Design, Ahmedabad.

Reference Books:

- 1. Handbook of Human Factors and Ergonomics-G. Salvendy, John Wiley & Sons, Inc.
- 2. Ergonomics for Beginners, A Quick Reference Guide, J. Dul and B. Weerdmeester, CRC Press, Taylor & Francis Group.

Note: The paper setter will set the paper as per the question paper templates provided.

	B. Tech. (7th Semester) Mechanical Engineering											
MEO-411A	AIR AND NOISE POLLUTION											
Lecture	TutorialPracticalCreditMajorMinorTotalTime (Hrs.)											
3	0	0	3	75	25	100	3					
Purpose	The objective of this course is to analyze the emissions from automobiles, industries and to describe various techniques of reducing these emissions. Also to understand the concept to control noise pollution.											
		С	ourse Outco	omes								
CO1	Students wil	l be able to an	alyze the em	issions from	industries ar	nd various v	ehicles.					
CO2	Students wil guidelines.	l be able to ur	nderstand sta	andards, alte	rnative contr	ol strategies	s and AAQ					
CO3	Students will be able to describe various processes for desulfurization, flue control methods for various exhaust gases.											
CO4	Students wirvarious noise	ll be able to e barriers.	explain the	characterizat	tion of noise	e, physical	sound and					

UNIT-I

Introduction: Concept of unpolluted air, gaseous and vapour pollutants in atmosphere, scales of air pollution, primary and secondary pollutants, ambient air quality, monitoring of pollutants (SO₂, NO₂, O₃, PAN, particulates, hydrocarbons, PAH's) and their health effects, stack monitoring for SO_x, NO_x, CO, CO₂, Hydrocarbons, Fluorides, Ammonia, VOCs, effects of air pollution on vegetation, materials and structures, stack monitoring for thermal power plant, oil refinery industry, fertilizer industry, non-ferrous metal industry. recent techniques of online stack monitoring, emission inventory, trends of AAQ in urban, rural and Industrial areas.

UNIT-II

Air quality: National and International air emission standards and AAQ guidelines, indoor air quality, averaging time, air pollution system, alternative control strategies, GLC estimates for multiple sources using standard software (e.g., EPA's ISC model), determination of effective stack height.

UNIT-III

Emission Standards and Particulate matter: Distribution and sources of particulate matter, Hood duct design, particulate collection mechanisms, control systems and their design,flue-gas desulfurization processes, flue gas control methods for NO_x,emission standards for automobiles, origin of exhaust 3

emissions from gasoline, diesel, CNG and LPG engines, crankcase and evaporative emissions, emission reduction by fuel changes, emission reduction by engine design changes, catalytic converters, diesel engine emissions.

UNIT-IV

Noise: Characteristics, sources, types of noise, impact of noise.

Physics of sound- Speed of sound, sound pressure, frequency, wavelength, RMS sound pressure, sound pressure level, loudness, sound power level and sound energy density, sound propagation, wind and temperature gradient.

Enclosures and Barriers: Lead as a noise barrier, plenum barriers, barrier around pipe, wires and rectangular ductwork, high transmission loss ceilings, acoustical foams, nylon in noise reduction, damping compounds.

Noise measuring equipments: Sound level meter, octave band analyzer, statistical analyzer and noise average meter.

Text books:

1. Rao M.N. and Rao H.V.N., "Air Pollution", Tata McGraw Hill Publishing Company Ltd., New Delhi.

2.Wang L.K., Pereira N.C., Hung Y.T., "Advanced Air and noise pollution control", Volume I and II, Humana Press, New Jersey.

Reference books:

- 1. Ghassemi A., "Pollution Control and Waste Minimization", Marcel Dekker, Inc., New York.
- 2. Rao C.S., "Environmental Pollution Control Engineering", New Age International (P) Ltd., New Delhi.
- 3. Singal S.P., "Noise Pollution and Control Strategy", Alpha Science International, New Delhi.
- 4. Ray T.K., "Air Pollution Control in Industries", Volume I, Tbi, New Delhi.
- 5. Stern A.C., Bauble R.W., Fox D.L., Turner B., "Fundamentals of Air Pollution, Hardcover", Elsevier Science and Technology Books.
- 6. Narayanan P., "Environmental Pollution Principles, Analysis and Control", CBS Publishers

Note: The paper setter will set the paper as per the question paper template provided.
MEC-401A		AUTOMATION IN MANUFACTURING										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time (Hrs.)					
3	0	0	3	75	25	100	3					
Purpose	The purpo flexible ma systems.	The purpose of this course is to impart knowledge of production automation, robotics, flexible manufacturing, CNC programming, material handling and automated storage systems.										
			Course Ou	utcomes								
CO1	Students wi industry.	ll be able to	explain the r	ole automatio	on in manufa	cturing and r	obotics in					
CO2	Students w techniques i	ill be able to in the automat	describe th ed production	e group tecl I line and ma	hnology and nufacturing sy	flexible man /stem.	ufacturing					
CO3	Students w manufacturi	Students will be able to explain computer aided process planning and shop floor nanufacturing activities.										
CO4	Students will guided vehic	ll be able to de cle and autom	evelop CNC ated storage	programs and system in ma	d understand aterial handlin	the concept a g.	automated					

Introduction: Production system, automation in production system, manual labour in production system, automation principle and strategies, manufacturing industries and products, manufacturing operations, product facilities, product/ production relationship, basic elements of an automation system, advance automation function, level of automation.

Industrial robotics: Robot anatomy and related attributes, joint and links, common robot configuration, joint drive system, sensors in robotics, robot control system, end effectors, grippers and tools, applications of industrial robots, material handling, processing operation, assembly and inspection, robot programming.

UNIT-II

Group technology and cellular manufacturing: Part families, parts classifications and coding, production flow analysis, cellular Manufacturing- composite part concept, machine cell design, applications of group technology, grouping parts and machines by rank order clustering technique, arranging machines in a G.T. cell.

Flexible manufacturing: Introduction, FMS components, flexibility in manufacturing – machine, product, routing, operation, types of FMS, FMS layouts, FMS planning and control issues, deadlock in FMS, FMS benefits and applications.

UNIT- III

Process planning: Introduction, manual process planning, computer aided process planning – variant, generative, decision logic decision tables, decision trees, Introduction to artificial intelligence.

Shop floor control: Introduction, shop floor control features, major displays, major reports, phases of SFC, order release, order scheduling, order progress, manufacturing control, methodology, applications, shop floor data collections, Types of data collection system, data input techniques, automatic data, collection system.

UNIT- IV

CNC basics and part programming: Introduction, historical, background, basic components of an NC, steps in NC, verifications of numerical control machine tool programs, classification of NC Machine tool, basics of motion control and feedback for NC M/C, NC part programming, part programming methods, modern machining system, automatically programmed tools, DNC, adaptive control.

Automated guided vehicle and storage system: Functions of AGV, types of AGV, safety consideration for AGV, design of AGV; Introduction to storage system, storage system performance, storage location strategies, conventional storage method and equipment, automated storage system, fixed aisle automated storage/ retrieval system, carousel storage systems, analysis of storage system, fixed aisle automated storage/ retrieval systems, carousel storage systems.

Text Books:

- 1. CAD/CAM/CIM-P. Radhakrishnan, S. Subramanayan and V.Raju, New Age International (P) Ltd., New Delhi.
- 2. Computer Integrated Manufacturing- Alavudeen and Venkateshwaran, Prentice- Hall of India Pvt. Ltd., New Delhi.

Reference Books:

- 1. Automation, Production System and Computer Integrated Manufacturing- Mikell P. Groover, Pearson fourth edition.
- 2. CAD/CAM: Computer Aided Design and Manufacturing-Groover-M.P. and Zimmers E. W., Prentice Hall International, New Delhi, 1992.

B. Tech. (7 th Semester) Mechanical Engineering									
MEC-403L A			MECHAN	CAL ENG	INEERING	i LAB-III			
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time	
				Test	Test		Time	(Hrs.)	
0	0	2	1	0	40	60	100	3	
Purpose:	To provid program	e practical ki electives offe	nowledge in red in the c	n the conc arriculum.	erned subj	ect that a st	udent opt	from the	

COMPUTER AIDED DESIGN PRACTICALS

Course Outcomes

- **CO1** Students will be able to draw and design 2D models.
- CO 2 Students will be able to draw and design 3D modelling.
- **CO 3** Students will be able to assemble the parts.

List of experiments:

1To study the 2 dimensional drawing, orthographic views, front view, top view and side view.
2Introduction to Solid Works and working with sketch mode.
3To study the wireframe, surface and solid modelling.
4Working with the tools like Pattern, Copy, Rotate, Move and Mirror etc.
5Working with creating 3D features (Extrude & Revolve).
6Working with the tools like Hole, Round, and Chamfer etc.
7 Createthe part drawing of product 1 using any 3D software.
8Draw the part drawing of product 2 using any 3D software.
9Draw the part drawing of product 3 using any 3D software.
10Make assembly by using any 3D software.

Note: Product 1, 2 and 3 must be based on MEP-401.

FINITE ELEMENT ANALYSIS LAB:

Course Outcomes

- **CO1** Students will be able to apply the basic theory of elasticity to continuum problems
- **CO2** Students will be able to formulate Finite Element problems like bar, truss and beam elements for linear static structural analysis
- **CO3** Students will be able to formulate 2D and axisymmetric finite elements

CO4 Students will be able to formulate and solve finite element equations for 1D heat transfer elements

List of Experiments:

- 1.To solve problems related to solid mechanics, heat transfer and free vibration by using NASTRAN/SIMULIA/ANSYS/ABAQUS.
- 2.Introduction of GUI of the software in the above mentioned areas realistic problems.
- 3.To analyze beams and frames (bending and torsion problems).
- 4.To analyze plane stress and plane strain problems.
- 5. Problems leading to analysis of axisymmetric solids.
- 6.Problems leading to analysis of three dimensional solids: (a) Heat Transfer problems (b) Modal analysis problem:

By writing own code for finite element analysis using MATLAB for:

7.Plane stress and Plane strain problems.

8.Modal analysis problems.

Reference Books:

- 1. Finite Element Method using MATLAB-Young W Kwon and Hyochoong Bang, CRC Press Washington, USA.
- 2. Finite Element Method: A Practical Course-G. R. LIU and S. S. Quek, Elsevier Science, Butterworth Heinemann publication.

POWER PLANT ENGINEERING LAB:

Course Outcomes

- **CO1** Students will be able to explain the constructional features and working of different boilers, accessories, mountings, heat balance sheet preparation and to analyze the quality of steam.
- **CO2** Students will be able to describe the functions of different cooling towers and condensers and calculate their efficiencies.
- CO3 Student will be able to calculate the calorific value of fuels using a bomb calorimeter.
- **CO4** Student will be able to explain the functioning and use of solar photovoltaic systems and calculate the efficiency of a solar cell.

List of Experiments:

- 1. To study high pressure boilers.
- 2. To study low pressure boilers.
- 2. To study about the mountings & accessories of high and low-pressure boilers.
- 3. To prepare the heat balance sheet for the given boiler.
- 5. To find the calorific value of a given sample of solid/liquid fuel(s) using a bomb calorimeter.
- 6. To find power output and efficiency of impulse and reaction steam turbine.
- 7. To study cooling tower and calculate its efficiency.
- 8. To study various types of condenser and calculate efficiency.
- 9. To find the dryness fraction of steam using separating and throttling calorimeters.
- 10. To study solar photovoltaic systems and calculation of efficiency of a solar cell.

MECHATRONIC SYSTEMS PRACTICALS

Course Outcomes

- **CO1** Students will be able to control the speed of DC motor and servo motor using 8051 microcontrollers.
- **CO2** Students will be able to control the motion of single and double acting cylinder using Pneumatic and Hydraulic training kit.
- **CO3** Students will be able to control traffic light signals using PLC and 8051 microcontrollers.
- **CO4** Students will be able to perform operations of addition, subtraction, multiplication and division using 8086 Microprocessor.

List of Experiments

- 1 To run a stepper motor at different speeds and directions using 8051 assembly language.
- 2 To control traffic light by interfacing with PLC kit.
- 3 To perform speed control of DC motor with 8051 microcontroller.
- 4 To perform experiment on hydraulic trainer kit.
- 5 To perform experiment on pneumatic trainer kit.
- 6 To study various types of sensors and transducers.
- 7 To control a traffic light system using 8051 Microcontroller
- 8 To perform the 8-bit addition and subtraction using 8086 Microprocessor.
- 9 To perform the 8-bit multiplication and division using 8086 Microprocessor.

INDUSTRIAL ROBOTICS PRACTICALS

Course Outcomes

CO1Students will be able to analyze the movement of various positions of robotics arm.

CO 2Students will be able to design the robotics systems.

CO 3Students will be able to analyze the pneumatic and hydraulic systems.

CO 4Students will be able to demonstrate sensors, grippers etc.

List of Experiments

- 1. Recoding Robot positions (Absolute positions, Delete Positions, Save and load positions and Move theRobot to recorded positions).
- 2. Demonstration of Cartesian/ cylindrical/ spherical robot.
- 3. Study of different types of grippers.
- 4. Study of sensor integration.
- 5. Study of robotic system design.
- 6. Setting robot for any one industrial application after industrial visit.
- 7. Study the major equipment/Software/Components in Robotics Lab, e.g. Robotic Arm components, Arena etc.
- 8. Study of pneumatic and hydraulic system in Robotics.

SOLAR ENERGY ANALYSIS PRACTICALS

Course Outcomes

CO 1 Students will be able to analyze the solar based heating concepts and flow of working fluid in collector.

- CO 2 Students will be able to analyze the solar parabolic trough and evacuated tube collector.
- **CO 3** Students will be able to know about the solar energy storage by different means and understand the sun-earth relationships for sun tracking.
- **CO 4**Students will able to describe the functioning of solar PV collector power plant.

List of Experiments:

- 1. To evaluate the system efficiency and heat transfer of evacuated tube collector indifferent parts of system at different ambient conditions.
- 2. Evaluation of system thermal efficiency solar collector during charging storing and discharging the PCM.
- 3. To determine the thermal Performance of the Parabolic Trough collector with different inlet temperature of water and oil.
- 4. To evaluate the thermal performance of flat plate collector in thermosiphon and forced mode of flow at different radiation level.
- 5. To find the drying rate and drying time of different fruits and vegetables in flat plate based solar dryer.
- 6. To determine the efficiency of solar photo voltaic collector with and without sun tracking.

B. Tech. (7th Semester) Mechanical Engineering											
MEC-405LA		PROJECT-III									
Lecture	Tutorial	FutorialPracticalCreditMajorMinorPracticalTotalTimeTestTestTestTestTime(Hrs.)									
0	0	0 10 5 0 100 200 3									
Purpose:	To implen for solving	nent the engir g real world pr	neering prin oblems.	ciples and	theories i	nto innovative	e practica	l projects			
			Course	Outcomes	i						
CO1	Students	Students will be able to apply the theoretical knowledge into practical/software projects.									
CO2	Students	will be able to	design new	products	using lates	t technologies	S.				

The project work could be done for the problem statement of an industry or practical project in the institute. The students may also opt for the analysis based software projects with proper validation. Participation in any technical event/ competition to fabricate and demonstrate an innovative machine or product could be encouraged under this course.

Note: The maximum number of students in a group should not exceed four.

	B. Tech. (7 th Semester) Mechanical Engineering										
MEP-401A	COMPUTER AIDED DESIGN										
Lecture	Tutorial	TutorialPracticalCreditMajor TestMinor TestTotal (Hrs)									
3	0	0 0 3 75 25 100 3									
Purpose	To apply the	To apply the computer's technology in designing.									
		C	ourse Outco	mes							
CO1	To understan	d the fundamen	tals of CAD a	nd analyze tł	he CAD hard	ware.					
CO2	Students wil operations.	l be able to e	evaluate the	CAD softw	are and va	rious transf	ormation				
CO3	Students will	be able to analy	ze the geome	etric modelin	g.						
CO4	Students will	be able to create	e surface mo	deling and ur	nderstand the	data excha	nge.				

Fundamentals of CAD: Introduction, Traditional product cycle, CAD/CAM product cycle, rapid prototypic, design for everything, computer aided design, computer aided engineering, customer relationship management, product lifecycle management,

CAD hardware: Introduction, basic structure of computer, input, storage, processing, output, control, microcomputer, minicomputer, mainframes, supercomputer, input out device, LAN, MAN, WAN.

UNIT-II

CAD Software: Introduction, system software, application software, General CAD process, selection of CAD system, database management system, data structure, database types, function of database management system, advantages of DBMS, database coordinate system.

Geometric transformations: Introduction, 2D transformation, translation, rotation, scaling, homogeneous coordinate relationship, reflection transformation, shear transformation, inverse transformation for translation, rotation, scaling, reflection, shear, composite transformation, examples of composite transformation, geometric transformations in engineering design, solved examples.

UNIT-III

Geometric modeling: Need of geometric modeling, requirements of geometric modeling, wire frame modeling, surface modeling, solid modeling, difference between wireframe, surface and solid modeling, introduction to solid modeling, set theory, representation schemes for solid models, boundary representation, cellular decomposition, feature based modeling, Euler theory, mass property calculation. **Mathematical representation of 2D entity:** Introduction, parametric representation, of analytic curves,

lines, circle, conic selection, ellipse, parabola, hyperbola, parametric representation of synthetic curve, Hermite cubic spline curve, Bezier curves, B- spline curve, non-uniform rational, B splines, manipulation of curves.

UNIT-IV

Mathematical representation of surface entity: Introduction, surface entities, analytic surface, plane surface, tabulated surface, ruled surface, surface of revolution, sweep surface, synthetic surface, Hermite Bicubic surface, Bazier surface, bilinear surface, coons surface

Data exchange formats: Introduction, CAD/CAM data exchange, neutral file formats, data exchange format, initial graphics exchange specification, standard triangular language, standard for exchange of product data.

Text Books:

- 1. CAD/CAM Principle Practice and Manufacturing Management Chris McMahon and Jimmie Browne, Addison Wesley England, Second Edition, 2000.
- 2. CAD/CAM Theory and Practice, Mastering CAD/CAM Ibrahim Zeid, Tata McGraw Hill Publishing Co. Ltd., New Delhi.

Reference Books:

- 1. Mathematical Elements for Computer Graphics NC-Rogers, D.F. and Adams, McGraw Hill, NY, 1989
- 2. CAD/CAM/CIM P. Radhakrishnan, S. Subramanayan and V.Raju, New Age International (P) Ltd., New Delhi.
- 3. CAD/CAM: Computer Aided Design and Manufacturing Groover M.P. and Zimmers E. W., Prentice Hall International, New Delhi, 1992.
- 4. CAD/CAM/CAE Chougule N. K, Scitech publications (INDIA) PVT. LTD.

		B. Tech. (7 th Semester) Mechanical Engineering										
MEP-403A		FINITE ELEMENT ANALYSIS										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time (Hrs.)					
3	0	0 0 3 75 25 100 3										
Purpose	The purpose describe var FDM.	e of this cours ious methods	e is to under of FEM. Also	stand the fo to understa	ormulation of and the FEM	FEA proble with CI cor	ems and to itinuity and					
		С	ourse Outco	omes								
CO1	Students wil various conc formulation.	l be able to ur cepts associate	nderstand the ed and assen	basic steps nbly along w	in FEM forr	mulation. Als dary conditio	so to study ons in FEM					
CO2	Students wil Also to dis associated in	l be able to a cuss shape f r FEM.	nalyze how F functions, h	EM problen and p app	ns are formu proximations;	lated in 1-D and vario	elements. us solvers					
CO3	Students wil like Galerki coordinates, formulation.	l be able to stu n approach, numerical int	idy FEM forn Weighted R ægration and	nulation of 2- esidual etc. I various ot	-D elements Also to u her concepts	using variounderstand t s related to	is methods he natural 2-D FEM					
CO4	Students wil and plane s elements of	l be able to de train problems FEM, FEM wit	escribe the a with regard h CI continuit	xi-symmetric ls to solid n y and FDM p	c problems a nechanics. A problems.	along with p Iso to discu	ane stress Iss various					

Introduction: Basic steps in FEM formulation, general applicability of the method, variational functional, Ritz Method.

Variational FEM: Derivation of elemental equations, assembly, imposition of boundary conditions, solution of the equations.

UNIT-II

1-D Elements: Basis functions and shape functions, convergence criteria, h and p approximations, natural coordinates, numerical integration, Gauss elimination based solvers, computer implementation: pre-processor, processor, post-processor.

UNIT-III

Methods of FEA: Alternate formulation: Weighted Residual Method, Galerkin Method;

Problems with C1 Continuity: beam bending, connectivity and assembly of C1 continuity elements.
 2-D Elements (Triangles and Quadrilaterals) and Shape Functions: Natural Coordinates, Numerical Integration, Elemental Equations, .Connectivity and Assembly, Imposition of Boundary Conditions.

Axisymmetric (Heat Conduction) problem, plane strain and plane stress solid mechanics problems, subparametric, iso-parametric and super-parametric elements; elements with C1 continuity.

UNIT-IV

Free vibration problems and FDM: Formulation of eigenvalue problems, FEM formulation, timedependent problems, combination of Galerkin FEM and FDM (Finite Difference Method), convergence and stability of FD Scheme.

Text Books:

1. Finite element analysis-C. S. Krishnamoorthy, Tata McGraw Hill

2.An introduction to Finite element method-J. N Reddy, Tata Mc. Graw Hill

3. Finite Element Method with applications in Engineering-Y. M. Desai, Pearson Education India.

Reference Books:

- 1.Nonlinear Finite Elements for Continua and Structures (Paperback)-Belytschko(shelved 1 time as *finite-elements*)
- 2. The Finite Element Method for Three-Dimensional Thermomechanical Applications (Hardcover)-Guido Dhondt(shelved 1 time as *finite-elements*)
- 3.Numerical Solution of Partial Differential Equations by the Finite Element Method (Paperback)-Claes Johnson(shelved 1 time as *finite-elements*)

	B. Tech. (7 th semester) Mechanical Engineering											
MEP-405A		POWER PLANT ENGINEERING										
Lecture	Tutorial	TutorialPracticalCreditMajor TestMinor TestTotalTime (Hrs.)										
3	0	0 0 3 75 25 100 3										
Purpose	To understan combinations, economics.	To understand modern aspects of power generation, different power plants, their combinations, operation and components, energy demand and supply and power plant economics.										
		Co	ourse Outc	omes								
CO1	Students will variety of pow	be able to ana er plants.	alyze the ec	conomics of pov	wer generatio	on and des	scribe the					
CO2	Students will b process in det	pe able to ana ail.	lyze steam	power cycles a	nd understar	nd the coal	handling					
CO3	Students will Diesel and Ga	Students will be able to understand about the operation & advancements of Solar, Diesel and Gas turbine power plants.										
CO4	Students will various combi	be able to des nations of pow	scribe the r er plants ar	ole of nuclear ad their operation	energy in po n.	wer genera	ation and					

Economics of power generation: Introduction to economics of power generation, different terms and definitions, hydrology, rainfall, runoff, hydrographs, flow duration curves, cost analysis, power plant locations, selection of power plant equipment, factors affecting economics of generation and distribution of power, performance and operating characteristics of power plants, economic load sharing, tariff for electrical energy.

Different types of power plants: Recent developments in power plants, geothermal power plants, tidal power plants, windmills, solar power plants, hydroelectric power plant: site selection, classification, estimation of power availability, selection of water turbines, advantages and disadvantages of hydro power plants.

UNIT-II

Analysis of steam cycle: The ideal Rankine cycle, externally irreversible Rankine cycle, superheat, reheat, regeneration, internally irreversible Rankine cycle, open feed water heaters, closed type feed water heaters with drains cascaded backward and pumped forward, typical layout of steam power plant, efficiency and heat rate.

Coal handling plant: Coal Handling: unloading, feeding, crushing, feeding system, conveyor system, stacking system, magnetic separator/ metal detector, bin/chute vibratory system, coal weighment, coal sampling, fire-fighting system, dust suppression system, dust extraction system, mechanical stokers, pulverized fuels and burners, ash handling and disposal.

UNIT-III

Solar Power Plants: Introduction; solar collectors: flat plate and concentrating; absorber coating; solar pond electric power plant; solar thermal electric conversion systems: low temperature, medium

temperature and high temperature; solar electric power generation: solar photovoltaics, solar cell working and principle; combination of solar and hydropower plants; solar chimney power plant system.

Diesel engine & gas turbine power plants: Introduction, Types, layout of diesel engine power plant, different components of diesel power plant, performance characteristics, supercharging, layout and components of gas turbine power plants, gas turbine fuels, material selection for gas turbines.

UNIT-IV

Nuclear power plants: Basic theory and terminology, nuclear fission and fusion processes, fission chain reaction, moderation, fertile materials, nuclear fuels, general components of nuclear reactor, different types of reactors: PWR, BWR, GCR, LMFBR, CANDU-PHW, disposal of nuclear waste and related issues.

Power plant combinations: Combination of hydro power plants with steam plants, GT-ST Combined Cycle plant, combined cycles with heat recovery boiler, PFBC combined cycle, STIG (steam injected gas turbine) cycle, combined cycles with multi-pressure steam, combined cycle for nuclear power plants. **Text Books:**

- 1. Power Plant Engineering-Morse, D. Van Nostrand.
- 2. Power Plant Engineering-PK Nag, McGraw Hill.
- 3. Power Plant Technology-El-Wakil, McGraw Hill.

Reference Books:

- 1. Power Plant Engineering-P.C. Sharma, SK Kataria & Sons.
- 2. Power Plant Engineering-Domkundwar, Dhanpat Rai & Co.
- 3. Power Plant Technology-G.D.Rai, Khanna Publishers.
- 4. Power Plant Engineering-R.K. Rajput, Laxmi Publications.

B. Tech (7 th Semester) Mechanical Engineering												
MEP-407A		MECHATRONIC SYSTEMS										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time (Hrs.)					
3	0	0 0 3 75 25 100 3										
Purpose	The purpose o systems. The them to acquir	he purpose of this course is to provide students with an in-depth knowledge of mechatronics systems. The subject will give knowledge of electronics components to students and assist hem to acquire inter disciplinary skills.										
		Co	urse Outcon	nes								
C01	Students will students will b the transducer	be able to u e able to under s as per applic	nderstand N stand differe ations.	lechatronics nt sensors ar	systems and transduce	nd their applica ers as well as ab	ations. The ble to select					
CO2	Students will b able toconvert explain pin cor	be able to desc t number systen nfiguration and	ribe different ems from on architecture	types of nur system to of microproce	nber systen another. Th essor.	ns andBoolean a ne students will	algebra and be able to					
CO3	Students will t The students v	Students will be able to understand the architecture of microcontroller and structure of PLC. The students will also be able to draw the ladder diagram.										
CO4	Students will b explain the wo	e able to unde rking of DC an	rstand variou d servo moto	s types of ac r.	tuator. The s	students will also	be able to					

Introduction: Definition of mechatronics, multi-disciplinary scenario, evaluation of mechatronics, objectives, advantages & disadvantages of mechatronics, an overview of mechatronics, microprocessor based controllers, principle of working of automatic camera, automatic washing machine & engine management system.

Review of sensors and transducers: Definition and classification of transducers, definition & classification of sensors, performance terminology, working principle and application of displacement, position & proximity, velocity and motion, force, fluid pressure, liquid flow, liquid level, temperature, light sensors, selection of transducers.

UNIT-II

Digital principles: Introduction, digital number system, range and weight of binary number system, octal and hexadecimal number systems, conversion, BCD number systems, gray code, Boolean algebra, logic states, logic functions, more logic gates, universal gates, exclusive-OR gate, minimization of Boolean expression usingKarnaugh map.

Microprocessor: 8086 CPU architecture: 8086 Block diagram, description of data registers, addressregisters; pointer and index registers, PSW, Queue, BIU and EU, 8086 Pin diagram descriptions, 8086 minimum mode and maximum mode CPU module.

UNIT-III

Micro controller: Introduction of 8051 microcontroller &its block diagram, comparison of microprocessor and microcontroller

PLC: Programmable logic controllers, basic structure, input/output processing, ladder diagram timers, internal relays and counters, shift registers, master and jump controls, data handling, analogue input/output, selection of a PLC.

UNIT-IV

Actuators: Definition, classification of actuators, mechanical actuation systems, types of motion, kinematics chains, cams, gear trains, ratchet and pawl, belt and chain drives, bearings, brief survey of electromechanical actuators, drive requirements for cutting movements, requirements of feed drives, calculation of drive requirements on feed motor shaft.

Motors: DC motors & Control of DC motors, DC &AC servomotors, stepper motors-types, characteristics, advantages, limitations and applications, mechanical aspects of motor selection.

Text books:

1.A Textbook of Mechatronics-R. K Rajput, S. Chand & Company, Edition 2010 2.Mechatronics, W. Bolton – Pearson Education Asia - 2nd Edition, 2011.

Reference books:

1.Mechatronics, HMT Ltd., McGraw Hill Education, 2017

- 2.Mechatronics Principles, Concepts and Application-Nitaigour and Premchand, Mahilik Tata McGraw Hill 2003
- 3.Mechatronics: An Introduction-Robert H. Bishop, CRC Press, 2015
- 4.Mechatronics: Integrated Mechanical Electronic System- Ramachandran, Vijayaraghavan, Balasundaran- Wiley Publication, 2008

	B. Tech. 7thSemester Mechanical Engineering											
MEP-409A		INDUSTRIAL ROBOTICS										
Lecture	Tutorial	utorial Practical Credit Major Minor Total Time Test Test (Hrs.)										
3	0	0 0 3 75 25 100 3										
Purpose	The purp fundamen control.	The purpose of this course is to make the students understand about the fundamental of robotics technology, its components and robotics cell design and control.										
			Course Outo	comes								
C01	Students application	will be able ns.	to understa	nd the fund	amentals of	robotics a	nd find its					
CO2	Students robotics.	Students will be able to explain the use of different sensors and end effectors in robotics.										
CO3	Students v	will be able to	describe the	application o	f robotics in	manufacturir	ng.					
CO4	Students v	will be able to	design and a	nalyze the w	ork cell and r	obotic motic	n.					

Introduction: Automation and robotics, robotics in science fiction, a brief history of robotics, the robotics market and the future prospectus,

Fundamental of robotics:Robot anatomy, work volume, robot drives systems, control systems, precession of movement, end effectors, robot application.

UNIT-II

Sensors in robotics: Type of sensors in robotics, exteroceptors or external sensors, force and torque sensors, proximity sensors (position sensors), range sensors, machine vision sensors, velocity sensors. tactile sensor, proximately and range sensors, use of sensor in robotics.

Robot end effectors: Types of end effectors, characteristics of end-of-arm tooling, elements of end-of-arm tooling.

UNIT-III

Material transfer and equipments:General consideration in robot material handling, material transfer applications, machine loading and unloading,

Grippers:Tool selection of gripper, gripping mechanism, types of gripper, mechanical gripper, vacuum and magnetic grippers.

UNIT-IV

Robot cell design and control: Robot cell layouts, multiple robots and machine interface, other considerations in work cell design, work cell control, interlocks, the work cell controller, robot motion analysis and control: introduction to manipulator kinematics, manipulator path control, robot dynamics, configuration of robot control.

Text books:

1. Robot Analysis and Control-Asada, H., and J. J. Slotine, Wiley.

2.CAD/CAM: Computer Aided Design and Manufacturing- Groover M.P. and Zimmers E. W., Prentice Hall International, New Delhi.

Reference Books:

- 1. Robotics and Control-R. K. Mittal, I. J. Nagrath, McGraw Hill.
- 2. Fundamental of Robotics Analysis and Control-Robert J Schilling, Pearson
- 3. Industrial Automation and Robotics-J K Arora, Laxmi Publications

B. Tech. (7th Semester) Mechanical Engineering												
MEP-411A	SOLAR ENERGY ANALYSIS											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time (Hrs.)					
3	0	0 0 3 75 25 100 3										
Purpose	The purpos availability, u	The purpose of this course is to make the students aware about the importance, availability, use and applications of solar energy.										
			Course Out	comes								
CO1	Students wil based on su	l be able to de n and earth rot	escribe the si ation.	un-earth re	lationships	and variou	is solar activities					
CO 2	Students wil and solar en	l be able to an ergy storage b	alyze the co y different m	ncentrating eans.	g collector i	n solar ene	ergy applications					
CO 3	Students will be able to apply the solar based heating-cooling concepts in building structures and explain the water heating flow systems.											
CO 4	Students w conditioning	ill be able to systems.	o analyze s	solar powe	er generati	on, refrige	eration and air-					

Unit-I

Introduction:Basic Heat transfer principles, availability of solar energy, nature of solar energy, solar energy and environment, sun as the source of radiation, solar radiation: measurement of solar radiation, irradiance, solar constant, insolation, radiosity, emissive power, earth's equator, meridian longitude, sun earth angles, sunrise, sun set and day length, solar time, equation of time, various methods of using solar energy, photo thermal, photovoltaic, photosynthesis, present & future scope of solar energy.

Unit-II

Solar thermal energy: Stationary collectors, FPC, CPC, ETC, sun tracking, concentrating collectors, PTC, PDR, HFC, Fresnel collectors, solar thermal power plants, solar chimney power plant, solar pond, solar water heater, solar cooker, types- solar disinfection, limitations of solar thermal energy.

Heat Storage: Sensible and latent heat storage, chemical energy system, performance calculations.

Unit-III

Flow systems: Natural and forced flow systems, water heating systems for domestic, industrial and space heating requirements, solar distillation.

Solar heating and cooling: Direct, indirect and isolated heating concepts, cooling concepts, load calculation methods, performance evaluation methods. **Unit-IV**

Solar thermal power generation: Introduction, paraboloid concentrating systems, cylindrical concentrating systems, central receiver system.

Solar refrigeration and air conditioning systems: Introduction, solar refrigeration and air conditioning systems, solar desiccant cooling.

Text Books:

Solar Thermal Engineering Process - Duffie and Beckman.
 Advanced Solar Energy Technology - H.P. Garg, Kluver.
 Solar Energy- S.P. Sukhatme, TMH.

Reference Books:

1.Solar Energy- J.S. Hsieh, Pearson College DIV.

2.Solar Thermal Engineering- P.J. Lunde, John Wiley & Sons.

	B. Tech. (7th Semester) Mechanical Engineering											
MEC-407A	INDUSTRIAL TRAINING-III											
Lecture	Tutorial	Tutorial Practical Credit Major Minor Practical Total Time Test Test Test										
2	0	0 0 100 100										
Purpose	To provide capability f	To provide an industrial exposure to the students and enhance their skills and creative capability for conversion of their innovative ideas into physical reality.										
			Course	Outcomes	S							
CO 1	Students w life-long lea	vill be able to arning.	self-improv	/e through	continuous	s professional	developr	nent and				
CO 2	Students w as an engi	Students will be able to develop social, cultural, global and environmental responsibility as an engineer.										
CO 3	Students w	vill be able to v	weigh all the	e latest cha	anges in teo	hnological wo	rld.					

Note: MEC-407 is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone for minimum 4 weeks after 6th semester and students will be required to get passing marks to qualify.

The candidate has to submit a training report of his/her work/project/assignment completed in the industry during the training period. The evaluation will be made on the basis of training report submitted and viva-voce/presentation.

w.e.f. 2021-22

Eighth Semester

B. Tech. (8th Semester) Mechanical Engineering											
MEC-402L A		Project-IV									
Lecture	Tutorial	FutorialPracticalCreditMajorMinorPracticalTotalTimeTestTestTestTestTestTestTest									
0	0	0 10 5 0 100 100 200 3									
Purpose	To impleme solving real	ent the engine world proble	ering princi ms.	ples and th	eories inte	o innovative p	practical pr	ojects for			
			Course	Outcomes							
CO1	Students will be able to apply the theoretical knowledge into practical/software projects.										
CO2	Students w	ill be able to d	lesign new	products us	sing latest	technologies					

The project work could be done for the problem statement of an industry or practical project in the institute. The students may also opt for the analysis based software projects with proper validation. Participation in any technical event/ competition to fabricate and demonstrate an innovative machine or product could be encouraged under this course.

Note: The maximum number of students in a group should not exceed four.

B. Tech. (8th Semester) Mechanical Engineering												
MEO-402A	SUPPLY CHAIN MANAGEMENT											
Lecture	Tutorial	TutorialPracticalCreditMajor TestMinor TestTotalTime (Hrs.)										
3	0	0 0 3 75 25 100 3										
Purpose	The main o performance chain manag	bjective of th e, driver and m gement.	e course is etrics, netwo	to impart s rk design, ec	tudents with onomies and	the knowle uncertaintie	dge of the s in Supply					
			Course Out	comes								
C01	Students wi performance	ll be able to	explain the	basics of S	Supply chair	manageme	ent and its					
CO2	Students wil supply chain	l be able to di networks.	scuss supply	chain metri	cs and the p	rocess of de	signing the					
CO3	Students wil network. Als network.	Students will be able to explain various aspects and functions of the supply chain network. Also, they will be able to explain the design process of the Global supply chain network.										
CO4	Students wil supply chain	l be able to d	lescribe how	to manage	economies a	ind uncertai	nties in the					

Understanding the supply chain: Introduction, definition, the objective of a supply chain, the importance of supply chain decisions, decision phases in a supply chain, process views of a supply chain, examples of supply chains.

Supply chain performance: Achieving strategic fit and scope: Competitive and supply chain strategies, achieving strategic fit, expanding strategic scope, challenges to achieving and maintaining strategic fit.

UNIT-II

Supply chain drivers and metrics: Financial measures of performance, drivers of supply chain performance, framework for structuring drivers, facilities, inventory, transportation, information, sourcing, pricing.

Designing the supply chain network: Designing distribution networks and applications to online sales: the role of distribution in the supply chain, factors influencing distribution network design, design options for a distribution network, online sales and the distribution network, distribution networks in practice.

UNIT-III

Network design in the supply chain: The role of network design in the supply chain, factors influencing network design decisions, framework for network design decisions, models for facility location and capacity allocation, making network design decisions in practice.

Designing global supply chain networks: The impact of globalization on supply chain networks, the offshoring decision: total cost, risk management in global supply chains, discounted cash flows, evaluating network design decisions using decision trees, to onshore or offshore: evaluation of global supply chain

design decisions under uncertainty, making global supply chain design decisions under uncertainty in practice.

UNIT-IV

Managing economies of scale in a supply chain: Cycle inventory, the role of cycle inventory in a supply chain, estimating cycle inventory–related costs in practice, economies of scale to exploit fixed costs, economies of scale to exploit quantity discounts, short-term discounting: trade promotions, managing multi-echelon cycle inventory.

Managing uncertainty in a supply chain: Safety inventory, the role of safety inventory in a supply chain, determining the appropriate level of safety inventory, impact of supply uncertainty on safety inventory, impact of aggregation on safety inventory, impact of replenishment policies on safety inventory, managing safety inventory in a multie-chelon supply chain, the role of IT in inventory management, estimating and managing safety inventory in practice.

Text books:

- **1.** Supply chain Management: Strategy, Planning and Operations Chopra, S., and Meindl, P., Fifth Edition, Pearson Education (Singapore) Pte. Ltd, 2004.
- 2. Designing & Managing the Supply Chain: Concepts, Strategies & Case studies Simchi-Levi, P., Kaminsky, Ravi Shankar, E., Third Edition, Tata McGraw-Hill Edition, 2003.

Reference books:

- 1. Purchasing and Supply Chain Management: Text and Cases Doebler, D.W. and Burt, D.N., McGraw-Hill Publishing Company Limited, New Delhi, 1996.
- 2. Supply Chain Management for Competitive Advantage Rangaraj, TMH.

B. Tech. (8th Semester) Mechanical Engineering										
MEO-404A	COMPETITIVE MANUFACTURING SYSTEMS									
Lecture	TutorialPracticalCreditMajorMinorTotalTime (Hrs.)									
3	0	0	3	75	25	100	3			
Purpose	The objective of this course is to make the students understand about the concepts of competitive manufacturing management systems.									
Course Outcomes										
CO1	Students will be able to interpret the tactics, strategies and tools of continuous improvements of products and services.									
CO2	Students will be able to implement the just in time and total quality management philosophy for continuous improvement and identify the elements of lean and wasteless production.									
CO3	Students will improve the	Students will be able to describe how to reduce the setup time and how to maintain and improve the equipment efficiency.								
CO4	Students will the systems	l be able to ex for eliminating	plain the pull defects.	-push produc	ction system a	and will be a	ble to know			

Fundamentals of continuous improvement: Continuous improvement as tactics and strategy-Incremental improvement: Kaizen, improvement threshold, innovation improvement making the leap, improvement as strategy, finding and implementing improvements-PDCA cycle, value analysis/value engineering, process engineering.

Basic problem solving and improvement tools: Check list, histogram, Pareto analysis, scatter diagram, process flow chart, cause and effect analysis, run diagram.

UNIT-II

JIT: value added and waste elimination: Value added focus- necessary and unnecessary activities, support organization, sources of waste-Toyota's seven wastes, Canon's none wastes, JIT principles-simplification, cleanliness and organization, visibility, cycling time, agility, variation reduction, measurement, Meaning of JIT-philosophy, method, JIT limitations and implementation barriers, social impact of JIT.

Total quality management (TQM): Quality, Framework for managing total quality, employee involvement, benchmarking, quality certification, implementing TQM.

Elements of lean production: Lot size basics-lot size and setup reduction, kinds of lots, Lot sizingprocess and purchase batches, EOQ based methods, transfer batches, Lot size reduction- Effect of lot size reduction on competitive criteria, cases for larger process batches, minimum lot size, small buffer stock, EOQ models for lot sizing.

UNIT-III

Setup time reduction: Setup reduction methodology-Shingo and SMED, SMED methodology for setup reduction, techniques for setup reduction-separate internal and external activities, improve internal setups, improve external setups.

Maintaining and improving equipment: Equipment maintenance-breakdown repair, equipment problems and competitiveness, preventive maintenance, total predictive maintenance, Equipment effectiveness-equipment losses, maintainability, reliability, availability, efficiency, quality rate, preventive maintenance programs, Total productive maintenance-perform TPM preventive maintenance, develop in house quality to restore and redesign equipment, eliminate human error in operation and maintenance, Implementing TPM-program feasibility, master plan, target areas, management support.

UNIT-IV

Pull production systems: Production control systems, Pull systems and Push systems- pull production process, push production process, rules for pull production, process improvement, necessary conditions for pull production systems, pull system as a fixed quantity/reorder point system, conveyance Kanbans, production Kanbans, Signal Kanbans, CONWIP method of pull production.

Systems for eliminating defects: Inspection (screening), self-checks and successive checks, requirements for self-checking, successive checkings, automation, cycle time, limits of inspection, source inspection and POKAYOKE: POKAYOKE functions, ideas, continuous improvements, JIDOKA-autonomation, andons.

Text Books:

1. Competitive Manufacturing Management – John M. Nicholas, TMH.

2. Manufacturing Management – Principles and Concepts, Gibson, Greenhalgh and Kerr, Champan and Hall.

Reference Books:

- 1. Production and Operation Management K.C. Jain, Dreamtech Press.
- 2. Operations management-William J. Stevenson, McGraw Hill Education.

B. Tech. 8 [™] Semester Mechanical Engineering										
MEO-406A	CONCURRENT ENGINEERING									
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTime (Hrs.)								
3	0	0	3	75	25	100	3			
Purpose	The objective of this course is to familiarize students with the concepts, approaches and implementation techniques related to concurrent engineering.									
Course Outcomes										
C01	Students will be able to describe the basic concepts of concurrent engineering and implement concurrent engineering techniques.									
CO2	Students will be able to identify the concept of life cycle management.									
CO3	Students will be able to analyze reengineering and system engineering approaches and processes.									
CO4	Students v realization	will be able to taxonomy.	appraise diff	erent informa	ation modelir	ng systems a	and product			

UNIT – I

Concurrent engineering concept: Concurrent engineering definitions, basic principles of CE, components of CE, concurrency and simultaneity, modes of concurrency, modes of cooperation, CE design methodologies, benefits of concurrent engineering,

Review of CE technique: Design for manufacture (DFM), design for assembly (DFA), quality function deployment (QFD), rapid prototyping (RP), total design (TD), organizing for CE, CE tool box.

UNIT – II

Life-cycle management: Introduction, shrinking life-cycle, product development cycle, product-life cycle, life-cycle management, new product introduction, strategic technology insertions, managing continuity, managing revision changes, life-cycle cost drivers, life-cycle management tools, sequential versus concurrent engineering.

UNIT – III

Process-reengineering: Introduction, understanding and managing change, reengineering approaches work-flow mapping, information flow-charting, process improvement methodology, change management methodology, concurrent process reengineering.

System engineering: System engineering process, systems thinking, approaches to system complexity, sharing and collaboration in CE, system integration, management and reporting structure.

UNIT – IV

Information modeling systems: Information modeling, modeling methodology, foundation of information modeling, concurrent engineering process invariant, enterprise model-class, specification model-class, product model-class, process model-class, cognitive models, merits and demerits.

Product realization taxonomy: Development methodology for CPRT, concurrent product realization taxonomy, pull system of product realization, description of parallel tracks, description of 2-T loops, description of 3-T loop.

Text Books:-

- 1. Concurrent Engineering Fundamental, (Vol 1) integrated Product and Process Organization Biren Prasad.
- 2. Concurrent Engineering G.S. SAWHNEYUNIVERSITY SCIENCE PRESS (An Imprint of Laxmi Publications Pvt. Ltd.) An ISO 9001:2008 Company.
- 3. Concurrent Engineering Fundamentals: Integrated Product Development Prasad, Prentice hall India

Reference Books:

- 1. Design for Concurrent Engineering J. Cleetus, CE Research Centre, Morgantown
- 2. Concurrent Engineering in Product Design and Development I. Moustapha, New Age International
- 3. Concurrent Engineering: Automation Tools and Technology Andrew Kusiak , Wiley Eastern

B. Tech. (8th Semester) Mechanical Engineering										
MEO-408A	LUBRICANTS AND LUBRICATION									
Lecture	TutorialPracticalCreditMajorMinorTotalTime (Hrs.)									
3	0 0 3 75 25 100 3									
Purpose	The purpose of the course is to make the students aware of the different properties and composition of lubricants and understand the fundamental concepts of hydrodynamic, hydrostatic and extreme pressure lubrication.									
Course Outcomes										
CO1	Students will be able to describe properties and composition of lubricants.									
CO2	Students will be able to understand the basics of hydrodynamic lubrication and analyse the thermal and non-Newtonian effects in hydrodynamic lubrication.									
CO3	Students will be able to explain and analyze the hydrostatic lubrication, and extreme pressure lubrication at different temperature-load combinations.									
CO4	Students wil	l be able to un	derstand and	analyze the	elastohydro	dynamic lub	rication.			

Physical properties of lubricants: Introduction, relationship of viscosity with temperature, pressure and shear rate, viscosity index, viscosity measurement, viscosity of mixtures; Viscosity classification, thermal properties of lubricants, temperature characteristics of lubricants, neutralization number, carbon residue, optical properties, additive compatibility and solubility, lubricant impurities and contaminants.

Lubricants and their composition: Mineral oil based liquid lubricants – sources, types, synthetic oils – manufacturing of synthetic oils, hydrocarbon synthetic lubricants, silicon analogues of hydrocarbons, organohalogens; new developments in synthetic lubricants, emulsions and aqueous lubricants, greases, grease characteristics, lubricant additives.

UNIT-II

Hydrodynamic lubrication: Introduction, Reynolds equation, pressure distribution, load capacity, coefficient of friction, lubricant flow; converging diverging wedges, journal bearings, thermal effects in bearings, isoviscous and non-isoviscous thermal analysis, hydrodynamic lubrication with non-Newtonian fluids, squeeze films.

UNIT-III

Hydrostatic lubrication: Introduction, hydrostatic bearing analysis, general approach, optimization of bearing design, aerostatic bearings, stability.

Extreme pressure lubrication: Lubrication mechanisms for low temperature-low load, low temperature - high load, high temperature – medium load and high temperature – high load, boundary and EP lubrication of non-metallic surfaces.

UNIT-IV

Elastohydrodynamic lubrication: Introduction, contact stresses, geometry of contacting bodies, contact area, pressure, maximum deflection and position of maximum shear stress, EHL of lubricating films,

pressure distribution, film thickness formulae, effect of non-dimensional parameters, lubrication regimes, partial EHL, surface temperature at conjunction.

Text books:

1. Engineering Tribology - Gwidon W. Stachowiak, Andrew W. Batchelor, Butter worth, Heinemann. 2.Introduction to Tribology of Bearings - B.C. Majumdar, S. Chand Co.

Reference books:

- 1. Friction and Lubrication E.P. Bowden and Tabor. D., Heinemann Educational Books Ltd.
- 2. Engineering Tribology Ross Beckett, Larsen and Keller Education
- 3. Fundamentals of Fluid Film Lubrication Bernard Hamrock, Bo Jacobson, and Steven R. Schmid, Taylor and Francis.

B. Tech. 8th Semester) Mechanical Engineering									
MEO-410A	TOTAL QUALITY MANAGEMENT								
Lecture	TutorialPracticalCreditMajorMinorTotalTime (Hrs.)								
3	0	0	3	75	25	100	3		
Purpose	The purpose of this course is to develop an understanding of quality management framework, philosophies, in-depth knowledge of various tools and techniques with their application in the manufacturing and service industry.								
			Course O	utcomes					
CO1	Students will be able to understand quality management philosophies and frameworks.								
CO2	Students will be able to describe various tools and techniques of quality management.								
CO3	Students will manufacturing	be able to e g and service in	xplain the a ndustry	pplications	of quality to	ools and te	chniques in both		
CO4	Students will	be able to desc	cribe various	quality syste	ems like ISO	and its star	ndards.		

Introduction and philosophies of quality management:introduction, need for quality ,evolution of quality, definitions of quality, dimensions of product and service quality, basic concepts of TQM, TQM framework, benefits, awareness and obstacles, quality, vision, mission and policy statements, contributions of Deming, Juran and Crosby , barriers to TQM, quality statements, customer focus, customer orientation, customer satisfaction, customer complaints, and customer retention, costs of quality.

UNIT-II

Principles of quality management:Leadership,strategic quality planning, quality councils, employee involvement, motivation, empowerment, team and teamwork, quality circles recognition and reward, performance appraisal, continuous process improvement, PDCA cycle, 5S, Kaizen ,supplier partnership, partnering, supplier selection, supplier rating.

Process capability: Meaning, significance and measurement, six sigma concepts of process capability.

UNIT-III

Tools and techniques for quality management: Quality functions development (QFD), benefits, voice of customer, information organization, house of quality (HOQ), building a HOQ, QFD process.

Failure mode effect analysis (FMEA): Requirements of reliability, failure rate, FMEA stages, design, process and documentation, seven old (statistical) tools, seven new management tools, bench marking and POKAYOKE.

UNIT-IV

Quality systems organizing and implementation:Need for ISO: 9000, ISO: 9001-2008 quality system, elements, documentation, quality auditing, QS:9000, ISO: 14000, concepts, requirements and benefits, TQM implementation in manufacturing and service sectors, quality audits, TQM culture. **Text Books:**

1. Total Quality Management-Dale H.Besterfield, Pearson Education (First Indian Reprints 2004).

- 2. Total Quality Management-Shridhara Bhat K, Himalaya Publishing House, First Edition 2002. **Reference Books:**
 - 1. Competitive Manufacturing Management John M. Nicholas, TMH.
- 2. Total Quality Management- R Kesavan, C Elanchezhian, B Vijaya Ramnath, IK International.
- 3. Total Quality Management: Principles, Methods, and Applications-Sunil Luthra, Dixit Garg, Ashish Agarwal, Sachin K. Mangla, CRC Press.
- 4. Total Quality Management-Poornima M. Charantimath, Pearson Pub.

B. Tech. 8th Semester) Mechanical Engineering										
MEO-412A	ENERGY CONSERVATION AND MANAGEMENT									
Lecture	TutorialPracticalCreditMajorMinorTotalTime (Hrs.)TestTestTestTestTestTest									
3	0	0	3	75	25	100	3			
Objective	To impart students, the knowledge of various energy management and conservation techniques, building audit and survey procedures for energy management.									
Course Outcomes										
CO1	Students will be able to describe various renewable sources of energy and the technicalities, operating principles and classification of HVAC Systems.									
CO2	Students will be able to describe the methodology of Site and Building Surveys.									
CO3	Students will be able to explain various energy analysis techniques and the principle and classification of Process Energy.									
CO4	Students w techniques	vill be able to in building des	discuss the signs.	implement	ation of va	rious ener	gy management			

Renewable energy: Introduction; solar energy; wind energy; energy from water; energy from earth; energy from biomass.

Heating, venting and air conditioning systems: General principles; the requirements for human comfort; description of typical systems-dual duct HVAC system; multi zone HVAC systems: variable and volume systems, terminal repeat system, evaporative systems, package system; basic principle governing HVAC system, package system; energy management opportunities in HVAC systems; modeling of heating and cooling loads in buildings; problems.

UNIT-II

Site and building surveys: Phases involved in surveys: initiation phase, audit and analysis phase, implementation phase; general methodology for building and site energy audit; site survey: methodology, site survey-electrical system, steam and water systems; building survey: methodology, basic energy audit instrumentation, measurement for building surveys.

UNIT-III

Energy analysis techniques: Introduction; annual energy consumption; normalized performance indicators; time-dependent energy analysis; linear regression; single independent; correlation coefficients; multivariable analysis; CUSUM.

Process energy: General principles; process heat; energy saving in: condensate return, steam generation and distribution, automotive fuel control, hot water and water pumping; direct and indirect fired furnaces over process electricity; other process energy forms-compressed air and manufacturing processes; problems.

UNIT-IV

Waste heat recovery: Introduction, recuperative heat exchangers, heat exchanger theory; number of transfer units (NTU) concept, run-around coils, regenerative heat exchangers, heat pumps, energy efficient heating: thermal comfort, building heat loss; U values, heat loss calculations, heating energy calculations; intermittent heating; radiant heat; radiant heating; low-emissivity glazing.

Passive solar and low energy building design: Introduction, passive solar heating, direct gain techniques, indirect gain techniques, isolated gain techniques, thermosiphon systems, passive solar cooling, shading techniques, solar control glazing, advanced fenestration, natural ventilation, thermal mass, night venting, termodeck, building form, building operation.

Text Book:

- 1. Energy Management and Conservation Handbook, Second Edition Frank Kreith, D. Yogi Goswami.
- 2. Energy Management, Supply and Conservation, Second Edition Clive Beggs
- 3. Energy Management Principles Criag B. Smith, Published by Pergamon Press.
- 4. Energy Systems and Developments Jyoti Parikh, Oxford University Press.

Reference Books:

- 1. Energy,Resources, Demand and Conservation with reference to India Chaman Kashkari, Tata Mc Graw Hill Co. Ltd.
- 2. Integrated Renewable Energy for Rural Development–Proceedings of Natural Solar Energy Convention, Calcutta.

B. Tech. 8 ^₅ Semester) Mechanical Engineering										
MEP-402A	Non-Conventional Machining									
Lecture	TutorialPracticalCreditMajorMinorTotalTimeTestTestTest(Hrs.)									
3	0	0	3	75	25	100	3			
Purpose	This course provides comprehensive knowledge about the advanced technologies and different Non-conventional machining processes.									
Course Outcomes										
CO 1	Students will be able to compare conventional and non-conventional machining processes and recognize the need for Non-conventional machining processes.									
CO 2	Students will be able to know about the constructional features, performance parameters, process characteristics, applications, advantages and limitations of USM.									
CO 3	Students will be able to know about the constructional features, performance parameters, process characteristics, applications, advantages and limitations of AJM, WJM and AWJM.									
CO 4	Students will be able to identify the need of chemical and electro-chemical machining processes along with the constructional features, process parameters, process characteristics, applications, advantages and limitations.									
CO 5	Students wi parameters, LBM and EE	Il be able to ex process chara BM.	plain the cor acteristics, ap	nstructional f oplications, a	eature of the advantages a	e equipmen and limitatio	t, process ons EDM,			

Introduction to non-conventional machining: Introduction to non-conventional machining(NCM) processes, characteristics of conventional machining processes, characteristics of non-conventional machining processes, need for development of non-conventional machining processes, comparison of conventional and non-conventional machining processes, advantages of non-conventional machining processes, disadvantages of non-conventional machining processes, applications of non-conventional machining processes.

Ultrasonic machining (USM): process principle, equipment, design consideration for tool, tool feed mechanism, abrasive slurry, Liquid media, operation of USM, process parameters, process capabilities, mechanics of cutting in USM applications of USM, advantages of USM, disadvantages of USM, Mechanics of cutting in USM, ultrasonic welding

UNIT-II

Abrasive jet machining (AJM): process principle, equipment, process parameters, process capabilities, applications of AJM, advantages of AJM, disadvantages of AJM, Mechanics of cutting in AJM.

Water jet machining (WJM): process principle, equipment, process parameters, process capabilities, Metal removal rate, applications of WJM, advantages of WJM, disadvantages of WJM. Abrasive water jet machining (AWJM): process principle, equipment, process parameters, process capabilities, Metal removal rate, applications of AWJM, advantages of AWJM, disadvantages of AWJM.

UNIT-III

Chemical machining: Introduction, process principle, five steps of chemical machining, elements of process, Influence of etchant medium, selection of maskant and etchants, chemical blanking, accuracy of chemical blanking, applications of chemical machining, advantages of chemical machining, disadvantages of chemical machining, chemical milling, photochemical machining.

Electrochemical machining (ECM): classification of ECM processes, fundamental principles of ECM, elements of ECM process, electro-chemistry of ECM process, process parameters, process characteristics, tool design, accuracy, determination of metal removal rate, evaluation of metal removal rate of an alloy, surface finish and work material characteristics, economic consideration, advantage, limitation and application, basics of electrochemical grinding, deburring and honing.

UNIT-IV

Electric discharge machining (EDM): Principal and metal removal mechanism, generators, electrode feed control, electrode material, tool electrode tool design, EDM wire cutting, surface finish, accuracy and application.

Laser beam machining(LBM): Introduction, generation of LASER, Equipment and mechanism of metal removal, LBM parameters and characteristics, Applications, Advantages & limitations.

Electron beam machining (EBM): Introduction, Principle, equipment and mechanism of metal removal, applications, advantages and limitations.

Text Books:

- 1. Unconventional Machining processes- T. Jagdeesha, I.K. International Publishing house
- 2. Advanced Machining processes- V.K. Jain, Allied Publishers private Ltd.
- 3. Unconventional Manufacturing process- M.K. Singh, New Age International
- 4. Modern machining processes P.C. Pandey and M.S. Shan, TMH

Reference Books:

- 1. Non-traditional Manufacturing Processes –G.F. Benedict, Marcel Dekker, Inc.
- 2. Advanced Method of Machining –J.A. McGeough, Chapman and Hall.
- 3. Electrochemical Machining of Metals Ruryantsev & Davydov, Mir Pub.
| | B. Tech. (8th Semester) Mechanical Engineering | | | | | | | | | |
|----------|--|---|---------------|---------------|---------------|----------------|------------|--|--|--|
| MEP-404A | | AUTOMOBILE ENGINEERING | | | | | | | | |
| Lecture | Tutorial | utorial Practical Credit Major Minor Total Time
Test Test (Hrs.) | | | | | | | | |
| 3 | 0 | 0 0 3 75 25 100 3 | | | | | | | | |
| Purpose | The objective
and their commechanism | The objective of this course is to enable the students to understand various automobiles
and their components. Also to describe the steering geometry, components and the
mechanism involved in the automobile. | | | | | | | | |
| | | | Course Ou | itcomes | | | | | | |
| CO1 | Students wil
clutch. | ll be able to ur | nderstand the | basics of the | engine cylind | ler and functi | ons of the | | | |
| CO2 | Students will features etc | Students will be able to explain the working of the gearbox, transmission, and new safety features etc. | | | | | | | | |
| CO3 | Students wi | Students will be able to describe how the rear axle, brake systems and wheel operate. | | | | | | | | |
| CO4 | Students wi | ll be able to ur | nderstand the | steering geo | metry and sus | spension syst | tem. | | | |

UNIT-I

Introduction: Classification of automobile engines, use of engines, merits and demerits of vertical and horizontal engines, reasons for using single-cylinder two-stroke air-cooled petrol engine on two-wheelers, reasons for using multi-cylinder diesel engine for commercial vehicles, merits and demerits of two-stroke and four-stroke cycle engines, advantages of a multi-cylinder engine for the same power.

Clutch: Introduction, function of a clutch, main parts of a clutch, clutch types, clutch actuating mechanism, clutch construction, driven member-(friction or clutch disc), automatic transmission devices, troubleshooting/service procedures.

UNIT-II

Gear box: Introduction, type of gear boxes, three speed gearbox, merits and demerits of gear boxes, gear shifting mechanisms, epicyclic gearbox, gear reduction, overdrive, Maruti 800 gear box, five-speed gearbox, six speed gearbox.

Propeller shaft, universal joint and other features: Introduction, drive mechanism from gearbox to final drive in cars, propeller shaft (constructional features), shaft, universal joints, centre bearing in propeller shaft drive, propeller shaft, problems, ABS, GPS vehicle tracking, autonomous emergency braking (AEB), automatic transmission, electronic stability control (ESC), forward collision warning.

UNIT-III

Rear axle assembly: Introduction, purpose of the final drive, final drive requirements, the final drive, the differential, axle housing, maintenance of rear axle, troubleshooting in differentials.

Brake system: Introduction, functions of a brake, requirements of a brake system, brake actuating mechanism, leading and trailing shoes, classification of brakes, tandem master cylinder, drum brakes, self-energized brakes, disc brakes, floating-caliper brakes, power brakes, air-hydraulic brakes, air brake system, emergency and parking brakes.

Wheel and tyre: Introduction, types of automobile wheels, tyres, types of tyres, tyre tread, tyre selection, tyre service parameters, tyre maintenance.

UNIT-IV

Suspension system: Introduction, brief history, need for a good suspension system, stages in suspension system, elements of a suspension system, suspension systems, suspension system maintenance and troubleshooting, inspection and service of suspension system (general), troubleshooting of suspension systems.

Steering and front axle: Function of the steering system, steering gears, steering mechanisms used in some Indian vehicles, steering linkage, steering wheel and column, front axle, steering heads, steering geometry, wheel alignment, adjusting steering angles, Ackerman linkage, power Steering, under steering and over steering, steering lock, turning radius.

Text Books:

1. Automobile Engineering -By K.M. Gupta, Umesh Publications.

2. Automobile Engineering- Sudheer kumar, University Science Press.

3. Automobile Engineering- K.K Jain, Tata McGraw-Hill Publishing Company Limited.

Reference Books:

1. The Motor Vehicle - By Newton, Steeds and Garrett Basic.

2. Automobile Engineering - By Kirpal Singh, Standard Publication.

Note: The paper setter will set the paper as per the question paper template provided.

	B. Tech. (8 th Semester) Mechanical Engineering										
MEP-406A		PRODUCT DESIGN AND MANUFACTURING									
Lecture	Tutorial	Tutorial Practical Credit Major Minor Total Time (Hrs.) Test Test									
3	0	0	3	75	25	100	3				
Purpose	The objectiv manufacturir requirement	ve of the coung, assembly s in product de	rse is to u and enviro sign, manu	understand nmental gu ifacturing, d	the impor uidelines, p levelopmen	tance of d rototyping it and econ	esign factors, and patenting omics.				
		Co	ourse Outc	omes							
CO1	Students w consideratio aesthetics.	ill be able ns, design pr	to describ acticed by	e the col the indust	ncept of ry, produc	product de tion and m	esign, design harketing, and				
CO2	Students w environment	ill be able al guidelines ir	to explain n product d	and app esign, man	oly manufa ufacturing a	acturing, a and develop	ssembly and oment.				
CO3	Students wil and will be a	I be able to a ble to a ble to understa	pply the va and the app	lue engine	ering conce prototyping	epts in proc in product	duct designing design.				
CO4	Students wil be able to ur	l be able to ex nderstand the i	plain the pa manufactur	itenting, an	d intellectu pnomic asp	al property. ects related	They will also to a product.				

UNIT-I

Introduction: Introduction to product design, design by evolution and innovation, essential factors of product design, production consumption cycle, flow and value addition in production consumption cycle, morphology of design (the seven phases)

Product design practice and industry: Product strategies, time to market, analysis of the product, the three s's, designer and his role, myth and reality, basic design considerations, problems faced by industrial designer, role of aesthetics in product design.

UNIT-II

Design for manufacture and assembly:Overview and motivation, basic method: design guidelines: design for assembly, design for piece part production, advanced method: manufacturing cost analysis, cost driver modeling, critique for design for assembly method.

Design for the environment: Environmental objectives, basic DFE methods, design guidelines, life cycle assessment, techniques to reduce environmental impact.

UNIT-III

Value engineering: Value, nature and measurement of value, maximum value, normal degree of value, importance of value, value analysis job plan, creativity, steps to problem solving and value analysis, value analysis tests, value engineering idea generation checklist, cost reduction through value engineering-case study, materials and process selection in value engineering.

Prototyping:Prototyping essentials, types of prototypes, uses of prototypes, reverse engineering, rapid prototyping techniques, scale, dimensional analysis, and similitude, basic method: physical prototype design and planning- guidelines for prototype design, sample prototype application, 3-D printing.

UNIT-IV

Patents and intellectual property: What is intellectual property? Overview of patents, utility patents, invention disclosure.

Product development economics: Elements of economic analysis, base case financial model, sensitive analysis, project trade-offs, influence of qualitative factors on project success, qualitative analysis. **Text Books:**

- 1. Product Design and Development-Karl T. Ulrich and Steven D Eppinger, TMH.
- 2. Product Design and Engineering-A. K. Chitale and Gupta, PHI.

Reference Books:

- 1. Product Design and Process Engineering-Niebel and Draper, McGraw-Hill.
- 2. Product Design-Techniques in Reverse Engineering and New Product Development- Kevin Otto and Kristin Wood, Pearsons.

Note: The paper setter will set the paper as per the question paper templates provided.

	B. Tech. (8th Semester) Mechanical Engineering									
MEP-408A		WELDING TECHNOLOGY								
Lecture	Tutorial	Tutorial Practical Credit Major Minor Total Time Test Test (Hrs.)								
3	0	0 0 3 75 25 100 3								
Purpose	To expand welding pro	the student's cesses.	knowledge	e base and	l practical a	aspects in	various areas of			
			Course O	utcomes						
CO 1	Students w various indu	ill be able to ustries.	explain the	e applicatio	ons of weld	ing and al	lied processes in			
CO 2	Students wi on particula	ll be able to se r applications.	lect arc we	elding powe	r source and	d process p	parameters based			
CO 3	Students wi able to sugg	Students will be able to describe working of various gas welding equipment and will be able to suggest weld positions based on the application.								
CO 4	Students wi of TIG weld	ill be able to te ing of aluminiu	st weld for m and MIG	different d welding of	efects and l steels.	earn about	the performance			

UNIT-I

Introduction to welding technology: History of metal-working, early developments in welding, development of modern welding, functions of welding in industries, application of welding in different industries

Welding and allied processes: Fusion welding, electric resistance welding, solid phase welding, braze welding, thermal cutting, thermal spraying, welding compared to riveting and casting.

UNIT-II

Arc welding process and equipment: Working principle of arc welding processes, static characteristics curves, open circuit voltage, current rating and duty cycles, classes of insulation, power factor.

Different types of AC and DC power sources, arc welding transformers; methods to control welding current in welding transformers, arc welding generators, arc welding rectifiers comparison of power source, factors for selection of power sources.

Special power sources; universal type, multi-operator type, solid state power source, inverter based multiprocess power source units.

UNIT-III

Gas welding process and equipment: Working principle of gas welding process, gases used, welding flames, setup and equipment, gas cylinders, handling fuel and oxygen cylinders, pressure regulators, hoses, welding torch; selection of welding torch tip size, torch lighters, lighting equal pressure type torch, lighting injector type welding torch, torch adjustments, shutting off torch, torch position and movements, puddling, types of oxy-acetylene welds made without the use of welding rod and with the use of welding rod, selection of welding rod size, welding positions, trolleys, filler rod and fluxes, protective equipment and clothing.

UNIT-IV

Inspection and testing welds: Non-destructive tests, destructive tests, visual inspection, magnetic particle inspection, liquid particle inspection, ultrasonic inspection, X-ray inspection, eddy current inspection, inspecting welds using pneumatic and hydraulic pressure, bend tests, impact tests, laboratory methods of testing welds

TIG welding of aluminum and magnesium: TIG equipment for aluminium, clean the parts using caustic cleaners and scouring pads, heat transfer in aluminium, aluminium arcing, balling tungsten, welding machine settings, striking the arc, aluminium weld procedure, square wave welders, TIG welding magnesium, TIG welding aluminium cylinder heads, weld fixture.

MIG welding of steel and stainless steel: Metal transfer modes, wire size, starting to MIG weld, aircraft seat welding, stress relieving, MIG welding tips, MIG welding stainless steel, backside protection, MIG welding titanium

Text books:

1.Welding Principle and Practices- Edward R. Bohnart, McGraw-Hill Publications.

- 2. Modern Arc Welding Technology -S.V. Nadkarni, Oxford and IBH Publishing Pvt. Ltd.
- 3. Modern Welding Althouse, Goodheart Willcox co. Inc.
- 4. Performance Welding Handbook Robert Finch, MBI publishing company.
- 5. Welding Processes and Technology O.P. Khanna, Dhanpat rai publications
- 6. Welding Science and Technology- Ibrahim Khan, New Age International Publishers.
- 7. Welding Processes and Technology R.S. Parmar, Khanna Publishers

Reference books:

1.Welding - A.C. Davies, Cambridge UniversityPress.

Note: The paper setter will set the paper as per the question paper template provided.

		B. Tech. (8 th Semester) Mechanical Engineering									
MEP-410A		DESIGN OF PRESSURE VESSELS AND PIPING									
Lecture	Tutorial	FutorialPracticalCreditMajorMinorTotalTime (Hrs.)									
3	0	0 0 3 75 25 100 3									
Purpose	The course air system. It is a design.	he course aims to impart basic knowledge of design of pressure vessels and piping system. It is also aimed to introduce various standards used for the pressure vessel lesign.									
		Co	urse Outco	omes							
CO1	Students will b	e able to ana	alyze thin p	lates and she	ells for various	types of	f stresses.				
CO 2	Students will pressure vess	Students will be able to design shells, end closures and tall cylinder columns of pressure vessels.									
CO 3	Students will b	tudents will be able to explain the buckling and fracture in the pressure vessel.									
CO 4	Students will b and support.	e able to de	sign piping	systems and	l explain the	piping co	de, behavior				

Stresses in pressure vessels: General theory of membrane stresses in vessel under internal pressure and its application to shells (cylindrical, conical and spherical) and end closures, bending of circular plates and determination of stresses in simply supported and clamped circular plate, thermal stresses, stress concentration in plate having circular hole due to bi-axial loading, excessive elastic deformation, plastic instability, brittle rupture and creep, theory of reinforced opening and reinforcement limits.

Unit-II

Design of vessels: Design of tall cylindrical self-supporting process columns, supports for short vertical vessels, stress concentration: at a variable thickness transition section in a cylindrical vessel, about a circular hole, elliptical openings, theory of reinforcement, pressure vessel design.

Unit-III

Buckling and fracture analysis in vessels: Buckling phenomenon, elastic buckling of circular ring and cylinders under external pressure, collapse of thick walled cylinders or tubes under external pressure, effect of supports on elastic buckling of cylinders, buckling under combined external pressure and axial loading, control and significance of fracture mechanics in vessels, FEM application

UNIT-IV

piping design: Flow diagram, Piping layout and piping stress analysis; Flexibility factor and stress intensification factor; Design of piping system as per B 31.1 piping code. Piping components - bends, tees, bellows and valves. Types of piping supports and their behaviour; Introduction to piping Codes and Standards.

Text Book:

1. Theory and Design of Pressure Vessels-John F. Harvey, CBS Publishers and Distributors, 1987. 2. American Standard Code for Pressure Piping, B 31.1", ASME.

3. Pressure Vessel Design Handbook-Henry H Bednar, CBS publishers and distributors

- 4.Chemical Process Equipment, Selection and Design-Stanley M Wales, Butterworths, Series in Chemical Engineering, 1988. Elsevier.
- 5. Pressure Vessels: ASME Code Simplified-J. Phillip Ellenberger, ASME.
- 6.Fundamentals of Piping Design-Smith P, Elsevier.

Reference Books:

- 1. Pressure Vessels, Design Hand Book-Henry H. Bedner, CBS Publishers and Distributors, 1987.
- 2.Chemical Process Equipment, Selection and Design-Butterworths series in Chemical Engineering", Stanley, M. Wales, 1988
- 3. Pressure Vessel Design-Harvey J F, CBS Publication.
- 4. Process Equipment Design-Brownell L. E and Young. E. D, Wiley Eastern Ltd., India
- 5.ASME Pressure Vessel and Boiler Code-Section VIII Div. 1, 2, and 3", ASME.

Note: The paper setter will set the paper as per the question paper template provided.

	B. Tech (8 th Semester) Mechanical Engineering										
MEP-412A	QUALITY AND RELIABILITY ENGINEERING										
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTimeTestTestTest(Hrs.)									
3	0	0	3	75	25	100	3				
Purpose	The purpose of and reliability. T Control and the tools.	this course is he course ac ir practical us	s to provide s ddresses the ses as well a	students with principles an s give insigh	an in-dept d technique t to modern	h knowled es of Stati reliability	lge of quality stical Quality engineering				
		Co	urse Outcon	ies							
C01	Students will b application of solve the prob	e able to un statistical me lems related v	derstand the ethods for qu with dispersio	concept of q ality control. n of data.	uality value The stude	e and eng nt will als	ineering and o be able to				
CO2	Students will b on control ch sampling plans	e able to unc arts. They v s.	lerstand diffe will also und	rent control c erstand vari	harts and v ous sampli	vill solve t ng plans	he problems and design				
CO3	Students will be control. They the mathemati	e able to exp will come to k cal derivation	lain the loss now the cond s of different	function and cept of reliabi failure rates.	tolerance delity and will	esign for o be able to	online quality o understand				
CO4	Students will b reliability of co	e able to des mplex systen	cribe various ns.	hazard mode	els and solv	e problen	ns for finding				

UNIT-I

Quality value and engineering: Quality systems, quality engineering in product design and production process, system design, parameter design, tolerance design, statistical methods for quality control and improvement, mean, median, mode, standard deviation, calculating area, Normal distribution tables, finding the Z score, Central limit theorem.

UNIT-II

Variation in process: Control charts for variables: X-bar and R charts, Control charts for attributes P, C and U-Chart, Establishing and interpreting control charts process capability, Quality rating, Short run SPC.

Acceptance sampling by variables and attributes, single, double, sequential and continuous sampling plans, design of various sampling plan.

UNIT-III

Loss function, tolerance design: N type, L type, S type; determination of tolerance for these types, online quality control – variable characteristics, attribute characteristics, parameter design.

Concept and definition of reliability: Reliability Parameters: Reliability as a function of time, failure rate as a function of time, Bath-tub curve, constant failure rate, increasing failure rate, mean time to failure (MTTF), MTTF as a function of failure rate, mean time between failure (MTBF), mean down time (MDT), maintainability & availability

UNIT-IV

Brief discussion on hazard models:Constant hazard model, linearly increasing hazard model, nonlinear hazard model and Weilbull distribution, Advantages of weibull distribution, System reliability models: series system, parallel system, series-parallel system

Complex system:Reliability of series, parallel & standby systems & complex systems & reliability prediction and system effectiveness, reliability testing

Text books:

- 1. Reliability Engineering, (3rdEdition) LS Srinath, Affiliated East West Pvt Ltd, 1991..
- 2. Reliability Engineering- E.Bala Guruswamy, Tata McGraw Hill, 1994.
- 3. Statistical Quality Control- M. Mahajan, Dhanpat Rai & Co., 2018.
- 4. Statistical Process Control- Eugene Grant, Richard Leavenworth, McGraw Hill.

Reference books:

- 1. Introduction to Reliability Engineering- Lewis E. E., John Wiley & Sons 1987
- 2. Reliability Based Design-Rao S. S., McGraw Hill 1992
- 3. Practical Reliability Engineering- O'cconer P. D. T., John Wiley & Sons Ltd. 2003
- 4. Statistical Quality Control-Eugene G. L., McGraw-Hill 1996

Note: The paper setter will set the paper as per the question paper template provided.

BACHELOR OF TECHNOLOGY (AERONAUTICAL ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA SCHEME OF STUDIES/EXAMINATION SEMESTER-V w.e.f 2021-22 ONWARDS

S. No.	Course Code	Course Title	Tea	chi	ng So	hedule		Exar	nination S	chedule (Marl	ks)	Duration
			L	Т	Ρ	Hours/ Week	Credit	Major Test	Minor Test	Practical	Total	of Exam (Hrs.)
1	HTM-901A	Universal Human Values II : Understanding Harmony	3	0	0	3	3	75	25	0	100	3
2	AER-301A	Aircraft Structure-II	3	1	0	4	4	75	25	0	100	3
3	AER-303A	Aerodynamics-II	3	1	0	4	4	75	25	0	100	3
4	AER-305A	Propulsion-II	3	0	0	3	3	75	25	0	100	3
5	AER-307A	Aircraft Materials and Manufacturing Processes	3	0	0	3	3	75	25	0	100	3
6	AER-309A	Aircraft Structure Lab	0	0	2	2	1	0	40	60	100	3
7	AER-311A	Aerodynamics Lab	0	0	2	2	1	0	40	60	100	3
8	AER-313A	Project-I	0	0	2	2	1	0	0	100	100	3
9	*AER-315A	Industrial Training-II	2	0	0	2	-	0	100	0	100	
10	**MC-903A	Essence of Indian Traditional Knowledge	3	0	0	3	-	100	-	-	100	3
		Total	20	2	6	28	20	375	205	220	800	

Note:

1. *AER-315A is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

2. **MC-903A is mandatory credit-less course in which the students will be required to get passing marks in the major test.

HTM-901A		Universal Human Values II: Understanding Harmony										
Lecture	Tutorial	Tutorial Practical Credit Major Minor Test Total Time										
3	0	0	3.0	75	25	100	3 Hours					
Purpose	Purpose ar	nd motivatio	n for the co	urse, recapi	tulation from	Universal H	luman Values-I					
	1		Cours	e Outcomes	(CO)							
CO 1	Developme	ent of a holis	stic perspec	tive based o	n self-explora	tion about t	themselves					
	(human bei	ing),family, s	ociety and	nature/exist	ence.							
CO 2	Understan society and	Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.										
CO 3	Strengthening of self-reflection.											
CO 4	Developme	ent of comm	itment and	courage to	act.							

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrarinessin choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'l' and harmony in 'l'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in

Human-HumanRelationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as thefoundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- fromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value inrelationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on ProfessionalEthics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and

organizations

28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. todiscuss the conduct as an engineer or scientist etc.

READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at handand motivating students to reflect, explore and verify them.

Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration. Scenarios may be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based onbasic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemedessential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example: Assessment by faculty mentor: 5 marks Self-assessment: 5 marks Assessment by peers: 5 marks Socially relevant project/Group Activities/Assignments: 10 marks Semester End Examination: 75 marks The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

BACHELOR OF TECHNOLOGY (AERONAUTICAL ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA SCHEME OF STUDIES/EXAMINATION SEMESTER-VII w.e.f.2021-22 ONWARDS

S. No.	Course	Course Title	Teaching Schedule			chedule		Exar	nination Sche	dule (Marks)		Duration of Exam
	Code											(Hrs.)
			L	Т	Р	Hours/Week	Credit	Major Test	Minor Test	Practical	Total	
1	AEO*	Open Elective-I	3	0	0	3	3	75	25	0	100	3
2	AER-401A	Avionics	3	0	0	3	3	75	25	0	100	3
3	AER-403A	Avionics Lab	0	0	2	2	1	0	40	60	100	3
4	AER-405A	Project-III	0	0	10	10	5	0	100	100	200	3
5	AEP*	Program Elective – III	3	0	0	3	3	75	25	0	100	3
6	AEP*	Program Elective-IV	3	0	0	3	3	75	25	0	100	3
7	**AER-407A	Industrial Training-III	2	0	0	2	-	0	100	0	100	
		Total	14	0	12	26	18	300	240	160	700	

	Program Elective-III		Program Elective-IV		Open Elective-I
Course Code	Course Title	Course	Course Title	Course Code	Course Title
		Code			
AEP-401A	Principles of Helicopter Engineering	AEP-409A	Computational Fluid Dynamics	AEO-401A	Flight Dynamics
AEP-403A	Boundary Layer Theory	AEP-411A	Finite Element Methods	AEO-403A	Aircraft Communication and Navigation
					Systems
AEP-405A	Aircraft Maintenance of Power Plant	AEP-413A	Aircraft Maintenance of Airframe and	AEO-405A	Experimental Aerodynamics
	and Systems		Systems		
AEP-407A	Fuels and Propellant Technology	AEP-415A	Ergonomics in Aerospace	AEO-407A	Microprocessor and Interfacing

Note:

1. *The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

2. **AER-407A is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify.

BACHELOR OF TECHNOLOGY (AERONAUTICAL ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA SCHEME OF STUDIES/EXAMINATION SEMESTER-VIII w.e.f.2021-22 ONWARDS

S. No.	Course Code	Course Title	Teaching Schedule			Examination Schedule (Marks))	Duration of Exam(Hrs.)		
			L	Т	Р	Hours/Week	Credit	Major Test	Minor Test	Practical	Total	
1	AER-402A	Project-IV	0	0	10	10	5	0	100	100	200	3
2	AEO*	Open Elective-II	3	0	0	3	3	75	25	0	100	3
3	AEO*	Open Elective-III	3	0	0	3	3	75	25	0	100	3
4	AEP*	Program Elective-V	3	0	0	3	3	75	25	0	100	3
5	AEP*	Program Elective-VI	3	0	0	3	3	75	25	0	100	3
		Total	12	0	10	22	17	300	200	100	600	

	Open Elective-II		Open Elective-III
Course Code	Course Title	Course Code	Course Title
AEO-402A	Wind Tunnel Techniques	AEO-410A	Rockets and Missiles
AEO-404A	Robotics and Automation	AEO-412A	Introduction to Automatic Flight Control
AEO-406A	Computer Aided Design	AEO-414A	Aerospace Power Electronics
AEO-408A	Product Design and Manufacturing	AEO-416A	Non-Destructive Testing

	Program Elective-V		Program Elective-VI
Course Code	Course Title	Course Code	Course Title
AEP-402A	Space Dynamics	AEP-410A	Air Transportation and Aircraft Maintenance
			Management
AEP-404A	Aircraft Quality Control, Quality	AEP-412A	Aircraft Modeling and Simulation
	Assurance and Certification		
AEP-406A	Aircraft Systems and Instrumentation	AEP-414A	Control Theory and Practices
AEP-408A	Theory of Vibrations	AEP-416A	Mechatronics

Note:1.*The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section

		B. Tech (7 th Semester) Aeronautical Engineering									
AER-401A		AVIONICS									
L	T	Р	Credit	Major Test	Minor Test	Total	Time				
3	0	•	3	75	25	100	3h				
Purpose	To familia	arize the stude	ents with the	applications of e	electronics in Aerona	utical Engineering					
Course Out	comes										
CO1	Introduct	ion to Avionic	S								
CO2	Introduct	Introduction to the principles of digital systems and its avionics architecture									
CO3	Understanding the concept of electronic equipment in flight deck and cockpits										
CO4	Introduct	ion to the type	es of Avionic	s Systems							

Need for Avionics in civil and military aircraft and space systems – Integrated Avionics and Weapon system – Typical avionics sub systems – Design and Technologies.

Unit-II

Digital Computers - Microprocessors - Memories

Avionics system architecture–Data buses MIL–STD 1553 B–ARINC 429–ARINC 629.

Unit-III

Control and display technologies CRT, LED, LCD, EL and plasma panel - Touch screen - Direct voice input (DVI) - Civil cockpit and military cockpit: MFDS, HUD, MFK, HOTAS

Unit-IV

Communication Systems - Navigation systems - Flight control systems - Radar electronic warfare - Utility systems Reliability and maintainability - Certification.

Text Books:

1. Malcrno A.P. and Leach, D.P., "Digital Principles and Application", Tata McGraw-Hill, 1990.

2. Gaonkar, R.S., "Microprocessors Architecture – Programming and Application", Wiley and Sons Ltd., New Delhi

Reference Books:

1. Middleton, D.H., Ed., "Avionics Systems, Longman Scientific and Technical", Longman Group UK Ltd., England,

2. Spitzer, C.R., "Digital Avionic Systems", Prentice Hall, Englewood Cliffs, N.J., USA. 1987. Brain Kendal, "Manual of Avionics", The English Book House, 3rd Edition, New Delhi,

		B. Tech (7 th Semester) Aeronautical Engineering								
AER-403A		AVIONICS LAB								
L	T	Р	Credit	Practical	Minor Test	Total	Time			
•	•	2	1	60	40	100	3h			
Purpose	To give th	e practical kn	owledge of handling t	he avionics related	instruments.					
Course Outcor	nes									
CO1	Tomaketh	TomakethestudentsfamiliarwiththeexperimentsrelatedwithAvionics								
CO2	To make s	students apply	hands on approach o	on Avionics instrur	nents					

DIGITAL ELECTRONICS

- 1. Addition/Subtraction of binary numbers.
- 2. Multiplexer/Demultiplexer Circuits.
- 3. Encoder/Decoder Circuits.
- 4. Timer Circuits, Shift Registers, Binary Comparator Circuits.

MICROPROCESSORS

- 5. Addition and Subtraction of 8-bit and 16-bit numbers.
- 6. Sorting of Data in Ascending & Descending order.
- 7. Sum of a given series with and without carry.
- 8. Greatest in a given series & Multi-byte addition in BCD mode.
- 9. Interface programming with 4 digit 7 segment Display & Switches & LED's.

10. 16 Channel Analog to Digital Converter & Generation of Ramp, Square, Triangular wave by Digital to Analog Converter.

AVIONICS DATA BUSES

- 11. Study of Different Avionics Data Buses.
- 12. MIL-Std 1553 Data Buses Configuration with Message transfer.
- 13. MIL-Std 1553 Remote Terminal Configuration.

Note: At least Eight Experiments should be performed. Out of that Two Experiments may be performed or designed and set by the concerned institute as per the scope of the syllabus.

		B. Tech (7 th Semester) Aeronautical Engineering									
AER-405A		PROJECT – III									
L	T	T P Credit Major Test Minor Test Practical Total Time									
0	0	10	5	0	100	100	200	3h			
Purpose	To familiarize the students with the applications of engineering problems as a minor project.										
Course Out	comes										
CO1	Enha	ncement o	of analytical capa	ability of students	for real time engin	eering problems.					
CO2	Unde	Understand Methodologies and professional way of Documentation and Communication									
CO3	Exten	Extend or use the idea on major project									
CO4	To im	plement p	resentation tech	niques in their w	ork style						

The students expected to take up a project under the guidance of teacher from the college. The project must be based on (Aeronautical Engineering / Mechanical Engineering) problems, which can be extended up to the full academic session. The students may be asked to work individually or in a group not more than four students.

Students need to submit a model which can be a physical working model or simulation based virtual model with a full preliminary report in a proper format as instructed by Project Guide. Viva- Voce must be based on the preliminary report submitted by students related to the project.

		B.Tech. (7 th Semester) Aeronautical Engineering										
AER-407	'A	INDUSTRIAL TRAINING – III										
Lecture	e Tutorial	TutorialPracticalCreditsMajorMinorPracticalTotalTestTestTestTestTestTotal					Total	Time (Hrs.)				
2	0	0			100		100					
				· · · ·		·						
Purpose	To provide comp	prehensive lear	ning platform	n to students	s where they	can enhance th	ieir employ	ability skills and				
	exposure to the ir	ndustrial enviror	nment.									
			Cou	rse Outcom	es							
C01	Capability to acqu	uire and apply f	undamental p	principles of e	engineering.							
CO 2	Become updated	with all the late	st changes ir	n technologic	cal world.							
CO 3	Capability and en	Capability and enthusiasm for self-improvement through continuous professional development and life-long learning										
CO 4	Awareness of the	social, cultural	, global and e	environmenta	al responsibility	y as an engineer	r.					

Note: AER-407A is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify.

The candidate has to submit a training report of his/her work/project/assignment completed in the industry during the training period. The evaluation will be made on the basis of submitted training report and viva-voce/presentation.

Elective Subjects for 7th Semester Aeronautical Engineering Students

In 7th Semester, there will be three electives, OPEN ELECTIVE – I, PROGRAM ELECTIVE – III, PROGRAM ELECTIVE – IV.

OPEN ELECTIVE – I							
Course Code Course Title							
AEO-401A	Flight Dynamics						
AEO-403A	Aircraft Communication and Navigation Systems						
AEO-405A	Experimental Aerodynamics						
AEO-407A	Microprocessor and Interfacing						

PROGRAM ELECTIVE – III							
Course Code Course Title							
AEP-401A	Principles of Helicopter Engineering						
AEP-403A	Boundary Layer Theory						
AEP-405A	Aircraft Maintenance of Power Plant and Systems						
AEP-407A	Fuels and Propellant Technology						

PROGRAM ELECTIVE – IV						
Course Code Course Title						
AEP-409A	Computational Fluid Dynamics					
AEP-411A	Finite Element Methods					
AEP-413A	Aircraft Maintenance of Airframe and Systems					
AEP-415A	Ergonomics in Aerospace					

*The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

OPEN ELECTIVE – I

		B. Tech (7 th Semester) Aeronautical Engineering								
AEO-401A		FLIGHT DYNAMICS								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
3	0	•	3	75	25	100	3h			
Purpose	To intro	duce student	s with the a	dvanced conce	ots of flight dynam	ics and stability				
Course Ou	tcomes					-				
CO1	Underst	anding the p	erformance	analysis of airci	aft					
CO2	Introduc	Introduction to the principles of load factor and turn criteria								
CO3	Underst	Understanding the concept of longitudinal stability								
CO4	Introduc	tion to the ad	dvanced lat	eral and directio	nal stability					

Unit-I

Range and Endurance of Propeller and Jet aircrafts, Rate of climb, Climb hodograph, Maximum Climb angle and Maximum Rate of climb- Effect of design parameters for propeller and jet aircrafts, Absolute and service ceiling, Cruise climb, Gliding flight

Unit-II

Take-off and landing performance, Turning performance, bank angle and load factor, Constraints on load factor, Pull up and pull down maneuvers, maximum turn rate, V-n diagram.

Unit-III

Criteria for longitudinal static stability, contribution to stability by wing, tail, fuselage, wing fuselage combination, Total longitudinal stability, Neutral point-Stick fixed and Stick free aspects, Free elevator factor, static margin, Hinge moment, longitudinal control, Movement of centre of gravity, elevator control power, elevator angle to trim, elevator angle per g, maneuver point, Stick force gradient and stick force per g, Aerodynamic balancing Aircraft Equations of motion, small disturbance theory, Phugoid motion, Factors affecting the period and damping

Unit-IV

Directional stability-yaw and sideslip, contribution to static directional stability by wing, fuselage, vertical tail, Power effects on directional stability-propeller and jet aircrafts, Rudder lock and Dorsal fin, Directional control, rudder control power, rudder requirements, adverse yaw, asymmetric power condition, spin recovery, Lateral stability-Dihedral effect, contribution of various components, lateral control, aileron control power, strip theory, roll control by spoilers, aileron reversal, aileron reversal speed

Text Books:

- 1. Anderson, Jr., J.D. Aircraft Performance and Design, McGraw-Hill International Edition, 2012.
- 2. Houghton, E.L. and Carruthers, N.B. Aerodynamics for engineering students, Edward Amold Publishers, 2000

Reference Books:

- 1. Nelson, R.C." Flight Stability & Automatic Control", McGraw Hill, 2005
- 2. Perkins C.D. & Hage R.E. "Airplane performance, stability and control", John Wiley & Sons 1976

	B. Tech (7 th Semester) Aeronautical Engineering								
AEO-403A	AIRCRAFT COMMUNICATION AND NAVIGATION SYSTEMS								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time		
3	0	•	3	75	25	100	3h		
Purpose	To introd	To introduce students with the techniques of communication and navigation							
Course Out	comes								
CO1	Understa	nding the bas	ics of comm	unication feature	S				
CO2	Introduct	Introduction to the principles of pulse modulation and its transmission							
CO3	Understanding the concept of propagation of signals								
CO4	Introduct	ion to the adv	anced frequ	ency systems					

Information: Communication systems: signals, analogue, digital and coded forms, time and frequency representation, signal spectra, types of distortion

Information: Nature and measure, influence of bandwidth and signal/noise ratio on channel capacity, elements of Shannon's theorem and its implications. Problems of communicating in presence of noise.

Modulation: Amplitude, angle and phase modulations, single and vestigial sideband forms, demodulation, Super heterodyne principle, automatic gain and frequency control, typical circuit arrangements

Unit-II

Pulse modulation: Sampling principles, sampling criterion, quantisation and quantisation noise, selection of number and distribution of quantisation levels, bandwidth requirements, examples of coding and decoding circuits.

Transmission: Transmission lines and their circuit representation, characteristic impedance, complex propagation constant, standing wave radio, matching and impedance charts.

ChannelPerformance: Amplitude and phase distortion, phase and group delay distortion caused bymultiple effects. Noise, origin, measurements, noise figure and noise temperature effecton channel performance. Frequency and time division multiplexing.

Unit-III

Radiation: Principles: application of basic formulae for unipole and dipole, aerials, effective height, directional, properties, gain, impedance, linear arrays, traveling waveaerials, rhombicas, parasitic elements. Propagation: Principles: influence of ionosphere andtroposphere reflection from earth's surface, field strength calculations, fading diversity reception.

Special Systems (Principles) : VHF, UHF, Fibre optics and Laser Technology, Satellitecommunication and related equipment, electronic counter measures, low-level TV andHead-down displays, CR T displays, Direction finding. Air borne telemetry systems. Laserand infrared systems, Air data and flight recording systems. Satellite communication, spread spectrum technology: satellite transponders, earthterminals.

Text Books:

1. F E Terman, Radio Engineering, McGraw Hill

2. E C Jordon, Electromagnetic Waves and Radiating System, Prentice Hall

3. B P Lathi, Communications Systems, John Wiley and Sons

Reference Books:

- 1. Prasad, Antenna and Propagation
- 2. Schwattz Bennet MWR and Stein S, Communication Systems and Techniques, McGraw Hill, NY
- 3. Carlson A. N., Communication Systems An Introduction to Signals and Noise

	B. Tech (7 th Semester) Aeronautical Engineering									
AEO-405A		EXPERIMENTAL AERODYNAMICS								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
3	0	•	3	75	25	100	3h			
Purpose	To familia	To familiarize students with the experimental techniques of aerodynamic testing								
Course Out	comes									
CO1	Understa	nding the low	speed wind	tunnel testing						
CO2	Understa	Understanding the high speed wind tunnel testing								
CO3	Understanding the pressure, velocity and temperature measurement in wind tunnel									
CO4	Introduct	ion to the con	putation tee	chniques						

Low speed wind tunnels-Power losses in wind tunnel, energy ratio, Calibration, Flow angularity,Yaw Sphere, Yaw meter, Turbulence sphere, Pressure sphere, Wind tunnel balances, boundary correction, calculation of C_L and C_Dforairfoils. **Unit-II**

High Speed wind tunnels- Blow down, Induction Type Tunnels, Losses in supersonic tunnels, Second throat, running time estimation, Hypersonic, transonic tunnels, Shock tunnels, Gun tunnels

Unit-III

Pressure measurement, Hot wire anemometer, laser Doppler anemometer for turbulence and velocity measurements-Temperature measurement, Measurement of wall shear stress, Rotameters and Ultrasonic flow meters. **Unit-IV**

Smoke tunnel, Tuft method, chemical coating, interferometer, Schlieren and Shadowgraph method, Heleshaw Apparatus, Hydraulic analogy, limitations of analogy, Measurement systems, data acquisition, signal conditioning, multiplexing, data conversion, uncertainty analysis

Text Book:

1. Rathakrishnan. E "Instrumentation, Measurement and Experiments in Fluids", CRCPress, London, 2000

Reference Books:

1. Rae W.H and Pope. A "Low speed wind tunnel testing" John Wiley Publication, 1999

2. Pope. AandGoin. L "High speed wind tunnel testing" John Wiley, 1985

	B. Tech (7 th Semester) Aeronautical Engineering								
AEO-407A	MICROPROCESSOR AND INTERFACING								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time		
3	0	•	3	75	25	100	3h		
Purpose	To introd	uce students	with the adv	anced concepts	of microprocessors ι	ised in Avionics			
Course Out	comes								
CO1	Understa	nding the bas	ics of 8086 /	Architecture					
CO2	Introduct	Introduction to the principles of 8086 microprocessor programming							
CO3	Understa	Understanding the concept of memory system design							
CO4	Introduct	ion to the inpu	ut output int	erfacing techniqu	les				

INTRODUCTION: Evolution of microprocessors, technological trends in microprocessor development. The Intel family tree. CISC versus RISC. Applications of Microprocessors.

8086 CPU ARCHITECTURE: 8086 Block diagram; description of data registers, address registers; pointer and index registers, PSW, Queue, BIU and EU. 8086 Pin diagram descriptions. Generating 8086 CLK and reset signals using 8284. WAIT state generation. Microprocessor BUS types and buffering techniques, 8086 minimum mode and maximum mode CPU module.

Unit-II

8086 INSTRUCTION SET: Instruction formats, addressing modes, Data transfer instructions, string instructions, logical instructions, arithmetic instructions, transfer of control instructions; process control instructions; Assembler directives. **8086 PROGRAMMING TECHNIQUES:** Writing assembly Language programs for logical processing, arithmetic processing, timing delays; loops, data conversions. Writing procedures; Data tables, modular programming. Macros.

Unit-III

MAIN MEMORY SYSTEM DESIGN: Memory devices, 8086 CPU Read/Write timing diagrams in minimum mode and maximum mode. Address decoding techniques. Interfacing SRAMS; ROMS/PROMS. Interfacing and refreshing DRAMS. DRAM Controller – TMS4500.

Unit-IV

BASIC I/O INTERFACE: Parallel and Serial I/O Port design and address decoding. Memory mapped I/O Vs Isolated I/O Intel's 8255 and 8251- description and interfacing with 8086. ADCs and DACs, - types, operation and interfacing with 8086. Interfacing Keyboards, alphanumeric displays, multiplexed displays, and high power devices with 8086. **INTERRRUPTS AND DMA:** Interrupt driven I/O. 8086 Interrupt mechanism; interrupt types and interrupt vector table. Intel's 8259. DMA operation. Intel's 8237. Microcomputer video displays.

Text Books:

1. D.V.Hall , Microprocessors and Interfacing , McGraw Hill 2nd ed.

2. J Uffenbeck , The 8086/8088 family , (PHI).

Reference Book:

1. Liu, Gibson, Microcomputer Systems – The 8086/8088 family, (2nd Ed-PHI).

Program Elective-III

		B. Tech (7 th Semester) Aeronautical Engineering									
AEP-401A		PRINCIPLES OF HELICOPTER ENGINEERING									
L	T	Р	Credit	Major Test	Minor Test	Total	Time				
3	0	•	3	75	25	100	3h				
Purpose	To introd	To introduce students with the advanced concepts of rotor aerodynamics and stability									
Course Out	tcomes										
CO1	Understa	nding the bas	ics of rotor b	plade motion							
CO2	Understand	Understanding the concept of Actuator Disk Theory									
CO3	Understa	Understanding the concept of Forward Flight Theory									
CO4	Introduct	ion to the stat	cility of rotor	and its embedde	d vibrations						

Unit-I

Historical development of helicopter and overview, Basic concepts, Introduction to hovering and forward flight theory, Rotor blade motion – flapping, feathering and lagging motion, Composite structures.

Unit-II

The actuator-disc theory, Working states of rotor, Optimum rotor, Efficiency of rotor, Ground effect on lifting rotor, The effect of finite number of blades, Induced velocity and induced power in forward flight – Mangler and Squire method, flight and wind tunnel test, The vortex wake, Aerofoil characteristics in forward flight.

Unit-III

Blade forces and motion in forward flight, Force, torque and flapping coefficient, Helicopter trim analysis, Performance in forward flight.

Unit-IV

Longitudinal and lateral stability, Equations of motion, Stability characteristics, Auto stabilization, Control response.

Exciting forces, Fuselage response, Vibration absorbers, Measurement of vibration in flight.

Text Books:

1. Helicopter Dynamics: Bramwell, A.R.S.

2. Principles of Helicopter Engineering: Jacob Shapiro

Reference Book:

1. Aerodynamics of Helicopter, Gessow, A, and Myers GC

		B. Tech (7 th Semester) Aeronautical Engineering								
AEP-403A		BOUNDARY LAYER THEORY								
L	T	Р	Credit	Major Test	Minor Test	Total	Time			
3	0	-	3	75	25	100	3h			
Purpose	To introd	uce students	with the adv	anced concepts	of boundary layer the	ory				
Course Out	tcomes									
CO1	Understa	Understanding the basics of boundary layer theory								
CO2	Understand	Inderstanding the concept of Navier Stokes Equation								
CO3	Understa	Understanding the solution of Navier Stokes Equation								
CO4	Introduct	Introduction to the turbulent boundary layer concept								

Basic laws of fluid flow- Continuity, momentum and energy equations as applied to system and control volume – Concept of flow fields- Viscous fluid flow with historical out lines of viscous flow, Boundary conditions for viscous flow problems, Development of boundary layer- Prandtl's hypothesis, Estimation of boundary layer thickness- Displacement thickness, momentum and energy thickness for two-dimensional flows. Viscosity and thermal conductivity, thermodynamic properties.

Unit-II

General stress system in a deformable body, the rate at which the fluid element is strained in a flow, Relation between stress and rate of deformation, Stoke's hypothesis, bulk viscosity and thermodynamic properties, The Navier – Stokes Equation (N-S) –General properties of Navier – Stokes Equation.

Two dimensional flow through a straight channel. Hagen- Poiseulle flow, suddenly accelerated plane wall, Stagnation in plane flow (Hiemenz problem), Flow near a rotating disk, Very slow motion, Parallel flow past a sphere.

Unit-III

Analysis of flow past a flat plate and a cylinder, Integral relation of Karman, Integral analysis of energy equation, Laminar boundary layer equations, Flow separation. Similarity solutions for steady two dimensional flows; Blasius solution for flat- plate flow, Boundary layer temperature profiles for constant wall temperature, Falkner Skan Wedge flows, Free shear flows- plane laminar jet, plane laminar wake. Integral equation of Boundary layer, Karman-Pohlhausen method. Digital computer solutions. Thermal boundary layer calculations- One parameter (U0 and two parameters (U0 and Δ T) integral methods. Stability of laminar flows

Unit-IV

Two dimensional turbulent boundary layer equations, Integral relations, Eddy-Viscosity theories, Velocity profiles; the law of the wall, the law of the wake. Turbulent flow in pipes and channels. Turbulent boundary layer on a flat pate, Boundary layers with pressure gradient.

Introduction to the compressible boundary layer on a flat plate, shock wave boundary layer interaction.

Text Books:

- 1. Viscous Fluid Flow 3rd Ed. Frank M White McGraw Hill 2006
- 2. Boundary Layer theory 6th Ed. H. Schlichting McGraw Hill 1968

Reference Book:

1 Aerodynamics for Engineers 4th Ed. John Bertin Pearson 2004

	B. Tech (7 th Semester) Aeronautical Engineering									
AEP-405A		AIRCRAFT MAINTENANCE OF POWERPLANT AND SYSTEMS								
L	T	Р	Credit	Major Test	Minor Test	Total	Time			
3	0	-	3	75	25	100	3h			
Purpose	To introd	To introduce students with the maintenance of Powerplant and aircraft systems								
Course Out	tcomes									
CO1	Understa	Understanding the basics of Piston Engines								
CO2	Understand	Inderstanding the concept of Propellers and aviation fuel								
CO3	Understa	Understanding the concept of Superchargers and Gas Turbine								
CO4	Introduct	Introduction to the concept of Engine Maintenance								

Piston Engines: Two and four stroke engines. Efficiency, factors affecting engine performance. Knowledge of the function and construction of various parts and accessories of the engine including induction, exhaust and cooling system, engine mounting. Engine fire detection and protection systems.

Unit-II

Propellers: Knowledge of purpose and functioning of parts of constant speed, variable pitch and feathering propellers and associated control system components. Engine fuel and Oil System: Construction, features of carburettors, engine fuel and oil systems. Characteristics of aviation fuel and oil.

Unit-III

Common methods of checking contamination. Sources of contamination, Ignition and starting systems: Magnetos and ignition system components, various types of engine starters. Engine Instruments: Principle of operation. Superchargers constructional features and principles of operation and function of various types of superchargers and its related component.

Gas Turbine: Induction, exhaust and cooling systems, Anti Icing of engine, engine mountings, thrust augmentation. Compressor surge and stall, bleed control system. Principles of operation.

Unit-IV

General constructional details and functions of fuel and oil systems, ignition and starting systems and their components. Engine controls of various types, including Full Authority Digital Electronic Control Engine instruments. Power augmentation devices, thrust reversers and auxiliary power units.

Engine Maintenance: Piston/Gas Turbines: Periodical servicing procedures, engine installation checks, control rigging, ground running checks, priming, and bleeding and performance checks. Engine on condition maintenance. Trouble shooting and rectification. Inspection after shock landing. Crack detection. Procedure for long and short terms storage of engine and accessories, engine preservation.

Text Books:

- 1. E Mangham and A Peace, Jet Engine Manual, Himalayan Books
- 2. Jet Engines, Rolls Royce Ltd. 1992
- 3. Casamassa and Bent, Jet Aircraft Power Systems, Tata McGraw Hill
- 4. Civil Aircraft Inspection Procedures (CAP 459), Himalayan Books

Reference Books:

- 1. Pratt and Whitney, Gas Turbine Engine
- 2. Michael J. Krose Thomas W.Wild, Bent, Aircraft Power Plants, McGraw Hill 1994
- 3. H Cohen, G F C Rogers and H I H Sarvanmutto, Gas Turbine Theory, John Wiely
- 4. Irvine Treager, Aircraft Gas Turbine Engine Technology, Tata McGraw Hill

		B. Tech (7 th Semester) Aeronautical Engineering									
AEP-407A		FUELS AND PROPELLANT TECHNOLOGY									
L	T	Р	Credit	Major Test	Minor Test	Total	Time				
3	0	-	3	75	25	100	3h				
Purpose	To introd	To introduce students with the properties of aviation fuels and rocket propellants									
Course Out	tcomes										
CO1	Providing	g the knowled	ge of aviatio	n turbine fuels							
CO2	Understand	nderstanding the concept of liquid propellants									
CO3	Introduct	Introduction to concept of cryogenic propellants									
CO4	Experime	Experimental studies of propellant properties									

Properties and tests for petroleum products - Motor gasoline - Aviation gasoline - Aviation turbine fuels - Requirements of aviation turbine fuels of Kerosene type and high flash point type - Requirements for fuel oils Single base propellants - Double base propellants – composite propellants - CMDB propellants – Metalized composite Propellants - Brief introduction to combustion theory of composite and double base propellants

Unit-II

Various liquid propellants and their properties - Monopropellant and bipropellant systems - Concept of ullage - Ignition studies of liquid propellants - Propellant loading tolerances - Inventory-Volume versus mass loading - Loading measurement and control - Outage control

Unit-III

Introduction to cryogenic propellants - Liquid Hydrogen, liquid Oxygen, Liquid nitrogen and liquid helium - Theory behind the production of low temperature - Expansion Engine – Cascade process - Joule Thompson Effect - Magnetic effect - Ortho and Para H2 - Hilium4 and Helium3 - Ideal cycles and Efficiency of cryo systems - Storing of cryogenic propellants - Cryogenic loading problems

Unit-IV

Laboratory testing - Arc Image Furnace - Ignitability studies - Differential Thermal Analysis - Thermo gravimetric analysis - Particle size measurement Micro-merograph - Strand burner tests Impulse Bomb - Performance estimation

Text Books:-

- 1. Sutton, G.P., Rocket Propulsion Elements, John Wiley, 1993.
- 2. Sharma, S.P. and Mohan. C., Fuels and Combustion, Tata McGraw Hill Publishing Co., Ltd., 1984

Reference Book:-

1. Mathur, M. and Sharma. R.P., Gas Turbines and Jet and Rocket Propulsion, Standard Publishers, New Delhi, 1988

Program Elective – IV

		B. Tech (7 th Semester) Aeronautical Engineering									
AEP-409A		COMPUTATIONAL FLUID DYNAMICS									
L	T	Р	Credit	Major Test	Minor Test	Total	Time				
3	0	-	3	75	25	100	3h				
Purpose	To introd	To introduce students with the numerical methods to solve fluid problems									
Course Out	tcomes										
CO1	Understa	Understanding the basics of equilibrium equation									
CO2	Understandi	Jnderstanding the concept of Finite Difference and control volume									
CO3	Understa	Understanding the concept of Boundary conditions used in discretisation									
CO4	Introducti	ion to the SIM	PLE algorith	nm to find solution	ons						

Unit-I

Methods of prediction: comparison of experimental investigation Vs theoretical calculation; Mathematical description of physical phenomena; significance of governing differential equations; the general form of governing differential equation. Classification of problems: Physical classification: Equilibrium problems and Marching problems; Mathematical classification: Elliptic, parabolic and hyperbolic partial differential equations; Nature of co-ordinates; one way and two-way co-ordinates; Proper choice of co-ordinates.

Unit-II

The concept of discretisation; Finite differences; Taylor series formulation; Finite difference discretisation of ordinary and partial derivatives; Truncation error, round-off error, discretization error; Consistency and stability of numerical schemes; Variation formulation; Method of weighted Residuals, control volume formulation.

Unit-III

Steady one- dimensional Conduction, The inter-face conductivity, Non linearity, Source-Term Linearization, Types of Boundary Conditions. Unsteady one-dimensional Conduction: Explicit, Crank-Nicolson and Fully Implicit scheme's Discretisation of two and threedimensional problems, Stability analysis.

Unit-IV

Steady one dimensional convection and diffusion, The up wind scheme, Generalized Formulation, Discretisation equation for two and three dimensional problems, The outflow Boundary condition, false Diffusion. Basic difficulty, Vorticity Based methods, Representation of the continuity equation, the staggered grid: the momentum equations, the pressure velocity corrections, and SIMPLE algorithm.

Text Book:

1. Computational Fluid Dynamics - By Anderson, McGraw-Hill

Reference Book:

1. Numerical Heat Transfer and fluid flow- By Patankar, McGraw-Hill

		B. Tech (7 th Semester) Aeronautical Engineering								
AEP-411A		FINITE ELEMENT METHODS								
L	T	Р	Credit	Major Test	Minor Test	Total	Time			
3	0	-	3	75	25	100	3h			
Purpose	To introd	uce students	with the finit	e element metho	ds to solve advance s	structural problems				
Course Out	tcomes									
CO1	Understa	Understanding the basics of finite element modelling								
CO2	Understand	nderstanding the concept of potential energy approach								
CO3	Understa	Understanding the concept of Stiffness Matrix								
CO4	Introduct	Introduction to the solution of axisymmetric problems								

Introduction to FEA - historical background - Review of various approximate methods – Raleigh Ritz's, Galerkin and finite difference methods- Governing equation and convergence criteria of finite element method, Examples of Finite Element Modeling

Unit-II

Direct stiffness method – spring element- Derivation of the stiffness matrix- Example of a spring assemblage Assembly of global stiffness matrix-Types of boundary conditions- The Potential energy approach, Examples Prismatic bar under axial loading- bending of beams, Fundamentals of Finite Element Modeling, Element Division - Numbering Scheme, Coordinate and Shape Functions, The Potential Energy Approach, Assembly of Global Stiffness Matrix and Load Vector, Treatment of Boundary Conditions, Temperature Effects, Shear Force and Bending Moment, Examples.

Unit-III

Plane truss structure: Introduction, Plane Trusses, Coordinate Transformation, Local & Global Coordinate, the Element Stiffness Matrix- Stress Calculations, Temperature Effects –Examples. Plane stress & strain – Constant Strain Triangle (CST)- Iso - parametric Representation- Potential Energy Approach - Element Stiffness; Force Terms Stress Calculations- Temperature Effects- Examples

Unit-IV

Axisymmetric formulation – Element stiffness matrix and force vector – Galerkin approach – Body forces and temperature effects – Stress calculations – Boundary conditions and Nodal Solution; Mapping and Numerical Integration– Four node quadrilateral for axisymmetric problems –Applications to cylinders under internal or external pressures – Rotating discs

Text Books:

1. Tirupathi.R. Chandrapatha and Ashok D. Belegundu,"Introduction to Finite Elements in Engineering", Prentice Hall India, Fourth Edition, 2011.

2. Rao. S.S., "Finite Element Methods in Engineering", Butterworth and Heinemann, Fourth Edition, 2005.

Reference Books:

1. Reddy J.N.,"An Introduction to Finite Element Method ", McGraw Hill, 3rd edition, 2005.

- 2. Krishnamurthy, C.S., "Finite Element Analysis", Tata McGraw Hill, 2nd 2001.
- 3. Bathe, K.J. and Wilson, E.L., "Numerical Methods in Finite Elements Analysis", Prentice Hall of India, 1985.

4. Robert D Cook, David S Malkus, Michael E Plesha, "Concepts and Applications of Finite Element Analysis", John Wiley and Sons, Inc., Fourth edition, 2001.

5. Larry J Segerlind, "Applied Finite Element Analysis", John Wiley and Sons, Inc. Second Edition, 1984

6. Daryl L. Logan, "A First Course in the Finite Element Method", 5th Edition, PWS Publishing Company, Boston, 2010.

		B. Tech (7 th Semester) Aeronautical Engineering								
AEP-413A		AIRCRAFT MAINTENANCE OF AIRFRAME AND SYSTEMS								
L	T	Р	Credit	Major Test	Minor Test	Total	Time			
3	0	-	3	75	25	100	3h			
Purpose	To introd	To introduce students with the maintenance of airframe and aircraft systems								
Course Ou	tcomes									
CO1	Introduct	ion to the airc	raft structur	e parts						
CO2	Introduction to the concept of Honeycomb Construction									
CO3	Understa	Understanding the concept of aircraft systems used in structures								
CO4	Introduct	Introduction to the inspection techniques in aircraft systems								

Airframe Structure: Various types of structures in aiframe construction, tubular, braced monocoque, semimonocoque, etc, longerons, stringers, formers, bulkhead, spars and ribs,

Unit-II

Honeycomb construction. Airplane controls, ailerons, elevators, rudder, trimming and control tabs, leading and trailing edge flaps, tailplane and fins. Basics of structure and structural components fabricated from metal, glass fibre, vinyl, prespex, composites.

Finishing materials, paints, surface finishes and associated materials.

Unit-III

Aircraft systems : Flying controls including power operated controls, hydraulic, pneumatic, landing gear various types, shock struts, nose wheel steering, ice and rain protection, fire detection warning and extinguishing, oxygen, air - conditioning and pressurisation systems, wheels, tyres, brakes, antiskid system. Windows, doors and emergency exists. Reliability and redundancy of systems design.

Unit-IV

Inspection: Basic principles of inspection, inspection gauges, and tools. Standard Inspection techniques and procedures. Go/No go gauges, gauge calibration and maintenance, limits and tolerance. NDT techniques in Airframe maintenance, Major and minor damage, damage tolerance. Corrosion and corrosion prevention. Major and minor defects. Defect reporting, rectification and investigation. Rigging of aircraft, symmetry checks. Balancing of control surfaces, Periodical inspections, heavy landing, overweight landing checks, abnormal flight loads. Aircraft weighing, weight schedule, calculation of centre of gravity.

Text Books:

- 1. Aircraft Manual, government of India.
- 2. Civil Airworthiness requirements CAA, UK.
- 3. FAR's FAA, U.S.A.
- 4. Parkinson, Engineering Inspection, Wheeler
- 5. Michael J. Kroes and James R Faren, Aircraft Basic Science, McGraw Hill

Reference Books:

- 1. Michael J. Kroes and William A Watkins, Aircraft Maintenance and Repair, McGraw Hill
- 2. Civil Aircraft Inspection Procedures (CAP 459) Pt II Aircraft, Himalayan Books
- 3. Airframe and Power Plant Mechanic (AC 65-15A) Airframe Hand Book, Himalayan Books.1991

		B. Tech (7 th Semester) Aeronautical Engineering									
AEP-415A		ERGONOMICS IN AEROSPACE									
L	T	Р	Credit	Major Test	Minor Test	Total	Time				
3	0	-	3	75	25	100	3h				
Purpose	To introd	To introduce students with the workplace design in aerospace industry									
Course Ou	tcomes										
CO1	Understa	Understanding the basics of ergonomics									
CO2	Understand	Inderstanding the concept of technology in ergonomics									
CO3	Understa	Understanding the concept of design and simulation in ergonomics									
CO4	Introduct	ion to the cas	e studies rel	ated to ergonomic	S						

Basic Principles of Ergonomics, Anthropometry, Posture and Health; Anthropometry Practical; Displays, Controls and HMI; Tools and Equipment Design; Workplace Design and Assessment; Task Analysis; Questionnaire and Interview Design; Product Design and Evaluation; Designing for manufacture and maintenance; Health and Safety Legislation and Ergonomics.

Unit-II

Application of Ergonomics Principles, Cognitive Ergonomics, Human Information Processing; Memory; Reading; Perception; Navigation; Problem Solving; Decision Making, Human-Computer Interaction, Input/Output Technology, Usability; Evaluation; Health problems.

Unit-III

Future Systems, Job Design, Scientific Management, Enrichment, Enlargement, Rotation, Cells, Shift work, Management Style and Job Design, Change Management. New Technology, Unemployment, Deskilling, Introducing new technology. Questionnaire design and assessment. Task analysis techniques. Measurement of human error and risk. Use of simulation and prototypes. Product Evaluation. Experimental Design

Unit-IV

Case Studies: A set of case studies will be used to demonstrate how ergnomics has led to changes in work activity, safety and product design. Case studies will include advanced computer applicatons, workplace assessment and redesign, accident analysis and industrial inspection, and in manufacturing. Students will be required to apply the principles to a real life ergonomic design as applied to a product, service or computer application.

Text Books:

1. Work Design: Industrial Ergonomics – Knoz, Stephan A., Johnson, Steven, Holcomb Hathaway, Scottsdale, AZ. 2. Human factors in engineering and design – Sanders, M.S. & McCormick, E.J., 6th ed., McGraw-Hill, New York.

Reference Books:

1. Ergonomics: Man in his working environment- Murrell, K.F.H, Champan& Hall, and London.

- 2. Man Machine Engineering Chapanis A: Wordsworth Publishing Co.
- 3. The Practice and Management of Industrial Ergonomics Alexander, D.C., Prentice-Hall, Englewood Cliffs, NJ

		B. Tech (8thSemester) Aeronautical Engineering									
AER-402A		PROJECT – IV									
L	T	Р	Credit	Major Test	Minor Test	Practical	Total	Time			
0	0	10	5	0	100	100	200	3h			
Purpose	To familiarize the students with the applications of engineering problems as a major project.										
Course Out	tcomes										
CO1	Demon	Demonstrate a through and systematic understanding of project contents.									
CO 2	Understand methodologies and professional way of documentation and communication.										
CO 3	Know t	now the key stages in development of the project									
CO 4	Extend	or use th	e idea in real li	ife applications							

The students expected to take up a project under the guidance of teacher from the college. The project must be based on (Aeronautical Engineering / Mechanical Engineering) problems, which can be extended up to the full academic session. The students may be asked to work individually or in a group not more than four students.

Students need to submit a model which can be a physical working model or simulation based virtual model with a full preliminary report in a proper format as instructed by Project Guide. Viva- Voce must be based on the preliminary report submitted by students related to the project.

Elective Subjects for 8th Semester Aeronautical Engineering Students

In 8th Semester, there will be four electives, OPEN ELECTIVE – II, OPEN ELECTIVE – III, PROGRAM ELECTIVE – V, PROGRAM ELECTIVE – VI

OPEN ELECTIVE – II						
Course Code	Course Title					
AEO-402A	Wind Tunnel Techniques					
AEO-404A	Robotics and Automation					
AEO-406A	Computer Aided Design					
AEO-408A	Product Design and Manufacturing					

OPEN ELECTIVE – III						
Course Code	Course Title					
AEO-410A	Rockets and Missiles					
AEO-412A	Introduction to Automatic Flight Control					
AEO-414A	Aerospace Power Electronics					
AEO-416A	Non-Destructive Testing					

PROGRAM ELECTIVE – V							
Course Code	Course Title						
AEP-402A	Space Dynamics						
AEP-404A	Aircraft Quality Control, Quality Assurance and Certification						
AEP-406A	Aircraft Systems and Instrumentation						
AEP-408A	Theory of Vibrations						

PROGRAM ELECTIVE – VI							
Course Code	Course Title						
AEP-410A	Air Transportation and Aircraft Maintenance Management						
AEP-412A	Aircraft Modeling and Simulation						
AEP-414A	Control Theory and Practices						
AEP-416A	Mechatronics						

*The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section
OPEN ELECTIVE - II

		B. Tech (8 th Semester) Aeronautical Engineering										
AEO-402A	WIND TUNNEL TECHNIQUES											
L	T	T P Credit Major Test Minor Test Total Time										
3	0	0 - 3 75 25 100 3h										
Purpose	To introd	To introduce students with the wind tunnel experimental techniques										
Course Out	comes											
CO1	Introduct	tion to the test	section and	other parts of wi	nd tunnel							
CO2	Introduct	Introduction to the concept of parameter measurement										
CO3	Understa	Understanding the concept of wind tunnel balances										
CO4	Introduct	tion to the app	lications of v	vind tunnel								

Unit-I

Test section, diffuser, fan section, fan design, return passage, cooling, The breather- vibration, test section flow quality, diffuser design, wind tunnel construction, energy ratio, final form.

Unit-II

Measurement of pressure, velocity, turbulence, flow angularity, hot wire anemometry, laser velocimeter, data acquisition, flow visualization techniques, wind tunnel calibration.

Unit-III

Wind tunnel balances- Internal & External balances, design of wind tunnel balances, Wake survey method.

Method of Images, boundary corrections, buoyancy corrections, wake blockage, solid blockage- (2D & 3D corrections). Unit-IV

Applications in wind engineering, Surface vehicle testing, testing of buildings for wind forces, pollution, other applications at low Reynolds numbers. **Text Book:**

1. Low speed wind tunnel testing:W.E.Rae and A.Pope, John Wiley 1985.

Reference Book:

1. Measurement of Airflow Pankhrust and Ower , Pergamon Press

		B. Tech (8 th Semester) Aeronautical Engineering										
AEO-404A	ROBOTICS AND AUTOMATION											
L	T P Credit Major Test Minor Test Total Time											
3	0	0 - 3 75 25 100 3h										
Purpose	To introduce students with robotics and automation applications in aerospace											
Course Out	comes					-						
CO1	Understa	anding the bas	ics of constr	uction of types of	robots and its parts							
CO2	Introduct	Introduction to the principles of sensor technology										
CO3	Understa	Understanding the concept of automation and its levels										
CO4	Introduct	tion to the aut	omated flow	lines								

Introduction. Construction of manipulators, advantages and disadvantages of various kinematic structures. Applications, Non-servo robots, motion planning. Feedback systems, encoders Kinematics, homogeneous coordinates solution of the inverse kinematic problem, multiple solutions, jacobian, work envelopes. Trajectory planning. Joint Interpolated Trajectory, Link joints and their Manipulator dynamics and force control. Sensors: Vision, ranging, laser, acoustic, tactile.

Unit-II

Developments in sensor technology, sensory control. Programming Language: VAL, RAIL, and AML. Mobile robots, walking devices. Robot reasoning

Unit-III

Automation in Production System, Principles and Strategies of Automation, Basic Elements of an Automated System, Advanced Automation Functions, Levels of Automations. Production Economics: Methods of Evaluating Investment Alternatives, Costs in Manufacturing, Break Even Analysis, Unit cost of production, Cost of Manufacturing Lead time and Work-in-process.

Unit-IV

Automated Flow lines, Methods of Workpart Transport, Transfer Mechanism, Buffer Storage, Control Functions, and Automation for Machining Operations, Design and Fabrication Considerations. Analysis of Automated Flow Lines: General Terminology and Analysis, Analysis of Transfer Lines Without Storage, Partial Automation, Automated Flow Lines with Storage Buffers, Computer Simulation of Automated Flow Lines

Text Book:

1. K.S Fu, R.C. Gonzalez, C.S.G. Lee, Robotics, McGraw Hill, 1987.

Reference Book:

1. "Automation, Production Systems and Computer Integrated Manufacturing" - M.P.Grover, Pearson Education.

		B. Tech (8 th Semester) Aeronautical Engineering										
AEO-406A		COMPUTER AIDED DESIGN										
L	T	T P Credit Major Test Minor Test Total Time										
3	0	0 - 3 75 25 100 3h										
Purpose	To familia	To familiarize students with the computer aided design concepts used in aerospace										
Course Out	comes											
CO1	Understa	nding the type	es of lines, p	orojections and t	ransformations							
CO2	Understa	Understanding the design of curves, surfaces and solids										
CO3	Understa	Understanding the numeric control programming										
CO4	Introduct	ion to the gro	up technolo	gy and flexible s	ystems							

Introduction to CAD/CAM, Historical developments, Industrial look at CAD/CAM, Introduction to CIM; Basics of geometric and solid modeling, explicit, implicit, intrinsic and parametric equations, coordinate systems.

Transformations: Introduction, transformation of points and line, 2-D rotation, reflection, scaling and combined transformation, homogeneous coordinates, 3-D scaling, shearing, rotation, reflection and translation, combined transformations, orthographic and perspective projections, reconstruction of 3-D objects.

Unit-II

Curves: Algebraic and geometric forms, tangents and normal, blending functions re-parametrization, straight lines, conics, cubic splines, Bezier curves and B-spline curves.

Surfaces: Algebraic and geometric forms, tangents and normal, blending functions, re-parametrization, sixteen point form, four curve form, plane surface, ruled surface, surface of revolution, tabulated cylinder, bi-cubic surface, biezer surface, B-spline surface.

Solids: Solid models and representation scheme, boundary representation, constructive solid geometry, sweep representation, cell decomposition, spatial occupancy enumeration

Unit-III

Automation and Numerical Control: Introduction, fixed, programmable and flexible automation, types of NC systems, MCU and other components, NC manual part programming, coordinate systems, G & M codes, Part program for simple parts, computer assisted part programming.

Unit-IV

Group Technology: Part families, part classification and coding, production flow analysis, Machine cell design, Advantages of GT

Flexible Manufacturing Systems & Computer aided process planning: Introduction, FMS components, types of FMS, FMS layouts, planning for FMS, advantages and applications Coventional process planning, types of CAPP, Steps in variant process planning, planning for CAPP.

Text Books:

1. CAD/ CAM by Groover and Zimmer, Prantice Hall.

2. CAD/ CAM Theory and Practice by Zeid, McGraw Hill

3. Numerical Control and Computer Aided Manufacturing by Kundra, Rao & Tiwari, TMH.

Reference Books:

1 CAD/CAM (Principles, Practice & Manufacturing Management) by Chirs Mc Mohan & Jimmie Browne, Published by Addison- Wesley.

		B. Tech (8thSemester) Aeronautical Engineering									
AEO-407A		PRODUCT DESIGN AND MANUFACTURING									
L	T	Р	Credit	Major Test	Minor Test	Total	Time				
3	0	0 - 3 75 25 100 3h									
Purpose	To introd	To introduce students with the concept of product design and its manufacturing									
Course Out	comes										
CO1	Understa	nding the bas	ics of produ	ct development							
CO2	Introducti	Introduction to the principles of design process									
CO3	Understar	Understanding the planning for manufacturing and its management									
CO4	Introducti	ion to the inte	llectual prop	perty rights rega	rding product design						

INTRODUCTION: Product Development – Characteristics, Duration, Challenges, Organizations. Development Process– Processes, Process Flow. Product Planning – Identifying Opportunities, Prioritization, Resource allocation and Pre-Project Planning. Customer Needs – Data gathering, Organizing Needs.

CONCEPT DEVELOPMENT: Product and Target specification, various steps in concept generation, Brainstorming, Morphological analysis, Selection of Concepts – Subjective decision-making, Criteria ranking, Criteria weighting, Datum method, EVAD (Design Evaluation) method, Principles of Computer aided decision making **Unit-II**

DESIGN PROCESS: Concept Testing – Survey, Response and Interpretation. Product Architecture, Platform planning, System level design issues. Embodiment design - Introduction, Size and strength, Scheme drawing, Form design, Provisional material and process determination, Design for assembly and manufacture, Industrial design. Modeling - Introduction, Mathematical modeling, Optimization, Scale models, Simulation.

Unit-III

PLANNING FOR MANUFACTURE AND MANAGEMENT: Detail Design - Factor of safety, Selection procedure for bought out components, Material Selection, Robust design, Experimental Plan. Design Management - Management of design for quality, Project planning and control, Production design specification (PDS), Quality function deployment (QFD), Design review, Value analysis/engineering

Unit-IV

INTELLECTUAL PROPERTY RIGHTS AND PROJECT ECONOMICS: Intellectual Property Rights – Introduction, Study prior inventions, Write the description of the invention, Refine Claims, Pursue application. Economics and Management – Financial Model, Project Trade – Off, Accelerating Projects, Project Execution.

Text Book:

1. Dieter G E, - Engineering DesignII, McGraw - Hill, 2009.

Reference Book:

1. A K Chitale, R C Gupta, – Product Design and Manufacturing II, Prentice Hall of India, 2009

OPEN ELECTIVE – III

		B. Tech (8 th Semester) Aeronautical Engineering									
AEO-410A		ROCKETS AND MISSILES									
L	T	T P Credit Major Test Minor Test Total Time									
3	0	0 - 3 75 25 100 3h									
Purpose	To introd	To introduce students with the advanced concepts of propulsion in Rockets and Missiles									
Course Out	comes										
CO1	Understa	nding the com	nbustion sys	tem used in sol	id rockets						
CO2	Introduct	Introduction to the principles of burnout velocity approximations and estimation									
CO3	Understanding the concept of solid rocket motors										
CO4	Introduct	ion to the adv	anced trajec	tory analysis an	d introduction to elec	tric propulsion					

Unit-I

Classification of Rockets and Missiles-Differences-Uses-Advantages and Disadvantages. Ignition system in Rockets - Types of igniters - Igniter design considerations – Design consideration of liquid rocket combustion chamber, injector propellant feed lines, valves, Propellant tanks outlet and helium Pressurized and turbine feed systems - Propellant slosh and propellant hammer - Elimination of geysering effect in missiles.

Combustion system of solid rockets:Airframe components of rockets and missiles - Forces acting on a missile while passing through atmosphere - Method of describing aerodynamic forces and moments - Lateral aerodynamic moment – Lateral Damping moment and longitudinal moment of a rocket - Lift and drag forces – Drag

Unit-II

Estimation - body up wash and downwash in missiles - rocket dispersion – Numerical problems. One dimensional and two dimensional rocket motions in free space and homogeneous gravitational fields - Description of vertical, inclined and gravity turn trajectories - Determination of range and altitude

Simple Approximations to burnout velocity: -Rocket vector control - Methods - Thrust termination - SITVC - Multistage of rockets – Vehicle optimization - Stage separation dynamics - Seperation techniques.

Unit-III

Selection of materials - Special requirements of materials to perform under adverse conditions.

Solid Rocket Motors: General description, interior ballistics component design Techniques.

Unit-IV

Liquid Rocket Engines: General description, engine cycles, power balance calculation, component design fundamentals.

Electric Propulsion: Classification of electric propulsion systems.

Trajectory Analysis: The rocket equation, vertical trajectories, multistage rockets, generalized 2D trajectory

Text Books:

Sutton, G.P., et al., "Rocket Propulsion Elements" John Wiley & Sons Inc., NewYork, 1993.
Mathur, M., and Sharma, R.P., "Gas Turbines and Jet and Rocket Propulsion ", Standard Publishers, New Delhi, 1998.

Reference Books:

1. Cornelisse, J.W., "Rocket Propulsion and Space Dynamics ", J.W., Freeman & Co., Ltd., London, 1982.

2. Parket, E.R., "Materials for Missiles and Spacecraft", McGraw Hill Book Co., Inc., 1982

		B. Tech (8 th Semester) Aeronautical Engineering										
AEO-403A		INTRODUCTION TO AUTOMATIC FLIGHT CONTROL										
L	T	Р	Credit	Major Test	Minor Test	Total	Time					
3	0	-	3	75	25	100	3h					
Purpose	To familia	To familiarize students with the concept of automatic flight control										
Course Out	comes											
CO1	Understa	nding the bas	ics of contro	ol system and typ	es of controllers							
CO2	Introduct	Introduction to the principles of frequency response analysis										
CO3	Understa	Understanding the concept of stability of control systems										
CO4	Introduct	ion to the digi	tal control s	ystem								

Introduction And Applications: Types of control systems ; Typical Block Diagram : Performance Analysis; Applications – Machine Tool Control, Boiler Control, Engine Governing, Aerospace Control, Active Vibration Control; Representation of Processes & Control Elements – Mathematical Modeling. Block Diagram Representation, Representation of Systems or Processes, Comparison Elements; Representation of Feedback Control systems – Block Diagram & Transfer Function Representation, Representation of a Temperature, Control System, Signal Flow Graphs, Problems. Types of Controllers: Introduction, Types of Control Action; Hydraulic Controllers; Electronic Controllers; Pneumatic Controllers: Problems.

Unit-II

Transient And Steady State Response: Time Domain Representation; Laplace Transform Representation; System with Proportional Control; Proportional – cum – Derivative control; Proportional – cum – Integral Control; Error Constants; Problems.

Frequency Response Analysis: Introduction; Closed and Open Loop Transfer Function; Polar Plots; Rectangular Plots; Nichols Plots: Equivalent Unity Feed Back Systems; Problems.

Unit-III

Stability of Control Systems: Introduction; Characteristic Equation; Routh's Criterion; Nyquists Criterion, Gain & Phase Margins: Problems.

Root Locus Method : Introduction; Root loci of a Second Order System; General Case; Rules for Drawing Forms of Root loci; Relation between Root Locus Locations and Transient Response; Parametric Variation; Problems..

Unit-IV

Digital Control System : Introduction; Representation of Sampled Signal; Hold Device; Pulse Transfer Function; Block Diagrams; Transient Response; Routh's Stability Criterion; Root Locus Method; Nyquists Criterion; Problems. State Space Analysis Of Control Systems: Introduction; Generalized State Equation; Techniques for Deriving System State – Space Equations; Transfer Function from State Equations; Solution of State Vector Differential Equations; Discrete Systems; Problems.

Text Books:

1. Theory & Applications of Automatic Controls by B.C. Nakra, Published by New Age International Pvt. Ltd. Publishers, New Delhi.

2. Modern Control Engg. ByUgata, Prentice Hall of India, New Delhi. 69

Reference Books:

1. Automatic Control Systems by Kuo' Published by Prentice Hall of India, New Delhi.

2. Control System Engineering, I. J. Nagrath and M. Gopal, New Age, New Delhi.

		B. Tech (8thSemester) Aeronautical Engineering									
AEO-405A	AEROSPACE POWER ELECTRONICS										
L	T	T P Credit Major Test Minor Test Total Time									
3	0	0 - 3 75 25 100 3h									
Purpose	To familia	To familiarize students with the power electronics concept used in aerospace applications									
Course Out	comes										
CO1	Understa	nding the con	cept of pow	er electronics							
CO2	Introduct	Introduction to the concept of thyristor and its analysis									
CO3	Understanding the concept of Phase controlled converters										
CO4	Introduct	ion to the AC	Voltage Con	trollers							

Power Semiconductor Devices: Introduction, Concept of Power Electronics, scope and applications, desired Characteristics of controllable switches Power semiconductor switches and their characteristics: Power Diode, Power BJT, Power MOSFET, IGBT, SCR, TRIAC, and GTO.

Unit-II

Thyristor: Rating & protection, Methods of SCR commutation, Gate Drive Circuit, Series and Parallel operation.DC-DC Converters:Introduction, Control Strategies, Buck converter, Boost Converter, Buck-Boost converter, Analysis of buckconverter, Switched Mode power Supply (SMPS).

Unit-III

Phase Controlled Converters: Single phase half wave controlled rectifier with various loads, Effect of free- wheeling diode. Single phase fully controlled and half controlled bridge converters with various loads. Performance Parameters of single phase uncontrolled and controlled converters.

Three phase half wave converters, three phase fully controlled and half controlled bridge converters, Effect of source impedance, Single phase and three phase dual converters

Unit-IV

AC Voltage Controllers: Principle of On-Off and phase controls, Single phase ac voltage controller with resistive and inductive loads, sequence control, Introduction to Matrix converter. Cyclo Converters: Basic principle of operation, single phase to single phase, three phase to single phase output voltage equation.

Text Books:

1. M.H. Rashid,"Power Electronics: Circuits, Devices & Applications", Pearson India, 4th Edition, 2018.

2. Ned Mohan, T.M.Undeland and W.P.Robbins, "Power Electronics: Converters, Applications and Design", Wiley India

3. P.C. Sen, "Power Electronics", McGraw Hill Education (India) Pvt. Ltd.

4. P.S. Bhimbra, "Power Electronics", Khanna Publishers.

Reference Books:

1. M.S. Jamil Asghar, "Power Electronics" Prentice Hall of India Ltd., 2004

- 2. Chakrabarti&Rai, "Fundamentals of Power Electronics &Drives", Dhanpat Rai & Sons.
- 3. V.R. Moorthy, "PowerElectronics: Devices, Circuits and Industrial Applications" Oxford University Press, 2007

		B. Tech (8thSemester) Aeronautical Engineering										
AEO-407A	NON DESTRUCTIVE TESTING											
L	T	T P Credit Major Test Minor Test Total Time										
3	0	•	3	75	25	100	3h					
Purpose	To familia	To familiarize students with the non-destructive testing methods used in aerospace applications										
Course Out	comes											
CO1	Understa	nding the bas	ics of non-d	estructive testing	methods							
CO2	Introduct	Introduction to the principles of testing procedure and types of methods										
CO3	Understanding the concept of Thermography method											
CO4	Introduct	ion to the Edd	ly current Te	sting Method								

NDT Versus Mechanical testing, Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterisation. Relative merits and limitations, various physical characteristics of materials and their applications in NDT Visual inspection – Unaided and aided.

Unit-II

Liquid Penetrant Testing – Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.

Unit-III

Thermography- Principles, Contact and non-contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation – infrared radiation and infrared detectors, Instrumentations and methods, applications.

Unit-IV

Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Applications, advantages, Limitations, Interpretation/Evaluation.

Text Books:

1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House, 2009. 2. Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers, 2010

Reference Books:

1. ASM Metals Handbook,"Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.

Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2nd Edition New Jersey, 2005
Charles, J. Hellier," Handbook of Nondestructive evaluation", McGraw Hill, New York 2001.

4. ASNT, American Society for Non Destructive Testing, Columbus, Ohio, NDT Handbook, Vol. 1, Leak Testing, Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared and Thermal Testing Vol. 4, Radiographic Testing, Vol. 5, Electromagnetic Testing, Vol. 6, Acoustic Emission Testing, Vol. 7, Ultrasonic Testing

PROGRAM ELECTIVE – V

		B. Tech (8 th Semester) Aeronautical Engineering										
AEP-402A		SPACE DYNAMICS										
L	T	Р	Credit	Major Test	Minor Test	Total	Time					
3	0	•	3	75	25	100	3h					
Purpose	To study	/ basics of s	pace and as	strodynamics ar	nd conceptual ove	rview of celestial o	rbits.					
Course Out	se Outcomes											
CO1	To impart canonical	o impart the knowledge in two-body, restricted three-body and n-body problem, Hamiltonian dynamics, anonical transformations. Poincare surface sections.										
CO2	To offer a analysis of	rigorous vec f spacecraft	tor analysis altitude dyr	of rotational ki namics.	nematics, review of	of the basic Newtor	nian dynamics and					
CO3	To provide necessary knowledge to study the satellite and interplanetary trajectories and formal approaches for handling coordinate transformations.											
CO4	To solve th interplanet	ne space dyr tary orbits in	amic problet the frame v	ems related to e work of restricte	earth satellite orbit d three-body prot	s using Hamilton's Ilem.	and generate					

Unit-I

INTRODUCTION TO SPACE DYNAMICS

Basic concepts: Atmospheric and space flight basic definitions, vector operations; Coordinate systems and rotation matrix, Euler axis and principal angle, Euler angles, Euler symmetric parameters (Quaternion), Rodriguez parameters, attitude kinematics

Unit-II

FUNDAMENTALS OF SPACE FLIGHT

Newton 's law of gravitation, gravitational potential, escapes velocity, mechanics of circular orbits and circular velocity non circular orbits; The two-body problem, derivation of Kepler 's laws from Newton 's law.

Unit-III

SPACE FLIGHT ORBITS AND ATMOSPHERE ENTRY

Orbit equation, space vehicle trajectories, transfer orbit changes. Introduction to earth and planetary entry, equations of motion for atmosphere entry; Application to ballistic entry, case study.

Unit-IV

ORBIT TRANSFER

Coplanar transfer, Hohmann transfer and Bielliptic transfer; Orbital change due to impulsive thrust; Non-coplanar transfer; Interception and Rendezvous, continuous thrust transfer.

ATTITUDE DYNAMICS

Euler Equations of rotational motion, rotational kinetic energy; Principal body frame, torque free rotation of spacecraft, spacecraft with attitude thrusters, spacecraft with rotors, gravity gradient satellite, dual spin satellite.

Text Books:

1. Ashish Tewari, —Atmospheric and space flight dynamicsIIBirkhauser publications, 1st Edition, 2007

2. Vallado, David A., —Fundamentals of Astrodynamics and Applications II, Kluwer Academic Publishers, London, 3rd Edition, 2007.

Reference Books:

1. Roy, Archie E., —The Foundation of AstrodynamicsII, The Macmillan Company, Collier Macmillan Limited, London, 3rd Edition, 2007.

2. Kaplan, Marshall H., – Modern Spacecraft Dynamics and Control II, John Wiely& Sons, New York, 1st Edition, 1976.

	B. Tech (8 th Semester) Aeronautical Engineering										
AEP-404A		AIRCRAFT QUALITY CONTROL, QUALITY ASSURANCE AND CERTIFICATION									
L	T	T P Credit Major Test Minor Test Total Time									
3	0	-	3	75	25	100	3h				
Purpose	To fam	To familiarize students with Quality control concepts used in Aerospace Industry									
Course Outo	omes										
CO1	To monito	oring each pl	hase of the	design proces	ŝS						
CO2	To acquir	e the analyti	c ability for	r attention to d	etail and a systema	tic thought process) .				
CO3	To review	Fo review documentation related to both internal and external manufacturing processes to ensure quality									
	products.										
CO4	To develo	op, register a	nd use pro	blem analysis	to proactively ident	ify quality process	solutions				

Reversible and irreversible flight control systems. Flying qualities of aircraft-relation to airframe transfer function. Pilot's opinion ratings. Flying quality requirements- pole-zero, frequency response and time response specifications. Displacement and rate feedback determination of gains conflict with pilot input s resolution-control augmentation systems- Full authority fly-by-wire. Auto Pilot-Normal acceleration, Turn rate, Pitch rate Commands-Applications.

Unit-II

Maintenance Procedures: Maintenance planning; Modification procedures; Stores procedures; Certification/release procedures; Interface with aircraft operation; Maintenance Inspection/Quality Control/Quality Assurance; Additional maintenance procedures; Control of life limited components

Unit-III

Bearings: Introduction and function of bearings, loads, material, construction; Types of bearings and their application. Testing, cleaning and inspection of bearings; Lubrication requirements of bearings; Defects in bearings and their causes. 11 Transmissions: Gear types and their application; Gear ratios, reduction and multiplication gear systems, driven and driving gears, idler gears, mesh patterns; Belts and pulleys, chains and sprockets. Inspection of gears, backlash; Inspection of belts and pulleys, chains and sprockets; Inspection of screw jacks, lever devices, push-pull rod systems

Unit-IV

General knowledge of ground handling of Aircraft, Aircraft Safety; Mooring, Jacking, Levelling, hoisting of aircraft, Towing, Mooring of an a/c during adverse conditions. Aircraft cleaning and maintaining. Ground signaling/marshalling of aircraft in day and night time. 19 Part-IV Maintenance and handling of ground equipment's used in maintenance of aircraft. Compressors, Portable hydraulic test stands, Electrical power supply equipment, charging trolley. Airconditioning and Heating unit, Ground support air start unit. Pressure oil unit, Fire extinguishers, jacks, Hoisting cranes/gantry, Ladders, Platforms, Trestles, and Chocks.

Text Books:

1. Airframe and Powerplant Mechanics (AC 65-15A)-Airframe Hand Book FAA.

2. Civil Aircraft Inspection Procedure (CAP 459) Part II Aircraft.

Reference Books:

1. Aircraft Maintenance and Repair ByKroes, Watkin and Delph.

2. Acceptable Methods, Techniques and practices (FAA)-EA-AC 43.13-1 A and 2 A.

		B. Tech (8thSemester) Aeronautical Engineering										
AEP-406A		AIRCRAFT SYSTEMS AND INSTRUMENTATION										
L	T	T P Credit Major Test Minor Test Total Time										
3	0	-	3	75	25	100	3h					
Purpose	To intro	duce the con	cepts of ai	rcraft systems	and the instrument	s used in aerosp	ace industry					
Course Out	tcomes											
C01	Impart the industries.	mpart the knowledge in various types of Avionics systems, its components & its applications in aerospace ndustries.										
CO2	Offer a rigo avionics a	orous avionio rchitectures	cs technolo	ogy, Review of	the basic system ir	ntegration and the	e different type of					
CO3	Provide necessary knowledge to study the aircraft instrumentation sensors, displays and different type of sensors.											
CO4	Give know difference	ledge about	military air	craft adaptatio	n, avionics and mis military aircraft avi	sion system inte	rface and gives the					

AIRPLANE CONTROL SYSTEMS

Flight control systems- primary and secondary flight control conventional systems; Power assisted and fully powered flight controls; Power actuated systems; Engine control systems; Push pull rod system, flexible push full rod system; Control linkages, actuation- types, description and redundancy. Components; Modern control systems; Digital fly by wire systems, control laws, implementation; Auto pilot system.

Unit-II

MILITARY AIRCRAFT ADAPTATION

Avionic and mission system interface, navigation and flight management; Navigation aids, flight deck displays, communications, aircraft systems; Applications, personnel, material and vehicle transport, air-to-air refueling, maritime patrol, airborne early warning, ground surveillance; Electronic warfare, the EW spectrum, electronic support measures, electronic countermeasures, electro-optics and the infra-red.

Unit-III

AIRCRAFT INSTRUMENTATION - SENSORS AND DISPLAYS

Air data sensors, magnetic sensing, inertial sensing, and radar sensors. The electromechanical instrumented flight deck, early flight deck instruments, attitude direction indicator, horizontal situation indicator, altimeter, airspeed indicator; Advanced flight deck display system architectures, display systems, display media, future flight deck displays.

Unit-IV

AIRBORNE RADAR, ASTRIONICS - AVIONICS FOR SPACECRAFT

Propagation of Radar waves, functional elements of radar, antenna- transmitter; Types of radar- pulse Doppler, civil aviation applications, military applications; Attitude determination and control of spacecraft, magnetometers, sun sensors, star trackers, earth and horizon sensors; Command and telemetry

Text Book:

1. Hirst, M., The Air Transport System, Woodhead Publishing Ltd, Cambridge, England, 2008.

Reference Books:

1. Wensven, J.G., Air Transportation: A Management Perspective, Ashgate, 2nd Edition 2007.

- 2. Belobaba, P., Odoni, A. and Barnhart, C., Global Airline Industry, 2nd Edition Wiley, 2009.
- 3. M. Bazargan, M., Airline Operations and Scheduling, Ashgate, 1st Edition 2004.

		B. Tech (8thSemester) Aeronautical Engineering										
AEP-408A		THEORY OF VIBRATIONS										
L	T	Р	Credit	Major Test	Minor Test	Total	Time					
3	0	-	3	75	25	100	3h					
Purpose	To famil	iarize the stu	idents abou	ut the concepts	of vibrations of air	craft structures						
Course Out	tcomes											
CO1	Impart the	npart the knowledge in various types of Avionics systems, its components & its applications in aerospace										
	industries.	_		-	-							
CO2	Offer a rigo	orous avioni	cs technolo	ogy, Review of	the basic system ir	ntegration and the	e different type of					
	avionics a	rchitectures			-	-	-					
CO3	Provide ne	Provide necessary knowledge to study the aircraft instrumentation sensors, displays and different type of										
	sensors.	ensors.										
CO4	Give know	ledge about	military air	craft adaptatio	n, avionics and mis	sion system inter	face and gives the					
	difference	between civi	ilian aircraf	t avionics and	military aircraft avi	onics.	-					

SINGLE-DEGREE-OF-FREEDOM LINEAR SYSTEMS

Introduction to theory of vibration, equation of motion, free vibration, response to harmonic excitation, response to a impulsive excitation, response to a step excitation, response to periodic excitation (Fourier series), response to a periodic excitation (Fourier transform), Laplace transform (Transfer Function).

Unit-II

TWO-DEGREE-OF-FREEDOM SYSTEMS

Introduction, Equations of Motion for Forced Vibration, Free Vibration Analysis of an Undamped System, Torsional System, Coordinate Coupling and Principal Coordinates, Forced-Vibration Analysis, semi definite Systems, Self-Excitation and Stability Analysis, Transfer- Function Approach, Solutions Using Laplace Transform, Solutions Using Frequency Transfer Functions.

Unit-III

MULTI-DEGREE-OF-FREEDOM LINEAR SYSTEMS

Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi- rotor systems and geared systems; Discrete- Time systems.

Unit-IV

INTRODUCTION TO AEROELASTICITY

Static Aeroelasticity; Typical Section Model of an Airfoil: Typical Section Model with Control Surface, Typical Section Model—Nonlinear Effects. One Dimensional Aeroelastic Model of Airfoils: Beam-Rod Representation of Large Aspect Ratio Wing, Eigenvalue and Eigen function Approach, Galerkin's Method. Dynamic Aeroelasticity; Hamilton 's Principle: Single Particle, Many Particles, Continuous Body, Potential Energy, Non potential Forces, Lagrange 's Equations.

Text Books:

1. Bismarck-Nasr, M.N., — Structural Dynamics in Aeronautical EngineeringII, AIAA Education Series, 2nd Edition, 1999. 2. Rao, S.S., — Mechanical VibrationsII, Prentice-Hall, 5th Edition, 2011.

2. Rad, S.S., — Medianical Vibrationsii, Prentice-Hall, Stir Edition, 2011.

3. Earl H. Dowell, -A Modern Course in Aeroelasticityll Volume 217, Duke University, Durham, NC, USA.

Reference Books:

1. R.L. Bisplinghoff, H.Ashley, and R.L. Halfmann, —AeroelasticityII, Addison Wesley Publishing Co., Inc., 2nd Edition, 1996.

2. Leissa, A.W., Vibration of continuous system, The McGraw-Hill Company, 2nd Edition, 2011.

3. Inman, D.J., Vibration Engineering, Prentice Hall Int., Inc., 3rd Edition, 2001.

PROGRAM ELECTIVE – VI

		B. Tech (8 th Semester) Aeronautical Engineering											
AEP-410A		AIR TRANSPORTATION AND AIRCRAFT MAINTENANCE MANAGEMENT											
L	T	T P Credit Major Test Minor Test Total Time											
3	0	0 - 3 75 25 100 3h											
Purpose	To underst	o understand the procedures for various segments of aircraft operations and various issues involved											
-	during the	airline opera	ations.	-	-								
Course Ou	tcomes												
CO1	Understan	d complexity	and trans	port operation	systems.								
CO2	Understand many transport issues involved in handling passengers, freight of aircraft.												
CO3	Understan	d the econor	nics behin	d the aviation i	ndustry								
CO4	Understan	d the applica	tion of AT	C and RADAR S	Systems in Airport	Management							

Unit-I

AVIATION INDUSTRY

Introduction, history of aviation, evolution, development, growth, challenges; Aerospace industry, air transportation industry- economic impact, types and causes; Airline industry, structure and economic characteristics; Airlines as oligopolists, other unique economic characteristics; Significance of airline passenger load factors.

AIRCRAFT MANAGEMENT

Costs- project cash-flow, aircraft price; Compatibility with the operational infrastructure; Direct and indirect operating costs; Balancing efficiency and effectiveness-payload-range, fuel efficiency. Technical contribution to performance, operating speed and altitude, aircraft field length performance; Typical operating costs; Effectiveness- wake-vortices, cabin dimensions, flight deck.

Unit-III

AIRPORTS AND AIRLINES

Setting up an airport: airport demand, airport sitting, runway characteristics, length, declared distances, aerodrome areas, obstacle safeguarding; Runway capacity, evaluating runway capacity, sustainable runway capacity; Setting up an airline, modern airline objectives; Route selection and development, airline fleet planning, annual utilization and aircraft size, seating arrangements; Indirect operating costs; Aircraft- buy or lease; Revenue generation, computerized reservation systems, yield management; Integrating service quality into the revenue-generation process; Marketing the seats; Airline scheduling; Evaluating success, financial viability, regulatory compliance, efficient use of resources, effective service

Unit-IV

AIRSPACE

Categories of airspace, separation minima, airspace sectors, capacity, demand and delay; Evolution of air traffic control system, procedural ATC system, procedural ATC with radar assistance, first generation _automated' ATC system, current generation radar and computer-based ATC systems; Aerodrome air traffic control equipment and operation - ICAO future air-navigation systems (FANS); Air-navigation service providers as businesses.

Text Book:

1. Fundamentals of Air Traffic Control, 4th Edition, Michael S. Nolan, Thomson Brooks/Cole, USA.

Reference Book:

1. Planning and Design of Airports, 4th Edition, Robert Horonjeff& Francis X. McKelvey, McGraw Hill Professional Publishing.

Unit-II

		B. Tech (8 th Semester) Aeronautical Engineering											
AEP-412A		AIRCRAFT MODELING AND SIMULATION											
L	T	T P Credit Major Test Minor Test Total Time											
3	0	0 - 3 75 25 100 3h											
Purpose	To introd	To introduce students with the advanced concepts of modeling and simulation in aerospace											
Course Out	comes												
CO1	Understa	nding the bas	sics of mathe	matical modelling	concepts								
CO2	Introduct	Introduction to the applications of mathematical modelling for aircrafts											
CO3	Understa	Understanding the concept of dynamic models											
CO4	Introduct	ion to the sin	nulation mode	els									

Mathematical Modelling:Mathematical concepts in Modelling, Why modelling, Goals of modelling studies, Process of Mathematical modeling, Real world problem, falling rock modeling, Computational problem, Basics of curve fittings, Engineering simulations and process of solving engineering problems, Analytical and numerical problem solutions with example.

Unit-II

Aircraft Modeling: Aircraft modeling, Aircraft state-space vectors, body-fixed coordinate systems, rotation matrix for wind and stability axes, Aircraft Equation of motion, kinetic equations for translation, kinematic equations for attitude, rigid-body kinetics, sensors and measurement systems, Introduction to Perturbation, Perturbation theory, nominal and perturbation values, Linearization of rigid body kinetics, Linear state-space model based on using wind and stability axes.

Unit-III

Dynamic Models: Decoupling: longitudinal and lateral modes: Longitudinal and lateral equations, Aerodynamic Forces and Moments, longitudinal and lateral forces and moments, standard aircraft maneuvers, bank to turn, altitude control dynamic models, longitudinal and lateral stability analysis, Satellite modelling, Attitude model

Unit-IV

Simulation models: Software Simulation of Aircraft dynamics models, 767 longitudinal and lateral model, F-16 Longitudinal and Lateral Mode, F2B Bristol Lateral model

Text Book:

1. "Computational Modelling and Simulation of Aircraft and the Environment": Dominic J. Diston, John Wiley & Sons, Ltd., 2009

Reference Book:

1. "Flight Stability and Automatic Control", R. C. Nelson, McGraw-Hill Book, 1989

		B. Tech (8 th Semester) Aeronautical Engineering											
AEP-414A		CONTROL THEORY AND PRACTICES											
L	T	T P Credit Major Test Minor Test Total Time											
3	0	0 - 3 75 25 100 3h											
Purpose	To underst	tand and gai	n knowledg	je on aircraft o	ontrol systems and	its application.							
Course Out	tcomes												
CO1	Apply stab	ility criteria f	to determin	e the stability	of an aircraft, and s	pecify the aircraft f	time-domain and						
	frequency-	domain resp	onse spec	ifications.									
CO2	Understan	d classical c	ontrol theo	ry in the frequ	ency domain and m	odern control theo	ry in the state space						
	are effectiv	ely mixed to	provide th	e student with	a modern view of s	ystems theory.							
CO3	Design control techniques for aircraft control systems, and study some feedback control applications.												
CO4	Study the	controllabilit	y and obse	rvability of ae	rospace systems, ar	d apply the moder	rn control techniques						
	to design e	enhanced flig	t control	systems.									

INTRODUCTION TO CONTROL SYSTEMS

Dynamical systems-principal constituents-input, output-process (plant)-block diagram representation. Inputs- control input, noise. Function of controls regulation (hold), tracking (command)-examples. Measure of effectiveness. Sensitivity of output to control input, noise and system parameters- robustness. Deterministic and stochastic control. The pervasiveness of control in nature, engineering and societal systems. The importance of study of control system. Need for stable, effective (responsive), robust control system. Modeling of dynamical systems by differential equations-system parameters. Examples from diverse fields. First and second order systems, higher order systems, single input single output systems, and multiple-input multiple-output.

Unit-II

MATHEMATICAL MODELLING OF DYNAMIC SYSTEMS

Control system performance- time domain description- output response to control inputs-- impulse and indicial response- characteristic parameters- significance- relation to system parameters- examples- first and second order linear systems, higher order systems. Synthesis of response to arbitrary input functions from impulse and indicial response. Review of Fourier transforms and Laplace transforms- inverse transforms- significance, applications to differential equations. 's' (Laplace) domain description of input-output relations- transfer function representation- system parameters- gain, poles and zeroes. Characteristic equation- significance- examples. Frequency and damping ratio of dominant poles. Relation of transfer functions to impulse response. Partial fraction decomposition of transfer functions significance

Unit-III

FLYING QUALITIES OF AIRCRAFT

Reversible and irreversible flight control systems. Flying qualities of aircraft-relation to airframe transfer function. Pilot's opinion ratings. Flying quality requirements- pole-zero, frequency response and time response specifications. Displacement and rate feedback determination of gains conflict with pilot input s resolution-control augmentation systems- Full authority fly-by-wire. Auto Pilot-Normal acceleration, Turn rate, Pitch rate Commands-Applications.

Unit-IV

STEADY STATE RESPONSE ANALYSIS

System type, steady state error, error constants- overall system stability. Application of feedback in stability augmentation, control augmentation, automatic control-examples. Composition, reduction of block diagrams of complex systems-rules and conventions. Control system components - sensors, transducers, servomotors, actuators, filters-modeling, transfer functions. Single-input single-output systems. Multiple input-multiple output systems, matrix transfer functions-examples. Types of control problems- the problem of analysis, control synthesis, system synthesis- examples-static control of aircraft. Extension to dynamic control. System identification from input output measurements importance.

Text Books:

1. Kuo, B.C., -Automatic Control SystemsII, Prentice Hall India, 1992.

2. Stevens, B.L. and Lewis, F.L., -Aircraft Control and Simulation II, John Wiley, 1992.

Reference Book:

1. Mc Lean, D., -Automatic Flight Control Systems II, Prentice Hall, 1990 J.

		B. Tech (8th Semester) Aeronautical Engineering										
AEP-416A	MECHATRONICS											
L	T	T P Credit Major Test Minor Test Total Time										
3	0	0 - 3 75 25 100 3h										
Purpose	To underst transfer fu	To understand key elements of Mechatronics system, representation into block diagram and concept of transfer function, reduction and analysis.										
Course Out	comes											
CO1	Develop a	simulation m	nodel for si	mple physical	systems and explai	n mechatronics d	esign process					
CO2	Outline ap	propriate ser	nsors and a	actuators for an	n engineering applie	cation						
CO3	Explain lin	earization of	nonlinear	systems and e	lements of data acc	quisition						
CO4	Explain va	rious applica	tions of de	esign of mecha	tronic systems							

Introduction, synergy of systems, definition of mechatronics, applications of mechatronics in design and modeling, actuators and sensors, intelligent controls, robotics, manufacturing etc., objectives, advantages and disadvantages of mechatronics, examples of mechatronics systems in industry. Mechanical components in mechatronics, force, friction and lubrication, materials, mechanical behavior of materials, mechanisms used in mechatronics, lever and four bar mechanisms, bearing, belt, chain, cam, slider crank, clutches etc.

Unit-II

System modeling and analysis, control system concepts, transfer function of physical systems, block diagrams representation of systems, transfer function of a system, standard input signals, time response of a first and second order systems to a step input, frequency response analysis, automatic control systems, digital control systems. Motion control devices, actuator types & application areas, hydraulic and pneumatic actuators, electrical actuators, DC servomotor, AC servomotor and stepper servomotor, micro-actuators, drive selection and applications.

Unit-III

Sensors and transducers, their static and dynamic performance characteristics, internal sensors, external sensors and micro-sensors, sensors for displacement, position and proximity; velocity, motion, force, fluid pressure, liquid flow, liquid level, temperature, light sensors, selection of Sensors. Stages in designing mechatronics systems, traditional and mechatronic design, possible design solutions, case studies of mechatronics systems, pick and place robot, automatic car park systems, engine management systems etc.

Unit-IV

Mechatronics in industry, autotronics, bionics and avionics and their various applications, mechatronics in manufacturing, features of mechatronics in manufacturing, flexible manufacturing systems, manufacturing automatic protocol, computer integrated manufacturing, just in time production systems, CNC machines, adaptive control machine system, CNC machine operations, challenges in mechatronics production units.

Text Book:

1. A Kuttan, "Introduction to Mechatronics, Oxford University Press, 2010.

Reference Book:

1. Alciatore&Histand, "Introduction to Mechatronics & Measurement Systems, 4e", McGrawHill Education, 2014.

KURUKSHETRA UNIVERSITYKURUKSHETRA BachelorofTechnology(Electrical & ElectronicsEngineering)(CreditBased) Scheme of Studies/Examination (Modified) SemesterIV (w.e.f. session 2021-2022)

S.	Course No.	Subject	L:T:P	Iours/ Week		E	xamination S	chedule (Marks)		Duration of
No.					Credits	Major Test	Minor Test	Practical	Total	Exam (Hrs)
1	BS-207A	Applied and Computational Mathematics	3:0:0	3	3	75	25	0	100	3
2	HTM-901A	Universal Human Values II: Understanding	3:0:0	3	3	75	25	0	100	3
		Harmony								
3	*EE- 206A	Electrical Machines – II	3:1:0	4	4	75	25	0	100	3
4	*EE-208A	Power Electronics	3:0:0	3	3	75	25	0	100	3
5	EEN-210A	Digital Electronics	3:0:0	3	3	75	25	0	100	3
6	EEN -202A	Basics of Analog Communication	3:0:0	3	3	75	25	0	100	3
7	*EE-214A	Electrical Machines Lab - II	0:0:2	2	1	-	40	60	100	3
8	*EE-216A	Power Electronics Lab	0:0:2	2	1	0	40	60	100	3
9	EEN-218A	Digital Electronics Lab	0:0:2	2	1	-	40	60	100	3
10	**MC-902A	Constitution of India	3:0:0	3	-	75	25	0	100	3
		Total		28	22	450	270	180	900	

* Subjects Common with IV Semester. B.Tech. [Electrical Engg.] Scheme, K.U.K.

**MC-202A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

Note: All the students have to undergo 4 to 6 weeks Industrial Training after 4th semester which will be evaluated in 5th semester.

HTM-901A		Universal Human Values II: Understanding Harmony												
Lecture	Tutorial	Tutorial Practical Credit Major Minor Test Total Time												
3	0	0 0 3.0 75 25 100 3 Hours												
Purpose	Purpose a Values-I	Purpose and motivation for the course, recapitulation from Universal Human Values-I												
			Cours	e Outcome	s (CO)									
CO 1	Developm	nent of a ho	listic persp	pective bas	ed on self-ex	ploration al	bout							
	themselve	s (human b	eing),fami	ly, society	and nature/e	xistence.								
CO 2	Understa	nding (or de	eveloping of	clarity) of th	ne harmony ir	the humar	n being,							
	family, society and nature/existence.													
CO 3	Strengthe	ening of self	-reflection.											
CO 4	Developm	nent of com	mitment a	nd courage	e to act.									

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for ValueEducation

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrarinessin choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'l' and harmony in 'l'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in

10(1913)

Human-HumanRelationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- fromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value inrelationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on ProfessionalEthics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and

organizations

28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. todiscuss the conduct as an engineer or scientist etc.

READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books,New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at handand motivating students to reflect, explore and verify them.

Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration. Scenarios may be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based onbasic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemed essential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example:

Assessment by

faculty mentor: 5 marks

Self-assessment: 5 marks

Assessment by peers: 5 marks

Socially relevant project/Group Activities/Assignments: 10 marks

Semester End Examination: 75 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

HM- 904A	Intellectual Property Rights for Technology Development & Management												
Lecture	TutorialPracticalCreditMajorMinorTotalTime(Hrs)												
				Test	Test								
3	0	0 0 3 75 25 100 3											
Program	The object	The objective of this course is to familiarize the students with the basic concepts of											
Objective	Intellectual Pr	ntellectual Property Rights for technology development & management and new developments in the											
(PO)	field of IPR	field of IPR											
			Course O	utcomes (CC))								
After comple	etion of cours	e students w	ill be able to										
CO1	Understand	basics of In	ellectual Prope	ertyRights and	importance of	f IPR							
CO2	Understand	Understand law of copy rights and law of patents											
CO3	Learn abou	t industrial de	esigns & the	ir protection	law and tra	de marks							
CO4	Learn about	t Trade Secre	ets and new	developmen	ts in the fiel	ld of IPR							

Introduction: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT- II

Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Law of patents: Foundation of patent law, patent searching process, Patent and kind of inventions protected by a patent, ownership rights and transfer. Case studies of patents.

UNIT- III

Industrial Designs: Introduction, need to protect industrial design, **industrial designs protection law. Trade Marks:** Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT IV

Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation. Unfair competition: Misappropriation right of publicity, false advertising.

New developments: New developments in trade mark law; copy right law, patent law, intellectual property audits. International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law.

Text Books/References:

1. P. Ganguli; Intellectual property right – Unleashing the knowledge economy, Tate McGraw Hill Publishing company ltd.

2. B.L.Wadehra; Law Relating to Patents, Trade Marks, Copyright, Designs & Geographical Indications; Universal law Publishing Pvt. Ltd., India 2000.

3. P. Narayanan; Law of Copyright and Industrial Designs; Eastern law House, Delhi, 2010

4. Deborah. E. Bouchoux; Intellectual property right, Cengage learning.

5. Ajit Parulekar and Sarita D' Souza, Indian Patents Law – Legal & Business Implications; Macmillan India ltd , 2006

EENP-401A			Indus	trial Electric	cal System							
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)					
				Test	Test							
3	0	0	3	75	25	100	3					
Program	To provide	To provide knowledge about various concepts of industrial electrical systems and their										
Objective	automation											
(PO)												
			Course O	utcomes (CO))							
After complete	tion of course	e students wil	l be able to									
CO1	Understand	residential a	nd commerc	ial electrical	l systems							
CO2	Understand	various typ	bes of illun	nination sys	tems and	lighting sch	emes used for a					
	residential a	residential and commercial premises										
CO3	Understand	various cond	cepts of indu	strial electri	cal systems							
CO4	Understand	the concept	related to in	dustrial elec	ctrical system	n automatio	n					

Residential and Commercial Electrical Systems: Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components

UNIT- II

Illumination Systems: Understanding various terms regarding light, lumen, intensity, candle power, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of a lighting scheme for a residential and commercial premises, flood lighting

UNIT- III

Industrial Electrical Systems I : HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction - kVAR calculations, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB and other LT panel components.

UNIT IV

Industrial Electrical Systems II : DG Systems, UPS System, Electrical Systems for the elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks

Industrial Electrical System Automation: Study of basic PLC, Role of in automation, advantages of process automation, PLC based control system design, Panel Metering and Introduction to SCADA system for distribution automation

Text Books/References:

1. S. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publishers, 2008.

2. K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007.

3. S. Singh and R. D. Singh, "Electrical estimating and costing", Dhanpat Rai and Co., 1997. Web site for IS Standards.

4. H. Joshi, "Residential Commercial and Industrial Systems", McGraw Hill Education, 2008

.EENP-403A		Digital Control System											
Lecture	Tutorial	Practical	Credit	Major Test	Minor	Total	Time(Hrs)						
3	0	0	3	75	25	100	3						
Program Objective (PO)	To enable	o enable students to design and analyze discrete time (digital) control system											
			Course O	utcomes (CC))								
After comple	tion of cours	e students w	ill be able to										
CO1	Represent d models. Als	iscrete time sy o able to obtai	stems under n the model o	the form of z- of discrete-tin	-domain trans	sfer functions	s and state-space Fer function						
CO2	Analyze sta analytically	Analyze stability, transient response and steady state behaviour of linear discrete time systems, analytically and numerically using tools such as MATLAB and Simulink											
CO3	Design san	npled data co	ntrol system	IS.									
CO4	Describe D	iscrete state	space model	and test con	ntrollability	and observa	bility of systems						

Introduction to digital control: Introduction, Discrete time system representation, Mathematical modelling of sampling process, Data reconstruction.

Modelling discrete-time systems by pulse transfer function

Revisiting Z-transform, Mapping of s-plane to z-plane, Pulse transfer function, Pulse transfer function of closed loop system, Sampled signal flow graph

UNIT- II

Stability analysis of discrete time systems: Jury stability test, Stability analysis using bi-linear transformation, Time response of discrete systems, Transient and steady state responses, Time response parameters of a prototype second order system.

UNIT- III

Design of sampled data control systems: Root locus method, Controller design using root locus, Root locus-based controller design using MATLAB, Nyquist stability criteria, bode plot, Lead compensator design using Bode plot, Lag compensator design using Bode plot, Lag-lead compensator design in frequency domain.

UNIT IV

Discrete state space model: Introduction to state variable model, Various canonical forms, Characteristic equation, state transition matrix, Solution to discrete state equation. Controllability, observability and stability of discrete state space models: Controllability and observability, Stability, Lyapunov stability theorem.

Text Books/References:

- 1. B. C.Kuo, Digital Control Systems, Oxford University Press, 2nd Edition, Indian Edition, 2007.
- 2. K. Ogata, Discrete Time Control Systems, Prentice Hall, 2ne Edition, 1995.
- 3. M. Gopal, Digital Control and State Variable Methods, McGraw Hill, 2/e, 2003.
- 4. G. F. Franklin, J. D.Powell and M. L. Workman, Digital Control of Dynamic Systems, Addison Wesley, 1998, Pearson Education, 3rd Edition.
- 5. K. J.Astroms and B. Wittenmark, Computer Controlled Systems Theory and Design, Prentice Hall, 3rd Edition, 1997.

EENP-405A			High Vo	Itage Engin	eering								
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)						
				Test	Test								
3	0	0 0 3 75 25 100 3											
Program	To enable s	To enable students to understand important concepts of high voltage engineering											
Objective													
(PO)													
		(Course Outco	omes (CO)									
After comple	etion of cours	e students w	ill be able to										
CO1	Understand	the concept of	electrostatic	field and effe	ct of high eleo	ctrostatic fiel	d over						
	Gases, Liqui	d and solid die	lectric										
CO2	Understand the concept of generation of high voltages and currents in the system												
CO3	Measure hig	h voltages and	currents in the	ne system									
CO4	Perform Non	-destructive ar	nd high voltag	ge testing on v	arious compo	onents of pov	wer system						

.UNIT I

Electrostatic Field and Field Stress Control: Electric field stresses, Numerical methods for Electric field computation, Finite Element Method, Charge simulation method.

Conduction and Break Down in Gases: Ionization processes, Townsend's criterion, breakdown in electronegative gases, time lags for breakdown, streamer theory, Paschen's law, break down in non-uniform field, and corona discharge

Break Down in Liquid Dielectrics: Conduction and breakdown in pure liquid and commercial liquid.

Break Down in Solid Dielectrics: Intrinsic breakdown, electromechanical breakdown breakdown of solid, dielectric and composite dielectrics.

UNIT II

Generation of High Voltages and Currents: Generation of high direct current voltages, generation of high alternating voltages, generation of impulse voltages, generation of impulse currents, tripping and control of impulse generators..

UNIT III

Measurement of High Voltages and Currents: Measurement of high direct current voltages, measurement of high alternating and impulse Voltages measurement of high direct, alternating and impulse currents, Cathode Ray Oscillographs for impulse voltage and current measurements.

Insulation Coordination in Electric Power Systems: Principle of Isolation Coordination in High-Voltage & Extra-High Voltage Power System.

UNIT IV

Non-Destructive Testing: Measurement of direct current resistively, measurement of dielectric constant and loss factor, partial discharge measurements

High Voltage Testing: Testing of insulators and bushings, testing of isolators and circuit breakers, testing of cables, testing of transformers, testing of surge arresters, radio interference measurements.

Text Books/References :

1. M. S. Naidu and V. Kamaraju, "High Voltage Engineering, Tata Mc-Graw Hill.

- 2. C. L. Wadhwa, "High Voltage Engineering", Wiley Eastern Ltd.
- 3. E. Kuffel and W. S. Zacngal, High Voltage Engineering", Pergamon Press.
- 4. M. P. Chaurasia, "High Voltage Engineering", Khanna Publishers
- 5. R. S. Jha, "High Voltage Engineering", DhanpatRai& sons
- 6. M. Khalifa,' High Voltage Engineering Theory and Practice,' Marcel Dekker.
- 7. Subir Ray,' An Introduction to High Voltage Engineering' Prentice Hall of India

EENP-407A			El	ectric Drive	S							
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)					
				Test	Test							
3	0	0	3	75	25	100	3					
Program	The main o	The main objective of the course is to impart the students with the knowledge of										
Objective	dynamics a	dynamics and controls of the electric drives.										
(PO)												
		Co	ourse Outco	mes (CO)								
After comple	etion of cour	se students v	will be able	to								
CO1	Understand	the basic fur	ndamentals of	of electric dr	ives							
CO2	Analyse the dynamics of electric drive during starting and breaking											
CO3	Understand	the concepts	s of power e	lectronic cor	ntrol of DC d	lrives						
CO4	Understand	the concepts	s of power el	lectronic cor	ntrol of AC d	lrives						

UNIT-1

Fundamentals of Electric Drive: Electric Drives and its parts, advantages of electric drives, Classification of electric drives, Speed torque conventions and multi-quadrant operations, Constant torque and constant power operation, Types of load, Load torque: components, nature and classification.

Dynamics of Electric Drive: Dynamics of motor-load combination, Steady state stability of Electric Drive, Transient stability of electric Drive

Selection of Motor Power rating: Thermal model of motor for heating and cooling, classes of motor duty, determination of motor power rating for continuous duty, short time duty and intermittent duty., Load equalization

UNIT-2

Braking of drives: Purpose and types of electric braking, braking of dc, three phase induction and synchronous motors

Dynamics During Starting and Braking: Calculation of acceleration time and energy loss during starting of dc shunt and three phase induction motors, methods of reducing energy loss during starting. Energy relations during braking, dynamics during braking

UNIT-3

Power Electronic Control of DC Drives: Single phase and three phase-controlled converter fed separately excited dc motor drives (continuous conduction only), dual converter fed separately excited dc motor drive, rectifier control of dc series motor. Supply harmonics, power factor and ripples in motor current, Chopper control of separately excited dc motor and dc series motor.

. UNIT-4

Power Electronic Control of AC Drives: Three Phase induction Motor Drive: Static Voltage control scheme, static frequency control scheme (VSI, CSI, and cyclo – converter based) static rotor resistance and slip power recovery control schemes.

Three Phase Synchronous motor: Self-controlled scheme

Special Drives: Switched Reluctance motor, Brushless dc motor. Selection of motor for particular applications

Text/Reference Books:

1. G.K. Dubey, "Fundamentals of Electric Drives", Narosa publishing House.

2. S.K.Pillai, "A First Course on Electric Drives", New Age International.

- 3. V Subrahmanyam, "Electric Drives", Mcgrawhill Education
- 4. M.Chilkin, "Electric Drives", Mir Publishers, Moscow.
- 5. Mohammed A. El-Sharkawi, "Fundamentals of Electric Drives", Thomson Asia, Pvt. Ltd. Singapore.
- 6. N.K. De and Prashant K.Sen, "Electric Drives", Prentice Hall of India Ltd.
- 7. V.Subrahmanyam, "Electric Drives: Concepts and Applications", Tata McGraw Hill.

EENP-409A			Wind	and Solar E	inergy					
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
3	0	0	3	75	25	100	3			
Program Objective (PO)	The main of working of	bjective of the solar and wind	e course is to i d power plants	impart the stu s.	idents with the	e detailed kn	owledge of			
			Course Outco	omes (CO)						
After complet	ion of cours	e students w	ill be able to							
CO1	Understand	d the current e	nergy scenar	io across the	country and t	he world .Stu	idents will			
	also be abl	e to get knowl	edge about va	arious types o	of energy reso	ources availa	ble.			
CO2	Get knowledge about various types of Solar energy systems.									
CO3	Understand the concepts related to wind energy generation.									
CO4	Design hyt	orid energy sys	stems.							

Introduction: Energy demand of world and country and gap analysis, Fossil fuel based systems, Impact of fossil fuel based systems, Non conventional energy – seasonal variations and availability, Renewable energy – sources and features, Hybrid energy systems. Distributed energy systems and dispersed generation (DG).

UNIT 2

Solar thermal systems: Solar radiation spectrum, Radiation measurement, Technologies, Applications, Heating, Cooling, Drying, Distillation, Power generation; Costing: Life cycle costing (LCC), Solar thermal system.

Solar Photovoltaic systems : Operating principle, Photovoltaic cell concepts ,Cell, module, array, Series and parallel connections, Maximum power point tracking, Applications ,Battery charging, Pumping , Lighting,Peltier cooling , Costing: Life cycle costing ,Solar PV system

UNIT 3

Wind Energy: Wind power and its sources, Wind patterns and wind data, Site selection, criterion, momentum theory, Types of wind mills, Characteristics of wind generators, performance and limitations of energy conversion systems, Load matching, Life cycle costing - Wind system LCC

UNIT4

Hybrid Energy Systems: Need for Hybrid Systems, Range and type of Hybrid systems, Case studies of Diesel-PV, Wind-PV, Microhydel-PV, electric and hybrid electric vehicles.

Text Books / References:

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi
- 2. Mittal K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi
- 3. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi
- 4. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi

EENP-411A	Computational Electromagnetic										
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	75	25	100	3				
Program	To underst	and the basi	cs of electr	omagnetic 1	fields. To u	inderstand t	the finite element				
Objective	methods an	d methods	of moments.	. To study t	the applicat	ions of thes	se methods in the				
(PO)	wireless con	mmunication	systems.								
	Course Outcomes (CO)										
After comple	oletion of course students will be able to										
CO1	This course	defines capa	acitors, induc	ctors and res	sistors in ter	ms of its pr	rimary electric and				
	magnetic q	uantities like	electric ch	arge, electri	c potential,	electric cur	rrent, electric and				
	magnetic flu	magnetic flux.									
CO2	It illustrates	It illustrates the concept of finite difference methods and finite element methods									
CO3	It also expla	ins universal	concepts in t	hree-dimens	ion real worl	d, i.e., electr	ro-magnetic wave				
	propagation	propagation in free-space.									
CO4	The students will learn to define electric and magnetic fields, calculate electric and magnetic										
	fields from s	stationary and	l dynamic ch	arge and cur	rent distribut	ions, solve s	simple electrostatic				
	boundary pr	oblems, desc	ribe simple n	nodels for ele	ectromagneti	c interaction	with media, be				
	able to choo	se adequate r	nodels and so	olution metho	ods for speci	fic problems	s, solve problems				
	analytically	and numerica	ully, it also in	corporates th	ne understand	ding of meth	od of moments				
	and their ap	plications.									

Introduction to electromagnetic fields: review of vector analysis, electric and magnetic potentials, boundary conditions, Maxwell's equations, diffusion equation, Poynting vector, wave equation.

UNIT- II

Finite Difference Method (FDM): Finite Difference schemes, treatment of irregular boundaries, accuracy and stability of FD solutions, Finite-Difference Time-Domain (FDTD) method

UNIT- III

Finite Element Method (FEM): Variational and Galerkin Methods, shape functions, lower and higher order elements, vector elements, 2D and 3D finite elements, efficient finite element computations

UNIT- IV

Method of Moments (MOM): Integral formulation, Green's functions and numerical integration, other integral methods: boundary element method, charge simulation method Applications of these methods for EM simulation of waveguides, micro-striplines and other planar components, antennas, scatterers, radars.

Text Books / References:

- 1. M. V. K. Chari and S. J. Salon, Numerical methods in electromagnetism, Academic Press.
- 2. M. N. O. Sadiku, Numerical techniques in electro-magnetics, CRC Press.
- 3. N. Ida, Numerical modeling for electromagnetic non-destructive evaluation, Chapman and Hall.
- 4. S. R. H. Hoole, Computer aided analysis and design of electromagnetic devices, Elsevier Science Publishing Co.
- 5. J. Jin, The Finite Element Method in electromagnetics, 2nd Ed., John Wiley and Sons.
- 6. P. P. Silvester and R. L. Ferrari, Finite elements for electrical engineers, 3rd Ed., Cambridge University Press.

EENO-401A	Electronic Devices								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)		
3	0	0	3	75	25	100	3		
Program	To familiar	ize the stude	nts with sem	niconductor t	echnology a	nd operation	of various		
Objective	electronic	devices.				-			
(PO)									
Course Outcomes (CO)									
After completi	After completion of course students will be able to								
CO1	Understan	d the basics of	f semiconduc	ctor and semi	conductor te	chnology.			
CO2	Know about various types of Semiconductor diodes								
CO3	Understand the concepts of bipolar transistor and field effect transistors.								
CO4	Know abo	ut special sem	niconductor c	levices and so	emiconducto	r power devi	ces.		

Semiconductors: Band structure of semiconductor, Electron & hole distribution, current transport in semiconductor & concept about mobility, Diffusion & recombination, the continuity equation & it solution and Hall effect.

Semiconductor technology : Introduction to technology of semiconductor devices , basic of ICs-Bipolar , MOS and CMOS type.

Unit-II

P-N Junction Diodes : Structures technology, V-I characteristics, charge control equation and transient response. Types of P-N junction diode: Tunnel, Zener, Shockley, schottky, varactor diode & circuit : rectifiers, clipping and clamping circuits.

Opto –**Electronics :** Basic of opto –Electronics , photo Diodes, photo transistor , P-N Junction solar cells , LED , laser and photovoltaic device .

Unit-III

Bipolar Transistor: Ebers-Mole model & charge control model, Transient behavior, small signal equivalent circuit Z parameter–h-parameter and hybrid – pai, switching and power transistor.

Field Effect Transistor: JFET operation and V-I characteristics, high frequency response, MOS capacitor theory, MOSFET types, MOSFET operation and V-I characteristics, equivalent circuit metal semiconductor junction and MOSFET.

Unit-IV

Special semiconductor Device : Metal semiconductor contact ,MIC structure surface charge transfer and charge coupled device and their applications.

Semiconductor power devices : Diodes, transistors, UJT, thyristor, DIAC, TRIAC,GTO,IGBT static characteristics. and principal of operation .

Text/Refrence Books:

- 1. B.G. Streetman : Solid State Electronic Devices (PHI)
- 2. S.M. Sze: Physics of Semiconductor Devices (WILEY)
- 3. D. Nagchoudhari : Semiconductor Devices(TMH)
- 4. P.S. Bimbhra : Power Electronics(KP)
- 5. Dubey G.K. : Thyristorised Power Controllers (NAIL)

EENO-403A	Data Structure & Algorithms								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)		
				-					
3	0	0	3	75	25	100	3		
Program	The main objective of the course is to impart the students with the knowledge of								
Objective	data structure and various algorithms used in data structure operations. Data								
(PO)	structure and algorithms help in understanding the nature of the problem at a								
	deeper level and thereby a better understanding of the world.								
		(Course Outco	mes (CO)					
After completion	on of course st	tudents will be	e able to						
CO1	Understand and analyze the time and space complexity of an algorithm								
CO2	Understand operations on Stack, Queue (i.e. Priority Queue, D-Queue etc.) and link								
	lists.								
CO3	Discuss var	ious algorithr	n design tecl	nniques for d	leveloping al	lgorithms			
CO4	Discuss var	ious searchin	g, sorting an	d graph trave	ersal algorith	nms			

UNIT-1

Introduction to data structure and Algorithms: Performance analysis of Algorithm, time complexity, Big-oh notation, Elementary data organization, data structure operations, Recurrences, Arrays, Operation on arrays, representation of arrays in memory, single dimensional and multidimensional arrays, spare matrices, Character storing in C, String operations.

UNIT-2

Stack, Queue and Link List: Stack operation, PUSH and POP, Array representation of stacks, Operation associated with stacks Application of stacks, Recursion, Polish expression, Representation Queue, operation on Queue, Priority Queue, D-Queue, Singly and circularly linked list, Lists operations, Lists implementations

UNIT-3

Trees : Basic terminology, Binary Trees, Binary tree representation, Complete Binary Trees, Extended binary tree, representing binary tress in memory, linked representation of Binary trees, Traversing binary trees & Searching in binary trees, Inserting in binary search trees, Complexity of searching algorithm, Heaps, general trees, Threaded binary tree.

Graphs: Terminology & representations, Graphs & Multigraphs, Directed Graphs, Sequential representation of graphs, adjacency Matrices, Transversal, connected component and spanning trees,

Minimum Cost spanning tree, Prims and Kruskal Algorithm, BFS, DFS, Shortest path and transitive closure, Activity networks, topological sort and critical paths.

UNIT-4

Searching and Sorting: Linear search, binary Search, Internal and External sorting, Bubble sorting, selection sort, Insertion sort, quick sort, Two way merge sort, Heap sort, sorting on different keys, practical consideration for internal sorting, External Sorting, Storage Devices : Magnetic tapes, Disk Storage, Sorting with disks and Indexing techniques, introduction to B tree and B+ tree, File organization and storage management, Introduction to hoisting.

Text / Reference Books:

- 1. Thomas H. Coreman, Charles E. Leiserson and Ronald L. Rivest, Introduction to Algorithms, PHI.
- 2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publication.
- 3. Weiss, "Data Structure & Algorithm Analysis in C", Addision Wesley.
- 4. Basse, "computer Algorithms: Introduction to Design & Analysis", Addision Wesley.
- 5. Lipschutz, "Data structure, "Schaum series.
- 6. Aho, hopcropt, Ullman, "Data Structure & Algorithm", Addision Wesley.
- 7. Aho, Hopcraft, Ullman, "The Design and Analysis of Computer Algorithms" Pearson Education, 2008

EENO-405A	Signal and Image Processing								
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)		
				Test	Test				
3	0	0	3	75	25	100	3		
Program	The main objective of the course is to impart the students with the knowledge of								
Objective	various methods to convert an image or signal into digital form and perform some								
(PO)	operations on them, in order to get an enhanced image or signal to extract some								
	useful information from them.								
		(Course Outco	omes (CO)					
After complet	ion of cours	e students w	ill be able to						
CO1	Understand basic concepts of digital signal processing and it's application.								
CO2	Understand the concepts of frequency transformations and also learn about the structures								
	of discrete time systems.								
CO3	Understand	fundamentals	of digital ima	ge, image en	hancement a	nd compressi	ion		
CO4	Understand	basic concep	ts of digital im	age processi	ng	•			

Introduction: Basic elements of DSP system, Advantages and disadvantage of DSP over analog processing, Application of Digital signal processing.

Z-Transform: Direct Z-Transform and importance of ROC, properties of Z-Transform, Inverse Z-transform methods, Rational Z-transform function representation, system function of LTI systems in Z-domain, one sided Z –Transform. Solution of difference equations. Analysis of LTI system in Z-domain, transient and steady- state response. Causality and stability. Pole- Zero Cancellations.

UNIT 2

FREQUENCY TRANSFORMATIONS : Introduction to DFT, Direct Computation of DFT, Properties of DFT, Circular Convolution, Fast fourier Transform(FFT), decimation in time ,decimation in frequency algorithm, Use of FFT in Linear Filtering, Goetzel Algorithm, Chirp-Z Transform algorithm.

Structure of Discrete-Time Systems: Structure for FIR Systems-direct form, Linear Phase, Cascade form, Frequency-Sampling structures, Structures for IIR- Direct, Cascade, Parallel & transposed structure, signal flow graphs .

UNIT 3

Digital Image Fundamentals: Introduction, image model, sampling and Quantization, relationship between pixels, imaging geometry, photographic film, discrete, Fourier transform, properties of two dimensional Fourier transform.

Image Enhancement and Compression: Enhancement by point processing, spatial filtering and enhancement in the frequency domain, pseudo color image processing, image compression models, error free compression, image compression standards.

UNIT 4

Image Restorations: Degradation, models, diagonalizations of matrices, inverse filtering, interactive restorations, geometric transformations.

Image Segmentation: Detection of discontinuities, edge linking and boundary detection, thresholding, region orienting segmentation.

Representations and Recognition: Representations schemes, boundary descriptors, regional descriptors, morphology, recognition and interpretation, basics.

Text books / References:

1. Digital Signal Processing by J.G. Proakis and D.G. Manalakis-PHI

2. Digital Signal Processing by: A.V. Oppenheim and R.W. Schafer-PHI

3. Digital Signal Processing by S. K. Mitra – TMH.

- 4. Digital Signal Processing by Rabinar, Gold-PHI
- 6. Barrie W. Jervis, "digital signal processing (Pearson education India)
- 7. Digital Signal Processing by S. Salivahanan- TMH
- 8. Rafael c. Gonzalez and Richard E. Woods, digital image processing, Addison Wesley publishing company
- 9. William K. Pratt, digital image processing, John Wiley and sons
- 10. Jain, Fundamentals of digital image processing, PHI

EENP-402A	Power Quality & FACTS								
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)		
				Test	Test				
3	0	0	3	75	25	100	3		
Program	The main o	bjective of t	he course is	to impart th	ne students v	with the know	owledge of		
Objective	various power quality issues, their effects on power system and mitigation								
(PO)	techniques used to remove them from the system.								
Course Outcomes (CO)									
After comple	etion of cours	e students w	ill be able to						
CO1	Familiarize with sources of power quality issues, power quality standards & regulations								
CO2	Familiarize with various power quality issues in electrical supply system								
CO3	Understand various causes of power system harmonics, harmonic effects in the system								
	and mitigatio	n techniques							
CO4	Understand	the working of	FACTS device	ces and custo	om power dev	ices to mitiga	te power		
	quality issue	S							

Power Quality Problems & Monitoring : Overview and Definitions of power quality, sources of pollution, international power quality standards, and regulations.

UNIT 2

Power Quality Problems : Surges, voltage sag and swell, over voltage under voltage, outage voltage, and phase angle imbalance, electric noise, harmonics, frequency deviation monitoring,

UNIT 3

Power System Harmonics: Harmonic analysis, harmonic sources – the static converters, transformer magnetization and non-linear machines, are furnaces, fluorescent lighting. Harmonic effect within the power system, interference with communication harmonic measurements, Harmonic Mitigation Techniques

UNIT 4

FACT Systems: Introduction – Terms & definition, Fact Controllers, Type of FACT devices i.e. SSC, SVC, TSC, SSS, TCSC, UPFC, Basic relationship for power flow control.

Introduction to Custom Power Devices-Network Reconfiguration devices; Load compensation and voltage regulation using DSTATCOM; protecting sensitive loads using DVR; Unified power Quality Conditioner. (UPQC), uninterruptible power suppliers

Text books/References:

 Roger C Dugan, McGrahan, Santoso&Beaty, "Electrical Power System Quality" McGraw Hill
Arinthom Ghosh & Gerard Ledwich, "Power Quality Enhancement Using Custom Power Devices" Kluwer Academic Publishers

3. C. Sankaran, "Power Quality" CRC Press

4. Narain G. Hingorani & Laszlo Gyugyi "Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems" Wiley

EENP-404A	Control System Design								
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)		
				Test	Test				
3	0	0	3	75	25	100	3		
Program	The course is useful for the students to get an idea of ideal practices in the field of								
Objective	control systems design. Students will get in touch with recent trends in the field of								
(PO)	modern control engineering. Here importance of designing the control systems is								
	emphasized.								
Course Outcomes (CO)									
After comple	etion of cours	e students w	ill be able to						
CO1	Define funda	amental contro	ol system desi	ign specificat	ions and basi	c principles o	of controller		
	design								
CO2	Design mod	lern controlle	rs based on	the state sp	ace techniqu	ies and red	cognize the		
	importance of	of observabilit	y and control	lability for sy	stem design.				
CO3	Understand of	concept of opt	imal control a	and robust con	ntrol techniqu	ies.			
CO4	Understand	concept of L	yapunov's st	ability Crite	ria and optin	nal control			

Design of Feedback Control Systems : Introduction, Approaches to System Design, Cascade Compensation Networks, Phase-Lead Design Using the Bode Diagram, Phase-Lead Design Using the Root Locus, System Design Using Integration Networks, Phase-Lag Design Using the Root Locus, Phase-Lag Design Using the Bode Diagram, Design on the Bode Diagram Using Analytical Methods, Systems with a Pre-filter, Design for Deadbeat Response; Design Examples.

UNIT 2

Design of State Variable Feedback Systems: Introduction, State space representation of physical systems, State space models of some common systems like R-L-C networks, DC motor, inverted pendulum etc., Controllable Canonical Form, Observable Canonical Form, Diagonal Canonical Form, State transition matrix, Solution of state equations, Controllability and Observability, Full-State Feedback Control Design; Observer Design; Integrated Full-State Feedback and Observer; Tracking Reference Inputs; Internal Model Design; Design Examples

UNIT 3

Introduction to Robust Control and optimal control : Robust control system and system sensitivities to parameter perturbations, analysis of robustness, systems with uncertain parameters, considerations in design of robust control system, robust PID controller.

UNIT 4

Lyapunov's stability and optimal control: Positive/negative definite, positive/negative semi-definite functions, Lyapunav stability criteria, introduction to optimal control, Riccatti Equation, Linear Quadratic Regulator, Design Examples.

Text books / References:

- 1. Modern Control Engineering by K. Ogata, PHI.
- 2. Discrete Time Control Systems by K. Ogata, PHI.
- 3. Automatic Control Systems by B C Kuo, PHI.
- 4. Control Systems, Principles and Design by M. Gopal, MC Graw Hill, 2012.
| EENP-406A | | | Electrica | I & Hybrid V | ehicles | | | | | | | | |
|---------------|---|-------------------|--------------|---------------|---------------|------------|-----------|--|--|--|--|--|--|
| Lecture | Tutorial | Practical | Credit | Major | Minor | Total | Time(Hrs) | | | | | | |
| | | | | Test | Test | | | | | | | | |
| 3 | 0 | 0 0 3 75 25 100 3 | | | | | | | | | | | |
| Program | To provide knowledge of Electrical and hybrid vehicles to the students. | | | | | | | | | | | | |
| Objective | | | | | | | | | | | | | |
| (PO) | | | | | | | | | | | | | |
| | | C | ourse Outco | mes (CO) | | | | | | | | | |
| After complet | ion of course | students will | be able to | | | | | | | | | | |
| CO1 | To learn ab | out Electrica | l and Hybrid | d Vehicles. | | | | | | | | | |
| CO2 | Understand | about types | of machiner | y used in Ele | ectric propul | lsion unit | | | | | | | |
| CO3 | Understand about various methods of energy storage in Electric and hybrid | | | | | | | | | | | | |
| | vehicles | | | | | | | | | | | | |
| CO4 | Learn about sizing methodology of drive system and energy management | | | | | | | | | | | | |
| | strategies u | sed in electric | c and hybrid | vehicles | | | | | | | | | |

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles.

Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis.

UNIT 2

Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

UNIT 3

Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices.

UNIT 4

Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems.

Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.

Text / Reference Books:

1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.

2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003

3. Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004

EENP-408A			HVDC Tra	Insmission	System								
Lecture	Tutorial Practical Credit Major Minor Total Time(H												
	Test Test												
3	0	0 0 3 75 25 100 3											
Program	The main o	The main objective of the course is to impart the students with the knowledge of											
Objective	high voltage	e direct curre	ent (HVDC)	transmissior	n system.								
(PO)													
	Course Outcomes (CO)												
After complet	ion of course	students will	be able to										
CO1	Understand	about HVI	DC transmis	sion system	ns, it's mer	its and den	nerits over						
	EHVAC Sy	vstem.											
CO2	Understand	about variou	is control str	ategies of H	VDC links,	harmonics,	it's effects						
	& mitigatio	n techniques											
CO3	Understand about various types of faults in HVDC system and their protection												
	schemes.												
CO4	Understand	about MTD	C systems, it	s type, con	trol & prote	ction schem	es.						

Merits and Demerits of HVDC over EHVAC, type of HVDC links, Analysis Of 3- phase bridge converter with grid control for $U \le 60^\circ$ and $U > 60^\circ$, derivation of equivalent circuit of HVDC link.

UNIT II

Basic means of control of HVDC link, C.C.A., C.C. and C.E.A, Control Characteristics of a converter, Harmonics in HVDC Operation, types of filters used for harmonic elimination, characteristics harmonics, characteristic AC current harmonics, Non characteristics AC harmonics, harmful effects.

UNIT III

Protection aspects of a HVDC link, types of faults, over current protection, over voltage protection, ground and short circuit fault & their protection.

UNIT IV

Multi Terminal DC systems (MTDC): Types, control, protection and applications, Corona & R.I characteristics of HVDC link.

Suggested Text / Reference books:

- 1. K.P. Padyar, "HVDC Power Transmission Systems", Wiley Eastern Ltd.
- 2. E.W. Kimbark, "Direct Current Transmission", Vol.I, Wiley Intersect
- 3. J. Arrillage, "High Voltage Direct Current Transmission", Peter Peregrines
- 4. S. Rao," EHV-AC and HVDC transmission Engineering Practice", Khanna publishers

EENP-410A	Power System Dynamics and Control											
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)					
		Test Test										
3	0	0 0 3 75 25 100 3										
Program Objective (PO)	This subject synchronout modeling to knowledge	This subject is designed to give a basic understanding of dynamic modeling of synchronous machines and associated governor, turbine and excitation system modeling to the students. This course will help the students to develop in-depth knowledge of modeling & control of large power systems.										
		C	ourse Outco	mes (CO)								
After complet	ion of course	students will	be able to									
CO1	Understand	the basic co	ncept of pow	ver system d	ynamics, sta	bility and co	ontrol.					
CO2	Students w synchronou	Students will learn about development of various types of models used for synchronous machines.										
CO3	Understand systems.	the concep	t of model	ing of syn	chronous m	achines &	excitation					
CO4	Analyze sin	gle machine	system.									

Basic Concepts: Introduction to system dynamics, Power system stability states of operation and system security, system dynamics Problems, system model, analysis of steady State stability and transient stability, simplified representation of excitation control.

UNIT II

Modeling of Synchronous Machine: Synchronous machine – park's Transformation, analysis of steady state performance, per unit quantities, Equivalent circuits of synchronous machine, determination of parameters of equivalent circuits.

UNIT III

Excitation System: Modeling of excitation system, block diagram of excitation system, system representation by state equations, Dynamics of a synchronous generator connected to infinite bus, system model Synchronous machine model, stator equations, rotor equations, Synchronous machine model with field circuit, one equivalent damper winding on q axis (model 1.1), calculation of Initial conditions.

UNIT IV

Analysis of Single Machine System: Small signal analysis with block diagram representation, Characteristic equation and application of Routh Hurwitz criterion, synchronizing and damping torque analysis, small signal model, State equations.

Application of Power System Stabilizers: power system stabilizers, basic concepts in applying PSS, Control signals, Structure and tuning of PSS, Washout circuit, Dynamic compensator analysis of single machine infinite bus system with and without PSS.

Suggested Text / Reference books:

- 1. K. R. Padiyar," Power system dynamics "- B.S. Publications.
- 2. P.M. Anderson and A. A. Fouad, "Power system control and stability", IEEE Press
- 3. R. Ramanujam, "Power Systems Dynamics"- PHI Publications.
- 4. Padiyar K R, Power System Dynamics, Stability and Control, Interline Publishing, 1996.
- 5. Machowski J, Bialek J W, and Bumby J R, Power System Dynamics and Stability, John Wiley and Sons, 1997.
- 6. Prabha Kundur, Power System Stability and Control, Tata McGraw Hill Edn, 2006.

EENP-412A	Advanced Electric Drives											
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTime(Hrs)										
				Test	Test							
3	0	0	3	75	25	100	3					
Program	To impart	Γο impart knowledge about fundamentals of Electric drives and control, operational										
Objective	strategies o	strategies of dc and ac motor drives as per different quadrant operations										
(PO)												
	Course Outcomes (CO)											
After complet	ion of course	students will	be able to									
CO1	Understand	the basic fur	ndamentals of	of electric dr	ives							
CO2	Acquire kr	nowledge of I	DC motor dr	ive and its o	perational st	trategies						
CO3	Acquire knowledge of AC motor drives and its operational strategies. Students will also											
	be able to know about open loop dynamic performance of AC & DC drives.											
CO4	Understand	operations of	of various in	dustrial driv	ves. Student	s will also	be able to acquire					
	the knowled	dge of selecti	on of drives	as per pract	ical operation	nal industri	al requirement.					

Introduction: Definition of electric drive, type of drives; Speed torque characteristic of driven unit/loads, motors, joint speed-torque characteristic; Classification and components of load torque; Review of power converters used in drives, multi-quadrant operation of electric drive, example of hoist operation in four quadrant.

UNIT II

DC Motor Drive and its Operational Strategies: Dynamic model of machine with armature voltage control only and converters with continuous conduction only; Closed loop control using single (speed) and two loops (speed, current), Implementation using circulating current type three phase dual converter and four quadrant transistorized chopper, Closed loop control of solid state DC drives

UNIT III

AC Drives and its Operational Strategies: Induction Motor Drives. Starting & braking, VSI control, CSI control, Direct torque and flux control of induction motor, Variable frequency operation of three phase symmetrical induction machine, Scalar control methods for constant power and constant torque modes, Vector control of induction machine

Open-loop Dynamic Performance of AC & DC Drives: Starting & reversal time, Energy consumption & energy savings principle. Drives Application Engineering for Fan, Pump, Compressor, Lift-Elevator, Kiln, Winder-Un-Winder, Traction application. Synchronization and master-slave configuration.

UNIT IV

Self controlled synchronous motor drive, Vector control of synchronous motor, Switched reluctance motor drive, Brushless DC motor drive, Permanent magnet drives, Switched Reluctance Motors, performance characteristics, Stepper motor and switch reluctance motor drives, solar and battery powered drives

Suggested Text / Reference books:

1. G.K.Dubey, Power semi conductor controlled drives, Prentice Hall, January 1989

2. G.K.Dubey, Fundamentals of Electrical Drives, 2nd Revised edition, Alpha Science International Ltd, 15 October 2001

3. B.K. Bose, Power electronics and variable frequency drives, Wiley-Blackwell, 21 September 1996

4. Bose B.K., Modern Power Electronics & AC Drives, PHI Pvt. Ltd., (2001)

- 5. Mohan, N., Electric Drives: An Integrative Approach, MNPERE (2001).
- 6. Mohan, N., Advanced Electric Drives: Analysis, Control, and Modeling Using Simulink, MNPERE (2001).
- 7. Krishnan, R., Electric Motor & Drives: Modeling, Analysis & Control, PHI Pvt. Ltd. (2001).
- 8. Leonard, W., Control of Electric Drives, Springer-Verlag, New York, (1985)
- 9. Miller, T.J.E., Brushless Permanent Magnet and Reluctance Motor Drives, Oxford Science, Oxford (1989).

EENO-402A	Analog & Digital Communication										
Lecture	Tutorial	Time(Hrs)									
3	0	0	75	25	100	3					
Program	To make st	To make students aware about various analog and digital modulation techniques used									
Objective	in commun	in communication system									
(PO)											
	Course Outcomes (CO)										
After comple	etion of cour	se students	will be able	to							
CO1	Understand the Amplitude Modulation in communication system.										
CO2	Comprehend the Frequency & Phase modulation										
CO3	Realize the	Pulse Modul	lation Techn	iques							
CO4	Get the Dig	ital Modulat	ion Techniqu	ues and their	use in com	munication	system.				

UNIT-I

Elements of communication system and its limitations, Amplitude modulation and detection, Generation and detection of DSB-SC, SSB and vestigial side band modulation, carrier acquisition AM transmitters and receivers, Super hetrodyne Receiver, IF amplifiers, AGC circuits, Frequency Division multiplexing

UNIT-II

Angle Modulation: Basic definition, Narrow-Band and wideband frequency modulation, transmission bandwidth of FM signals, Generation and detection of frequency modulation, Generation and detection of Phase Modulation.

Noise: External noise, internal noise, noise calculations, signal to noise ratio.

UNIT-III

Pulse Modulation: Introduction, sampling process, Analog Pulse Modulation Systems, Pulse Amplitude Modulation (PAM), Pulse width modulation (PWM) and Pulse Position Modulation (PPM).

Waveform coding Techniques: Discretization in time and amplitude, Quantization process, quantization noise, Pulse code Modulation, Differential Pulse code Modulation, Delta Modulation and Adaptive Delta Modulation

UNIT-IV

Digital Modulation Techniques: Types of digital modulation, waveforms for amplitude, frequency and phase shift keying, coherent and non-coherent methods for the generation of ASK, FSK and PSK. Comparisons of above digital modulation techniques.

Time Division Multiplexing: Fundamentals, Electronic Commutator, Bit/byte interleaving, TI carrier system, synchronization and signaling of TI, TDM and PCM hierarchy, synchronization techniques.

Text / Reference Books:

1. B.P. Lathi, "Modern Digital and Analog Communication Systems", 4th Edition, Oxford University Press.

2. G.Kennedy and B. Davis," Electronic Communication Systems" 4th Edition, McGraw Hill

3. R.P. Singh & S.D. Sapre, "Communication Systems Analog and Digital", 3th Edition, McGraw Hill.

4. John G. Proakis, "Communication Systems Engineering 2nd Edition, Pearson Education, 2015

5. H. Taub, D L Schilling, Gautam Saha, "Principles of Communication", 4th Edition, McGraw Hill.

6. (Schaum's Outline Series) H P HSU & D Mitra, "Analog and Digital Communications", McGraw Hill 3rd Edition.

7. Simon Haykin, "Communication Systems", 5th Edition, Wiley India.

8. T.L. Singal, "Analog & Digital Communication", McGraw Hill

EENO-404A	Wavelets Transform												
Lecture	Tutorial	Practical	Minor	Total	Time(Hrs)								
		Test Test											
3	0	0 0 3 75 25 100 3											
Program	The main objective of the course is to impart the students with the knowledge of												
Objective	various ty	various types of Wavelets transform and their application for data compression											
(PO)	and other uses.												
		(Course Outco	omes (CO)									
After complet	tion of cours	e students w	ill be able to										
CO1	Understan	d the conce	pt of contin	nuous & de	escrete wa	velet transf	form and						
	orthogonal	l wavelet dec	omposition										
CO2	Learn about MRA, Orthonormal wavelets and their relationship with filter banks												
CO3	Understan	d the use of w	vavelets tran	sform for D	ata compres	sion & vide	o coding						
CO4	Understan	d the various	applications	s of wavelets	s transform								

Continuous Wavelet Transform: Introduction, Definition of the CWT, the VWT as a Correlation, Constant-Factor Filtering Interpretation and Time-Frequency Resolution, the VWT as an Operator, Inverse CWT, Problems.

Introduction to Discrete Wavelet Transform and Orthogonal Wavelet Decomposition: Introduction, Approximation of Vectors in Nested Linear Vector Subspaces, Examples of an MRA, Problems.

UNIT 2

MRA, Orthonormal Wavelets, and their Relationship to Filter Banks: Introduction, Formal Definition of an MRA, Construction of General Orthonormal MRA, a wavelet Basic for the MRA, Digital Filtering Interpretation, Examples of Orthogonal Basic Generating Wavelets, Interpreting Orthonormal MRAs for Discrete-Time signals, Miscellaneous Issues Related to PRQME Filter Banks, generating Scaling Functions and wavelets from Filter Coefficient, Problems.

UNIT 3

Wavelet Transform and Data Compression: Introduction, Transform Coding, DTWT for Image Compression, Audio Compression, Video Coding Using Multi-resolution Techniques: a Brief Introduction.

UNIT 4

Applications of Wavelet Transforms: Introduction, Wavelet denoising speckles Removal, Edge Detection and Object Isolation, Image Fusion, Object Detection by Wavelet Transform of Projections, Communication application.

Text Books / References:

1. James S. Walker, "A Primer on Wavelets and their Scientific Applications", CRC Press, (1999).

2. Rao, "Wavelet Transforms", Pearson Education, Asia.

3. C. Sidney Burrus, Ramesh A. Gopinath, "Introduction to Wavelets and Wavelets Transforms", Prentice Hall, (1997).

EENO-406A	Embedded System											
Lecture	Tutorial Practical Credit Major Minor Total											
		Test Test										
3	0	0 0 3 75 25 100 3										
Program	To introdu	To introduce the students to concepts of embedded systems. To offer them a level										
Objective	of confide	of confidence in microcontroller based system design. To introduce them to the										
(PO)	concepts of ARM architectures and RTOS.											
Course Outcomes (CO)												
After complet	tion of cours	e students w	ill be able to									
CO1	Understan	d various cor	cepts of em	bedded syste	em							
CO2	Learn about	ut 8051 Micr	ocontroller									
CO3	Understan	d the operat	ing system	of Embedd	ed system	and also l	earn about					
	higher embedded system											
CO4	Learn about communication basics and interfacing of various devices to the											
	microcont	roller										

Introduction to embedded system: Embedded System, Embedded versus external memory devices, CISC and RISC processors, Harvard and Von Neumann Architecture, Application of Embedded System, Embedded operating system, Design Parameters of embedded and its Significance, Design life cycle, Hardware fundamentals, Digital circuit parameter, O.C and Tristate outputs, I/O sink and Source, Custom single purpose processor Optimization, FSMD, data path & FSM, General purpose Processor and ASIP'S

UNIT 2

8051 Microcontrollers: 8051 microcontrollers-Assembly language, Architecture of 8051, Registers, Addressing Modes, Instruction Set, I/O ports, memory organization, Programs showing use of I/O Pins, Interrupts, Interrupt Programming, Timer and counters, Serial Communication, Programming of serial communication.

UNIT 3

Introduction to operating system and basics of higher embedded system: Introduction to RTOS, Tasks, Data, Semaphores and shared data, Operating system services, Message queues, Mailboxes, Advanced processor (Only architecture), 80386, 80486, Introduction to ARM, features, architecture, instruction set

UNIT 4

Communication basics and interfacing of various devices the microcontroller: Microprocessor interfacing I/O addressing, direct memory access (DMA), Arbitration, multilevel bus architecture, serial protocol, parallel protocols and wireless protocol, Real world interfacing: LCD, Stepping motor, ADC, DAC, LED, Pushbuttons, Keyboard, Latch connection, PPI

Text / Reference Books:

1. Embedded system Design-Frank Vahid/ Tony Givargis. John Willey

- 2. Microcontroller (Theory and applications) Ajay V Deshmukh, Tata , McGraw-Hill
- 3. An Embedded Software Primer-David E.Simon, Pearson Education
- 4. The 8051 Microcontroller and embedded systems-Muhammad Ali Mazidi and Janice Gillispie.
- 5. Microcontrollers (Architecture, Implementation & Programming) Kenneth Hinz, DanielTabak,Tata McGraw-Hill
- 6. 8051 Microcontrollers & Embedded Systems 2nd edition Sampath Kr. Katson books

EENO-408A	Mobile Communication & Networks									
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test Test						
3	0	0 3 75 25 100								
Program	To introdu	ice the stude	nts to the co	oncepts of W	/ireless & N	Iobile com	munication			
Objective	and netwo	orks. Study	of this subj	ject will also	o provide k	nowledge t	to students			
(PO)	about varie	about various mobile telephony generations such as 1G, 2G, 3G, 4G systems etc.								
	and their a	and their abilities and limitations.								
	Course Outcomes (CO)									
After completion of course students will be able to										
CO1	Familiariz	e with fundat	mentals of m	obile comm	unication sy	stems.				
CO2	Familiariz	e with the ro	le of equaliz	ation in Mol	bile commu	nication and	l also learn			
	about diff	erent types	of Equalize	ers. Student	s will also	able to ki	now about			
	different t	ypes of mul	tiplexing an	d multiple a	access techr	niques used	in mobile			
	communic	ation system		-		-				
CO3	To learn about the concept of GSM in real time applications (in mobile									
	telecommunication)									
CO4	Familiariz	e with Wire	less and Mo	bile Networ	ks and high	ner generation	on cellular			
	standards									

Evolution of mobile radio communication fundamentals. General Model of Wireless Communication Link, Types of Signals, Cellular Infrastructure, Cellular System Components, Antennas for Cellular Systems, Operation of Cellular Systems, Channel Assignment, Frequency reuse, Channel Assignment strategies, Handoff Strategies Cellular Interferences, Sectorization; Wireless Channel and Radio Communication, Free Space Propagation Model, Channel Noise and Losses, Fading in Land Mobile Systems, Multipath Fading, Fading Effects on Signal and Frequency, Shadowing.

UNIT 2

Equalization Techniques: Transversal Filters, Adaptive Equalizers, Zero Forcing Equalizers, Decision Feedback Equalizers, and related algorithms.

Multiplexing and Multiple Access Techniques: FDMA, TDMA, CDMA, OFDMA, SCFDMA, IDMA Schemes and Hybrid Method of Multiple Access Schemes, RAKE Receiver; Multiple Access for Radio Packet Systems: Pure ALOHA, Slotted ALOHA, CSMA and their versions; Packet and Pooling Reservation Based Multiple Access Schemes.

UNIT 3

GSM system for mobile Telecommunication: General Packet Radio Service, Edge Technology; CDMA 2000, Wireless Local Loop, IMT 2000 and UMTS, Long Term Evolution (LTE), Mobile Satellite Communication, Introduction to Mobile Adhoc Networks, Li-Fi Communication, Ultra-Wideband Communication, Mobile data networks, Wireless Standards IMT 2000

UNIT 4

Wireless and Mobile Networks: Networks introduction, Network Coverage, Network topologies, Network Architecture, Network Technologies, Evolution of Cellular Networks (0G ~4G), Wireless Area networks (WLANs), Bluetooth and Personal Area networks (PANs), Adhoc networks **Higher Generation Cellular Standards:** 3G Standards: evolved EDGE, enhancements in 4G standard, Architecture and representative protocols, call flow for LTE, VoLTE, UMTS, Introduction to 5G.

Text / Reference Books:

- 1. T.S. Rappaport, "Wireless Communication-Principles and practice", Pearson Publications, Second Edition.
- 2. Misra, Wireless Communication & Network: 3G & Beyond, McGraw Hill Education
- 3. Jaganathan, Principles of Modern Wireless Communication System, McGraw Hill Education
- 4. Upena Dalal, "Wireless Communication and Networks", Oxford Press Publications.
- 5. T L Singal ,"Wireless Communications ", McGraw Hill Education.
- 6. Andrea Goldsmith, "Wireless Communications", Cambridge University Press.
- 7. S. Haykin & M. Moher, "Modern wireless communication", Pearson, 2005.
- 8. "Mobile Communication", Jochen Schiller, Pearson Education, 2nd Edition
- 9. G.Sasibhushana Rao, "Mobile Cellular Communication", Pearson, 2013.
- 10. W.C.Y. Lee Mobile Cellular Communications, 2nd Edition, MC Graw Hill, 1995.
- 11. Yi-Bing Lin Wireless and Mobile Network Architectures, 2nd Edition, Wiley, 2008.

EENO-410A	Thermal and Fluid Engineering											
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)					
		Test Test										
3	0	0 0 3 75 25 100 3										
Program	The object	The objective of this course is to familiarize the students with the basic concepts										
Objective	of Thermo dynamics and Fluid engineering.											
(PO)												
Course Outcomes (CO)												
After complet	tion of cours	e students w	ill be able to									
CO1	State the t	hermodynam	nic system, p	properties ar	nd equilibriu	ım. Describ	e the ideal					
	and real ga	as laws.										
CO2	Analyze a	nd solve the t	first and seco	ond law of th	nermodynam	nics problem	ns.					
CO3	Understand the basic concepts of fluid and learn about fluid statics.											
CO4	Understan	d the basic c	concepts of f	fluid kinema	tics and ana	alyse the lav	ws of fluid					
	dynamics	and its applic	ations.									

UNIT-I

Basic Concepts: Thermodynamics: Macroscopic and Microscopic Approach, Thermodynamic Systems, Surrounding and Boundary, Thermodynamic Property – Intensive and Extensive, Thermodynamic Equilibrium, State, Path, Process and Cycle, Quasi-static, Reversible and Irreversible Processes, Working Substance. Concept of Thermodynamic Work and Heat, Equality of Temperature, Zeroth Law of Thermodynamic and its utility.

Ideal and Real Gases: Concept of an Ideal Gas, Basic Gas Laws, Characteristic Gas Equation, Avagadro's law and Universal Gas Constant, P-V-T surface of an Ideal Gas. Vander Waal's Equation of state, Reduced Co-ordinates, Compressibility factor and law of corresponding states. Mixture of Gases, Bass, Mole and Volume Fraction, Gibson Dalton's law, Gas Constant and specific Heats, Entropy for a mixture of Gases.

UNIT II

First Law of Thermodynamics: Energy and its Forms, Energy and 1st law of Thermodynamics, Internal Energy and Enthalpy, 1st Law Applied to Non-Flow Process, Steady Flow Process and Transient Flow Process, Throttling Process and Free Expansion Process. Numerical

Second Law of Thermodynamics: Limitations of First Law, Thermal Reservoir Heat Source and Heat Sink, Heat Engine, Refrigerator and Heat Pump, Kelvin- Planck and Clausius Statements and Their Equivalence, Perpetual Motion Machine of Second Kind. Carnot Cycle, Carnot Heat Engine and Carnot Heat Pump, Carnot's Theorem and its Corollaries, Thermodynamic Temperature Scale, Numerical

UNIT III

Fluid Properties: Concept of fluid and flow, ideal and real fluids, continuum concept, Properties of fluid: mass density, weight density, specific volume, specific gravity, viscosity, causes of viscosity, surface tension, capillarity, vapour pressure, compressibility and bulk modulus, Newtonian and non-Newtonian fluids. **Fluid Statics**: Pressure, Pascal's law, hydrostatic law, pressure measurement, manometers, hydrostatic forces on submerged plane and curved surfaces, buoyancy, stability of floating and submerged bodies, liquids in

UNIT IV

relative equilibrium. Problems.

Fluid Kinematics: Eulerian and Lagrangian description of fluid flow; types of fluid flows, stream, streak and path lines; acceleration of a fluid particle, flow rate and continuity equation, differential equation of continuity in cartesian and polar coordinates, rotation and vorticity, circulation, stream and potential functions, flow net.

Fluid Dynamics: Concept of system and control volume, Euler's equation, Bernoulli's equation and its practical applications, venturimeter, orificemeter, orifices, mouthpieces, Impulse momentum equation, kinetic

energy and momentum correction factors.

Text / Reference Books:

- 1. Engineering Thermodynamics C P Arora, Tata McGraw Hill
- 2. Engineering Thermodynamics P K Nag, Tata McGraw Hill
- 3. Thermal Science and Engineering D S Kumar, S K Kataria and Sons
- 4. Engineering Thermodynamics -Work and Heat transfer G F C Rogers and Maghew Y. R. Longman
- 5. Introduction to Fluid Mechanics R.W. Fox, Alan T. McDonald, P.J. Pritchard, Wiley Publications.
- 6. Fluid Mechanics Frank M. White, McGraw Hill
- 7. Fluid Mechanics and Fluid Power Engineering D.S. Kumar, S.K. Kataria and Sons
- 8. Fluid Mechanics Streeter V L and Wylie E B, Mc Graw Hill
- 9. Introduction to Fluid Mechanics and Fluid Machines S.K. Som and G. Biswas, Tata McGraw Hill.
- 10. Mechanics of Fluids I H Shames, Mc Graw Hill
- 11. Fluid Mechanics: Fundamnetals and Applications -YunusCengel and John Cimbala, McGraw Hill.
- 12. Fluid Mechanics: Pijush K. Kundu, Ira M. Cohen and David R. Rowling, Academic Press.

EENO-412A	Automobile Engineering									
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
3	0	0	3	75	25	100	3			
Program	To make	aware the	students	with the s	tudy of er	ngineering	which teaches			
Objective	manufactu	manufacturing and mechanical-mechanisms as well operations of automobiles. It is an								
(PO)	introductio	on to vehicle	engineering	g which deal	s with moto	orcycles, ca	rs, buses trucks			
	etc. It incl	udes branch	study of me	chanical, ele	ectronic, and	d safety eler	ments. Some of			
	the engine	ering attribu	tes and dise	ciplines that	are of imp	ortance to	the automotive			
	engineer.									
			Course Ou	tcomes (CO)						
After complet	tion of cours	e students w	ill be able to							
CO1	Students w	vill be able to	Develop a	strong base	for understa	unding futur	e developments			
	in the auto	mobile indus	stry							
CO2	Students	will be abl	e to Expla	in the wo	rking of v	arious part	s like engine,			
	transmissio	on, gear box	etc.							
CO3	Students w	vill be able to	Describe ho	ow the brake	s and the su	spension sy	stems operate			
CO4	Students v	will be able	to Underst	and the ste	ering geom	etry and en	mission control			
	system.									

Introduction: Brief history of automobiles, Main components of an automobile, Brief description of each component. Brief description of constructional details and working of a four stroke I.C. Engine (S.I. Engines and C.I. Engines) including lately developed overhead cam shaft, Multi-cylinder engines, Introduction to recent developments in I.C. Engines- Direct injection systems, Multi-point fuel injection systems, Introduction, Brief description of different components of Transmission System.

Clutch: Introduction to Clutch and its different types, Principle of Friction Clutch, Clutch Lining and friction materials used in Friction Clutches, Torque transmitted, Brief description of Cone Clutch, Single Plate and Multiplate Clutches, Dry and wet clutches, Automatic clutch action, Centrifugal clutches, Electromagnetic clutches, Fluid Flywheel.

UNIT II

Gear Box: Gear Box Air resistance, gradient resistance and rolling resistance coming across a moving automobile, Tractive effort, Variation of tractive effort with speed, Performance curves (object and need of a gear box), Sliding mesh gear box, Control mechanism, Sliding type selector mechanism, Ball type selector mechanism, Steering column gear shift control, Constant mesh gear box, Synchromesh device, Automatic transmission in general, AP automatic gear box, Torque converter, Torque converter with direct drive, Lubrication of Gear Box.

Propeller Shaft: Functions and requirements of a propeller shaft, Universal joints, Constructional forms of universal joints, Flexible-ring joints, Rubber-bushed flexible joints. Constant-velocity joints. Differential : Principle of operation, Constructional details of a typical Differential unit, Traction control differentials, Multi-plate clutch type traction control device.

UNIT III

Brakes: Functions and methods of operation, Brake efficiency. Elementary theory of shoe brake, brake shoe adjustments, A modern rear-wheel brake, Disc brakes, Brake linkages, Leverage and adjustment of the brake linkage, Servo- and power operated brakes, Vacuum brake operation,' Hydraulic Brakes-constructional details and working, Direct action vacuum servos, Power-operated brakes, A dual power air brake system,

Suspension system: Suspension principles, Road irregularities and human susceptibility, Suspension

10(1944)

system, Damping, Double tube damper, Single tube damper, Lever arm type damper, Springs-Leaf springs, Coil and torsion springs, variable rate springs, Composite leaf springs, Rubber springs, Air springs, Adjustable and self-adjusting suspensions, Interconnected suspension system, Interconnected air and liquid suspensions, Independent suspension system, Different independent suspension layouts, McPherson strut type, Rear suspension-live axle, McPherson strut rear suspension.

UNIT IV

Steering Geometry: Castor, Camber, Kingpin inclination, Combined angle, Toe-in, Steering system-basic aims, Ackerman linkage, Steering linkages for independent suspension, Center point steering, Costarring or trailing action, Cornering power, Self-righting torque, Steering characteristics-over steer and under steer, Axle beam, Stub-axle construction, Steering column, Reversible and irreversible steering, Rack-and-pinion steering mechanism, Effect of toe-in on steering, Power steering, Vickers System. Recent trends in automobile engineering Multi fuel automobiles, Automobiles running on alternate sources of energy, Emission control through catalytic converter, Double catalytic converter, Aspects of pollution control in Automobiles.

Reference and Text Books:

- 1. The Motor Vehicle By Newton, Steeds and Garretle Basic
- 2. Automobile Engineering By Kirpal Singh
- 3. Automobile Engineering *' -By K.M. Gupta, Umesh Publications

s				Hours/		Examination		Duration of Exam (Hrs)		
No.	Course No.	Subject	LIIP	Week	Credits	Major Test	Minor Test	Practical	Total	
1	PC-CS-202A	Discrete Mathematics	3:0:0	3	3	75	25	0	100	3
2	PC-CS-204A	Internet Technology and Management	3:0:0	3	3	75	25	0	100	3
3	PC-CS-206A	Operating Systems	3:0:0	3	3	75	25	0	100	3
4	PC-CS-208A	Design and Analysis of Algorithms	3:0:0	3	3	75	25	0	100	3
5	HTM-901A	Universal Human Values II : Understanding Harmony	3:0:0	3	3	75	25	0	100	3
6	PC-CS-210AL	Internet Technology and Management Lab	0:0:4	4	2	0	40	60	100	3
7	PC-CS-212AL	Operating Systems Lab	0:0:4	4	2	0	40	60	100	3
8	PC-CS-214AL	Design and Analysis of Algorithms Lab	0:0:4	4	2	0	40	60	100	3
		Total		27	21	375	245	180	800	
9	MC-901A*	Environmental Sciences	3:0:0	3	0	75	25	0	100	3

Bachelor of Technology (Computer Science and Engineering) Credit Based Scheme of Studies/Examination(Modified) Semester IV (w.e.f Session 2021-2022)

*MC-901A is a mandatory credit-less course and student has to get passing marks in order to qualify for the award of B.Tech. Degree.

HTM-901A	Universal Human Values II: Understanding Harmony												
Lecture	Tutorial	FutorialPracticalCreditMajor TestMinor TestTotalTime											
3	0	0	3.0	75	25	100	3 Hours						
Purpose	Purpose ar	nd motivatio	on for the co	urse, recapi	tulation fror	n Universal	Human Values-I						
Course Out	comes (CO)												
CO 1	Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.												
CO 2	Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.												
CO 3	Strengther	ning of self-r	eflection.										
CO 4	Developm	ent of comm	nitment and	courage to	act.								

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration—what is it? Its content and process; 'Natural Acceptance' andExperiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrarinessin choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- $10. \ {\rm Understanding \ the \ characteristics \ and \ activities \ of \ 'l' \ and \ harmony \ in \ 'l'}$
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in

Human-HumanRelationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as thefoundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- fromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value inrelationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on ProfessionalEthics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and

organizations

28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. todiscuss the conduct as an engineer or scientist etc.

READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at handand motivating students to reflect, explore and verify them.

Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration. Scenarios may be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based onbasic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemedessential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example: Assessment by faculty mentor: 5 marks Self-assessment: 5 marks Assessment by peers: 5 marks Socially relevant project/Group Activities/Assignments: 10 marks Semester End Examination: 75 marks The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

	Bachelor of Technology (Computer Science & Engineering)													
	Credit-Based Scheme of Studies/Examination													
	Semester VII (w.e.f. session 2021-2022)													
S. No.	Course Code	Subject	L:T:P	Hours/Week	Credits	Exa	ule	Duration of Exam (Hrs)						
						Major Test	Minor Test	Practical	Total					
1	PE	Elective-IV	3:0:0	3	3	75	25	0	100	3				
2	PE	Elective-V	3:0:0	3	3	75	25	0	100	3				
3	OE	Open Elective-II	3:0:0	3	3	75	25	0	100	3				
4	PROJ-CS-401A	Project-II	0:0:12	12	6	0	40	60	100	3				
5	PE- LA	Elective-IV Lab	0:0:2	2	1	0	40	60	100	3				
6	PE- LA	Elective-V Lab	0:0:2	2	1	0	40	60	100	3				
	Tot	al		21	17	225	115	60	400					
7	SIM-401*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50					

PE Elective-IV	PE Elective-V
Data Mining: PE-CS-D401A	Soft Computing: PE-CS-D409A
Software Verification and Validation and	Neural Networks and Deep Learning:
Testing:: PE-CS-D403A	PE-CS-D411A
Information Retrieval: PE-CS-D405A	Object Oriented Software Engineering: PE-CS-
	D413A
Speech and Natural Processing : PE-CS-	Expert Systems: PE-CS-D415A
D407A	
OE Elective-II	
Cyber Law and Ethics: OE-CS-401A	
Bioinformatics: OE-CS-403A	
Fiber Optic Communications: OE-CS-405A	
Industrial Electrical Systems: OE-CS-407A	

Industrial Electrical Systems: OE-CS-407A The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Note: SIM-401 is a mandatory credit-less course in which the students will be evaluated for Summer Internship undergone after 6th semester and students will be required to get passing marks to qualify.

PE-CS-D401A	Data Mining									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	75	25	100	3 Hrs.			
Purpose	Purpose To provide the knowledge of data mining and its techniques.									
		С	ourse Ou	tcomes (CO)						
CO1	To learn d	lata mining c	oncepts in	n details.						
CO2	Expose the	e criteria for	data gene	ralization.						
CO3	CO3 To explore knowledge of mining associations, correlations and classification.									
CO4	To evalua	te various ty	pes of dat	a mining.						

Unit I: Basics of Data Mining

Need for data mining, data mining as the evolution of Information technology, data mining as a step in the process of knowledge discovery, Transactional database, Major issues in data mining, data preprocessing, data cleaning, data integration, data reduction, data transformation, data warehousing and Online Analytical Processing (OLAP).

Unit II: Mining Frequent Itemsets with Associations and Correlations

Data cube technology, multidimensional data mining, multi-dimensional data analysis, Mining Frequent Patterns, Associations and Correlations: Basic concepts and methods, market basket analysis example with rule of support and confidence, frequent itemsets, closed itemsets, and association rules, frequent itemset mining methods-Apriori algorithm.

Unit III: Mining Associations and Correlations

Advanced pattern mining, mining multilevel patterns, multi-dimensional patterns, classification: basic concepts, decision tree induction, naive bayesian classification methods, rule based classification, cluster analysis: basic concepts and methods, partitioning methods, hierarchical methods, density based methods, grid based methods.

Unit IV: Data Mining Trends

Mining spatial data, mining spatiotemporal data, mining multimedia data, mining text data, mining web data, stastical data mining, data mining applications-data mining for financial data analysis, intrusion detection and prevention, retail and telecommunication industries, science and engineering, privacy, security and social impacts of data mining, data mining trends.

- J.Han, M.Kamber, Data Mining: Concepts and Techniques, Academic Press, Morgan Kanfman Publishers, 2015.
- Pieter Adrians, DolfZantinge, Data Mining, Addison Wesley 2013.
- C.S.R. Prabhu, Data Ware housing: Concepts, Techniques, Products and Applications, Prentice Hall of India, 2014.
- Berry and Lin off, Mastering Data Mining: The Art and Science of Customer Relationship Management, John Wiley and Sons, 2012.
- Seidman, Data Mining with Microsoft SQL Server, Prentice Hall of India, 2016.

PE-CS-D403A		Speech and Natural Language Processing											
Lecture	Tutorial	Futorial Practical Credit Major Test Minor Test Total Tin											
3	0 0 3 75 25					100	3 Hrs.						
Purpose	To provide the understanding of the mathematical and linguistic foundations underlying approaches to the various areas in NLP.												
		Co	ourse Outco	mes (CO)									
CO1	Be familia	r with syntax	x and seman	tics in NLP.									
CO2	To implen	nent various	concepts of	knowledge rep	resentation usin	ng Prolog	z.						
CO3	To classify	To classify different parsing techniques and understand semantic networks.											
CO4	To identify	y/explain var	rious applica	ations of NLP.									

Speech recognitionand speech synthesis: concept overview, key algorithms in the noisy channel paradigm. Fundamental components of Natural Language Processing: Lexicography, syntax, semantics, prosody, phonology, pragmatic analysis, world knowledge.Knowledge Representation schemes: Semantic net, Frames, Conceptual Dependency, Scripts.

Unit-II

Representing knowledge using rules: Logic Programming, Introduction to LISP and Prolog, Rules based deduction systems, General concepts in knowledge acquisition.**Syntax Analysis:** Formal Languages and grammars, Chomsky Hierarchy, Left- Associative Grammars, ambiguous grammars, resolution of ambiguities.

Unit-III

Computation Linguistics: Recognition and parsing of natural language structures- ATN and RTN, General Techniques of parsing- CKY, Earley and Tomitas algorithm.Semantics: Knowledge representation, semantics networks logic and inference pragmatics, graph models and optimization.

Unit-IV

Applications of NLP: Intelligent work processor, Machine translation, user interfaces, Man-Machine interfaces, natural language querying, tutoring and authoring systems, speech recognition, commercial use of NLP.

- Daniel Jurafsky, James H. Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition", 2nd edition, Pearson Edu., 2013.
- James Allen, "Natural Language Understanding", Pearson Education, Second Edition, 2003.
- Ivan Bratko, "Prolog: Programming for Artificial Intelligence", 3rd Edition, Pearson Education, Fifth Impression 2009.
- G. Gazder, "Natural Language processing in prolog", Addison Wesley, 1989.

PE-CS-D405A		Information Retrieval										
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Tot										
3	0	100	3 Hrs.									
Purpose	To provid	To provide an overview of Information Retrieval and comprehensive details about										
	various Evaluation methods.											
		Co	ourse Outco	omes (CO)								
CO1	To provid	e an overviev	v of Informa	ation Retrieval	process and mo	odels.						
CO2	To unders	tand the expe	erimental ev	aluation of per-	formance metri	cs.						
CO3	To gain ki	To gain knowledge about various web search engines.										
CO4	To unders	tand the appl	ication of a	ppropriate text	classification a	nd cluste	ring.					

Unit I

Introduction: Goals and history of IR. The impact of the web on IR. The role of artificial intelligence (AI) in IR. Basic IR models: boolean and vector-space retrieval models; ranked retrieval; text similarity metrices; TF-IDF (term frequency/ inverse document frequency) weighting; cosine similarity.

Basic Tokenizing Indexing, and Implementation of Vector space Retrieval: Simple tokenizing, stop word removal, and stemming, inverted indices, efficient processing with sparse vectors, python implementation.

Unit II

Experimental evaluation of IR: performance metrics: recall, precision, and F-measure, evaluations on benchmark text collections.

Query Operations and Languages: Relevance feedback; query expansion; query languages.

Unit III

Text Representation: Word statistics; Zipf's law; porter stemmer; morphology; index term selection; using thesauri, metadata and markup languages (SGML, HTML, XML).

Web Search: search engines; spidering; metacrawlers; directed spidering; link analysis (e.g. hubs and authorities, google pagerank); shopping agents.

Unit IV

Text Categorization and Clustering: Categorization algorithms: naïve bayes; decision trees; and nearest neighbour. Clustering algorithms: agglomerative clustering; k-means; expectation maximization (EM). Applications to information filtering; organization; and relevance feedback. **Recommender System:** collaborative filtering and content based recommnadation of documents and products.

- Introduction to Information Retrieval Manning, Raghavan and Schutze, Cambridge University Press, 2008.
- Ricardo Baeza-Yates and Berthier Ribeiro-Neto, Modern Information Retrieval: The Concepts and Technology behind Search, Second Edition, ACM Press Books, 2011.
- Ricci, F, Rokach, L. Shapira, B.Kantor, Recommender Systems Handbook, First Edition, 2011.
- Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, Information Retrieval: Implementing and Evaluating Search Engines, The MIT Press, 2010.

PE-CS-D407A		Softwar	e Verifica	tion and Valida	ation and Testi	ng					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	75	25	100	3 Hrs.				
Purpose	To provide an understanding of concepts and techniques for testing software and										
	assuring its quality.										
	Course Outcomes										
CO 1	Expose the	criteria and	parameters	s for the generat	ion of test cases	•					
CO 2	Learn the d	lesign of test	cases and	generating test	cases.						
CO 3	Be familia	r with test	managem	ent and softwa	are testing acti	vities an	ıd V&V				
	activities.										
CO 4	Be expose	d to the sig	gnificance	of software ter	sting in web a	nd Obje	ct orient				
	techniques.										

Introduction: Overview of software evolution, SDLC, Testing Process, Terminologies in Testing: Error, Fault, Failure, Verification, Validation, Difference between Verification and Validation, Definition of software testing, test cases, test oracles, testing process, limitations of testing.

Unit-II

Functional Testing: Boundary Value Analysis, Equivalence Class Testing, Decision Table Based Testing, Cause Effect Graphing Technique.

Structural Testing: Path testing, DD-Paths, Cyclomatic Complexity, Graph Metrics, Data Flow Testing, Mutation testing.

Unit-III

Reducing the number of test cases: Prioritization guidelines, Priority category, Scheme, Risk Analysis, Regression Testing and Slice based testing.

Testing Activities: Unit Testing, Levels of Testing, Integration Testing, System Testing, Debugging, Domain Testing.

Unit-IV

Overview of SQM: Concepts of Software Quality, quality attributes, software quality models: McCall, Boehm, ISO-9000, CMM.

Misellaneous Topics: Stress testing, Adhoc testing, Buddy testing, Exploratory testing, Agile and extreme testing.

- Naresh Chauhan, "Softearw Testing Principles and Practices" Oxford publications, 2012.
- William Perry, "Effective Methods for Software Testing", John Wiley & Sons, New York, 1995.
- Cem Kaner, Jack Falk, Nguyen Quoc, "Testing Computer Software", Second Edition, Van Nostrand Reinhold, New York, 1993.
- Boris Beizer, "Software Testing Techniques", Second Volume, Second Edition, Van Nostrand Reinhold, New York, 1990.
- Louise Tamres, "Software Testing", Pearson Education Asia, 2002
- Roger S. Pressman, "Software Engineering A Practitioner's Approach", Fifth Edition, McGraw-Hill International Edition, New Delhi, 2001.

- Boris Beizer, "Black-Box Testing Techniques for Functional Testing of Software and Systems", John Wiley & Sons Inc., New York, 1995.
- K.K. Aggarwal & Yogesh Singh, "Software Engineering", New Age International Publishers, New Delhi, 2003.
- Marc Roper, "Software Testing", McGraw-Hill Book Co., London, 1994.

PE-CS-D409A			Soft C	Computing							
Lecture	Tutorial	Practical	Credit	MajorTest	MinorTest	Total	Time				
3	0	0	3	75	25	100	3 Hour				
Purpose	To familiarize the students with the concepts of soft computing										
	Course Outcomes										
CO 1	Identify and describe soft computing techniques and their roles in building										
	intelligent	machines									
CO 2	Apply fu	zzy logic a	nd reasor	ning to handle	e uncertainty	and solv	e various				
	engineerin	g problems.									
CO 3	To learn	non-traditio	nal techn	ologies and f	undamentals o	of artifici	ial neural				
	networks,	fuzzy sets, fu	ızzy logic,	genetic algorit	hms.						
CO 4	Apply gen	etic algorithr	ns to comb	oinatorial optim	ization problem	ns.					

Unit I

Introduction: Soft Computing and Neural Networks: Evolution of Computing: Soft Computing Constituents, Soft Vs Hard Computing, From Conventional AI to Computational Intelligence: Machine Learning Basics

Unit II

Fuzzy Logic: Fuzzy Classical and Fuzzy Sets: Overview of Classical Sets, Membership Function, Fuzzy rule generation. Operations on Fuzzy Sets: Compliment, Intersections, Unions, Combinations of Operations, Aggregation Operations. Fuzzy Relations, Membership Functions: Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems, Fuzzy Expert Systems, Fuzzy Decision Making.

Unit III

Neural Networks: Machine Learning Using Neural Network, Adaptive Networks, Feed forward Networks, Supervised Learning Neural Networks, Radial Basis Function Networks: Reinforcement Learning, Unsupervised Learning Neural Networks, Adaptive Resonance architectures, Advances in Neural networks, Implementation using Python/ Matlab

Unit IV

Genetic Algorithm (GA): Evolutionary computing, conditions for evolution, Simple Genetic Algorithm (SGA), different types of operators: Selection, Crossover, mutation and replacement, optimization problems and traditional optimization methods, differences between GA & traditional methods, Applications of GA in Machine Learning: Machine Learning Approach to Knowledge Acquisition.

- S. N. Sivanandam & S. N. Deepa, Principles of Soft Computing, Wiley India Pvt. Ltd.
- Goldberg D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Pearson Education.
- Jang, Sun, Mizutani, Neuro-Fuzzy and Soft computing, Pearson Education.
- Haykin, Neural networks: a comprehensive foundation, Pearson Education.
- George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", Prentice Hall, 1995.

PE-CS-D411A		Neural Networks and Deep Learning											
Lecture	Tutorial	Cutorial Practical Credit Major Test Minor Test Total											
3	0	0	75	25	100	3 Hrs.							
Purpose	To provid	To provide knowledge of various artificial neural networks and deep learning											
	algorithms	algorithms for optimization											
			Course	e Outcomes									
CO 1	To learn th	ne basics of a	rtificial ne	ural networks c	oncepts, various	neural n	etworks						
	architectur	e											
CO 2	To explore	e knowledge	of special	types of Artific	ial neural netwo	rks							
CO 3	To underst	tand the basic	s of Deep	learning and its	s applications								
CO 4	To imprise	e about the di	fferent dee	ep learning algo	orithms								

Artificial Neural Networks: Human brain, Model of an artificial neuron, Basic concepts of neural networks, fundamentals of biological neural network and artificial neural network, evolution of neural networks, Characteristics of Neural Networks, learning methods-supervised, unsupervised and reinforcement, taxonomy of neural network architectures, terminologies-weights, bias, threshold, learning rate, applications of Neural Networks.

Unit-II

Supervised and Unsupervised Neural Networks: Hebb network theory and training algorithm, perceptron networks architecture and training algorithms, Back Propagation networks architecture and Training Algorithms, Associative Memory network architecture and Training Algorithms, Hopfield networks architecture and Training Algorithms, Counter Propagation networks architecture and Training Algorithms, adaptive resonance theory networks architecture and Training Algorithms.

Unit-III

Advanced neural networks: Kohonan self organising feature, maps architecture and training algorithm, learning vector quantization architecture and training algorithm, boltzman machine, cognitron network, neocognitron network, optical neural networks electro-optical multipliers and holographic correlators.

Unit-IV

Deep learning: Machine learning basics, simple machine learning algorithms-linear regression, underfitting and overfitting challenges in machine learning, supervised learning approach for support vector machine, Deep Forward Networks, Convolutional networks, deep recurrent networks, deep boltzmann machine, applications in speech recognition and natural language processing.

- Li Min Fu, "Neural Networks in Computer Intelligence", McGraw-Hill, Inc. 2012.
- S N Sivanandam, "Neural Networks using MATLAB 6.0", TMH, 4th. Reprint 2015.
- S N Sivanandam, "Principles of Soft Computing", 2nd. Edition, Wiley, Reprint 2014.
- Freeman J.A. & D.M. Skapura, "Neural Networks: Algorithms, Applications and Programming Techniques", Addison Wesley, Reading, Mass, 2014.
- Deep Learning (Ian J. Goodfellow, Yoshua Bengio and Aaron Courville), MIT Press, 2016.
- Deep Learning with Python: A Hands-On Introduction by Ketkar, Apress

PE-CS-D413A		0	bject Orie	ented Software	Engineering							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0 0 3 75 25					100 3 Hour						
Purpose	To provide the thorough knowledge to use the concepts and their design attributes											
	for Object	for Object Oriented Software Engineering approaches and platforms to solve real										
	time problems.											
			Course	e Outcomes								
CO 1	To learn th	e basic conce	epts of obj	ect oriented sys	stems and softwa	are engin	eering.					
CO 2	To get exp	osure of vari	ous object	modeling metl	hodologies, tool	s for ana	lyzing and					
	designing	software base	ed systems	using UML.								
CO 3	To explore	e problems i	using Use	Cases, analyz	ting relations, r	responsib	ilities and					
	collaborati	ons among c	lasses and	their behavior	in problem dom	ain.						
CO 4	To evalua	te object or	riented de	sign processes	s using models	, design	patterns,					
	interfaces	designs and c	communic	ation mechanis	ms for performin	ng requir	ed tasks.					

An Overview of Object-Oriented system Development, Objects Basis, Class Hierarchy, Inheritance, Polymorphism, Object Relationships and Associations, Aggregations and Object Containment, Object Persistence, Meta-Classes, Object Oriented Systems Development Life Cycle: Software Development Process, Object Oriented Systems Development: A Use-Case Driven Approach.

Unit-II

Object Oriented Methodologies: Rumbaugh Methodology, Jacobson Methodology, BoochMethodology, Patterns, Frameworks, The Unified approach, Unified Modeling Language (UML)

Unit-III

Object Oriented Analysis Process, Use Case Driven Object Oriented Analysis, Use Case Model, Object Analysis: Classification, Classification Theory, Approaches for identifying classes, Responsibilities and Collaborators, Identifying Object Relationships, Attributes and Methods: Associations, Super-Sub Class relationships, A-Part-of-Relationships-Aggregation, Class Responsibilities, Object Responsibilities.

Unit-IV

Object Oriented Design process and Design Axioms, Corollaries, Design Patterns, Designing Classes: Object Oriented Design Philosophy, UML Object Constraint Language, Designing Classes: The Process, Class Visibility, Refining Attributes, Designing Methods and Protocols, Packages and Managing classes, View Layer: Designing Interface objects, Designing View layer Classes, Macro and Micro Level Interface Design Process.

- Ali Bahrami, Object Oriented Systems Development, McGraw Hill Publishing Company Limited, New Delhi, 2013.
- Rumbaugh et al., Object Oriented Modeling and Design, PHI, 2006.
- Robert Laganière and Timothy C. Lethbridge, Object-Oriented Software Engineering: Practical Software Development, McGraw-Hill Publishing Company Limited, New Delhi, Sixth Print 2008.

- Ivar Jacobson, MagnosChristerson, Patrick Jonsson, Gunnar Overgaard, Object-oriented Software
- Engineering: A Use Case Driven Approach, Pearson Education, New Delhi, Seventh Edition Reprint, 2009.
- David C. Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill Publishing Company Limited, New Delhi, 2013

PE-CS-D415A		Expert Systems										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	75	25	100	3 Hrs.					
Purpose	In this course the student will learn the methodologies used to transfer the											
	knowledg	knowledge of a human expert into an intelligent program that can be used to										
	solve real-time problems.											
		С	ourse Ou	tcomes(CO)								
C01	Examinin	g the fundar	nentals ar	d terminologie	es of expert syst	tem.						
CO2	To facilita	ate students	to impler	nent various k	nowledge repre	esentation	techniques					
02	for acquis	ition and va	lidate var	ious structures	in experts syste	em domain						
CO3	Signifying	g AI techniq	ues to sol	ve social, indu	strial and enviro	onmental p	oroblems.					
<u> </u>	Applicatio	on of profes	sional asp	ects in multi-c	lisciplinary app	roach to n	neet global					
0.04	standards	towards des	ign, realiz	zing and manuf	facturing.							

Introduction to Expert Systems: Introduction to Expert Systems, Representation and organization of knowledge, Basics characteristics, Architecture of expert system, types of problems handled by expert systems, case study of PROSPECTOR.

Unit-II

Expert System Tools: Techniques of knowledge representations in expert systems, knowledge engineering, System-building aids, support facilities, stages in the development of expert systems.

Unit-III

Building an Expert System: Expert system development, Selection of tool, Acquiring Knowledge, Building process.

Unit-IV

Problems with Expert Systems: Difficulties, common pitfalls in planning, dealing with domain expert, difficulties during development.

- Waterman D.A., "A Guide to Expert Systems", Addison Wesley Longman, 1985.
- Hayes-Roth, Lenat and Waterman: Building Expert Systems, Addison Wesley, 1983.
- Weiss S.M. and Kulikowski C.A., "A Practical Guide to Designing Expert Systems", Rowman & Allanheld, New Jersey, 2011.

PE-CS-				Data Mining	Lab								
D401AL													
Lecture	Tutorial	TutorialPracticalCreditMinorPracticalTotalTime											
				Test									
0	0	0 2 1 40 60 100 3hrs											
Purpose	Learning of data mining tools and extracting knowledge by applying various data mining												
_	techniques. Also explore the different validation techniques on the given training data set												
	to get outpu	t metrics.											
			Course O	utcomes(CC))								
CO1	Learning of	Data Mining	tools.										
CO2	Understanding of various Data Mining Algorithms.												
CO3	Developing	the applicati	on for asso	ciation mining	, classification	and clusterin	ng.						
CO4	Providing se	olutions for r	eal world p	roblems using	various data r	nining techni	ques.						

List of Practicals

- 1. Study of WEKA data mining tool.
- 2. Study of ORANGE and KNIME open source data mining tools.
- 3. Develop an application to identify underlying relations between different items by extracting
- 1. association rule mining.
- 4. Develop an application for distinguishing the data classes using classification technique.
- 5. Develop an application for partitioning a set of data objects using clustering technique.
- 6. Develop an application by implementing Naive Bayes Classifier.
- 7. Develop an application by implementing Association Mining Rule based Apriori Algorithm.
- 8. Develop an application for Decision Tree from class-labeled training tuples.
- 9. Develop a Decision Tree from a given training data set.
- 10. Develop a Decision Tree with cross validation training data set.
- 11. Develop a Decision Tree by using prune method and reduced error pruning. Also show the
- 2. accuracy for cross validation trained data set.

PE—CS- D403AL		Software Verification and Validation and Testing Lab												
Lecture	Tutorial	TutorialPracticalCreditMinor TestPracticalTotalTime												
0	0	0 2 1 40 60 100 3hrs												
Purpose	To gain a bi	To gain a broad understanding of the discipline of software engineering implementation.												
			Course O	utcomes(CO)									
CO1	To underst	and the basi	c concepts	of Software	Engineering	•								
CO2	To understand the different design techniques.													
CO3	To underst	and differen	t software	development	t models.									
CO4	To underst	and differen	t types of	Testing.										

List of Practical

- 1. To identify the role of the software in today's world across a few significant domains related to day to day life.
- 2. To identify any scenario and identify suitable software development model for the given scenario.
- 3. To classify the requirement into functional and non-functional requirements and list four functional and non functional requirements for any scenario.
- 4. Do comparative study of various software development models.
- 5. Preparation of requirement document for standard application problems in standard format.(e.g Library Management System, Railway Reservation system, Hospital management System, University Admission system)
- 6. To identify the usage of Regression Testing.
- 7. To identify the usage of Agile Testing.
- 8. To understand the importance of SDLC and STLC process.

PE-CS-	Information Retrieval Lab								
D405AL									
Lecture	TutorialPracticalCreditMinorPracticalTotalTime								
				Test					
0	0	2	1	40	60	100	3hrs		
Purpose	To provide an overview of Information Retrieval and implementation insight								
	about various evaluation methods.								
Course Outcomes(CO)									
CO1	Understanding about Information Retrieval models.								
CO2	Learn experimental evaluation of performance matrices.								
CO3	Learn implementation of web search engines.								
CO4	Learn the implementation of text clustering and classification algorithms.								

List of Practicals

- 1. Implementation of Simple tokenization and Stop-word removal on a document.
- 2. Write a program to compute similarity between two text documents.
- 3. Write a map reduce program to count the number of occurrence of each alphabetic character in a document. The count for each letter should be case-insensitive.
- 4. Write a program to parse XML text, generate web graph and compute topic specific page rank.
- 5. Write a program to implement Simple web crawler.
- 6. Implementation of Naïve Bayes algorithm.
- 7. Implementation of Decision tree algorithm.
- 8. Implementation of K-nearest neighbour algorithm.
- 9. Implementation of K- means algorithm.
- 10. Evaluate the performance matrix using any algorithm.

PE-CS- D407AL	Speech and Natural Processing								
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time		
0	0	2	1	40	60	100	3hrs		
Purpose	The objective of Natural Language Processing lab is to introduce the students with the basics of NLP which will empower them for developing advanced NLP tools and solving practical problems in the field.								
Course Outcomes(CO)									
CO1	To understand the basic concepts of Speech and Natural Processing.								
CO2	To understand the different word analysis techniques.								
CO3	To understand different Speech and Natural Processing models.								
CO4	To understand different types of chunking.								

List of Practical

- Word Analysis
 Word Generation
- 3. Morphology
- 4. N-Grams
- 5. N-Grams Smoothing
- 6. POS Tagging: Hidden Markov Model
- POS Tagging: Viterbi Decoding
 Building POS Tagger
- 9. Chunking
- 10. Building Chunker

PECS-	Soft Computing Lab								
D409AL									
Lecture	Tutorial	Practical	Credit	Minor	Practical	Total	Time		
				Test					
0	0	2	1	40	60	100	3hrs		
Purpose	Soft Computing achieves practicability, robustness, and low cost solution for								
	complex problems in real world using neural network, fuzzy systems								
	,optimization approaches.								
Course Outcomes(CO)									
CO1	Understand Fuzzy Concepts.								
CO2	Learn Neural Network with back propagation and without back propagation.								
CO3	Learn the operators of Genetic algorithms.								
CO4	Learn the implementation of Optimization algorithms.								

List of Practicals

- 1. Write a program to implement artificial neural network with back propagation.
- 2. Write a program to implement artificial neural network without back propagation.
- 3. Implementation of operations on Fuzzy Sets.
- 3. Implement Travelling Sales man problem with genetic algorithm..
- 4. Implement Crisp partitions for real life iris dataset.
- 5. Write a program to implement Logic gates.
- 6. Implement SVM classification of Fuzzy Concepts.
- 7. Implement ABC (Artificial Bee Colony) optimization Technique.
- 8. Implement DE (Differential Evolution) algorithm.

PE—CS- D411AL	Neural Networks and Deep Learning Lab								
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time		
0	0	2	1	40	60	100	3hrs		
Purpose	Demonstrate knowledge and apply engineering and management principles to manage projects and in multi-disciplinary environment and use research-based knowledge and research methods including design of experiments, analysis and interpretation of data for valid conclusions.								
Course Outcomes (CO)									
CO1	Apply learning algorithms on perceptron and apply back propagation learning on Neural Network.								
CO2	Apply Feedback NN and plot a Boltzmann machine and associative memory on various application.								
CO3	Apply different types of auto encoders with dimensionality reduction and regularization.								
CO4	Design Convolutional Neural Network and classification using Convolutional Neural Network.								

List of Practicals

- 1. To Write a program to implement Perceptron.
- 2. To write a program to implement AND OR gates using Perceptron.
- 3. To implement Crab Classification using pattern net Objective.
- 4. To write a program to implement Wine Classification using Back propagation.
- 5. Write a MatLab Script containing four functions Addition, Subtraction, Multiply and Divide functions.
- 6. Write a program to implement classification of linearly separable Data with a perceptron.
- 7. To study ImageNet, GoogleNet, ResNet convolutional Neural Networks.
- 8. To study Convolutional Neural Network and Recurrent Neural Network.
| PE—CS-
D413AL | | Object Oriented Software Engineering Lab | | | | | | | | | | |
|------------------|---|--|----------------|---------------------|----------------|---------------|------|--|--|--|--|--|
| Lecture | Tutorial | Practical | Credit | Minor Test | Practical | Total | Time | | | | | |
| 0 | 0 | 2 | 1 | 40 | 60 | 100 | 3hrs | | | | | |
| Purpose | Object-Oriented Software Development is an approach/paradigm of developing software by identifying and implementing a set of objects and their interactions to meet the desired objectives. The first step towards this kind of software development is to learn and master the various concepts, tools and techniques that are to be used design and implementation of such systems. | | | | | | | | | | | |
| | | | Course Out | comes (CO) | | | | | | | | |
| CO1 | To learn and | understand var | ious O-O con | cepts along with th | neir applicab | ility context | ts. | | | | | |
| CO2 | To learn varie
software desi | ous modeling to
gn (UML) | echniques to r | nodel different per | rspectives of | object-orie | nted | | | | | |
| CO3 | To learn soft
Problems. | ware developm | ent life cycle | for Object-Oriente | ed solutions f | for Real-Wo | orld | | | | | |
| CO4 | Learn how to | test and docun | nent software. | | | | | | | | | |

- 1. Choose any one project and Write the complete problem statement.
- 2. Write the software requirement specification document
- 3. Draw the entity relationship diagram
- 4. Draw the data flow diagrams at level 0 and level 1
- 5. Draw use case diagram
- 6. Draw activity diagram of all use cases.
- 7. Draw state chart diagram of all use cases
- 8. Draw sequence diagram of all use cases
- 9. Draw collaboration diagram of all use cases
- 10. Assign objects in sequence diagram to classes and make class diagram.

PE-CS-			Ε	xpert System	Lab								
D415AL													
Lecture	Tutorial	Practical	Credit	Minor	Practical	Total	Time						
				Test									
0	0	2	1	40	60	100	3hrs						
Purpose	In this cou	In this course the student will learn different techniques of AI and Expert system											
	that can be used to solve real-time problems.												
	Course Outcomes(CO)												
CO1	Examining	the fundam	entals and	terminologie	es of expert s	ystem.							
CO2	Study of v	arious trends	s and issue	s related to A	AI and expert	system.							
CO3	Implement	general pro	blems usin	ng AI and exp	pert system to	echniques.							
CO4	Student w system.	ill capable	to handle	real time p	problems rela	ated to AI	and expert						

- 1. Study of Prolog.
- 2. Write simple fact for the statements using PROLOG.
- 3. Write predicates One converts centigrade temperatures to
- 4. Write predicates One converts centigrade temperatures to Fahrenheit, the other checks if a temperature is below freezing.
- 5. Write a program to solve the Monkey Banana problem.
- 6. WAP to implement factorial, Fibonacci of a given number.
- 7. Write a program to solve 4-Queen problem.
- 8. Write a program to solve traveling salesman problem.
- 9. Write a program to solve water jug problem using LISP
- 10. Solve any problem using depth first search and best first search.

OE-CS-401A		Cyber Law and Ethics									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	75	25	100	3 Hrs.				
Purpose	To provide	To provide an overview of Cyber Law and also explores technical, legal, and social									
	issues rela	issues related to cybercrimes, Laws Cyber Ethics									
	·	С	ourse Outc	omes (CO)							
CO1	Understan	d Cyber laws	s, Cyber spa	ce.							
CO2	Describe I	nformation T	Cechnology a	act and Related	Legislation.						
CO3	Demonstra	ate Electronic	e business ar	nd legal issues.							
CO4	Interpret C	Cyber Ethics,	significance	e and its need.							

Cyber Law: Emergence of cyber space, Cyber Jurisprudence, Jurisprudence and law, Doctrinal approach, Consensual approach, Real Approach, Cyber Ethics, Cyber Jurisdiction, Hierarchy of courts, Civil and criminal jurisdictions, CyberspaceWeb space, Web hosting and web Development agreement, Legal and Technological Significance of domain Names, Internet as a tool for global access.

Unit II

Information Technology Act: Overview of IT Act 2000, Amendments and Limitations of IT Act, Digital Signatures, Cryptographic Algorithm, Public and Private Cryptography, Electronic Governance, Legal Recognition of Electronic Records, Legal Recognition of Digital Signature, Certifying Authorities, Cyber Crime and Offences, Network Service Providers Liability, Cyber Regulations Appellate Tribunal, Penalties and Adjudication.

Unit III

Cyber law and Related Legislation: Patent Law, Trademark Law, Copyright, Software – Copyright or Patented, Domain Names and Copyright disputes, Electronic Data Base and its Protection, IT Act and Civil Procedure Code, IT Act and Criminal Procedural Code, Relevant Sections of Indian Evidence Act, Relevant Sections of Bankers Book Evidence Act, Relevant Sections of Indian Penal Code.

Unit IV

Cyber Ethics: The Importance of Cyber Law, Significance of cyber Ethics, Need for Cyber regulations and Ethics. Ethics in Information society, Introduction to Artificial Intelligence Ethics: Ethical Issues in AI and core Principles, Introduction to Block-Chain Ethics.

- Cyber Laws: Intellectual property & E Commerce, Security- Kumar K, dominant Publisher
- Cyber Ethics 4.0, Christoph Stuckelberger, Pavan Duggal, by Globethic
- Information Security policy & Implementation Issues, NIIT, PHI
- Legal Dimensions of Cyber Space, Verma S, K, Mittal Raman, Indian Law Institute, New Delhi
- Cyber Crimes and Law Enforcement, Vasu Deva, Commonwealth Publishers, New Delhi, (2003).

OE-CS-403A			Bioin	formatics						
Lecture	Tutorial	Practical	Credit	MajorTest	MinorTest	Total	Time			
3	0	0	3	75	25	100	3 Hour			
Purpose	To familia	To familiarize the students with the concepts of bioinformatics.								
Course Outcomes										
CO 1	Explain co	oncepts of bio	oinformatio	es and its signif	icance in biolog	gical data	analysis.			
CO 2	Apply vari	ious bioinfor	matics too	ls to manage di	fferent type of b	oiological	data.			
CO 3	Explain co	Explain computational method and algorithms for biological data interpretation.								
CO 4	Classify di	ifferent types	of biolog	ical databases.						

Introduction to Bioinformatics: Introduction, outline of proteins, primary structure: the 20 amino acids – chemical structure & properties; polypeptide geometry: the folding chain, nomenclature, molecular graphics, Structure evolution and mutation genetic information- the triplet code; DNA structure Synthesis of proteins: cell biology background; transcription; RNA polymerase, introns, exons, splicing translation: ribosomes, strat/stop codons, post-translational processing

Unit-II

Computing evolution: Phylogenetic Analysis Sequence- based taxonomy: overview and assumptions, from Multiple Alignment to phylogeny Neighbor, Joining Maximum Likelyhood Vs. Parsimony, The molecular Clock, Computer Tools for patterns, mapping and phylogenetic analysis, Mathematical tools of proteins and nucleic acids, sequence- Function Relationships Sequence Homology and Conserved Regions, Conserved DNA Sequences.

Unit-III

Bioinformatics tools: Networks- WWW, CERN EMBnet; EMBL Database, SEQNET, GenBank, NLM , etc., Sequence Databases and Sequence Analysis: Genomic , CDNA EMBL database GenBank Protein sequence, Pattern recognition tools Similarity searching, secondary sources, genome databases, Molecular graphics software and other packages, To find sequences based on keywords & phrases, to grab individual sequences or whole groups of Sequences from a database

Unit-IV

Genomics: Introduction , genome scale sequencing , comparative and evolutionary genomics, microarrays, proteomics, pharmacogenomics, Development using computer tools for sequencing projects, PCR and restriction mapping practical and theoretical problems in sequencing. The challenges of whole genome sequencing, web based tools for restriction mapping, new technologies and new bioinformatics tools.

- Teresa K. Attwood, David J. Parry-Smith: Introduction to Bioinformatics, 1999, Longman Higher Education.
- S. eddy, a. Krogh, G. Mitchison, Richard Durbin: Biological sequence analysis: probabilistic models of proteins and nucleic acids, 1999, Cambridge University Press.
- Andreas Baxevanis, B.F. Francis Ouellete: Bioinformatics : a practical guide to the analysis of genes and proteins, 1998, john Wiley & sons, inc
- James D. Tisdall: Beginning perl for Bioinformatics. 2001. O'reilly & Associates.
- Michael S. Wterman: Mathematical methods for DNA sequences, 1989, CRC Press.

OE-CS-405A			FIBRE OP	TIC COMMUN	NICATIONS					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	75	25	100	3 Hrs.			
Purpose	To familia	arize the stu	dents with th	ne concepts of O	ptical commun	nication cov	vering the			
	contents o	contents of optical fibers, losses in fibers, optical sources, detectors etc.								
Course Outcomes										
CO1	Students v	Students will be able to understand the structure of fiber and the mechanism of light								
	travelling	in the fiber.								
CO2	Students v	vill be able t	o analyze va	arious losses asso	ociated with fib	pers.				
CO3	Students v	vill learn ab	out the optic	al sources and op	ptical detecters					
CO4	Students	will be abl	e to unders	stand the variou	us components	s needed i	n optical			
	networks									

Introduction: Optical Fibers: Structure, Propagation within the fiber, Numerical aperture of fiber, step index and graded index fiber, Modes of propagation in the fiber, Single mode and multi mode fibers. Splices and connectors. Optical Power Launching and Coupling. Fiber-to-fiber joints.

Unit II

Losses in Optical Fiber: Rayleigh Scattering Losses, Absorption Losses, Leaky modes, Mode coupling losses, Bending Losses, Combined Losses in the fiber.

Dispersion Effect: Effect of dispersion on the pulse transmission Intermodal dispersion, Material dispersion, Wave guide dispersion, Polarization Mode Dispersion Total dispersion, Transmission rate. Dispersion Shifted Fibers, Dispersion Compensating Fibers.

Unit III

Light Sources: LEDS, Laser Action in semiconductor Lasers, Semiconductor Lasers for optical communication – Laser modes, Spectral Characteristics, Power Voltage Characteristics, Frequency response.

Detectors: P-I-N Photodiode, APD, Noise Analysis in detectors, Coherent and non-coherent detection, Infrared sensors. Bit error rate.

Unit IV

The Fiber-Optic Communication System: Design considerations of fiber optic systems: Analog and digital modulation. Optical Devices: Optical coupler, space switches, linear divider-combiners, wavelength division multiplexer and demultiplexer, optical amplifier

Optical Networks: Elements and Architecture of Fiber-Optic Network, Optical link network-single hop, multihop, hybrid and photonic networks.

- John Power, An Introduction to Fiber optic systems, McGraw Hill International.
- John Gowar, Optical communication Systems.
- R. Ramaswamy, Optical Networks, Narosa Publication
- John M. Senior, Optical Fiber Communication
- Gerd Keiser, Optical Fiber Communication

OE-CS-407A		Industrial Electrical Systems										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	75	25	100	3 Hrs.					
Purpose	To provid	Γο provide the conceptual knowledge of various Industrial Electrical Systems.										
	Course Outcomes											
CO1	To study v	various funda	amental con	cepts of Electric	al components.							
CO2	To study a	and understa	nd the reside	ential and comm	ercial electrica	l system.						
CO3	To study f	To study functions and selection of Industrial Electrical components.										
CO4	To study t	he basics an	d role of PL	C & SCADA in	automation.							

Electrical System Components: LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components- Fuse, MCB, MCCB, ELCB, inverse current characteristics, relays, MPCB, electric shock and electrical safety practices.

Unit II

Residential and Commercial Electrical Systems: types of residential and commercial wiring system, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, protection devices, requirements of commercial installation, earthing of commercial installation, selection and sizing of components.

Unit III

Industrial Electrical Systems: HT connection, industrial substation, transformer selection, power factor correction-kVAR calculation, type of compensation, Introduction to PCC, MCC panels. Specifications of LT breakers.

DG systems, UPS system, battery banks, sizing the DG, UPS and battery banks, selection of UPS and battery banks.

Unit IV

Industrial Electrical System Automation: Study of basic PLC, role of automation, advantages of process automation, PLC based control system design, Panel metering and Introduction to SCADA system for distribution automation.

- S.L. Uppal and G.C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publishers, 2008.
- K.B. Raina, "Electrical Design, Estimating & Costing", New Age International, 2007.
- S. Singh and R.D. Singh, "Electrical estimating & costing", Dhanpat Rai and Co., 1997. Website for IS standards.
- H. Joshi, "Residential Commercial and Industrial Systems", McGraw Hill Education, 2008.

Bachelor of Technology (Computer Science & Engineering)											
Credit-Based Scheme of Studies/Examination											
Semester VIII (w.e.f. session 2021-2022)											
S. No ·	Course Code	Subject	L:T:P	Hours/Week	Credits	Examir	larks)	Duratio n of Exam			
						Major Test	Minor Test	Practical	Total	(Hrs)	
1	PE	Elective-VI	3:0:0	3	3	75	25	0	100	3	
2	OE	Open Elective-III	2:0:0	2	2	75	25	0	100	3	
3	OE	Open Elective-IV	2:0:0	2	2	75	25	0	100	3	
4	PROJ-CS- 402A	Project-III	0:0:12	12	6	0	40	60	100	3	
5	PE-LA	Elective-VI Lab	0:0:4	4	2	0	40	60	100	3	
		Total		23	15	225	155	120	500		

The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

PE Elective-VI	
Cloud Computing: PE-CS-A402A	
Computer Graphics: PE-CS-A404A	
Software Reliability: PE-CS-A406A	
Mobile Apps Development: PE-CS-A408A	
OE Elective-III	OE Elective-IV
Cyber Security: OE-CS-402A	Web and Internet Technology: OE-CS-410A
Satellite Communication: OE-CS-404A	Automation in Manufacturing: OE-CS-412A
Social Networks Analysis & Mining: OE-CS-	IPR, Bioethics and Biosafety: OE-CS-414A
406A	
Agile Software Engineering: OE-CS-408A	Signal & Systems: OE-CS-416A

PE-CS-A402A			C	loud Computin	ng						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	75	25	100	3 Hrs.				
Purpose	To familia	To familiar the concepts of cloud services and storage to deploy various resources									
	and arbitra	and arbitrary software.									
		Course Outcomes (CO)									
CO1	Summariz	Summarize main concepts, key technologies, strengths and limitations of Cloud									
	Computin	g.									
CO2	Explore v	arious cloud	l service an	d deployment	models to util	ize diffe	rent cloud				
	services.										
CO3	Interpret v	various data,	scalability &	& cloud service	s in order to ge	et efficier	nt database				
	for cloud s	storage.									
CO4	To deal w	ith various s	ecurity threa	ats and their co	ntrolling mecha	anism for	accessing				
	safe cloud	services.									

Overview of Computing Paradigm: Recent trends in Computing, Grid Computing, Cluster Computing, Distributed Computing, Utility Computing, Cloud Computing, evolution of cloud computing, Business driver for adopting cloud computing. Cloud Computing (NIST Model): History of Cloud Computing, Cloud service providers, Properties, Characteristics & Disadvantages, Pros and Cons of Cloud Computing, Benefits of Cloud Computing, Cloud computing vs. Cluster computing vs. Grid computing, Role of Open Standards.

Unit-II

Cloud Computing Architecture: Cloud computing stack, Comparison with traditional computing architecture (client/server), Services provided at various levels, How Cloud Computing Works, Role of Networks in Cloud computing, protocols used, Role of Web services, Service Models (XaaS) - Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Deployment Models- Public cloud, Private cloud, Hybrid cloud, Community cloud, Cloud Architecture and open source.

Unit-III

Service Management in Cloud Computing: Service Level Agreements (SLAs), Billing & Accounting, comparing Scaling Hardware: Traditional vs. Cloud, Economics of scaling: Benefitting enormously, Managing Data- Looking at Data, Scalability & Cloud Services, Database & Data Stores in Cloud, Large Scale Data Processing, Cloud management with Puppet. Case study: Eucalyptus, Microsoft Azure, Amazon EC2.

Unit-IV

Cloud Security: Infrastructure Security, Network level security, Host level security, Application level security, Data security and Storage, Data privacy and security Issues, Jurisdictional issues raised by Data location, Identity & Access Management, Access Control, Trust, Reputation, Risk, Authentication in cloud computing, Client access in cloud, Cloud contracting Model, Commercial and business considerations, DROPS: Division and Replication of data in Cloud for Optimal Performance and Security.

- Barrie Sosinsky, Cloud Computing Bible, Wiley-India, 2010.
- Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Cloud Computing: Principles and Paradigms, Wiley, 2011.
- Nikos Antonopoulos, Lee Gillam, Cloud Computing: Principles, Systems and Applications, Springer, 2012.
- Ronald L. Krutz, Russell Dean Vines, Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Wiley-India, 2010.

PE-CS-A404A			Compu	ter Graphics							
Lecture	Tutorial	Practical	Credit	MajorTest	MinorTest	Total	Time				
3	0	0	3	75	25	100	3 Hour				
Purpose	Introduce	Introduces Computer Graphics that help in designing different kinds of static									
	and movable objects.										
Course Outcomes											
CO 1	Explore th	e background	d and stand	lard line and ci	rcle drawing alg	orithms.					
CO 2	Exposure	of various tra	nsformatio	on approaches a	and its comparat	tive analy	sis.				
CO 3	Illustrate H	Projection and	d clipping	with explore di	fferent techniqu	es.					
CO 4	Apply des	sign principle	es to creat	te different cur	ves and explor	e hidden	lines and				
	surface tec	chniques.									

Computer Graphics applications, Display Devices, Point & Positioning Devices, Plotting Techniques for point and Line, Line drawing algorithms: DDA, Bresenhams's Circle drawing algorithms, Filled area algorithms: Scan line, Polygon filling algorithms, Boundary filled algorithms.

Unit-II

Window to view port transformation, Window to view port mapping, Two Dimensional transformation: translation, scaling, rotation, reflection and Shear, Homogeneous Coordinate system. 3-D transformation: Rotation, Shear, translation, Numerical Problems of transformation viewing pipeline.

Unit-III

Clipping: Point & Line clipping algorithm, 4-bit code algorithm, Cohen-Sutherland Line clipping algorithms, Liang-Barsky line clipping algorithms. Polygon clipping: Sutherland-Hodgeman Polygon clipping algorithm. Curve clipping, Text clipping. Projection: Parallel, Perspective, Vanishing Points.

Unit-IV

Representation of 3-D Curves and Surfaces: interpolation and approximation alpines, parametric conditions, Geometric continuity conditions, Beizer curves and surfaces: properties of beizer curves, beizer surfaces.

Hidden Surfaces removal: Hidden surface elimination, depth buffer algorithm, scan line coherence and area coherence algorithm, painter's algorithm

- Donald Hearn & M.Pauline Baker, Computer Graphics, 2nd Edition, Pearson Education.
- William M. Newmann & Robert F. Sproull, Principles of Interactive Computer Graphics, Tata McGraw-Hill Second Edition, New Delhi, India.
- Zhigang Xiang & Roy A Plastock, Computer Graphics, Second Edition, Schaum's Outline, Tata McGraw Hill Education Private Limited, New Delhi, India.
- Foley, van Dam, Feiner, and Hughes. Computer Graphics: Principles and Practice, 3rd edition in C.
- Hearn, D. Basker, Computer Graphics, Prentice Hall

PE-CS-A406A			Web and	d Internet Tec	hnology					
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time								
3	0	0	3	75	25	100	3 Hrs.			
Purpose	To gain a	To gain a broad understanding of the discipline of Web engineering and its								
	application	application to the development and management of Web Applications.								
Course Outcomes (CO)										
CO1	Learn the	Learn the basic concepts of internet and its conncetivity.								
CO2	Learn abo	ut the service	es of interne	t, designing and	d its architectur	e.				
CO3	Understan	d the basic	concepts of	Python and it	s applications	as per in	nformation			
	industry st	andards.								
CO4	Acquaint	the latest pro	ogramming	language for th	e implementat	ion of ot	ject based			
	and proce	dure based a	pplications u	ising Python.						

Intenet, growth of internet, owners of the internet, anatomy of internet, ARPANET and internet history of the worls wide web, basic internet terminology, internet applications-commerce on the internet, governance on the internet, impact of internet on society- crime on/through the internet, the role of information architect, collaboration and communication. Organizing information, Organizing web sites and Intranets, Creating cohesive organization systems, designing navigation systems, types of navigation systems, Integrated navigation elements, designing navigation systems, Searching your web site, designing the search interface.

Unit II

Setting up a connection: Hardware requirement, selection of a modem, software requirement, modem configuration, common terminologies: Node, Host, Workstation, bandwidth, interoperability, network administrator, network security, network components: servers, clients, communication medis, service options- email, News firewall etc.

Introduction to XHTML and HTML5: Origins and Evolution of HTML and XHTML, Basic Syntax, Standard XHTML Document Structure, Basic Text Markup, Images, Hypertext Links, Lists, Tables, Forms, HTML5, Syntactic Differences between HTML and XHTML.

Cascading Style Sheets: Introduction, Levels of Style Sheets, Style Specification Formats, Selector Forms, Property Value Forms, Font Properties, List Properties, Color, Alignment of Text, Box Model, Background Images

Unit III

Introduction to Python: Applications of python in information industry, Introduction to Python, Data Types, branching programs, control structures, array and input, iteration.

Functions and scoping: Functions and scoping, recursion and global variables. Creation, insertion and deletion of items: strings, tuples, lists and dictionaries.

Unit IV

Classes and objects-oriented programming: Abstract data types and classes, inheritance, encapsulation and information hiding. File handling, exception handling, database (MySQLdb) operation: file check, table creation, insertion and deletion of data, regular expressions-Res in Python and plotting.

Suggested Books:

• By Peter Morville, Louis Rosenfeld, "Information Architecture on the World Wide Web",

O'Reilly Media, 2006.

- Robert W. Sebesta, "Programming The World Wide Web", Eight Edition, Pearson India, 2015.
- Kenneth A. Lambert, "The Fundamentals of Python: First Programs", 2011, Cengage Learning.
- Thomas A Powell, "HTML The Complete Reference", Tata McGraw Hill Publications.

PE-CS-A408A		Mobile Apps Development									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	75	25	100	3 Hrs.				
Purpose	To introdu	To introduce the concepts of developing the mobile applications.									
Course Outcomes (CO)											
CO1	Be expose	ed to technolo	ogy and Mol	oile apps develo	opment aspects	•					
CO2	Be compe	tent with the	characteriza	ation and archit	ecture of mobil	le applica	ations.				
CO3	Appreciati	Appreciation of nuances such as native hardware play, location awareness,									
	graphics, a	and multimed	na.								
CO4	Perform te	esting, signin	g, packaging	g and distributi	on of mobile ap	ops.					

Introduction to Mobility: Mobility landscape, Mobile platforms, Mobile apps development, Overview of Android platform, setting up the Mobile App Development environment along with an Emulator.App User Interface Designing – Mobile UI resources (Layout, UI elements, Drawable, Menu).

Unit II

Building blocks of Mobile Apps: Activity- States and Life Cycle, Interaction amongst Activities. App functionality beyond user interface - Threads, Async task, Services – States and Life Cycle, Intents: concept, types, Use of Intents to transfer various type of data, Notifications, Broadcast receivers, Content provider.

Unit III

Sprucing up Mobile Apps: Fragments: Concept, Use of fragments in Android Apps, Nested Fragments, Graphics and animation – Custom views, Canvas, Animation APIs, Multimedia – Audio/Video playback and record, Location awareness. Native data handling–file I/O, shared preferences, mobile databases such as SQLite, and enterprise data access (via Internet/Intranet).

Unit IV

Testing Mobile Apps: Debugging mobile apps, White box testing, Black box testing, and test automation of Mobile apps, JUnit for Android, Testing tools. Loading data using loaders, permissions, performance & security, firebase and admob and publish.

- Dawn Griffiths, David Griffiths, Head First Android Development, 2nd Edition, O'Reilly Media, 2017.
- Barry Burd, Android Application Development All in one for Dummies, Wiley publications, 2nd Edition 2015.
- Android Developer Fundamentals Course– Concepts (Learn to develop Android applications) Concepts Reference Developed by Google Developer Training Team, 2016.
- Valentino Lee, Heather Schneider, and Robbie Schell, Mobile Applications: Architecture, Design, and Development, Prentice Hall, 2004.
- Brian Fling, Mobile Design and Development, O'Reilly Media, 2009.
- Maximiliano Firtman, Programming the Mobile Web, O'Reilly Media, 2010.

PE—CS- A402AL		Cloud Computing Lab										
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time					
-	-	4	2	40	60	100	3hrs					
Purpose	Design a	nd Implem	ent vario	us mobile ap	plications u	ising emul	ators and					
_	learn hou	w to Deploy	y applicat	tions to hand	-held devic	es.						
		С	ourse Ou	tcomes(CO)								
CO1	Know th	ie compon	ents and	structure of	mobile ap	plication of	development					
	framewo	orks for And	droid bas	ed mobiles.	-	-	_					
CO2	Understa	and how to	work wi	th various mo	obile applic	ation deve	lopment					
	framewo	orks.					-					
CO3	Learn the	e basic and	importar	nt design con	cepts and is	sues of de	velopment					
	of mobile	e applicatic	ons.	C	-		-					
CO4	Understa	and the cap	abilities o	of mobile dev	rices.							

- 1. Write a program to use the API's of Hadoop to interact with it.
- 2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs
- 3. Install Google App Engine. Create hello world app and other simple web applications using python/java.
- 4. Use GAE launcher to launch the web applications.
- 5. Show the virtual machine migration based on the certain condition from one node to the other.
- 6. Write a word count program to demonstrate the use of Map and Reduce tasks.
- 7. Find procedure to set up the one node Hadoop cluster and run simple applications like word count.

PE—CS- A404AL			Co	mputer Grap	hics Lab						
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time				
-	-	- 4 2 40 60 100 3hrs									
Purpose	To Desig	Γο Design and implement various Line and Circle Drawing Algorithms.									
		C	ourse Out	tcomes(CO)							
CO1	To Imple	ment basic	algorithn	ns related to	Line & Circ	le Drawing	5.				
CO2	Impleme	nt various I	Line & Ci	rcle Drawing	g Algorithm	s.					
CO3	Hands or	Hands on experiments on 2-D transformations.									
CO4	Conceptu	ual implem	entation o	of Clipping ar	nd other drav	wing algori	thms.				

- 1. Write a program to implement DDA line drawing algorithm.
- 2. Write a program to implement Bresenham's line drawing algorithm.
- 3. Implement the Bresenham's circle drawing algorithm.
- 4. Write a program to draw a decagon whose all vertices are connected with every other vertex using lines.
- 5. Write a program to move an object using the concepts of 2-D transformations.
- 6. Write a program to implement the midpoint circle drawing algorithm any Object Oriented Programming Language like Python, C++, Java.
- 7. Implement the line clipping algorithm using any Object Oriented Programming Language like Python, C++, Java.
- 8. Implement boundary fill algorithm using any Object Oriented Programming Language like Python, C++, Java.
- 9. Implement the depth buffer algorithm using any Object oriented language like Python, C++, Java.
- 10. Perform the Polygon Clipping Algorithm using any Object oriented language like Python, C++, Java.
- 11. Draw a Rectangle using Bresenham's and DDA Algorithm using any Object oriented language like Python, C++, Java.

PE-CS-A406AL			Se	oftware Reliab	ility Lab					
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time			
-	-	4	2	40	60	100	3hrs			
	In this c	ourse the s	student w	vill understand	the working of	of softwar	e reliability			
Purpose	models a	nodels and reliability prediction models, and able to design reliability models.								
			Cour	rse Outcomes(CO)					
CO1	To study	the comput	ation met	hod for evaluat	ion of software	reliability	7			
CO2	Understa	nd the mech	anisms fo	or Evaluation T	esting methods	in Softwa	ire			
02	Reliabilit	y								
CO3	Understa	nd the work	ing of So	ftware Reliabil	ity Models					
CO4	To Study	and unders	tand proc	edure of softwa	are Reliability F	Prediction				

- 1. To study the Computation of software reliability
- 2. To implement software Reliability Evaluation Testing methods
- 3. To understand the working of Functional and Operational Profiles
- 4. To understand the concept of Time Dependent Software Reliability Models
- 5. To understand the concept of Time Independent Software Reliability Models.
- 6. To study Software Reliability Modeling
- 7. To identify the role of various phases included in software Reliability Prediction
- 8. To study software Reliability Analyzing Predictive
- 9. To study software Reliability Recalibration

PE-CS-A408AL			Mobil	e Apps Devel	lopment Lab				
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time		
-	-	4	2	40	60	100	3hrs		
	To unde	erstand the	e compo	onents and s	structure of	mobile	application		
Purpose	developm	nent frame	works fo	or Android ba	sed mobiles				
	_								
	-	Course Outcomes(CO)							
CO1	To unde	erstand the	e comp	onents and	structure of	mobile	application		
	Developr	nent frame	works fo	or Android ba	used mobiles.				
CON	To under	stand how	to work	k with various	s mobile appl	ication d	levelopment		
02	framewor	rks.					-		
CO3	To learr	n the bas	ic and	important of	design conce	pts and	issues of		
	developn	nent of mo	bile app	lications.	-	-			
CO4	To under	stand the c	apabiliti	es and limitat	tions of mobil	le device	s.		

- 1. Develop an application that uses GUI components, Font and Colors
- 2. Develop an application that uses Layout Managers and event listeners.
- 3. Develop a native calculator application.
- 4. Write an application that draws basic graphical primitives on the screen.
- 5. Implement an application that implements Multi threading
- 6. Develop a native application that uses GPS location information.
- 7. Implement an application that writes data to the SD card.
- 8. Implement an application that creates an alert upon receiving a message.
- 9. Write a mobile application that creates alarm clock.
- 10. Develop a sign-in page with appropriate validation.
- 11. Develop a real life application that makes use of database.

OE-CS-402A			Cybe	r Security						
Lecture	Tutorial	Practical	Credit	MajorTest	MinorTest	Total	Time			
2	0	0	2	75	25	100	3 Hour			
Purpose	To gain a	To gain a broad understanding in order to get predictive ways out related to cyber								
	security.	security.								
			Course	e Outcomes						
CO 1	To facilita	te the basic k	nowledge	of cyber securi	ty.					
CO 2	To explore	e and sort issu	ues related	to different typ	bes of activities	in cyber o	crime.			
CO 3	To get ena	fo get enable to fix the various cyber attacks.								
CO 4	To deal wi	th the digital	forensics	and related sce	narios of cyber	crimes.				

Introduction: Fundamentals of Cyber Crime, Nature and Scope of Cyber Crime, Types of Cyber Crime: crime against individual, Crime against property, Cyber extortion, Drug trafficking, cyber terrorism.

Cryptanalysis-steganography, stream and block ciphers, modern block ciphers: Block cipher principles, Shannon's theory of confusion and diffusion, fiestal structure, Data Encryption Standard (DES), strength of DES, differential and linear crypt analysis of DES, block cipher modes of operations, triple DES-AES

Unit-II

Integrity checks and authentication algorithms MD5 message digest algorithm, Secure Hash Algorithm (SHA), Digital Signatures, authentication protocols, digital signature standards (DSS), proof of digital signature algorithm, authentication application, Kerberos and X.509, directory authentication service, electronic mail security, pretty good privacy (PGP), S/MIME.

Unit-III

Introduction to cyber attacks: passive attacks, active attacks, Cyber crime prevention methods, Application security (Database, E-mail and Internet), Data Security Considerations-Backups, Archival Storage and Disposal of Data, Security Technology-Firewall and VPNs, Intrusion Detection, Access Control,Hardware protection mechanisms, OS Security.

Web Security: Secure socket layer and transport layer security-secure electronic transaction (SET)-system security: Intruders-Viruses and related threats, firewall design principles, trusted systems.

Unit-IV

Digital Forensics: Introduction to Digital Forensics, historical background of digital forensics, Forensic Software and Hardware, need for computer forensics science, special tools and techniques digital forensic life cycle, challenges in digital forensic.

Law Perspective: Introduction to the Legal Perspectives of Cybercrimes and Cyber security, Cybercrime and the Legal Landscape around the World, Why Do We Need Cyber laws, The Indian IT Act, Cybercrime Scenario in India, Digital Signatures and the Indian IT Act, Cybercrime and Punishment.

IP Security: Architecture-Authentication header-Encapsulating security payloads, combining security associations, key management.

- Nelson Phillips and Enfinger Steuart, "Computer Forensics and Investigations", Cengage Learning, New Delhi, 2009.
- Robert M Slade," Software Forensics", Tata McGraw Hill, New Delhi, 2005.
- Sunit Belapure and Nina Godbole, "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wiley India Pvt. Ltd.

OE-CS-404A			Satel	lite Communica	tion					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	2	75	25	100	3 Hrs.			
Purpose	To familiar	To familiarize the students with the concepts of Satellite communication and various								
	terms, laws	and multiple	e access sch	emes used in its	working.					
		Course Outcomes								
CO1	To understand the concept of basics of satellite communication and various basic									
	laws and te	laws and terms of satellite communication.								
CO2	To understa	and the conce	ept and pro	cesses of various	communicatio	n satellite	es used in			
	satellite con	nmunication								
CO3	To familiar	ize with the	concept and	d design issues o	f satellite link o	design an	d satellite			
	access.									
CO4	To familia	rize with th	e concepts	s of Multiple a	ccess schemes	used in	satellite			
	communica	tion.								

Satellite Orbits: Orbital Mechanics- Kepler's laws ,locating the satellite in the Orbit, locating the satellite with respect to the earth, Orbital elements, look angle determination, Sub satellite point, Azimuth and elevation angle calculation, Orbital perturbations, Longitudinal and Inclination changes; Launches and launch vehicles-ELV's, Placing the satellite into geostationary orbit, Doppler shift, range variations, solar eclipse, sun transit outage.

Unit II

Communication Satellites: Satellite Subsystems, Attitude and Orbit Control system(AOCS), Telemetry, Tracking, Command and Monitoring (TTC&M), Power System, Communication Subsystems-description, Transponders, satellite antennas-basic antenna types, basic antennas in practice.

Unit III

Satellite Link Design and Satellite Access: Basic transmission theory, system noise temperature and G/T ratio; Downlink design-link budget; Uplink design; design for specified C/N, uplink and downlink attenuation in rain, communication link design procedure; system design examples.

Unit IV

Multiple Access Schemes: FDMA, TDMA, CDMA, DAMA; VSAT systems-basic techniques, VSAT earth station engineering, system design; DBS systems-C-band and Ku band home TV, digital DBS; satellite mobile systems; GPS

- Timothy Pratt, Satellite Communications, Wiley India edition
- Anil K Maini, Satellite Communication, Wiley India edition

OE-CS-406A				Social Networl	ks						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	2	75	25	100	3 Hour				
Purpose	To study t	To study the role of Social networks and how they make convenient to access									
	informatio	nformation, provide information and communicate via social media by providing a									
	platforms t	platforms for the benefit of their									
			Course	e Outcomes							
CO 1	To underst	tand the cond	cept of soc	ial networking							
CO 2	To know t	he various so	cial netwo	orks and their w	orking						
CO 3	To study the	he frameworl	ks of socia	l networks							
CO 4	To extract	the informat	ion from s	ocial networks							

UNIT-I

Introduction to social networks, google page rank, link prediction, importance of acquaintances, web graph, introduction: emergence of connectedness, granovetter's strength of weak ties, triads, clustering coefficient and neighbourhood overlap, structure of weak ties, bridges, and local bridges, embeddedness, betweenness measures and graph partitioning, finding communities in a graph (Brute Force Method), community detection using Girvan Newmann algorithm, strong and weak relationship.

UNIT II

Introduction to homophily, selection and social influence, Foci closure and membership closure, Introduction to Fatman Evolutionary model, triadic closure, spatial segregation, an introduction, schelling model implementation, positive and negative relationships- introduction, structural balance, creating graph, displaying it and counting unstable triangles, equal coin distribution, random walk coin distribution

UNIT III

Matrices in social network analysis (Betweenness, centrality, equivalence relation, centralization, clustering Coefficient and structural cohesion), Diffusion in networks, Impact of communities on diffusion, cascade and clusters, introduction to hubs and authorities, hubs and authorities, page rank as a matrix operation, introduction to power law, rich get richer phenomena, implementing a random graph (Erdos Renyi Model)

UNIT IV

Rich Get Richer- The long tail, Epidemics- an introduction, simple branching process for modelling epidemics, basic reproductive number, SIR and SIS spreading models, percolation model, milgram's experiment, the generative model, decentralized search, basic of equivalence concepts in social networks.

- David Easley and Jon Kleinberg, "Networks, crowd and Markets", Cambridge University Press.
- Matthew O. Jackson, "Social and Economic Networks", Princeton University Press
- Matthew A. Russeil, "Mining the Social web", O'Reilly and SPD Second Edition New Delhi
- Hanneman, R.A., & Riddle, M., "Introduction to social network methods, Riverside, California: University of California Riverside retrieved from http://faculty.ucr.edu/~hanneman/nettext/
- John scott, Peter J. Carrington,"social network analysis", sage publishing ltd.

OE-CS-408A			Agile S	Software Engine	eering						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	2	75	25	100	3 Hrs.				
Purpose	Introduces	ntroduces the business value of adopting Agile approaches and provide									
	complete u	complete understanding of the Agile development practices									
Course Outcomes (CO)											
CO1	Understand	the backgro	ound and	driving forces	for taking an A	gile app	roach to				
	software dev	velopment.									
CO2	Understand	the business	value of ac	lopting Agile ap	proaches.						
CO3	Drive devel	opment with	unit tests u	ising Test Driver	n Development.						
CO4	Apply desig	n principles a	and refacto	ring to achieve	Agility.						

Fundamentals of Agile: The Genesis of Agile, Introduction and background, Agile Manifesto and Principles, Overview of Scrum, Extreme Programming, Feature Driven development, Lean Software Development, Agile project management, Design and development practices in Agile projects, Test Driven Development, Continuous Integration, Refactoring, Pair Programming, Simple Design, User Stories, Agile Testing, Agile Tools

Unit II

Agile Scrum Framework: Introduction to Scrum, Project phases, Agile Estimation, Planning game, Product backlog, Sprint backlog, Iteration planning, User story definition, Characteristics and content of user stories, Acceptance tests and Verifying stories, Project velocity, Burn down chart, Sprint planning and retrospective, Daily scrum, Scrum roles – Product Owner, Scrum Master, Scrum Team, Scrum case study, Tools for Agile project management.

Unit III

Agile Testing: The Agile lifecycle and its impact on testing, Test-Driven Development (TDD), xUnit framework and tools for TDD, Testing user stories - acceptance tests and scenarios, Planning and managing testing cycle, Exploratory testing, Risk based testing, Regression tests, Test Automation, Tools to support the Agile tester.

Unit IV

Agile Software Design and Development: Agile design practices, Role of design Principles including Single Responsibility Principle, Open Closed Principle, Liskov Substitution Principle, Interface Segregation Principles, Dependency Inversion Principle in Agile Design, Need and significance of Refactoring, Refactoring Techniques, Continuous Integration, Automated build tools, Version control.

- Ken Schawber, Mike Beedle, Agile Software Development with Scrum, Pearson publications.
- Robert C. Martin, *Agile Software Development, Principles, Patterns and Practices*, Prentice Hall.
- Lisa Crispin, Janet Gregory, *Agile Testing: A Practical Guide for Testers and Agile Teams*, Addison Wesley.
- Alistair Cockburn, Agile Software Development: The Cooperative Game, Addison Wesley.
- Mike Cohn, User Stories Applied: For Agile Software, Addison Wesley.

OE-CS-410A			Soft	ware Quality N	Iodels						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	2	75	25	100	3 Hour				
Purpose	To provid	To provide an understanding of various concepts related to software quality,									
	reliability	reliability and maintenance.									
			Course	e Outcomes							
CO 1	To underst	and the conc	ept of soft	ware quality							
CO 2	To study the	ne various qu	uality mod	lels							
CO 3	To underst	and the testin	ng and reli	ability concepts	5						
CO 4	Relation of	f maintenanc	e and qual	ity							

Software Quality: Meaning and scope, software quality factors, software quality metrics, relationship b/w quality factors and quality metrics, quality management system, software reviews, formal technical reviews, correctness proof, statistical quality assurance, clear room, software engineering, standards of software quality assurance.

Unit-II

Software Reliability: meaning and its relation with software quality, reliability modelingexponential failure time models (viz., Jelinski Moranda model, Schneidiwind's model, Musa's basic execution time model, hyberexponential model), Weibull and gamma failure time model (viz. Weibull model, S-shaped reliability growth model), and infinite failure category models (viz. Duane's model, geometric model, Muse-Okumto model). Types of failure, bath-tub Curve, Exponential law of reliability.

Unit-III

Software Testing: Meaning. Scope and its relationship with software quality, software testing techniques: white box testing, basis path testing, control structure testing and black box testing, etc. Software testing strategies: unit testing, integration testing, validation testing and system testing, etc.

Unit-IV

Software Maintenance: Concept of repair and maintenance, concept of availability and its relation with reliability and maintainability, preventive maintenance, Software maintenance, the management of reliable software, automatic error detection and error correction.

- Software Quality: Concepts and Plan, by Robert H Dunn Prentice Hall International 71
- Software Reliability: Measurement, Prediction and application by John D.Musa, McGraw Hill
- Software Reliability Engineering By Michele R Lyu, McGraw Hill
- Software Reliability By K.K. Aggarwal
- Software Reliability by H Koptez.
- C.R. Vick & C.V. Rama Moorthy: Handbook of Software Engineering CBS Publishers & Distributors, Delhi.
- Software Engineering, K K Aggarwal, New Age International Publication, New Delhi
- Mark Paulik, The capability Maturity Model-Guidelines for improving the software Process, Addison Wesley.
- Michael, Deutsch, Willis, Ronald r-Software Quality Engineering –A Total Techinical and Management approach, Prentice Hall.

OE-CS-412A			Autom	ation in Manuf	facturing						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	2	75	25	100	3 Hour				
Purpose	The purpo	The purpose of this course is to impart knowledge of production automation,									
	Robotics,	Robotics, flexible manufacturing, CNC programming, material handling and									
	automated	utomated storage systems.									
Course Outcomes											
CO 1	To explain	To explain the role of automation in manufacturing and Robotics in industry.									
CO 2	To describ	be the group	technolo	gy and flexible	e manufacturing	techniq	ues in the				
	automated	production li	ine and ma	anufacturing sys	stem.						
CO 3	To explai	n computer	aided pr	ocess planning	g and shop fl	oor man	ufacturing				
	activities.										
CO 4	To develo	p CNC prog	rams and	understand the	concept automa	ated guid	ed vehicle				
	and autom	ated storage s	system in	material handlii	ng						

Unit l

Introduction: Production system, automation in production system, manual labour in production system, automation principle and strategies, manufacturing industries and products, manufacturing operations, product facilities, product/production relationship, basic elements of an automation system, advance automation function, level of automation.

Industrial Robotics: Robot anatomy and related attributes, joint and links, common robot configuration, joint drive system, sensors in Robotics, robot control system, end effectors, grippers and tools, applications of industrial robots, material handling, processing operation, assembly and inspection, robot programming.

Unit ll

Group technology and cellular manufacturing: Part families, part classifications and coding, production flow analysis, cellular manufacturing-composite part concept, machine cell design, applications of group technology, grouping parts and machines by rank order clustering technique, arranging machines in G.T. cell.

Flexible manufacturing: Introduction, FMS components, flexibility in manufacturing-machine, product, routing operation, types of FMS, FMS layouts, FMS planning and control issues, deadlock in FMS, FMS benefits and applications.

Unit Ill

Process planning: Introduction, manual process planning, computer aided process planning- variant, generative, decision logic decision tables, decision trees, introduction to artificial intelligence.

Shop floor control: Introduction, shop floor control features, major displays, major reports, phases of SFC, order release, order scheduling, order progress, manufacturing control, methodology, applications, shop floor data collections, types of data collection system, data input techniques, automatic data, collection system.

Unit IV

CNC basic and part programming: Introduction, historical, background, basic components of an NC steps in NC, verification of numerical control machine tool programs, classification of NC machine tool, basics of motion control and feedback for NC M/C, NC part programming, part

programming methods, modern machining system, automatically programmed tools, DNC, adaptive control.

Automated Guided Vehicle and Storage System: Functions of AGV, types of AGV, safety consideration for AGV, design of AGV, Introduction to storage system, storage system performance, storage location strategies, conventional storage method and equipment, automated storage system, fixed aisle automated storage/retrieval system, carousel storage system, analysis of storage system, fixed aisle automated storage/retrieval systems, carousel storage system.

- Automation, production system and computer integrated manufacturing- Mikell P. Groover, Pearson 4th edition.
- CAD/CAM: Computer Aided Design and manufacturing Groover- M.P. and Zimmers E. W., Prentice Hall International, New Delhi 1992
- CAD/CAM/CIM-P. Radhakrishnan, S. Subramanayan and V. Raju, New Age International (P) Ltd., New Delhi
- Computer Integrated Manufacturing- Alavudeen and Venkateswaran, Prentice Hall of India Pvt. Ltd. New Delhi.

OE-CS-414A	IPR, Bioethics and Biosafety											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time										
2	0	0	2	75	25	100	3 Hour					
Purpose	The cours	The course concentrates on technology, knowledge and business management										
	aspect of in	aspect of intellectual property, including patenting aspect.										
			Course	e Outcomes								
CO 1	To provide	e an understa	anding on	biosafety and r	risk assessment	of produc	ets, ethical					
	issues in b	iological rese	earch									
CO 2	To introdu	ce about the	IPR and it	s role								
CO 3	To examin	e the role of	Biosafety	and bioethics								
CO 4	To know the	he procedure	of applyin	ng IPR								

Biotechnology and society: Introduction to science, technology and society, issues of access-Case studies/experiences from developing and developed countries. Ownership, monopoly, traditional knowledge, biodiversity, benefit sharing, environmental sustainability, public vs. private funding, biotechnology in international relations, globalization and development divide. Public acceptance issues for biotechnology: Biotechnology and hunger: Challenges for the Indian Biotechnological research and industries

Unit II

Bioethics & legal issues: Principles of bioethics: Legality, morality and ethics, autonomy, human rights, beneficence, privacy, justice, equity etc. Expanding scope of ethics from biomedical practice to biotechnology, bioethics vs. business ethics, ethical dimensions of IPR, technology transfer and other global biotech issues. Legal, institutional and socio-economic impacts of biotechnology; biotechnology and social responsibility, Public education to increase the awareness of bioethics with regard to generating new forms of life for informed decision making-with case studies.

Unit III

Biosafety: Good Lab Practices, Introduction to Biological Safety Cabinets, Primary Containment for Biohazards, Biosafety Levels GMOs and LMOs and their environmental impact, Roles of Institutional Biosafety Committee, RCGM, GEAC etc. For GMO applications in food and agriculture Risk analysis, assessment and management

Bioethics: Bioethical issues related to Healthcare & medicine Food & agriculture Genetic engineering, The Human Genome Project and Genetic Testing Environmental problems

Unit IV

IPR, Patents and Patents Laws: Intellectual property rights-TRIP- GATT International conventions patents, Requirement of patentable novelty Methods of application of patents Legal implications Biodiversity and farmer rights Objectives of the patent system, Basic principles and general requirements of patent law, Biotechnological inventions and patent law. Legal development: Patentable subjects and protection in biotechnology, Patenting of living organisms, procedure for applying for patent Patent Infringement and related case studies Biological Patentability.

IPR and Biotechnology: Biopiracy and Bioprospecting Farmers Rights and Plant breeders rights Biodiversity.

- Biosafety in Microbiological and Biomedical Laboratories, (2009) 5th Ed, <u>www.cdc.gov/ od/</u> <u>ohs/</u> biosfty/ bmbl5/ bmbl5toc.html.
- V. Shree Krishna, (2007), Bioethics and Biosafety in Biotechnology, New Age International Pvt. Ltd. Publishers.
- Deepa Goel, ShominiParashar, (2013), IPR, Biosafety and Bioethics, Pearson.
- R. Ian Freshney, Culture of Animal Cells: a Manual of Basic Technique and Specialized Applications, 6th Ed, John Wiley & Blackwell
- Biotechnology and Safety Assessment Thomas J.A., Fuch R.L Academic Press 3rd Edition 2002
- Biological safety Principles and practices Fleming D.A., Hunt D. ASM Press 3rd. ed. 2000
- Bioethics Ben Mepham Oxford University Press 2008
- Bioethics & Biosafety R Rallapalli&Geetha Bali APH Publication 2007

OE-CS-416A			Big	g Data and Ana	lytics						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	2	75	25	100	3 Hrs.				
Purpose	To provid	e knowledge	of Big Da	ta Analytics a	nd Distributed I	Tile Syste	ms.				
Course Outcomes (CO)											
CO1	To learn in	Γο learn in details the concepts of big data.									
CO2	Expose the	e criteria of bi	g data ana	lytics and big d	ata storage.						
CO3	To explore	e knowledge o	of big data	compression te	chniques.						
CO4	To explor	explore learning of big data tools and state-of-the-art knowledge with									
	implement	ation for big	data.								

Big Data Background: Big data definition and features of big data, big data value, development of big data, challenges of big data, NoSQL databases, technologies related to big data including cloud computing, Internet of Things, data center, Hadoop, relationship between IoT and big data, relationship between hadoop and big data, big data generation and acquisition includes data collection, data transmission, data pre-processing, big data applications.

Unit II

Big Data Analytics and Storage: Big data analysis, big data analytic methods and tools, Pig, Hive, Flume, Mahout, Big data storage, distributed storage system for massive data, storage mechanism for big data GFS, HDFS, HBase, MongoDB, Cassandra, big data storage deduplication techniques, fixed-size and variable-size blocks based deduplication, content defined chunking, frequency based chunking, byte and multi-byte indexing techniques, Cloud storage.

Unit III

Big Data Compression: Big data delta compression, Xdelta implementation, Message Digest (MD5), Secure Hash Algorithm (SHA-1/SHA-256), Gear Hash, Tiger Hash, Rabin and Incremental Secure Fingerprint based deduplication, lossless duplicate and similar data elimination approaches, Parallel deduplication and compression using PCOMPRESS, Scalable Decentralized Deduplication Store (SDDS) using Cassandra.

Unit IV

Big Data Processing: Installation procedure with system requirements for Apache Hadoop, Cassandra, Spark, Pig, Hive, HBase, MongoDB large scale distributed storage systems, Map Reduce programming model working, YARN architecture, Apache Pig and Hive architecture, Single node and Multi-nodes Hadoop Cluster Set up and running a Big Data example, NoSQL implementation.

- "Big Data" by Viktor Mayer-Schönberger, Kenneth Cukier, ISBN:978-0544002692, Eamon Dolan/Houghton Mifflin Harcourt 2013.
- "Big Data Now", by O'Reilly Media Inc., ASIN: B0097E4EBQ, O'Reilly 2012.
- "Hadoop Operation", by Eric Sammer, ISBN: 978-1449327057, O'Reilly 2012.
- "MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop and Other Systems", by Donald Miner, Adam Shook, ISBN:978-1449327170, O'Reilly 2012.
- "Programming Hive", by Edward Capriolo, ISBN: 978-1449319335,O'Reilly 2012.
- "HBase: the Definitive Guide", by Lars George, ISBN: 978-1449396107, O'Reilly 2011.

- "Mahout in Action", by Sean Owen, Robin Anil, Ted Dunning, Ellen Friedman, ISBN: 978-1935182689, Manning 2011.
- "Programming Pig", by Alan Gates, ISBN: 978-1449302641, O'Reilly 2011.
- "Cassandra, the Definitive Guide", by Eben Hewitt ISBN: 978-1449390419 O'Reilly 2011.
 "MongoDB: The Definitive Guide" by Kristina Chodorow, Michael Dirolf,ISBN: 978-1449381561, O'Reilly, 2010.

B. Tech Computer Science and Engineering (Artificial Intelligence and Machine Learning) Scheme of Studies/Examination Semester III

S. No.	Course No.	Subject	L:T:P	Hours/ Week	Credits	Examination Schedule			Durati on of	
110.				Week		Major Test	Minor Test	Practical	Total	Exam (Hrs.)
1	BS- CS- AIML- 201A	Applied Statistical Analysis for AI	3:0:0	3	3	75	25	0	100	3
2	ES- CS- AIML- 203A	Data Structure	3:0:0	3	3	75	25	0	100	3
3	PC- CS- AIML- 205A	Object Oriented Programming	3:0:0	3	3	75	25	0	100	3
4	PC- CS- AIML- 207A	Introduction to AI	3:0:0	3	3	75	25	0	100	3
5	ES- CS- AIML- 209A	Programming Language	3:0:0	3	3	75	25	0	100	3
6	HM-902A	Business Intelligence and Entrepreneurship	3:0:0	3	3	75	25	0	100	3
7	PC- CS- AIML- 213LA	Data Structure Lab	0:0:2	2	1	0	40	60	100	3
8	PC- CS- AIML- 215LA	Object Oriented Programming Lab	0:0:2	2	1	0	40	60	100	3
9	PC- CS- AIML- 217LA	Python –Lab-I	0:0:2	2	1	0	40	60	100	3
		Total		24	21	450	270	180	900	
11	SIM-201A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50	

BS-CS-										
AIML-	Applied Statistical Analysis for AI									
201A										
Lecture	Tutorial	Practical	Major Test	Minor Test	Total	Time				
3	0	0	75	25	100	3				
Purpose	To gain a broad understanding of the statistical analysis in Artificial Intelligence.									
	Course Outcomes(CO)									
CO1	To study the Statistical Analysis concepts with their relationships and process.									
CO2	To familiarize with describing data, transforming and summarizing.									
CO3	To understan	To understand testing hypothesis with real time applications.								
CO4	To apply the	examining rel	ationships to find the co	orrelation and regre	ession.					
CO5	To demonstr	ate and analys	e using basic statistical	techniques with di	fferent use case	es.				
CO6	To understan	d the advance	d techniques with applic	cations of decision t	rees, neural net	tworks.				

UNIT – I

Introduction, Meaning of Statistics, The Scientific Method, Basic Steps of the Research Process, Experimental Data and Survey Data, Populations and Samples, Census and Sampling Method, Parameter and Statistic, Independent and Dependent Variables, Examining Relationships, Introduction to SPSS Statistics.

UNIT – II

Introduction, Types of Data, Data Transformation, Summarizing Data: Graphical Methods, Summarizing Data: Measures of Central Tendency, Summarizing Data: Measures of Dispersion, Levels of Measurement, Random Variables and Probability Distributions, Discrete and Continuous Random Variable, Making Inferences about Populations from samples, Estimator and Estimate, Confidence Interval for Population Mean (Large Sample).

UNIT – III

Introduction, Null and Alternative Hypothesis, Type I and Type II Error, The Procedure of Hypothesis Testing; Hypothesis Testing of a Population Mean: Sample, a proportion(One Sample), Population Variance, Population Mean: Two Independent Samples(), Dependent Samples (Paired Samples), Two Population Proportion, Two Population Variances; Analysis of Variance (ANOVA).

$\mathbf{UNIT} - \mathbf{IV}$

Introduction, Types of Correlation, Karl Pearson Coefficient Correlation, Spearman's Rank Order Correlation, Partial Correlation, Residuals and Plots, Simple Linear Regression, Multiple Regression Model, Repeated Measures, Non-linear Regression, Polynomial Regression Models, Decision Trees, Neural Networks, Cluster Analysis, Factor Analysis.

SUGGESTED BOOKS:

1. Probability for Statistics and Machine Learning: Anirban DasGupta - 2011

2. An Introduction to Statistics with Python With Applications in the Life Sciences By Thomas Haslwanter, 2016

3. Applied Statistics: A handbook of techniques- Zenon Reynarowych, springer verlag

4. Joel Grus, "Data Science from Scratch: First Principles with Python", O'Reilly Media Media.

5. Jain V.K., "Data Sciences", Khanna Publishing House, Delhi.

6. Applied Statistics-principles and Examples-D.R.Cox and E.J.Snell.

7. Applied statiscal methods, Irving W. Burr, Academic press.

8. Probability, Statistics and Random process, Dr.K. Murugesan & P.Gurusamy by Anuradha Agencies, Deepthi publications.

9. Jain V.K., "Big Data and Hadoop", Khanna Publishing House, Delhi.

10. Jiawei Han and Jian Pei, "Data Mining Concepts and Techniques", Third Edition, Morgan Kaufmann Publishers

ES-CS- AIML- 203A	Data Structure								
Lecture	Tutorial	Practical	Credit	Major	Minor Test	Total	Time		
3	0	0	3	75	25	100	3		
3									
Purpose	To introduce the principles and paradigms of Data Structures for design and implement the software								
	systems logically and physically.								
Course Outo	comes (CO)								
CO 1	To introduc	ce the basic c	oncepts of D	ata structure	, basic data ty	pes ,searchin	g and sorting based on		
	array data t	ypes.	Ĩ				0		
CO 2	To introduc	e the structure	ed data types	like Stacks an	nd Queue and in	ts basic operation	ations' implementation.		
CO 3	To introduc	e dynamic im	plementation	of linked list	•				
CO 4	To introduc	e the concepts	s of Tree and	graph and im	plementation o	f traversal al	gorithms.		

Introduction to Data Structures, Data Types, Built in and User Defined Data Structures, Applications of Data Structure, Algorithm Analysis, Worst, Best and Average Case Analysis, Notations of Space and Time Complexity, Basics of Recursion.

Arrays, One Dimensional Arrays, Two Dimensional Arrays and Multi-Dimensional Arrays, Sparse Matrices, Searching from array using Linear and Binary Searching Algorithm, Sorting of array using Selection, Insertion, Bubble, Radix Algorithm

Unit-II

Stacks: Definition, Implementation of Stacks and Its Operations, Evaluation of Infix, prefix and Postfix Expression, Inter-conversion of Infix, Prefix and Post-Fix Expression, Implementation of Merge Sort and Quick Sort Algorithm.

Queues: Definition, Sequential Implementation of Linear Queues and Its Operations, Circular Queue and Its Implementation, Priority Queues and Its Implementation, Applications of queues.

Unit-III

Linked Lists: Need of Dynamic Data Structures, Single Link List and Its Dynamic Implementation, Traversing, Insertion, Deletion Operations on Single Link Lists. Comparison between Static and Dynamic, Implementation of Linked List. Circular Link Lists and Doubly Link List, Dynamic Implementation of Primitive Operations on Doubly Linked Lists and Circular Link List. Dynamic Implementation of Stacks and Queues.

Unit-IV

Trees: Definition, Basic Terminology, Binary Tree, External and Internal Nodes, Static and Dynamic Implementation of a Binary Tree, Primitive Operations on Binary Trees, Binary Tree Traversals: Pre-Order, In-Order and Post-Order Traversals. Representation of Infix, Post-Fix and Prefix Expressions using Trees. **Introduction to Binary Search Trees**: B+ trees, AVL Trees, Threaded Binary trees, Balanced Multi-way

search trees, Implementation of Heap Sort Algorithm.

Graphs: Basic Terminology, Definition of Undirected and Directed Graphs, Memory Representation of Graphs, Minimum-Spanning Trees, Warshal Algorithm, Graph Traversals Algorithms: Breadth First and Depth First.

SUGGESTED BOOKS:

- 1. Theory and Problems of Data Structures by Jr. Symour Lipschetz, Schaum's outline, TMH.
- 2. Data Structures and Algorithms by PAI, TMH.
- 3. Fundamentals of Data structures by Ellis Horowitz and Sartaj Sahni, Pub, 1983, AW.
- 4. Data Structures and Algorithms by A.V. Aho, J.E. Hopcroft and T.D. Ullman, Original edition, Addison-Wesley, 1999, Low Priced Edition.
- 5. Data Structures and Program Design in C by Robert Kruse, PHI,
- 6. Shukla, Data Structures using C++, Wiley India

7. Introduction to Computers Science -An Algorithms Approach, Jean Paul Tremblay, Richard B. Bunt, 2002, T.M.H.

8. Data Structure and the Standard Template library – Willam J. Collins, 2003, T.M.H.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PS-CS- AIML- 205A	Object-Oriented Programming								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0	0	3	75	25	100	3		
Purpose	To introduce the principles and paradigms of Object Oriented Programming Language for								
	design and implement the Object Oriented System.								
Course Outc	comes (CO)								
CO1	To introduce the basic concepts of object oriented programming language and the its								
	representation.								
CO2	To allocate dynamic memory, access private members of class and the behavior of								
	inheritance and	l its implemer	ntation.						
CO3	To introduce p	olymorphism,	, interface des	sign and over	loading of oper	ator.			
CO4	To handle bac	kup system	using file, g	eneral purpo	se template an	ıd handlin	g of raised		
	exception durin	ng programmi	ng.						

Unit–I

Introduction to C++, C++ Standard Library, Illustrative Simple C++ Programs. Header Files, Namespaces, Application of object oriented programming.

Object Oriented Concepts, Introduction to Objects and Object Oriented Programming, Encapsulation, Polymorphism, Overloading, Inheritance, Abstract Classes, Accessifier (public/ protected/ private), Class Scope and Accessing Class Members, Controlling Access Function, Constant, Class Member, Structure and Class.

Unit-II

Friend Function and Friend Classes, This Pointer, Dynamic Memory Allocation and Deallocation (New and Delete), Static Class Members, Constructors, parameter Constructors and Copy Constructors, Deconstructors, Introduction of inheritance, Types of Inheritance, Overriding Base Class Members in a Derived Class, Public, Protected and Private Inheritance, Effect of Constructors and Deconstructors of Base Class in Derived Classes.

Unit-III

Polymorphism, Pointer to Derived class, Virtual Functions, Pure Virtual Function, Abstract Base Classes, Static and Dynamic Binding, Virtual Deconstructors.

Fundamentals of Operator Overloading, Rules for Operators Overloading, Implementation of Operator Overloading Like <<,>> Unary Operators, Binary Operators.

Unit-IV

Text Streams and binary stream, Sequential and Random Access File, Stream Input/ Output Classes, Stream Manipulators.

Basics of C++ Exception Handling, Try, Throw, Catch, multiple catch, Re-throwing an Exception, Exception specifications.

Templates: Function Templates, Overloading Template Functions, Class Template, Class Templates and Non-Type Template arguments.

SUGGESTED BOOKS:

- The complete reference C ++ by Herbert shieldt Tata McGraw Hill.
- Object Oriented Programming in Turbo C++ by Robert Lafore, 1994, The WAITE Group Press.
- Shukla, Object Oriented Programming in c++, Wiley India.
- C++ How to Program by H M Deitel and P J Deitel, 1998, Prentice Hall.
- Programming with C++ By D Ravichandran, 2003, T.M.H.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS- AIML- 207A	Introduction to AI									
Lecture	Tutorial Practical Major Test Minor Test Total T									
3	0	0	75	25	100	3				
Purpose	To gain a broad understanding of the discipline of Artificial Intelligence and its scope in									
	various emerging areas.									
	-		Course Outcomes(C)	0)						
CO1	Demonstrate	Demonstrate fundamental understanding of Artificial Intelligence (AI) and its foundation								
CO2	Demonstrate	Demonstrate basic concepts of problem solving, searching, inference, perception								
CO3	Demonstrate	Demonstrate proficiency in applying AI techniques in various domains								
CO4	Apply basic principles of AI in solutions that require real world knowledge representation and									
	learning									
CO5	Demonstrate	the real life ex	kamples of Artificial Int	telligence						
CO6	Demonstrate	an ability to s	hare in discussions of A	AI, its current scop	e and limitatior	is, and				
	societal impl	ications								

UNIT – I

Scope of AI: Introduction to Artificial Intelligence, History of Artificial Intelligence, Artificial Intelligence Languages, Multi Agent Systems, natural language processing, vision and speech processing, robotics, expert systems, Case study: Google Duplex, Dialogflow.

UNIT – II

Problem Solving, Searching and Planning: Problem spaces and search, Heuristic and Informed search strategies, Minmax search, Alpha-beta pruning.

Search and optimization (gradient descent), Adversarial search, Planning and scheduling, Case study: Health Care System.

UNIT – III

Knowledge Engineering, Representation, Reasoning and finding Optimal Paths: Knowledge and Knowledge based system, Knowledge and rationality, Logic and inference, Propositional and predicate logic, Ontologies, Bayesian Reasoning, Temporal reasoning, Knowledge Discovery: Data and Web Mining Case study: Medical diagnosis

$\mathbf{UNIT} - \mathbf{IV}$

Applications of AI in Various domains: AI in Marketing, AI in Banking, AI in Finance, AI in Agriculture, AI in Health Care, AI in Gaming, AI in Space Exploration, AI in Autonomous vehicles, AI in Chatbots, AI in Creativity.

SUGGESTED BOOKS:

1. E. Rich and K. Knight, "Artificial Intelligence", TMH, 2nd Ed., 1992.

2. N. J. Nilsson, "Principles of AI", Narosa Publ. House, 1990.

- 3. M. N. Hoda, "Foundation Course in Artificial Intelligence", Vikas Pub., 2004.
- 4. Artificial Intelligence' RB Mishra, PHI

5. Knowledge and Knowledge based System' Russell.

6. Artificial intelligence, Patrick Henry Winston:, 1992, Addition Wesley 3 Ed.

7. Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", 3rd Edition,

Prentice Hall.

8. P. H. Winston, "Artificial Intelligence", Pearson Education, 3rd Edition, 2002. Artificial Intelligence.

9. D. W. Patterson, "Introduction to AI and Expert Systems", PHI, 1992.

10. R. J. Schalkoff, "Artificial Intelligence – An Engineering Approach", McGraw Hill Int. Ed. Singapore, 1992.

11. M. Sasikumar, S. Ramani, "Rule Based Expert Systems", Narosa Publishing House, 1994. 5. Tim Johns, "Artificial Intelligence, Application Programming, Wiley Dreamtech, 2005.

12. Trivedi, M.C., "A Classical Approach to Artifical Intelligence", Khanna Publishing House, Delhi.

13. Saroj Kaushik, "Artificial Intelligence", Cengage Learning India, 2011.

14. David Poole and Alan Mackworth, "Artificial Intelligence: Foundations for Computational Agents", Cambridge University Press 2010.

ES-CS- AIML- 209A		Programming Language							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	3 0 0 3 75 25 100 3								
Purpose	To introdu	To introduce the principles and paradigms of programming languages for design and implement							
	the softwar	e intensive sy	stems.						
Course Ou	utcomes (CO)								
CO 1	To introduce	the basic con	cepts of prog	gramming lan	guage, the ge	neral problen	ns and methods related		
	to syntax and	semantics.							
CO 2	To introduce	Fo introduce the structured data objects, subprograms and programmer defined data types.							
CO 3	To outline the	e sequence co	ntrol and dat	ta control.					
CO 4	To introduce	the concepts	of storage m	anagement us	sing programr	ning language	es.		

Introduction, Syntax and Semantics: A brief history, Characteristics of a good programming language, Programming language translators- compiler and interpreters, Elementary data types – data objects, variable and constants, data types. Specification and implementation of elementary data types, Declarations, type checking and type conversions, Assignment and initialization, Numeric data types, enumerations, Booleans and characters.

Syntax and Semantics: Introduction, general problem of describing syntax, Formal method of describing Syntax, attribute grammar dynamic semantic.

Unit-II

Structured data objects, Subprograms and Programmer Defined Data Types: Structured data objects and data types, specification and implementation of structured data types, Declaration and type checking of data structure, vector and arrays, records Character strings, variable size data structures, Union, pointer and programmer defined data objects, sets, files.

Subprograms and Programmer Defined Data Types: Evolution of data type concept abstraction, encapsulation and information hiding, Subprograms, type definitions, abstract data types, over loaded subprograms, generic subprograms.

Unit-III

Sequence Control and Data Control: Implicit and explicit sequence control, sequence control within expressions, sequence control within statement, Subprogram sequence control: simple call return, recursive subprograms, Exception and exception handlers, co routines, sequence control. Concurrency – subprogram level concurrency, synchronization through semaphores, monitors and message passing.

Data Control: Names and referencing environment, static and dynamic scope, block structure, Local data and local referencing environment, Shared data: dynamic and static scope, Parameter and parameter transmission schemes.

Unit-IV

Storage Management and Programming Languages: Major run time elements requiring storage, programmer and system controlled storage management and phases, Static storage management, Stack based storage management, Heap storage management, variable and fixed size elements.

Programming Languages: Introduction to procedural, non-procedural, structured, logical, functional and object oriented programming language, Comparison of C and C++ programming languages.

SUGGESTED BOOKS:

- Terrence W. Pratt, Marvin V. Zelkowitz, Programming Languages Design and Implementation, Pearson.
- Allen Tucker and Robert Noonan, Programming Languages–Principles and Paradigms, Tata McGraw-Hill, 2009.
- Ellis Horowitz, Fundamentals of Programming Languages, Galgotia Publications, 2010.
- C. Ghezzi, Programming Languages Concepts, Wiley Publications, 2010.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.
HM-902 A		Bı	siness Intell	igence and Ent	repreneurship						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	75	25	100	3				
Purpose	To make the	ne students con	versant with t	he basics conce	pts in managen	nent thereb	y leading to				
	nurturing th	heir managerial	skills.								
Course Out	comes (CO)	mes (CO)									
CO1	Students w	Students will be able understand who the entrepreneurs are and what competences needed to									
	become an	become an Entrepreneur.									
CO2	Students v	will be able	understand i	nsights into th	ne managemen	t, opportu	nity search,				
	identificati	on of a Produc	ct; market fea	asibility studies	; project finaliz	ation etc.	required for				
	small busir	ness enterprises	•								
CO3	Students ca	an be able to w	rite a report a	and do oral pres	sentation on the	topics such	h as product				
	identificati	on, business ide	ea, export ma	rketing etc.							
CO4	Students w	vill be able to 1	know the diff	ferent financial	and other assis	tance avail	lable for the				
	small indus	strial units.									

UNIT – I

Entrepreneurship : Concept and Definitions; Entrepreneurship and Economic Development; Classification and Types of Entrepreneurs; Entrepreneurial Competencies; Factor Affecting Entrepreneurial Growth – Economic, Non-Economic Factors; EDP Programmes; Entrepreneurial Training; Traits/Qualities of an Entrepreneurs; Manager Vs. Entrepreneur, Entrepreneurial challenges.

UNIT – II

Opportunity / **Identification and Product Selection:** Entrepreneurial Opportunity Search and Identification; Criteria to Select a Product; Conducting Feasibility Studies; Sources of business ideas, Marketing Plan : Conducting of Marketing Research, Industry Analysis, Competitor analysis, market segmentation and positioning, building a marketing plan, marketing mix, launching a new product; export marketing, Methods of Project Appraisal, Project Report Preparation; Specimen of Project Report; Project Planning and Scheduling using Networking Techniques of PERT / CPM.

UNIT – III

Small Enterprises and Enterprise Launching Formalities : Definition of Small Scale; Rationale;

Objective; Scope; SSI; Registration; NOC from Pollution Board; Machinery and Equipment Selection, Role of SSI in Economic Development of India; major problem faced by SSI,MSMEs – Definition and

Significance in Indian Economy; MSME Schemes, Challenges and Difficulties in availing MSME Schemes.

UNIT – IV

Role of Support Institutions and Management of Small Business : DIC; SIDO; SIDBI; Small Industries Development Corporation (SIDC); SISI; NSIC; NISBUD; State Financial Corporation SIC; Venture Capital : Concept, venture capital financing schemes offered by various financial institutions in India.

Special Issues for Entrepreneurs: Legal issues – Forming business entity, requirements for formation of a Private/Public Limited Company, Entrepreneurship and Intellectual Property Rights: IPR and their importance. (Patent, Copy Right, Trademarks), Case Studies-At least one in whole course. **Note:**

• Case studies of Entrepreneurs – successful, failed, turnaround ventures should be discussed in the class.

• Exercises / activities should be conducted on 'generating business ideas' and identifying problems and opportunities.

• Interactive sessions with Entrepreneurs, authorities of financial institutions, Government officials should be organized

SUGGESTED BOOKS:

- 1. "Entrepreneurship development small business enterprises", Pearson, Poornima M Charantimath, 2013.
- 2. Roy Rajiv, "Entrepreneurship", Oxford University Press, 2011.
- 3. "Innovation and Entrepreneurship", Harper business- Drucker.F, Peter, 2006.
- **4.** "Entrepreneurship", Tata Mc-graw Hill Publishing Co.ltd new Delhi- Robert D. Hisrich, Mathew J. Manimala, Michael P Peters and Dean A. Shepherd, 8th Edition, 2012.
- 5. Enterpreneurship Development- S.Chand and Co., Delhi- S.S.Khanka 1999
- 6. Small-Scale Industries and Entrepreneurship. Himalaya Publishing House, Delhi –Vasant Desai 2003.
- 7. Entrepreneurship Management -Cynthia, Kaulgud, Aruna, Vikas Publishing House, Delhi, 2003.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS-													
AIML-				Data Stru	icture Lab								
213LA													
Lecture	Tutorial	FutorialPracticalCreditMinorPracticalTotalTime											
				Test									
0	0	2	1	40	60	100	2						
Purpose	To introduc	To introduce the principles and paradigms of Data Structures for design and implement the											
	software sys	software systems logically and physically.											
Course Outco	mes (CO)												
CO1	Implement l	inear and nor	n linear data	a structures us	sing linked list.								
CO2	Apply vario	us data struct	ures such a	s stack, queue	e and tree to so	lve the proble	ems.						
CO3	Implement v	various search	ning and so	rting techniqu	ies.								
CO4	Choose appr	ropriate data	structure w	hile designing	g the applicatio	ns and analyz	ze the complexity of						
	the algorithm	ms.											

LIST OF PRACTICALS:

- 1. Write a program for Binary search methods.
- 2. Write a program for insertion sort, selection sort and bubble sort.
- 3. Write a program to implement Stack and its operation.
- 4. Write a program for quick sort.
- 5. Write a program for merge sort.
- 6. Write a program to implement Queue and its operation.
- 7. Write a program to implement Circular Queue and its operation.
- 8. Write a program to implement singly linked list for the following operations: Create, Display, searching, traversing and deletion.
- 9. Write a program to implement doubly linked list for the following operations: Create, Display, inserting, counting, searching, traversing and deletion.
- 10 Write a program to implement circular linked list for the following operations: Create, Display, inserting, counting, searching, traversing and deletion.
- 11. Write a program to implement insertion, deletion and traversing in B tree

NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.

PC-CS-												
AIML-	Object Oriented Programming Lab											
215LA												
Lecture	Tutorial	Cutorial Practical Credit Minor Test Practical Total Time										
0	0	2 1 40 60 100 2										
Purpose	To introduc	To introduce the principles and paradigms of Object Oriented Programming Language for design and										
	implement t	the Object Oriente	d System.									
Course Ou	tcomes (CO))										
CO1	To familiari	ize with the class a	and objects									
CO2	To impleme	To implement the concept of constructors										
CO3	To familiari	ize the concept of	operator over	loading								
CO4	To impleme	ent the concepts of	Inheritance									

LIST OF PRACTICALS

1. Raising a number n to a power p is the same as multiplying n by itself p times. Write a function called power () that takes a double value for n and an int value for p, and returns the result as double value. Use a default argument of 2 for p, so that if this argument is omitted, the number will be squared. Write a main () function that gets values from the user to test this function.

2. A point on the two dimensional plane can be represented by two numbers: an X coordinate and a Y coordinate. For example, (4,5) represents a point 4 units to the right of the origin along the X axis and 5 units up the Y axis. The sum of two points can be defined as a new point whose X coordinate is the sum of the X coordinates of the points and whose Y coordinate is the sum of their Y coordinates. Write a program that uses a structure called point to model a point. Define three points, and have the user input values to two of them. Then set the third point equal to the sum of the other two, and display the value of the new point. Interaction with the program might look like this:

Enter coordinates for P1: 3 4

Enter coordinates for P2: 5 7

Coordinates of P1 + P2 are : 8, 11

3. Create the equivalent of a four function calculator. The program should request the user to enter a number, an operator, and another number. It should then carry out the specified arithmetical operation: adding, subtracting, multiplying, or dividing the two numbers. (It should use a switch statement to select the operation). Finally it should display the result. When it finishes the calculation, the program should ask if the user wants to do another calculation. The response can be 'Y' or 'N'. Some sample interaction with the program might look like this.

Enter first number, operator, and second number: 10/3

Answer = 3.333333Do another (Y/N)? Y Enter first number, operator, second number 12 + 100Answer = 112Do another (Y/N)? N

4. A phone number, such as (212) 767-8900, can be thought of as having three parts: the area code (212), the exchange (767) and the number (8900). Write a program that uses a structure to store these three parts of a phone number separately. Call the structure phone. Create two structure variables of type phone. Initialize one, and have the user input a number for the other one. Then display both numbers. The interchange might look like this:

- Enter your area code, exchange, and number: 415 555 1212
- My number is (212) 767-8900
- Your number is (415) 555-1212

5. Create two classes DM and DB which store the value of distances. DM stores distances in metres and centimeters and DB in feet and inches. Write a program that can read values for the class objects and add one object of DM with another object of DB. Use a friend function to carry out the addition operation. The object that stores the results maybe a DM object or DB objects, depending on the units in which the results are required. The display should be in the format of feet and inches or metres and cenitmetres depending on the object on display.

6. Create a class rational which represents a numerical value by two double values- NUMERATOR and DENOMINATOR. Include the following public member Functions:

- constructor with no arguments (default).
- constructor with two arguments.
- void reduce() that reduces the rational number by eliminating the highest common factor between the numerator and denominator.
- Overload + operator to add two rational number.
- Overload >> operator to enable input through cin.
- Overload << operator to enable output through cout.

Write a main () to test all the functions in the class.

7. Consider the following class definition

```
class father {
protected : int age;
public;
father (int x) {age = x;}
virtual void iam ()
```

{ cout << "I AM THE FATHER, my age is : "<< age<< end1:}

Derive the two classes son and daughter from the above class and for each, define iam () to write our similar but appropriate messages. You should also define suitable constructors for these classes. Now, write a main () that creates objects of the three classes and then calls iam () for them. Declare pointer to father. Successively, assign addresses of objects of the two derived classes to this pointer and in each case, call iam () through the pointer to demonstrate polymorphism in action.

8. Write a program that creates a binary file by reading the data for the students from the terminal. The data of each student consist of roll no., name (a string of 30 or lesser no. of characters) and marks.

9. A hospital wants to create a database regarding its indoor patients. The information to store include

- a) Name of the patient
- b) Date of admission
- c) Disease
- d) Date of discharge

Create a structure to store the date (year, month and date as its members). Create a base class to store the above information. The member function should include functions to enter information and display a list of all the patients in the database. Create a derived class to store the age of the patients. List the information about all the to store the age of the patients. List the information about all the pediatric patients (less than twelve years in age).

10. Make a class **Employee** with a name and salary. Make a class **Manager** inherit from **Employee**. Add an instance variable, named department, of type string. Supply a method to **to String** that prints the manager's name, department and salary. Make a class **Executive** inherits from **Manager**. Supply a method **to String** that prints the string **"Executive"** followed by the information stored in the **Manager** superclass object. Supply a test program that tests these classes and methods.

11. Imagine a tollbooth with a class called toll Booth. The two data items are a type unsigned int to hold the total number of cars, and a type double to hold the total amount of money collected. A constructor initializes both these to 0. A member function called payingCar () increments the car total and adds 0.50 to the cash total. Another function, called nopayCar (), increments the car total but adds nothing to the cash total. Finally, a member function called displays the two totals. Include a program to test this class. This program should allow the user to push one key to count a paying car, and another to count a nonpaying car. Pushing the ESC kay should cause the program to print out the total cars and total cash and then exit.

12. Write a function called reversit () that reverses a string (an array of char). Use a for loop that swaps the

first and last characters, then the second and next to last characters and so on. The string should be passed to

reversit () as an argument. Write a program to exercise reversit (). The program should get a string from the

user, call reversit (), and print out the result. Use an input method that allows embedded blanks. Test the program with Napoleon's famous phrase, "Able was I ere I saw Elba)".

13. Create some objects of the string class, and put them in a Deque-some at the head of the Deque and some at the tail. Display the contents of the Deque using the forEach () function and a user written display function. Then search the Deque for a particular string, using the first That () function and display any

strings that match. Finally remove all the items from the Deque using the getLeft () function and display each item. Notice the order in which the items are displayed: Using getLeft (), those inserted on the left (head) of the Deque are removed in "last in first out" order while those put on the right side are removed in "first in first out" order. The opposite would be true if getRight () were used.

14. Assume that a bank maintains two kinds of accounts for customers, one called as savings account and the other as current account. The savings account provides compound interest and withdrawal facilities but no cheque book facility. The current account provides cheque book facility but no interest. Current account holders should also maintain a minimum balance and if the balance falls below this level, a service charge is imposed.

Create a class account that stores customer name, account number and type of account. From this derive the classes

cur_acct and sav_acct to make them more specific to their requirements. Include necessary member functions in order to achieve the following tasks:

- a) Accept deposit from a customer and update the balance.
- b) Display the balance.
- c) Compute and deposit interest.
- d) Permit withdrawal and update the balance.
- e) Check for the minimum balance, impose penalty, necessary and update the balance.
- f) Do not use any constructors. Use member functions to initialize the class members.

15. Create a base class called shape. Use this class to store two double type values that could be used to compute the area of figures. Derive two specific classes called triangle and rectangle from the base shape. Add to the base class, a member function get_data() to initialize baseclass data members and another member function display_area() to compute and display the area of figures. Make display_area() as a virtual function and redefine this function in the derived classes to suit their requirements. Using these three classes, design a program that will accept dimensions of a triangle or a rectangle interactively and display the area.

Remember the two values given as input will be treated as lengths of two sides in the case of rectangles and as base and height in the case of triangles and used as follows:

Area of rectangle = x * y

Area of triangle = $\frac{1}{2} * x * y$

NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.

PC-CS-												
AIML-		Python Lab-I										
217LA												
Lecture	Tutorial	Practical	Minor	Practical	Total	Time						
			Test									
0	0	2	40	60	100	2						
Purpose	To gain a broad understanding of the basics of Python Programming Language.											
Course Ou	itcomes											
CO1	To understan	d the basic co	ncepts of pro	gramming in F	ython.							
CO2	To implement	it data types, l	ogical and m	athematical op	erators.							
CO3	To implement	t list, tuples, o	dictionaries, a	arrays, strings								
CO4	To understan	d and implem	ent the funda	mentals of fun	ctions, recu	rsion						
CO5	To learn and	apply the con	cepts of loop	ing and conditi	ional statem	ents						
CO6	To learn and	implement th	e fundamenta	als of searching	g and sorting							

LIST OF PRACTICALS:

- 1. Write a program to demonstrate basic data types in python.
- 2. Write a program to implement input, output operations and logical, mathematical operations.
- 3. Write a program for checking whether the given number is an even number or not.
- 4. Write a program to demonstrate string, list, tuple and dictionaries in python.
- 5. Write a program using a for loop that loops over a sequence.
- 6. Write a program to perform logical and mathematical operations.

7. Write a program to use split and join methods in the string and trace a birthday of a person with dictionary data structure.

- 8. Write a program to implement function and recursion.
- 9. Write a program to perform linear search and binary search.
- 10. Write a program to perform uninformed and informed search.
- 11. Write a program to perform Insertion sort and binary sort.
- 12. Write a Python program to demonstrate usage of basic regular expression.
- 13. Write a program to construct Bayesian Network.

NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.

B. Tech Computer Science and Engineering (Artificial Intelligence and Machine Learning) Scheme of Studies/Examination Semester IV

S. No.	Course No.	Subject	L:T:P	Hours/ Week	Credits	Examination Schedule				Duration of Exam (Hrs.)
						Major	Minor	Practical	Total	
						Test	Test			
1	BS- CS-	Mathematics for	3:0:0	3	3	75	25	0	100	3
	AIML-202M	Machine Learning								
2	PC- CS-	Intelligent Systems	3:0:0	3	3	75	25	0	100	3
	AIML-204A									
3	PC-CS-	Database	3:0:0	3	3	75	25	0	100	3
	AIML-206A	Management								
		System								
4	PC-CS-	Internet and Web	3:0:0	3	3	75	25	0	100	3
	AIML-208A	Technology								
5	PC-CS-	Operating System	3:0:0	3	3	75	25	0	100	3
	AIML-210A									
6	PC-CS-	Software	3:0:0	3	3	75	25	0	100	3
	AIML-212A	Engineering								
7	PC-CS-	Database	0:0:2	2	1	0	40	60	100	3
	AIML-216A	Management								
		System Lab								
8	PC-CS-	Internet and Web	0:0:2	2	1	0	40	60	100	3
	AIML-218A	Technology Lab								
9	PC-CS-	Python –Lab-II	0:0:2	2	1	0	40	60	100	3
	AIML-220A									
		Total		24	21	450	270	180	900	
10	MC-901A	Environmental	3:0:0	3	0		100	0	100	3
		Sciences								
				1	1					

BS-CS- AIML 202M	Mathematics for Machine Learning										
Lecture	Tutorial	Practical	Major Test	Minor Test	Total	Time					
3	0	0	75	25	100	3					
Purpose	To understan science and n	To understand and learn the core concepts of the prerequisite mathematics for applications in data science and machine learning									
	Course Outcomes(CO)										
CO1	To understan	To understand the basic concepts of data science & machine learning Concepts and their application									
001	in modern co	ntext									
CO2	To apply the	basic statistical	concepts for	r solving various	problems						
CO3	To distinguis related proble	h between vari ems	ous probabil	ity distributions	and apply	the concepts for the solution of					
CO4	To learn the	essential tools	of matrices	and linear algeb	ora includir	ng linear transformations, eigen					
04	values, diago	nalisation, orth	ogonalizatio	n and factorization	on						
CO5	To learn math	nematical mode	lling, types	of matrixs							
CO6	To Implement	t mathematical	concepts us	ing real-world da	ata						

UNIT – I

Overview of Data Science & Machine Learning: Introduction and history of Data Science, Introduction and history of Machine Learning, Overlap between Data Science, Machine Learning and Artificial Intelligence, Applications of Data Science & Machine Learning in the modern context, Types of data, Basic Statistical Concepts:Scale of Measurements (Nominal, Ordinal, Ratio and Interval), Measures of Location, Measures of Variability/Spread, Measures of Shape.

Case Studies: Bollywood Dataset, coronary heart disease dataset.

 $\mathbf{UNIT} - \mathbf{II}$

Probability Theory: Principle of counting, definitions of probability theory, independent events, mutuallyexclusive events, collectively exhaustive events, conditional probability, Bayes Theorem, Discrete probability distribution (Discrete Uniform Distribution, Poisson Distribution, Bernoulli Distribution and Binomial Distribution), covariance, correlation,Continuous probability distribution, normal distribution, Central Limit Theorem, Binomial Distribution, Continuous Uniform Distribution, Exponential Distribution, P-Value, T-Value, Confidence Interval, t distribution and chi square distribution

UNIT – III

Linear Algebra: Introduction to linear algebra, notations and definitions, Elementary transformations, Elementary matrices, inverse using elementary transformations, Rank of a matrix, Normal form of a matrix, Linear dependence and independence of vectors, Consistency of linear system of equations, Eigen Values and Eigen vectors, Properties of Eigen values, Cayley Hamilton theorem, Linear Transformation, Orthogonal transformation

$\mathbf{UNIT}-\mathbf{IV}$

Mathematical modelling: Similar matrices, Diagonalisation of a matrix Operations on matrices - additions, subtraction, multiplication, scalar multiplication, vector multiplication, Orthogonal Matrix, Singularity of Matrix, Matrix factorization, decomposition such as LU, QR and SVD, Conceptualizing a mathematical model/curve form first principles, concept of boundary conditions

SUGGESTED BOOKS:

1. Probability for Statistics and Machine Learning: Anirban DasGupta - 2011

2. Probability for Machine Learning: Discover How To Harness, Jason Brownlee – 2019.

3. Machine Learning using Python: Manaranjan pradhan, U Dinesh Kumar-2020, Wiley.

4. Machine Learning using Python, PRADHAN, Manaranjan, 1st and Reprint 2019, Wiley.

5. Machine Learning (in Python and R),) MUELLER, John Paul, Wiley India

6. Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn and Tensor Flow: Concepts, Tools, and Techniques to Build Intelligent Systems", 1st Edition, O'Reilly Media

7.Python for Probability, Statistics, and Machine Learning, José Unpingco – 2019

8.Mathematics for Machine Learning, Marc peter Deisenroth, A. Aldo Faisal and Cheng Soon Ong. Published by Cambridge University press.

9. Jeeva Jose, "Machine Learning", Khanna Publishing House, Delhi.

10.Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning", MIT Press http://www.deeplearningbook.org

PC-CS-													
AIML-		Intelligent Systems											
204A													
Lecture	Tutorial	FutorialPracticalMajor TestMinor TestTotalTime											
3	0	0 0 75 25 100 3											
Purpose	To impart understanding of the main abstractions and reasoning for intelligent systems.												
	-		Course Outcomes	(CO)									
CO1	Understand t	the basic termi	nologies in artificial	intelligence to deve	elop intelliger	nt systems							
CO2	Apply the ra	ndom search a	and heuristic search f	or intelligent syster	ns.								
CO3	Understand	the abstractio	ons and reasoning for	intelligent systems									
CO4	Apply the r	Apply the rule based methods in intelligent systems											
CO5	Identify the	characteristic	s and architectures o	f algorithms of mul	ti agent syste	ms							
CO6	Identify dif	ferent applicat	tion areas of Intellige	nt Systems									

UNIT-I

Introduction: Overview of AI Problems, AI problems as NP, NP-Complete, NP-Hard, Strong and weak, neat and scruffy, symbolic and sub-symbolic, knowledge base and data driven AI.

UNIT-II

Heuristic Search: Best First Search, Hill Climbing, Beam Search, Tabu Search.

Randomozed Search: Simulated Annealing, Genetic Algorithm, Ant Colony Optimization, Particle Swarm Optimization, Basics of probability theory and probability distributions, information theory, Bayesian learning, Gaussian Mixture models and the EM algorithm, Factor analysis, Principal components analysis, Independent Component Analysis.

UNIT-III

Intelligent Systems: Knowledge acquisition, Computational intelligence, Rule-based systems, Forward-chaining (a data-driven strategy), Conflict resolution, Backward chaining (a goal-driven strategy), Sources of uncertainty, Bayesian updating, Certainty theory.

UNIT-IV

Possibility theory: fuzzy sets and fuzzy logic, Object-oriented systems, Data abstraction, Inheritance, Encapsulation, Unified Modeling Language (UML), Dynamic (or late) binding.

Key Application Areas: Expert System, Decision Support Systems, **Deep Learning:** Speech and vision, natural Language processing, Information Retrieval, Semantic Web.

SUGGESTED BOOKS:

1. Artificial Intelligence' RB Mishra, PHI

2. Introduction to Artificial Intelligence, Charnaik, Pearson.

3. Artificial Intelligence by Elaine Rich, Kevin Knight and Shivashankar B Nair, Tata McGraw Hill.

4. Introduction to Artificial Intelligence and Expert Systems by Dan W Patterson, Pearson Education.

5. Artificial Intelligence : Building Intelligent Systems, KULKARNI, Parag , REPRINT, PHI.

6. Crina Grosan, Ajith Abraham, "Intelligent Systems: A Modern Approach ", Springer-Verlag, 2011

7. Bogdan M. Wilamowski, J. David Irwin, "The Industrial Electronics Handbook. Second Edition: Intelligent Systems", CRC Press, 2011

8. Abraham-Kandel, Gideon-Langholz, "Hybrid-Architectures for Intelligent Systems", CRC-Press, 1992
 9. Augmented Human, PAPAGIANNIS, Helen , ist print, SPD.

10. Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning", MIT Press, <u>http://www.deeplearningbook.org</u>

PC-CS-												
AIML-	Internet & Web technology											
208A												
Lecture	Tutorial	Interview Practical Major Test Minor Test Total Time										
3	0	0	75	25	100	3						
Purpose	To gain a br	To gain a broad understanding of the discipline of Web engineering and its application to the										
	development	and manager	nent of Web App	lications.								
Course Out	comes											
CO1	Learn the bas	sic concepts o	f information and	l web architecture.								
CO2	Learn about	the skills that	will enable to dea	sign and build high	level web en	abled applications.						
CO3	Understand t	he applicabili	ty of Java Script	as per current softw	ware industry	standards.						
CO4	Acquaint the	e latest prog	ramming langua	ge for the imple	mentation of	f object based and						
	procedure ba	sed application	ons using Python.									

Information Architecture: The role of Information Architect, Collaboration and communication, Organizing information, organizational challenges, Organizing web sites and Intranets, Creating cohesive organization systems, designing navigation systems, types of navigation systems, Integrated navigation elements, designing elegant navigation systems, Searching systems, Searching your web site, designing the search interface, Indexing the right stuff, To search or not to search grouping content, conceptual design, High level Architecture Blueprint. Architectural Page Mockups, Design Sketches.

Unit-II

Introduction to XHTML and HTML5: Origins and Evolution of HTML and XHTML, Basic Syntax, Standard XHTML Document Structure, Basic Text Markup, Images, Hypertext Links, Lists, Tables, Forms, HTML5, Syntactic Differences between HTML and XHTML.

Cascading Style Sheets: Introduction, Levels of Style Sheets, Style Specification Formats, Selector Forms, Property Value Forms, Font Properties, List Properties, Color, Alignment of Text, Box Model, Background Images, Conflict Resolution.

Unit -III

Java Script: Overview of JavaScript, Object Orientation and JavaScript, General Syntactic Characteristics, Primitives, Operations, and Expressions, Screen Output and Keyboard Input, Control Statements, Object Creation and Modification, Arrays, Functions, Constructors, Pattern Matching Using Regular Expressions, Errors in Scripts

Unit -IV

Python: Introduction to Python, Data Types and Expressions, Control Statements, Strings and Text Files, Lists and Dictionaries, Design with Functions, Design with Classes

Suggested Books:

- **1.** By Peter Morville, Louis Rosenfeld, "Information Architecture on the World Wide Web", O'Reilly Media, 2006.
- 2. Robert W. Sebesta, "Programming The World Wide Web", Eight Edition, Pearson India, 2015.
- 3. Kenneth A. Lambert, "The Fundamentals of Python: First Programs", 2011, Cengage Learning.
- 4. Thomas A Powell, "HTML The Complete Reference", Tata McGraw Hill Publications.

PC-CS-		Operating System										
AIML- 210A												
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time					
				Test	Test							
3	0	0 0 3 75 25 100 3										
Purpose	To familia	To familiarize the students with the basics of Operating Systems.										
Course Outco	mes (CO)											
CO1	To underst	and the struct	ure and fur	nctions of Op	erating system	m.						
CO2	To learn ab	To learn about processes, threads and scheduling algorithms.										
CO3	To underst	and the princi	ple of cond	currency and	the concept of	of deadlocks.						
CO4	To underst	and various n	nemory ma	nagement scl	neme and to s	study I/O manage	ement and file systems.					

Introduction: Introduction to OS. Operating system functions, Different types of O.S.: batch process, multi-programmed, time-sharing, real-time, distributed, parallel.

System Structure: Computer system operation, I/O structure, storage structure, storage hierarchy, different types of protections, operating system structure (simple, layered, virtual machine), O/S services, system calls.

Unit-II

CPU scheduling: scheduling criteria, preemptive and non-preemptive scheduling, scheduling algorithms, algorithm evaluation, multi-processor scheduling.

Threads: overview, benefits of threads, user and kernel threads.

Process Management: Concept of processes, process states, process control, co-operating processes, interprocess communication.

Process Synchronization: background, critical section problem, critical region, synchronization hardware, Classical problems of synchronization, semaphores.

Unit-III

Deadlocks: Concept of deadlock, deadlock characterization, deadlock prevention, deadlock avoidance, deadlock detection, recovery from deadlock.

Memory Management: background, logical vs. physical address space, contiguous memory allocation, paging, segmentation, segmentation with paging. Concept of fragmentation.

Virtual Memory: background, demand paging, concept of page replacement, page replacement algorithms, allocation of frames, thrashing.

Unit-IV

File Systems: file concept, file organization and access methods, allocation methods, directory structure, free-space management

I/O Management: I/O hardware, polling, interrupts, DMA, kernel I/O subsystem (scheduling, buffering, caching, spooling and device reservation)

Disk Management: disk structure, disk scheduling (FCFS, SSTF, SCAN,C-SCAN), disk reliability, disk Performance parameters

Protection and Security:

Goals of protection and security, security attacks, authentication, program threats, system threats, threat monitoring.

Case studies: UNIX file system, Windows file system

Suggested Books:

- Operating System Concepts", Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne, Wiley
- Operating systems: a concept based approach", Dhananjay M. Dhamdhere, McGraw Hill .
- Operating Systems : Internals and Design Principles, William Stallings, Pearson
- Operating Systems Design and Implementation" ,(Prentice Hall Software Series) Andrew S Tanenbaum and Albert S Woodhull.
- Taub and Schilling, Principles of Communication Systems, TMH.
- Mithal G K, Radio Engineering, Khanna Pub.
- Sirnon Haykin, Communication Systems, John Wiley.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

10(2016)

PC-CS-												
AIML-	Software Engineering											
212A												
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time										
3	0	0 3 75 25 100 3										
Purpose	To gain a bi	To gain a broad understanding of the discipline of software engineering and its application to										
	the developr	ment and man	agement of software pr	rocess.								
			Course Outcomes	(CO)								
CO1	To understan	nd the basic co	oncepts of Software En	igineering.								
CO2	To understan	To understand the fundamental concept of requirements engineering and Analysis Modelling.										
CO3	To understan	nd the differer	nt design techniques an	d their implemer	ntation.							
CO4	To learn abo	out software te	sting and maintenance	measures.								

Introduction: Introduction to Software Engineering, Software Characteristics, Software Crisis, The Evolving role of Software, Software Development Life Cycle (SDLC) Models: Water Fall Model, Prototype Model, Spiral Model, Evolutionary Development Models, Iterative Enhancement Models, RAD, V Model.

Unit-II

Software Requirement Specification: Requirement Engineering Process: Elicitation, Analysis, Documentation, Review and Management of User Needs, Feasibility Study, Data Flow Diagrams, Decision Tables, SRS Document, IEEE Standard for SRS.

Software Quality: Software Quality, Concept of Software Quality Assurance (SQA), SEI-CMM Model. Introduction to Software Risk Management and Software Configuration Management

Unit-III

Software Design: Basic Concept of Software Design, Modularization, Design Structure Charts, Pseudo Codes, Flow Charts, Coupling and Cohesion.

Design Strategies: Function Oriented Design, Object Oriented Design, Top-Down and Bottom-Up Design. **Software Measurement and Metrics:** Various Size Oriented Measures: Halstead's Software Science, Function Point (FP) Based Measures, COCOMO, Cyclomatic Complexity Measures: Control Flow Graphs.

Unit-IV

Software Construction: Software construction fundamentals, minimizing complexity, Top-Down and Bottom –Up programming, structured programming, Compliance with Design and Coding Standards.

Testing: Testing Objectives, Unit Testing, Integration Testing, system testing, Acceptance Testing, Regression Testing, Structural Testing, Functional Testing, debugging.

Maintenance: key issues, Types of software Maintenance, Cost of Maintenance, Software Re-Engineering.

Suggested Books:

- 1. R. S. Pressman, Software Engineering: A Practitioners Approach, McGraw Hill.
- 2. K. K. Aggarwal and Yogesh Singh, Software Engineering, New Age International Publishers.
- 3. Pankaj Jalote, Software Engineering, Wiley India.
- 4. Rajib Mall, Fundamentals of Software Engineering, PHI Publication.
- 5. Ian Sommerville, Software Engineering, Addison Wesley.

PC-CS-AIML-					4 T 1				
216A		Database Management Systems Lab							
L	T	P	Credit	Practical	Minor Test	Total	Time		
0	0	0 2 1 60 40 100 2							
Purpose	To impleme	To implement practically the various concepts of DBMS							
			C	Course Outcom	es				
CO1	To understa	nd& Imple	ment basic I	DDL commands					
CO2	To learn & l	To learn & Implement DML and DCL commands.							
CO3	To understa	nd the SQL	queries usi	ng SQL operato	ors.				
CO4	To understa	nd the conc	ept of relation	onal algebra and	d implement usi	ng examp	les.		

LIST OF PRACTCALS

- 1. Create a database and write the programs to carry out the following operation:
 - Add , Delete and modify a record in the database
 - Generate queries
 - Data operations
 - List all the records of database in ascending order.
- 2. To perform various integrity constraints on relational database.
- 3. Create a database and perform the following operations:-
 - 1. Arithmetic and Relational operations
 - 2. Group by & having clauses
 - 3. Like predicate for pattern matching in database
- 4. Create a view to display details of employees working on more than one project.
- 5. Create a view to display details of employees not working on any project.
- **6.** Using two tables create a view which shall perform natural join, equi join, outer joins.
- 7. Write a procedure to give incentive to employees working on all projects. If no such employee found give app. Message.
- 8. Write a procedure for computing amount telephone bill on the basic of following conditions.
 - 1. telephone rent Rs. 205 including first 105 free units.
 - 2. if extra units>0 but <500 then rate is 80 paise per unit.
 - 3. if extra units>500 then rate is Rs. 1.20 per unit.

For this purpose create a table with name, Phone No., No. of units consumed, bill amount of a customer.

- **9.** Write a procedure for computing income tax of employee on the basic of following conditions:-1. if gross pay<=40,000 then I.T rate is 0%.
 - 2. if gross pay>40,000 but <60000 then I.T rate is 10%.
 - 3. if gross pay>60,000 but <1,00,0000 then I.T rate is 20%.
 - 4. if gross pay>1,00,0000 then I.T rate is 30%.
 - For this purpose create a table with name, ssn, gross salary and income tax of the employee.
- **10.** Write trigger for before and after insertion, deletion and updation process.

NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.

PC-CS-									
AIML-218A			Internet and	l Web Technolo	gy Lab				
L	Т	Р	Credit	Practical	Minor Test	Total	Time		
0	0	2	1	60	40	100	2		
Purpose	To introduce the concepts of HTML5, JavaScript and Python.								
			Course Outco	mes (CO)					
CO1	Design web	pages using H	HTML, JavaScrij	pt and CSS.					
CO2	Design and using Pytho	Design and test simple function/program to implement Searching and sorting techniques using Python.							
CO3	Develop pro scripts.	ogram in Java	Script for patter	n matching using	g regular expr	essions and	errors in		
CO4	Design clie	nt-server base	d web application	ons.					

LIST OF PRACTCALS

- 1. Create your own page with your favorite hobbies using HTML, JavaScript and CSS.
- 2. Create a frameset in HTML that is divided into three sections. The frameset should have three zones.
 - a. The Topmost section of the frameset should take up about just 15% of the browser window. Name this frame title.
 - b. The middle section should be 75% of the browser window. Name this frame title.
 - c. The lower section should be 10% of the browser window. Name this frame menu.
- 3. Create pages for each section. For the lowermost section, create page that loads the content into the middle section. The topmost section should contain a page describing the web page itself.
- 4. Create a web page, which displays the map of your country Link, each city /state on the image map, such that the respective HTML page of the city/state is displayed when the user selects an area.
- 5. Add the tickertape applet to your page by customizing it for the following settings:
 - a. Increase the count by one.
 - b. Accordingly update the message count.
 - c. Change the text color to (237,192,171)
 - d. Experiment with changing the scrolling speed.
 - e. Customize the message text as per your page requirement.
- 6. Incorporate a quest book into the Diary Food Webpage and use Java Script to build validations into the form.
- 7. Use Cascading Style sheets (CSS) to modify the following:
 - a. Change background.
 - b. Change font type, face and color.
 - c. Align Text.
 - d. Remove underlines from hyperlinks.
- 8. Write the program for using JavaScript by using for loops (through a block of code a number of times), for/in loops (through the properties of an object), while loops (through a block of code while a specified condition is true), do/while loops (through a block of code while a specified condition is true).
- 9. Write a program in Java Script for the following:
 - a. Copying, passing, and comparing by value
 - b. Copying, passing, and comparing by reference
 - c. References themselves are passed by value
- 10. Write program in Java Script for pattern matching using regular expressions and errors in scripts.
- 11. Write a Python function/program that accepts the lengths of three sides of a triangle as inputs. The program output should indicate whether or not the triangle is an equilateral triangle.
- 12. Write the Python functions for linear search, binary search, selection sort, Bubble Sort, Insertion Sort and converting Fibonacci to a linear algorithm.
- 13. Write program in Python using Lists and dictionaries, Control statements and Strings and text files.

PC-CS-												
AIML-	Python Lab-II											
220A												
Lecture	Tutorial	InternalPracticalMinorPracticalTotalTime										
			Test									
0	0	2	40	60	100	2						
Purpose	To gain a broad understanding of the discipline of machine Learning and its implementation											
	using differer	using different libraries.										
			Course O	utcomes								
CO1	To understand	d the basic con	ncepts of Pyth	on libraries								
CO2	To learn and	apply concept	s of data mani	pulation in m	achine Learni	ng.						
CO3	To learn and apply descriptive analysis concepts.											
CO4	To understand the fundamentals of knowledge representation.											
CO5	To learn and	apply concept	s of distribution	on and hypoth	esis.							
CO6	To understand	d and impleme	ent various dat	ta visualizatio	n concepts.							

LIST OF PRACTICALS:

- 1. Write a program to implement of Basic Python Libraries-numpy, scipy.
- 2. Write a program to implement of Basic Python Libraries-matplotlib, pandas, Scikitlearn.
- 3. Write a program to create samples from population.
- 4. Write a program to evaluate Mean, Median, Mode of dataset.
- 5. Write a program to implement Central Limit Theorem in dataset.
- 6. Write a program to implement Measure of Spread in datset.
- 7. Write a program to implement program to differentiate between descriptive and inferential statistics.
- 8. Write a program to implement pmf, pdf and cdf.
- 9. Write a program to implement different visualization techniques on sample dataset.
- 10.Write a program to implement different hypothesis test on sample dataset.

NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.

MC-901A	Environmental Sciences											
Lecture	TutorialPracticalCreditMajor TestMinor TestTotalTime											
<mark>3</mark>	<mark>0</mark>	0 0 0 75 25 100 3										
Purpose	To learn the multidisciplinary nature, scope and importance of Environmental sciences.											
			Co	urse Outcon	nes (CO)							
CO1		The stud	dents will b	be able to lear	rn the importanc	e of natur	al resources.					
CO2	To learn the theoretical and practical aspects of eco system.											
CO3	Will be able to learn the basic concepts of conservation of biodiversity.											
CO4	Th	e students wi	ll be able t	o understand	the basic concep	pt of susta	inable development.					

The multidisciplinary nature of environmental studies, Definition, Scope and Importance, Need for public awareness, Natural Resources: Renewable and Non-Renewable Resources: Natural resources and associated problems.

- (a) Forest Resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
- (b)Water Resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- (c) Mineral Resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- (d)Food Resources: World Food Problems, changes caused by agriculture and overgazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- (e) Energy Resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- (f) Land Resources: Land as a resource, land, degradation, man induced landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources, Equitable use of resources for sustainable lifestyle.

Unit-II

Ecosystem-Concept of an ecosystem: Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological Succession, Food Chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem: (a) Forest Ecosystem, (b) Grassland Ecosystem, (c) Desert Ecosystem and (d) Aquatic Ecosystems (ponds, streams, lakes, rivers, oceans, esturaries

Field Work: Visit to a local area to document Environment assets-river/forest/grassland/hill/mountain, Visit to a local polluted site-Urban /Rural Industrial/Agricultural, Study of common plants, insects and birds, Study of simple ecosystems-pond, river, hill, slopes etc. (Field work equal to 5 lecture hours).

Unit-III

Biodiversity and its conservation: Introduction, Definition: genetic, species and ecosystem diversity. Biogeographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity of global, National and local levels. India as a megadiversity nation Hot spot of Biodiversity, Threats to biodiversity: Habitat loss, poaching of wild life, manwildlife conflicts, Endangered and endemic species of India, Conservation of Biodiversity- In situ and Ex-Situ conservation of biodiversity.

Environmental Pollution Definition: Cause, effects and control measures of (a) Air Pollution (b) Water Pollution (c) Soil Pollution (d) Marine Pollution (e) Noise Pollution (f) Thermal Pollution (g) Nuclear Hazards

Solid waste management- cause, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies, Disaster management: floods, earthquake, cyclone and landslides

Unit-IV

Social Issues and the Environment: From unsustainable to sustainable development, Urban problems related to energy, Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people: Its problems and concerns, Case Studies: Environmental ethics-issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies: Wasteland Reclamation, Consumerism and waste products, Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Issues involved in enforcement of environmental legislation, Public

Awareness, Human population and the Environment, Population growth, variation among nations, Population explosion-Family Welfare Programme, Environment and human health. Human rights, Value Education, HIV/AIDS, Women and Child Welfare, Role of Information Technology in Environment and Human Health, Case Studies, Drugs and their effects; Useful and harmful drugs, Use and abuse of drugs, Stimulant and depression drugs, Concept of drug de-addiction, Legal position on drugs and laws related to drugs.

SUGGESTED BOOKS:

- Environmental Studies- Deswal and Deswal. Dhanpat Rai and Co.
- Environmental Science and Engineering Anandan, P. and Kumaravelan, R. 2009. Scitech Publications (India) Pvt. Ltd., India
- Environmental Studies. Daniels Ranjit R. J. and Krishnaswamy. 2013. Wiley India.
- Environmental Science- Botkin and Keller. 2012. Wiley, India

Note: The Examiner will be given the question paper template to set the question paper.

B.Tech Computer Science and Engineering (Cyber Security) Credit Based Scheme of Studies/Examination Semester III

						Examination Schedule (Marks)		Duration of Exam		
S. N.	Course No.	Subject	L:T:P	Hours/Week	Credits	Major	Minor	Practical	Total	(Hrs)
						Test	Test			
1	PC-CS-CYS-	Introduction to	3:0:0	3	3	75	25	0	100	3
	201A	Cyber Security								
2	PC-CS-CYS- 203A	Data Structure	3:0:0	3	3	75	25	0	100	3
3	PC-CS-CYS- 205A	Computational Thinking with Python	3:0:0	3	3	75	25	0	100	3
4	PC-CS-CYS- 207A	Software Engineering	3:0:0	3	3	75	25	0	100	3
5	PC-CS-CYS- 209A	Principles of Programming Languages	3:0:0	3	3	75	25	0	100	3
6	ES-CS-CYS- 211A	Computer Organization and Architecture	3:0:0	3	3	75	25	0	100	3
7	PC-CS-CYS- 213LA	Data Structure Lab	0:0:2	2	1	0	40	60	100	3
8	PC-CS-CYS- 215LA	Python Lab	0:0:2	2	1	0	40	60	100	3
9	PC-CS-CYS- 217LA	Software Engineering Lab	0:0:2	2	1	0	40	60	100	3
		Total		24	21	450	270	180	900	
10	SIM-201A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50	

Note: SIM-201A is a mandatory credit-less course in which the students will be evaluated for the Summer Internship (training) undergone after 2ndsemester and students will be required to get passing marks to qualify.

PC-CS-CYS-	Introduction to Cyber Security											
201A												
Lecture	Tutorial Practical Credit Major Test Minor Test Total Time											
3	0) 0 3.0 75 25 100 3 Hours										
Purpose	To gain a b	To gain a broad understanding in order to get predictive ways out related to cyber security.										
			Course O	utcomes								
CO1	To facilitate	e the basic kn	owledge of cybe	er security.								
CO2	To explore	To explore and sort issues related to different types of activities in cyber crime.										
CO3	To get enable to fix the various cyber attacks.											
CO4	To deal wit	h the digital f	orensics and rel	ated scenarios c	f cyber crimes.							

Introduction: Introduction and Overview of Cyber Crime, Nature and Scope of Cyber Crime, Types of Cyber Crime: crime against individual, Crime against property, Cyber extortion, Drug trafficking, cyber terrorism. Need for Information security, Threats to Information Systems, Information Assurance, Cyber Security, and Security Risk Analysis.

Unit-II

Cyber Crime Issues: Unauthorized Access to Computers, Computer Intrusions, Viruses and Malicious Code, Internet Hacking and Cracking, Virus and worms, Software Piracy, Intellectual Property, Mail Bombs, Exploitation, Stalking and Obscenity in Internet, Password Cracking, Steganography, Key loggers and Spyware, Trojan and backdoors, phishing, DOS and DDOS attack, SQL injection, Buffer Overflow.

Unit-III

Introduction to cyber attacks: passive attacks, active attacks, Cyber crime prevention methods, Application security (Database, E-mail and Internet), Data Security Considerations-Backups, Archival Storage and Disposal of Data, Security Technology-Firewall and VPNs, Intrusion Detection, Access Control, Hardware protection mechanisms, OS Security

Unit-IV

Digital Forensics: Introduction to Digital Forensics, historical background of digital forensics, Forensic Software and Hardware, need for computer forensics science, special tools and techniques digital forensic life cycle, challenges in digital forensic.

Law Perspective: Introduction to the Legal Perspectives of Cybercrimes and Cyber security, Cybercrime and the Legal Landscape around the World, Why Do We Need Cyber laws, The Indian IT Act, Cybercrime Scenario in India, Digital Signatures and the Indian IT Act, Cybercrime and Punishment.

Suggested Books:

- 1. Nelson Phillips and Enfinger Steuart, "Computer Forensics and Investigations", Cengage Learning, New Delhi, 2009.
- 2. Robert M Slade," Software Forensics", Tata McGraw Hill, New Delhi, 2005.
- 3. Sunit Belapure and Nina Godbole, "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wiley India Pvt. Ltd.

PC-CS-CYS-203A				Data Structu	ıre				
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0	0	3.0	75	25	100	3 Hours		
Purpose	To introduc	e the princip	es and parad	ligms of Data	Structures for	design and	implement the		
	software sys	stems logically	and physicall	у.					
	Course Outcomes (CO)								
CO 1	To introduce	e the basic cor	ncepts of data	structure , ba	isic data types ,	searching an	d sorting based		
	on array dat	ta types.							
CO 2	To introduo	ce the struct	ured data ty	pes like Stac	ks and Queue	e and its ba	sic operations'		
	implementa	ition.							
CO 3	To introduce	e dynamic imp	lementation of	of linked list.					
CO 4	To introduce	e the concepts	of Tree and g	graph and impl	lementation of	traversal algo	orithms.		

Introduction to Data Structures, Data Types, Built in and User Defined Data Structures, Applications of Data Structure, Algorithm Analysis, Worst, Best and Average Case Analysis, Notations of Space and Time Complexity, Basics of Recursion.

Arrays, One Dimensional Arrays, Two Dimensional Arrays and Multi-Dimensional Arrays, Sparse Matrices, Searching from array using Linear and Binary Searching Algorithm, Sorting of array using Selection, Insertion, Bubble, Radix Algorithm

Unit-2

Stacks: Definition, Implementation of Stacks and Its Operations, Evaluation of Infix, prefix and Postfix Expression, Inter-conversion of Infix, Prefix and Post-Fix Expression, Implementation of Merge Sort and Quick Sort Algorithm. **Queues**: Definition, Sequential Implementation of Linear Queues and Its Operations, Circular Queue and Its

Implementation, Priority Queues and Its Implementation, Applications of queues.

Unit-3

Linked Lists: Need of Dynamic Data Structures, Single Link List and Its Dynamic Implementation, Traversing, Insertion, Deletion Operations on Single Link Lists. Comparison between Static and Dynamic, Implementation of Linked List. Circular Link Lists and Doubly Link List, Dynamic Implementation of Primitive Operations on Doubly Linked Lists and Circular Link List. Dynamic Implementation of Stacks and Queues.

Unit-4

Trees: Definition, Basic Terminology, Binary Tree, External and Internal Nodes, Static and Dynamic Implementation of a Binary Tree, Primitive Operations on Binary Trees, Binary Tree Traversals: Pre-Order, In-Order and Post-Order Traversals. Representation of Infix, Post-Fix and Prefix Expressions using Trees.

Introduction to Binary Search Trees: B+ trees, AVL Trees, Threaded Binary trees, Balanced Multi-way search trees, Implementation of Heap Sort Algorithm.

Graphs: Basic Terminology, Definition of Undirected and Directed Graphs, Memory Representation of Graphs, Minimum-Spanning Trees, Warshal Algorithm, Graph Traversals Algorithms: Breadth First and Depth First. **Suggested Books**:

- Theory and Problems of Data Structures by Jr. Symour Lipschetz, Schaum's outline, TMH.
- Data Structures and Algorithms by PAI, TMH.
- Fundamentals of Data structures by Ellis Horowitz and Sartaj Sahni, Pub, 1983, AW.
- Data Structures and Algorithms by A.V. Aho, J.E. Hopcroft and T.D. Ullman, Original edition, Addison-Wesley, 1999, Low Priced Edition.
- Data Structures and Program Design in C by Robert Kruse, PHI,
- Shukla, Data Structures using C++, Wiley India
- Introduction to Computers Science -An Algorithms Approach, Jean Paul Tremblay, Richard B. Bunt, 2002, T.M.H.
- Data Structure and the Standard Template library Willam J. Collins, 2003, T.M.H.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS-CYS-		Computational Thinking with Python											
205A													
Lecture	Tutorial	TutorialPracticalCreditMajorMinor TestTotalTime											
				Test									
3	0	0	3.0	75	25	100	3 Hours						
Purpose	The purp programi application	The purpose of this course is to introduce Python, a remarkably powerful dynamic programming language to write code for different operating systems along with application domain.											
			Course O	utcomes (CO)								
CO 1	To Learn using var	python stater ious example	ments, comn programs.	nents and inde	entation, tokens,	input and o	output methods						
CO 2	To Learn Design se	To Learn the different methods involved in List, String, Tuples and Dictionary and Design solutions for complex programs using decision making and looping statements.											
CO 3	To learn about different functions in python and Develop the function programs with all												
	the conce	pts like lambo	la, decorato	rs and genera	ators.								
CO 4	To learn	about the ex	ception hand	dling functior	ns, file concepts a	and CSV an	d JSON.						

Introduction to python: Advantages of python programming-Tokens-Variables-Input/output methods-Data types- Operators

Unit-2

DATA STRUCTURES: Strings-Lists-Tuples-Dictionaries-Sets. **CONTROL STATEMENTS:** Flow Control-Selection control Structure-if-if-else-if-elseif-el

CONTROL STATEMENTS: Flow Control-Selection control Structure-if-if-else-if-elseif-else-Nested if iterative control structures-while loop, for loop and range.

Unit-3

FUNCTIONS: Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

Unit-4

EXCEPTION HANDLING: Exception Handling-Regular Expression-Calendars and clock files: File input/output operations-Dictionary operations-Reading and writing in structured files: CSV and JSON.

Suggested Books:

- Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- Programming With Python Book 'Himalaya Publishing House Pvt Ltd
- "Dive Into Python" by Mark Pilgrim
- Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS-CYS-	Software Engineering											
207A												
Lecture	Tutorial Practical Credit Major Test Minor Test Total Time											
3	0	0	3.0	75	25	100	3 Hours					
Purpose	To gain a bro	To gain a broad understanding of the discipline of software engineering and its application to										
	the develop	ment and mar	agement of s	oftware proces	is.							
			Course Ou	tcomes(CO)								
CO1	To understa	nd the basic co	oncepts of So	ftware Enginee	ring.							
CO2	To understand the fundamental concept of requirements engineering and Analysis Modelling.											
CO3	To understand the different design techniques and their implementation.											
CO4	To learn abo	ut software te	esting and ma	intenance mea	sures.							

Introduction: Introduction to Software Engineering, Software Characteristics, Software Crisis, The Evolving role of Software, Software Development Life Cycle (SDLC) Models: Water Fall Model, Prototype Model, Spiral Model, Evolutionary Development Models, Iterative Enhancement Models, RAD, V Model.

Unit-II

Software Requirement Specification: Requirement Engineering Process: Elicitation, Analysis, Documentation, Review and Management of User Needs, Feasibility Study, Data Flow Diagrams, Decision Tables, SRS Document, IEEE Standard for SRS.

Software Quality: Software Quality, Concept of Software Quality Assurance (SQA), SEI-CMM Model. Introduction to Software Risk Management and Software Configuration Management

Unit-III

Software Design: Basic Concept of Software Design, Modularization, Design Structure Charts, Pseudo Codes, Flow Charts, Coupling and Cohesion.

Design Strategies: Function Oriented Design, Object Oriented Design, Top-Down and Bottom-Up Design. **Software Measurement and Metrics:** Various Size Oriented Measures: Halstead's Software Science, Function Point (FP) Based Measures, COCOMO, Cyclomatic Complexity Measures: Control Flow Graphs.

Unit-IV

Software Construction: Software construction fundamentals, minimizing complexity, Top-Down and Bottom –Up programming, structured programming, Compliance with Design and Coding Standards.

Testing: Testing Objectives, Unit Testing, Integration Testing, system testing, Acceptance Testing, Regression Testing, Structural Testing, Functional Testing, debugging.

Maintenance: key issues, Types of software Maintenance, Cost of Maintenance, Software Re-Engineering.

Suggested Books:

- 1. R. S. Pressman, Software Engineering: A Practitioners Approach, McGraw Hill.
- 2. K. K. Aggarwal and Yogesh Singh, Software Engineering, New Age International Publishers.
- 3. Pankaj Jalote, Software Engineering, Wiley India.
- 4. Rajib Mall, Fundamentals of Software Engineering, PHI Publication.
- 5. Ian Sommerville, Software Engineering, Addison Wesley.

PC-CS-	Principles of Programming Languages											
CYS-209A												
Lecture	Tutorial	Practical	Credit	Major	Minor Test	Total	Time					
				Test								
3	0	0	3.0	75	25	100	3 Hours					
Purpose	To introdu	To introduce the principles and paradigms of programming languages for design and										
	implement	the software	intensive syst	ems.								
			Course C	utcomes (CO)							
CO 1	To introduce	e the basic co	ncepts of pro	gramming lar	nguage, the ge	neral probler	ns and methods					
	related to sy	ntax and sem	antics.									
CO 2	To introduce the structured data objects, subprograms and programmer defined data types.											
CO 3	To outline th	he sequence c	ontrol and da	ta control.								
CO 4	To introduce	e the concepts	s of storage m	anagement u	sing programn	ning language	es.					

Unit-I: Introduction, Syntax and Semantics

Introduction: A brief history, Characteristics of a good programming language, Programming language translators- compiler and interpreters, Elementary data types – data objects, variable and constants, data types. Specification and implementation of elementary data types, Declarations, type checking and type conversions, Assignment and initialization, Numeric data types, enumerations, Booleans and characters.

Syntax and Semantics: Introduction, general problem of describing syntax, Formal method of describing Syntax, attribute grammar dynamic semantic.

Unit-II: Structured data objects, Subprograms and Programmer Defined Data Types

Structured data objects: Structured data objects and data types, specification and implementation of structured data types, Declaration and type checking of data structure, vector and arrays, records Character strings, variable size data structures, Union, pointer and programmer defined data objects, sets, files.

Subprograms and Programmer Defined Data Types: Evolution of data type concept abstraction, encapsulation and information hiding, Subprograms, type definitions, abstract data types, over loaded subprograms, generic subprograms.

Unit–III: Sequence Control and Data Control

Sequence Control: Implicit and explicit sequence control, sequence control within expressions, sequence control within statement, Subprogram sequence control: simple call return, recursive subprograms, Exception and exception handlers, co routines, sequence control. Concurrency – subprogram level concurrency, synchronization through semaphores, monitors and message passing

Data Control: Names and referencing environment, static and dynamic scope, block structure, Local data and local referencing environment, Shared data: dynamic and static scope, Parameter and parameter transmission schemes.

Unit-IV: Storage Management and Programming Languages

Storage Management: Major run time elements requiring storage, programmer and system controlled storage management and phases, Static storage management, Stack based storage management, Heap storage management, variable and fixed size elements.

Programming Languages: Introduction to procedural, non-procedural, structured, logical, functional and object oriented programming language, Comparison of C and C++ programming languages.

Suggested Books:

- Terrence W. Pratt, Marvin V. Zelkowitz, Programming Languages Design and Implementation, Pearson.
- Allen Tucker and Robert Noonan, Programming Languages–Principles and Paradigms, Tata McGraw-Hill, 2009.
- Ellis Horowitz, Fundamentals of Programming Languages, Galgotia Publications, 2010.
- C. Ghezzi, Programming Languages Concepts, Wiley Publications, 2010.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

ES-CS-CYS-			Computer Org	anization and Arc	hitecture							
211A												
Lecture	Tutorial	Practical	Credit	Major Test	Minor	Total	Time					
					Test							
3	0	0	3.0	75	25	100	3 Hours					
Purpose	Student wi	Student will be able to understand the basic concepts of computer architecture and										
	organization, and understand the key skills of constructing cost-effective computer systems.											
			Course Outco	omes (CO)								
CO1	Be familia	r with the	functional uni	ts of the proc	essor such	as the	register file					
	and arithme	etic-logical ur	nit, and with the	basics of systems	topics							
CO2	Be familiar with the design trade-offs in designing and constructing a computer processor.											
CO3	Be familiar with the CPU design including the RISC/CISC architectures.											
CO4	Be familiar	with the ba	sic knowledge	of I/O devices a	nd interfaci	ng of I/O (devices with					
	computer.											

Data representation and Computer arithmetic: Introduction to Computer Systems, Organization and architecture, evolution and computer generations; Fixed point representation of numbers, digital arithmetic algorithms for Addition, Subtraction, Multiplication using Booth's algorithm and Division using restoring and non restoring algorithms. Floating point representation with IEEE standards and its arithmetic operations.

Unit-II

Basic Computer organization and Design: Instruction codes, stored program organization, computer registers and common bus system, computer instructions, timing and control, instruction cycle: Fetch and Decode, Register reference instructions; Memory reference instructions. Input, output and Interrupt: configuration, instructions, Program interrupt, Interrupt cycle, Micro programmed Control organization, address sequencing, micro instruction format and microprogram sequencer.

Unit-III

Central Processing Unit: General register organization, stack organization, instruction formats, addressing modes, Data transfer and manipulation, Program control. CISC and RISC: features and comparison. Pipeline and vector Processing, Parallel Processing, Pipelining, Instruction Pipeline, Basics of vector processing and Array Processors.

Unit-IV

Input-output organization: I/O interface. I/O Bus and interface modules, I/O versus Memory Bus. Asynchronous data transfer: Strobe control, Handshaking, Asynchronous serial transfer. Modes of Transfer: Programmed I/O, Interrupt driven I/O, Priority interrupt; Daisy chaining, Parallel Priority interrupt. Direct memory Access, DMA controller and transfer. Input output Processor , CPU-IOP communication, I/O channel.

Suggested Books:

- William Stallings, "Computer Organization and Architecture Designing for Performance", Sixth Edition, Pearson Education, 2003.
- Morris Mano, M., "Computer System Architecture," 3/e, Pearson Education, 2005.
- John P. Hayes, "Computer Architecture and Organization," 3/e, TMH, 1998.
- David A. Patterson and John L. Hennessy, "Computer Organization and Design: The Hardware/Software interface", Third Edition, Elsevier, 2005.
- V.P. Heuring, H.F. Jordan, "Computer Systems Design and Architecture", Second Edition, Pearson Education, 2004.
- Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, Tata McGraw Hill, 2002.

PC-CS-CYS-				Data Stru	cture Lab						
213LA											
Lecture	Tutorial	Practical	Credit	Minor	Practical	Total	Time				
				Test							
0	0	2	1	40	60	100	2 Hours				
Purpose	To introdu	ice the princip	les and pa	radigms of	Data Structure	s for design	and implement the				
	software systems logically and physically.										
Course Outcon	nes (CO)										
CO1	Implemen	t linear and no	on linear da	ta structure	s using linked l	ist.					
CO2	Apply various data structures such as stack, queue and tree to solve the problems.										
CO3	Implement various searching and sorting techniques.										
CO4	Choose appropriate data structure while designing the applications and analyze the										
	complexit	y of the algori	hms.								

LIST OF PRACTICALS:

- 1. Write a program for Binary search methods.
- 2. Write a program for insertion sort, selection sort and bubble sort.
- 3. Write a program to implement Stack and its operation.
- 4. Write a program for quick sort.
- 5. Write a program for merge sort.
- 6. Write a program to implement Queue and its operation.
- 7. Write a program to implement Circular Queue and its operation.
- 8. Write a program to implement singly linked list for the following operations: Create, Display, searching, traversing and deletion.
- 9. Write a program to implement doubly linked list for the following operations: Create, Display, inserting, counting, searching, traversing and deletion.
- 10 Write a program to implement circular linked list for the following operations: Create, Display, inserting, counting, searching, traversing and deletion.
- 11. Write a program to implement insertion, deletion and traversing in B tree
- **NOTE:** A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.

PC-CS-CYS- 215LA		Py	thon Lab									
Lecture	Tutorial	Tutorial Practical Credit Minor Test Practical Total Time										
0	0	0 2 1 40 60 100 2 Hours										
Purpose	The cour	The course is designed to provide Basic knowledge of Python										
			Course Out	comes (CO)								
CO 1	To study	fundamentals of	f python prog	ramming and imple	ement basic pr	ograms.						
CO 2	To imple	To implement the searching technique using python.										
CO 3	To implement sorting techniques using python.											
CO 4	To imple	ment matrix mu	ltiplication us	ing python.								

LIST OF PRACTICALS

- 1. WAP to compute the GCD of two numbers.
- 2. WAP to find the square root of a number
- 3. WAP to find the Exponentiation (power of a number)
- 4. WAP to find the maximum of a list of numbers
- 5. WAP for Linear search and Binary search
- 6. WAP for Selection sort, Insertion sort
- 7. WAP for Merge sort
- 8. WAP to find first n prime numbers
- 9. WAP to multiply matrices
- 10. WAP that take command line arguments (word count)
- 11. WAP to find the most frequent words in a text read from a file
- 12. WAP to Simulate elliptical orbits in Pygame
- 13. WAP to Simulate bouncing ball using Pygame

Note: A student has to perform at least 10 experiments. At least seven experiments should be performed from the above list. Three experiments may be designed & set by the concerned institution as per the scope of the syllabus.

PC-CS-	Software Engineering Lab											
CYS-												
217LA												
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time					
0	0	0 2 1 40 60 100 2 Hours										
Purpose	To gain a broad understanding of the discipline of software engineering implementation.											
			Course O	utcomes								
CO1	To learn abo	ut the reason	s for the softw	ware crisis.								
CO2	To understand the software testing techniques.											
CO3	To understand the software metrics.											
CO4	To understar	nd the differe	nt design tech	nniques and the	eir implemen	tation.						

LIST OF PRACTICALS

- 1. To identify the role of the software in today's world across a few significant domains related to day to day life.
- 2. To identify the problem related to software crisis for a given scenario.
- 3. To classify the requirement into functional and non-functional requirements.
- 4. To implement at least four software metrics.
- 5. Preparation of requirement document for standard application problems in standard format.(e.g Library Management System, Railway Reservation system, Hospital management System, University Admission system)
- 6. To prepare Project Schedule for standard application problems in standard format.
- 7. To implement the functional testing techniques.
- 8. To implement the structural testing techniques

B.Tech Computer Science and Engineering (Cyber Security) Scheme of Studies/Examination Semester IV

S. N.	Course No.	Subject	L:T:P	Hours/ Week	Credits	Exa	Examination Schedule			Duration of Exam
								-		(Hrs.)
						Major	Minor	Practical	Total	
						Test	Test			
1	PC-CS-CYS-	Mathematics for	3:0:0	3	3	75	25	0	100	3
	202A	Intelligent Systems								
2	ES-CS-CYS-	Object-Oriented	3:0:0	3	3	75	25	0	100	3
	204A	Programming System								
3	PC-CS-CYS-	Data Base	3:0:0	3	3	75	25	0	100	3
	206A	Management								
		Systems								
4	ES-CS-CYS-	Internet & Web	3:0:0	3	3	75	25	0	100	3
	208A	technology								
5	PC-CS-CYS-	Operating System	3:0:0	3	3	75	25	0	100	3
	210A									
6	PC-CS-CYS-	Cryptographic	3:0:0	3	3	75	25	0	100	3
	212A	Fundamentals								
7	PC-CS-CYS-	Object Oriented	0:0:2	2	1	0	40	60	100	3
	214LA	Programming Lab								
8	PC-CS-CYS-	Data Base	0:0:2	2	1	0	40	60	100	3
	216LA	Management								
		Systems Lab								
9	ES-CS-CYS-	Internet & Web	0:0:2	2	1	0	40	60	100	3
	218LA	Technology Lab								
		Total		24	21	450	270	180	900	
<u> </u>	MC-901A	Environmental	3:0:0	3		0		100	0	100
10		Sciences								
				1			1			

PC-CS-CYS-	Mathematics for Intelligent Systems										
202A											
Lecture	Tutorial	Practical	Credit	Major	Minor Test	Total	Time				
				Test							
3	0	0	3.0	75	25	100	3 Hours				
Purpose	To introduce the principles and paradigms of linear algebra, differential equation and										
	probability theory for modeling electrical, mechanical and computational experiments										
		C	ourse Outco	mes (CO)							
CO1	To develop a	n understand	ng of the ba	sic concept	s and technique	s of linea	r algebra as				
	applied to sig	nal processing									
CO2	To provide connection between the concepts of linear algebra, differential equation and										
	probability the	eory.									
CO3	To enable the	students to u	understand th	ne use of ca	lculus and Linea	r algebra	in modelling				
	electrical and mechanical elements.										
CO4	To equip the	students to u	nderstand th	e role of pro	bability theory	in providi	ng data sets				
	for computati	onal experime	ents in data s	cience.							

Unit 1

Basics of Linear Algebra - Linear Dependence and independence of vectors - Gaussian Elimination - Rank of set of vectors forming a matrix - Vector space and Basis set for a Vector space - Dot product and Orthogonality - Rotation matrices - Eigenvalues and Eigenvectors and its interpretation - Projection matrix and Regression – Singular Value Decomposition.

Unit 2

Convolution sum, Convolution Integral, Ordinary Linear differential equations, formulation, analytical and Numerical solutions, Impulse Response Computations, formulating state space models of Physical systems.

Unit 3

Examples of ODE modelling in falling objects, satellite and planetary motion, Electrical and mechanical systems. Multivariate calculus, Taylor series, Introduction to Optimization.

Unit 4

Introduction to Probability Distributions and Monte Carlo Simulations.

Suggested Books :-

- 1. Gilbert Strang, Linear Algebra and Learning from Data, Wellesley, Cambridge press, 2019.
- 2. William Flannery, Mathematical Modelling and Computational Calculus, Vol-1, Berkeley Science Books, 2013.

ES-CS-CYS-	Object-Oriented Programming System										
204A											
Lecture	Tutorial	Practical	Credit	Major	Minor Test	Total	Time				
				Test							
3	0	0	3.0	75	25	100	3 Hours				
Purpose	To introduce the principles and paradigms of Object Oriented Programming Language for										
	design and implement the Object Oriented System.										
			Course Outco	omes (CO)							
CO1	To introduce	the basic co	ncepts of ob	ject oriente	d programming	language a	and the its				
	representation.										
CO2	To allocate dynamic memory, access private members of class and the behavior of										
	inheritance and its implementation.										
CO3	To introduce polymorphism, interface design and overloading of operator.										
CO4	To handle ba	ackup system	using file, g	general purp	ose template a	nd handlir	ng of raised				
	exception du	ring programr	ning.								

Unit–1

Introduction to C++, C++ Standard Library, Illustrative Simple C++ Programs. Header Files, Namespaces, Application of object oriented programming.

Object Oriented Concepts, Introduction to Objects and Object Oriented Programming, Encapsulation, Polymorphism, Overloading, Inheritance, Abstract Classes, Accessifier (public/ protected/ private), Class Scope and Accessing Class Members, Controlling Access Function, Constant, Class Member, Structure and Class

Unit-2

Friend Function and Friend Classes, This Pointer, Dynamic Memory Allocation and Deallocation (New and Delete), Static Class Members, Constructors, parameter Constructors and Copy Constructors, Deconstructors,

Introduction of inheritance, Types of Inheritance, Overriding Base Class Members in a Derived Class, Public, Protected and Private Inheritance, Effect of Constructors and Deconstructors of Base Class in Derived Classes.

Unit-3

Polymorphism, Pointer to Derived class, Virtual Functions, Pure Virtual Function, Abstract Base Classes, Static and Dynamic Binding, Virtual Deconstructors.

Fundamentals of Operator Overloading, Rules for Operators Overloading, Implementation of Operator Overloading Like <<,>> Unary Operators, Binary Operators.

Unit-4

Text Streams and binary stream, Sequential and Random Access File, Stream Input/ Output Classes, Stream Manipulators.

Basics of C++ Exception Handling, Try, Throw, Catch, multiple catch, Re-throwing an Exception, Exception specifications.

Templates: Function Templates, Overloading Template Functions, Class Template, Class Templates and Non-Type Template arguments.

Suggested Books:

- The complete reference C ++ by Herbert shieldt Tata McGraw Hill.
- Object Oriented Programming in Turbo C++ by Robert Lafore, 1994, The WAITE Group Press.
- Shukla, Object Oriented Programming in c++, Wiley India.
- C++ How to Program by H M Deitel and P J Deitel, 1998, Prentice Hall.
- Programming with C++ By D Ravichandran, 2003, T.M.H.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS-CYS-206A	Data Base Management Systems									
Lecture	Tutorial	torial Practical Credit Major Test		Minor Test	Total	Time				
3	0	0	3.0	75	25	100	3 Hours			
Purpose	To familiar	To familiarize the students with Data Base Management system								
		Course Outcomes								
CO1	To provide	To provide introduction to relational model.								
CO2	To learn ab	To learn about ER diagrams and SQL.								
CO3	To understand about the concept of functional dependencies.									
CO4	To understand about Query Processing and Transaction Processing.									

Introduction: Concept & Overview of DBMS, Advantages of DBMS over file processing system, Database Languages, Responsibilities of Database Administrator, Database Users, Three Schema architecture of DBMS & Data Independence, Data Models.

Entity-Relationship Model: Basic concepts, Mapping Constraints, Keys, Entity-Relationship Diagram, Weak Entity Sets, Extended E-R features: Specialization and Generalization.

Unit-2

The Relational Data Model & Algebra: Relational Model: Structure of relational Databases, Relational Algebra & various operations (Set operation, select, project, joins, division), Relational Calculus: Domain, Tuple.

Integrity Constraints & Introduction to SQL:-

Domain Constraints, Referential Integrity Constraints, Basic Structure & Concept of DDL, DML, DCL, Aggregate Functions, Null Values, Introduction to views, creating, modifying and deleting views.

Unit-3

Relational Database Design : Functional Dependency, Different anomalies in designing a Database., Normalization – 1NF, 2NF, 3NF, Boyce-CODD Normal Form, Normalization using multi-valued dependencies, 4NF, 5NF.

Unit-4

Transaction Processing Concept: Introduction to transaction processing, transaction model properties, serializability:-Serial, non-serial and Serializable Schedules, Conflict Serializability.

Concurrency Control: Need of concurrency control, Different concurrency control Techniques: locking based, timestamps based technique. Deadlock handling and Recovery Techniques:- Deferred update/ immediate update, shadow paging.

Suggested Books:

- Elmasri and Navathe, "Fundamentals of Database Systems", Addision-Wesley,
- Silberschatz, and Korth ,"Database System Concepts", McGraw-Hill
- Date, "An Introduction to Database Systems", Addison-Wesley,
- Bhattacharyya, "Database Management Systems", Tata McGraw-Hill Publishing.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

ES-CS-CYS-	Internet & Web Technology										
208A											
Lecture	Tutorial	Practical	Major	Minor	Total	Time					
			Test	Test							
3	0	0	75	25	100	3 Hours					
Purpose	To gain a broad understanding of the discipline of Web engineering and its application to the										
	development and management of Web Applications.										
		C	ourse Outcor	nes							
CO1	Learn the basic	concepts of infor	mation and v	/eb architectu	re.						
CO2	Learn about the skills that will enable to design and build high level web enabled applications.										
CO3	Understand the applicability of Java Script as per current software industry standards.										
CO4	Acquaint the	latest programmi	ng language	for the impl	ementation of	object based and					
	procedure base	ed applications us	ing Python.								

Information Architecture: The role of Information Architect, Collaboration and communication, Organizing information, organizational challenges, Organizing web sites and Intranets, Creating cohesive organization systems, designing navigation systems, types of navigation systems, Integrated navigation elements, designing elegant navigation systems, Searching systems, Searching your web site, designing the search interface, Indexing the right stuff, To search or not to search grouping content, conceptual design, High level Architecture Blueprint. Architectural Page Mockups, Design Sketches.

Unit-2

Introduction to XHTML and HTML5: Origins and Evolution of HTML and XHTML, Basic Syntax, Standard XHTML Document Structure, Basic Text Markup, Images, Hypertext Links, Lists, Tables, Forms, HTML5, Syntactic Differences between HTML and XHTML.

Cascading Style Sheets: Introduction, Levels of Style Sheets, Style Specification Formats, Selector Forms, Property Value Forms, Font Properties, List Properties, Color, Alignment of Text, Box Model, Background Images, Conflict Resolution.

Unit -3

Java Script: Overview of JavaScript, Object Orientation and JavaScript, General Syntactic Characteristics, Primitives, Operations, and Expressions, Screen Output and Keyboard Input, Control Statements, Object Creation and Modification, Arrays, Functions, Constructors, Pattern Matching Using Regular Expressions, Errors in Scripts

Unit -4

Python: Introduction to Python, Data Types and Expressions, Control Statements, Strings and Text Files, Lists and Dictionaries, Design with Functions, Design with Classes

Suggested Books:

- By Peter Morville, Louis Rosenfeld, "Information Architecture on the World Wide Web", O'Reilly Media, 2006.
- Robert W. Sebesta, "Programming The World Wide Web", Eight Edition, Pearson India, 2015.
- Kenneth A. Lambert, "The Fundamentals of Python: First Programs", 2011, Cengage Learning.
- Thomas A Powell, "HTML The Complete Reference", Tata McGraw Hill Publications.

PC-CS-CYS-	Operating System										
210A											
Lecture	Tutorial Practical Credit Major Minor Total Time										
				Test	Test						
3	0	0	3.0	75	25	100	3 Hours				
Purpose	To familiar	ize the studen	ts with the	basics of Op	erating Syster	ns.	·				
			Course	Outcomes (C	:0)						
CO1	To underst	and the struct	ure and fur	nctions of op	erating syster	n.					
CO2	To learn ab	To learn about processes, threads and scheduling algorithms.									
CO3	To underst	To understand the principle of concurrency and the concept of deadlocks.									
CO4	To underst	and various r	nemory ma	nagement s	cheme and to	o study I/O mana	agement and file				
	systems.										

Introduction: Introduction to OS. Operating system functions, Different types of O.S.: batch process, multi-programmed, time-sharing, real-time, distributed, parallel.

System Structure: Computer system operation, I/O structure, storage structure, storage hierarchy, different types of protections, operating system structure (simple, layered, virtual machine), O/S services, system calls.

Unit-2

CPU scheduling: scheduling criteria, preemptive and non-preemptive scheduling, scheduling algorithms, algorithm evaluation, multi-processor scheduling.

Threads: overview, benefits of threads, user and kernel threads.

Process Management: Concept of processes, process states, process control, co-operating processes, interprocess communication.

Process Synchronization: background, critical section problem, critical region, synchronization hardware, Classical problems of synchronization, semaphores.

Unit-3

Deadlocks: Concept of deadlock, deadlock characterization, deadlock prevention, deadlock avoidance, deadlock detection, recovery from deadlock.

Memory Management: background, logical vs. physical address space, contiguous memory allocation, paging, segmentation, segmentation with paging. Concept of fragmentation.

Virtual Memory: background, demand paging, concept of page replacement, page replacement algorithms, allocation of frames, thrashing.

Unit-4

File Systems: file concept, file organization and access methods, allocation methods, directory structure, free-space management I/O Management: I/O hardware, polling, interrupts, DMA, kernel I/O subsystem (scheduling, buffering, caching, spooling and device reservation) Disk Management: disk structure, disk scheduling (FCFS, SSTF, SCAN,C-SCAN), disk reliability, diskPerformance parametersProtection and Security:Goals of protection and security, security attacks, authentication, program threats, system threats, threat monitoring.Case studies: UNIX file system, Windows file system

Suggested Books:

- Operating System Concepts", Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne, Wiley
- Operating systems: a concept based approach", Dhananjay M. Dhamdhere, McGraw Hill .
- Operating Systems : Internals and Design Principles, William Stallings, Pearson
- Operating Systems Design and Implementation" ,(Prentice Hall Software Series) Andrew S Tanenbaum and Albert S Woodhull.
- Taub and Schilling, Principles of Communication Systems, TMH.
- Mithal G K, Radio Engineering, Khanna Pub.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS-CYS- 212A	Cryptographic Fundamentals									
Lecture	Tutorial Practical		Credit	Major Minor		Total	Time			
				Test	Test					
3	0	0	3.0	75	25	100	3 Hours			
Purpose	To familiarize the students with fundamentals of cryptography.									
	Course Outcomes									
CO1	To understa	To understand basics of Cryptography and Network Security.								
CO2	To be able to secure a message over insecure channel by various means									
CO3	To learn about how to maintain the Confidentiality, Integrity and Availability of a data									
CO4	To understa	To understand various protocols for network security to protect against the threats in								
	the networ	ks.								

Introduction to Cryptography and Block Ciphers: Introduction to security attacks - services and mechanism - introduction to cryptography - Conventional Encryption: Conventional encryption model - classical encryption techniques - substitution ciphers and transposition ciphers - cryptanalysis - steganography - stream and block ciphers - Modern Block Ciphers: Block ciphers principals - Shannon's theory of confusion and diffusion - fiestal structure - data encryption standard(DES) - strength of DES - differential and linearcrypt analysis of DES - block cipher modes of operations - triple DES - AES.

Unit-2

Public key cryptography and Authentication requirements: Principles of public key crypto systems - RSA algorithm - security of RSA - key management – Diffle-Hellman key exchange algorithm - introductory idea of Elliptic curve cryptography.

Integrity checks and Authentication algorithms: MD5 message digest algorithm - Secure hash algorithm (SHA) Digital Signatures: Digital Signatures - authentication protocols - digital signature standards (DSS) - proof of digital signature algorithm - Authentication Applications: Kerberos and X.509 - directory authentication service - electronic mail security-pretty good privacy (PGP) - S/MIME.

Unit-3

Cryptography and Network Security: Introduction to the Concept of Security, Cryptographic Techniques, Computer-based Symmetric and Asymmetric Key Cryptographic Algorithms, Public Key Infrastructure (PKI), Internet Security Protocols, Network Security.

Database Security: Data management technologies, Information security, Information Management Technologies, Security policies, Policy enforcement & related issues, Design principles, Multi-level relational data models, Security impact on database function.

Unit-4

Intrusion detection: Defining Intrusion Detection, Security concepts intrusion Detection concept, determining strategies for Intrusion Detection, Responses, Vulnerability Analysis, Credentialed approaches, Technical issues.

Suggested Books:

- NETWORK SECURITY AND MANAGEMENT BRIJENDRA SINGH, 2007
- Firewalls Complete Firewalls Complete Marcus Goncalves, 1998
- Information Security Architecture: An Integrated Approach to Security in the Organization Information Security Architecture: An Integrated Approach to Security in the Organization Jan Killmeyer, 2000
- Fundamentals of Network Security Fundamentals of Network Security John E. Canavan, 2001
- A Practical Introduction to Enterprise Network and Security Management A Practical Introduction to Enterprise Network and Security Management Bongsik Shin, 2017
| PC-CS-CYS- | | Object Oriented Programming Lab | | | | | | | | | | |
|------------|---------------|---|---------------|--------------|-----------|-------|---------|--|--|--|--|--|
| 214LA | | | | | | | | | | | | |
| Lecture | Tutorial | Practical | Credit | Minor Test | Practical | Total | Time | | | | | |
| 0 | 0 | 2 | 1 | 40 | 60 | 100 | 2 Hours | | | | | |
| Purpose | To introduc | o introduce the principles and paradigms of Object Oriented Programming Language for design | | | | | | | | | | |
| | and implem | ent the Object | Oriented Sys | tem. | | | | | | | | |
| | | | Course Ou | itcomes (CO) | | | | | | | | |
| CO1 | To familiariz | ze with the class | s and objects | 5 | | | | | | | | |
| CO2 | To impleme | To implement the concept of constructors | | | | | | | | | | |
| CO3 | To familiariz | ze the concept o | of operator o | overloading | | | | | | | | |
| CO4 | To impleme | ent the concepts | of Inheritar | ice | | | | | | | | |

LIST OF PRACTICALS

1. Raising a number n to a power p is the same as multiplying n by itself p times. Write a function called power () that takes a double value for n and an int value for p, and returns the result as double value. Use a default argument of 2 for p, so that if this argument is omitted, the number will be squared. Write a main () function that gets values from the user to test this function.

2. A point on the two dimensional plane can be represented by two numbers: an X coordinate and a Y coordinate. For example, (4,5) represents a point 4 units to the right of the origin along the X axis and 5 units up the Y axis. The sum of two points can be defined as a new point whose X coordinate is the sum of the X coordinates of the points and whose Y coordinate is the sum of their Y coordinates. Write a program that uses a structure called point to model a point. Define three points, and have the user input values to two of them. Then set the third point equal to the sum of the other two, and display the value of the new point. Interaction with the program might look like this:

Enter coordinates for P1: 3 4

Enter coordinates for P2: 5 7

Coordinates of P1 + P2 are : 8, 11

3. Create the equivalent of a four function calculator. The program should request the user to enter a number, an operator, and another number. It should then carry out the specified arithmetical operation: adding, subtracting, multiplying, or dividing the two numbers. (It should use a switch statement to select the operation). Finally it should display the result. When it finishes the calculation, the program should ask if the user wants to do another calculation. The response can be 'Y' or 'N'. Some sample interaction with the program might look like this.

Enter first number, operator, and second number: 10/3

Answer = 3.333333 Do another (Y/ N)? Y Enter first number, operator, second number 12 + 100 Answer = 112 Do another (Y/ N) ? N

4. A phone number, such as (212) 767-8900, can be thought of as having three parts: the area code (212), the exchange (767) and the number (8900). Write a program that uses a structure to store these three parts of a phone number separately. Call the structure phone. Create two structure variables of type phone. Initialize one, and have the user input a number for the other one. Then display both numbers. The interchange might look like this:

- Enter your area code, exchange, and number: 415 555 1212
- My number is (212) 767-8900
- Your number is (415) 555-1212

5. Create two classes DM and DB which store the value of distances. DM stores distances in metres and centimeters and DB in feet and inches. Write a program that can read values for the class objects and add one object of DM with another object of DB. Use a friend function to carry out the addition operation. The object that stores the results maybe a DM object or DB objects, depending on the units in which the results are required. The display should be in the format of feet and inches or metres and cenitmetres depending on the object on display.

6. Create a class rational which represents a numerical value by two double values- NUMERATOR and DENOMINATOR. Include the following public member Functions:

- constructor with no arguments (default).
- constructor with two arguments.
- void reduce() that reduces the rational number by eliminating the highest common factor between the numerator and denominator.
- Overload + operator to add two rational number.
- Overload >> operator to enable input through cin.
- Overload << operator to enable output through cout.
 - Write a main () to test all the functions in the class.

7. Consider the following class definition

class father {
protected : int age;
public;
father (int x) {age = x;}
virtual void iam ()

{ cout < < "I AM THE FATHER, my age is : "<< age<< end1:}

Derive the two classes son and daughter from the above class and for each, define iam () to write our similar but appropriate messages. You should also define suitable constructors for these classes. Now, write a main () that creates objects of the three classes and then calls iam () for them. Declare pointer to father. Successively, assign addresses of objects of the two derived classes to this pointer and in each case, call iam () through the pointer to demonstrate polymorphism in action.

8. Write a program that creates a binary file by reading the data for the students from the terminal. The data of each student consist of roll no., name (a string of 30 or lesser no. of characters) and marks.

9. A hospital wants to create a database regarding its indoor patients. The information to store include

a) Name of the patient

b) Date of admission

c) Disease

d) Date of discharge

Create a structure to store the date (year, month and date as its members). Create a base class to store the above information. The member function should include functions to enter information and display a list of all the patients in the database. Create a derived class to store the age of the patients. List the information about all the to store the age of the patients. List the information about all the pediatric patients (less than twelve years in age).

10. Make a class **Employee** with a name and salary. Make a class **Manager** inherit from **Employee**. Add an instance variable, named department, of type string. Supply a method to **to String** that prints the manager's name, department and salary. Make a class **Executive** inherits from **Manager**. Supply a method **to String** that prints the string **"Executive"** followed by the information stored in the **Manager** superclass object. Supply a test program that tests these classes and methods.

11. Imagine a tollbooth with a class called toll Booth. The two data items are a type unsigned int to hold the total number of cars, and a type double to hold the total amount of money collected. A constructor initializes both these to 0. A member function called payingCar () increments the car total and adds 0.50 to the cash total. Another function, called nopayCar (), increments the car total but adds nothing to the cash total. Finally, a member function called displays the two totals. Include a program to test this class. This program should allow the user to push one key to count a paying car, and another to count a nonpaying car. Pushing the ESC kay should cause the program to print out the total cars and total cash and then exit.

12. Write a function called reversit () that reverses a string (an array of char). Use a for loop that swaps the first and last characters, then the second and next to last characters and so on. The string should be passed to reversit () as an argument. Write a program to exercise reversit (). The program should get a string from the user, call reversit (), and print out the result. Use an input method that allows embedded blanks. Test the program with Napoleon's famous phrase, "Able was I ere I saw Elba)".

13. Create some objects of the string class, and put them in a Deque-some at the head of the Deque and some at the tail. Display the contents of the Deque using the forEach () function and a user written display function. Then search the Deque for a particular string, using the first That () function and display any strings that match. Finally remove all the items from the Deque using the getLeft () function and display each item. Notice the order in which the items are displayed: Using getLeft (), those inserted on the left (head) of the Deque are removed in "last in first out" order while those put on the right side are removed in "first in first out" order. The opposite would be true if getRight () were used.

14. Assume that a bank maintains two kinds of accounts for customers, one called as savings account and the other as current account. The savings account provides compound interest and withdrawal facilities but no cheque book facility. The current account provides cheque book facility but no interest. Current account holders should also maintain a minimum balance and if the balance falls below this level, a service charge is imposed.

Create a class account that stores customer name, account number and type of account. From this derive the classes cur_acct and sav_acct to make them more specific to their requirements. Include necessary member functions in order to achieve the following tasks:

a) Accept deposit from a customer and update the balance.

b) Display the balance.

c) Compute and deposit interest.

d) Permit withdrawal and update the balance.

e) Check for the minimum balance, impose penalty, necessary and update the balance.

f) Do not use any constructors. Use member functions to initialize the class members.

10(2041)

15. Create a base class called shape. Use this class to store two double type values that could be used to compute the area of figures. Derive two specific classes called triangle and rectangle from the base shape. Add to the base class, a member function get_data() to initialize baseclass data members and another member function display_area() to compute and display the area of figures. Make display_area() as a virtual function and redefine this function in the derived classes to suit their requirements. Using these three classes, design a program that will accept dimensions of a triangle or a rectangle interactively and display the area. Remember the two values given as input will be treated as lengths of two sides in the case of rectangles and as

base and height in the case of triangles and used as follows:

Area of rectangle = x * y

Area of triangle = $\frac{1}{2} * x * y$

NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.

PC-CS-CYS-	Database Management Systems Lab										
216LA											
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time				
0	0	2	1	40	60	100	2 Hours				
Purpose	To impleme	o implement practically the various concepts of DBMS									
			C	ourse Outcomes	5						
CO1	To underst	and& Implen	nent basic	DDL command	S.						
CO2	To learn &	Implement D	ML and D	CL commands.	1						
CO3	To underst	To understand the SQL queries using SQL operators.									
CO4	To underst	and the cond	cept of rela	tional algebra a	and implemen	t using ex	amples.				

LIST OF PRACTCALS

- 1. Create a database and write the programs to carry out the following operation:
 - Add , Delete and modify a record in the database
 - Generate queries
 - Data operations

3.

- List all the records of database in ascending order.
- **2.** To perform various integrity constraints on relational database.
 - Create a database and perform the following operations:-
 - 1. Arithmetic and Relational operations
 - 2. Group by & having clauses
 - 3. Like predicate for pattern matching in database
- 4. Create a view to display details of employees working on more than one project.
- 5. Create a view to display details of employees not working on any project.
- 6. Using two tables create a view which shall perform natural join, equi join, outer joins.
- **7.** Write a procedure to give incentive to employees working on all projects. If no such employee found give app. Message.
- 8. Write a procedure for computing amount telephone bill on the basic of following conditions.
 - 1. telephone rent Rs. 205 including first 105 free units.
 - 2. if extra units>0 but <500 then rate is 80 paise per unit.
 - 3. if extra units>500 then rate is Rs. 1.20 per unit.

For this purpose create a table with name, Phone No., No. of units consumed, bill amount of a customer.

- 9. Write a procedure for computing income tax of employee on the basic of following conditions:-
 - 1. if gross pay<=40,000 then I.T rate is 0%.
 - 2. if gross pay>40,000 but <60000 then I.T rate is 10%.
 - 3. if gross pay>60,000 but <1,00,0000 then I.T rate is 20%.
 - 4. if gross pay>1,00,0000 then I.T rate is 30%.
 - For this purpose create a table with name, ssn, gross salary and income tax of the employee.
- **10.** Write trigger for before and after insertion, deletion and updation process.

NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus

10(2043)

ES-CS-CYS- 218LA		Internet & Web Technology Lab										
Lecture	Tutorial	Futorial Practical Credit Minor Test Practical Total Time										
0	0	2	1	40	60	100	2 Hours					
Purpose	To introduc	o introduce the concepts of HTML5, JavaScript and Python.										
	Course Outcomes (CO)											
CO1	Design web	pages using H	ITML, JavaScript	t and CSS.								
CO2	Design and using Pytho	test simple fu m.	nction/program	n to implement Se	earching and s	sorting tecl	nniques					
CO3	Develop pro scripts.	ogram in Java	Script for patte	rn matching usinរ្	g regular expr	essions and	d errors in					
CO4	Design clier	nt-server base	d web applicati	ons.								

LIST OF PRACTCALS

- 1. Create your own page with your favorite hobbies using HTML, JavaScript and CSS.
- 2. Create a frameset in HTML that is divided into three sections. The frameset should have three zones.
 - a. The Topmost section of the frameset should take up about just 15% of the browser window. Name this frame title.
 - b. The middle section should be 75% of the browser window. Name this frame title.
 - c. The lower section should be 10% of the browser window. Name this frame menu.
- 3. Create pages for each section. For the lowermost section, create page that loads the content into the middle section. The topmost section should contain a page describing the web page itself.
- 4. Create a web page, which displays the map of your country Link, each city /state on the image map, such that the respective HTML page of the city/state is displayed when the user selects an area.
- 5. Add the tickertape applet to your page by customizing it for the following settings:
 - a. Increase the count by one.
 - b. Accordingly update the message count.
 - c. Change the text color to (237,192,171)
 - d. Experiment with changing the scrolling speed.
 - e. Customize the message text as per your page requirement.
- 6. Incorporate a quest book into the Diary Food Webpage and use Java Script to build validations into the form.
- 7. Use Cascading Style sheets (CSS) to modify the following:
 - a. Change background.
 - b. Change font type, face and color.
 - c. Align Text.
 - d. Remove underlines from hyperlinks.
- Write the program for using JavaScript by using for loops (through a block of code a number of times), for/in loops (through the properties of an object), while loops (through a block of code while a specified condition is true), do/while loops (through a block of code while a specified condition is true).
- 9. Write a program in Java Script for the following:
 - a. Copying, passing, and comparing by value
 - b. Copying, passing, and comparing by reference
 - c. References themselves are passed by value
- 10. Write program in Java Script for pattern matching using regular expressions and errors in scripts.
- 11. Write a Python function/program that accepts the lengths of three sides of a triangle as inputs. The program output should indicate whether or not the triangle is an equilateral triangle.
- 12. Write the Python functions for linear search, binary search, selection sort, Bubble Sort, Insertion Sort and converting Fibonacci to a linear algorithm.
- 13. Write program in Python using Lists and dictionaries, Control statements and Strings and text files.

MC-901A	Environmental Sciences											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 0 0 75 25 100 3 Hours										
Purpose	To learn the	o learn the multidisciplinary nature, scope and importance of Environmental sciences.										
Course Outcomes (CO)												
CO1	The students	s will be able t	o learn the i	mportance of na	atural resources.							
CO2	To learn the	theoretical ar	nd practical a	spects of eco sy	stem.							
CO3	Will be able	Will be able to learn the basic concepts of conservation of biodiversity.										
CO4	The students	s will be able t	o understan	d the basic conc	ept of sustainab	le developm	ient.					

Unit-1

The multidisciplinary nature of environmental studies, Definition, Scope and Importance, Need for public awareness, Natural Resources: Renewable and Non-Renewable Resources: Natural resources and associated problems.

- (g) Forest Resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
- (h) Water Resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, damsbenefits and problems.
- (i) Mineral Resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- (j) Food Resources: World Food Problems, changes caused by agriculture and overgazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- (k) Energy Resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- (I) Land Resources: Land as a resource, land, degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources, Equitable use of resources for sustainable lifestyle.

Unit-2

Ecosystem-Concept of an ecosystem: Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological Succession, Food Chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem: (a) Forest Ecosystem, (b) Grassland Ecosystem, (c) Desert Ecosystem and (d) Aquatic Ecosystems (ponds, streams, lakes, rivers, oceans, esturaries

Field Work: Visit to a local area to document Environment assets-river/forest/grassland/hill/mountain, Visit to a local polluted site-Urban /Rural Industrial/Agricultural, Study of common plants, insects and birds, Study of simple ecosystems-pond, river, hill, slopes etc. (Field work equal to 5 lecture hours).

Unit-3

Biodiversity and its conservation: Introduction, Definition: genetic, species and ecosystem diversity. Biogeographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity of global, National and local levels. India as a mega-diversity nation Hot spot of Biodiversity, Threats to biodiversity: Habitat loss, poaching of wild life, man-wildlife conflicts, Endangered and endemic species of India, Conservation of Biodiversity- In situ and Ex-Situ conservation of biodiversity.

Environmental Pollution Definition: Cause, effects and control measures of (a) Air Pollution (b) Water Pollution (c) Soil Pollution (d) Marine Pollution (e) Noise Pollution (f) Thermal Pollution (g) Nuclear Hazards

Solid waste management- cause, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies, Disaster management: floods, earthquake, cyclone and landslides

Unit-4

Social Issues and the Environment: From unsustainable to sustainable development, Urban problems related to energy, Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people: Its problems and concerns, Case Studies: Environmental ethics-issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies: Wasteland Reclamation, Consumerism and waste products, Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public Awareness, Human population and the Environment, Population growth, variation among nations, Population explosion-Family Welfare Programme, Environment and human health. Human rights, Value Education, HIV/AIDS, Women and Child Welfare, Role of Information Technology in Environment and Human Health, Case Studies, Drugs and their effects; Useful and harmful drugs, Use and abuse of drugs, Stimulant and depression drugs, Concept of drug de-addiction, Legal position on drugs and laws related to drugs.

Suggested Books:

- Environmental Studies- Deswal and Deswal. Dhanpat Rai and Co.
- Environmental Science and Engineering Anandan, P. and Kumaravelan, R. 2009. Scitech Publications (India) Pvt. Ltd., India
- Environmental Studies. Daniels Ranjit R. J. and Krishnaswamy. 2013. Wiley India.
- Environmental Science- Botkin and Keller. 2012. Wiley , India

Note: The Examiner will be given the question paper template to set the question paper.

S. No.	Course No.	Subject L:T:P Hours Credits Examination Schedule					Duration of Exam (Hrs.)			
						Major Tost	Minor Tost	Practical	Tota 1	
1	BS-CS- AIDS-201A	Mathematics for Big Data & Optimization	3:0:0	3	3	75	25	0	100	3
2	PC-CS- AIDS- 203A	Object Oriented Programming	3:0:0	3	3	75	25	0	100	3
3	PC-CS- AIDS- 205A	Data Structures & Algorithms	3:0:0	3	3	75	25	0	100	3
4	PC-CS- AIDS- 207A	Introduction to Artificial Intelligence	3:0:0	3	3	75	25	0	100	3
5	PC-CS- AIDS- 209A	Programming Language	3:0:0	3	3	75	25	0	100	3
6	HM-902	Business Intelligence and Entrepreneurship	3:0:0	3	3	75	25	0	100	3
7	PC-CS- AIDS- 213LA	Data Structures & Algorithms Lab	0:0:2	2	1	0	40	60	100	3
8	PC-CS- AIDS- 215LA	Artificial Intelligence Lab	0:0:2	2	1	0	40	60	100	3
9	PC-CS- AIDS- 217LA	Object Oriented Programming Lab	0:0:2	2	1	0	40	60	100	3
		Total		24	21	450	270	180	900	
11	SIM-201A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50	

B. Tech Computer Science and Engineering (Artificial Intelligence and Data Science) Scheme of Studies/Examination Semester III

Note: SIM-201A is a mandatory credit-less course in which the students will be evaluated for the Summer Internship (training) undergone after 2nd semester and students will be required to get passing marks to qualify.

BS-CS-AIDS-201A		Mathematics for Big Data & Optimization									
Lecture	Tutorial	Practical	Credit	Major	Minor Test	Total	Time				
				Test							
3	0	0	3	75	25	100	3 Hour				
Purpose	To introduce	the concepts	of mathemati	cs in Data So	cience.						
-		-									
Course Outcomes (CO)										
CO1	Demonstrate	understandin	g of basic ma	thematical co	oncepts in data	science, re	elating to				
	linear algebra	a, probability,	and calculus								
CO2	Employ methods related to these concepts in a variety of data science applications										
CO3	Apply logical thinking to problem-solving in context.										
CO4	Use appropri	ate technolog	y to aid probl	em-solving a	and data analysi	S					
		T	INITT I								

UNIT-I

Fourier series: Introduction, Fourier-Euler Formula, Dirichlet's conditions, Change of intervals, Fourier series for even and odd functions, Half range sine and cosine series.

Fourier Transform: Fourier Integral theorem, Fourier sine and cosine transforms and its properties, Convolution, Parseval's identity for fourier transforms, Fourier Transform of derivative of a function.

UNIT-II

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

Differential equations of higher orders:Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-III

Solution of polynomial and transcendental equations: Bisection method, Newton-Raphson method and Regula-Falsi method, Finite differences, Interpolation using Newton's forward and backward difference formulae. Interpolation with unequal intervals: Lagrange's formulae. Numerical differentiation using forward and backward difference.

Numerical Integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules, Ordinary differential equations: Euler and modified Euler's methods. Runge-Kutta method of fourth order for solving first order equations. UNIT-IV

Introduction – Formulation and classification of optimization problems, overview of analytical solution of unconstrained optimization problems, constrained optimization, convex set, convex functions, convex optimization problem, Kuhn Tucker condition, Search methods: overview og single variable search methods, search methods for multivariable unconstrained problems: optimality criteria, unidirectional search-direct search methods-evolutionary search methods.

Suggested Books:

- Veerarajan T., Engineering Mathematics, Tata McGraw-Hill, New Delhi, 2008.
- P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numerical Methods, S. Chand & Company, 2nd Edition, Reprint 2012.
- S.S. Sastry, Introductory methods of numerical analysis, PHI, 4th Edition, 2005.
- Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.
- W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Edition, Wiley India, 2009.
- E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India, 1995.
- E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.
- G.F. Simmons and S.G. Krantz, Differential Equations, Tata McGraw Hill, 2007.
- Optimization Methods for Engineers, N.V.S. Raju, PHI Learning Pvt. Ltd.

PC-CS-			Objec	t-Oriented I	Programming						
AIDS-203A			_								
Lecture	Tutorial	Practical	Credit	Major	Minor Test	Total	Time				
				Test							
3	0	0	3	75	25	100	3 Hour				
Purpose	To introduc	o introduce the principles and paradigms of Object Oriented Programming Language for									
_	design and in	mplement the	Object Orie	nted System.		-					
Course Outco	mes (CO)										
CO1	To introduc	the basic	concepts of	f object ori	ented programm	ning lang	uage and the its				
	representatio	on.	_	-			-				
CO2	To allocate	dynamic men	nory, access	private men	bers of class an	d the beh	avior of inheritance				
	and its imple	ementation.									
CO3	To introduce	e polymorphis	m, interface	design and o	overloading of op	erator.					
CO4	To handle b	ackup system	using file, g	general purpo	ose template and	handling	of raised exception				
	during progr	amming.	_		_	-	-				

Introduction to C++, C++ Standard Library, Illustrative Simple C++ Programs. Header Files, Namespaces, Application of object oriented programming.

Object Oriented Concepts, Introduction to Objects and Object Oriented Programming, Encapsulation, Polymorphism, Overloading, Inheritance, Abstract Classes, Accessifier (public/ protected/ private), Class Scope and Accessing Class Members, Controlling Access Function, Constant, Class Member, Structure and Class

$\mathbf{UNIT}-\mathbf{II}$

Friend Function and Friend Classes, This Pointer, Dynamic Memory Allocation and Deallocation (New and Delete), Static Class Members, Constructors, parameter Constructors and Copy Constructors, Deconstructors, Introduction of inheritance, Types of Inheritance, Overriding Base Class Members in a Derived Class, Public, Protected and Private Inheritance, Effect of Constructors and Deconstructors of Base Class in Derived Classes.

UNIT – III

Polymorphism, Pointer to Derived class, Virtual Functions, Pure Virtual Function, Abstract Base Classes, Static and Dynamic Binding, Virtual Deconstructors.

Fundamentals of Operator Overloading, Rules for Operators Overloading, Implementation of Operator Overloading Like <<,>> Unary Operators, Binary Operators.

UNIT – IV

Text Streams and binary stream, Sequential and Random Access File, Stream Input/ Output Classes, Stream Manipulators.

Basics of C++ Exception Handling, Try, Throw, Catch, multiple catch, Re-throwing an Exception, Exception specifications.

Templates: Function Templates, Overloading Template Functions, Class Template, Class Templates and Non-Type Template arguments.

Suggested Books:

- The complete reference C ++ by Herbert shieldt Tata McGraw Hill.
- Object Oriented Programming in Turbo C++ by Robert Lafore, 1994, The WAITE Group Press.
- Shukla, Object Oriented Programming in c++, Wiley India.
- C++ How to Program by H M Deitel and P J Deitel, 1998, Prentice Hall.
- Programming with C++ By D Ravichandran, 2003, T.M.H.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS-AIDS-	Data Structures & Algorithms											
205A		r	-	•	0	•						
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time										
3	0	0	3	75	25	100	3 Hour					
Purpose	To introduce	e the principles	and paradigm	s of Data Struc	tures for design	and implement	t the software					
	systems log	ically and phys	ically.									
Course Outcor	nes (CO)											
CO 1	To introduc	e the basic con	cepts of Data s	structure, basic	data types ,sear	ching and sor	ting based on					
	array data ty	/pes.										
CO 2	To introdu	ce the structu	ired data typ	es like Stack	s and Queue	and its basic	operations'					
	implementa	tion.										
CO 3	To introduce	e dynamic imp	lementation of	linked list.								
CO 4	To introduce	e the concepts	of Tree and gra	ph and implem	entation of trave	ersal algorithm	s.					

UNIT – I

Introduction to Data Structures, Data Types, Built in and User Defined Data Structures, Applications of Data Structure, Algorithm Analysis, Worst, Best and Average Case Analysis, Notations of Space and Time Complexity, Basics of Recursion.

Arrays, One Dimensional Arrays, Two Dimensional Arrays and Multi-Dimensional Arrays, Sparse Matrices, Searching from array using Linear and Binary Searching Algorithm, Sorting of array using Selection, Insertion, Bubble, Radix Algorithm

UNIT – II

Stacks: Definition, Implementation of Stacks and Its Operations, Evaluation of Infix, prefix and Postfix Expression, Inter-conversion of Infix, Prefix and Post-Fix Expression, Implementation of Merge Sort and Quick Sort Algorithm.

Queues: Definition, Sequential Implementation of Linear Queues and Its Operations, Circular Queue and Its Implementation, Priority Queues and Its Implementation, Applications of queues.

UNIT – III

Linked Lists: Need of Dynamic Data Structures, Single Link List and Its Dynamic Implementation, Traversing, Insertion, Deletion Operations on Single Link Lists. Comparison between Static and Dynamic, Implementation of Linked List. Circular Link Lists and Doubly Link List, Dynamic Implementation of Primitive Operations on Doubly Linked Lists and Circular Link List. Dynamic Implementation of Stacks and Queues.

UNIT – IV

Trees: Definition, Basic Terminology, Binary Tree, External and Internal Nodes, Static and Dynamic Implementation of a Binary Tree, Primitive Operations on Binary Trees, Binary Tree Traversals: Pre-Order, In-Order and Post-Order Traversals. Representation of Infix, Post-Fix and Prefix Expressions using Trees.

Introduction to Binary Search Trees: B+ trees, AVL Trees, Threaded Binary trees, Balanced Multi-way search trees, Implementation of Heap Sort Algorithm.

Graphs: Basic Terminology, Definition of Undirected and Directed Graphs, Memory Representation of Graphs, Minimum-Spanning Trees, Warshal Algorithm, Graph Traversals Algorithms: Breadth First and Depth First.

Suggested Books:

- Theory and Problems of Data Structures by Jr. Symour Lipschetz, Schaum's outline, TMH.
- Data Structures and Algorithms by PAI, TMH.
- Fundamentals of Data structures by Ellis Horowitz and Sartaj Sahni, Pub, 1983, AW.
- Data Structures and Algorithms by A.V. Aho, J.E. Hopcroft and T.D. Ullman, Original edition, Addison-Wesley, 1999, Low Priced Edition.
- Data Structures and Program Design in C by Robert Kruse, PHI,
- Shukla, Data Structures using C++, Wiley India
- Introduction to Computers Science -An Algorithms Approach, Jean Paul Tremblay, Richard B. Bunt, 2002, T.M.H.
- Data Structure and the Standard Template library Willam J. Collins, 2003, T.M.H.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS-AIDS-	Introduction to Artificial Intelligence									
207A										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	75	25	100	3 Hour			
Purpose	To gain a b	oroad understar	ding of the di	scipline of Art	ificial Intelligen	ce and its sco	pe in various			
	emerging ar	eas.								
	Course Outcomes(CO)									
CO1	Demonstra	te fundamental	understanding	of Artificial Ir	telligence (AI) a	and its foundati	on			
CO2	Apply basic	principles of A	I in solutions t	hat require prol	olem solving, inf	erence, percep	tion,			
	knowledge i	representation,	and learning							
CO3	Demonstrate	e proficiency in	applying scien	tific method to	models of mach	ine learning				
CO4	Demonstrate	e an ability to s	hare in discussi	ons of AI, its c	urrent scope and	limitations, ar	d societal			
	implications	5			_					

Scope of AI: Games, theorem proving, natural language processing, vision and speech processing, robotics, expert systems, AI techniques-search knowledge, abstraction.

Problem Solving (Blind): State space search; production systems, search space control; depth first search , breadth-first search. Heuristic Based Search: Heuristic search, Hill climbing, best-first search, branch and bound, Problem Reduction, Constraint Satisfaction End, Means-End Analysis.

UNIT – II

Game Playing: Game Tree, Minimax Algorithm, Alpha Beta Cutoff, Modified Minimax Algorithm, Horizon Effect, Futility Cut-off.

Knowledge Representation: Predicate Logic: Unificatioin, Modus Ponens, Modus Tolens, Resolution in Predicate Logic, Conflict Resolution Forward Chaining, Backward Chaining, Declarative and Procedural Representation, Rule based Systems.

Structured Knowledge Representation: Semantic Nets: Slots, exceptions and default frames, conceptual dependency, scripts.

UNIT – III

Knowledge Engineering: First order logic, Syntax and semantics for first order logic, Inference in First order logic – prepositional versus first order logic, unification and lifting, forward chaining, backward chaining , Resolution, Knowledge representation

Handling Uncertainty: Non-Monotonic Reasoning, Probabilistic reasoning, use of certainty factors, fuzzy logic.

Natural Language Processing: Introduction, Syntactic Processing, Semantic Processing, Pragmatic Processing.

UNIT – IV

LEARNING PRINCIPLES : Learning from observations , forms of learning , Inductive learning , Learning decision trees, Ensemble learning, Knowledge in learning, Logical formulation of learning ,Explanation base learning, Learning using relevant information, Inductive logic programming, Statistical learning methods, Learning with complete data , Learning with hidden variable, genetic algorithm, learning by inductions, neural networks.

Expert Systems: Need and justification for expert systems, knowledge acquisition, Case Studies: MYCIN, RI.

Suggested Books:

1. E. Rich and K. Knight, "Artificial Intelligence", TMH, 2nd Ed., 1992.

2. N. J. Nilsson, "Principles of AI", Narosa Publ. House, 1990.

3. M. N. Hoda, "Foundation Course in Artificial Intelligence", Vikas Pub., 2004.

4. P. H. Winston, "Artificial Intelligence", Pearson Education, 3rd Edition, 2002. Artificial Intelligence.

5. D. W. Patterson, "Introduction to AI and Expert Systems", PHI, 1992.

6. R. J. Schalkoff, "Artificial Intelligence – An Engineering Approach", McGraw Hill Int. Ed. Singapore, 1992.

7. M. Sasikumar, S. Ramani, "Rule Based Expert Systems", Narosa Publishing House, 1994. 5. Tim Johns, "Artificial Intelligence, Application Programming, Wiley Dreamtech, 2005.

PC-CS- AIDS- 209A	Programming Languages											
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time										
3	0	0 3 75 25 100 3 Hour										
Purpose	To introduce	the principles	s and paradig	ms of program	ming language	s for design a	nd implement the					
	software inter	nsive systems	•									
Course Outco	mes (CO)											
CO 1	To introduce	the basic c	oncepts of p	orogramming la	anguage, the g	general proble	ms and methods					
	related to syn	tax and sema	ntics.									
CO 2	To introduce	the structured	l data objects	, subprograms	and programme	er defined data	types.					
CO 3	To outline the	e sequence co	ntrol and dat	a control.								
CO 4	To introduce	the concepts	of storage ma	magement usin	g programming	g languages.						

Introduction: A brief history, Characteristics of a good programming language, Programming language translators- compiler and interpreters, Elementary data types – data objects, variable and constants, data types. Specification and implementation of elementary data types, Declarations, type checking and type conversions, Assignment and initialization, Numeric data types, enumerations, Booleans and characters.

Syntax and Semantics: Introduction, general problem of describing syntax, Formal method of describing Syntax, attribute grammar dynamic semantic.

UNIT – II

Structured data objects: Structured data objects and data types, specification and implementation of structured data types, Declaration and type checking of data structure, vector and arrays, records Character strings, variable size data structures, Union, pointer and programmer defined data objects, sets, files.

Subprograms and Programmer Defined Data Types: Evolution of data type concept abstraction, encapsulation and information hiding, Subprograms, type definitions, abstract data types, over loaded subprograms, generic subprograms.

UNIT – III

Sequence Control: Implicit and explicit sequence control, sequence control within expressions, sequence control within statement, Subprogram sequence control: simple call return, recursive subprograms, Exception and exception handlers, co routines, sequence control. Concurrency – subprogram level concurrency, synchronization through semaphores, monitors and message passing

Data Control: Names and referencing environment, static and dynamic scope, block structure, Local data and local referencing environment, Shared data: dynamic and static scope, Parameter and parameter transmission schemes.

UNIT – IV

Storage Management: Major run time elements requiring storage, programmer and system controlled storage management and phases, Static storage management, Stack based storage management, Heap storage management, variable and fixed size elements.

Programming Languages: Introduction to procedural, non-procedural, structured, logical, functional and object oriented programming language, Comparison of C and C++ programming languages.

Suggested Books:

- Terrence W. Pratt, Marvin V. Zelkowitz, Programming Languages Design and Implementation, Pearson.
- Allen Tucker and Robert Noonan, Programming Languages–Principles and Paradigms, Tata McGraw-Hill, 2009.
- Ellis Horowitz, Fundamentals of Programming Languages, Galgotia Publications, 2010.
- C. Ghezzi, Programming Languages Concepts, Wiley Publications, 2010.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

HM-902		I	Business Intel	ligence and Enti	repreneurship					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	75	25	100	3			
Purpose	To make th	To make the students conversant with the basics concepts in management thereby leading to								
	nurturing th	eir managerial s	kills.							
Course Outc	omes (CO)									
CO1	Students w	rill be able und	erstand who	the entrepreneur	s are and what	competence	es needed to			
	become an I	Entrepreneur.								
CO2	Students wi	ill be able under	stand insights	into the manager	nent, opportunity	v search, ide	ntification of			
	a Product; n	narket feasibility	v studies; proje	ect finalization et	c. required for sn	nall business	s enterprises.			
CO3	Students ca	an be able to w	rite a report	and do oral pre	sentation on the	topics suc	h as product			
	identificatio	on, business idea	, export marke	ting etc.						
CO4	Students wi	ill be able to kr	low the differ	ent financial and	l other assistance	e available	for the small			
	industrial u	nits.								

Entrepreneurship : Concept and Definitions; Entrepreneurship and Economic Development; Classification and Types of Entrepreneurs; Entrepreneurial Competencies; Factor Affecting Entrepreneurial Growth – Economic, Non-Economic Factors; EDP Programmes; Entrepreneurial Training; Traits/Qualities of an Entrepreneurs; Manager Vs. Entrepreneur, Entrepreneurial challenges.

UNIT – II

Opportunity / **Identification and Product Selection:** Entrepreneurial Opportunity Search and Identification; Criteria to Select a Product; Conducting Feasibility Studies; Sources of business ideas, Marketing Plan : Conducting of Marketing Research, Industry Analysis, Competitor analysis, market segmentation and positioning, building a marketing plan, marketing mix, launching a new product; export marketing, Methods of Project Appraisal, Project Report Preparation; Specimen of Project Report; Project Planning and Scheduling using Networking Techniques of PERT / CPM.

UNIT – III

Small Enterprises and Enterprise Launching Formalities : Definition of Small Scale; Rationale; Objective; Scope; SSI; Registration; NOC from Pollution Board; Machinery and Equipment Selection, Role of SSI in Economic Development of India; major problem faced by SSI,MSMEs – Definition and Significance in Indian Economy; MSME Schemes, Challenges and Difficulties in availing MSME Schemes.

UNIT – IV

Role of Support Institutions and Management of Small Business : DIC; SIDO; SIDBI; Small Industries Development Corporation (SIDC); SISI; NSIC; NISBUD; State Financial Corporation SIC; Venture Capital : Concept, venture capital financing schemes offered by various financial institutions in India.

Special Issues for Entrepreneurs: Legal issues – Forming business entity, requirements for formation of a Private/Public Limited Company, Entrepreneurship and Intellectual Property Rights: IPR and their importance. (Patent, Copy Right, Trademarks), Case Studies-At least one in whole course. **Note:**

• Case studies of Entrepreneurs - successful, failed, turnaround ventures should be discussed in the class.

• Exercises / activities should be conducted on 'generating business ideas' and identifying problems and opportunities.

• Interactive sessions with Entrepreneurs, authorities of financial institutions, Government officials should be organized

Suggested Readings:

- 1. "Entrepreneurship development small business enterprises", Pearson, Poornima M Charantimath,2013.
- 2. Roy Rajiv, "Entrepreneurship", Oxford University Press, 2011.
- 3. "Innovation and Entrepreneurship", Harper business- Drucker.F, Peter, 2006.
- **4.** "Entrepreneurship", Tata Mc-graw Hill Publishing Co.ltd new Delhi- Robert D. Hisrich, Mathew J. Manimala, Michael P Peters and Dean A. Shepherd, 8th Edition, 2012
- 5. Enterpreneurship Development- S.Chand and Co., Delhi- S.S.Khanka 1999
- **6.** Small-Scale Industries and Entrepreneurship. Himalaya Publishing House, Delhi –Vasant Desai 2003.
- 7. Entrepreneurship Management -Cynthia, Kaulgud, Aruna, Vikas Publishing House, Delhi, 2003.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS-AIDS-		Data Structure & Algorithms Lab									
213LA											
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time				
0	0	2	1	40	60	100	3				
Purpose	To introdu	ice the princip	les and para	digms of Data St	ructures for de	esign and imp	lement the				
	software s	ystems logicall	y and physic	ally.							
Course Outcome	es (CO)										
CO1	Impleme	ent linear and n	on linear dat	a structures using	linked list.						
CO2	Apply v	arious data stru	ctures such a	as stack, queue and	tree to solve	the problems.					
CO3	Impleme	Implement various searching and sorting techniques.									
CO4	Choose	appropriate dat	ta structure w	hile designing the	applications a	nd analyze the					
	complex	tity of the algor	rithms.								

LIST OF PRACTICALS

- 1. Write a program for Binary search methods.
- 2. Write a program for insertion sort, selection sort and bubble sort.
- 3. Write a program to implement Stack and its operation.
- 4. Write a program for quick sort.
- 5. Write a program for merge sort.
- 6. Write a program to implement Queue and its operation.
- 7. Write a program to implement Circular Queue and its operation.
- 8. Write a program to implement singly linked list for the following operations: Create, Display, searching, traversing and deletion.
- 9. Write a program to implement doubly linked list for the following operations: Create, Display, inserting, counting, searching, traversing and deletion.
- 10 Write a program to implement circular linked list for the following operations: Create, Display, inserting, counting, searching, traversing and deletion.
- 11. Write a program to implement insertion, deletion and traversing in B tree
- **NOTE:** A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.

PC-CS-AIDS-	Artificial Intelligence Lab										
Locture	Tutorial	Testanial Descriteral Caralita Mission Testa Descriteral Testal Times									
Lecture	Tutoriai	Practical	Crean	willior rest	Practical	Total	Time				
0	0	2	1	40	60	100	3				
Purpose	To gain a broad understanding of the discipline of Artificial Intelligence										
Course Outcomes											
CO1	To understand the basic concepts of Artificial Intelligence.										
CO2	To apply v	arious AI Sea	arch algorithn	ns.							
CO3	To understand the fundamentals of knowledge representation and theorem proving using AI tools.										
CO4	Ability to apply knowledge representation and machine learning techniques to real life problems.										

LIST OF PRACTICALS:

- 1. Introduction to PYTHON & study of basic commands.
- 2. Write a program to implement Factorial, Fibonacci of a given number.
- 3. Write a program to solve 8 queens problem.
- 4. Solve a problem using Depth First Search.
- 5. Solve a problem using Breadth First Search.
- 6. Solve 8 puzzle problem using Best First Search
- 7. Solve Robot Traversal Problem using Means End Analysis
- 8. Solve Travelling Salesman Problem.

Suggested Books:

- 1. Artificial Intelligence: A Modern Approach, Russell & Norvig, Prentice Hall.
- 2. Artificial Intelligence, Elain Rich and Kevin Knight, TMH.
- 3. Artificial Intelligence-A modern approach, Staurt Russel and peter norvig, 1998, PHI.
- 4. Artificial intelligence, Patrick Henry Winston:, 1992, Addition Wesley 3 Ed.

PC-CS-AIDS-	Object Oriented Programming Lab										
217LA											
Lecture	Tutorial	utorial Practical Credit Minor Test Practical Total Time									
0	0	2	1	40	60	100	3 Hour				
Purpose	To introduce	To introduce the principles and paradigms of Object Oriented Programming Language for design									
	and implement the Object Oriented System.										
Course Outcomes (CO)											
CO1											
	Implement	object oriente	ed concepts su	ch as objects,c	lasses abstraction	n and mes	sage passing.				
CO2	Implement	the friend fur	nction, functio	n overloading a	and virtual funct	ion					
CO3	Implement	Operator ove	rloading, Inhe	eritance and me	thod overriding.						
CO4	Implement	t the various f	unctions on S	tring and apply	I/O operation to	handle fil	le system				
		LIS	T OF PRAC	TICALS							

1. Raising a number n to a power p is the same as multiplying n by itself p times. Write a function called power

() that takes a double value for n and an int value for p, and returns the result as double value. Use a default argument of 2 for p, so that if this argument is omitted, the number will be squared. Write a main () function that gets values from the user to test this function.

2. A point on the two dimensional plane can be represented by two numbers: an X coordinate and a Y coordinate. For example, (4,5) represents a point 4 units to the right of the origin along the X axis and 5 units up the Y axis. The sum of two points can be defined as a new point whose X coordinate is the sum of the X coordinates of the points and whose Y coordinate is the sum of their Y coordinates. Write a program that uses a structure called point to model a point. Define three points, and have the user input values to two of them. Then set the third point equal to the sum of the other two, and display the value of the new point. Interaction with the program might look like this:

Enter coordinates for P1: 3 4

Enter coordinates for P2: 57

Coordinates of P1 + P2 are : 8, 11

3. Create the equivalent of a four function calculator. The program should request the user to enter a number, an operator, and another number. It should then carry out the specified arithmetical operation: adding, subtracting, multiplying, or dividing the two numbers. (It should use a switch statement to select the operation). Finally it should display the result. When it finishes the calculation, the program should ask if the user wants to do another calculation. The response can be 'Y' or 'N'. Some sample interaction with the program might look like this.

Enter first number, operator, and second number: 10/3

Answer = 3.333333Do another (Y/N)? Y Enter first number, operator, second number 12 + 100Answer = 112Do another (Y/N)? N **4**. A phone number, such as (212) 767-8900, can be thought of as having three parts: the area code (212), the exchange (767) and the number (8900). Write a program that uses a structure to store these three parts of a phone number separately. Call the structure phone. Create two structure variables of type phone. Initialize one, and have the user input a number for the other one. Then display both numbers. The interchange might look like this:

- Enter your area code, exchange, and number: 415 555 1212
- My number is (212) 767-8900
- Your number is (415) 555-1212

5. Create two classes DM and DB which store the value of distances. DM stores distances in metres and centimeters and DB in feet and inches. Write a program that can read values for the class objects and add one object of DM with another object of DB. Use a friend function to carry out the addition operation. The object that stores the results maybe a DM object or DB objects, depending on the units in which the results are required. The display should be in the format of feet and inches or metres and cenitmetres depending on the object on display.

6. Create a class rational which represents a numerical value by two double values- NUMERATOR and DENOMINATOR. Include the following public member Functions:

- constructor with no arguments (default).
- constructor with two arguments.
- void reduce() that reduces the rational number by eliminating the highest common factor between the numerator and denominator.
- Overload + operator to add two rational number.
- Overload >> operator to enable input through cin.
- Overload << operator to enable output through cout.

Write a main () to test all the functions in the class.

7. Consider the following class definition

```
class father {
protected : int age;
public;
father (int x) {age = x;}
virtual void iam ()
{ cout << "I AM THE FATHER, my age is : "<< age<< end1:}</pre>
```

Derive the two classes son and daughter from the above class and for each, define iam () to write our similar but appropriate messages. You should also define suitable constructors for these classes. Now, write a main () that creates objects of the three classes and then calls iam () for them. Declare pointer to father. Successively, assign addresses of objects of the two derived classes to this pointer and in each case, call iam () through the pointer to demonstrate polymorphism in action.

8. Write a program that creates a binary file by reading the data for the students from the terminal. The data of each student consist of roll no., name (a string of 30 or lesser no. of characters) and marks.

9. A hospital wants to create a database regarding its indoor patients. The information to store include

- a) Name of the patient
- b) Date of admission
- c) Disease
- d) Date of discharge

Create a structure to store the date (year, month and date as its members). Create a base class to store the above information. The member function should include functions to enter information and display a list of all the patients in the database. Create a derived class to store the age of the patients. List the information about all the to store the age of the patients. List the information about all the pediatric patients (less than twelve years in age).

10. Make a class **Employee** with a name and salary. Make a class **Manager** inherit from **Employee**. Add an instance variable, named department, of type string. Supply a method to **to String** that prints the manager's name, department and salary. Make a class **Executive** inherits from **Manager**. Supply a method **to String** that prints the string **"Executive"** followed by the information stored in the **Manager** superclass object. Supply a test program that tests these classes and methods.

11. Imagine a tollbooth with a class called toll Booth. The two data items are a type unsigned int to hold the total number of cars, and a type double to hold the total amount of money collected. A constructor initializes both these to 0. A member function called payingCar () increments the car total and adds 0.50 to the cash total. Another function, called nopayCar (), increments the car total but adds nothing to the cash total. Finally, a member function called displays the two totals. Include a program to test this class. This program should allow the user to push one key to count a paying car, and another to count a nonpaying car. Pushing the ESC kay should cause the program to print out the total cars and total cash and then exit.

12. Write a function called reversit () that reverses a string (an array of char). Use a for loop that swaps the first and last characters, then the second and next to last characters and so on. The string should be passed to reversit () as an argument. Write a program to exercise reversit (). The program should get a string from the user, call reversit (), and print out the result. Use an input method that allows embedded blanks. Test the program with Napoleon's famous phrase, "Able was I ere I saw Elba)".

13. Create some objects of the string class, and put them in a Deque-some at the head of the Deque and some at the tail. Display the contents of the Deque using the forEach () function and a user written display function. Then search the Deque for a particular string, using the first That () function and display any strings that match. Finally remove all the items from the Deque using the getLeft () function and display each item. Notice the order in which the items are displayed: Using getLeft (), those inserted on the left (head) of the Deque are removed in "last in first out" order while those put on the right side are removed in "first in first out" order. The opposite would be true if getRight () were used.

14. Assume that a bank maintains two kinds of accounts for customers, one called as savings account and the other as current account. The savings account provides compound interest and withdrawal facilities but no cheque book facility. The current account provides cheque book facility but no interest. Current account holders should also maintain a minimum balance and if the balance falls below this level, a service charge is imposed.

10(2063)

Create a class account that stores customer name, account number and type of account. From this derive the classes

cur_acct and sav_acct to make them more specific to their requirements. Include necessary member functions in order to achieve the following tasks:

- a) Accept deposit from a customer and update the balance.
- b) Display the balance.
- c) Compute and deposit interest.
- d) Permit withdrawal and update the balance.
- e) Check for the minimum balance, impose penalty, necessary and update the balance.
- f) Do not use any constructors. Use member functions to initialize the class members.

15. Create a base class called shape. Use this class to store two double type values that could be used to compute the area of figures. Derive two specific classes called triangle and rectangle from the base shape. Add to the base class, a member function get_data() to initialize baseclass data members and another member function display_area() to compute and display the area of figures. Make display_area() as a virtual function and redefine this function in the derived classes to suit their requirements. Using these three classes, design a program that will accept dimensions of a triangle or a rectangle interactively and display the area.

Remember the two values given as input will be treated as lengths of two sides in the case of rectangles and as base and height in the case of triangles and used as follows:

Area of rectangle = x * y

Area of triangle = $\frac{1}{2} * x * y$

NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.

S.	Course No.	Subject	L:T:	Hours	Credit	Examination Schedule				Duration
No.			Р	/ Wook	s					of Exam
				week		Maior	Minor	Practical	Total	(8.)
						Test	Test	Tactical	I Utai	
1	BS-AIDS-	Bayesian Data	3:0:0	3	3	75	25	0	100	3
	202A	Analysis								
2	PC-CS-	Data Science with R	3:0:0	3	3	75	25	0	100	3
	AIDS-204A	Programming								
3	ES-CS-	Intelligent	3:0:0	3	3	75	25	0	100	3
	AIDS-	Communication								
	206A	Systems								
4	PC-CS-	Internet and web	3:0:0	3	3	75	25	0	100	3
	AIDS-	technology								
	208A									
5	PC-CS-	Database	3:0:0	3	3	75	25	0	100	3
	AIDS-210A	Management System								
6	PC-CS-	Operating system	3:0:0	3	3	75	25	0	100	3
	AIDS-									
	212A									
7	PC-CS-	R Lab	0:0:2	2	1	0	40	60	100	3
	AIDS-									
	214LA									
8	PC-CS-	Internet and web	0:0:2	2	1	0	40	60	100	3
	AIDS-	technology Lab								
	216LA									
9	PC-CS-	Database	0:0:2	2	1	0	40	60	100	3
	AIDS-	Management System								
	218LA	Lab								
		Total		24	21	450	270	180	900	
	MC -901A	Environmental	3:0:0	3	0	0	100	0	100	3
10		Sciences								

B. Tech Computer Science and Engineering (Artificial Intelligence and Data Science) Scheme of Studies/Examination Semester IV

BS-AIDS-	Bayesian Data Analysis											
202A												
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	75	25	100	3 Hrs.					
Purpose	se Aim of this course is to equip students with the skills to perform and interpret Bayesian Data analysis											
			Course Ou	utcomes(CO)								
CO1	Demonstrate	fundamental un	nderstanding	of Bayesian Infe	erence and models							
CO2	Understand a	nd apply Bayes	sian statistics	s, posterior inferen	nce and decision ar	alysis for n	naking					
	Bayesian mod	dels.		-		-	-					
CO3	Demonstrate	Computation,	approximati	on and simulating	g from probability of	distributions	s in					
	Bayesian anal	lysis	••									
CO4	Understand B	ayesian forms	of the standa	ard statistical mod	els							

Fundamental of Bayesian Inference

Probability & Inference : The Bayesian Approach, Basic Probability, Bayes' Bayes' Law, Posterior Distribution, Bayesian Framework, The three steps of Bayesian Data Analysis, Statistical Inference and Bayesian Inference, Discrete Probability Examples:- genetics and spell checking, Bayesian Inference in Applied Science

Models: Single and multi-variate models, Bayesian networks, Second-order models (i.e., distributions over distribution parameters), Infinite models: Gaussian process, Dirichlet process, Hierarchical models, Non-parameteric models.

UNIT – II Bayesian Data Analysis

Posterior predictive checking of model in applied Bayesian statistics, Graphical posterior predictive check, Measures of predictive accuracy, Information criteria and cross-validation Model comparison based on predictive performance, Model comparison using Bayes factors, Bayesian decision theory in different contexts, Using regression predictions, Multistage decision making, Hierarchical decision analysis for radon measurement, Personal vs. institutional decision analysis.

UNIT – III

Computation & Approximations

Introduction Bayesian computation, Numerical integration, Distributional approximations, Markov chain simulation, Metropolis and Metropolis-Hastings algorithms, Using Gibbs and Metropolis as building blocks, Gibbs Sampling Examples in R and WinBUGS, Inference and assessing convergence, Hamiltonian Monte Carlo, Posterior modes Normal and related mixture approximations, Finding marginal posterior modes using EM, Approximating conditional and marginal posterior densities

UNIT – IV

Regression Models

Bayesian analysis of the classical regression model, Regression for causal inference: incumbency in congressional elections, Goals of regression analysis, Hierarchical Linear Model: - Regression coefficients, Interpreting a normal prior distribution, varying intercepts and slopes, Standard generalized linear model likelihoods, Working with generalized linear models 407 16.3 Weakly informative priors for logistic regression, Models for multivariate and multinomial responses 423 16.7 Loglinear models for multivariate discrete data,

Nonlinear and Nonparametric Models: Parametric nonlinear models, Gaussian process models, Finite mixture models, Dirichlet process models.

Suggested Books:

- 1. Bayesian Data Analysis, by Andrew Gelman, John Carlin, Hal Stern, David Dunson, Aki Vehtari, and Donald Rubin, Chapman and Hall/CRC
- 2. Data Analysis: A Bayesian Tutorial, D. S. Sivia, Clarendon Press, 1996
- 3. Doing Bayesian Data Analysis: A Tutorial Introduction with R, John Kruschke, Academic press.

AIDS- 204A		Data Sci	ence and R	Programmin	g					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	75	25	100	3 Hrs.			
Purpose	PurposeTo Describe what Data Science is and the skill sets needed to be a data scientist									
			Course Ou	itcomes (CO)						
CO1	Basics of I used as fou	Data Science, indations for	Explain bas statistical m	ic Statistics. Id odeling. Fit a	dentify probability model to data.	distributions	s commonly			
CO2	Using R to	carry out bas	sic statistical	l modeling and	l analysis					
CO3	Explain the significance of exploratory data analysis (EDA) in data science. Apply basic tools (plots, graphs, summary statistics) to carry out EDA.									
CO4	Describe th models.	ne Data Scien	ce Process a	and how its co	mponents interact	via machine	learning			

UNIT -I

What is Data Science, What does Data Science involve, Era of Data Science, Business Intelligence vs Data Science, Life cycle of Data Science, Tools of Data Science, Introduction to Big Data and Hadoop, Introduction to R, Introduction to Spark, Introduction to Machine Learning.

Statistics: Describing a Single Set of Data, Central Tendencies, Dispersion, Correlation, Simpson's Paradox, Some Other Correlational Caveats, Correlation and Causation. Probability: Dependence and Independence, Conditional Probability, Bayes's Theorem, Random Variables, Normal Distribution, Binary distribution.

UNIT -II

R Programming, What is R, Installing R and RStudio, RStudio Overview, Working in the Console, Writing data, Reading from csv files, Data Types, Operators, Functions, Vectors, Data Frames, Factors, Sorting Numeric, Character, and Factor Vectors, Special Values, Installing and loading packages, Setting up your working directory, Downloading and importing data, Working with missing data, Extracting a subset of a data frame, Writing R scripts, Creating reports, Flow Control, while loops, for loops, If / else, Debugging tools, Data Analysis Pipeline, Data Extraction, Types of Data, Raw and Processed, Data Wrangling

UNIT -III

Data Manipulation in R, List Management, Data Transformation, Merging Data Frames, Outlier Detection, Combining multiple vectors, Logical Regression, Hierarchical Clustering, PCA for Dimensionality Reduction, Data Import Techniques, Exploratory Data Analysis, Visualization of Data, Loading different types of dataset in R, Arranging the data, Plotting the graphs, Statistical graphs, Creating bar chart and dot plot, Creating histogram and box plot, Plotting with base graphics, Plotting and coloring in R

UNIT -IV

Machine Learning using R: Modeling, Linear Regression, Logistic Regression, K-Means, K-Means++, Hierarchical Clustering – Agglomerative, CART, Random forest, Naïve Bayes, Implementing Support Vector Machine in R,

Suggested Book

- 1. R for Data Analysis in Easy Steps by Mike Mc Grath .
- 2. Beginning Data Science in R: Data Analysis, Visualization, and Modelling for the Data Scientist by Thomas Mailund.
- 3. The Elements of Statistical Learning, 2nd edition. Springer, 2009. Hastie, T., Tibshirani, R., Friedman, J.
- 4. Statistical Analysis with R For Dummies by: Joseph Schmuller.
- 5. Machine Learning: A Probabilistic Perspective. Murphy, K. MIT Press, 2012.
- 6. "Practical Data Science with R". Nina Zumel, John Mount. Manning, 2014.
- 7. Advanced R: Data Programming and the Cloud by by: Matt Wiley, Joshua F. Wiley.
- 8. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython ,2nd edition, Wes McKinney,O'Reilly Media (2017)

ES-CS-AIDS-		Intelligent Communication Systems									
206A											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	75	25	100	3 Hrs.				
Purpose	To gain a broad understanding of intelligent communication system and its scope in various emerging areas.										
			Course	Outcomes(CO)							
CO1	To be able to	understand th	ne theoretic	al basis of comm	unication system	process					
CO2	Demonstrate the informati	Demonstrate the concept of Information theory and describe various sources available to transfer he information.									
CO3	To have the i protocols.	To have the in depth knowledge of the Communication Network Structure and study various protocols.									
CO4	To deal with	the practical a	aspect of int	telligent commur	nication system.						

Communication System: Elements of communication system, introduction to analog and digital communication systems, Nyquist, Sampling Theorem. Quantization, Pulse Code Modulation, Delta Modulation, Pass band Digital Transmission via Carrier Modulation: ASK, FSK, BPSK, and QPSK. Multiplexing technique: Time Division Multiplexing (TDM), Frequency Division Multiplexing (FDM).

UNIT – II

Information Theory: Introduction to information theory, Information sources; average code word length; Huffman encoding; Channel capacity, discrete memory less channels and capacity, channel coding theorem; theory and practice of error-control coding: trellis diagram and the Viterbi algorithm, connection-type communication and connectionless-type communication, numbering plan.

UNIT – III

Communication Network Structure: Telephone Network Architecture, Computer Network Architecture: Computer Network, Network Architecture, OSI Protocol, Specific Structure of the OSI Reference Model, Internet Network Architecture: TCP/IP Protocol, TCP/IP Subprotocol Structure. Advances in Communication Networks: Integrated Services Digital Network, N-ISDN, B- ISDN,

Session Initiation Protocol (SIP), Asynchronous Transfer Mode

UNIT – IV

Intelligent Communication Systems: Concept of Intelligent Communication Systems, Functions of the Intelligent Processing Layer, Structure of the Knowledge-Base System, Design Methodology for Telecommunication Services: state-of-the-art design methodology, definition, graph theory, conflicts among telecommunication services, conflict of charge policy, high-level description of telecommunication.

Basic Technology of the Intelligent Communication System: Application of Production Rules to Telecommunications, Description of Telecommunication Services in a Semantic Network, Symbolic Logic, Predicate Logic: Definitions and Operations for Predicate Logic, Clausal Form, Herbrand Universe and the Herbrand Theorem, Proof of Tautology, Resolution Principle, Logical Consequence, Horn Set, Application to Telecommunication Service.

Suggested Books

1. Communication Systems: Analog and Digital by R. P. Singh and B. D. Sapre, Tata- McGraw Hill

2. Intelligent Communication Systems- Nobuyoshi Terashima (2001) Reference

3. B.P. Lathi and Z. Ding: Modern Digital and Analog Communication Systems, Fourth Edition, 2010, ISBN-13: 978-0-19-533145-5 (main text)

PC-CS-		Inter	net & Web	technology					
AIDS-208A									
Lecture	Tutorial	Practical	Credit	Major	Minor Test	Total	Time		
				Test					
3	0	0	3	75	25	100	3 Hrs.		
Purpose	To gain a broad understanding of the discipline of Web engineering and its application to the								
-	development and management of Web Applications.								
Course Outcome	ŝ								
CO1	Learn the ba	sic concepts	of informat	ion and web ar	chitecture.				
CO2	Learn about	the skills that	t will enabl	e to design and	build high level v	web enabled	applications.		
CO3	Understand	the applicabil	lity of Java	Script as per cu	urrent software inc	dustry standa	ards.		
CO4	Acquaint th	ne latest pro	gramming	language for	the implementat	ion of obje	ect based and		
	procedure based applications using Python.								

Information Architecture: The role of Information Architect, Collaboration and communication, Organizing information, organizational challenges, Organizing web sites and Intranets, Creating cohesive organization systems, designing navigation systems, types of navigation systems, Integrated navigation elements, designing elegant navigation systems, Searching systems, Searching your web site, designing the search interface, Indexing the right stuff, To search or not to search grouping content, conceptual design, High level Architecture Blueprint. Architectural Page Mockups, Design Sketches.

UNIT – II

Introduction to XHTML and HTML5: Origins and Evolution of HTML and XHTML, Basic Syntax, Standard XHTML Document Structure, Basic Text Markup, Images, Hypertext Links, Lists, Tables, Forms, HTML5, Syntactic Differences between HTML and XHTML.

Cascading Style Sheets: Introduction, Levels of Style Sheets, Style Specification Formats, Selector Forms, Property Value Forms, Font Properties, List Properties, Color, Alignment of Text, Box Model, Background Images, Conflict Resolution.

UNIT – III

Java Script: Overview of JavaScript, Object Orientation and JavaScript, General Syntactic Characteristics, Primitives, Operations, and Expressions, Screen Output and Keyboard Input, Control Statements, Object Creation and Modification, Arrays, Functions, Constructors, Pattern Matching Using Regular Expressions, Errors in Scripts

UNIT – IV

Python: Introduction to Python, Data Types and Expressions, Control Statements, Strings and Text Files, Lists and Dictionaries, Design with Functions, Design with Classes

Suggested Books:

- By Peter Morville, Louis Rosenfeld, "Information Architecture on the World Wide Web", O'Reilly Media, 2006.
- Robert W. Sebesta, "Programming The World Wide Web", Eight Edition, Pearson India, 2015.
- Kenneth A. Lambert, "The Fundamentals of Python: First Programs", 2011, Cengage Learning.
- Thomas A Powell, "HTML The Complete Reference", Tata McGraw Hill Publications.

PC-CS-		Data Base Management Systems									
AIDS-210A											
Lecture	Tutorial	Praqctica	Credit	Major	Minor Test	Total	Time				
		1		Test							
3	0	0	3	75	25	100	3 Hrs.				
Purpose	To familiarize the students with Data Base Management system										
Course Outcome	s										
CO1	To provid	e introduction	n to relation	al model.							
CO2	To learn a	bout ER diag	rams and S	QL.							
CO3	To unders	To understand about the concept of functional dependencies.									
CO4	To unders	tand about Q	uery Proces	sing and Tran	saction Processing						

Introduction: Concept & Overview of DBMS, Advantages of DBMS over file processing system, Database Languages, Responsibilities of Database Administrator, Database Users, Three Schema architecture of DBMS & Data Independence, Data Models.

Entity-Relationship Model: Basic concepts, Mapping Constraints, Keys, Entity-Relationship Diagram, Weak Entity Sets, Extended E-R features: Specialization and Generalization.

UNIT – II

The Relational Data Model & Algebra: Relational Model: Structure of relational Databases, Relational Algebra & various operations (Set operation, select, project, joins, division), Relational Calculus: Domain, Tuple.

Integrity Constraints & Introduction to SQL:-

Domain Constraints, Referential Integrity Constraints, Basic Structure & Concept of DDL, DML, DCL, Aggregate Functions, Null Values, Introduction to views, creating, modifying and deleting views.

UNIT – III

Relational Database Design : Functional Dependency, Different anomalies in designing a Database., Normalization – 1NF, 2NF, 3NF, Boyce-CODD Normal Form, Normalization using multi-valued dependencies, 4NF, 5NF.

UNIT – IV

Transaction Processing Concept: Introduction to transaction processing, transaction model properties, serializability:-Serial, non-serial and Serializable Schedules, Conflict Serializability.

Concurrency Control: Need of concurrency control, Different concurrency control Techniques: locking based, timestamps based technique. Deadlock handling and Recovery Techniques:- Deferred update/ immediate update, shadow paging.

Suggested Books:

- Elmasri and Navathe, "Fundamentals of Database Systems", Addision-Wesley,
- Silberschatz, and Korth ,"Database System Concepts", McGraw-Hill
- Date, "An Introduction to Database Systems", Addison-Wesley,
- Bhattacharyya, "Database Management Systems", Tata McGraw-Hill Publishing.

.PC-CS-AIDS- 212A	OPERATING SYSTEMS										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	75	25	100	3 Hrs.				
Purpose	To familiari	o familiarize the students with the basics of Operating Systems.									
Course Outcom	nes (CO)										
CO1	To understa	nd the structu	re and funct	ions of Opera	ting system.						
CO2	To learn abo	out processes,	threads and	scheduling a	lgorithms.						
CO3	To understa	nd the princip	ole of concur	rency.	-						
CO4	To understa	nd the concep	t of deadloc	ks.							
CO5	To learn var	ious memory	managemen	nt schemes.							
CO6	To study I/C) managemen	t and file sy	stems.							
CO7	To study the	concept of p	rotection an	d security.							

Introduction: Introduction to OS. Operating system functions, Different types of O.S.: batch process, multi-programmed, time-sharing, real-time, distributed, parallel.

System Structure: Computer system operation, I/O structure, storage structure, storage hierarchy, different types of protections, operating system structure (simple, layered, virtual machine), O/S services, system calls.

UNIT – II

CPU scheduling: scheduling criteria, preemptive and non-preemptive scheduling, scheduling algorithms, algorithm evaluation, multi-processor scheduling.

Threads: overview, benefits of threads, user and kernel threads.

Process Management: Concept of processes, process states, process control, co-operating processes, interprocess communication.

Process Synchronization: background, critical section problem, critical region, synchronization hardware, Classical problems of synchronization, semaphores.

UNIT – III

Deadlocks: Concept of deadlock, deadlock characterization, deadlock prevention, deadlock avoidance, deadlock detection, recovery from deadlock.

Memory Management: background, logical vs. physical address space, contiguous memory allocation, paging, segmentation, segmentation with paging. Concept of fragmentation.

Virtual Memory: background, demand paging, concept of page replacement, page replacement algorithms, allocation of frames, thrashing.

Unit-IV

File Systems: file concept, file organization and access methods, allocation methods, directory structure, free-space management

I/O Management: I/O hardware, polling, interrupts, DMA, kernel I/O subsystem (scheduling, buffering, caching, spooling and device reservation)

Disk Management: disk structure, disk scheduling (FCFS, SSTF, SCAN,C-SCAN), disk reliability, disk Performance parameters

Protection and Security:

Goals of protection and security, security attacks, authentication, program threats, system threats, threat monitoring.

Case studies: UNIX file system, Windows file system

Suggested Books:

- Operating System Concepts", Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne, Wiley
- Operating systems: a concept based approach", Dhananjay M. Dhamdhere, McGraw Hill .
- Operating Systems : Internals and Design Principles, William Stallings, Pearson
- Operating Systems Design and Implementation" ,(Prentice Hall Software Series) Andrew S Tanenbaum and Albert S Woodhull.
- Taub and Schilling, Principles of Communication Systems, TMH.
- Mithal G K, Radio Engineering, Khanna Pub.
- Sirnon Haykin, Communication Systems, John Wiley.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS-AIDS-	R Lab										
214LA											
Lecture	Tutorial	Practical	Credit	Minor	Practical	Total	Time				
				Test							
0	0	2	1	40	60	100	3 Hour				
Purpose	To Describe what Data Science is and the skill sets needed to be a data scientist										
Course Outcom	nes (CO)										
CO1	Install ar using ad	nd use R for d-on packag	simple prog es.	ramming tas	ks. Extend the	functiona	lity of R by				
CO2	Extract data from files and other sources and perform various data manipulation tasks on them. 4. Code statistical functions in R.										
CO3	Use R G data .	raphics and	Tables to vi	sualize resul	ts of various sta	atistical op	perations on				
CO4	Apply th	e knowledge	e of R gaine	d to data An	alytics for real	life applic	cations.				

LIST OF PRACTICALS

- 1. Write an R script, to create R objects for calculator application and save in a specified location in disk.
- 2. Write an R script to find basic descriptive statistics using summary, str, quartile function on sample datasets.
- 3. Write an R script to find subset of dataset by using subset (), aggregate () functions on sample dataset.
- 4. Write an R script for Reading different types of data sets (.txt, .csv) from web and disk and writing in file in specific disk location.
- 5. Write an R script for Reading Excel data sheet and XML dataset.
- 6. Find the data distributions using box and scatter plot of sample dataset.
 - a. Find the outliers using plot.
 - b. Plot the histogram, bar chart and pie chart on same data.
- 7. How to find a corelation matrix and plot the correlation on sample data set.
 - a. Plot the correlation plot on dataset and visualize giving an overview of relationships among data
 - b. Analysis of covariance: variance (ANOVA), if data have categorical variables
- 8. Import a data from web storage. Name the dataset and now do Logistic Regression to find out relation between variables that are affecting the admission of a student in a institute based on his or her GRE score, GPA obtained and rank of the student. Also check the model is fit or not. require (foreign), require(MASS).
- 9. Apply multiple regressions, if data have a continuous independent variable. Apply on above dataset (in Que 8).
- 10. Apply regression Model techniques to predict the data on above dataset (in Que 8).
| ES-CS- | | | Internet & | Web Technology | / Lab | | | | | | |
|---------|--------------|--|----------------------|------------------|--------------|------------------------|--|--|--|--|--|
| AIDS- | | | | | | | | | | | |
| 216LA | | | | | | | | | | | |
| Lecture | Tutorial | Practical | Minor Test | Practical | Total | Time | | | | | |
| 0 | 0 | 3 | 40 | 60 | 100 | 3 Hrs. | | | | | |
| Purpose | To introduc | To introduce the concepts of HTML5, JavaScript and Python. | | | | | | | | | |
| | | | Course Outcon | nes (CO) | | | | | | | |
| CO1 | Design web | pages using I | HTML, JavaScrip | ot and CSS. | | | | | | | |
| CO2 | Design and | test simple fu | inction/program | to implement Sea | rching and s | sorting techniques | | | | | |
| | using Pytho | on. | | | | | | | | | |
| CO3 | Develop pro | ogram in Java | Script for patter | n matching using | regular exp | ressions and errors in | | | | | |
| | scripts. | | | | | | | | | | |
| CO4 | Design clier | nt-server base | d web applicatio | ns. | | | | | | | |

LIST OF PRACTCALS

- 1. Create your own page with your favorite hobbies using HTML, JavaScript and CSS.
- 2. Create a frameset in HTML that is divided into three sections. The frameset should have three zones.
 - a. The Topmost section of the frameset should take up about just 15% of the browser window. Name this frame title.
 - b. The middle section should be 75% of the browser window. Name this frame title.
 - c. The lower section should be 10% of the browser window. Name this frame menu.
- 3. Create pages for each section. For the lowermost section, create page that loads the content into the middle section. The topmost section should contain a page describing the web page itself.
- 4. Create a web page, which displays the map of your country Link, each city /state on the image map, such that the respective HTML page of the city/state is displayed when the user selects an area.
- 5. Add the tickertape applet to your page by customizing it for the following settings:
 - a. Increase the count by one.
 - b. Accordingly update the message count.
 - c. Change the text color to (237,192,171)
 - d. Experiment with changing the scrolling speed.
 - e. Customize the message text as per your page requirement.
- 6. Incorporate a quest book into the Diary Food Webpage and use Java Script to build validations into the form.
- 7. Use Cascading Style sheets (CSS) to modify the following:
 - a. Change background.
 - b. Change font type, face and color.
 - c. Align Text.
 - d. Remove underlines from hyperlinks.
- 8. Write the program for using JavaScript by using for loops (through a block of code a number of times), for/in loops (through the properties of an object), while loops (through a block of code while a specified condition is true), do/while loops (through a block of code while a specified condition is true).
- 9. Write a program in Java Script for the following:
 - a. Copying, passing, and comparing by value
 - b. Copying, passing, and comparing by reference
 - c. References themselves are passed by value
- 10. Write program in Java Script for pattern matching using regular expressions and errors in scripts.
- 11. Write a Python function/program that accepts the lengths of three sides of a triangle as inputs. The program output should indicate whether or not the triangle is an equilateral triangle.
- 12. Write the Python functions for linear search, binary search, selection sort, Bubble Sort, Insertion Sort and converting Fibonacci to a linear algorithm.
- 13. Write program in Python using Lists and dictionaries, Control statements and Strings and text files.

PC-CS-AIDS-		Database Management Systems Lab									
218LA											
Lecture	Tutorial	utorial Practical Credit Practical Minor Test Total Tir									
0	0	0 2 1 60 40 100 3									
Purpose	To impleme	To implement practically the various concepts of DBMS									
		Course Outcomes									
CO1	To understan	d& Impleme	ent basic DE	L commands.							
CO2	To learn & In	mplement Dl	ML and DC	L commands.							
CO3	To understan	nd the SQL q	ueries using	SQL operators							
CO4	To understan	d the concep	ot of relation	al algebra and i	mplement using	examples	3.				

LIST OF PRACTCALS

- 1. Create a database and write the programs to carry out the following operation:
 - Add , Delete and modify a record in the database
 - Generate queries
 - Data operations
 - List all the records of database in ascending order.
- 2. To perform various integrity constraints on relational database.
- 3. Create a database and perform the following operations:-
 - 4. Arithmetic and Relational operations
 - 5. Group by & having clauses
 - 6. Like predicate for pattern matching in database
- 4. Create a view to display details of employees working on more than one project.
- 5. Create a view to display details of employees not working on any project.
- **6.** Using two tables create a view which shall perform natural join, equi join, outer joins.
- 7. Write a procedure to give incentive to employees working on all projects. If no such employee found give app. Message.
- 8. Write a procedure for computing amount telephone bill on the basic of following conditions.
 - 1. telephone rent Rs. 205 including first 105 free units.
 - 2. if extra units>0 but <500 then rate is 80 paise per unit.
 - 3. if extra units>500 then rate is Rs. 1.20 per unit.

For this purpose create a table with name, Phone No., No. of units consumed, bill amount of a customer.

- 9. Write a procedure for computing income tax of employee on the basic of following conditions:-
 - 1. if gross pay $\leq 40,000$ then I.T rate is 0%.
 - 2. if gross pay>40,000 but <60000 then I.T rate is 10%.
 - 3. if gross pay>60,000 but <1,00,0000 then I.T rate is 20%.
 - 4. if gross pay>1,00,0000 then I.T rate is 30%.
 - For this purpose create a table with name, ssn, gross salary and income tax of the employee.
- **10.** Write trigger for before and after insertion, deletion and updation process.

NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus

MC-901A		Environmental Sciences										
Lecture	Tutorial	Practical	Credit	Major	Minor Test	Total	Time					
				Test								
3	0	0	0	75	25	100	3 Hrs.					
Purpose	To learn the multidisciplinary nature, scope and importance of Environmental sciences.											
Course Out	tcomes (CO											
CO1	The studen	ts will be able	e to learn th	ne importanc	e of natural reso	urces.						
CO2	To learn th	e theoretical	and practica	al aspects of	eco system.							
CO3	Will be abl	Will be able to learn the basic concepts of conservation of biodiversity.										
CO4	The studen	ts will be abl	e to underst	tand the basi	c concept of sust	ainable de	evelopment.					

UNIT – I

The multidisciplinary nature of environmental studies, Definition, Scope and Importance, Need for public awareness, Natural Resources: Renewable and Non-Renewable Resources: Natural resources and associated problems.

- (m) Forest Resources: Use and over-exploitation, deforestation, case studies. Timber eztraction, mining, dams and their effects on forests and tribal people.
- (n)Water Resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- (o)Mineral Resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- (p)Food Resources: World Food Problems, changes caused by agriculture and overgazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- (q)Energy Resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- (r) Land Resources: Land as a resource, land, degradation, man induced landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources, Equitable use of resources for sustainable lifestyle.

UNIT – II

Ecosystem-Concept of an ecosystem: Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological Succession, Food Chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem: (a) Forest Ecosystem, (b) Grassland Ecosystem, (c) Desert Ecosystem and (d) Aquatic Ecosystems (ponds, streams, lakes, rivers, oceans, esturaries

Field Work: Visit to a local area to document Environment assets-river/forest/grassland/hill/mountain, Visit to a local polluted site-Urban /Rural Industrial/Agricultural, Study of common plants, insects and birds, Study of simple ecosystems-pond, river, hill, slopes etc. (Field work equal to 5 lecture hours).

UNIT – III

Biodiversity and its conservation: Introduction, Definition: genetic, species and ecosystem diversity. Biogeographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity of global, National and local levels. India as a megadiversity nation Hot spot of Biodiversity, Threats to biodiversity: Habitat loss, poaching of wild life, manwildlife conflicts, Endangered and endemic species of India, Conservation of Biodiversity- In situ and Ex-Situ conservation of biodiversity. **Environmental Pollution Definition:** Cause, effects and control measures of (a) Air Pollution (b) Water Pollution (c) Soil Pollution (d) Marine Pollution (e) Noise Pollution (f) Thermal Pollution (g) Nuclear Hazards

Solid waste management- cause, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies, Disaster management: floods, earthquake, cyclone and landslides

UNIT – IV

Social Issues and the Environment: From unsustainable to sustainable development, Urban problems related to energy, Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people: Its problems and concerns, Case Studies: Environmental ethics-issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies: Wasteland Reclamation, Consumerism and waste products, Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public Awareness, Human population and the Environment, Population growth, variation among nations, Population explosion-Family Welfare Programme, Environment and human health. Human rights, Value Education, HIV/AIDS, Women and Child Welfare, Role of Information Technology in Environment and Human Health, Case Studies, Drugs and their effects; Useful and harmful drugs, Use and abuse of drugs, Stimulant and depression drugs, Concept of drug de-addiction, Legal position on drugs and laws related to drugs.

Suggested Books:

- Environmental Studies- Deswal and Deswal. Dhanpat Rai and Co.
- Environmental Science and Engineering Anandan, P. and Kumaravelan, R. 2009. Scitech Publications (India) Pvt. Ltd., India
- Environmental Studies. Daniels Ranjit R. J. and Krishnaswamy. 2013. Wiley India.
- Environmental Science- Botkin and Keller. 2012. Wiley, India

Note: The Examiner will be given the question paper template to set the question paper.

Bachelor of Technology (Electrical Engineering) (Credit Based) Modified Scheme of Studies/Examination Semester III (Modified & w.e.f. Session 2021-22)

Sr. No.	Course No.	Subject	L:T:P	Hours/Week	Credits		Examinatio	on Schedule (M	larks)	Duration
						Major	Minor	Practical	Total	of Exam
						Test	Test			(Hrs)
1	*EE-201A	Electric Circuit Theory	3:1:0	4	4	75	25	0	100	3
			2.0.0	2		75	25	0	100	2
2	EE-203A	Analog Electronics	3:0:0	3	3	5 75	25	0	100	3
3	*EE-205A	Electrical Machines - I	3:1:0	4	4	75	25	0	100	3
4	BS-207A	Applied and Computational	3:0:0	3	3	75	25	0	100	3
		Mathematics								
5	HTM-901A	Universal Human Values II :	3:0:0	3	3	75	25	0	100	3
		Understanding Harmony		$\cdot 0 \cdot$						
6	*EE-211A	Electrical Machines – I Lab	0:0:2	2	1	-	40	60	100	3
7			0.0.2		1		40	(0)	100	2
/	EE-207A	Analog Electronics Lab	0:0:2		1	-	40	60	100	3
8	**EE-209A	Industrial Training-I	2:0:0	2	-	-	100	0	100	3
0	*** 10 001	Environmental Spiences	2.0.0	2		75	25	0	100	2
9	*****IVIC-901A	Environmental Sciences	5:0:0	3	-	13	23	U	100	5
		Total	N .	26	19	375	205	120	700	
									1	1

* Subjects Common with IIIrd Semester. B.Tech. [Electrical & Electronics Engg.] Scheme, K.U.K.

**EE-209Aisamandatorycredit-lesscourseinwhichthestudentswillbeevaluatedfortheindustrialtrainingundergoneafter2ndsemesterandstudentswillberequiredto get passing marks toqualify.

***MC-901A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

HTM-901A		Universa	al Human Va Harmo	lues II: Unde ony	erstanding							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3.0	75	25	100	3 Hours					
Purpose	Purpose and motivation for the course, recapitulation from Universal Human Values-I											
	•	Course Outcomes (CO)										
CO 1	Developm themselve	nent of a ho s (human b	listic persp eing),famil	ective base ly, society a	ed on self-ex and nature/e	xploration existence.	about					
CO 2	Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.											
CO 3	Strengthe	ning of self	-reflection.									
CO 4	Developm	nent of com	mitment ar	nd courage	to act.							

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for ValueEducation

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrarinessin choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'l' and harmony in 'l'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in

Human-HumanRelationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- fromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence asCoexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on ProfessionalEthics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and

organizations

28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. todiscuss the conduct as an engineer or scientist etc.

READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at handand motivating students to reflect, explore and verify them.

Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration. Scenarios may be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely

behaving and working based onbasic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemed essential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example:

Assessment by

faculty mentor: 5 marks

Self-assessment: 5 marks

Assessment by peers: 5 marks

Socially relevant project/Group Activities/Assignments: 10 marks

Semester End Examination: 75 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

KURUKSHETRA UNIVERSITYKURUKSHETRA Bachelor of Technology (ElectricalEngineering) Scheme of Studies/Examination SemesterVII (w.e.f.session 2021-22)

SN	Course	Subject	L:T:P	H/Wk	Credits	Examination Schedule (Marks)			Duration	
	No.					Major Test	Minor Test	Practi cal	Total	of Exam (Hrs)
1	HSMC-401A	Principles of Management	3:0:0	3	3	75	25	0	100	3
2		Program Elective-IV	3:0:0	3	3	75	25	0	100	3
3		Program Elective-V	3:0:0	3	3	75	25	0	100	3
4		Open Elective-III	3:0:0	3	3	75	25	0	100	3
		Open Elective-IV	3:0:0	3	3	75	25	0	100	3
5	EE-401LA	Project Stage-I	0:0:6	6	3	-	40	60	100	3
6	#EE-403A	Industrial Training-II	2:0:0	2	-	-	100	• /	100	3
		Total		23	18	375	165	60	600	
	1		•	•						1

**Program Elective-IV	EEP-405A	HVDC Transmission System
	**EENP-401A	Industrial Electrical System
**Program Elective- V	**EENP-403A	Digital Control System
	**EENP-405A	High Voltage Engineering
**Open Elective-III	EEO-401A	Utilization of Electric Energy
	EEO-415A	Transducers and their Applications
**Open Elective-IV	EEO-419A	Biomedical Instrumentation
	EEO-421A	Fluid Machinery

Note: The course of both Program Elective and Open Elective will be offered at $1/3^{rd}$ strength or 20 students (which ever is smaller) of the section.

EE-403A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify.

**: Subject common with B.Tech. Electrical& Electronics Engg .7th Sem.

	KURUKSHETRA UNIVERSITY KURUKSHETRA BachelorofTechnology (Electrical Engineering) Scheme of Studies/Examination Semester VIII (w.e.f.Session 2021-22)												
S. No.	S. Course Subject L:T:P Hou Cre Examination Schedule (Marks) Durat ion												
10.	10.			We ek		Major Minor Practic Tot of Exa Test Test al al Exa m. (Hrs.)							
1		Program Elective-VI	3:0:0	3	3	75	25	0	100	3			
3		Open Elective-V	3:0:0	3	3	75	25	0	100	3			
4		Open Elective-VI	3:0:0	3	3	75	25	0	100	3			
5	5 EE-402LA Project Stage-II 0:0:12 12 6 - 40 60 100 3												
		Total		21	15	225	115	60	400				

Program Elective-VI	EEP-402A	Electrical & Hybrid Vehicles
	**EENP-402A	Power Quality & FACTS
	**EENP-404A	Control System Design
	EEP-408A	Wind and Solar Energy System
Open Elective-V	EEO-410A	Power Plant Engineering
	EEO-412A	PLC and their application
Open Elective-VI	**EENO-406A	Embedded System
	**EENO-412A	Automobile Engineering
	EEO-418A	Biomedical Signal & Image Processing

Note: The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section. **Subject common with B.Tech. 8th sem Electrical & Electronics Engg.

٠

Total Credits = 160

HSMC-401A	Principles of	Management					
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)
				Test	Test		
3	0	0	3	75	25	100	3
Program	To make stude	ents aware abo	ut the fundame	entals and var	ious technique	e used in sign	al and
Objective	image proces	sing					
(PO)							
		C	ourse Outco	mes (CO)			
After complet	ion of course	students will	be able to				
CO1	To develop	ability to critic	ally analyze a	and evaluate	a variety of n	nanagement	practices in
	the contemp	orary context					
CO2	To understar	nd and apply a	variety of ma	nagement an	id organizatio	nal theories i	n practice
CO3	To develop a	ability to critica	ally analyze a	and evaluate	a variety of n	nanagement	practices in
	the contempo	orary context					
CO4	To be able t	o mirror exist	ing practices	or to genera	ate their own	innovative n	nanagement
	competencie	s, required	l for to	day's con	nplex and	global	workplace

UNIT-1

Introduction: Definition, roles and functions of a manager, management and its science and art perspectives, management challenges and the concepts like, competitive advantage, entrepreneurship and innovation. Early contributors and their contributions to the field of management. Corporate Social Responsibility. Planning, Organizing, Staffing and HRD functions, Leading and Controlling. Decision making under certainty, uncertainty and risk, creative process and innovation involved in decision making.

UNIT-2

Early Contributions and Ethics in Management: Scientific Management- contributions of Taylor, Gilbreths, Human Relations approach-contributions of Mayo, McGregor's Theory, Ouchi's Theory Z (3 Hrs.) Systems Approach, the Contingency Approach, the Mckinsey 7-S Framework Corporate Social responsibility- Managerial Ethics. (3 Hrs)

UNIT-3

Organizing for decision making: Nature of organizing, organization levels and span of control in management Organizational design and structure -departmentation, line and staff concepts (3 Hrs.) Limitations of decision making Evaluation and selecting from alternatives- programmed non-programmed and decisions decision under certainty, uncertainty and risk-creative process and innovation (3 Hrs.)

UNIT-4

Staffing and related HRD Functions: definition, Empowerment, staff – delegation, decentralization and recentralization of authority – Effective Organizing and culture-responsive organizations –Global and entrepreneurial organizing (3 Hrs.) Manager inventory chart-matching person with the job-system approach to selection (3 Hrs.) Job design skills and personal characteristics needed in managers selection process, techniques and Instruments (3 Hrs.)

Text Books

- 1. Harold Koontz and Heinz Weihrich, *Essentials of Management*, Mc Graw Hil Companies , 10th edition, 2014
- 2. Draft, New Era Managment, Pearson Education, 11th edition, Cengage Learning
- 3. Ptere F. Drucker, *The Practice of Management*, Mc Graw Hill, New York.
- 4. Robbins and Coulter, Management, 13th Edition, Pearson Education , 2016.

EEP-405A			HVDC Tra	Insmission S	ystems					
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
3	0	0	3	75	25	100	3			
Program	To make stud	ents aware abo	ut the fundam	entals and var	ious technique	es of HVDC tr	ansmission			
Objective	system									
(PO)										
		C	ourse Outco	mes (CO)						
After complet	ion of course	students will	be able to							
CO1	Understand	the advantage	s of dc transn	nission over a	c transmissio	n.				
CO2	Understand	Understand the operation of Line Commutated Converters and Voltage Source								
CO3	Understand	the control stra	ategies used i	n HVDC trans	smission syste	em				
CO4	Understand	the improveme	ent of power s	ystem stability	y using an HV	/DC system				

Comparison of AC and dc Transmission (Economics, Technical Performance and Reliability). Application of DC Transmission. Description of DC transmission system; planning for HVDC transmission; modern trends in DC transmission.

UNIT 2

Thyristor Valve & Analysis of HVDC Converters: Introduction; thryistor device; thyristor value; value tests; recent trends; pulse number; choice of converter configuration; simplified analysis of Graetz circuit; converter bridge characteristics; characteristics of twelve pulse converter; detailed analysis of converters.

UNIT 3

Converter and Hvdc System Control: General; principles of DC link control; converter control characteristics; system control hierarchy; firing angle control; current and extinction angle control; starting and stopping of dc link; power control; higher level controllers; telecommunication requirements.

UNIT 4

Smoothing Reactors, Reactive Power Sources and Filters in LCC HVdc systems DC line: Corona Effects. Insulators, Transient Over-voltages. dc line faults in LCC systems. dc line faults in VSC systems. dc breakers. Monopolar Operation. Ground Electrodes.

Suggested Books:

1. Padiyar, K.R., "HVDC Power Transmissions Systems", New Age International, 2001

- 2. Rao,S., "EHV-AC, HVDC Transmission & Distribution Engineering", Khanna Publishers, 1999
- 3. Tagare, D.M., "Reactive Power Management", Tata McGraw Hill, 1996
- 4. Dubey, G.K., "Power Semi-conductor Controlled Drives", Prentice Hall, 1999.

5. Arrillaga, J., "High Voltage D.C.Transmission", Peter Peregrinus Ltd, 1996

EENP-401A			Indu	strial Electr	ical System							
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)					
				Test	Test							
3	0	0	3	75	25	100	3					
Program	To provid	de knowledge	about vario	ous concepts	of industria	al electrical	systems and their					
Objective	automatio	utomation										
(PO)												
			Course O	utcomes (CC)							
After completio	on of cours	e students wi	II be able to									
CO1	Understar	nd residential a	and commerci	al electrical s	ystems							
CO2	Understar	Understand various types of illumination systems and lighting schemes used for a residential										
	and comm	and commercial premises										
CO3	Understar	nd various con	cepts of indus	strial electrica	l systems							
CO4	Understar	nd the concept	related to in	dustrial electr	ical system a	utomation						

UNIT- I

Residential and Commercial Electrical Systems: Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components

UNIT- II

Illumination Systems: Understanding various terms regarding light, lumen, intensity, candle power, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of a lighting scheme for a residential and commercial premises, flood lighting

UNIT- III

Industrial Electrical Systems I: HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction – kVAR calculations, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB and other LT panel components.

UNIT IV

Industrial Electrical Systems II: DG Systems, UPS System, Electrical Systems for the elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks

Industrial Electrical System Automation: Study of basic PLC, Role of in automation, advantages of process automation, PLC based control system design, Panel Metering and Introduction to SCADA system for distribution automation

Text Books/References:

1. S. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publishers, 2008.

2. K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007.

3. S. Singh and R. D. Singh, "Electrical estimating and costing", Dhanpat Rai and Co., 1997. Web site for IS Standards.

4. H. Joshi, "Residential Commercial and Industrial Systems", McGraw Hill Education, 2008

EENP-403A		Digital Control System										
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)					
				Test	Test							
3	0	0	3	75	25	100	3					
Program	To enable	To enable students to design and analyze discrete time (digital) control system										
Objective												
(PO)												
			Course O	utcomes (CC))							
After completi	on of cours	e students w	ill be able to									
CO1	Represent of	discrete time sy	stems under th	e form of z-do	main transfer fu	unctions and s	tate-space models.					
	Also able to	obtain the mod	lel of discrete-t	ime systems b	y pulse transfe	r function						
CO2	Analyze sta	bility, transient	response and s	steady state be	haviour of line	ear discrete tim	ne systems,					
	analytically	and numerically	using tools su	ich as MATLA	3 and Simulink							
CO3	Design sar	npled data coi	ntrol systems.									

Describe Discrete state space model and test controllability and observability of systems

UNIT- I

Introduction to digital control: Introduction, Discrete time system representation, Mathematical modelling of sampling process, Data reconstruction.

Modelling discrete-time systems by pulse transfer function

Revisiting Z-transform, Mapping of s-plane to z-plane, Pulse transfer function, Pulse transfer function of closed loop system, Sampled signal flow graph

UNIT- II

Stability analysis of discrete time systems: Jury stability test, Stability analysis using bi-linear transformation, Time response of discrete systems, Transient and steady state responses, Time response parameters of a prototype second order system.

UNIT- III

Design of sampled data control systems: Root locus method, Controller design using root locus, Root locusbased controller design using MATLAB, Nyquist stability criteria, bode plot, Lead compensator design using Bode plot, Lag compensator design using Bode plot, Lag-lead compensator design in frequency domain.

UNIT IV

Discrete state space model: Introduction to state variable model, Various canonical forms, Characteristic equation, state transition matrix, Solution to discrete state equation. Controllability, observability and stability of discrete state space models: Controllability and observability, Stability, Lyapunov stability theorem.

Text Books/References:

CO4

- 1. B. C.Kuo, Digital Control Systems, Oxford University Press, 2nd Edition, Indian Edition, 2007.
- 2. K. Ogata, Discrete Time Control Systems, Prentice Hall, 2ne Edition, 1995.
- 3. M. Gopal, Digital Control and State Variable Methods, McGraw Hill, 2/e, 2003.
- 4. G. F. Franklin, J. D.Powell and M. L. Workman, Digital Control of Dynamic Systems, Addison Wesley, 1998, Pearson Education, 3rd Edition.
- 5. K. J.Astroms and B. Wittenmark, Computer Controlled Systems Theory and Design, Prentice Hall, 3rd Edition, 1997.

EENP-405A		High Voltage Engineering										
Lecture	Tutorial	Interview										
				Test	Test							
3	0	0	3	75	25	100	3					
Program	To enable	To enable students to understand important concepts of high voltage engineering										
Objective (PO)												
Course Outcomes (CO)												
After completion	of course s	students will I	be able to									
CO1	Understan	d the concept	of electrostat	tic field and	effect of high	electrostatio	; field over					
	Gases, Lic	quid and solid	dielectric									
CO2	Understan	Understand the concept of generation of high voltages and currents in the system										
CO3	Measure h	Veasure high voltages and currents in the system										
CO4	Perform N	on-destructive	and high vol	tage testing	on various co	omponents o	f power system					

.UNIT I

Electrostatic Field and Field Stress Control: Electric field stresses, Numerical methods for Electric field computation, Finite Element Method, Charge simulation method.

Conduction and Break Down in Gases: Ionization processes, Townsend's criterion, breakdown in electronegative gases, time lags for breakdown, streamer theory, Paschen's law, break down in non-uniform field, and corona discharge

Break Down in Liquid Dielectrics: Conduction and breakdown in pure liquid and commercial liquid.

Break Down in Solid Dielectrics: Intrinsic breakdown, electromechanical breakdown breakdown of solid, dielectric and composite dielectrics.

UNIT II

Generation of High Voltages and Currents: Generation of high direct current voltages, generation of high alternating voltages, generation of impulse voltages, generation of impulse currents, tripping and control of impulse generators.

UNIT III

Measurement of High Voltages and Currents: Measurement of high direct current voltages, measurement of high alternating and impulse Voltages measurement of high direct, alternating and impulse currents, Cathode Ray Oscillographs for impulse voltage and current measurements.

Insulation Coordination in Electric Power Systems: Principle of Isolation Coordination in High-Voltage & Extra-High Voltage Power System.

UNIT IV

Non-Destructive Testing: Measurement of direct current resistively, measurement of dielectric constant and loss factor, partial discharge measurements

High Voltage Testing: Testing of insulators and bushings, testing of isolators and circuit breakers, testing of cables, testing of transformers, testing of surge arresters, radio interference measurements.

Text Books/References :

1. M. S. Naidu and V. Kamaraju, "High Voltage Engineering, Tata Mc-Graw Hill.

- 2. C. L. Wadhwa, "High Voltage Engineering", Wiley Eastern Ltd.
- 3. E. Kuffel and W. S. Zacngal, High Voltage Engineering", Pergamon Press.
- 4. M. P. Chaurasia, "High Voltage Engineering", Khanna Publishers
- 5. R. S. Jha, "High Voltage Engineering", DhanpatRai& sons
- 6. M. Khalifa,' High Voltage Engineering Theory and Practice,' Marcel Dekker.
- 7. Subir Ray,' An Introduction to High Voltage Engineering' Prentice Hall of India

EEO-401A	UTILAZTION C	OF ELECTRICAL	ENERGY								
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	75	25	100	3				
Program	To make stud	To make students aware about the fundamentals and various techniques used in Utiization of									
Objective	Electrical Ene	Electrical Energy									
(PO)											
		C	ourse Outco	mes (CO)							
After complet	ion of course	students will	be able to								
CO1	Understand	the different te	rms of illumin	ation and vari	ious lamps						
CO2	Analyze the	Analyze the different methods of Electrical heating and electrical welding									
CO3	Understand	Understand the laws of Electrolysis.									
CO4	Understand	the basics of tr	action motors	6.							

Illumination: Term used in illumination, Laws of illumination, sources of Light, arc lamp incandescent lamp, discharge lamp, sodium vapour, mercury vapour lamp, fluorescent tubes, lightening schemes, method of lightning calculation.

UNIT II

Electrical Heating: Advantages of Electrical Heating, various types of Electrical heating, Power frequency and High frequency heating, Degree of heating element, Equivalent circuit of arc furnace, Resistance heating, Arc heating, Induction heating, dielectric heating etc.

Electric Welding: All types of electrical welding, resistance welding, arc welding, electrical winding equipment, Comparison between AC & DC welding, types of electrodes, advantages of coated electrodes.

UNIT III

Electroplating: Basic principle, faraday's law of electrostatics, terms used, Application of electrolysis, factors governing electro deposition, power supply.

Refrigeration & Air Conditioning: Basic principle, various compression cycle & system its application, electric circuit of refrigerator, air conditioner.

UNIT IV

Traction Motors : Different system of electric traction, comparison between AC & DC system, block diagram of traction system ,Starting-Speed control and braking- Speed control and braking –Speed time curves,-Mechanics of Train movement-Tractive effort for acceleration – Power and energy output from driving axles -Specific energy output and consumption-Train resistance.

Suggested Books:

1. Dr.S.L.Uppal, Electrical Power ,Khanna Publishers, New Delhi,1980.

2. M.L.Soni, P.V.Gupta, U.S.Bhatnagar, A.Chakrabarti, A Text Book On Power System Engineering, Dhanpat Rai & Co, New Delhi 1997-98

3. H.Pratap, Art and Science of Utilization of Electric Energy, Dhanpat Rai & Sons, New Delhi, 1980.

5. G.C.Garg, Utilization of Electric Power and Electric Traction, Khanna publishers, New Delhi, 1995.

EEO-415A	Transducer &	Their Applica	tions								
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	75	25	100	3				
Program	To make stud	Fo make students aware about the fundamentals of transducers and their applications.									
Objective											
(PO)											
		C	ourse Outco	mes (CO)							
After complet	ion of course	students will	be able to								
CO1	Understand	the different ty	pes of transdu	ucers							
CO2	Analyze the	Analyze the different methods of measurements of displacement									
CO3	Understand	the different m	ethods of mea	asurements o	f pressure						
CO4	Understand	the basics con	cepts of meas	surements of	temperature						

UNIT - I

Definition of transducer. Advantages of an electrical signal as out-put. Basic requirements of transducers, Primary and Secondary Transducer, Analog or digital types of transducers. Resistive, inductive, capacitive, piezoelectric, photoelectric and Hall effect transducers.

UNIT-II

Measurement of Displacement - Potentiometric resistance type transducers, inductive type transducers, differential transformer (L.V.D.T), capacitive transducers, Hall effect devices, strain gage transducers. Measurement of Velocity - variable reluctance pick up, electromagnetic tachometers, photoelectric tachometer, toothed rotor tachometer generator.

Measurement of Flow: Venturi meter, orifice meter, nozzle meter, Pitot-static tube, rotameter, turbine flow meter, ultrasonic flow meter, electromagnetic flow meter, hot wire anemometer.

UNIT - III

Measurement of Pressure - Manometers, Force summing devices and electrical transducers Measurement of Force - Strain-gage load cells, pneumatic load cell, L VDT type force transducer.

Measurement of Torque - Torque meter, torsion meter, absorption dynamometers, inductive torque transducer, digital methods

UNIT - IV

Measurement of Temperature - Metallic resistance thermometers, semi conductor resistance sensors (Thermistors), thermo-electric sensors, pyrometers.

Measurement of Liquid Level: Resistive Method, Inductive method, capacitive method Sound Measurement: Microphone, Types of Microphones.

Measurement of Humidity: Resistive, capacitive, aluminium oxide & crystal hygrometers.

Suggested Books:

- 1. B.C. Nakra, K.K. Chaudhry, "Instrumentation Measurement and Analysis," . Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 2. Thomas G. Beckwith etc. all, "Mechanical Measurements (International Student Edition), Addison-Wesley Longman, Inc. England.
- 3. A.K. Sawhney, " A Course in Electrical and Electronic Measurements and Instrumentation," Dhanpat Rai & Sons, Delhi-6.

EEO-419A	BIOMEDICAL INSTRUMENTATION										
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	75	25	100	3				
Program	To make stude	To make students aware about the fundamentals and various technique used in biomedical									
Objective	instrumentatio	nstrumentation.									
(PO)											
		C	ourse Outco	mes (CO)							
After complet	ion of course	students will	be able to								
CO1	Understand t	he basic conc	epts of bio po	tential.							
CO2	Analyze the	Analyze the different types of meters.									
CO3	Understand f	Understand the different medical imaging technique.									
CO4	Understand t	he basics con	cepts of Elect	rode-electroly	/te interface						

Unit 1

Cell resting potential and action potentials - Origin of bio potentials - characteristics – Frequency and amplitude ranges - ECG – Einthoven's triangle – 3 lead ECG system - EEG – 10- 20 electrode system - Origin and characteristics of EMG – EOG - ERG electrodes and transducers.

Unit 2

Diagnostic and Therapeutic Equipments: Blood pressure monitors – Electro-cardio scope - Pulse Oximeter - pH meter - Auto analyzer – Pacemakers – Defibrillator - Heart lung machine - Nerve and muscle stimulators - Dialysis machines - Surgical diathermy equipments – Nebulizer; inhalator - Aspirator – Humidifier - Ventilator and spirometry.

Unit 3

Medical imaging techniques: Basics of diagnostic radiology – Production - Nature and properties of X rays - X-ray machine - Block diagram - Digital radiography – CT - Basic Principle - Block diagram – Radioisotopes in medical diagnosis – Physics of radioactivity – Gamma Camera. Block diagram – SPECT Scanner – PET Scanner - Principles of NMR Imaging systems - Block diagram of NMR Imaging System .

Unit 4

Electrode-electrolyte interface – Electrode – skin interface - Half cell potential – Impedance - Polarization effects of electrode – Non-polarizable electrodes. Types of electrodes - Surface; needle and micro electrodes – ECG – EMG - EEG Electrodes. Physics of Ultrasound waves – Doppler effect – Medical Ultrasound Electrical safety: Physiological effects of electricity.

TEXT BOOKS:-

- 1. John G Webster, "Medical Instrumentation Application and Design", 4th ed., John Wiley and Sons, 2007.
- 2. Leslie Cromwell, Fred. J. Weibell, Erich. A. Pfeiffer, "Biomedical Instrumentation & Measurements, 2nd ed., Pearson Education., 2001.
- 3. R S Khandpur, "Handbook of Biomedical Instrumentation", 1st ed., Tata McGraw Hill Publishing Company Limited, 2004.

EEO-421A	Fluid Machin	ery								
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
3	0	0	3	75	25	100	3			
Program Objective (PO)	To make stud hydraulic sys	To make students aware about the fundamentals and various pumps and machinery used in hydraulic system.								
		C	ourse Outco	mes (CO)						
After complet	ion of course	students will	be able to							
CO1	Discuss the	characteristics	of centrifuga	l pump and re	ciprocating p	umps.				
CO2	Calculate for	Calculate forces and work done by a jet on fixed or moving plate and curved plates.								
CO3	Know the wo	orking of turbin	es and select	the type of tu	irbine for an a	pplication				
CO4	Do the anal	ysis of air com	pressors and	select the sui	table one for	a specific ap	plication			

UNIT-1

Introduction to hydrodynamic thrust of jet on a fixed and moving surface (flat and curve), – Series of vanes - work done and efficiency Hydraulic Turbines : Impulse and Reaction Turbines – Degree of reaction – Pelton Wheel – Constructional features - Velocity triangles – Euler's equation – Speed ratio, jet ratio and work done , losses and efficiencies, design of Pelton wheel – Inward and outward flow reaction turbines- Francis Turbine – Constructional features – Velocity triangles, work done and efficiencies.

UNIT-2

Axial flow turbine (Kaplan) Constructional features – Velocity triangles- work done and efficiencies – Characteristic curves of turbines – theory of draft tubes – surge tanks – Cavitation in turbines – Governing of turbines – Specific speed of turbine , Type Number– Characteristic curves, scale Laws – Unit speed – Unit discharge and unit power.

UNIT-3

Rotary motion of liquids – free, forced and spiral vortex flows Rotodynamic pumps- centrifugal pump impeller types,-velocity triangles-manometric head- work, efficiency and losses, H-Q characteristic, typical flow system characteristics, operating point of a pump. Cavitation in centrifugal pumps- NPSH required and availableType number-Pumps in series and parallel operations.

UNIT-4

Positive displacement pumps- reciprocating pump – Single acting and double acting- slip, negative slip and work required and efficiencyindicator diagram- acceleration head - effect of acceleration and friction on indicator diagram – speed calculation- Air vessels and their purposes, saving in work done to air vessels multi cylinder pumps.

Text Books: 1. Som, Introduction to Fluid Mechanics and Fluid Machines ,McGraw Hill Education India 2011

- 2. Bansal R. K., A Textbook of Fluid Mechanics and Hydraulic Machines, Laxmi Publications, 2005.
- 3. Cengel Y. A. and J. M. Cimbala, Fluid Mechanics, Tata McGraw Hill, 2013
- 4. Yahya S. M, Fans, Blower and Compressor, Tata McGraw Hill, 2005.

EEP-402A			Electrica	I & Hybrid V	/ehicles					
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
3	0	0	3	75	25	100	3			
Program	To provide kn	To provide knowledge of Electrical and hybrid vehicles to the students.								
Objective										
(PO)										
		C	ourse Outco	mes (CO)						
After complet	ion of course	students will	be able to							
CO1	To learn abo	out Electrical a	nd Hybrid Ve	hicles.						
CO2	Understand	about types of	machinery us	sed in Electric	propulsion u	nit				
CO3	Understand	Understand about various methods of energy storage in Electric and hybrid vehicles								
CO4	Learn about	sizing method	lology of drive	e system and	l energy man	agement str	ategies used			
	in electric an	d hybrid vehic	les	-	- •	-	-			

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles.

Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis.

UNIT 2

Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

UNIT 3

Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices.

UNIT 4

Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems.

Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.

Text / Reference Books:

1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.

2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003

3. Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004

EENP-402A			Power C	Quality and F	ACTS						
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	75	25	100	3				
Program	To enable st	To enable students to understand the Power Quality related issues, their solutions and									
Objective	details of FA	details of FACTS devices.									
(PO)											
Course Outcomes (CO)											
After comple	etion of cours	e students w	ill be able to								
CO1	Understand f	the characteris	tics of ac tran	smission and	the effect of	shunt and se	ries				
	reactive com	pensation.									
CO2	Understand t	the working pri	inciples of FA	CTS devices	and their ope	rating					
	Characteristi	Characteristics.									
CO3	Understand th	ne basic concep	ts of power qua	ality.							
CO4	Understand th	ne working princ	iples of device	s to improve po	ower quality.						

Power Quality Problems & Monitoring: Overview and Definitions of power quality, sources of pollution, international power quality standards, and regulations.

UNIT 2

Power Quality Problems : Surges, voltage sag and swell, over voltage under voltage, outage voltage, and phase angle imbalance, electric noise, harmonics, frequency deviation monitoring, **UNIT 3**

Power System Harmonics: Harmonic analysis, harmonic sources – the static converters, transformer magnetization and non-linear machines, are furnaces, fluorescent lighting. Harmonic effect within the power system, interference with communication harmonic measurements, Harmonic Mitigation Techniques

UNIT 4

FACT Systems: Introduction – Terms & definition, Fact Controllers, Type of FACT devices i.e. SSC, SVC, TSC, SSS, TCSC, UPFC, Basic relationship for power flow control.

Introduction to Custom Power Devices-Network Reconfiguration devices; Load compensation and voltage regulation using DSTATCOM; protecting sensitive loads using DVR; Unified power Quality Conditioner. (UPQC), uninterruptible power suppliers

Text/References

1. N. G. Hingorani and L. Gyugyi, "Understanding FACTS: Concepts and Technology of FACTS Systems", Wiley-IEEE Press, 1999.

2. K. R. Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International (P) Ltd. 2007.

3. T. J. E. Miller, "Reactive Power Control in Electric Systems", John Wiley and Sons, New York, 1983.

4. R. C. Dugan, "Electrical Power Systems Quality", McGraw Hill Education, 2012.

EENP-404A			Contro	I System Do	esign						
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	75	25	100	3				
Program	The course i	The course is useful for the students to get an idea of ideal practices in the field of control									
Objective	systems des	systems design. Students will get in touch with recent trends in the field of modern control									
(PO)	engineering. Here importance of designing the control systems is emphasized.										
			Course Outco	omes (CO)							
After comple	etion of cours	e students w	ill be able to								
CO1	Define fundan	nental control s	/stem design s	pecifications a	nd basic princi	ples of control	ler design				
CO2	Design moder	rn controllers ba	ased on the sta	ate space tech	nniques and re	ecognize the i	mportance of				
	observability a	and controllabili	ty for system de	esign.							
CO3	Understand co	oncept of optim	al control and r	obust control t	echniques.						
CO4	Understand of	concept of Lya	ounov's stabili	ity Criteria an	d optimal con	trol					

Design of Feedback Control Systems : Introduction, Approaches to System Design, Cascade Compensation Networks, Phase-Lead Design Using the Bode Diagram, Phase-Lead Design Using the Root Locus, System Design Using Integration Networks, Phase-Lag Design Using the Root Locus, Phase-Lag Design Using the Bode Diagram, Design on the Bode Diagram Using Analytical Methods, Systems with a Pre-filter, Design for Deadbeat Response; Design Examples.

UNIT 2

Design of State Variable Feedback Systems: Introduction, State space representation of physical systems, State space models of some common systems like R-L-C networks, DC motor, inverted pendulum etc., Controllable Canonical Form, Observable Canonical Form, Diagonal Canonical Form, State transition matrix, Solution of state equations, Controllability and Observability, Full-State Feedback Control Design; Observer Design; Integrated Full-State Feedback and Observer; Tracking Reference Inputs; Internal Model Design; Design Examples

UNIT 3

Introduction to Robust Control and optimal control : Robust control system and system sensitivities to parameter perturbations, analysis of robustness, systems with uncertain parameters, considerations in design of robust control system, robust PID controller.

UNIT 4

Lyapunov's stability and optimal control: Positive/negative definite, positive/negative semi-definite functions, Lyapunav stability criteria, introduction to optimal control, Riccatti Equation, Linear Quadratic Regulator, Design Examples.

Text books / References:

- 1. Modern Control Engineering by K. Ogata, PHI.
- 2. Discrete Time Control Systems by K. Ogata, PHI.
- 3. Automatic Control Systems by B C Kuo, PHI.
- 4. Control Systems, Principles and Design by M. Gopal, MC Graw Hill, 2012.

EEP-408A			Wind	and Solar E	nergy					
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
3	0	0	3	75	25	100	3			
Program	The main o	bjective of the	course is to i	mpart the stu	dents with the	e detailed kno	owledge of			
Objective	working of	working of solar and wind power plants.								
(PO)										
		(Course Outco	omes (CO)						
After complet	ion of cours	e students w	ill be able to							
CO1	Understand	d the current e	nergy scenari	o across the	country and the	ne world .Stu	dents will			
	also be abl	e to get knowl	edge about va	arious types c	of energy reso	urces availal	ble.			
CO2	Get knowledge about various types of Solar energy systems.									
CO3	Understand	the concepts	related to wir	nd energy ger	neration.					
CO4	Design hyb	rid energy sys	tems.							

Introduction: Energy demand of world and country and gap analysis, Fossil fuel based systems, Impact of fossil fuel based systems, Non conventional energy – seasonal variations and availability, Renewable energy – sources and features, Hybrid energy systems. Distributed energy systems and dispersed generation (DG).

UNIT 2

Solar thermal systems: Solar radiation spectrum, Radiation measurement, Technologies, Applications, Heating, Cooling, Drying, Distillation, Power generation; Costing: Life cycle costing (LCC), Solar thermal system.

Solar Photovoltaic systems : Operating principle, Photovoltaic cell concepts ,Cell, module, array, Series and parallel connections, Maximum power point tracking, Applications ,Battery charging, Pumping , Lighting,Peltier cooling , Costing: Life cycle costing ,Solar PV system

UNIT 3

Wind Energy: Wind power and its sources, Wind patterns and wind data, Site selection, criterion, momentum theory, Types of wind mills, Characteristics of wind generators, performance and limitations of energy conversion systems, Load matching, Life cycle costing - Wind system LCC

UNIT4

Hybrid Energy Systems: Need for Hybrid Systems, Range and type of Hybrid systems, Case studies of Diesel-PV, Wind-PV, Microhydel-PV, electric and hybrid electric vehicles.

Text Books / References:

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi
- 2. Mittal K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi
- 3. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi
- 4. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi

EEO-410A			Power	Plant Engine	ering					
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
3	0	0	3	75	25	100	3			
Program Objective (PO)	To enable st	Γο enable students to understand the power plant engineering.								
		(Course Outco	omes (CO)						
After comple	etion of cours	e students wi	II be able to							
CO1	To provide an	overview of pov	wer plants and	the associated	b					
CO2	Understand the energy conversion issues									
CO3	Understand th	e principles of c	peration for di	fferent power p	olants					
CO4	Understand th	e principles pov	ver plant econo	omics.						

Unit-1

Coal based thermal power plants, basic Rankine cycle and its modifications, layout of modern coal power plant, super critical boilers, FBC boilers, turbines, condensers, steam and heating rates, subsystems of thermal power plants, fuel and ash handling, draught system, feed water treatment.

Unit-2

Gas turbine and combined cycle power plants, Brayton cycle analysis and optimization, components of gas turbine power plants, combined cycle power plants.

Unit-3

Basics of nuclear energy conversion, Layout and subsystems of nuclear power plants, Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANDU Reactor, Pressurized Heavy Water Reactor (PHWR), Fast Breeder Reactors (FBR), gas cooled and liquid metal cooled reactors, safety measures for nuclear power plants.

Unit-4

Hydroelectric power plants, classification, typical layout and components, principles of wind, tidal, solar PV and solar thermal, geothermal, biogas and fuel cell power systems.

Text Books:

1. Nag P.K., Power Plant Engineering, 3rd ed., Tata McGraw Hill, 2008.

2. El Wakil M.M., Power Plant Technology, Tata McGraw Hill, 2010.

3. Elliot T.C., Chen K and Swane kamp R.C., Power Plant Engineering, 2nd ed., McGraw Hill, 1998.

EEO-412A			PLC and	d Their Appli	cation						
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	75	25	100	3				
Program	To enable st	o enable students to understand the power plant engineering.									
Objective											
(PO)											
		(Course Outco	omes (CO)							
After comple	etion of cours	e students w	II be able to								
CO1	Understand th	e Programmab	e Logic Contro	ollers							
CO2	Explore the ba	asic functions of	PLC Program	ming							
CO3	Recognize the	e intermediate fu	inctions of PLC								
CO4	Identify the va	rious advanced	functions in P	C Programmin	g						

Paper Setter Note: 8questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections

UNIT 1

Introduction to PLC:- Definition: Evolution, Advantages/Disadvantages: system description; Internal operation of CPU and I/C modules, installation & testing.

Programs & Software:- General programming procedures, registers and Addresses, Relation of Digital Gate Logic to contact logic.

UNIT 2

Basic PC Functions:-_Programming, On-Off inputs to produce on – off outputs: Timers, Counters: Auxiliary Commands &functions.

UNIT 3

Intermediate Functions:- Arithmetic functions, Number Comparison functions, The skip & master control relay functions, Data move systems.

Functions involving individual register bits:- Utilizing digital bits, the sequences functions, Matrix functions. UNIT 4

Advanced Functions:- Controlling a robot with a PC; Analog PC operator , Immediate update, select continuously, ascending sort, transmit print, FIFO, LIFO,& Loop Control. **Suggested Books:**

- 1. Webb: Programmable Controllers: Principles & Applications, Merril Publishing Co.Columbus, Ohio, 1988.
- 2. Simpson: Programmable Logic Controllers, Prentice Hall, Englewood Cliffs, 1994.
- 3. T.A.Hughes, Programmable Controllers, 3rd Edition, ISA Press.
- 4. Gary Danning, Introduction to Programmable Logic Controllers, Delmar Thomson Learning
- 5. Bela.G.Liptak, Instrument Engineer's Handbook, Vol:II-Process Control, 3rd Edition, ISA Press, 1995

EENO-406A	Embedded System							
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)	
				Test	Test			
3	0	0	3	75	25	100	3	
Program	To introduc	e the student	s to concepts	s of embedde	ed systems.	To offer then	n a level of	
Objective	confidence	in microcontro	ller based sy	stem design.	To introduce	them to the	concepts of	
(PO)	ARM architectures and RTOS.							
Course Outcomes (CO)								
After complet	After completion of course students will be able to							
CO1	Understand various concepts of embedded system							
CO2	Learn about 8051 Microcontroller							
CO3	Understand the operating system of Embedded system and also learn about higher							
	embedded system							
CO4	Learn abo	out communic	ation basics	and interf	acing of va	arious devic	es to the	
	microcontro	oller						

Introduction to embedded system: Embedded System, Embedded versus external memory devices, CISC and RISC processors, Harvard and Von Neumann Architecture, Application of Embedded System, Embedded operating system, Design Parameters of embedded and its Significance, Design life cycle, Hardware fundamentals, Digital circuit parameter, O.C and Tristate outputs, I/O sink and Source, Custom single purpose processor Optimization, FSMD, data path & FSM, General purpose Processor and ASIP'S

UNIT 2

8051 Microcontrollers: 8051 microcontrollers-Assembly language, Architecture of 8051, Registers, Addressing Modes, Instruction Set, I/O ports, memory organization, Programs showing use of I/O Pins, Interrupts, Interrupt Programming, Timer and counters, Serial Communication, Programming of serial communication.

UNIT 3

Introduction to operating system and basics of higher embedded system: Introduction to RTOS, Tasks, Data, Semaphores and shared data, Operating system services, Message queues, Mailboxes, Advanced processor (Only architecture), 80386, 80486, Introduction to ARM, features, architecture, instruction set

UNIT 4

Communication basics and interfacing of various devices the microcontroller: Microprocessor interfacing I/O addressing, direct memory access (DMA), Arbitration, multilevel bus architecture, serial protocol, parallel protocols and wireless protocol, Real world interfacing: LCD, Stepping motor, ADC, DAC, LED, Pushbuttons, Keyboard, Latch connection, PPI

Text / Reference Books:

1. Embedded system Design-Frank Vahid/ Tony Givargis. John Willey

2. Microcontroller (Theory and applications) Ajay V Deshmukh, Tata , McGraw-Hill

3. An Embedded Software Primer-David E.Simon, Pearson Education

4. The 8051 Microcontroller and embedded systems-Muhammad Ali Mazidi and Janice Gillispie.

5. Microcontrollers (Architecture, Implementation & Programming) Kenneth Hinz, Daniel Tabak, Tata McGraw-Hill

6. 8051 Microcontrollers & Embedded Systems 2nd edition Sampath Kr. Katson books

EENO-412A	Automobile Engineering								
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)		
				Test	Test				
3	0	0	3	75	25	100	3		
Program Objective	To make aware the students with the study of engineering which teaches manufacturing and mechanical-mechanisms as well operations of automobiles. It is an introduction to								
(PO)	branch study of mechanical, electronic, and safety elements. Some of the engineering attributes and disciplines that are of importance to the automotive engineer								
		. (Course Outco	omes (CO)					
After complet	After completion of course students will be able to								
CO1	Students will be able to Develop a strong base for understanding future developments in								
	the automobile industry								
CO2	Students will be able to Explain the working of various parts like engine, transmission, gear box etc.								
CO3	Students wi	ll be able to D	escribe how t	he brakes and	the suspens	sion systems	operate		
CO4	Students wi	Il be able to U	nderstand the	steering geo	metry and en	nission contro	l system.		

UNIT I

Introduction: Brief history of automobiles, Main components of an automobile, Brief description of each component. Brief description of constructional details and working of a four stroke I.C. Engine (S.I. Engines and C.I. Engines) including lately developed overhead cam shaft, Multi-cylinder engines, Introduction to recent developments in I.C. Engines- Direct injection systems, Multi-point fuel injection systems, Introduction, Brief description of different components of Transmission System.

Clutch: Introduction to Clutch and its different types, Principle of Friction Clutch, Clutch Lining and friction materials used in Friction Clutches, Torque transmitted, Brief description of Cone Clutch, Single Plate and Multiplate Clutches, Dry and wet clutches, Automatic clutch action, Centrifugal clutches, Electromagnetic clutches, Fluid Flywheel.

UNIT II

Gear Box: Gear Box Air resistance, gradient resistance and rolling resistance coming across a moving automobile, Tractive effort, Variation of tractive effort with speed, Performance curves (object and need of a gear box), Sliding mesh gear box, Control mechanism, Sliding type selector mechanism, Ball type selector mechanism, Steering column gear shift control, Constant mesh gear box, Synchromesh device, Automatic transmission in general, AP automatic gear box, Torque converter, Torque converter with direct drive, Lubrication of Gear Box.

Propeller Shaft: Functions and requirements of a propeller shaft, Universal joints, Constructional forms of universal joints, Flexible-ring joints, Rubber-bushed flexible joints. Constant-velocity joints. Differential : Principle of operation, Constructional details of a typical Differential unit, Traction control differentials, Multiplate clutch type traction control device.

UNIT III

Brakes: Functions and methods of operation, Brake efficiency. Elementary theory of shoe brake, brake shoe adjustments, A modern rear-wheel brake, Disc brakes, Brake linkages, Leverage and adjustment of the brake linkage, Servo- and power operated brakes, Vacuum brake operation,' Hydraulic Brakes-constructional details and working, Direct action vacuum servos, Power-operated brakes, A dual power air brake system,

Suspension system: Suspension principles, Road irregularities and human susceptibility, Suspension system, Damping, Double tube damper, Single tube damper, Lever arm type damper, Springs-Leaf springs,

Coil and torsion springs, variable rate springs, Composite leaf springs, Rubber springs, Air springs, Adjustable and self-adjusting suspensions, Interconnected suspension system, Interconnected air and liquid suspensions, Independent suspension system, Different independent suspension layouts, McPherson strut type, Rear suspension-live axle, McPherson strut rear suspension.

UNIT IV

Steering Geometry: Castor, Camber, Kingpin inclination, Combined angle, Toe-in, Steering system-basic aims, Ackerman linkage, Steering linkages for independent suspension, Center point steering, Costarring or trailing action, Cornering power, Self-righting torque, Steering characteristics-over steer and under steer, Axle beam, Stub-axle construction, Steering column, Reversible and irreversible steering, Rack-and-pinion steering mechanism, Effect of toe-in on steering, Power steering, Vickers System. Recent trends in automobile engineering Multi fuel automobiles, Automobiles running on alternate sources of energy, Emission control through catalytic converter, Double catalytic converter, Aspects of pollution control in Automobiles.

Reference and Text Books:

- 1. The Motor Vehicle By Newton, Steeds and Garretle Basic
- 2. Automobile Engineering By Kirpal Singh
- 3. Automobile Engineering *' -By K.M. Gupta, Umesh Publications

EEO-418A	Biomedical Signal & Image Processing								
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)		
				Test	Test				
3	0	0	3	75	25	100	3		
Program Objective (PO)	To make students aware about the fundamentals and various techniques of biomedical image processing and to develop the algorithms for image analysis and diagnosis in medical imaging								
		C	ourse Outco	mes (CO)					
After complet	After completion of course students will be able to								
CO1	To understan	To understand image fundamentals and acquisition techniques							
CO2	To learn Image Enhancement in Spatial and Frequency domain								
CO3	To learn Morp	To learn Morphological Image Processing and Image Segmentation.							
CO4	To learn image compression and representation.								

UNIT-I

Fundamentals of Digital Image: Image formation, visual perception, CCD & CMOS Image sensor, Image sampling: Two dimensional Sampling theory, Nonrectangular grid and Hexagonal sampling, optimal sampling, Image quantization, Non uniform Quantization, Image formats. Types of pixel Operations, Types of neighborhoods, adjacency, connectivity, boundaries, regions, 2D- convolution, Color models.

UNIT-II

Image Enhancement in Spatial and Frequency domain: Basic gray level transformations, histogram processing, Smoothing operations, Edge Detection-derivative based operation, filtering in frequency domain, 2D-DFT, Smoothing frequency domain filters, Sharpening frequency domain filters, Homomorphic filtering.

UNIT-III

Morphological Image Processing: Dilation and Erosion, Opening and Closing, Hit-or-Miss transformation, Boundary Extraction, Region filling, Extraction of Connected Components, Convex Hull, Thinning, Thickening, Skeletons, Pruning.

Image Segmentation: Detection of discontinuities, Point-line- edge detection, Linear and Circular Hough Transform, Basic Global and Adaptive Thresholding, Region Based segmentation, K-Means Clustering

UNIT-IV

Image Compression: Fundamentals of Image compression models, Lossless compression: variable length coding, LZW coding, Arithmetic coding, Lossy compression: Wavelet and DCT coding, Predictive coding. Representation and Description: Image features, Feature extraction, Chain code, Moments Text Books:

- 1. Digital Image Processing, Gonzalez and Woods- Pearson Education
- 2. Digital Image Processing, S. Sridhar Oxford University Press.
- 3. Fundamentals of Digital Image Processing, A.K. Jain .P.H.I.
- 4. Digital Image Processing, William Pratt- John Wiley.
- 5. Feature Extraction and Image Processing, Mark S. Nixon and Alberto S. Aguado.
- 6. Digital Image Processing and Analysis, Chanda Majumder- Printice Hall India.
- 7. Medical image processing, Geoff Dougherty editor, springer.

	Bachelor of Technology (Information Technology)									
	Credit-Based Scheme of Studies/Examination(Modified)									
		Semester IV (w	e.f. ses	ssion 2021-2	022)					
S. Course Subject L:T: Hours/Wee Credit							Examination Schedule			
No	Code		Р	k	S		(M	arks)		n of
•						M - 1 -	T - 4 -	Exam (Hrs)		
						Majo	Mino	Practica	lota	(115)
						Test	Test	1	1	
4	ES-IT-202A	Basics of Communication	3:0:0	3	3	75	25	0	100	3
2	PC-IT-204A	Discrete Mathematics	3:0:0	3	3	75	25	0	100	3
3	PC-IT-206A	Operating System	3:0:0	3	3	75	25	0	100	3
4	PC-IT-208A	Microprocessor Interfacing and Application	3:0:0	3	3	75	25	0	100	3
5	PC-IT-210A	A Database Management Systems		3	3	75	25	0	100	3
	HTM-901A	Universal Human Values	3:0:0	3	3	75	25	0	100	3
6		II : Understanding								
		Harmony								
7	PC-IT-	Microprocessor Interfacing and	0:0:3	3	1.5	0	40	60	100	3
	212LA	Application Lab		2	4 5	0	40	<u> </u>	100	2
8	2141 A	Operating Systems Lab		3	1.3	U	40	00	100	3
	PC-IT-	Database Management Systems Lab		3	1.5	0	40	60	100	3
9	216LA			-						-
		Total		27	22.5	450	270	180	900	
10 MC-901A* Environmental Sciences			3:0:0	3	0	75	25	0	100	3

*MC-901A is a mandatory credit less course in which the student will be required to get passing marks in the major test. Note: Students be encouraged to go to 6-8 weeks summer internships mandatory during the summer break after the completion of fourth semester exams.

HTM-901A		Universal Human Values II: Understanding Harmony						
Lecture	Tutorial Practical Credit		Credit	Major Test	Major Minor Test Test		Time	
3	0	0	3.0	75	25	100	3 Hours	
Purpose	Purpose and motivation for the course, recapitulation from Universal Human Values-I							
	•		Course	e Outcomes (O	C O)			
CO 1	Development of a holistic perspective based on self-exploration about themselves (human being),family, society and nature/existence.							
CO 2	Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.							
CO 3	Strengthening of self-reflection.							
CO 4	Development of commitment and courage to act.							

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrarinessin choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'I' and harmony in 'I'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in

Human-HumanRelationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship
- 16. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Orderfromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value inrelationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and

organizations

28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. todiscuss the conduct as an engineer or scientist etc.

READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at handand motivating students to reflect, explore and verify them.

Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration. Scenarios may be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based onbasic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemed essential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example: Assessment by faculty mentor: 5 marks Self-assessment: 5 marks Assessment by peers: 5 marks Socially relevant project/Group Activities/Assignments: 10 marks Semester End Examination: 75 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

	Bachelor of Technology (Information Technology)									
	Credit-Based Scheme of Studies/Examination									
		Seme	ster VII(w.e.f. s	ession 20	21-2022)			
S. No.	Course Code	Subject	L:T:P	Hours /Week	Credits	Examination Schedule (Marks)			Duration of Exam (Hrs)	
						Major Test	Minor Test	Practical	Total	
1	PE	Elective-IV	3:0:0	3	3	75	25	0	100	3
2	PE	Elective-V	3:0:0	3	3	75	25	0	100	3
3	OE	Open Elective-II	3:0:0	3	3	75	25	0	100	3
4	PROJ-IT- 401A	Project-II	0:0:12	12	6	0	40	60	100	3
5	PE-IT- D415A	Server side programming Lab	0:0:3	3	1.5	0	40	60	100	3
6	PE-IT- D417A	Python Programming Lab	0:0:3	3	1.5	0	40	60	100	3
Total				27	18	225	195	180	600	
7 SIM-401A* Seminar on Summer Internship		2:0:0	2	0	0	50	0	50		

PE Elective-IV	PE Elective-V
Advanced Computer Networks: PE-IT-D401A	Software Testing: PE-IT-D407A
Parallel Computing: PE-IT-D403A	Software Project management:PE-IT-D409A
Complier Design: PE-IT-D405A	Distributed Operating System: PE-IT-D411A
OE Elective-II	Natural Language Processing: PE-IT-D413A
Cyber Law and Ethics: OE-IT-401A	
Signal and System: OE-IT-403A	
Neural Networks and Deep Learning: OE-IT-405A	
Digital Signal Processing: OE-IT-407A	

The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.
PE-IT-D401A				Advanced Con	nputer Network	S						
L	Т	Р	Credit	Major Test	r Test MinorTest Total Tin							
3	0	0 0 3 75 25 100 3 Hr.										
Purpose	To far	fo familiarize different protocols & applications of computer networks.										
				Course Outcon	nes							
CO 1	To stu	dy MAC	protocols	for High speed n	etworks.							
CO 2	To stu	dy IPv6 a	addressing	schemes.								
CO 3	To stu	dy wirele	ess applicat	tion protocol for	communication.							
CO 4	To stu	dy the co	ncepts to r	nanage networks	8.							

UNIT – 1

Introduction: Overview of computer networks, seven-layer architecture, TCP/IP suite of protocols, etc. MAC protocols for high-speed LANS, MANs, and wireless LANs. (For example, FDDI, DQDB, HIPPI, Gigabit Ethernet, Wireless Ethernet, etc.)

UNIT-2

Fast access technologies (For example, ADSL, Cable Modem, etc.).

Overview of IPv6, IPv6 & TCP/IP stack,IPv6 protocol architecture, IPv6 address basics, address notation, unicast address, multicast address, IPv6 headers, Routing table problem, static & automatic address configuration, neighbor discovery, stateless address auto configuration, Interoperation concepts ofIPv4/IPv6.

UNIT-3

Mobility in networks, Mobile IP. Security related issues in mobile IP. IP Multicasting. Multicast protocols, address assignments, session discovery, etc.

Network security at various layers. Secure-HTTP, SSL, ESP, Authentication header, Key, distribution protocols.Digital signatures, digital certificates.

UNIT-4

The Wireless Applications Protocols, applications environment, wireless application protocol client software, wireless application protocol gateways, implementing enterprise wireless application protocol strategy and Security Issues in Wireless LAN. Wireless network management, GPRS, and VOIP services.

Network Management: Introduction, LAN, SNMP, and CMIP. Issues in the management of large networks. Multicast: IGMP, PIM, DVMRP

Text Books:

- 1. W.R. Stevens. TCP/IP Illustrated, Volume 1: The protocols, Addison Wesley, 1994.
- 2. G.R. Wright. TCP/IP Illustrated, Volume 2: The Implementation, Addison Wesley, 1995.

References Books:

- 1. W.R. Stevens. TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the Unix Domain Protocols, Addison Wesley,1996.
- 2. R. Handel, M.N. Huber, and S. Schroeder. ATM Networks. Concepts, protocols, Applications, Addison Wesley, 1998.
- 3. William Stalling, Wireless Communications and Networks. Prentice Hall2002.

PE-IT-D403A		Parallel Computing										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time					
3	-	3 75 25 100 3Hr										
Purpose	To ena paradig approa	fo enable students to compare various architectural taxonomies and design paradigms of parallel computers and computational models, parallelism										
	loops a	nd their	program	ning construct	ts.	purunenze						
			Cou	irse Outcomes								
CO 1	Classify well as	various various v	synchrone some of	ous and asynch the taxonomies	ronous paradign s for architectur	ns of parall al classifica	el computing as ation of parallel					
CO 2	Compar perform	e variou ance me	s parallel o trics in par	computation means allel computer	odels and approa	aches and de	escribe different					
CO 3	Disting various intercor achievii	uish shar parallel nection ng efficie	red memo programm networks ent speed.	ry and distributing models an based on netwo	uted memory m d relative advan ork parameters f	nultiprocesson atages and d for reliable of	ors and explain lisadvantages of connections and					
CO 4	Examin schedul	e variou ing.	s techniqu	ues of parallel	izing loops and	d sequentia	l programs and					

Introduction: The state of computing, system attributes to performance, Paradigms of parallel computing: Synchronous – Vector/ Array, SIMD, systolic, Asynchronous- MIMD, reduction paradigm. Hardware Taxonomy: Flynn's classification, Feng's classification, handler's classification. Software taxonomy: Kung's taxonomy.

Unit-II

Abstract parallel computational models: combinational circuits, sorting network, PRAM models, VLSI complexity model, Interconnections RAMs, Parallelism approaches- data parallelism, control parallelism, Conditions of parallelism: Data, control and resource dependencies, Hardware and software parallelism. Performance metrics: Laws governing performance measurements, Metrics-speedups, efficiency, utilization, communication overheads, single/ multiple program performances.

Unit-III

Parallel processors: taxonomy and topology: shared memory multi processors, distributed memory multicomputer, static and dynamic interconnections. Parallel programming: shared memory programming, distributed memory programming, object oriented programming, data parallel programming, functional and data flow programming.

Unit-IV

Scheduling and parallelization: Loop parallelization and pipelining-Loop transformation theory, parallelization and wave fronting, tiling and localization, software pipelining, Scheduling parallel programs, program partitioning and scheduling: Grain size, latency, grain packing and scheduling, loop scheduling, Parallelization of sequential programs.

Text Books

1. Kai Hwang and NareshJotwani, Advanced Computer Architecture, Second Edition, McGraw Hill, New Delhi, India, 2012.

2. M.J. Quinn, Parallel Computing: Theory and Practice, Second Edition, McGraw Hill, New Delhi, India, 2008.

3. D.Sima, T.Fountain, P.Kasuk, Advanced Computer Architecture-A Design spaceApproach, Pearson Education,India, 2009.

Reference Books

1. J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative approach, 5th Edition, Morgan Kaufmann/Elsevier-India.

2. T.G.Lewis, Parallel Programming: A machine Independent approach, IEEE Computer Society Press,Los Alamitos, 1994.

3. T.G.Lewis and H. EI-Rewini, Introduction to parallel computing, Prentice Hall, New Jersey, 2019.

PE-IT-D405A		Compiler Design										
L	Т	P Credit Major Test MinorTest Total Time										
3	-	3 75 25 100 3Hr										
Purpose	To fam	iliarize	e the studen	its to design ar	nd implement a	compiler.						
		Course Outcomes										
CO 1	To und	o understand, design and implement a lexical analyzer.										
CO 2	To und	erstand	, design and	implement a p	arser.							
CO 3	To und	erstand	, design cod	e generation sc	hemes.							
CO 4	To und	erstand	optimizatio	n of codes and	runtime environ	ment.						

UNIT I Introduction to Compiling

Analysis of the source program, Phases of a compiler, Grouping of Phases, Compiler construction tools. Lexical Analysis –Regular Expression, Introduction to Finite Automata and Regular Expression, Conversion of Regular Expression to NFA, Role of Lexical Analyzer, Input Buffering, Specification of Tokens.

UNIT II

Syntax Analysis

Role of the Parser, Writing Grammars, Symbol Table, Context-Free Grammars, Shift-reduce Parser, Operator Precedence Parsing, Top Down Parsing ,Predictive Parsers, LR Parsers: SLR Parser, Canonical LR Parser, LALR Parser, Implementation of LR Parsing Tables.

UNIT III

Intermediate Code Generation and Code

Intermediate languages, Declarations, Assignment Statements, Boolean Expressions, Case Statements, DAG representation of Basic Blocks, A simple Code generator from DAG, Issues in the design of code generator, The target machine, Runtime Storage management, Error Handling-Type checking,

UNIT IV

Code Optimization and Run Time Environments

Principal Sources of Optimization, Optimization of Basic Blocks, Peephole Optimization, Introduction to Global Data Flow Analysis, Source Language issues, Storage Organization, Static Storage Management, Heap Storage management, Access to non-Local Names, Parameter Passing.

Text books

- 1. Alfred Aho, Ravi Sethi, Jeffrey D Ullman, "Compilers Principles, Techniques and Tools", Pearson Education Asia, 2003.
- 2. Kenneth C. Louden, "Compiler Construction: Principles and Practice", Thompson Learning, 2003

Reference books

- 1. Allen I. Holub"Compiler Design in C", Prentice Hall of India,2003.
- 2. C. N. Fischer and R. J. LeBlanc, "Crafting a compiler with C", Benjamin Cummings, 2003.
- 3. J.P. Bennet, "Introduction to Compiler Techniques", Second Edition, Tata McGraw-Hill,2003.
- 4. HenkAlblas and Albert Nymeyer, "Practice and Principles of Compiler Building with C", PHI, 2001.

OE-IT-401A		Cyber Law and Ethics										
L	Т	T P Credits Major Test Minor Test Total Time										
3	-	-	3	75	25	100	3Hr					
Purpose	This c Cyber compu comm subsid requir	This course explores technical, legal, and social issues related to cybercrimes, Laws Cyber Ethics. Cybercrime and laws is a broad term that includes offences where a computer may be the target, crimes where a computer may be a tool used in the commission of an existing offence, and crimes where a computer may play a subsidiary role such as offering evidence for the commission of an offence. It is also required to have knowledge of Cyber Ethics and its role and significance.										
			(Course Outco	mes							
CO 1	Unders	stand Cy	ber laws.									
CO 2	Descri	be Infor	mation Techn	ology act and R	elated Legislation	n.						
CO 3	Demor	nstrate E	lectronic busi	ness and legal is	ssues.							
CO 4	To stu	dy the	concept of cy	ber ethics.								

Unit-1: Introduction to Cyber Law

Evolution of computer technology, emergence of cyber space. Cyber Jurisprudence, Jurisprudence and law, Doctrinal approach, Consensual approach, Real Approach, Cyber Ethics, Cyber Jurisdiction, Hierarchy of courts, Civil and criminal jurisdictions, Cyberspace-Web space, Web hosting and web Development agreement, Legal and Technological Significance of domain Names, Internet as a tool for global access.

Unit-2: Information Technology Act

Overview of IT Act, 2000, Amendments and Limitations of IT Act, Digital Signatures, Cryptographic Algorithm, Public Cryptography, Private Cryptography, Electronic Governance, Legal Recognition of Electronic Records, Legal Recognition of Digital Signature, Certifying Authorities, Cyber Crime and Offences, Network Service Providers Liability, Cyber Regulations Appellate Tribunal, Penalties and Adjudication.

Unit-3: Cyber Law and Related Legislation

Patent Law, Trademark Law, Copyright, Software – Copyright or Patented, Domain Names and Copyright disputes, Electronic Data Base and its Protection, IT Act and Civil Procedure Code, IT Act and Criminal Procedural Code, Relevant Sections of Indian Evidence Act, Relevant Sections of Bankers Book Evidence Act, Relevant Sections of Indian Penal Code, Relevant Sections of Reserve Bank of India Act, Law Relating To Employees And Internet, Alternative Dispute Resolution , Online Dispute Resolution (ODR).

Unit-4: Electronic Business and Legal Issues

Evolution and development in E-commerce, paper vs paper less contracts E-Commerce models-B2B, B2C, E security. Business, taxation, electronic payments, supply chain, EDI, E-markets, Emerging Trends.

Cyber Ethics

The Importance of Cyber Law, Significance of cyber Ethics, Need for Cyber regulations and Ethics. Ethics in Information society, Introduction to Artificial Intelligence Ethics: Ethical Issues in AI and core Principles, Introduction to Block chain Ethics.

Text Books:

1. Cyber Laws: Intellectual property & E Commerce, Security- Kumar K, dominant Publisher

- 2. Cyber Ethics 4.0, ChristophStuckelberger, PavanDuggal, by Globethic
- 3. Information Security policy & Implementation Issues, NIIT, PHI

Reference Books:

1. Computers, Internet and New Technology Laws, Karnika Seth, Lexis NexisButterworthsWadhwa Nagpur. 5. Legal Dimensions of Cyber Space, Verma S, K, Mittal Raman, Indian Law Institute, New Delhi,

- 2. Cyber Law, JonthanRosenoer, Springer, New York, (1997).
- 3. The Information Technology Act, 2005: A Handbook, OUP SudhirNaib,, New York, (2011)

4. Information Technology Act, 2000, S. R. Bhansali, University Book House Pvt. Ltd., Jaipur (2003).

5. Cyber Crimes and Law Enforcement, Vasu Deva, Commonwealth Publishers, New Delhi, (2003)

OE-IT-403A	Signal & System											
L	Т	T P Credit Major Test MinorTest Total Time										
3	-	-	3	75	25	100	3Hr					
Purpose	To fan variab laplace	To familiarize the students with the basic concepts of signals and systems, Random variables, discretisation of analog signals, fourier series, fourier transform and laplace transform.										
		Course Outcomes										
CO 1	Introdu	ice and	l classify sign	als and systems	based on their pr	operties.						
CO 2	To und	lerstan	d the basic co	ncepts of rando	n variables and L	inear time in	variant systems.					
CO 3	Famili series.	arizati	on with the sa	mpling process	and spectral analy	ysis of signal	s using fourier					
CO 4	Apply system	transfo is	orm technique	s to analyze cor	tinuous-time and	discrete-time	e signals and					

Unit-I Introduction to Signals: Continuous and discrete time signals, deterministic and stochastic signals, periodic and a periodic signals, even and odd signals, energy and power signals, exponential and sinusoidal signals and singular functions. Signal representation in terms of singular functions, orthogonal functions and their use in signal representation Introduction to Systems: Linear and non-linear systems, time invariant and time varying systems, lumped and distributed systems, deterministic and stochastic systems, casual and non-causal systems, analog and discrete/digital memory and memory less systems.

Unit-II Random Variables: Introduction to Random Variables, pdf, cdf, moments, distributions, correlation functions. Linear Time Invariant Systems: Introduction to linear time invariant (LTI) systems, properties of LTI systems, convolution integral, convolution sum, causal LTI systems described by differential and difference equations. Concept of impulse response

Unit-III Discretisation of Analog Signals: Introduction to sampling, sampling theorem and its proof. Effect of under sampling, reconstruction of a signal from sampled signal. Fourier Series : Continuous time fourier series (CTFS), Properties of CTFS, Convergence of fourier series, Discrete time Fourier Series (DTFS), Properties of DTFS, Fourier series and LTI system, Filtering.

Unit-IV Fourier Transform: Continuous Time Fourier Transform (CTFT), Properties of CTFT, Systems characterized by linear constant- coefficient differential equations. Discrete time fourier transform (DTFT), Properties of DTFT, Duality, Systems characterized by Linear constant coefficient difference equations. Laplace Transform: Introduction to Laplace transform, Region of convergence for laplace transform, Inverse laplace transform, Properties of laplace transform, Analysis and characterization of LTI systems using laplace transform, System function algebra and block diagram representations, Unilateral laplace transform.

Text Books:

1. Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Signals and Systems, Prentice Hall India, 2nd Edition, 2009 Reference Books: 1. Simon Haykins – "Signal & Systems", Wiley Eastern

2. Tarun Kumar Rawat , Signals and Systems , Oxford University Press.

OE-IT-405A		Neural Networks and Deep Learning										
L	T P Credit Major Test MinorTest Total Tin											
3	-	-	3	75 25		100	3 Hr.					
Purpose	To pr	ovide k	nowledge o	of various artif	icial neural net	works, fuz	zzy logic					
_	techni	techniques and Genetic Engineering approach for optimization										
			C	Course Outcon	nes							
CO 1	To lear	rn the ba	sics of artific	cial neural netwo	orks concepts.							
CO 2	Expose	e detaile	d explanatior	n of various neur	al networks archi	tecture.						
CO 3	To exp	lore kno	owledge of sp	becial types of A	rtificial neural net	works.						
CO 4	To exp	lore fuz	zy logic tech	niques and gener	tic algorithms in r	neural netwo	orks.					

Unit I: Fundamentals of Artificial Neural Networks

Introduction: Concepts of neural networks, Characteristics of Neural Networks, Applications of Neural Networks. Fundamentals of Neural Networks: The biological prototype, Neuron concept, Single layer Neural Networks, Multi-Layer Neural Networks, terminology, Notation and representation of Neural Networks, Training of Artificial Neural Networks. Representation of perceptron, perceptron learning and training, Classification, linear Separability

Unit II: Neural Networks

Hopfield nets: Structure, training, and applications, Back Propagation: Concept, Applications and Back Propagation Training Algorithms. Counter Propagation Networks: Kohonan Network, Grossberg Layer & Training, applications of counter propagation, Image classification. Bi-directional Associative Memories: Structure, retrieving a stored association, encoding associations.

Unit III: Special Neural Networks

ART: ART architecture, ART classification operation, ART implementation and characteristics of ART. Image Compression Using ART, Optical Neural Networks: Vector Matrix Multipliers, Hop field net using Electro optical matrix multipliers, Holographic correlator, Optical Hopfield net using Volume Holograms, Cognitrons and Neocognitrons: structure and training.

Unit IV: Deep learning and Fuzzy Logic

Deep learning neural networks : Deep learning neural networks, forward propagation in a deep network, need of deep representations, Building blocks of deep neural networks, forward and backward propagation Fuzzy Logic: Introduction to Fuzzy Logic, Classical and Fuzzy Sets: Overview of Classical Sets, Membership Function, Fuzzy rule generation, Operations on Fuzzy Sets: Compliment, Intersections, Unions, Combinations of Operations, Aggregation Operations Genetic Algorithms: genetic algorithm implementation in problem solving and working of genetic algorithms evolving neural networks **Text Books:**

1. Li Min Fu, "Neural Networks in Computer Intelligence", McGraw-Hill, Inc. 2012.

2. S N Sivanandam, "Neural Networks using MATLAB 6.0", TMH, 4th. Reprint 2015.

3. S N Sivanandam, "Principles of Soft Computing", 2nd. Edition, Wiley, Reprint 2014.

Reference Books:

1. Simon Haykin, "Neural Networks: A Comprehensive Foundations", Prentice-Hall International, New Jersey, 2013.

2. Freeman J.A. & D.M. Skapura, "Neural Networks: Algorithms, Applications and Programming Techniques", Addison Wesley, Reading, Mass, 2014.

OE-IT-407A	Digital Signal Processing											
L	TPCreditMajor TestMinorTestTotalTime375251003 Hr.											
3	-	-	100	3 Hr.								
Purpose	To n filter	To make students aware about the digital signal processing in FIR & IIR filter										
		Course Outcomes										
CO 1	This s	ection	provides th	e detail about the	analysis of LTI sys	tem in Z tran	sform					
CO 2	This s	ection	describe ho	w we implement of	liscrete time syster	n in FIR & II	R systems					
CO 3	This s	ection	describe ho	w we design FIR	filters by frequency	y sampling m	ethod					
CO 4	This s	ection	describe ho	w we design IIR f	ilters using various	method						

UNIT-I

Z – Transform Analysis of LTI System:- Transform its properties, System Function of a linear Time- Invariant system. Inversion of the Z Transform, the one-sided Z-transform, Solution of difference equations. Analysis of LTI system in Z- domain, transient and steady- state response. Causality and stability.Pole- Zero Cancellations.

DFT and FFT: DFT and its properties, Circular Convolution and fast linear convolution, Linear filtering using DFT. Direct Computation of DFT, FFT algorithms, Radix-2 and Radix-4 algorithms.

UNIT-II

Implementation of Discrete-Time Systems: Structure for the Realization of Discrete-Time Systems, Structure for FIR Systems: Direct-Form Structure, Cascade-Form Structures, Frequency-Sampling Structures; Structure for IIR Systems: Direct-Form Structures, Signal Flow Graphs and Transposed Structures, Cascade-Form Structures, Parallel-Form Structures, Lattice and Lattice-Ladder Structures for IIR Systems.

UNIT-III

Design of FIR Filters: Characteristics of practical frequency selective filters. Filters design specifications peak and pass band ripple, minimum stop band attenuation. Design of FIR filters using windows functions(Kaiser window, rectangular, Hamming and Blackman window) method comparison of design methods for FIR filters, Gibbs phenomenon, design of FIR filters by frequency sampling method.

UNIT-IV

Design of IIR Filters: Design of IIR filters from analog filters, Design by approximation of derivatives, Impulse invariance method, bilinear transformation method, characteristics of Butterworth, Chebyshev, and Elliptical analog filters and design of IIR filters.

Text Books:

- 1. Digital Signal Processing by J.G. Proakis and D.G. Manalakis-PHI
- 2. Digital Signal Processing by: A.V. Oppenheim and R.W. Schafer-PHI

References Books:

- 1. Element of Digital Signal Processing by N. SarkarKhanna Publishers.
- 2. Digital Signal Processing by S. K. Mitra TMH.
- 3. Digital Signal Processing by Rabinar, Gold-PHI

PE-IT-D407A				Softwa	re Testing							
L	Т	T P Credit Major Test MinorTest Total Time										
3	-	- <u>3</u> 75 25 100 3 Hr.										
Purpose	To pr and a	Fo provide an understanding of concepts and techniques for testing software and assuring its quality.										
				Course Outco	mes							
CO 1	Expose	the cri	iteria and para	meters for the g	eneration of test of	cases.						
CO 2	Learn th	ne desi	gn of test case	es and generating	g test cases.							
CO 3	Be fami	liar w	ith test manag	ement and softw	are testing activity	ties.						
CO 4	Be expo	osed to	the significar	nce of software t	esting in web and	Object orien	nt techniques					

UNIT 1

Introduction: Overview of software evolution, SDLC, Testing Process, Terminologies in Testing: Error, Fault, Failure, Verification, Validation, Difference between Verification and Validation, What is software testing and why it is so hard? Test Cases, Test Oracles, Testing Process, Limitations of Testing.

UNIT 2

Functional Testing: Boundary Value Analysis, Equivalence Class Testing, Decision Table Based Testing, Cause Effect Graphing Technique. Structural Testing: Path testing, DD-Paths, Cyclomatic Complexity, Graph Metrics, Data Flow Testing, Mutation testing

UNIT 3

Reducing the number of test cases: Prioritization guidelines, Priority category, Scheme, Risk Analysis, Regression Testing, and Slice based testing Testing Activities: Unit Testing, Levels of Testing, Integration Testing, System Testing, Debugging, Domain Testing. **UNIT 4**

Object oriented Testing: Definition, Issues, Class Testing, Object Oriented Integration and System Testing. Testing Web Applications: What is Web testing?, User interface Testing, Usability Testing, Security Testing, Performance Testing, Database testing, Post Deployment Testing.

TEXT BOOKS:

- 1. NareshChauhan "Software Testing Principles and Practices" Oxford Publications, 2012.
- 2. Louise Tamres, "Software Testing", Pearson Education Asia, 2002.
- 3. Robert V. Binder, "Testing Object-Oriented Systems-Models, Patterns and Tools", Addison Wesley, 1999.
- 4. William Perry, "Effective Methods for Software Testing", John Wiley & Sons, New York, 1995.

REFERENCE BOOKS:

- 1. CemKaner, Jack Falk, Nguyen Quoc, "Testing Computer Software", Second Edition, Van Nostrand Reinhold, New York, 1993.
- 2. K.K. Aggarwal&Yogesh Singh, "Software Engineering", 2ndEd., New Age International Publishers, New Delhi, 2005.
- 3. Boris Beizer, "Software Testing Techniques", Second Volume, Second Edition, Van Nostrand Reinhold, New York, 1990.
- 4. Boris Beizer, "Black-Box Testing –Techniques for Functional Testing of Software and Systems", John Wiley & Sons Inc., New York, 1995.

PE-IT-D409A		Software Project Management												
L	Т	P Credit Major Test Minor Test Total Time												
3	-	· 3 75 25 100 3Hr.												
Purpose	The	e purpose of this course is to introduce students the basics of												
	Softwa	Software Project Management												
CO 1	To stu	dy sof	tware eco	onon	nics evoluti	ion.								
CO 2	To stu	dy sof	tware ma	nage	ement proc	ess &	its framewor	K.						
CO 3	To stu	dy sof	tware ma	inage	ement plan	ning,	responsibilitie	es.						
CO 4	To fan	niliari	ze studen	ts ab	out Project	t Man	agement And	Control						

Conventional Software Management: Evolution of software economics, Improving software economics: reducing product size, software processes, team effectiveness, automation through, Software environments, Principles of modem software management.

Unit-2

Software Management Process: Framework: Life cycle phases- inception, elaboration, construction and training phase. Artifacts of the process- the artifact sets, management artifacts, engineering artifacts, and pragmatics artifacts, Model based software architectures, Workflows of the process, Checkpoints of the process.

Unit-3

Software Management Disciplines: Iterative process planning, Project organizations and responsibilities, Process automation, Project control and process instrumentation core metrics, management indicators, life cycle expectations, Process discriminates.

Unit-4

Project Management And Control: framework for Management and control – Collection of data Project termination – Visualizing progress – Cost monitoring – Earned Value Analysis-Project tracking– Change control- Software Configuration Management – Managing contracts – Contract Management.

TEXT BOOKS:

1. Bob Hughes, Mike Cotterell and Rajib Mall: Software Project Management – Fifth Edition, Tata McGraw Hill, New Delhi, 2012.

2. Software Project Management, Walker Royee, Addison Wesley, 1998

REFERENCE BOOKS :

1 Project management 2/e, Maylor.

- 2. Managing the Software Process, Humphrey.
- 3. Managing Global Software Projects. Ramesh, TMfH, 2001

PE-IT-D411A				Distributed (Operating Syste	m						
L	Т	Р	Credit	Major Test	MinorTest	Total	Time					
3	-	<u>3</u> 75 <u>2</u> 100 <u>3</u> Hr.										
Purpose	Elucida	ate the	foundatio	ons and issues o	of distributed sy	ystems						
-		·										
	Course Outcomes											
CO 1	Unde	rstand f	oundation	s of Distributed	Systems.							
CO 2	Introc	luce the	e idea of pe	eer to peer serv	ices and file syst	em.						
CO 3	Under	stand in	n detail the	system level a	nd support requi	red for dist	ributed system.					
CO 4	Under	stand th	ne issues ir	nvolved in stud	ying process and	l resource n	nanagement.					

Unit-1:

Introduction: Distributed Computing Systems, Distributed Computing System Models, Advantages of Distributed Systems, Distributed Operating Systems, Issues in Designing Distributed Operating Systems, Distributed Computing Environment.

Message Passing: Introduction, Features of Message Passing, Issues in IPC by Message Passing, Synchronization, Buffering, Process Addressing, Failure Handling, Group Communication.

Unit-2:

Remote Procedure Calls: The RPC Model, Transparency of RPC, Implementation of RPC Mechanism, STUB Generation, RPC Messages, Marshaling Arguments and Results, Server Management, Parameter Passing, Call Semantics, Communication Protocol for RPCs, Complicated RPC, Client-Server Binding, Security.

Unit-3:

Distributed Shared Memory: Distributed Shared Memory Systems (DSM), DSM – Design and Implementation Issues, Granularity – Block Size, Structure of Shared Memory Space in a DSM System, Memory Coherence (Consistency) Models, Memory Consistency models, Implementing Sequential Consistency, Centralized – Server Algorithm, Fixed Distributed – Server Algorithm, Dynamic Distributed Server Algorithm, Implementing under RNMBs Strategy, Thrashing.

Unit-4:

Synchronization: Introduction, Clock Synchronization, Clock Synchronization Algorithms, Distributed Algorithms, Event Ordering, Mutual Exclusion, Deadlock, Election Algorithms.

Process Management: Introduction, Process Migration, Threads.

Security in Distributed Systems: Potential attacks to Computer Systems, Cryptography, Authentication, Access Control, Digital Signatures, Design Principles.

REFERENCE BOOKS :

- 1. Pradeep K Sinha, "Distributed Operating Systems: Concepts and Design", Prentice Hall of India, 2007.
- 2. Tanenbaum A.S., Van Steen M., "Distributed Systems: Principles and Paradigms", Pearson Education, 2007.

- 3. Liu M.L., "Distributed Computing, Principles and Applications", Pearson Education, 2004.
- 4. Nancy A Lynch, "Distributed Algorithms", Morgan Kaufman Publishers, USA, 2003.

PE-IT-D413A		Natural Language Processing											
L	Τ	T P Credit Major Test Minor Test Total Time											
3	-	<u>3</u> 75 <u>25</u> <u>100</u> <u>3</u> Hr.											
Purpose	To pr	ovide l	knowledge of	of various NLF	P techniques.								
		Course Outcomes											
CO 1	Unde	Understand approaches to syntax, semantics, dialogue and summarization in NLP.											
CO 2	Under	stand cu	rrent method	ls for statistical a	pproaches to mac	hine translat	ion.						
CO 3	Unde	erstand n	nachine learn	ing techniques u	sed in NLP, inclu	ding hidden	Markov models						
	and p	orobabili	stic context-	free grammars ar	nd clustering								
CO 4	Unde	erstand t	he mathemat	ical and linguisti	c foundations in t	he area of N	LP.						
				Unit 1									

Introduction and Overview: What and why of Natural language Processing, Ambiguity and Uncertainty in language, Theturing test. Regular Expressions: Chomski Hierarchy, Regular Languages and their limitations, Finite-state automata. Practical regular expressions for finding and counting language phenomena.

String Edit Distance and Alignment: Key algorithmic tool: dynamic programming, a simple example, then its use in optimal alignment of sequences. String edit operations, edit distance, and examples of use in spelling correction

Unit II

Context Free Grammers: Constituency, CFG definition, use and limitations. Chomsky Normal Form. Top-down parsing, bottom-up parsing, and the problems with each. The desirability of combining evidence from both directions, Non-probabilisite Parsing: Efficient CFG parsing with CYK, dynamic programming algorithm

Information Theory: What is information, Measuring it in bits. The "noisy channel model." The "Shannon game", Entropy, cross-entropy, information gain. Its application to some language phenomena.

Unit III

Language modelling and Naive Bayes: Probabilistic language modelling and its applications. Markov models.N-grams. Estimating the probability of a word, and smoothing. Generative models of language. Their applications to building an automatically-trained email spam filter, and automatically determining the language.

Part of Speech Tagging and Hidden Markov Models: The concept of parts-of-speech, examples, usage. The Penn Treebank and Brown Corpus. Probabilistic (weighted) finite state automata. Hidden Markov models (HMMs), definition and use. Viterbi Algorithm for Finding Most Likely HMM Path: Dynamic programming with Hidden Markov Models, and its use for part-of-speech tagging, Chinese word segmentation, prosody, information extraction

Unit IV

Probabilistic Context Free Grammars: Weighted context free grammars. Weighted CYK. Pruning and beam search. Parsing with PCFGs: treebank ,The probabilistic version of CYK. Experiments with eye-tracking. Modern parsers.

Maximum Entropy Classifiers: The maximum entropy principle, and its relation to maximum likelihood. The need in NLP to integrate many pieces of weak evidence.Maximum entropy classifiers and their application to document classification, sentence segmentation, and other language tasks.

Text and Reference Books:

1. Daniel Jurafsky and James H. Martin, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech recognition, Second Ed., 2009.

2. Chris Manning and HinrichSchütze, Foundations of Statistical Natural Language Processing

PE-IT- D415A			Serv	ver Side Prog	ramming Lab								
L	Т	T P Credit Practical Minor Test Total Time											
0	0	0 3 1.5 60 40 100 3 Hr.											
Purpose	To gain f	To gain familiarity with what server-side programming is, what it can do, and											
1 urpose	how it di	how it differs from client-side programming.											
		Course Outcomes											
CO1	To stu	dy Fu	ndamentals	of server	r side pro	gramming	g and	basic					
COI	programs	•											
CO2	To Imple	To Implement program in ASP to display day, month, date, digital clock.											
CO3	To imple	ment stri	ng function	using ASP.									
CO4	To in	nplement	t the use of	Forms and its	validations usi	ng ASP.							

List of Experiments:

1. Create a Subroutine with arguments passing & call the subroutine for specific no. of time.

2. Write a program in ASP which define an object & then display the properties of object with method.

- 3. Write a program in ASP to display present day, month & date. Also display digital clock.
- 4. Write a program in ASP which will check that a specific file, folder & drive exist or not. Also return the extension of file. Then use the read & write properties on a file using text-stream object.
- 5. Send information to the user after he submit the form using GET & POST method & implement from validation.
- 6. Write a program in ASP that has a form taking the user's name as input. Store this name in a permanent cookie & whenever the page is opened again, then value of the name field should be attached with the cookie's content.
- 7. Use ad-rotator to change advertisements on client side request.

8. Create a session dictionary using object tag. In session-on start add keys for time, user agent, remote I.P. & add appropriate values. Create a simple page to display the values.

9. Implement session tracking using user authentication.

10. Write a program to delete all cookies of your web site that has created on the client's computer. 11. Write a program is ASP to check the capabilities of the browser using browser capability component.

12. Using data base to store & retrieves values input by a user showing them & make updating & add new records to existing database.

13.Create two ASP pages, a form creation web page (selectprice.asp) and a form processing script (liststockbyprice.asp). In selectprice.asp, the user should be shown a form in which he can enter the item & desired maximum price. When it is submitted liststockbyprice.asp will return all the stocks from database whose cost are less than the price entered by user.

Note: A student has to perform at least 10 experiments. At least seven experiments should be performed from the above list. Three experiments may be designed & set by the concerned institution as per the scope of the syllabus.

PE-IT- D417A		Python Programming Lab										
L	Т	T P Credit Practical Minor Test Total Time										
0	0	0 3 1.5 60 40 100 3 Hour										
Purpose	The cours	The course is designed to provide Basic knowledge of Python.										
		Course Outcomes										
CO1	To study	fundame	ntals of pyt	hon programn	ning and imple	ment bas	ic programs.					
CO2	To imple	To implement the searching technique using python.										
CO3	To imple	To implement sorting techniques using python.										
CO4	To implei	ment ma	trix multipl	ication using p	ython.							

LIST OF PRACTICALS:

- 1. WAP to compute the GCD of two numbers.
- 2. WAP to find the square root of a number
- 3. WAP to find the Exponentiation (power of a number)
- 4. WAP to find the maximum of a list of numbers
- 5. WAP for Linear search and Binary search
- 6. WAP for Selection sort, Insertion sort
- 7. WAP for Merge sort
- 8. WAP to find first n prime numbers
- 9. WAP to multiply matrices
- 10. WAP that take command line arguments (word count)
- 11. WAP to find the most frequent words in a text read from a file
- 12. WAP to Simulate elliptical orbits in Pygame
- 13. WAP to Simulate bouncing ball using Pygame

Note: A student has to perform at least 10 experiments. At least seven experiments should be performed from the above list. Three experiments may be designed & set by the concerned institution as per the scope of the syllabus.

	Bachelor of Technology (Information Technology)													
	Credit-Based Scheme of Studies/Examination													
	Semester VIII(w.e.f. session 2021-2022)													
S. Course Subject L:T:P Hours Credits Examination Schedule (Marks) Du <off< th=""> No. Code //Week //Week ((</off<>														
		Major Minor Practical Total Test Test												
1	PE	Elective-VI	3:0:0	3	3	75	25	0	100	3				
2	OE	Open Elective-III	2:0:0	2	2	75	25	0	100	3				
3	OE	Open Elective-IV	2:0:0	2	2	75	25	0	100	3				
4	PROJ-IT- 402A	Project-III	0:0:12	12	6	0	40	60	100	3				
5	PE-IT- A410A	Mobile Application Development Lab	0:0:4	4	2	0	40	60	100	3				
		Total		23	15	225	155	120	500					

The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

PE Elective-VI	
Introduction to Internet of Things: PE-IT-A402A	
Cloud Computing: PE-IT-A404A	
Machine learning: PE-IT-A406A	
Mobile Apps Development: PE-IT-A408A	
OE Elective-III	OE Elective-IV
Cyber Security: OE-IT-402A	Information Security: OE-IT-410A
Bioinformatics: OE-IT-404A	Image Processing: OE-IT-412A
Social Networks: OE-IT-406A	IPR, Bioethics and Biosafety: OE-IT-414A
Human Computer Interaction: OE-IT-408A	Sensor and Transducer: OE-IT-416A

PE-IT-A402A		Introduction to Internet of Things										
L	Т	T P Credit Major Test Minor Test Total Time										
3	0	0 0 3 75 25 100 3 Hou										
Purpose	Τα	To make the students conversant with basics of Internet of Things.										
	Course Outcomes											
CO1	Understa	and gener	al concepts	of Internet of	Things (IoT) a	nd Recog	nize various					
	devices,	sensors a	nd applicat	ions								
CO2	To help	students a	apply design	n concept to Io	T solutions.							
CO3	To famil	liarize abo	out the desig	gn issues in Io	Г applications							
CO4	To help	students of	create IoT s	olutions using	sensors, actuat	ors and E	Devices					

UNIT 1

Introduction to IoT: Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs, IOT concepts, Technologies that led to evolution of IOT, IOT and SCADA, IOT and M2M, IOT and Big Data, IOT Standards, Requirement of international standard (case study), IOT standards in practice, Operating platforms /systems.

UNIT 2

Components of IoT: Sensing, Actuation, Networking basics, Communication Protocols, Sensor Networks, Machine-to-Machine Communications, IoT Definition, Characteristics. IoT Functional Blocks, Physical design of IoT, Logical design of IoT, Communication models & APIs. Components of IOT System, Design of IOT systems ,Development of prototypes, Relevance of IOT for the future, IOT in everyday life, Internet of Everything, IOT and Individual Privacy

UNIT 3

Domain specific applications of IoT: Home automation, Industry applications, Surveillance applications, Other IoT application. i) Lighting as a service (case study) ii) Intelligent Traffic systems (case study) iii) Smart Parking (case study) iv) Smart water management (case study) f) IOT for smart cities (Case study Smart city), IOT in Indian Scenario, IOT and Aadhaar, IOT for health services, IOT for financial inclusion, IOT for rural empowerment

UNIT 4

Developing IoT solutions: Introduction to Python, Introduction to different IoT tools, Introduction to Arduino and Raspberry Pi Implementation of IoT with Arduino and Raspberry, Cloud Computing, Fog Computing, Connected Vehicles, Data Aggregation for the IoT in Smart Cities, Privacy and Security Issues in IoT.

Suggested books

- Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.
- Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013
- The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World"
- Vijay Madisetti, ArshdeepBahga, "Internet of Things: A Hands-OnApproach".

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PE-IT-		Cloud Computing											
A404A L	Т	Р	Credit	Major Test	Minor Test	Total	Time						
3	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Purpose	To fan	To familiar the concepts of cloud services and storage to deploy various resources and											
		arbitrary software.											
	Course Outcomes(CO)												
CO1	Facilita	te the l	basic usage a	and applicability of	of computing pa	aradigm.							
CO2	Explore	e vario	us cloud serv	vice and deploym	ent models to ut	tilize differer	nt cloud services.						
CO3	To get	To get enabled for various data, scalability & cloud services in order to get efficient											
	databas	se for c	loud storage	•									
CO4	To deal	l with v	various secur	ity threats and the	eir controlling n	nechanism fo	or accessing safe						
	cloud s	ervices											

UNIT 1

Overview of Computing Paradigm: Recent trends in Computing, Grid Computing, Cluster Computing, Distributed Computing, Utility Computing, Cloud Computing, evolution of cloud computing, Business driver for adopting cloud computing. Cloud Computing (NIST Model), History of Cloud Computing, Cloud service providers, Properties, Characteristics & Disadvantages, Pros and Cons of Cloud Computing, Benefits of Cloud Computing, Cloud computing vs. Cluster computing vs. Grid computing, Role of Open Standards.

UNIT 2

Cloud Computing Architecture: Cloud computing stack, Comparison with traditional computing architecture (client/server), Services provided at various levels, How Cloud Computing Works, Role of Networks in Cloud computing, protocols used, Role of Web services, Service Models (XaaS) - Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Deployment Models- Public cloud, Private cloud, Hybrid cloud, Community cloud.

UNIT 3

Service Management in Cloud Computing: Service Level Agreements (SLAs), Billing & Accounting, comparing Scaling Hardware: Traditional vs. Cloud, Economics of scaling: Benefitting enormously, Managing Data- Looking at Data, Scalability & Cloud Services, Database & Data Stores in Cloud, Large Scale Data Processing.

Case study: Eucalyptus, Microsoft Azure, Amazon EC2.

UNIT 4

Cloud Security: Infrastructure Security, Network level security, Host level security, Application level security, Data security and Storage, Data privacy and security Issues, Jurisdictional issues raised by Data location, Identity & Access Management, Access Control, Trust, Reputation, Risk, Authentication in cloud computing, Client access in cloud, Cloud contracting Model, Commercial and business considerations.

Text Books

- 1. Barrie Sosinsky, Cloud Computing Bible, Wiley-India, 2010.
- 2. RajkumarBuyya,JamesBroberg, Andrzej M. Goscinski,CloudComputing: and Paradigms, Wiley, 2011.

Principles

Reference Books

- 1. Nikos Antonopoulos, Lee Gillam, Cloud Computing: Principles, Systems and Applications, Springer, 2012.
- 2. Ronald L. Krutz, Russell Dean Vines, Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Wiley-India, 2010

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PE-IT- A406A		Machine Learning											
L	Т	T P Credit Major Test Minor Test Total Time											
3	0	0 0 3 75 25 100 03 Hr.											
Purpose		To familiar the concepts of Machine Learning.											
	Course Outcomes(CO)												
CO1	Study	y basic	s of Machin	ne learning									
CO2	To u	ndersta	and various	types of learning									
CO3	Study	Study types of Reinforcement learning											
CO4	Study	of Art	ificial neura	al network									

Unit I

Introduction: Well posed learning problems, designing a learning system, Issues in machine learning, the concept learning task, types of learning: inductive learning, learning by analogy, Deductive learning, Reinforcement learning.

Unit II

Supervised Learning: Introduction to linear regression, estimating the coefficients, Accessing the accuracy of the coefficient estimates, Accessing the accuracy of the regression model, Multiple linear regression, Logistic regression, basic decision tree learning (ID3) algorithm, Hypothesis space search in decision tree learning algorithm, Inductive bias in decision tree learning, Issues in decision tree learning, k-nearest neighbour learning.

Unit III

Unsupervised Learning:

About clustering, type of data in clustering analysis, k-means and k-medoids, DBSCAN densitybased clustering method, Performance analysis of clustering algorithms,

Unit IV

Artificial Neural networks: Neural Network representations, Appropriate problems for neural network learning, Perceptron. The perceptron training rule, Gradient descent and delta rule, Multilayer Networks and back propagation algorithm.

Text and Reference Books:

1. Tom M. Mitchell, Machine Learning, McGraw-Hill, 1997.

2. Bishop Christopher, Pattern Recognition and Machine Learning, Springer Verlag, 2006.

3. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer, 2nd edition, 2009..J. Han and M. Kamber, Data Mining Concepts and Techniques, 3rd Edition, Elsevier, 2012.

4. S. Rajeshkaran, G. A. VijayalakshmiPai, Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications, PHI, 2003.

PE-IT-A408A		Mobile Apps Development											
L	Т	T P Credit Major Test Minor Test Total Time											
3	0	0 0 3 75 25 100 3 Hrs.											
Purpose		To introduce the concepts of developing the mobile applications.											
Course Outcomes (CO)													
CO1	Be exp	Be exposed to technology and Mobile apps development aspects.											
CO2	Be con	npeten	t with the c	haracterization a	and architecture of	of mobile appli	cations.						
CO3	Apprec	Appreciation of nuances such as native hardware play, location awareness,											
	graphic	graphics, and multimedia.											
CO4	Perform	m testi	ng, signing	, packaging and	distribution of m	obile apps.							

Unit I: Introduction to Mobility

Mobility landscape, Mobile platforms, Mobile apps development, Overview of Android platform, Setting up the Mobile App Development environment along with an Emulator.

App User Interface Designing – Mobile UI resources (Layout, UI elements, Drawable, Menu).

Unit II: Building blocks of Mobile Apps

Activity- States and Life Cycle, Interaction amongst Activities.

App functionality beyond user interface - Threads, Async task, Services – States and Life Cycle, Notifications, Broadcast receivers, Content provider.

Unit III: Sprucing up Mobile Apps

Graphics and animation – Custom views, Canvas, Animation APIs, Multimedia – Audio/Video playback and record, Location awareness.

Native data handling-file I/O, Shared preferences, Mobile databases such as SQLite, and Enterprise data access (viaInternet/Intranet).

Unit IV: Testing Mobile Apps

Debugging mobile apps, White box testing, Black box testing, and test automation of Mobile apps, JUnit for Android.

Text Books:

- 1. Barry Burd, Android Application Development All in one for Dummies, Wiley publications, 2nd Edition2015.
- 2. Android Developer Fundamentals Course– Concepts (Learn to develop Android applications) Concepts Reference *Developed by Google Developer Training Team*,2016.
- 3. Valentino Lee, Heather Schneider, and Robbie Schell, Mobile Applications: Architecture, Design, and Development, Prentice Hall,2004.
- 4. Rick Boyer, Kyle Mew, Android Application Development Cookbook SecondEdition, 2016.

Reference Books:

- 1. Carmen Delessio, Lauren Darcey, Teach Yourself Android Application Development In 24 Hours , SAMS,2013.
- 2. Brian Fling, Mobile Design and Development, O'Reilly Media, 2009.
- 3.

OE-IT-402A		Cyber Security										
L	T P Credit Major Test Minor Test Total Tim											
2	0	0 0 2 75 25 100 3 Hrs.										
Purpose	To gain a broad understanding in order to get predictive ways out related to cyber security.											
	Course Outcomes											
CO1	To fa	cilitate the	basic kno	wledge of cyber	security.							
CO2	To ex	To explore and sort issues related to different types of activities in cyber crime.										
CO3	To ge	et enable to	fix the va	rious cyber attac	cks.							
CO4	To de	eal with the	digital fo	rensics and relat	ed scenarios of cy	/ber crimes.						

Introduction: Introduction and Overview of Cyber Crime, Nature and Scope of Cyber Crime, Types of Cyber Crime: crime against individual, Crime against property, Cyber extortion, Drug trafficking, cyber terrorism. Need for Information security, Threats to Information Systems, Information Assurance, Cyber Security, and Security Risk Analysis.

Unit-II

Cyber Crime Issues: Unauthorized Access to Computers, Computer Intrusions, Viruses and Malicious Code, Internet Hacking and Cracking, Virus and worms, Software Piracy, Intellectual Property, Mail Bombs, Exploitation, Stalking and Obscenity in Internet, Password Cracking, Steganography, Key loggers and Spyware, Trojan and backdoors, phishing, DOS and DDOS attack, SQL injection, Buffer Overflow.

Unit-III

Introduction to cyber attacks: passive attacks, active attacks, Cyber crime prevention methods, Application security (Database, E-mail and Internet), Data Security Considerations-Backups, Archival Storage and Disposal of Data, Security Technology-Firewall and VPNs, Intrusion Detection, Access Control, Hardware protection mechanisms, OS Security

Unit-IV

Digital Forensics: Introduction to Digital Forensics, historical background of digital forensics, Forensic Software and Hardware, need for computer forensics science, special tools and techniques digital forensic life cycle, challenges in digital forensic.

Law Perspective: Introduction to the Legal Perspectives of Cybercrimes and Cyber security, Cybercrime and the Legal Landscape around the World, Why Do We Need Cyber laws, The Indian IT Act, Cybercrime Scenario in India, Digital Signatures and the Indian IT Act, Cybercrime and Punishment.

Text Books:

1. Nelson Phillips and EnfingerSteuart, "Computer Forensics and Investigations", Cengage Learning, New Delhi, 2009.

Reference Books:

1. Robert M Slade," Software Forensics", Tata McGraw - Hill, New Delhi, 2005.

SunitBelapure and Nina Godbole, "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wiley India Pvt. Ltd.

OE-IT-404A		Bioinformatics												
L	Т	P	Credit	Major Test	Minor Test	Total	Time							
2	0	0 0 2 75 25 100												
Purpose	The	The objective of course is to study of information on Biological data.												
	Course Outcomes													
CO 1	Enco	ompass	es the deve	elopment of d	atabases to a	inalyze and	determine their							
	relat	ionship	s with biolog	ical data.										
CO 2	Enri	ches th	eir understand	ling of how gene	es or molecular	sequences o	f species evolve.							
CO 3	To e	enable t	hem of using	g computational	techniques to	characterize	protein and RNA							
	struc	cture.	-	-	-		-							
CO 4	Und	erstand	the assembl	ing of sequence	es and analysis	s of structure	e and function of							
	geno	mics.		- •	-									

Unit -I

Bioinformatics and Biological Databases Bioinformatics: Introduction, Goal, Scope, Applications, Limitations, and New Themes Biological Databases: Introduction, Types of Databases, Biological Databases, Pitfalls of Biological Databases, Information Retrieval from Biological Databases Database Similarity Searching: Unique Requirements of Database Searching, Heuristic Database Searching, Basic Local Alignment Search Tool (BLAST), FASTA, Comparison of FASTA and BLAST, Practical Issues Profiles and Hidden Markov Models: Position-Specific Scoring Matrices, Profiles, Markov Model and Hidden Markov Model Protein Motifs and Domain Prediction: Identification of Motifs and Domains in Multiple Sequence Alignment, Motif and Domain Databases Using Regular Expressions, Motif and Domain Databases Using Statistical Models, Protein Family Databases, Motif Discovery in Unaligned Sequences, Sequence Logos

Unit -II

Gene and Promoter Prediction Gene Prediction: Categories of Gene Prediction Programs, Gene Prediction in Prokaryotes, Gene Prediction in Eukaryotes Promoter and Regulatory Element Prediction: Promoter and Regulatory Elements in Prokaryotes, Promoter and Regulatory Elements in Eukaryotes, Prediction Algorithms Molecular Phylogenetics Phylogenetics Basics: Molecular Evolution and Molecular Phylogenetics, Terminology, Gene Phylogeny versus Species Phylogeny, Forms of Tree Representation, Why Finding a True Tree Is Difficult, Phylogenetic Tree Evaluation, Phylogenetic Programs 16

Unit -III

Structural Bioinformatics Protein Structure Basics: Amino Acids, Peptide Formation, Dihedral Angles, Hierarchy, Secondary Structures, Tertiary Structures, Determination of Protein ThreeDimensional Structure, Protein Structure Database Protein Structure Visualization, Comparison, and Classification: Protein Structural Visualization, Protein Structure Comparison, Protein Structure Classification Protein Secondary Structure Prediction: Secondary Structure Prediction for Globular Proteins, Secondary Structure Prediction for Transmembrane Proteins, Coiled Coil Prediction Protein Tertiary Structure Prediction: Methods, Homology Modeling, Threading and Fold Recognition, Ab Initio Protein Structure Prediction Methods, Ab Initio Approach, Comparative Approach, Performance Evaluation

Unit -IV

Genomics and Proteomics Genome Mapping, Assembly, and Comparison: Genome Mapping, Genome Sequence Assembly, Genome Annotation, Comparative Genomics Functional Genomics: Sequence-Based Approaches, Microarray-Based Approaches, Comparison of SAGE and DNA Microarrays Proteomics: Technology of Protein Expression Analysis, Posttranslational Modification, Protein Sorting, Protein–Protein Interactions

Recommended Books:

1. Bioinformatics for Dummies, Jean-Michel Claverie, Cedric Notredame, 2003, John Wiley & Sons

2. Bioinformatics Computing, Bryan P. Bergeron, 2002, Prentice Hall

3. Introduction to Bioinformatics, Arthur M. Lesk, 2002, Oxford University Press

4. Instant Notes in Bioinformatics, D.R. Westhead, J. H. Parish, R.M. Twyman, 2002, Bios Scientific Pub

5. Fundamental Concepts of Bioinformatics, Dan E. Krane, Michael L. Raymer, Michaeel L. Raymer, Elaine NicponMarieb, 2002, Benjamin/Cummings

6. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, Second Edition, Andreas D. Baxevanis, B. F. Francis Ouellette, 2001, WileyInterscience

7. Introduction to Bioinformatics, Teresa Attwood, David Parry-Smith, 2001, Prentice Hall

8. Bioinformatics: A Primer, Charles Staben, 2001, Jones & Bartlett Pub

9. Bioinformatics: Sequence and Genome Analysis, David W. Mount, 2001, Cold Spring Harbor Laboratory Press

10. Bioinformatics: Sequence, Structure and Databanks: A Practical Approach (The Practical Approach Series, 236), Des Higgins (Editor), Willie Taylo

OE-IT-406A		Social Networks										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time					
2	0	0	2	75	25	100	3 Hour					
Purpose	To ma	To make the students conversant with basic fundamentals of the Electronics										
		Course Outcomes										
CO1	Abilit	y to under	stand and kn	nowledge repres	entation for th	e semant	ic web					
CO2	Under	stand the	basics of Ser	mantic Web and	l Social Netwo	orks.						
CO3	Under langua	Understand Electronic sources for network analysis and different Ontology languages										
CO4	Mode	ling and a	ggregating so	ocial network d	ata.							

UNIT –I

Thinking and Intelligent Web Applications, The Information Age ,The World Wide Web, Limitations of Today's Web, The Next Generation Web, Machine Intelligence, Artificial Intelligence, Ontology, Inference engines, Software Agents, Berners-Lee www, Semantic Road Map, Logic on the semantic Web.

UNIT -II

Ontologies and their role in the semantic web, Ontologies Languages for the Semantic Web – Resource Description Framework(RDF) / RDF Schema, Ontology Web Language(OWL), UML, XML/XML Schema. Ontology Engineering, Constructing Ontology, Ontology Development Tools, Ontology Methods, Ontology Sharing and Merging, Ontology Libraries and Ontology Mapping, Logic, Rule and Inference Engines.

UNIT-III

Semantic Web applications and services, Semantic Search, e-learning, Semantic Bioinformatics, Knowledge Base ,XML Based Web Services, Creating an OWL-S Ontology for Web Services, Semantic Search Technology, Web Search Agents and Semantic Methods

UNIT-IV

What is social Networks analysis, Development of the social networks analysis, Electronic Sources for Network Analysis – Electronic Discussion networks, Blogs and Online Communities, Web Based Networks. Building Semantic Web Applications with social network features.

TEXT BOOKS:

- 1. Thinking on the Web Berners Lee, Godel and Turing, Wiley inter science, 2008.
- 2. Social Networks and the Semantic Web, Peter Mika, Springer, 2007.

REFERENCE BOOKS:

- 1. Semantic Web Technologies, Trends and Research in Ontology Based Systems, J.Davies, R.Studer, P.Warren, John Wiley & Sons.
- 2. Semantic Web and Semantic Web Services -Liyang Lu Chapman and Hall/CRC Publishers,(Taylor & Francis Group)
- **3**. Information Sharing on the semantic Web HeinerStuckenschmidt; Frank Van Harmelen, Springer Publications.

OE-IT-408A		Human Computer Interaction										
L	Т	T P Credit Major Test Minor Test Total Time										
2	0	0	2	75	25	100	3 Hour					
Purpose	To Und interacti	To Understand the structure of models and theories of human computer interaction and vision.										
		Course Outcomes										
CO1	Learn	the found	lations of H	uman Computer	Interaction							
CO2	Be fai	miliar wit	h the design	technologies for	r individuals and	l persons v	with disabilities					
CO3	Be aw	Be aware of mobile Human Computer interaction.										
CO4	Learn	the guide	lines for use	er interface								

Unit 1

Human: I/O channels – Memory – Reasoning and problem solving; The computer: Devices – Memory – processing and networks; Interaction: Models – frameworks – Ergonomics – styles – elements – interactivity-Paradigms.

Unit 2

Interactive Design basics – process – scenarios – navigation – screen design –Iteration and prototyping. HCI in software process – software life cycle –usability engineering – Prototyping in practice – design rationale. Design rules– principles, standards, guidelines, rules. Evaluation Techniques – Universal Design.

Unit 3

Cognitive models –Socio-Organizational issues and stake holder requirements –Communication and collaboration models-Hypertext, Multimedia and WWW.

Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.

Unit 4

Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow.Case Studies.

References

- Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, "Human Computer Interaction", 3rd Edition, Pearson Education, 2004 (UNIT I, II & III)
- Brian Fling, "Mobile Design and Development", First Edition, O Reilly Media Inc., 2009
- Bill Scott and Theresa Neil, "Designing Web Interfaces", First Edition, O Reilly, 2009.

OE-IT-410A			In	formation Se	curity		Information Security											
L	Т	Р	Credit	Major Test	Minor Test	Total	Time											
2		-	2	75	25	100	3Hr.											
Purpose	The dev	The course will be useful for students who plan to do research/product development/analysis in areas related to secure computing in their career.																
				Course	Outcomes													
CO 1	Т	`o learn b	asics of netw	work security	and cryptograph	ıy.												
CO 2	T S(To study network authentication mechanism, with security algorithms.																
<i>CO 3</i>	Т	To explore the knowledge of key exchange protocols.																
<i>CO</i> 4	Т	'o realize	the effect of	n digitized sec	curity.													

Attacks on Computers and Computer Security: Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security.

Cryptography: Concepts and Techniques: Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, stenography, key range and key size, possible types of attacks.

Unit-2

Symmetric key Ciphers: Block Cipher principles, Differential and Linear Cryptanalysis, Block cipher modes of operation, Stream ciphers, RC4, Location and placement of encryption function, Key distribution.

Asymmetric key Ciphers: Principles of public key crypto systems, Algorithms (RSA, Diffie-Hellman, and ECC), Key Distribution.

Unit-3

Message Authentication Algorithms and Hash Functions: Authentication requirements, Functions, Message authentication codes, Hash Functions, Secure hash algorithm, HMAC, CMAC, Digital signatures, knapsack algorithm

Authentication Applications: Kerberos, X.509 Authentication Service, Public – Key Infrastructure, Biometric Authentication.

E-Mail Security: Pretty Good Privacy, S/MIME.

Web Security: Web security considerations, Secure Socket Layer and Transport Layer Security, Secure electronic transaction

Intruders, virus and Firewalls: Intruders, Intrusion detection, password management, virus and related threats, Firewall design principles, types of firewalls.

TEXT BOOKS

1. William Stallings, "Cryptography and Network Security":, Pearson Education,4"' Edition

2. Atul Kahate , "*Cryptography and Network Security*", McGraw Hill Edition **REFERENCE BOOKS**

1. Cryptography and Network Security : Forouzan Mukho padhyay, MC Graw Hill, 2"" Edition 2. Mark Stamp , "*Information Security, Principles and Practice*" Wiley India.

3. WM.Arthur Conklin, Greg White, "Principles of Computer Security", TMH

NOTE:

Eight questions are to be set in all by the examiner taking two questions from each unit. Students will be required to attempt five questions in all, selecting at least one question from each unit.

OE-IT-412A	Image Processing										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
2	-		2	75	25	100	3Hr.				
Purpose	The objective of this course is to prepare students to conduct research in Image										
	Processing.										
	Course outcomes										
CO 1	To Understand key algorithms for point, neighborhood, and geometric operations										
CO 2	To study image transformation methods.										
CO 3	To study different techniques of image compression.										
CO 4	To study different attributes of images.										

Digital image fundamentals, application of digital image processing, elements of digital image processing systems, vidicon camera, Line scan CCD sensor, area sensor, flash A/D converter display – elements of visual perception, structure of the human eye, Luminance, brightness, contrast, mach band effect, image fidelity criteria, color models, - RGB, CMY, HIS mathematical preliminaries of 2D systems, convolution, Fourier transform – ZS transform – toeplitz and circulant matrices, orthogonal and unitary matrices.

Unit-2

Image transforms, Unitary transform, 2D, DFT, DCT, DST, Discrete wavelet transform, Discrete Hadamard, Walsh, Hostelling transform, SVD transform, Slant Haar transforms. Image Enhancement and Restoration: Constrast stretching, intensity level slicing, Histogram equalization, spatial averaging, directional smoothing, Median filtering, nonlinear filters, maximum, minimum, geometric mean contra harmonic mean, LP mean filters, edge detection, Roberts, Sobel, Isofropic, Kinesh, Campass gradient, Laplacian operators.

Unit-3

Degradation model - unconstrained and constrained restoration, inverse filtering, removal of blur caused by uniform linear motion, Wiener filtering, geometric transformations for image restoration.

Unit –4

Image compression- Huffman coding, truncated Huffman coding, Br, Binary codes, arithmetic coding, bit plane coding contrast area coding, Run length encoding, transform coding JPEG and MPEG coding schemes. Image Segmentation, pixel based approach, feature threshold, choice of feature, optimum threshold, threshold selection methods, region based approach, region growing, region splitting, region merging, spilt and merge.

Text books :

1. Gonzalez, R.C. and Woods, R.E., "Digital image processing", AddisonWesley.

2. A.K.Jain, "Fundamentals of Digital Processing", PHI.

Reference Books

- Umbaugh, S.E. "Computer vision and image processing", Prentice Hall Int.NJ
 W. Pratt, "Digital Image Processing", WileyInter-science

OE-IT-		IPR, Bioethics& Bio-safety											
414A				,									
L	Т	Р	Credit	Major Test	Minor Test	Total	Time						
2	-		2	75	25	100	3 Hr.						
Purpose	To in disci prop and s	To introduce basic concepts of ethics and safety that are essential for different disciplines of science and procedures involved and protection of intellectual property and related rights. To understand balanced integration of scientific and social knowledge in sustainable development.											
		Course outcomes											
CO 1	Understa commer	Understand the basic issues of bio-safety, bioethics and IPR arising from the commercialization of biotech products.											
CO 2	Follow t society	Follow the regulatory framework in their future venture to ensure product safety and benefit the society											
CO 3	Aware s	Aware students about the society's moral principles and not violate or breach laws.											
CO 4	Perform project management and choosing & processing the most appropriate form of IPR for protection of their research/ end product.												

Unit - I

Biosafety: Introduction; Historical background; Biosafety in the laboratory; Laboratory associated infections and other hazards; Biosafety management for environmentally safe use ofbiotechnology;Biosafetyguidelines;RecommendedBiosafetyLevelsforInfectiousAgents and Infected Animals; Definition of GMOs & LMOs; Good manufacturing practices (GMP) and Good lab practices(GLP); Overview of National Regulations and relevant International AgreementsincludingCartagenaProtocol;RolesofInstitutionalBiosafetyCommittee(IBSC),

RCGM,GEAC,MEC,SBCC,DLCandRDAC;Guidelinesforresearchintransgenicsciences and release of GMOs to environment; Bioterrorism and convention on biological weapons

Unit- II

Bioethics: Ethical issues related to biotechnology research; Ethical issues associated with consumptions of genetically modified foods and other products, Ethical implications of human genome project, Social and ethical implications of biological weapons, Bioremediations and environmentalimpactsofusingGMOs;Ethicsofpatenting-anditsimpactonbiodiversityrich developing countries; Use of animals for research and testing and Alternatives for Animals in Research.

Unit - III

Social, economic and legal issues related to biotechnology: Public education of the processes of biotechnology involved in generating new forms of life for informed decision making; Testing of drugs on human volunteers; Human cloning and Gene therapy - ethical and social issues; Organ transplantation- ethical and legal implications; Research focus to address the need of the poor and of environment.

Industrial licensing, venture capital, Biotechnological industries in India and potential job opportunities.
Unit - IV

Intellectual Property Rights: Intellectual property rights and IPR protection; Patenting and the procedure involved in the application of patents and granting of a patent; Compulsory licenses;

Legislations covering IPR's in India, Patent search; Patent Cooperation Treaty (PCT); Traditional knowledge commercial exploitation; Farmers rights; Plant breeder's rights; International and National conventions on Biotechnology and related areas- GATT, TRIPS, Biodiversity convention, etc.

Recommended Books:

- 1. Thomas, J. A. and Fuch, R. L. Biotechnology and Safety Assessment. Academic Press. (2002).
- Fleming, D. A., Hunt, D. L., Biological safety Principles and practices. ASM Press. (2000).
- 3. Sateesh, M. K. Bioethics & Biosafety, IK Publishers.(2008).
- 4. Singh B. D. Biotechnology: Expanding Horizon. Kalyani; edition(2015)
- 5. Singh K., Intellectual Property Rights on Biotechnology BCIL, New Delhi.(2008).
- 6. Desai, V., Dynamics of Entrepreneurial Development and Management, Himalaya Publishing House(2007).
- 7. Singh, I. and Kaur, B., Patent law and Entrepreneurship, Kalyani Publishers(2006).
- 8. Goel and Prashar, IPR, Biosafety and Bioethics, Pearson education, India(2013)

OE-IT-416A	Sensor and Transducer									
L	Т	T P Credit Major Test Minor Test		Total	Time					
2	0	0	2	75	75 25		3 Hour			
Purpose	To mak electroni	To make the students conversant with sensor and transducer based electronics system								
	Course Outcomes									
CO1	To famil base Instr	iarize the ruments	e students	about Static cl	naracteristics of	of sensor	and transducer			
CO2	To introduce the students to various errors while using measurement systems									
CO3	Applicati	Application of transducers for measuring non electrical quantities								
CO4	Introduct	ion to Di	splay devic	es and Data ac	quisition syste	m				

UNIT 1

Introduction to Measurement and instrumentation: Measurement; Instrumentation; Significance of measurement; Why study measurement systems, Classification of types of measurement application ; Methods and Modes of measurement , Generalized measurement system and its functional elements.

Static Characteristics of Sensor and Transducer base Instruments : Define 1) True or actual value ; 2) Static error , 3) Indicated value ; 4) Correction ; 5) Range ; 6) Span ; 7) Sensitivity ; 8) Resolution ; 9)Threshold ; 10) Response ;11) Response time ; 12) Gain ; 13) Linearity ; 14)Scale sensitivity ; 15) Scale readability ; 16) Reproducibility ; 17) Accuracy ; 18) Precision ; 19) Tolerance ; 20) Dead band ; 21) Backlash ; 22) Drift ; 23) stability ; 24) Uncertainty ; 25) Hysteresis ; 26) Static calibration

UNIT 2

Dynamic Characteristics: Define : 1)Transient response 2) Dynamic error ; 3) Fidelity ; 4) Bandwidth ; 5) Speed of response ; 6) Time constant ; 7) Measuring Lag ; 8) Settling or response time ; 9) Dynamic range

Errors in measurement : Significant Figures ; Limiting or Guarantee Errors ; Relative Limiting Error ; Absolute Error ; Types of error -a) Gross error , b) Systematic Error c) Random or Accidental error ; Sources of error

UNIT 3

Sensors and Transducers (Electrical): What is a transducer? ; Classification of transducer, Factors influencing choice of transducer; Advantages and disadvantages of electrical transducers, Basic requirement of Transducers;

Measurement of Non electrical quantities using sensors / Transducers : Strain Gage , Types of strain gage , Thermocouple ; Measurement of thermocouple output ; Temperature measurement using Thermister ; Linear Variable Differential Transformer (LVDT) ; Advantages and disadvantages of LVDT , Measurement of linear displacement using LVDT ; Measurement of Angular displacement using RVDT ; Pressure measurement using Bourdon tube and LVDT ; Speed measurement using AC and DC tachometer ; Measurement of liquid level using a) Variable dielectric method b) Float and voltage divider method

UNIT 4

Display and Recorders : Seven segment display ; Liquid Crystal Display ; Plasma display ; Strip Chart Recorder ; X Y Recorder ; UV recorder ;

Data Acquisition System and Telemetry : Generalized Data Acquisition system (DAS), Objectives of DAS ; Configuration of DAS ; Single and multiple channel DAS ; Signal Conditioning ; Necessity of Signal conditioning , Functions of signal conditioning equipment ; General Telemetry System , Types of Telemetry

Suggested books

- Doebelin and Manik , "Measurement Systems", McGraw Hill
- Smaili and Mrad, "Mechatronics", Oxford
- R. K. Rajput, "Electrical Electronics measurement and Instrumentation", S Chand
- J.B Gupta , " A course in Electronic and Electrical Measurements and Instrumentation ", Katsons
- Nakra and Choudhary, "Instrument Measurement and Analysis", Tata McGraw Hill
- A. K .Sawhney , "A course in Electrical and Electronic Electrical Measurements and Instrumentation", DhanpatRai and Co.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PE-IT- A410A		Mobile Application Development Lab									
L	Т	T P Credit Practical Minor Test Total Tim									
0	0	4	2	60	40	100	3 Hour				
Purpose	In this present a	In this lab, a student is expected to design, implement, document and present a mobile									
	Course Outcomes										
CO1	Build a developm	native a nent	application	using GUI	components a	and Mol	pile application				
CO2	Develop an application using basic graphical primitives and databases										
CO3	Construct an application using multi threading and RSS feed										
CO4	Make use	e of locati	on identific	cation using G	PS in an applic	cation					

LIST OF PRACTICALS:

- 1. Develop an application that uses GUI components, Font and Colours
- 2. Develop an application that uses Layout Managers and event listeners.
- 3. Develop a native calculator application.
- 4. Write an application that draws basic graphical primitives on the screen.
- 5. Implement an application that implements Multi threading
- 6. Develop a native application that uses GPS location information.
- 7. Implement an application that writes data to the SD card.
- 8. Implement an application that creates an alert upon receiving a message.
- 9. Write a mobile application that creates alarm clock.
- 10. Develop a sign-in page with appropriate validation.
- 11. Develop a real life application that makes use of database.

Note: A student has to perform at least 10 experiments. At least seven experiments should be performed from the above list. Three experiments may be designed & set by the concerned institution as per the scope of the syllabus.

Bachelor of Technology (CIVIL Engineering), KUK SCHEME OF STUDIES/EXAMINATIONS (Modified) (Semester -IV) Credit-Based (w.e.f. 2021-22)

S.	Course No./	Subject	L:T:P	Hours/	Credits	E	Examination Schedule (Marks)			
No.	Code			Week		Major Test	Minor Test	Practical	Total	of exam (Hours)
1	HTM-901A	Universal Human Values II : Understanding Harmony	3:0:0	3	3	75	25	0	100	3
2	ES-205A	Engineering Mechanics	3:0:0	3	3	75	25	0	100	3
3	CE-202A	Structural Analysis-I	3:1:0	4	4	75	25	0	100	3
4	CE-204A	Design of Steel Structure-I	3:0:0	3	3	75	25	0	100	3
5	CE-206A	Soil Mechanics	3:0:0	3	3	75	25	0	100	3
6	CE-208A	Hydraulic Engineering	3:0:0	3	3	75	25	0	100	3
7	CE-212LA	Structural Analysis-I Lab	0:0:2	2	1	-	40	60	100	3
8	CE-216LA	Soil Mechanics Lab	0:0:2	2	1		40	60	100	3
9	CE-218LA	Hydraulic Engineering Lab	0:0:2	2	1		40	60	100	3
		Total	18:1:6	25	22	450	270	180	900	

HTM-901A		Universal Human Values II: Understanding Harmony										
Lecture	Tutorial	TutorialPracticalCreditMajor TestMinor TestTotalTime										
3	0	0	3.0	75	25	100	3 Hours					
Purpose	Purpose and motivation for the course, recapitulation from Universal Human Values-I											
Course Out	comes (CO)											
CO 1	Developm (human bei	ent of a holi ing),family,	stic perspec society and	tive based nature/exis	on self-exploi stence.	ation abo	ut themselves					
CO 2	Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.											
CO 3	Strengthening of self-reflection.											
CO 4	Developm	ent of comn	nitment and	courage to	o act.							

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration—what is it? Its content and process; 'Natural Acceptance' andExperiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrarinessin choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'l' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'l' and harmony in 'l'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in

Human-HumanRelationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as thefoundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- fromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on

ProfessionalEthics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and

organizations

28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. todiscuss the conduct as an engineer or scientist etc.

READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at handand motivating students to reflect, explore and verify them.

Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration. Scenarios may be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based onbasic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemed essential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example:

Assessment by

faculty mentor: 5 marks

Self-assessment: 5 marks

Assessment by peers: 5 marks

Socially relevant project/Group Activities/Assignments: 10 marks

Semester End Examination: 75 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

Bachelor of Technology (CIVIL Engineering), KUK CreditBased (2018-19 Onwards)

S.	Course No./	Subject	L:T:P	Hou rs/ Wee	Cre dits	Examination Schedule (Marks)				Durati on of
No.	Code			k		Major	Minor Test	Practic al	Total	exam (Hours
						Test				,
1	CE401A	Design of Concrete StructureII 2:0:0 2 2 75 25 0 100		100	3					
2	ES212A	Energy Science & Engineering	Energy Science & Engineering2:0:02275250		0	100	3			
3	CE405A	Water Resources Engineering	2:0:0	2	2	75	25	0	100	3
4	OEII	Open ElectiveII	2:0:0	2	2	75	25	0	100	3
5	ELIII	ElectiveIII	3:0:0	3	3	75	25	0	100	3
6	ELIV	ElectiveIV	3:0:0	3	3	75	25	0	100	3
7	CE411L A	Concrete Drawing	0:0:3	3	1.5		40	60	100	3
8	ES212L A	Energy Science & Engineering Lab	0:0:2	2	1		40	60	100	3
9	CE415L A	Minor Project	0:0:8	8	4		40	60	100	3
10	SIM903 A	Seminar on Summer Internship	1:0:0	1	0		50		50	3
		Total	15:0:13	28	22.5	450	320	180	950	

SCHEME OF STUDIES/EXAMINATIONS (Semester VII)

Note: (1) SIM903A is a credit course in which the students will be evaluated for the Summer Internship (training) undergone after 6th semester.

(2)The students have to carry out the MINOR Project either from Transportation Engineering, Hydraulic Engineering and GeotechnicalEngineering.

a												
SI.	Code No. Subject		Semester	Credits								
No												
1.	OE407A	Metro Systems and Engineering	VII	3								
2.	OE409A	Indian Music System	VII	3								
3.	OE417A	Introduction to Philosophical Thoughts	VII	3								

OPEN ELECTIVE II

ELECTIVEIII A

Sl. No	Code No.	Subject	Seme ster	Credit
110	110		Ster	5
		Environmental		
1.	EL419A	Impact Assessment	VII	3
		Air and Noise Pollution		
2.	EL421A	Control	VII	3
3.	EL423A	Foundation engineering	VII	3
4.	EL425A	Rock Mechanics	VII	3

ELECTIVEIV A

Sl · N o	Code No.	Subject	Seme ster	Cred its
1.	EL427A	Railway Engineering	VII	3
2.	EL429A	Airport Planning and Design	VII	3
3.	EL431A	River Engineering	VII	3
4.	EL433A	Pipeline Engineering	VII	3

	Course			Hours			Exar Sc	ninatic hedule	on	Durati
S.	No./	Subject	L:T:P	/	Credits		(N	/larks)		on
No.	Code			Week						exam
						Major Test	Minor Test	Practi cal	Total	(Hour s)
		Engineering Economics.								
1	CE402A	Estimation & Costing	2:0:0	2	2	75	25	0	100	3
2	CE404A	Bridge Engineering	2:0:0	2	2	75	25	0	100	3
3	OEIII	Open ElectiveIII	2:0:0	2	2	75	25	0	100	3
4	ELV	ElectiveV	3:0:0	3	3	75	25	0	100	3
5	ELVI	ElectiveVI	3:0:0	3	3	75	25	0	100	3
6	CE412L A	Compressive Viva	0:0:0	0	0			50	50	3
7	CE414L A	Major Project	0:0:10	10	5		40	60	100	3
8	CE LA	SeminarII	0:0:2	2	0		50	0	50	3
		Total	12:0:12	24	19	375	215	110	700	

Bachelor of Technology (CIVIL Engineering), KUK CreditBased (2018-19 Onwards) SCHEME OF STUDIES/EXAMINATIONS (Semester VIII)

Note: The student have to carry out the MAJOR Project either from Structural Engineering, Environmental Engineering and Water ResourceEngineering.

Sl. No	Code No.	Subject	Semester	Credits
1.	OE406A	ICT for Development	VIII	3
		Comparative Study of		
2.	OE408A	Literature	VIII	3
		History of Science &		
3.	OE410A	Engineering	VIII	3
4	OE418A	Economic Policies in India	VIII	3

OPEN ELECTIVE – III

ELECTIVEV A

ELECTIVEVI A

Sl.	Code	Subject			SI.	Code	Subject		
No	No.		Semester	Credits	No	No.		Semester	Credits
		Prestress					Wastewater		
1.	EL420A	Concrete	VIII	3	1.	EL428A	Treatment	VIII	3
		Earthquake					Water and		
		Engineering					Air Quality		
2.	EL422A		VIII	3	2.	EL430A	Modelling	VIII	3
		Offshore					Traffic		
		Engineering					Engineering		
							and		
3.	EL424A		VIII	3	3.	EL432A	Management	VIII	3
		Structural					Infrastructure		
		Goology					Planning and		
4.	EL426A	Geology	VIII	3	4.	EL434A	Design	VIII	3

	B. Tech. VII Semester (Civil Engineering)									
	SUBJECT: DESIGN OF CONCRETE STRUCTUTRESII									
L	Т	P/D	Total	Subject Code: CE-401A	Max. Marks: 100					
2	0	0	2		Theory: 75 marks					
	Sessional: 25 Marks									
					Duration: 3 hrs.					
Cour	se	Studer	nts will ac	quire the knowledge about the design of concre	te structures like Beam,					
Obje	ctive	Slabs,	Stair case	e, Water Tanks and Building frames.						
UNI	Г	Cours	e Outcon	nes						
Ι		Studer	nts will b	be able to study behavior in the Beam and	Prestressed concrete -					
		mome	nts, shear	and design of beam.						
II		Studer	nts will be	able to design different types of Slabs, Stair cas	se and Foundations.					
III		Studer	nts will be	able to design of Water tanks, Silos and Bunker	rs.					
IV		Studer	nts will be	able to analyze the frames structures						

Continuous Beams:

Basic assumptions, Moment of inertia, settlements, Modification of moments, maximum moments and shear, beams curved in plananalysis for torsion, redistribution of moments for single and multispan beams, design examples.

Prestressed Concrete:

Basic principles, classification of prestressed members, various Prestressing systems, losses in prestress, initial and final stress conditions, analysis and design of sections for flexure and shear, load balancing concept, I:S:Specifications. End blocksAnalysis of stresses, Magnel's method, Guyon's method, Bursting and spelling stresses, design examples.

UNIT II

Flat slabs and staircases:

Advantages of flat slabs, general design considerations, approximate direct design method, design of flat slabs, openings in flat slab, design of various types of staircases, design examples.

Foundations:

Combined footings, raft foundation, design of pile cap and piles, underreamed piles, design examples.

UNIT III

Water Tanks, Silos and Bunkers:

Estimation of Wind and earthquake forces, design requirements, rectangular and cylindrical underground and overhead tanks, Intze tanks, design considerations, design examples. Silos and BunkersVarious theories, Bunkers with sloping bottoms and with high side walls, battery of bunkers, design examples.

UNIT IV

Building Frames:

Introduction, Member stiffness's, Loads, Analysis for vertical and lateral loads, Torsion in buildings, Ductility of beams, design and detailing for ductility, design examples.

Yield Line Theory:

Basic assumptions, Methods of analysis, yield line patterns and failure mechanisms, analysis of one way and two way rectangular and nonrectangular slabs, effect of top corner steel in square slabs, design exampl

Books:

1. Plain and Reinforced Concrete, Vol.2, Jai Krishna &O.P.Jain, Nem Chand & Bros.,Roorkee.

- 2. PreStressed Concrete, Krishna Raju, TMH Pub, New, Delhi.
- 3. Design of Prestressed Concrete Structures, T.Y.Lin, John Wiley & Sons, New .Delhi.
- 4. Reinforced ConcreteLimit Stage Design, A.K.Jain, Nem Chand & Bros., Roorkee.
- 5. IS 13431980, IS Code of Practice for Prestressed Concrete.

6. IS 33701976(Part I to IV), Indian Standard Code of Practice for Liquid Retaining Structures.

7. IS 4562000, Indian Standard of Practice for Plain and Reinforced Concrete, IS 1893, 4326 & 13920 Indian Standard Code of Practice for Earthquake Resistant Design of Structures.

	B. Tech. VII Semester (Civil Engineering)							
	SUBJECT: Energy Science & Engineering							
L	Т	P/D	Total	Subject Code: ES-212A	Max. Marks: 100			
2	0	0	2		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Course The knowledge acquired lays a goodfoundation for design of va Objective engineering systems/ projects dealing with these energy generation para efficient manner.		sign of various civil ration paradigms in an						
UNI	Г	Cours	e Outcon	nes				
Ι		To pro	ovide an ir	troduction to energy systems and renewable energy	ergy resources			
II		It will	explore for	ossil fuels and nuclear energy, and then focus on	alternatives, renewable			
energy sources suc		v sources	such as solar, biomass (conversions), wind p	ower, waves and tidal,				
		geothermal, ocean thermal, hydro and nuclear.						
III		It will conver	ll explorent	e society's present needs and future energergy sources.	gy demands, examine			
IV		Energy	y conserva	ation methods will be emphasized from Civil En	gineering perspective.			

Introduction to Energy Science: Introduction to Energy, sustainability & the environment, Energy systems and resources Scientific principles and historical interpretation of energy use in critical societal, environmental and climate issues.

UNIT II

Energy Sources: Fossil fuels (coal, oil, oilbearing shale and sands, coal gasification) past, present & future, Remedies & alternatives for fossil fuels biomass, wind, solar, nuclear, wave, tidal and hydrogen; Sustainability and environmental tradeoffs of different energy systems; possibilities for energy storage or regeneration.

UNIT III

Energy & Environment: Energy efficiency and conservation; introduction to clean energy technologies and its importance in sustainable development; Carbon footprint, energy consumption and sustainability; economics of energy.

UNIT IV

Civil Engineering Projects connected with the Energy Sources: Coal mining technologies, Oil exploration off shore platforms, Underground and undersea oil pipelines, solar chimney project, wave energy caissons, coastal installations for tidal power, wind mill towers; hydro power stations aboveground and underground along with associated dams, tunnels, penstocks, etc.

Books:

1. Boyle, Godfrey (2004), Renewable Energy (2nd edition). Oxford University Press

2. Boyle, Godfrey, Bob Everett, and Janet Ramage (Eds.) (2004), Energy Systems and

Sustainability: Power for a Sustainable Future. Oxford University Press

3. Schaeffer, John (2007), Real Goods Solar Living Sourcebook: The Complete Guide to Renewable Energy Technologies and Sustainable Living, Gaiam

4. JeanPhilippe; Zaccour, Georges (Eds.), (2005), Energy and Environment Set: Mathematics of

Decision Making, Loulou, Richard; Waaub, XVIII,

5. Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A. (2006) Energy

and the Environment, 2nd Edition, John Wiley

6. UNDP (2000), Energy and the Challenge of Sustainability, World Energy assessment

7. E H Thorndike (1976), Energy & Environment: A Primer for Scientists and Engineers, AddisonWesley Publishing Company

	B. Tech. VII Semester (Civil Engineering)								
	SUBJECT: Water Resource Engineering								
L	Т	P/D	Total	Subject Code: CE-405A	Max. Marks: 100				
2	0	0	2		Theory: 75 marks				
					Sessional: 25 Marks				
					Duration: 3 hrs.				
Cours	se	Understand application of systems concept, advanced optimization techniques to							
Objec	etive	cover	cover the sociotechnical aspects in the field of water resources						
UNIT	1	Course Outcomes							
Ι		Stude	Students will able to study the concept of water resource planning						
II		Stude	Students will of understand basics of economics						
III Stuc		Stude	Students will study about water resource systems						
IV Students Will study about application of system approaches for water resources				or water resources					

Water Resources Planning:

Role of water in national development, assessment of water resources, planning process, environmental consideration in planning, system analysis in water planning, somecommon problems in project planning, functional requirements in multipurpose projects, multipurpose planning, basin wise planning, long term planning.Reservoir planningdependable yield, sedimentation in reservoir, reservoir capacity, empiricalarea reduction method.

UNIT II

Economic and Financial Analysis:

Meaning and nature of economic theory, micro and macroeconomics, the concept ofequilibrium, equivalence of kind, equivalence of time and value, cost benefit, discountingfactors and techniques, conditions for project optimality, cost benefit analysis, cost allocation, separable and nonseparable cost, alternate justifiable and remaining benefitmethods, profitability analysis.

UNIT III

Water Resources Systems Engineering:

Concept of system's engineering, optimal policy analysis, simulation and simulationmodeling, nature of water resources system, analog simulation, limitations of simulation, objective function, production function, optimality condition, linear, nonlinear anddynamic programming, applications to real time operations of existing system, hydrologic modeling and applications of basic concepts.

UNIT IV

Applications of System Approach in Water Resources:

Applications of system engineering in practical problems like hydrology, irrigation anddrainage engineering, distribution network, and mathematical models for forecasting andother water resources related problems.

Books:

1 Water Resources Engineering by Linseley and Franzini

2 Economics of Water Resources Engineering by James and Lee.

3 Optimisation Theory and Applications by S.S.Roy

- 4 Water Resources Systems Planning & Economics by R.S.Varshney.
- 5 Operational ResearchAn Introduction by HamdyA.Taha.

	B. Tech. VII Semester (Civil Engineering)							
	SUBJECT: Metro Systems and Engineering							
L	Т	P/D	Total	Subject Code: OE-407A	Max. Marks: 100			
3	0	0	3		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Cour	se	To impart the knowledge about basic engineering principles of Metro System.						
Obje	ctive							
UNI	Г	Cour	Course Outcomes					
Ι		Stude	nts will be	e able to know about the metro systems.				
II		Stude	nts will b	e able to learn about different metro structures	and their construction			
		metho	ods.					
III		Stude	nts will b	e able to learn about electronic signaling system	ms and Automatic fare			
		collec	ction.					
IV		Stude	nts will be	e able to understand different facilities in metro.				

Unit – I

General: Overview of Metro Systems; Need for Metros; routing studies; Basic Planning and Financials.

Unit –II

Civil Engineering Overview and construction methods for: Elevated and underground Stations; Viaduct spans and bridges; Underground tunnels; Depots; Commercial and Service buildings. Initial Surveys & Investigations; Basics of Construction Planning & Management, Construction Quality & Safety Systems. Traffic integration, multimodal transfers and pedestrian facilities; Environmental and social safeguards; Track systemspermanent way. Facilities Management

UnitIII

Electronics And Communication Engineering Signaling systems; Automatic fare collection; Operation Control Centre (OCC and BCC); SCADA and other control systems; Platform Screen Doors.

UnitIV

Mechanical &TVS, AC: Rolling stock, vehicle dynamics and structure; Tunnel Ventilation systems; Air conditioning for stations and buildings; Fire control systems; Lifts and Escalators. ELECTRICAL: OHE, Traction Power; Substations TSS and ASS; Power SCADA; Standby and Backup systems.

Textbook:

- 1. Guidebook on Delhi Metro, DMRC
- 2. World Metro System, Paul. E. Garbutt.
- 3. Metro Rail in India for Urban Mobility, M.M Agarwal, S.Chandra, K.K Miglani

	B. Tech. VII Semester (Civil Engineering)								
	SUBJECT: Indian music system								
L	Т	P/D	Total	Subject Code: CE-409A	Max. Marks: 100				
3	0	0	3		Theory: 75 marks				
					Sessional: 25 Marks				
					Duration: 3 hrs.				
Cour	se	To learn basic concept of Indian Music.							
Obje	ctive								
UNI	Г	Course Outcomes							
Ι		Students will be able to learn about ragas							
II		Studer	Students will be able to understand to learn about different notation of sound.						
III		Studer	Students will able to learn notation compositions.						
IV		Studer	nts will lea	rn theory of ragas.					

Raga, Va(Nada, Swara, Shruti, Raga, Mela (Thata), Alankar, Tana, Gamak, Sthaya, Kaku, MargiDeshi, RagalapRupkalap, Vadi, Samvadi, Anuvadi, Vivadi, Tala, Laya, Avirbhav, Tirobhav, Parmelpraveshak Raga, Sandhiprakash ggeyakara, Kalawant.

UNIT II

Vibration, Pitch, Intensity, Timbre, Just intonation, Equal tempered scale, forced Vibration, Free Vibration.

UNIT III

Notation of compositions in prescribed ragas.

UNIT IV

Theoretical knowledge of prescribed ragas.

Books

- 1. S.S. Paranjape Bhartiya Sangeet Ka Itihasa
- 2. S.S. Paranjape Sangeet Bodh
- 3. V.N. Bhatkhande Bhatkhande Sangeet Shastra PartIII
- 4. Swami Prajnananda History of Indian Music

	B. Tech. VII Semester (Civil Engineering)								
	SUBJECT: Introduction to Philosophical Thoughts								
L	Т	P/D	Total	Subject Code: OE-417A	Max. Marks: 100				
3	0	0	3		Theory: 75 marks				
					Sessional: 25 Marks				
					Duration: 3 hrs.				
Cour	se	Students will acquire the knowledge about the Philosophical concepts							
Obje	ctive								
UNI	Γ	Course Outcomes							
Ι		Studer	Students will be able to understand concept of philosophy						
II		Studer	Students will be able to understand concept of ethics						
III Students will be able to understand concept of philosophy of religion			gion						
IV		Studer	nts will be	able to understand concept of aesthetics					

Introduction to Class: Introduction to Philosophy and its worldview. 7 fold criteria for analysis, Presocratic Philosophy, Metaphysics & Epistemology: Ancient (Plato; Aristotle), Medieval (Plotinus; St. Augustine; St. Aquinas), Metaphysics & Epistemology continued: Stoicism, Epicureanism, Skepticism, & NeoPlatonism Berkeley; Leibniz; Spinoza; Locke; Hume; Kant; Introduction to Continental Philosophy

UNIT II

Introduction to Ethics: Virtue, Deontological, & Consequential Ethics: Consequential Ethics; Utilitarianism (Jeremy Bentham; John Stuart Mill); Egoism of Ayn Rand; Relativism; Ethics of Care vs. Ethics of Justice (Carol Gilligan) Existentialism/ Nihilism

UNIT III

Introduction to Philosophy of Religion: Existence of God: Arguments; Evidences; Existential; Religious Experience, Problem of Evil: Moral Evil: Natural Evil: God as Origin of Evil; Natural Evil; Pointless Evil, Problem of Miracles:

UNIT IV

Introduction to Aesthetics: Historical Survey: From Plato to Kuspit Read and discuss"Aesthetic Universals" by Denis Dutton Aesthetics continued: Objective/subjective beauty; aesthetic value; aesthetic experience

Books:

The Power of Idea, Book by Isaiah Berlin

	B. Tech. VII Semester (Civil Engineering)							
			SUBJE	ECT: Environmental Impact Assessment				
L	Т	P/D	Total	Subject Code: EL-419A	Max. Marks: 100			
3	0	0	3		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Cours	se	The aim of study is to understand the effect of Environment, Air and Water						
Object	tive	pollution on environment						
UNIT	1	Course Outcomes						
Ι		Studen	Students will study the different sources of Environment pollution					
II		Studer	Students will study the different sources of Air pollution and its effects					
III		Studen	Students will study about the Waste management and its disposal of waste					
IV		Studen	Students will study about Environmental assessment					

Environment and Human Activity: Resources, pollution, reuse and environmental management. Management of Aquatic Environment: Water quality controls. Drainage basin activities and water pollution. The impact of human activity on aquatic resources. The control measures, regional planning.

UNIT II

Air Quality Management: Atmosphere, effect of human activity on air quality, waste disposal alternative. Optimization, planning of waste disposal.

UNIT III

Waste Management: Waste disposal methods, impact of waste disposal of human activity. Land Use Management: Impact of land use on human life. Control, of hazards in land use, management of land use.

UNIT IV

Environmental Assessment: National environmental policy, implication of environment assessment in design process. Preparation of assessment, quantification. General requirements of environmental standards. Techniques of setting standards.

Books:

1. Environmental Impact Analysis by R.K. Jail and L.V. Urban.

- 2. Environmental Impact Assessment by Canter
- 3. Environmental Impact Assessment by J.Glasson.

	B. Tech. VII Semester (Civil Engineering)							
			SU	UBJECT: Air and Noise Pollution Control				
L	Т	P/D	Total	Subject Code EL-421A	Max. Marks: 100			
3	0	0	3		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Cour	se	To impart the knowledge about basic engineering principles of River Engineering						
Obje	ctive							
UNI	Г	Cour	Course Outcomes					
Ι		To tal	ke up the b	pasic concepts of air pollution				
II		The c	The contents involved the knowledge of causes of air pollution					
III		The c	The contents involved the knowledge of health related to air pollution and to develop					
		skills	relevant to	o control of air pollution.				
IV		To tal	ke up the b	pasic concepts of Noise pollution				

Unit I

Introduction: History of Air pollution and episodes, Sources of air pollution and types, Introduction to meteorology and transport of air pollution: Global winds, Headley cells, wind rose terrestrial wind profile, Effects of terrain and topography on winds, lapse rate, maximum mixing depths, plume rise

Unit II

Effects of Air Pollution: Effects of Air Pollution on human beings, plants and animals and Properties. Global EffectsGreen house effect, Ozone depletion, heat island, dust storms, Automobile pollution sources and control, Photochemical smog, Future engines and fuels

Unit III

Air Pollution control: Air Pollution control at sourceequipments for control of air pollutionFor particulate matterSettling chambersFabric filtersScrubbersCyclones, Electrostatic precipitators, For Gaseous pollutantscontrol by absorptionadsorption scrubberssecondary combustion after burners, Working principles advantages and disadvantages, design criteria and examples.

Air Quality Sampling and Monitoring: Stack sampling, instrumentation and methods of analysis of SO2, CO etc, legislation for control of air pollution and automobile pollution.

Unit IV

Noise pollution: Basics of acoustics and specification of sound; sound power, sound intensity and sound pressure levels; plane, point and line sources, multiple sources; outdoor and indoor noise propagation; psychoacoustics and noise criteria, effects of noise on health, annoyance rating schemes; special noise environments: Infrasound, ultrasound, impulsive sound and sonic boom; noise standards and limit values; noise instrumentation and monitoring procedure. Noise indices. Noise control methods.

Books:

1. C. S. Rao, "Environmental Pollution Control Engineering", Wiley Eastern Limited, 2000.

2. M. N. Rao, H. V. N. Rao, Air pollution, Tata McGraw Hill Pvt Ltd, New Delhi, 1993

3. Dr. Y. Anjaneyulu, "Air Pollution and Control Technologies", Allied publishers Pvt. Ltd., 2002.

4. Advanced Air and Noise Pollution Control by Lawrence K. Wang, Norman C. Pereira & Yung Ise Hung.

5. Noise Pollution and Control by S. P.Singhal, Narosa Pub House

	B. Tech. VII Semester (Civil Engineering)								
	SUBJECT: Foundation Engineering								
L	Т	P/D	Total	Subject Code: EL-423A	Max. Marks: 100				
3	0	0	3		Theory: 75 marks				
					Sessional: 25 Marks				
					Duration: 3 hrs.				
Cour	se	To impart the knowledge on various soil exploration techniques, and analyses and							
Obje	ctive	design	design of various substructure						
UNI	Г	Cours	Course Outcomes						
Ι		Studer	Students will be able to study different types of soil exploration						
II		Studer	Students will be able to study slope stability						
III Students will be able to understand Earth pressure theories									
IV		Studer	nts will be	able to understand shallow foundation and pile for	oundation				

Soil Exploration: Need – methods of soil exploration – boring and sampling methods – penetration tests – plate load test – pressure meter – planning of soil exploration programand preparation of soil investigation report.

UNIT II

Slope Stability: Infinite and finite earth slopes – types of failures – factor of safety of infiniteSlopes – stability analysis by Swedish slip circle method, method of slices, Bishop's Simplified method of slices – Taylor's Stability Number stability of slopes of earth dams under different conditions.

UNIT III

Earth Pressure Theories: Atrest earth pressures, Rankin's theory of earth pressure – earth pressures in layered soils – Coulomb's earth pressure theory – Cullman's graphical method, effect of pore water, earth pressure due to surcharge loads.

Retaining Walls: Types of retaining walls – stability of gravity and cantilever retaining walls against overturning, sliding and, bearing capacity modes of failure, Drainage from backfill, introduction to reinforced earth walls.

UNIT IV

Shallow Foundations Types choice of foundation, location and depth safe bearing capacity, shear criteria, Terzaghi's, and IS code methods settlement criteria, allowable bearing pressure based on SPT N value and plate load test, allowable settlements of structures.

Pile Foundation: Types of piles, load carrying capacity of piles based on static pileformulae, dynamic pile formulae – Pile Capacity through SPT and CPT results pile loadtests load carrying capacity of pile groups in sands and clays, Settlement of pile groups, negative skin friction

TEXT BOOKS:

1. Das, B.M., (2011) Principles of Foundation Engineering –7th edition, CengagePublishing.

2. Foundation Design Principles and Practices, Donald P. Coduto, 2nd Edition, PearsonPublishers.

3. Bowles, J.E., (2012) Foundation Analysis, and Design – 5th Edition, McGrawHill Publishing Company, Newyork.

	B. Tech. VII Semester (Civil Engineering)							
				SUBJECT: Rock Mechanics				
L	Т	P/D	Total	Subject Code: EL-425A	Max. Marks: 100			
3	0	0	3		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Cou	rse	To im	To impart the knowledge about rock mechanism.					
Obje	ective							
UNI	Т	Cour	Course Outcomes					
Ι		Students will be able to understand basic concepts of rock engineering						
II		Stude	Students will be able to learn about different methods of rock exploration					
III		Stude	Students will be able to learn different tests performed on rocks.					
IV		Stude	Students will be able to learn about Pressure arch theory, subsidence and suitable					
		protec	ctive meas	ures				

Unit I

Definition & its importance: Rock mass & material form; Effects of discontinuities on rock mass. Physical properties of rocks, Mechanical properties of rocks. Engineering Classification of rock Masses (by deer & miller). Moh's scale of Hardness Rock Pressure & Subsidence.

Unit II

Object and Methods of rock exploration, Rock exploration by direct penetration Core boring Core recovery Rock quality designation Fracture frequency by indirect penetration Large diameter calyx hole Logging of core

Unit III

Sampling and Sample preparation, Specimen Uniaxial compressive strength Test; Protodykanov strength index. Tests for measuring rock strengths Tensile strength tests, Flexural strength test, Shear strength test, Punch shear test and In situ tests.

Unit IV

Pressure arch theory Rectangular opening, circular shaft & long wall working. Creep, Convergence, Rock burst & Coal bumps, Rock Mass Rating. Subsidence: Definition & factors governing subsidence. Angle of draw, line of break; Critical area, Subcritical area, super critical area. Protective measures against Subsidence.

Books:

1. Fundamentals of Rock Mechanics" by J C Jaeger and N G W Cook

2. Rock Mechanics and Design Structures of Rock" by Obert and W I Duvall

	B. Tech. VII Semester (Civil Engineering)						
				SUBJECT: Railway Engineering			
L	Т	P/D	Total	Subject Code: EL-427A	Max. Marks: 100		
3	0	0	3		Theory: 75 marks		
					Sessional: 25 Marks		
					Duration: 3 hrs.		
Course		Students will acquire the knowledge about the design of Railways					
Obje	ctive						
UNI	Г	Cours	se Outcon	nes			
Ι		Stude	nts will be	e able to study about permanent way and different	types of rails		
II		Stude	Students will be able to study different types of Sleepers, fastenings and Ballast				
III		Stude	Students will be able to learn about Points and crossings, signalling and interlocking				
		system	n				
IV		Stude	nts will be	able to learn geometric design of Rails and static	ons		

Introduction, Permanent Way and Rails

Rail transportation and its importance in India. Permanent way: requirements and components. Gauges in India and abroad. Selection of gauge. Coning of wheels. Adzing of sleepers. Rails: functions, composition of rail steel, types of rail sections, requirements of an ideal rail section, length of rails. Defects in rails. Creep of rails. Long welded rails and continuously welded rails.

UNIT II

Sleepers, Fastenings and Ballast

Sleepers: functions, requirements of an ideal sleeper. Types of sleepers: wooden, cast iron, steel and concrete sleepers, advantages, disadvantages and suitability of each type. Sleeper density. Fastenings for various types of sleepers: fish plates, spikes, bolts, bearing plates, keys, chairs, jaws, tie bars. Elastic fastenings. Ballast: functions, requirements, types of ballast and their suitability.

UNIT III

Points and Crossings

Necessity. Turnout: various components, working principle. Switch: components, types. Crossing: components and types. Design elements of a turnout, design of a simple turnout. Layout plan of track junctions: crossovers, diamond crossing, singledouble slips, throw switch, turn table, triangle.

Signalling, Interlocking and Train Control

Signals: objects, types and classification. Semaphore signal: components, working principle. Requirements / principles of a good interlocking system. Brief introduction to devices used in interlocking. Methods of control of train movements: absolute block system, automatic block system, centralized train control and automatic train control systems.

UNIT IV

Geometric Design of the Track

Gradients, grade compensation. Super elevation, cant deficiency, negative super elevation. Maximum permissible speed on curves .Tractive resistances, types. Hauling capacity of a locomotive.

Stations, Yards and Track Maintenance

Stations: functions and classification. Junction, nonjunction and terminal stations. Yards: functions, types. Marshalling yard: functions, types. Maintenance of railway track: necessity, types of maintenance. Brief introduction to mechanized maintenance, M.S.P and D.T.M.

Books:

- 1. A text book of Railway Engineering by S.C.Saxena and S.P.Arora, Dhanpat Rai Publicatios, N.Delhi
- 2. Railway Track Engg. ByJ.S.Mundray, Tata McGrawHill Publishing Co. Ltd. N.Delhi.

	B. Tech. VII Semester (Civil Engineering)							
				SUBJECT: Airport Planning and Design				
L	Т	P/D	Total	Subject Code: EL-429A	Max. Marks: 100			
3	0	0	3		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Cour	Course		Students will acquire the knowledge about airport planning and design.					
Obje	ctive							
UNI	Г	Cour	Course Outcomes					
Ι		Stude	Students will be able to understand layout of airport plan					
II		Stude	Students will be able to design runway					
III Students will be ab		ents will be	e able to understand Structural design of airport	pavement				
IV		Stude	ents will b	e able to understand basics of visual aids and	to understand basics of			
		airpo	rt grading	and drainage				

Airport Planning: General Regional Planning Development of New Airport Data Required before Site Selection Airport Site Selection Surveys for Site Selection Drawings to be prepared Estimation of Future Air Traffic Needs.

UNIT II

Runway Design: Runway Orientation Basic Runway Length Corrections for Elevation, Temperature and Gradient Airport Classification Runway Geometric Design Airport Capacity Runway Configurations Runway Intersection Design.

UNIT III

Structural Design of Airport Pavements: Introduction Various Design Factors Design Methods for Flexible Pavement Design Methods for Rigid Pavement LCN System of Pavement Design Joints in Cement Concrete Pavement Airport Pavement Overlays Design of an Overlay.

UNIT IV

Visual Aids: General Airport Marking Airport Lighting.

Airport Grading And Drainage: General Computation of Earthwork Airport Drainage Special Characteristics and Requirements of Airport Drainage Design Data Surface Drainage Design Subsurface Drainage Design.

Books:

- 1. Airport Planning and Designing by S.K. Khanna, M.G. Arora.
- 2. Highway Engineering including Expressways and Airport Engineering by Dr. L. R. Kadyali, Dr. N. B. Lal.
- 3. Highway Engineering including Airport Pavements by Dr. S. K. Sharma.
- 4. Transportation Engineering by S. P. Chandola.

	B. Tech. VII Semester (Civil Engineering)							
				SUBJECT: River Engineering				
L	Т	P/D	Total	Subject Code: EL-431A	Max. Marks: 100			
3	0	0	3		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Cour	Course		To impart the knowledge about basic engineering principles of River Engineering					
Obje	ctive							
UNI	Г	Cours	se Outcon	nes				
Ι		Stude	nts will be	able to study different rivers and related budgets	and schemes			
II		Stude	Students will be able to study behavior of rivers					
III		Stude	Students will be able to understand mechanics of alluvial river and bio engineering					
		techniques						
IV		Stude	nts will be	able to understand various river training works				

Unit I

Introduction, classification of Rivers, Mechanics of alluvial rivers including channel and flood plain features, Sediment transport and budgets, River morphology and various classification schemes.

Unit II

Behavior of Rivers: Introduction, River Channel patterns, Straight river channels, causes, characteristics and shapes of meanders and control, cutoff, Braided Rivers, Bed forms, Instability of rivers, Hydraulic geometry, Delta formation and control.

Unit III

Mechanics of Alluvial Rivers, Rivers and restoration structures, Sociocultural influences and ethics of stream restoration.

Bioengineering Techniques, Classification review, Natural Channel Design Analysis, Time Series, and Analysis of flow, Sediment and channel geometry data.

Unit IV

River Training and Protection Works: Introduction, Classification of River Training, Types of training works, Protection for Bridges with reduced waterway, Design of Guide Band, embankment and spurs/dampers and other river/ flood protection works.

Books:

1. River Behaviour Management and Training (Vol. I & II), CBI&P, New Delhi.

- 2. Irrigation & Water Power Engineering, B. C. Punmia and Pande B. B. Lal.
- 3. River Engineering by Margeret Peterson

B. Tech. VII Semester (Civil Engineering)					
SUBJECT: Pipeline Engineering					
L	Т	P/D	Total	Subject Code: EL-433A	Max. Marks: 100
3	0	0	3		Theory: 75 marks
					Sessional: 25 Marks
					Duration: 3 hrs.
Course		To impart the knowledge about basic engineering principles of Pipeline Engineering			
Objective					
UNIT		Course Outcomes			
Ι		To f	amiliarize	the students with the various elements	and stages involved
		in transportation of oil and gas.			
II		To understand international standards and practices in piping design.			
III		To know various equipment and their operation in pipeline transportation.			
IV		To understand modern trends in transportation of oil and gas			

Elements of pipeline design: Fluid properties, Environment, Effects of pressure and temperature, Supply / Demand scenario, Route selection, Codes and standards Environmental and hydrological considerations,

UNIT II

Economics – Materials / Construction, Operation, Pipeline protection, Pipeline integrity monitoring. Pipeline route selection, survey and geotechnical guidelines: Introduction – Preliminary route selection. Key factors for route selection -Engineering survey – Legal survey – Construction / Asbuilt survey – Geotechnical design.

UNIT III

Natural gas transmission: General flow equation, Steady state, Impact of gas molecular weight and compressibility factor on flow capacity, Flow regimes, Widely used steadystate flow equations. Summary of the impact of different gas and pipeline parameters on the gas flow efficiency

Pressure drop calculation for pipeline in series and parallel, Pipeline gas velocity, Erosional velocity – Optimum pressure drop for design purposes – Pipeline packing – Determining gas leakage using pressure drop method – Wall thickness / pipe grade, Temperature profile, Optimization process – Gas transmission solved problems.

UNIT IV

Gas compression and coolers: Types of compressors, Compressor drivers, Compressor station configuration. Thermodynamics of isothermal and adiabatic gas compression, Temperature change in adiabatic gas compression, Thermodynamics of polytropic gas compression, Gas compressors in series. Centrifugal compressor horsepower, Enthalpy / Entropy charts (Mollier diagram) – Centrifugal compressor performance curve . Influence of pipeline resistance on centrifugal compressor

Textbooks

1. MSc Pipeline Engineering, Newcastle University

2. MSc Subsea Engineering & Management, Newcastle University

3. MSc Offshore & Ocean Technology, Cranfield University

4. MSc Pipeline Asset Management, North Umbria University (This is a Distance Learning course available online worldwide

B. Tech. VII Semester (Civil) CE-411LA CONCRETE DRAWING

L T P/D: 0 0 3 Total Marks: 100 Vivavoce: 60 marks

Sessional: 40 marks Duration: 3 hrs.

Preparing drawing sheets showing reinforcement details in case of:

- 1. Flat slabs
- 2. Underground and Overhead Water Tanks.
- 3. Combined Footings, Pile Foundations and Raft foundation.
- 4. T-Beam Bridge.
- 5. Silo/Bunker.

B. Tech. (Civil) VII Semester ES – 212LA Energy Science & Engineering Lab

L T P/D 0 0 2 Total Marks: 100 Vivavoce: 60 marks

Sessional: 40 marks Duration: 3 hrs.

LIST OF EXPERIMENTS

1 Determination of Flash point and Fire point of lubricating oil using Abel Pensky and Pensky Martin (closed) Apparatus.

2 Determination of Calorific values of solid, liquid and gaseous fuels

3 Determination of Viscosity of lubricating oil using Redwood and Saybolt Viscometers

4 Valve Timing diagram of an I.C. Engine.

5 To determine the flash and fire point of the lubricating oil by Pensky martens apparatus

6 To determine the kinematic and absolute viscosities of the given oil using red wood viscometer.

7 To determine the viscosity of given oil using torsion viscometer
B. Tech. VIII Semester (Civil Engineering)									
	SUBJECT: Engineering Economics, Estimation & Costing								
L	Т	P /	Total	Subject Code: CE-402A	Max. Marks: 100				
		D							
2	0	0	2		Theory: 75 marks				
					Sessional: 25 Marks				
					Duration: 3 hrs.				
Cour	rse	The	The aim of study is to get knowledge about estimation of different civil works.						
Obje	ective								
UNI	Г	Co	Course Outcomes						
Ι		Stu	Students will study the different methods of estimation						
II		Stu	Students will study about different types of specification used in civil works						
III		Stu	dents wi	ll study about rate analysis of different items					
IV		Stu	dents wi	ll study the terms used in civil works and public	works accounts				

Estimate:

Principles of estimation, units, items of work, different kinds of estimates, different methods of estimation, estimation of materials in single room building, two roomed building with different sections of walls, foundation, floors and roofs, R.B. and R.VC.C. Works, Plastering, Whitewashing, Distempering and painting, doors and windows, lump sum items, Estimates of canals, roads etc.

UNIT II

Specification of Works:

Necessity of specifications, types of specifications, general specifications, specification for bricks, cement, sand, water, lime, reinforcement; Detailed specifications for Earthwork, Cement, concrete, brick work, floorings, D.P.C., R.C.C., cement plastering, white and colour washing, distempering, painting.

UNIT III

Purpose, importance and requirements of rate analysis, units of measurement, preparation of rate analysis, procedure of rate analysis for items: Earthwork, concrete works, R.C.C. works, reinforced brick work, plastering, painting, finishing (whitewashing, distempering).

UNIT IV

Public Works Account:

Rate Analysis:

Introduction, function of P.W. department, contract, guidelines, types of contracts, their advantages and disadvantages, Tender and acceptance of tender, Earnest money, security money, retention money, measurement book, cash book, preparation, examination and payment of bills, first and final bills, administrative sanction, technical sanction.

- 1. Estimating and Costing for Building & Civil Engg.Works by P.L.Bhasin, S.Chand& Co., N.Delhi.
- 2. Estimating, Costing & Specification in Civil Engg. ByM.Chakarborty, Calcutta.
- 3. Estimating & Costing in Civil Engg..: Theory & Practice by B.N.Dutta, S.Dutta& Co., Lucknow.
- 4. Building Construction Estimating by George H.Cooper, McGraw Hill Book Co., New York.

	B. Tech. VIII Semester (Civil Engineering)							
	SUBJECT: BRIDGE ENGINEERING							
L	Т	P/D	Total	Subject Code: CE-404A	Max. Marks: 100			
2	0	0	2		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Cour	se	Students will acquire the knowledge about the design of Railway, R.C.C and Steel						
Obje	ctive	Bridge	Bridge and its foundation					
UNI	Т	Course Outcomes						
Ι		Studen	Students will be able to study Specifications for Roads and Railways Bridges					
II		Stude	nts will be	able to design consideration for R. C. C. Bridge	S			
III Students will be able to design consideration for Steel Bridges								
IV		Studer	nts will be	able to Hydraulic & Structural design of Bridge				

Introduction:

Definition, components of bridge, classification of bridges, selection of site, economical span, aesthetics consideration, necessary investigations and essential design data.

Standard Specifications for Roads and Railways Bridges:

General, Indian Road Congress Bridge Code, width of carriage way, clearance, various loads to be considered for the design of roads and railway bridges, detailed explanation of IRC standard live loads.

UNIT II

Design Consideration for R. C. C. Bridges:

Various types of R.C.C. bridges, design of R.C.C. culvert and Tbeam bridges.

UNIT III

Design Consideration for Steel Bridges:

Various types of steel bridges (brief description of each), design of truss and plate girder bridges.

UNIT IV

Hydraulic & Structural Design:

Piers, abutments, wingwall and approaches. Bearings, joints, articulation and other details.

Bridge Foundation:

Various types, necessary investigations and design criteria of well foundation.

- 1. Essentials of Bridge Engineering, D.J.Victor, Oxford & IBH Pub.N.Delhi.
- 2. Design of Bridges, N.Krishna Raju, Oxford & IBH, N.Delhi.
- 3. Bridge Deck Analysis, R.P.Pama&A.R.Cusens, John Wiley & Sons.
- 4. Design of Bridge Structures, T.R.Jagadish&M.A.Jairam, Prentice Hall of India, N.Delhi.

	B. Tech. VIII Semester (Civil Engineering)							
	SUBJECT: ICT for Development							
L	Т	P/D	Total	Subject Code: OE-406A	Max. Marks: 100			
3	0	0	3		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Cour	Course		To apply basics of Information technology in Civil Engineering problems.					
Obje	ctive							
UNI	Г	Cour	Course Outcomes					
Ι		To st	To study various optimization techniques in real world problems related to civil					
		engin	engineering					
II		To stu	udy the inv	ventory models				
III		To stu	udy about	assigning jobs to people in an efficient way				
IV		To stu	udy about	sequencing techniques				

Introduction to ICT: New media and ICT, Different types of ICT. Use of ICT for development; e-learning; Web commerce; Mobile telephony and Development: telecom industry in India. ICT Projects implemented in India and Northeast – Problems and Prospects

UNIT II

Digital Revolution and Digital Communication: Basics of New media theories - Information Society; Surveillance society; Digital Divide, Knowledge society; Network society. Works of Machlup, Bell, Negroponte and Castells

UNIT III

Technology and Development: ICT for Development its societal implications; Evolution of ICT in Development Endeavour; ICT and Millennium Development Goals. Democratic and decentralized processes in development. Technology and culture: community and identity; participatory culture and ICT, community informatics

UNIT IV

Computer Mediated Communication and development:Different types of CMC; Important theoretical framework of CMC, cyber platform and communities, Social Networking Site; Convergent media, Multimedia platforms, Scope of convergent journalism for Development; Characteristics of convergent journalism; Different types of convergent journalism: precision journalism; annotative and open-source journalism; wiki journalism; open source journalism; citizen journalism; back-pack journalism,

- 1. Heeks, R. (2017). Information and communication technology for development (ICT4D). Routledge.
- 2. Gairola, C. M., Chandra, M., Mall, P., Chacko, J. G., Phet, S., & Loh, H. (2004). Information and Communications Technology for development.

	B. Tech. VIII Semester (Civil Engineering)							
	SUBJECT: Comparative Study of Literature							
L	Т	P/D	Total	Subject Code: OE-408A	Max. Marks: 100			
3	0	0	3		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Cour	se	The c	The course aims to give the basic knowledge of methods and models of Comparative					
Obje	ctive	Litera	Literature.					
UNI	Г	Course Outcomes						
Ι		The c	The course is expected to introduce the students about Conceptual Framework of					
		Comp	arative Lit	terature				
II		It will	It will give the idea to students about the History of Comparative Literature.					
III		It will	orient stu	dents towards History and Politics of Translation	l			
IV		It will	give close	er look at Indian Poetics and Literary Theory				

Conceptual Framework of Comparative Literature: The Emergence of Comparative Literature. Difference/ Alterity and the Ethics of Plurality. Limitations of the Idea of National Literature. Theories of Interpretation

Unit II

History of Comparative Literature: French, German, Russian and Tel Aviv Schools Comparative Literature in India: From Tagore to the Present. World Literature: From Goethe to the Present, "The State of the Discipline" Reports

Unit III

History and Politics of Translation: Translation as Reception, Problems and Promises of Translation in Multilingual Situations, Untranslatability and Silence

Unit IV

Poetics and Literary Theory: Indian Poetics: Sanskrit and Tamil, Perso-Arabic Traditions, Western Classical Literary Theory

- 1. Bassnett, S. (1993). Comparative Literature: A Critical Introduction. Oxford: Blackwell.
- 2. Claudio Guillen. (1993). The Challenge of Comparative Literature. (Cola Franzen, Trans.). London: Harvard University Press.
- 3. Dev, A. (1984). The Idea of Comparative Literature in India. Kolkata: Papyrus.
- 4. Bernheimer, C. (1995). Ed. Comparative Literature in the Age of Multiculturalism. Baltimore: The Johns Hopkins University Press.

	B. Tech. VIII Semester (Civil Engineering)							
			SU	BJECT: History of Science & Engineering				
L	Т	P/D	Total	Subject Code: OE-410A	Max. Marks: 100			
3	0	0	3		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Cour	Course		To provide the insight about the history of Science and Technology					
Obje	ctive							
UNI	Г	Cours	se Outcon	ies				
Ι		The o	The course is expected to introduce the history of development of science and					
		techno	ology					
II Students will able to learn statistical profile of science & engineering		ring						
III		Students will able to learn about keys of effective learning.						
IV		Stude	nts will ab	le to gain problem solving skill.				

History of science & technology: introduction, beginning of science, technology & engineering, traveling through the ages. Science, Engineering & technology Major: Introduction, function, emerging field.

Unit II

Profile of Engineers, scientist & technologist: Statistical profile of science & engineering profession: Statistical, overview, college enrolment trends of science and engineering students, college majors of recent science & engineering students. Job placement trends, diversity of profession distribution of scientist and engineers by type of employer.

Unit III

Succeeding in the classroom: Introduction, attitude, goal, key to effectiveness, test taking, learning style, accountability and overcoming challenges. Biography of Isaac Newton, Einstein, Thomas Edison, Alfred Nobel, M. Visvesvaraya.

Unit IV

Problem solving: Introduction, analytical and creative problem solving, analytical problem solving, personal problem solving styles, brainstorming strategies, critical thinking. Failure of science & technology.

Textbooks;

1. Engineering your future by William C. Oaks, Oxford university press.

	B. Tech. VIII Semester (Civil Engineering)							
				SUBJECT: Economic Policies in India				
L	Т	P/D	Total	Subject Code: OE-418A	Max. Marks: 100			
3	0	0	3		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Cour	se	Students will acquire the knowledge about Economic policies practiced in India						
Obje	ctive							
UNI	Г	Cours	Course Outcomes					
Ι		Studer	Students will be able to understand concept of economy					
II		Studer	Students will be able to calculate National Income for India					
III Students will be able to get introduction to five year plans.								
IV		Studer	nts will be	able to understand role of agriculture in economy	у			

Underdevelopment – Basic Features of Indian Economy: Growth and Structural Changes in Indian Economy – Demographic Features – Population: Size, Growth, Composition and their Implications on Indian Economy – Concept of Demographic Dividend –Occupational Distribution of Population in India – Population Policy of India.

Unit II

Estimation of National Income – Trends and Composition of National Income in India – Income Inequalities in India: Magnitude, Causes, Consequences and Remedial Measures – Poverty in India: Concept, Types, Causes and Consequences – Unemployment in India: Concept, Types, Trends, Causes and Consequences – Poverty Alleviation and Employment Generation Programmes in India.

Unit III

Five Year Plans: Concept and Objectives – Review of Five Year Plans – NITI Aayog – Economic Reforms: Liberalization, Privatization and Globalization – Impact of WTO onIndian Economy.

Unit IV

Importance and Role of Agriculture in Indian Economy – Trends in Agricultural Production and Productivity – Land Reforms – Green Revolution – Agricultural Finance – Agricultural Marketing – Agricultural Pricing – Food Security in India. Structure, Growth, Importance and Problems of Indian Industry – Large, Medium and Small Scale Industries: Role and Problems – Industrial Policies of 1948, 1956 and 1991– FEMA and Competition Commission of India –Disinvestment Policy – Foreign Direct Investment

Books:

SK Misra and Puri : Indian Economy, Himalaya Publishing House
Ishwar C Dhigra : The Indian Economy: Environment and Policy, SC Chand & Sons, New Delhi Dutt and Sundaram : Indian Economy

	B. Tech. VIII Semester (Civil Engineering)							
				SUBJECT: Prestress Concrete				
L	Т	P /	Total	Subject Code: EL-420A	Max. Marks: 100			
		D						
3	0	0	3		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Cou	rse	Тοι	To understand the concept of pre stress Concrete					
Obje	ective							
UNI	Г	Cou	Course Outcomes					
Ι		To l	To learn the principles, materials, methods and systems of prestressing					
II		To l	To know the different types of losses and deflection of prestressed members					
III		Tol	learn the	design of prestressed concrete beams for flexus	ral, shear and tension			
IV		Tol	To learn the design the flexural members in pre stress					

Introduction: Basic concepts of Prestressing, terminology, advantages and applications of prestressed concrete. Materials for Prestressed Concrete: High strength Concrete, permissible stresses in concrete, high strength steel, permissible stresses in steel. Prestressing Systems: Prestensioning and post tensioning systems, various types of tensioning devices, LecMacall systems, MagnelBlaton post tensioning, Freyssinet systems, Gifford Udal system.

UNIT II

Losses of Prestress: Types of losses of Prestress, loss due to elastic deformation of concrete, loss due to shrinkage of concrete, loss due to creep of concrete, loss due to relaxation of stress in steel, loss due to friction, loss due to anchorage slip, total loss in pretension and post tensioned members. Analysis of Prestress and bending stresses: Basic assumptions, resultant stresses at a section, concept of load balancing, cracking moment.

UNIT III

Deflections: Factors influencing deflections, short term deflections of uncracked members, deflections of cracked members, prediction of long term deflections. Shear and Torsional Resistance: Ultimate shear resistance of prestressed concrete members, prestressed concrete members in torsion, design of reinforcements for torsion, shear and bending.

UNIT IV

Design of Flexural Members : Dimensioning of flexural members, design of pretensioned andpost tensioned beams, design of partially prestressed members, design of one way and two way slabs, continuous beams.Design for axial tension, compression and bending, bond and bearing.

- 1. Prestressed Concrete by N. Krishna Raju, TMH Publishing Company, New Delhi,
- 2. Prestressed Concrete by P. Dayartnam, Oxford and IBH Publication, New Delhi.
- 3. Design of Prestressed Concreet Structures by T Y Lin& Ned H. Burns

	B. Tech. VIII Semester (Civil Engineering)								
	SUBJECT: Earthquake Engineering								
L	Т	P /	Total	Subject Code: EL-422A	Max. Marks: 100				
		D							
3	0	0	3		Theory: 75 marks				
					Sessional: 25 Marks				
					Duration: 3 hrs.				
Cour	se	Τοι	understan						
Obje	ective								
UNI	Г	Cou	rse Out						
Ι		To i	ntroduce	the basics of Seismology					
II		To i	ntroduce	the seismic analysis and design					
III To lear		earn to a	ssess the seismic performance of the structure						
IV		Tol	earn abo	ut vibration control measures					

Seismology: Introduction, plate tectonics, earthquake distribution & mechanism, seismicity, seismic wave, earthquake magnitude & intensity, seismic zoning & seismometer.

UNIT II

Seismic Analysis and Design: General principles, assumptions, Seismic coefficient method, response spectrum method, strength and deflection, design criterion for structures, significance of ductility, codal provisions, and design examples.

UNIT III

Seismic performance, Repair and strengthening: Methods for assessing seismic performance influence of design ductility and masonry infills, criterion for repair and strengthening techniques and their applications, addition of new structural elements.

UNIT IV

Vibrational control: General features of structural control, base isolation, active and passive, Control system, earthquake resistance design as per IS: 1893, IS: 4326 and: 13920.

- 1. Elements Of Earthquake of Engineering, Jai Krishna, A. R. Chandershekaran&Brajesh Chandra, South Asian Pub New Delhi.
- 2. Dynamics of Structures, Clough & Penzion, McGraw Hill.
- 3. Earthquake Engineering, YX Hu, SC. Liu and W. Dong, E and FN Sons., Madras.
- 4. Earthquake Resistant Concrete Structures, George G. Penelis and J. Kapoors, E and FN Sons., Madras.Structural Dynamic, Mario Paz, CBB Pub. N.Delhi.

	B. Tech. VIII Semester (Civil Engineering)								
				SUBJECT: Offshore Engineering					
L	Т	P /	Total	Subject Code: EL-424A	Max. Marks: 100				
		D							
3	0	0	3		Theory: 75 marks				
					Sessional: 25 Marks				
					Duration: 3 hrs.				
Cou	irse								
Obj	ective	To	To impart the basic knowledge of off shore engineering						
UN	IT	Cou	Course Outcomes						
Ι		To introduce the basics of offshore structures							
II		To	To introduces different loads on offshore structure						
III		To	To introduce the concept of general layout and consideration given						
IV		To	introduce	the concept of installation of offshore struc	turs				

Historical Development of Offshore Structures

Introduction, Definition of Offshore Structure, Historical Developments Deepwater challenges, Functions of Offshore Structures, selection of Offshore Structure and its Configurations, Bottom Supported Fixed Structures, Complaint Structures, Floating Structures, Novel offshore design, Field development concepts

Load and Responses

Introduction, Gravity Load, Hydrostatic Loads, Resistance Loads, Current loads on Structures, Current Drag and Lift Force, Steady and Dynamic Wind Loads on Structures, Wave Loads on Structures, Varying Wind Load, Impulse loads and Introduction to design

UNIT II

UNIT III

Topside Facilities and Layout

Introduction General layout Considerations Areas and Equipment Deck Impact Loads Deck Placement and Configuration Float over Deck Installation Helipad Platform Crane Living quarters Oil and gas treatment Oil and gas storage, offloading and export Utility and process support systems Drilling facilities

UNIT IV

Offshore Installation

Introduction, Installation of Fixed Platform Substructures Floating Structures, Foundations Subsea Templates, loadouts transportation Platform Installation Methods and installation criteria, Installation of Pipelines and Risers

Books:

1. Dawson, T.H., "Offshore Structural Engineering", Prentice Hall, 1983

2. B.C Gerwick, Jr. "Construction of Marine and Offshore Structures", CRC Press, Florida, 2000.

3. Subrata K Ckakrabarti, "Handbook of Offshore Engineering", Vol 1, Vol 2, Elsevier Publishers, 1st edition, 2005.

	B. Tech. VIII Semester (Civil Engineering)								
	SUBJECT: STRUCTURAL GEOLOGY								
L	Т	P/D	Total	Subject Code: EL-426A	Max. Marks: 100				
3	0	0	3		Theory: 75 marks				
					Sessional: 25 Marks				
					Duration: 3 hrs.				
Cour	Course		To introduce the concept of structural geology						
Obje	ctive								
UNI	Γ	Course Outcomes							
Ι		To in	To introduce the concept of topography and its impact on structure.						
II		To in	To introduce the concept of rock deformation.						
III To understand geometric and genetic classification		d geometric and genetic classification of folds							
IV		To le	arn origi	n and classification of fractures and fault.					

Structure and Topography Effects of topography on structural features, Topographic and structural maps; Importance representative factors of the map

UNIT II

Stress and strain in rocks Concept of rock deformation: Stress and Strain in rocks, Strain ellipses of different types and their geological significance. Planar and linear structures; Concept of dip and strike; Outcrop patterns of different structures.

UNIT III

Folds and Fold morphology; Geometric and genetic classification of folds; Introduction to the mechanics of folding: Buckling, Bending, Flexural slip and flow folding

UNIT IV

Foliation and lineation Description and origin of foliations: axial plane cleavage and its tectonic significance Description and origin of lineation and relationship with the major structures

Fractures and faults Geometric and genetic classification of fractures and faults Effects of faulting on the outcrops Geologic/geomorphic criteria for recognition of faults and fault plane solutions

- 1. Davis, G. R. (1984) Structural Geology of Rocks and Region. John Wiley
- 2. Billings, M. P. (1987) Structural Geology, 4th edition, PrenticeHall.
- 3. Park, R. G. (2004) Foundations of Structural Geology. Chapman & Hall
- 4. Pollard, D. D. (2005) Fundamental of Structural Geology. Cambridge University Press.
- 5. Ragan, D. M. (2009) Structural Geology: an introduction to geometrical techniques (4th Ed). Cambridge University Press (For Practical)
- 6. Lahee F. H. (1962) Field Geology. McGraw Hill

	B. Tech. VIII Semester (Civil Engineering)								
	SUBJECT: Waste Water Treatment								
L	Т	P/D	Total	Subject Code: EL-428A	Max. Marks: 100				
3	0	0	3		Theory: 75 marks				
					Sessional: 25 Marks				
					Duration: 3 hrs.				
Course		The aim of study is to understand the effect of waste water on environment and its							
Obje	ectiv	treatr	treatment						
e									
UNI	Γ	Cour	se Outc	omes					
Ι		Stude	ents will	study the effect of waste water on streams					
II		Stude	Students will study the working process of treatment plant						
III		Stude	ents will	study about the standard for disposal					
IV		Stude	ents will	study the types of industry responsible for waste	e generation				

Sewer appurtenances: Man holes, Catch basin, flushing devices, inverted siphon. Ventilation of sewers. Sewage, Sewerage, Systems of sewerage, Sewage characteristics Physical, chemical and biological parameters, Biological oxygen demand, first stage BOD, Chemical Oxygen demand, Relative stability, Population equivalent.

Unit II

Waste water disposal systems Selfpurification of streams, DilutionOxygen sag curve, Streeter Phelp's Equation, land treatment, Treatment of sewage, Preliminary and Primary treatment –Theory and design of Screen, Grit chamber, Detritus chamber, Flow Equalization tank and Sedimentation tank.

Unit III

Secondary treatment methodsContact bed, Intermittent sand filter, Theory and design of Trickling filter, Activated sludge process, Trickling filterHigh rate, standard. Rotating biological contactor Design of Septic tank and Imhoff tank, Principle and working of Oxidation ditch and oxidation ponds.

Aerated lagoons, Design of up flow anaerobic sludge blanket reactors, Sludge treatment and disposalMethods of thickening, Sludge digestion Anaerobic digestion, Design of sludge digestion tanks and Sludge drying beds, methods of sludge disposal

Unit IV

Effects of industrial wastes on streams, sewerage systems and wastewater treatment plants. Minimizing the effects of industrial effluents on waste water treatment plants and receiving streamsconservation of water, process change, reuse of waste water, volume reduction, strength reduction, neutralization, equalization and proportioning.

- 1. Industrial and Hazardous Waste Treatment by N.L.Nemerow&A.Dasgupta.
- 2. Industrial Effluents by N.Manivasakam.
- 3. Waste Water Treatment by M.N.Rao&A.K.Dutta.

	B. Tech. VIII Semester (Civil Engineering)							
			SU	JBJECT: Water and Air Quality Modelling				
L	Т	P /	Total	Subject Code: EL-430A	Max. Marks: 100			
		D						
3	0	0	3		Theory: 75 marks			
					Sessional: 25 Marks			
					Duration: 3 hrs.			
Cour	rse	Th	This course aims at developing mathematical models for air and water quality					
Obje	ective	che	check					
UNI	Г	Co	Course Outcomes					
Ι		Stu	Students will learn the Mathematical Models for water quality					
II		Stu	Students will learn the Mathematical Models for dissolved oxygen.					
III		Stu	idents wi	ll learn the Mathematical Models for Estuary an	d Lakes			
IV		Stu	Students will learn about micrometeorological process.					

Introduction to Mathematical Models: water quality modeldevelopment, calibration and verification cost: benefit analysis using models, Modelrequirements and limitations. UNITII

D.O. Models for Streams: Dissolved oxygen model for streams sources and sinks of dissolved oxygen estimation of system parameters Streeter Phelps model oxygen 'sag' curvedetermination of Deoxygenation and reaeration coefficients

UNITIII

Benthal oxygen demand mass transport mechanisms Models for Estuary and Lakes: Physical chemical and biological processes in estuaries; Air quality models:

UNITIV

Micrometeorological processes, wind rose, dispersion, coefficients and stability classes, Gaussian and dispersion model, Stack height computation, Regional air quality models, Source inventories and significance

- 1. Deaton, M.L and Winebrake, J.J., Dynamic Modelling of Environmental Systems, Verlag, 2000.
- 2. Chapra, S.C. Surface Water-Quality Modelling, McGraw-Hill, 2008.
- 3. Arthur C.Stern., Air Pollution (Third Ed.) Volume I Air Pollutants, their transformation and Transport, (Ed.), Academic Press, 2006.
- 4. Wainwright, J and Mulligan, M., Environmental Modelling Finding simplicity in complexity, John Wiley and Sons Inc., New York, 2013

B. Tech. VIII Semester (Civil Engineering)								
SUBJECT: TRAFFIC ENGINEERING AND MANAGEMENT								
L	Т	P/DTotalSubject Code: EL-432AMax. Marks: 100						
3	0	0	3		Theory: 75 marks			
				Sessional: 25 Marks				
					Duration: 3 hrs.			
Course		To understand and explain the various modes of Transport viz. Surface, Air, Rail and						
Objective		Water.						
UNIT		Course Outcomes						
Ι		To introduce the significance and scope of traffic engineering.						
II		Describe the different methods of conducting Traffic volume studies.						
III		Mention the various driver characteristics affecting traffic behavior onroads.						
IV		State the objectives in providing road markings and describe its effectiveness in traffic regulation.						

ssUNIT I

Introduction: Importance of Transportation Employment in Transportation Transportation Systems and Organization Characteristics of Driver, the Pedestrian, the Vehicle and Road, Traffic and Environment, Introduction to MRTS, LRTS and Underground railways.

UNIT II

Traffic Engineering Studies: Statistical studies for Traffic Engineering, Speed studies Volume Studies Travel time and Delay Studies Parking StudiesTraffic Forecasting Accident Studies, Traffic Flow Theory, Macroscopic and Microscopic Traffic model, Shock Waves Traffic Flow at signal and un signal intersection Simulation of Traffic.

UNIT III

Airport Planning: Airport -Accessibility ,Transport Connections, Forecasting Future Traffic – Airfield Capacity and Delay Aircraft characteristics , Airport Site Selection, Airport Classification, Planning of Airfield Components, Runway, Taxiway, Apron, Hanger, Passenger Terminals.

UNIT IV

Waterways Transport Systems: Fresh Water and Salt Water Navigation –Ocean, Currents and Tide, Canals and Waterways, Ports, Types of Ships Inland Water Transport-Planning, limitations and advantages Case Studies-Pipelines, Ropeways, Beltways and other means of transport.

- 1. Kadiyali L.R, "Traffic Engineering and Transportation Planning" Khanna Publishers, Delhi, 2005.
- 2. Khanna SK and Justo CEG, "Highway Engineering", Nem Chand & Bros, Roorkee, 2010.
- 3. Brase/Brase "Understandable Statistics 3rd edition", D C Health and Company, Lexington, Massachusetts, Toronko, 1987.
- 4. Jason C.yu, Transportation Engineering: Introduction to Planning, Design and Operations, Elsevier, 1992.
- 5. Taylor M.A.P and Young W, Traffic AnalysisNew Technology and New solution.

B. Tech. VIII Semester (Civil Engineering)							
SUBJECT: Infrastructure Planning and Design							
L	Т	P/ Total Subject Code: EL-434A Max. Marks:					
	D						
3 0		0	3		Theory: 75 marks		
					Sessional: 25 Marks		
					Duration: 3 hrs.		
Course		To understand various concepts of infrastructure planning and management.					
Objective							
UNIT		Course Outcomes					
Ι		To understand the basic concepts related to Infrastructure Projects					
II		To understand the role of private sector infrastructure growth.					
III		To impart the strategies for successful Infrastructure Project implementation.					
IV To develop Infrastructure modeling and Life Cycl				nfrastructure modeling and Life Cycle Analysis'	Techniques.		

An Overview Of Basic Concepts Related To Infrastructure: Introduction to Infrastructure, an overview of the Power Sector in India., an Overview of the Water Supply and Sanitation Sector in India., an overview of the Road, Rail, Air and Port Transportation Sectors in India. An overview of the Telecommunications Sector in India. An overview of the Urban Infrastructure in India, an overview of the Rural Infrastructure in India, an Introduction to Special Economic Zones, Organizations and layers in the field of Infrastructure, The Stages of an Infrastructure Project Lifecycle., an overview of Infrastructure Project Finance.

Unit II

Private Involvement In Infrastructure: A Historical Overview of Infrastructure Privatization. The Benefits of Infrastructure Privatization, Problems with Infrastructure Privatization, Challenges in Privatization of Water Supply: A Case Study, Challenges in Privatization of Power: Case Study, Privatization of Infrastructure in India: Case Study, Privatization of Road Transportation Infrastructure in India.

Unit III

Challenges To Successful Infrastructure Planning And Implementation: Mapping and Facing the Landscape of Risks in Infrastructure Projects, Economic and Demand Risks: The Case study for Political Risks, SocioEnvironmental Risks, Cultural Risks in International Infrastructure Projects, Legal and Contractual Issues in Infrastructure, Challenges in Construction and Maintenance of Infrastructure.

Unit IV

Sustainable Development Of Infrastructure: Information Technology and Systems for Successful Infrastructure Management, Innovative Design and Maintenance of Infrastructure Facilities, Infrastructure Modeling and Life Cycle Analysis Techniques, Capacity Building and Improving the Governments Role in Infrastructure Implementation, An Integrated Framework for Successful Infrastructure Planning and Management Infrastructure Management Systems and Future Directions.

- 1. Grigg, Neil, Infrastructure engineering and management, Wiley, (1988).
- 2. Haas, Hudson, Zaniewski, Modern Pavement Management, Krieger, Malabar, (1994).

- 3. Hudson, Haas, Uddin, Infrastructure management: integrating design, construction, maintenance, rehabilitation, and renovation, McGraw Hill, (1997).
- 4. Munnell, Alicia, Editor, Is There a Shortfall in Public Capital Investment? Proceedings of a Conference Held in June (1990).
- 5. World Development Report 1994: Infrastructure for Development (1994).
- 6. Zimmerman, K. and F. Botelho, "Pavement Management Trends in the United States," 1st European Pavement Management Systems Conference, Budapest, September (2000).

Bachelor of Technology (Mechatronics Engineering) Kurukshetra University, Kurukshetra SCHEME OF STUDIES/EXAMINATIONS w. e. f. 2021-22 onwards

Semester-V

G			L:T:P	Hours/ Week	Credits	Examination Schedule (Marks)				Duration
S. No.	Course No.	Course Title				Major Test	Minor Test	Practical	Total	of Exam (Hours)
1	HTM-901A	Universal Human Values II : Understanding Harmony	3:0:0	3	3	75	25	0	100	3
2	MTC-301A	Communication Systems	3:1:0	4	4	75	25	0	100	3
3	MTC-303A	Production Technology-II	3:0:0	3	3	75	25	0	100	3
4	MTC-305A	Automatic Control Systems	3:0:0	3	3	75	25	0	100	3
5	MTC-307A	Embedded Systems-I	3:0:0	3	3	75	25	0	100	3
6	MTC- 309LA	Communication Systems Lab	0:0:2	2	1	0	40	60	100	3
7	MTC- 311LA	Production Technology-II Lab	0:0:4	4	2	0	40	60	100	3
8	MTC- 313LA	Embedded Systems-I Lab	0:0:2	2	1	0	40	60	100	3
9	MTC- 315LA	Project-I	0:0:2	2	1	0	0	100	100	3
10	*MTC- 317A	Industrial Training-II	2:0:0	2	-	0	100	0	100	
11	**MC- 903A	Essence of Indian Traditional Knowledge	3:0:0	3	-	100	-	-	100	3
		Total	20:1:10	31	21	375	245	280	900	

Note:

1. *MTC-317A is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 4th semester.

2. **MC-903A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

3. Students are allowed to use programmable scientific calculator during examination.

HTM-901A	Universal Human Values II: Understanding Harmony									
Lecture	Tutorial	Practical	cal Credit Major Mii Test		Minor Test	Total	Time			
3	0	0	3.0	75	25	100	3 Hours			
Purpose	Purpose and motivation for the course, recapitulation from Universal Human									
	Values-I									
			Course O	ucomes (co)					
CO 1	Development of a holistic perspective based on self-exploration about									
	themselves (human being), family, society and nature/existence.									
CO 2	Understanding (or developing clarity) of the harmony in the human									
	being, family, society and nature/existence.									
CO 3	Strengthening of self-reflection.									
CO 4	Development of commitment and courage to act.									

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for ValueEducation

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrarinessin choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'l' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'l' and harmony in 'l'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material

goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-HumanRelationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- fromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in allpervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order

- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations

28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. todiscuss the conduct as an engineer or scientist etc.

READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at handand motivating students to reflect, explore and verify them.

Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to

essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration. Scenarios may be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemed essential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example:

Assessment by

faculty mentor: 5 marks

Self-assessment: 5 marks

Assessment by peers: 5 marks

Socially relevant project/Group Activities/Assignments: 10 marks

Semester End Examination: 75 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.