Kurukshetra University, Kurukshetra

(Established by the State Legislature Act XII of 1956) ('A++' Grade, NAAC Accredited)

> ।। योगस्थः कुरु कर्माणि।। समबुद्धि व योग युक्त होकर कर्म करो

(Perform Actions while Stead fasting in the State of Yoga)

DEPARTMENT OF INSTRUMENTATION (DOI)

CBCS CURRICULUM (2024 -25) Program Name: B. Tech.-Electrical Engineering (For the Batches Admitted from 2024-2025)

OUTCOME BASED EDUCATION SYSTEM

CBCS CURRICULUM (2024 -25) Program Name: B. Tech.-Electrical Engineering (For the Batches Admitted from 2024-2025)

VISION

Be globally acknowledged as a distinguished centre of academic excellence.

MISSION

To prepare a class of proficient scholars and professionals with ingrained human values and commitment to expand the frontiers of knowledge for the advancement of society.

DEPARTMENT VISION AND MISSION:

VISION

• To become a model department as a Centre of quality education, research with innovation and recognition at National and International level for serving society.

MISSION

- M1: To provide quality education to aspiring young minds for improving their skills, inculcating values, creating leadership qualities and enhance research with innovative methods.
- **M2:** To produce young engineers capable to be utilized in the areas of New Technological Design, Environment, ethics and sustainable technologies.
- M3: To develop Teaching-Learning methods which can produce socially committed good professional human being who can contribute effectively in Nation building and represent Country Internationally.

Mapping of University Vision and Mission to Department Vision and Mission

Acclaimed as modal Centre of Learning and Research by

University Vision and Mission	Department Vision and Mission
High quality knowledge delivery through state of art infrastructure and ethical values to the students	Yes
Students excellence will make them professionals and innovators emerging as global leaders	Yes
Research and development will help in furtherance of Faculty knowledge	Yes

Programme Educational Objectives (PEOs):

The Department of Instrumentation in consultation with various stakeholders have formulated the Programme Educational Objectives (PEO's) that are broad statements that describe the career and professional accomplishments that the program is preparing its graduates to achieve in few years,

subsequent to receiving the degree. The PEO's of the B. Tech. programme in Electrical Engineering are as follows:

- **PEO1:**The graduates will become competent by applying their technical and managerial skills.
- **PEO2:**The graduates will be able to adapt to any environment and succeed in higher positions in contemporary rapidly evolving technologies in Electrical engineering field.
- **PEO3:**The graduates will engage themselves in the life-long learning by pursuing higher education and participation in research and development activities to meet all challenges to transform them as responsible citizens of the nation

Program Specific Outcomes (PSO's):

- **PSO1:** Clearly understand the fundamental concepts of Electrical Engineering
- **PSO2:** Graduates will be able to formulate and solve real life problems in the area of Electrical Engineering
- **PSO3:** Graduate will possess the skills to communicate effectively in both oral and written forms, demonstrating the practice of professional ethics, and responsive to societal and environmental needs.

PEOs to Mission statement mapping

DEO's	MISS	ION OF THE DEPART	MENT
LC 8	M1	M2	M3
PEO1	3	3	1
PEO2	2	3	2
PEO3	2	2	3

Program Outcomes (PO) with Graduate Attributes

Programme Outcomes are attributes of the graduates from the programme that are indicative of the graduates' ability and competence to work as an engineering professional upon graduation. Program Outcomes are statements that describe what students are expected to know or do by the time of graduation, they must relate to knowledge and skills that the students acquire from the programme. The achievement of all outcomes indicates that the student is well prepared to achieve the program educational objectives down the road. The Department of Instrumentation has following twelve PO's. The course syllabi and the overall curriculum are designed to achieve these outcomes:

S. No	Graduate	Program Outcomes (POs)
	Attributes	
1	Engineering Knowledge	PO1: Able to understand the fundamentals of mathematics, science, Electrical Engineering and apply them to provide solution of complex engineering problems.
2	Problem Analysis	PO2: Ability to analyze, identify, formulate and solve engineering problems in Electrical Engineering using basic fundamental principles of mathematics and science.
3	Design and Development of Solutions	PO3: Design a system, component or process to meet the desired needs and standards within realistic constraints such as public health and safety, social and environmental considerations.
4	Investigation of Problem	PO4: Design and conduct experiments, as well as do research, analyze and interpret data and give clear solutions.
5	Modern Tool usage	PO5: Use and learn the recent techniques, skills and modern engineering and IT tools necessary for engineering practice with an understanding of the limitations.
6	Engineer and society	PO6 : To give basic knowledge of social, economic, safety and cultural issues relevant to professional engineering.

7	Environment and sustainability	PO7: To impart knowledge related to the design and development of modern systems which are environmentally sensitive and to understand the importance of sustainable development.						
8	Ethics	PO8: Apply ethical principles and professional responsibilities in engineering practice.						
9 Individual & team work PO9: Ability to visualize and function as an individ member in a team of a multi-disciplinary environmer								
10	Communication	PO10: Ability to communicate effectively on complex engineering ideas to the engineering community & the society at large. (i.e. being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions)						
11	Lifelong learning	PO11: To impart education to learn and to engage in independent and life – long learning in the technological change.						
12	Project management and finance	PO12: Ability to handle administrative responsibilities, manage projects & handle finance related issues in a multidisciplinary environment.						

Mapping of PEO's with PO's

S. No.	Program Educational Objectives	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
1	The graduates will become competent by applying their technical and managerial skills.			\checkmark			\checkmark	\checkmark			\checkmark				\checkmark	
2	The graduates will be able to adapt to any environment and succeed in higher positions in contemporary rapidly evolving technologies in Electrical engineering field.															
3	The graduates will engage themselves in the life-long learning by pursuing higher education and participation in research and development activities to meet all challenges to transform them as responsible citizens of the nation			\checkmark	\checkmark				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Kurukshetra University Kurukshetra CBCS CURRICULUM (2024 -25)

Under Graduate Degree Program Name: B. Tech. (Electrical Engineering) Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1 Hour Tutorial (T) per week	1 credit
1 Hour Practical (P) per week	0.5 credits
and/or	
2 Hours Practical(Lab)/week	1 credit

Course code and definition:

Category of	Definitions
Course/ Code	
L	Lecture
Т	Tutorial
Р	Practical
С	Credit
CIE	Continuous Internal Evaluation
SEE	Semester End Examination
BS	Basic Science Courses
ES	Engineering Science Courses
HSM	Humanities, Social Sciences and Management Courses
EE	Electrical Engineering
PC	Professional core courses
PE	Professional Elective courses
OE	Open Elective courses
PRBS/ PRPC/	Practical Basic Science/Professional Core/
PRES/PRPE/	Engineering Science/ Program Elective/
PROE/ PRHSM	Open Elective/Humanities, Social Sciences and Management Courses
MC	Mandatory courses
PROJ	Project

			Teaching Schedule					Allotment of marks			
Course No.	Course Title	С	L	Т	Р	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.	
EE-ES-101	Basic Electrical	4	3	1	-	4	40	60	100	3 Hrs	
	Engineering										
EE-BS-103	Introduction to	4	3	1	-	4	40	60	100	3 Hrs	
	Electromagnetic Theory										
EE-BS-105	Engineering Chemistry	4	3	1	-	4	40	60	100	3 Hrs	
EE-HSM-107	English for Technical	2	2	-	-	2	40	60	100	3 Hrs	
	Writing										
EE-BS-109	Mathematics-I	4	3	1	-	4	40	60	100	3 Hrs	
EE-PRES-01	Basic Electrical	1	-	-	2	2	20	30	50	3 Hrs	
	Engineering Lab										
EE-PRBS-03	Electromagnetics Lab	1	-	-	2	2	20	30	50	3 Hrs	
EE-PRBS-05	Engineering Chemistry	1	-	-	2	2	20	30	50	3 Hrs	
	Lab										
EE-PRHSM-07	English Language Lab	1	-	-	2	2	50		50		
	Total	22	14	4	8	26	310	390	700		

B. Tech (Electrical Engineering), SCHEME OF EXAMINATIONS 1st YEAR (SEMESTER–I) (w.e.f.2024-25)

B. Tech (Electrical Engineering), SCHEME OF EXAMINATIONS 1stYEAR (SEMESTER–II) (w.e.f.2024-25)

			Те	achir	ng Sch	nedule	Allot	ment of	Exam	
Course No.	Course Title	С	L	Т	Р	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EE-BS-102	Semiconductor Physics	4	3	1	-	4	40	60	100	3 Hrs
EE-ES-104	Programming for Problem	4	3	1	-	4	40	60	100	3 Hrs
	Solving									
EE-ES-106	Engineering Graphics and	2	2	-	-	2	40	60	100	3Hr
	Design									
EE-HSM-108	Universal Human Values-II:	3	3	0	-	3	40	60	100	3 Hrs
	Understanding Harmony and									
	Ethical Human Conduct									
EE-BS-110	Mathematics-II	4	3	1	-	4	40	60	100	3 Hrs
EE-PRES-02	Semiconductor Physics Lab	1	-	-	2	2	20	30	50	3 Hrs
EE-PRES-04	Programming for Problem	1	-	-	2	2	20	30	75	3 Hrs
	Solving Lab									
EE-PRES-06	Engineering Graphics and	1	-	-	2	2	20	30	50	3 Hrs
	Design lab									
EE-PRES-08	Manufacturing Processes	1	-	-	2	2	20	30	50	3 Hrs
	Workshop									
EE-PRES-10	Idea Workshop	1	-	-	2	2	20	30	50	3Hrs
	Total	22	14	3	10	27	300	450	750	

Comme Codes Comme Norme Davis Electrical Engineering								
EE-ES-1	Course Course Name: Basic Electrical EngineeringLEE-ES-1013							
Year and	1	1 st year	Contact hours per we	ek: (4H)	rs)			
Semester	•	1 st Semester	Exam: (3hrs.)	,	,			
Pre-reau	isite of	of NIL Evaluation						
course			CIE: 40	SEE:	60			
Course (biective	25:						
1. To stu	idv basic	es theory, laws and theorem of DC el	ectrical networks.					
$\frac{1}{2}$ To stu	idv work	ing of various electrical AC circuits	magnetic circuits and its	parame	eters			
3 To stu	idy the w	vorking theory of AC and DC electric	cal machines	purum				
$\frac{3.10}{4}$ To in	troduce f	he domestic wiring and earthing in e	lectrical system					
Course (Jutcome	s. On completion of the course stud	ent would be able to:					
	To und	erstand the basic concept of electric	chi would be able to:	ve and	network			
	theorem	as a concept of electric	ai circuito, ciccuital la	vs and	IICTWOIK			
CO2	Tound	is.	rking theory of DC and	AC not	vork			
	To und	arstand the parameters of alastical m	etworks and aquinment		VUIK.			
C03	To und	erstand the aircuits and working of w	erworks and equipment.	2				
C04		erstand the circuits and working of Va	lastrical wiring and	s.	ly it to			
005	technol	ogical fields	iectrical wiring system	anu apj	my it to			
Module	teennor	COURSE SVI LAR	IIS					
No		CONTENTS OF MOD		Hrs	COs			
110	DC Cir	cuits: Electrical circuit elements (R	esistance inductance and	1				
	Canacit	ance) voltage and current source	s Kirchoff current and	1				
1	voltage	laws analysis of simple circu	its with dc excitation	. 7	CO1,			
-	Superpo	osition. Theyenin and Norton T	Theorems Time-domain	. <i>,</i>	CO2			
	analysis	s of first-order RL and RC circuits.		-				
	AC Cir	cuits: Representation of sinusoidal	waveforms, peak and rm	3				
	values	phasor representation, real power.	reactive power. apparen	t				
	power.	power factor, power factor improver	ment and its significance		GOL			
_	Analvsi	s of single-phase ac circuits consist	ting of R. L. C. RL. RC		CO1,			
2	RLC c	ombinations (series and parallel).	resonance. Three-phas	<u> </u>	CO2,			
	balance	d circuits, voltage and current rel	ations in star and delt	ı	CO3			
	connect	ions.3-phase power equation. measured	surement of three phase					
	power b	by two wattmeter method.	I					
	Transf	ormers: Magnetic materials, BH ch	naracteristics, working o	f				
2	ideal a	and practical transformer, equiva	alent circuit, losses in	1 _	CO3.			
3	transfor	mers, regulation and efficiency. Au	to-transformer and three	- 7	CO4			
	phase tr	cansformer connections.						
	Electri	cal Rotating Machines: Generation	on of rotating magneti	:				
	fields,	Construction and working of a thre	e-phase induction motor	,				
	Signific	cance of torque-slip characteristic.	Loss components and	1				
	efficien	cy, starting and speed control of indu	ction motor. Construction		CO3.			
4	and wo	orking of Single-phase induction	motor and torque-speed	1 8	CO4			
	f DC machine and speed	1						
	control	of separately dc motor. Constr	uction and working o	f				
	synchro	onous generators.						
5	Electri	cal Installations: Components of	domestic wiring system	. 4	CO3.			
				7	,			

earthing	system	and	its	significance.	Elementary	calculations	for
energy c	onsumpt	ion.					

Suggested Text / Reference Books:

- 1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 3. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 4. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989. 5.
- B.L. Theraja and A. K. Theraja, "Electrical Technology", Vol-I, S.Chand. 6.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- Section-C will comprise 4-questions uniformly spread to the entire syllabus and 3. questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section -B and Section -C. All questions will carry 12 marks.

Course Code: EE-BS-103	Course Name: Introduction to Electromagnetic Theory L T P C 3 1 - 4						
Year and	week: (4Hrs)						
Semester	1 st Semester	Exam: (3 Hrs)					
Pre-requisite	NII	Evalua	ation				
of course	INIL	CIE: 40	SEE: 60				
Course Objectiv	/es:						
1. It aims to equ	ip the students with basic concepts of p	hysics principles.					
2. To provide ad	lequate knowledge about tools at an inte	ermediate to advanced	level.				
3. To provide stu	udents to serve them well towards tackl	ing more advanced leve	el of physical				
problems.							
4. To provide kn	nowledge and applications that they wou	uld find useful in their	core subjects				
5. To provide kn	nowledge about different applications of	f optics, EM-theory,					
Course Outcom	es: On completion of the course, stu	dent would be able to):				
CO1 Understan	nd the applications of Electricity and M	agnetism					
CO2 Understan	Understand components of a EM-Wave propagation						
CO3 Understan	3 Understand Electro and magneto statics, Maxwell's equations						
CO4 Learn abo	O4 Learn about potential applications of dielectric and Magnetic materials						
CO5 Understan	Understand the material composition and its applications						

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	Cos
1	Differential and integral calculus: Concept of gradient, operator, divergence and curl Line, surface and volume integrals, Electrostatics: Divergence and curl of electrostatic field; Laplace's and Poisson's equations for electrostatic potential, Electrostatic field and charge density. electrostatics problems in presence of dielectrics.	8	CO4 CO1
2	Magnetostatics Gauss –Divergence theorem, Stokes theorem, Equation of continuity, Divergence of magnetic induction, Biot savarts law. Magnetic vector potential, Amperes circuital law, Faraday's law of electromagnetic induction,	8	CO1
3	EM – Theory: The basic equations of electromagnetism, generalization of amperes law, Maxwell's equations. Energy in an electromagnetic field; Flow of energy and Poynting vector with examples. Hall Effect.	9	CO2 CO3
4	Dielectric and Magnetic materials: Introduction, Nonpolar molecules, Polar molecules, Polar and nonpolar molecules in an electric field, Electric polarization of matter, Electric polarization vector, Electric field in dielectrics, Gauss's law in dielectrics, Relation between three electric vectors D, E and P, Effect of dielectric on capacitance. Magnetization of matter (Origin of Magnetic Moment, Diamagnetism, Paramagnetism, Ferromagnetism, B, H, M), Anti-ferro magnetism. Ferrimagnetic materials B-H curve. Applications of Dielectric and Magnetic materials	4	CO5

Text Books:

- 1. Perspectives of Modern Physics Arthur Beiser (TMH), 2001
- 2. David Griffiths, Introduction to Electrodynamics, PHI 2004

3. Introduction to Solid State Physics (VII Ed.) - Charles Kittel (John Wiley)., 2007 **Suggested Reference Books:**

1. Halliday and Resnick, Physics, 1981

2. W. Saslow, Electricity, magnetism and light

Reference Books:

- 1. Classical Electrodynamics, By J D Jackson, Wiley Publishers, 1970
- 2. Fundamentals of Magnetism- B. Cullity Addison-Wiley Publishing, 2008
- 3. Semiconductor devices, physics and technology, S. M. Sze Wiley, 1981
- 4. Introduction to solid state physics AJ DEKKER 2011

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks each.

Course EE-BS	Course Code: EE-BS-105 Course Name: Engineering Chemistry		L 3	T 1	Р -	C 4	
Year a	nd	1 st Yr.	Contact hours per v	veek:	(4	Hrs)
Semest	er	2 nd Semester	Exam: (3 Hrs)				
Pre-ree	quisite	NII	Evalua	tion			
of cour	se	INIL	CIE: 40		SEI	E: 6	0
Course	e Objectiv	es:					
The con	ncepts dev	eloped in this course will aid in quant	ification of several con	ncept	s in	che	mistry
that hav	ve been int	troduced at the 10+2 levels in school	S.				
Techno	logy is be	ing increasingly based on the electron	nic, atomic and molecu	ılar le	evel	l	
modific	cations.						
Quantu	m theory i	is more than 100 years old and to unc	lerstand phenomena at	nanc	ome	ter l	evels,
one has	s to base th	ne description of all chemical process	es at molecular levels.				
Course	e Outcome	es: On completion of the course, stud	ent would be able to:				
CO1	Analyze molecula	microscopic chemistry in terms of at ar forces.	omic and molecular or	bitals	s an	d in	ter
CO2	Apply the	e knowledge of conductance to expla	in various electrochen	nical			
<u>CO3</u>	Distingui	ich the renges of the electromegnetic	anastrum used for eve	itina	4:f4	forat	at
COS	Distingui	isil the fanges of the electromagnetic	spectrum used for exc	ning	um	leiei	n
CO4	Rationali	ize bulk properties and processes using	pic iccilliques	sider	atio	ne	
C04	Rational	ize periodic properties such as ioniza	tion notential electron	agati	au0	,	
005	ovidation	a states and electronegativity	uon potential, electron	egati	vity	,	
<u>C06</u>	Distingui	on states and electronegativity.					
	Distingu	isit between various stereoisonners.					

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Atomic and molecular structure: Schrodinger equation. Particle in a one-dimensional box solution and its applications for molecules. Molecular orbital theory and its applications to the formation of homonuclear (H_2 , N_2) and heteronuclear diatomic molecules (NO, CO, CN) Energy level diagrams of diatomics. Pi (p)-molecular orbitals.	10	CO1, CO2
2	Spectroscopic techniques and applications: Principles of spectroscopy and selection rules. Electronic spectroscopy. Spectroscopy and its applications in medicine. Applications of Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI), surface characterization with electron spectroscopy (Mass Spectrometry (MS).	10	CO3
3	Electrochemistry: Conductance of electrolytic solutions, Transference number and its determination by Hittorf method and Moving boundary method, Kohlrausch's law of independent migration of ions, Interionic attraction theory, activity and activity coefficients of strong electrolytes.	10	CO4

Periodic properties: Effective nuclear charge, penetration of orbitals, electronic configurations, atomic and ionic sizes, ionization				ALLER STREET
4 energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries Stereochemistry: Representations of 3-dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity,	4	Periodic properties: Effective nuclear charge, penetration of orbitals, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries Stereochemistry: Representations of 3-dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity,	8	CO4, CO5

Text Books:

- **1.** University chemistry, by B. H.Mahan
- 2. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- **3.** Fundamentals of Molecular Spectroscopy, by C. N.Banwell
- 4. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M.S.
 - Krishnan
- 5. Physical Chemistry, by P. W. Atkins
- 6. Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course EE-HSI	Code: M-107	Course Name: English for Technical Writing		L T P C 2 - - 2	
Year a	nd	1 st Yr.	Contact hours per v	week: (2Hrs)	
Semest	er	1 st Semester	Exam: (3 Hrs)		
Pre-requisite		NII	Evalu	ation	
of course		INIL	CIE: 40	SEE: 100	
Course	Objectiv	es:			
To mak	e student	understand the details of functional E	English.		
To mak	e student	learn the effective communication sk	tills		
Course	Outcome	es: On completion of the course, stud	lent would be able to:		
CO1	The stude	ent will acquire basic proficiency in I	English		
CO2	Writing and speaking skills				
CO3	Reading and listening skills				
CO4	Vocabulary enrichment				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Vocabulary Building: The concept of Word Formation Root words from foreign languages and their use in English Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives. Synonyms, antonyms, and standard abbreviations.	3	CO1, CO2, CO3, CO4
2	Basic Writing Skills: Sentence Structures, Use of phrases and clauses in sentences, Importance of proper punctuation, Creating coherence, Organizing principles of paragraphs in documents, Techniques for writing precisely	5	CO2
3	Identifying Common Errors in Writing: Subject-verb agreement, Noun-pronoun agreement, Misplaced modifiers, Articles, Prepositions, Redundancies, Clichés	4	CO1
4	Nature and Style of sensible Writing: Describing, Defining, Classifying, Providing examples or evidence, writing introduction and conclusion	5	CO1, CO2
5	Writing Practices: Comprehension, Précis Writing, Essay Writing	3	CO1, CO2
6	Oral Communication (This unit involves interactive practice sessions in Language Lab): Listening Comprehension, Pronunciation, Intonation, Stress and Rhythm, Common Everyday Situations: Conversations and Dialogues, Communication at Workplace, Interviews, Formal Presentations	4	CO1, CO3

Text Books:

- 1. Practical English Usage. Michael Swan. OUP.1995.
- 2. Remedial English Grammar. F.T. Wood. Macmillan.2007
- 3. On Writing Well. William Zinsser. Harper Resource Book.2001
- **4.** Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press.2006.

- 5. Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press.2011.
- 6. ExercisesinSpokenEnglish.Parts.I-III.CIEFL,Hyderabad.OxfordUniversityPress

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EE BS 100 Course Name: Mathematics-I		L	T	P	C		
EE-DS-109		1 st ¥7	Carta et la come er ere	3		U 4 II.	4
Year and		1 st Year	Contact nours per	wee	K: (4	4 Hrs	s)
Semester		1 st Semester	Exam: (3 Hrs)				
Dro requisit	o of	The course requires prior	Evalua	atior	l I		
Pre-requisit	le of	knowledge of Differentiation,			an		0
course		Integration and vector algebra.	CIE: 40		SE	E: 6	0
Course Objectives:							
1. To apply	Differe	entiation to geometric principles and	expand functions into	o ser	ies.		
2. To unders	stand P	artial differentiation and apply to var	ious mathematical si	tuati	ons.		
3. To gain ki	nowled	lge on fundamentals of Multiple Inte	grals and their Applic	catio	ns.		
4. To explor	e how	to differentiate and integrate Vectors	. To provide good un	ders	tand	ing c	of
interrelation	on bety	ween vector differentiation and Integ	ration through Basic	The	orem	s.	
Course Out	comes	: On completion of the course, studen	nt would be able to:				
CO1	Under	stand the Differentiation and Integrat	tion applications.				
CO2	Under	stand and solve Partial differentiation	n and Multiple integra	als f	or va	riou	s
	proble	ems.					
CO3	Apply	the knowledge of Differentiation to	geometric principles	and	expa	nd	
	function	ons into series.			_		
CO4	Studer	nts should be able to use his knowled	ge of Vector analysis	and	rela	te it	to
fluid flows.							

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Applications of Differentiation: Taylor's & Maclaurin's series, Expansion by use of known series, Expansion by forming a differential equation, Asymptotes, Curvature, Tracing of Cartesian curves.	6	CO1, CO2, CO3
2	Partial Differentiation & its Applications: Euler's theorem, Jacobian, Errors and approximations, Maxima- minima of functions of two variables, Lagrange's method of undetermined multipliers.	6	CO1, CO2, CO3
3	Double Integral: Change of order of integration Double integral in polar coordinates, Applications of double integral to find area enclosed by plane curves volume of solids of revolution. Triple integral: Volume of solids,	6	CO1, CO2, CO3
4	 Vector Calculus: Differentiation of vectors: Gradient of a scalar field and directional derivative, divergence, and curl of a vector field, Del applied twice to point functions, Del applied to product of point functions. Integration of vectors: line integral, surface integral, volume integral, Green's, Stoke's and Gauss divergence theorems (without proof). 	6	CO1, CO2, CO3, CO4

TEXT BOOKS:

- 1. Advanced Engineering Mathematics: E. Kreyszig. 10th Edition, John Wiley & sons,
- 2. Higher Engineering Mathematics: B.S. Grewal. 43rd Edition, Khanna Publications

REFERENCE BOOKS:

- 1. Engineering Mathematics Part-I: S.S. Sastry, 4th Edition, PHI.
- 2. Advanced Engineering Mathematics: R.K. Jain, S.R.K. Iyengar, 3rd Edition, Narosa Publications
- 3. Advanced Engineering Mathematics: Michael D. Greenberg, 2nd Edition, Pearson Publications.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course	rse Code: L T		P	С			
EE-PRE	ES-01	Course Maine: Basic Electrica	I Engineering Lab	0	0	2	1
Year a	nd	1 st Year	Contact hours per	wee	e k: (2Hr	s)
Semest	ter	1 st Semester	Exam: (3hrs.)				
Pre-ree	quisite of	Basic Science	Evalı	iatio	n		
course		Basic Science	CIE: 20		SE	E: 3	30
Course	e Objectives:						
1. To st	tudy the diffe	erent laws and theorems of ele	ctric networks.				
2. To fa	amiliarize wit	th different DC and AC electr	c networks				
3. To st	tudy different	t electric equipments and their	application.				
4. Fam	iliarize with	the safety rules for electrical l	aboratory.				
Course	Outcomes: (On completion of the course, s	tudent would be able	to:			
CO1	Impart the	conceptual knowledge of elec	tric circuit laws and n	etwo	rk tł	neor	ems
	and apply t	these to laboratory work.					
CO2	Ability to a	analyze the performance of an	electric circuits as we	ell as	han	dlin	g of
	electric equ	lipments.					
CO3	Acknowled	lge the principles of operation	and the main features	s of e	lect	ric n	etwork
	and their ap	pplications.					
CO4	Get an exp	osure to common electrical co	mponents and their ra	tings	5. De	evelo	op
	skills to use	e in different technological fie	ld.				
Expt.	COURSE SYLLABUS					COs	
No	CONTENTS OF MODULE						
1	To study an	nd verify Kirchhoff's current l	aw and Kirchhoff's vo	oltage	e lav	v.	
2	To study an	nd verify Thevenin's theorem.					
3	To study an	nd verify Norton's theorem.					
4	To study an	nd verify Superposition theore	m.				CO1
5	To study an	d verify Maximum power trai	ister theorem.				
6	To study the	e operation of series RLC net	vork and determine its	5			CO_2
	parameters.			• ,			CO3
7	To study the	e operation of parallel RLC ne	twork and determine	its			04
	parameters.	a change stanistics of series DL					
8	To study the	e characterístics of series RLC	hetwork under reson	ance			
	To study the	a characteristics of parallel D	<u>quency nom resonance</u>	e cul	ve.	-	
9	condition or	e characteristics of parallel KI	a network under resonance				
	Perform thr	ee phase power measurement	by using two wattmet	e cui	IVC.		
10	renorm unree phase power measurement by using two wattmeter's						
	To study the basic operation and equivalent circuit of a single-phase						
11	transformer						
12	Perform Open Circuit & Short Circuit tests on single phase transformer						
13	Perform Los	ad test on single phase transfo	rmer	51011			
14	To study the	e characteristics of fluorescen	lamps				
15	To study the	e characteristics of tungsten fi	lament lamps				
1.5		e enaracionistics of tungstell fi	iument iumps.				

Text/Reference Books:

1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.

- D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
 L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011

Course EE-PR	ourse Code: E-PRBS-03Course Name: Electromagnetics LabLT		P C 2 1		
Year a	nd	1 st Yr.	Contact hours per	week: (2Hrs)
Semest	er	1 st Semester	Exam: (3 Hrs)		
Pre-ree	quisite	NII	Evalu	ation	
of cour	se	INIL	CIE: 20	SE	E: 30
Course	Objectives:				
1. Und	erstand the a	applications of Optics			
2. Und	erstand com	ponents of a laser system and their applic	ations		
3. Und	erstand to r	neasure conductivity in semiconductors			
4. Und	Outcomes:	On completion of the course, student wou	ild be able to:		
CO1	Experimer	nts in Basic Physics			
CO^2	Experime	nts in acoustics/ applications			
CO_2	Experimer	nts in Electromagnetics			
CO_{4}	Experimer	nts in Magnetism/ applications			
C04 C05	Experime	nts in Somiconductor proportios			
	Experimen				
Expt.			ABUS		COs
NO	Magnatia	CONTENTS OF M	ODULE	. 1.1	
1	Magnetic field from Helmholtzcoil; To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus				
_	To compa	re the capacitances of two capacitors by l	Density bridge and hence	e to find	
2	the dielectric constant of a medium.				
3	To find the	e frequency of A.C. mains by using sonor	neter.		001
4	To Find V	alue of high Resistance by substitution m	ethod		CO1
5	To Find th	ne value of high resistance by leakage met	hod		CO2
6	To Conver	rt a galvanometer in to an Ammeter of giv	en range.	E La namé -	CO3
7	force in a	vacuum tube	method, Measurement of	Lorentz	CO4
8	To find the	e ionization potential of Mercury using a t	thyratron tube		
9	To find the	e value of Planck's constant by using a ph	oto electric cell.		
10	To find the	e value of Hall Co-efficient of semi-condu	uctor.		
11	To find the	e band gap of intrinsic semi-conductor us	ing four probe method.		
12	Post-office	e Box			
13	I o calcula Electric Ei	ate the hysteresis loss by tracing a B-H cur and pattern Patween Two Circular Electron	rve.		
14	Electric Fi	ield between Parallel Conductors	Jues		
15	Electric Fi	ield And Potential Inside The Parallel Plat	e Canacitor		
10	Canacitan	ce And Inductance Of Transmission Line	e cupueitor		
1/	Magnetic	Field Outside A Straight Conductor	<u>ن</u>		
18	Magnetic	Field Of Coils			
20	Magnetic				
20	Magnetic		- 1 C 1'		
21	Hertz's Ex	xperiment to demonstrate the production a	nu reception of radio way	ves	
22	wireless h	KF Transmitter and Receiver			
23	Simple AN	M Transmitter / Receiver			

Text Books:

- 1. Advanced Practical Physics B.L. Worshnop and H.T. Flint (KPH)
- 2. Practical Physics S.L.Gupta &V.Kumar (Pragati Prakashan).
- 3. Advanced Practical Physics Vol.I& II Chauhan & Singh (Pragati Prakashan).

2	To find the wavelength of sodium light by Newton's rings experiment.
3	To find the wavelength of sodium light by Fresnel's biprism experiment.
4	To find the wavelength of various colours of white light with the help of a
4	plane transmission diffraction grating.
5	To find the wavelength of sodium light by Michelson interferometer.
6	To find the resolving power of a telescope.
7	To find the specific rotation of sugar solution by using a polarimeter.
13	To study laser beam characteristics, diffraction.

Course EE-PRI	rse Code: PRBS-05Course Name: Engineering Chemistry LabLTP2			C 1			
Year a	nd	1 st Yr.	Contact hours per	week: (2Hrs)		
Semest	er	2 nd Semester	Exam: (3 Hrs)				
Pre-rec	uisite	NIT	Evalu	ation			
of cour	se	NIL	CIE: 20	SEE: 3	0		
Course	Objectiv	'es:					
To teach	the funda	mentals of basic chemical sciences with	hand on experience ess	ential for the			
develop	ment of nev	w technologies to Electrical and Instrum	entation engineering.				
Course	Outcomes	: On completion of the course, student w	would be able to:				
CO1	Measuren	nolecular/system properties such as surfa	acetension, viscosity, co	nductance and	pH of		
	solutions,	alkalinity, chloride content, dissolved o	xygen, hardness of wat	er,etc.			
CO2	Identify the	he number of compounds in a mixture us	sing TLC.				
CO3	Synthesiz	e a small drug molecule and polymer re-	sin.				
CO4	Determin	e the amount of solute in a solution usin	g spectrophotometers.				
CO5	Measure t	the kinematic viscosity, pour and cloud	point of oil.				
Expt.		COURSE SYLL	ABUS		COs		
No		CONTENTS OF M	ODULE		005		
1	To determine the relative viscosity of a given liquid using Ostwald viscometer.						
2	Using Redwood viscometer determine the viscosity of an oil sample.						
3	To determine the surface tension of a giving liquid using stalagmometer.						
4	To deter	rmine the alkalinity of a given water sam	ple.				
5	To ident	tify the number of components, present	in a given organic mixt	are by Thin			
	Layer C	hromatography (ILC).	· · · 1 · · · · · · · · · · · · · · ·	- 4 - 1 - 1			
6	NaOH s	solution of strength of a given HCI solution of strength of a given HCI solution using conductivity meter.	on by titrating it with a	standardized			
7	To deter pH meter	rmine the strength of a given acid solutioner.	on by titrating it with a	base using	CO1.		
8	Synthes	is of a drug (Aspirin/Paracetamol).			CO2,		
9	To prepa	are Phenol-formaldehyde and Urea form	aldehyde resin.		CO3,		
10	Determi	nation of chloride content of a given wa	ter sample.		CO4,		
11	To deter method.	rmine temporary and permanent hardnes	s of a given water samp	ble by EDTA	CO5		
12	Determi two imn	Determination of the partition coefficient of a substance for its distribution between two immiscible solvents.					
13	To find Photome	To find out the content of sodium and potassium in a given salt solution by Flame Photometer.					
	To verif	y Beer-Lambert law and determine the	max and concentration	n of unknown			
14	solution	of KMnO4 using a spectrophotometer.					
15	To deter	rmine the amount of dissolved oxygen p	resent in a given water	sample.			
16	To find	out the pour point and cloud point of a l	ubricating oil.	•			

SUGGESTED BOOKS:

- 1. A Text Book on Experimental and Calculation Engineering Chemistry, S.S. Dara, S. Chand & Company (Ltd.)
- 2. Essential of Experimental Engineering Chemistry, Shashi Chawla, Dhanpat Rai Publishing Company.
- 3. Theory & Practice Applied Chemistry O.P. Virmani, A.K. Narula (New Age)

Course Code: EE-PRHSM- 07		Course Name: English Language Lab.		L T P C - - 2 1			
Year a	nd	1 st Yr.	Contact hours per	week: (2Hrs)			
Semest	ter	1 st Semester					
Pre-re	quisite	Functional English	Evalu	ation			
of cour	rse		CIE: 50	SEE:			
Course	e Objectiv	es:					
1. Gra	aduates wil	ll attain skills to conduct experiments	s/investigations and ir	nterpret data with			
refe	erence to s	ystems and standards					
2. Gra	aduates wil	Il have ability to communicate effect	ively in written, oral a	and instrumentation			
for	mats to pu	t forth solutions and prepare detailed	engineering report in	the process and			
aut	omation in	dustries.					
3. Gra	aduates wil	ll be able to apply the knowledge, ski	ill and attitude as a tea	am player in			
init	iating, exe	cuting and managing projects in the	areas of design, manu	ifacture, marketing			
and	l entrepren	eurship in multi-disciplinary environ	ments.				
Course	e Outcom	es: On completion of the course, stud	lent would be able to:				
CO1	Impartin	g the role of communicative ability a	s one of the soft skills	s needed for			
	placement						
CO2	Develop	ing communicative ability and soft sl	kills needed for place	ment			
CO3	Making	Making students Industry-Ready through inculcating team-playing capacity					

Expt.	COURSE SYLLABUS CONTENTS OF MODULE	COs
INU	CONTENTS OF MODULE	
	GRAMMAR IN COMMUNICATION: Grammar and Usage – Building Blocks,	
1	Homonyms, Subject and Verb Agreement, Error Correction - Grammar Application,	
	Framing Questions – Question words, Verbal Questions, Tags, Giving Replies –	
	Types of Sentences, Listening Comprehension –Listening and Ear training.	
	ASSERTIVE COMMUNICATION: Listening Comprehension in Cross–Cultural	
2	Ambience, Telephonic Conversations/Etiquette, Role Play Activities, Dramatizing	
	Situations- Extempore – Idioms and Phrases	
	CORPORATE COMMUNICATION: Video Sensitizing, Communicative	CO1
2	Courtesy – Interactions – Situational Conversations, Time Management, Stress	
3	Management Techniques, Verbal Reasoning, Current Affairs – E Mail	CO2,
	Communication / Etiquette	CO3
	PUBLIC SPEAKING: Giving Seminars and Presentations, Nuances of Addressing	
4	a Gathering - one to one/ one to a few/ one to many, Communication Process, Visual	
4	Aids & their Preparation, Accent Neutralization, Analyzing the Audience, Nonverbal	
	Communication.	
	INTERVIEW & GD TECHNIQUES: Importance of Body Language –Gestures &	
5	Postures and Proxemics, Extempore, Facing the Interview Panel, Interview FAQs,	
	Psychometric Tests and Stress Interviews, Introduction to GD, Mock GD Practices.	
Text	Books:	

1. Bhatnagar R.P. & Rahul Bhargava, "English for Competitive Examinations", Macmillian Publishers, India, 1989, ISBN: 9780333925591

 Devadoss K. & Malathy P., "Career Skills for Engineers", National Book Publishers, Chennai, 2013.
 Aggarwal R.S., "A Modern Approach to Verbal & Non–Verbal Reasoning", S.Chand Publishers, India, 2012, ISBN : 8121905516

Course Code: EE-BS-102		Course Name: Semiconductor Physics		L 3	T 1	P -	C 4
Year a	nd	1 st Yr.	Contact hours per w	eek	:(4	Hrs)
Semest	er	2 nd Semester	Exam: (3 Hrs)				
Dro roc	micito	EE-BS-101, Physics-I First	Evalua	tion			
of cour	Juisite	Semester, Introduction to Solid	CIE: 40		CEI	F. 6	0
of course		State Physics	CIE: 40 SEI			C: 0	0
Course	Objectiv	es:					
1.	To impart	the basic concepts of Semi-Conduct	or Electronics.				
2.	To lay the	foundation to understand the various	s semi-conductor devic	es.			
3.	To impart	the basic concept of design and stud	y of various circuits in	Elec	ctroi	nics.	
4.	To lay the	foundation for the advance courses	in electronics.				
Course	Outcome	es: On completion of the course, stud	ent would be able to:				
CO1	Understa	nd the principles of semiconductor P	hysics and foundation	of va	ario	us se	emi-
	conducto	or devices.					
CO2	Understa	nd transistors as an amplifier and as	a switch and various de	esigr	ı pai	rame	eter of
	an ampli	fier.					
CO3	3 Know the concept of feedback in amplifier and oscillator and design of different						
	oscillator.						
CO4	Understa	nd the constructional geometry of FE	ET family and FET amp	plifie	er ci	rcui	t with
	a view to	wards reduced power consumption.					

Modu	COURSE SYLLABUS	Hrc	COs
le No	CONTENTS OF MODULE	1115	COS
1	Semiconductors p-type and n-type, pn junction diodes and energy band structure, pn junction as a circuit element and its characteristics, half wave and full wave rectifier circuits, basic filter circuits, clipper & clamper circuit. Zener diode and its applications as a voltage regulator. LED its characteristics construction & applications.	6	CO1
2	Transistor PNP and NPN- its fabrication and Characteristics in different configurations. Biasing in transistors, Concept of d.c. and a.c. load line and operating point selection. Transistor action as an amplifier and as a switch, Various amplifiers configurations, Design of amplifier and determination of parameters voltage gain current gain input resistance and output resistance & power gain.	6	CO2
3	Concept and need of feedback in amplifiers, Types of feedback in amplifiers, their effect on the amplifier parameters with their advantages and disadvantages, Cascading in amplifiers, Frequency response of RC Coupled amplifiers with explanation, Oscillators circuits and their types with explanation on their design difference, Multivibrators and their types, design and their applications.	6	CO2 CO3
4	Field Effect Transistors, Constructions and their types, Characteristics of JFET, MOSFET their types and Various amplifier configurations using FET. Characteristics and Construction of SCR, TRIAC, UJT and their basic areas applications.	6	CO4

Reference Books:

- 1. Electronic Devices & Circuits Boylstad & Nashelsky.
- 2. Integrated Electronics By Millman & Halkias.
- 3. Electronic Principles Malvino
- 4. Principles of Electronics V.K. Mehta, Shalu Melta.
 - 5. Solid State Electronics- Manera, Mc Graw Hill Publ.
- 6. Electronic Circuits Donald L. Shilling & Charles Beowl

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

1. Section – A is compulsory and attempt/answer all the four questions carrying 12 marks in total.

Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

Course Code: EE-ES-104Course Name: Programming for Problem Solving		L 3	T 1	P 0	C 4		
Year a	nd	1 st Year	Contact hours per w	veek	: (4I	Hrs))
Semester		II nd Semester	Exam: (3 Hrs)				
Pre-ree	quisite	NII	Evalua	ation			
of course		INIL	CIE: 40		SEI	E: 6	0
Course	e Objectiv	es:					
1. To e	xplain the	problem solving concepts using a co	mputer.				
2. To d	evelop pro	blem solutions for the computer by u	using problem solving	tools	5.		
3. To d	escribe the	e Programming structure of C langua	ge.				
4. To c	onvert an A	Algorithm, Pseudo code and Flowcha	art into a C program				
5. To fi	ind errors a	and execute a C program					
Course	e Outcome	es: On completion of the course, stud	lent would be able to:				
CO1	Understa	nd the fundamental concepts of comp	puter hardware and nu	mber	: sys	tem	s.
CO2	Apply th	e basic programming skills of C Lan	guage in problem solvi	ing.			
CO3	Use diffe	erent data types, decision structures, l	oops, arrays, strings ar	nd fu	ncti	ons	of C-
	programi	ming to design a computer program.					
CO4	Apply dynamic memory concepts with pointers.						
CO5	Apply va	Apply various algorithms in solving sorting problems.					
CO6	Apply lir	near data structures like Stack, Queue	es and Trees in organiz	ing a	and t	trave	ersing
	data.		_				

Module	ıle COURSE SYLLABUS		COa	
No	CONTENTS OF MODULE		COS	
1	 Generations and Classification of Computers - Applications of Computers - Basic Organization of a Computer - Number system - Binary, Decimal, Octal and Hexadecimal – Problems Introduction to C Language: Algorithm, Flowchart, Pseudo-code solution to problem, Basic concepts of a C program, Declaration, Assignment & Print statement, Types of operators and expressions, Programming examples and exercise. Branching and Looping: Two-way selection (if, if- else, nested if- else, cascaded if-else), switch statement, ternary operator? Goto, Loops (For, do- while, while) in C, break and continue, programming examples and exercises. 	9	CO1, CO2, CO3	
2	 programming examples and exercises. Functions: User defined functions-function definition, function declaration, function call, Formal and actual parameters, Categories of functions, Passing parameters to functions- Pass by value, Pass by reference, Recursion- types of recursion, programming example s and exercises. Arrays and Strings: Arrays: Classification of arrays, Storing value in arrays, Using arrays with Functions- passing individual elements of array, passing the whole array, Multidimensional arrays-addition and multiplication of matrices, Searching and Sorting-Linear search, Binary search, Bubble 		CO2,CO3, CO5	

	String input and output functions, String handling functions,		
	Arrays of strings, programming examples and Exercises.		
3	 Structures and File Management: Basics of structures- structure data types, type definition, accessing structures, Structure operations, Complex structures-nested structures, structures containing arrays, Array of structures, Structures and Functions, File Management: Creating a file, Declaring file pointer variable, Modes of a file, Opening and closing the files, Input and output operations, Programming examples and exercises. 	9	CO3,CO4
4	Pointers: Pointers concepts, Pointers and functions, Arrays and pointers, address arithmetic, Character pointer and functions, Pointers to pointer, Dynamic allocations methods- malloc(), calloc(), realloc(), free(), Array of pointers, Introduction to Data Structures: Primitive and non-primitive data types, Definition and applications of Stacks, Queues, Linked Lists and Trees	9	CO4,CO6

Text Books:

- "The C Programming Language", BrianW. Kernighan and Dennis M. Ritchie, 2ndEdition, PHI, 2012.
- 2. "Problem Solving with C ", Jacqueline Jones &Keith Harrow, 1stEdition, Pearson2011.
- 3. "Let Us C", by Yashavant Kanetkar, 5th Edition, BPB

Reference Books:

- 1. "Computer Concepts and C Programming", Vikas Gupta, Dreamtech Press2013.
- 2. "Programming with C ", R. S. Bichkar, University Press, 2012.
- 3. "Computer Programming in C ", V. Rajaraman, PHI, 2013.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code EE-ES-106	Course Name: Engineering Graph	Course Name: Engineering Graphics and Design			
Year and	1 st Yr.	Contact hours per w	veek: (2Hrs)		
Semester	1 st Semester	Exam: (3 Hrs)			
Pre-requisit	NITI	Evalua	ation		
of course	INIL.	CIE: 40	SEE: 60		
Course Obje	ctives:				
1. To make	students understand about construction	of various types of Cur	ves and scales.		
2. To make	students understand about orthographic	projections of Point, L	ine, Plane and		
regular s	olids.				
3. To make	students understand about sectional vie	ws and development of	right regular		
solids					
Course Out	omes: On completion of the course, stu	dent would be able to:			
CO1 To le	arn about construction of various types	of Curves and scales.			
CO2 To le	arn about orthographic projections of P	oint, Line and Plane			
CO3 To le	3 To learn about orthographic projections of regular solids.				
CO4 To le	arn about sectional views and developm	ent of right regular soli	ids		

Module	COURSE SYLLABUS			
No	CONTENTS OF MODULE	COS		
1	Introduction to Engineering Drawing covering: Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;			
2	Orthographic Projections covering: Principles of Orthographic Projections-Conventions - Projections of Points and Projection of lines inclined to both planes; Projections of planes inclined Planes - Auxiliary Planes:			
3	 Projections of Regular Solids: those inclined to both the Planes- (Pyramid, Prism, Cone and Cylinder) Auxiliary Views. Floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. 			
4	Section of Solids: Sectional View of simple right regular solids, Development of Surfaces of right regular solids (Pyramid, Prism, Cone and Cylinder)			

Suggested Text/Reference Books:

- 1. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House
- 2. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMHPublication
- 4. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers

		Course Name: Universal Human Values-II:		L	Т	Р	С
Course Code: EE-HSM-108		Understanding Harmony and Eth Conduct	nical Human	3		0	3
Year a	nd	1st year	Contact hours per v	veek	(3H	lrs)	Exam:
Semest	er	2nd Semester	(3hrs.)				
Pre-req	uisite of	Nil	Evalu	valuation			
course			CIE: 40		SE	E: 6	50
Course	Objectives	:					
	1. To	create an awareness on Engineering	Ethics and Human Va	lues			
	2. To	understand social responsibility of an	n engineer.				
	3. To	appreciate ethical dilemma while dis	charging duties in pro	fessio	onal	life.	
Course (Outcomes:	After successful completion of this	course, the students	shou	ld be	e abl	le to
CO1	Understan	d the ethical theories and concepts					
CO2	Understan	d an engineer's work in the context o	of its impact on society				
CO3	Understand and analyse the concepts of safety and risk						
CO4	Understand the professional responsibilities and rights of Engineers						
CO5	Understan	d the concepts of ethics in the global	context.				

Module No	COURSE SYLLABUS ;; CONTENTS OF MODULE	Hrs	COs
1	ENGINEERING ETHICS AND THEORIES Definition, Moral issues, Types of inquiry, Morality and issues of morality, Kohlberg and Gilligan's theories, consensus and controversy, Professional and professionalism, moral reasoning and ethical theories, virtues, professional responsibility, integrity, self-respect, duty ethics, ethical rights, self-interest, egos, moral obligations	8 Hrs	
2	SOCIALETHICSANDENGINEERINGASSOCIALEXPERIMENTATION :Engineering as social experimentation, codes of ethics, Legal aspects of social ethics, the challenger case study, Engineers duty to society and environment.SAFETY:Safety and risk – assessment of safety and risk – risk benefit analysis and reducing risk – the Three Mile Island and Chernobyl case studies. Bhopal gas tragedy.	12 Hrs	
3	RESPONSIBILITIES AND RIGHTS OF ENGINEERS Collegiality and loyalty – respect for authority – collective bargaining – confidentiality – conflicts of interest – occupational crime – professional rights – employee rights – Intellectual Property Rights (IPR) – discrimination	8 Hrs	
4	GLOBAL ISSUES AND ENGINEERS AS MANAGERS, CONSULTANTS AND LEADERS : Multinational Corporations – Environmental ethics – computer ethics – weapons development – engineers as managers – consulting engineers – engineers as expert witnesses and advisors – moral leadership – Engineers as trend setters for global values.	8 Hrs	

Reference Books:

1. Mike Martin and Roland Schinzinger, "Ethics in Engineering". (2005) McGraw-Hill, New York.

2. John R. Boatright, "Ethics and the Conduct of Business", (2003) Pearson Education, New Delhi.

3. Bhaskar S. "Professional Ethics and Human Values", (2005) Anuradha Agencies, Chennai.

4. Charles D. Fleddermann, "Engineering Ethics", 2004 (Indian Reprint) Pearson Education / Prentice Hall, New Jersey.

5. Charles E. Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics – Concepts and cases", 2000 (Indian Reprint now available) Wadsworth Thompson Learning, United States.

Course Code:		Course Name: Mathematics_II		L	Τ	P	С		
EI-BS-	-110	Course Mame. Mathematics-II	Contact hours per	3	1	0	4		
Year and	d	I st Year	Contact hours per	week: (4Hrs)					
Semester	r	II nd Semester	Exam: (3 Hrs)	: (3 Hrs)					
		The course assumes prior	Evalua	uation					
Pre-requ	uisite	knowledge of topics in Matrices,							
of course	e	Differentiation, Partial Fractions,	CIE: 40		SE	E: 6	0		
		Partial Differentiation.							
Course (Objecti	ives:							
1. To e	xplore	the Properties of Matrices.							
2. To k	now va	arious basic Differential equations an	d solve them.						
3. To g	gain kno	owledge on Laplace transformations a	and ability to apply th	nem i	in va	rious	3		
prob	olems								
4. To p	orovide	good understanding of Linear and no	on-linear Partial Diffe	renti	ial ec	juatio	ons.		
Course (Outcon	nes: On completion of the course, stu	dent would be able to):					
CO1	Under	rstand significance and Solve for diff	erent Matrix propertie	es					
CO2	Differ	rentiate between linear and non-linear	differential equation	is an	d sol	ve th	nem.		
CO3	Under	rstand and apply Laplace Transforma	tions and use them to	solv	ve				
	Differ	prential equations.							
CO4	Differ	rentiate between linear and non-linear	r partial differential e	quat	ions,	forn	n		
	them	related to in hand problems and solve	them.	-					

Module	COURSE SYLLABUS	Hrc	COs
No	CONTENTS OF MODULE	1115	COS
1	Matrices & its Applications: inverse using elementary transformations, consistency of linear system of equations, linear and orthogonal transformations, Eigen values and Eigen vectors, properties of Eigen values.	6	CO1
2	Ordinary Differential Equations & its Applications: Exact differential equations. Equations reducible to exact differential equations. Linear differential equations of second and higher order: complementary function and particular integral, method of variation of parameters to find particular Integral, Cauchy and Legendre linear differential equations, Simultaneous linear Differential equation with constant co-efficients.		
3	Laplace Transforms and its Applications: Transforms of derivatives, transforms of integrals, multiplication by t ⁿ , division by t. Evaluation of integrals by Laplace transforms. Laplace transform of Unit step function, unit impulse function and periodic function. Inverse Laplace transforms , convolution theorem, application to linear differential equations	6	CO3
4	Partial Differential Equations and Its Applications: Formation of partial differential equations, Lagrange's linear partial differential equation, First order non-linear partial differential equation, Method of separation of variables and its applications.	6	CO4

TEXT BOOKS:

- 1. Advanced Engineering Mathematics: E. Kreyszig, 10th Edition, John Wiley & son
- 2. Higher Engineering Mathematics: B.S. Grewal. 43rd Edition, Khanna Publication **REFERENCE BOOKS:**
- 1. Engineering Mathematics Part-I: S.S. Sastry, 4th Edition, PHI.
- 2. Advanced Engineering Mathematics: R.K. Jain, S.R.K. Iyengar, 3rd Edition, Narosa Publications

3. Advanced Engg. Mathematics: Michael D. Greenberg, 2nd Edition, Pearson Publications. **Note for Examiner(s)**: Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PRES-02		Course Name: Semiconductor Physics Lab		L T P C - - 2 1
Year and		1 st Yr.	Contact hours per week: (2Hrs)	
Semester		2 nd Semester	Exam: (3 Hrs)	
Pre-rec	luisite	NII	Evalua	tion
of course		INIL	CIE: 20	SEE: 30
Course	Objectiv	es:		
1. Abi	lity to ide	ntify the basic electronic components	s.	
2. Abi	lity to wo	rk on the basic electronic equipments	8.	
3. Abi	lity to get	the electronic circuit concepts.		
4. Abi	lity to des	ign the basic circuit in electronics.		
Course	Outcome	es: On completion of the course, stud	lent would be able to:	
CO1	CO1 Well verse with the use of the electronic components and equipments.			
CO2	CO2 Well verse with the fundamentals and the parameters of components related to their			related to their
	fabrication and construction.			
CO3	O3 Able to start with the basic design concepts circuits operations.			

Expt.	course syllabus	
No	CONTENTS OF MODULE	COS
	Familiarization of the basic electronic components and electronic lab	
1	equipments like Functional Generators, CRO, Power supplies, mustimeters	
	etc.	
2	Draw and study the forward and reverse characteristics of the PN Diode.	
3	To draw and study the clipping circuits in various modes.	
4	To draw and study the clamping circuits in positive and negative mode.	
5	To draw and study the differentiating and integrating circuits.	
6	To draw and study the low pass and high pass filters.	
7	To design and study the half and full wave rectifier	
0	To design and study the effect of various filter circuits on rectifiers	
0	performance.	
0	To study the characteristics of pnp and npn transistors in CE mode and	
9	determine h parameters from characteristics.	CO1,
10	To study the characteristics of pnp and npn transistors in CB mode and	CO2,
10	determine h parameters from characteristics.	CO3
11	To design and study the RC coupled CE amplifier and measure its voltage	
11	and current gain.	
12	To design and study Hartley oscillator.	
13	To design and study Phase shift oscillator.	
14	To measure the effect of negative feedback on amplifier in RC coupled current series mode.	

Course Code:		Course Name: Programming for Problem Solving Lab				С	
EE-PRES-04		••••••••••••••••••••••••••••••••••••••	1 1001 0 11 2017 1118 20 10	0	0	2	1
Year and		1 st Year	Contact hours per week: (2Hrs))	
Semester		2 nd Semester	Exam: (3hrs.)				
Pre-requisite of		NII	Evalu	atio	n		
course		NIL	CIE: 20		SE	E: 3	30
Course Objectives:							
1. To v	1. To write C programs to solve the problems						
2. To c	compile ar	nd execute programs in C					
3. To i	dentify th	e syntax errors and semantic errors					
4. To c	lebug the	program in C					
5. To v	write C pro	ograms to solve the problems					
Course C	Jutcomes	: On completion of the course, stud	ent would be able to:				
CO1	Use flow	wcharts to solve computational prob	olems.				
CO2	Create and develop algorithms with arithmetic and logical operators.						
CO3	Analyse and implement an algorithm with data types, decision structures, loops,						
	arrays, strings and functions.				- ·		
CO4	Design	and develop algorithms using prede	fined or user-defined	func	tion	s to	solve
	problems on sorting, searching and file processing.						

Expt.	COURSE SYLLABUS	COs	
No	CONTENTS OF MODULE	COS	
1	Write a C program to compute roots of quadratic equation $ax^2+bx+c=0$, where		
1	a, b, and c are three coefficients of a quadratic equation are inputs.		
2	Design and develop an algorithm to find the <i>reverse</i> of an integer number.		
	Design and develop an algorithm to check whether given number is		
2	PALINDROME or NOT, Implement a C program for the developed algorithm		
5	that takes an integer number as input and output the reverse of the same with		
	suitable messages. Ex: Num: 2019, Reverse: 9102, Not a Palindrome.		
4	Design and develop a c program to implement simple calculator using switch		
4	case statement.		
5	Draw the flowchart and Write a C Program to compute Sin(x) using Taylor		
5	series approximation given by $Sin(x) = x - (x^{3}/3!) + (x^{5}/5!) - (x^{7}/7!) + \dots$		
6	Develop, implement and execute a C program to search a Number in a list		
0	using <i>linear searching</i> Technique.		
7	Develop an algorithm, implement and execute a C program that reads N	CO3, CO4	
/	integer numbers and arrange them in ascending order using Bubble Sort.	0.04	
8	Design and develop a C program to read and print a matrix and check whether		
0	a given Matrix is a sparse Matrix or not.		
9	Write and execute a C program to display Pascal Triangle using for loop.		
	Write a C program to implements the following string manipulation functions		
10	till the use wishes to continue (infinite loop): (i) <i>strcpy</i> () (ii) <i>srrlen</i> () (iii) <i>strrev</i>		
10	() (iv) strcmp() (v) strcat().		
	Read a sentence and print frequency of vowels and total count of consonants.		
	Design and develop a C function $RightRotate(x, n)$ that takes two integers x		
11	and <i>n</i> as input and returns value of the integer <i>x</i> rotated to the right by <i>n</i>		
	positions. Assume the integers are unsigned.		

	Draw the flowchart and write a <i>recursive</i> C function to find the factorial of a			
10	number, $n!$, define by $fact(n)=1$, if $n=0$. Otherwise $fact(n) = n*fact(n-1)$.			
12	Using this function, write a C program to compute the binomial coefficient			
	${}^{n}C_{r}$. Tabulate the results for different values of <i>n</i> and <i>r</i> with suitable messages			
	Given two university information files such as "studentname.txt" and "usn.txt"			
	that contains students Name and USN respectively. Write a C program to			
	create a new file called "output.txt" and copy the content of files			
12	"studentname.txt" and "usn.txt" into output file in the sequence shown below.			
15	Display the contents of output file "output.txt" on to the screen.			
	Student Name USN			
	Name 1 USN1			
	Name 2 USN2			
	a. Write a C program to maintain a record of n student details using an array			
	of structures with four fields (Roll number, Name, Marks, and Grade).			
14	Assume appropriate data type for each field. Input & Print the members of			
14	the structure			
	b. Write a C program to take 2 structures HH:MM: SS as T1 & T2 & display			
	the time difference as structure as T3.			
15	Write a C program using pointers to compute the sum, mean and standard			
13	deviation of all elements stored in an array of n real numbers.			

Course Code EE-PRES-06	Course Name: Engineering Graph	Course Name: Engineering Graphics and Design labLTPC21			
Year and	1 st Yr.	Contact hours per	week: (2Hrs)		
Semester	2 nd Semester	Exam: (3 Hrs)			
Pre-requisite	NII	Evalu	ation		
of course	INIL	CIE: 20	SEE: 30		
Course Obje	ctives:				
1. To ma	ke students understand about construction	on of various types of	Curves and scales.		
2. To make	students understand about orthographic	projections of Point, l	Line, Plane and		
regular so	lids.				
3. To make	students understand about sectional view	ws and development o	of right regular		
solids					
Course Outc	Course Outcomes: On completion of the course, student would be able to:				
CO1 To le	CO1 To learn about construction of various types of Curves and scales.				
CO2 To le	CO2 To learn about orthographic projections of Point, Line and Plane				
CO3 To learn about orthographic projections of regular solids.		gular solids.			
CO4 To learn about sectional views and development of right regular solids			lids		

Module No	COURSE SYLLABUS CONTENTS OF MODULE			
1	Introduction to Engineering Drawing covering: Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;			
2	Orthographic Projections covering: Principles of Orthographic Projections-Conventions - Projections of Points and Projection of lines inclined to both planes; Projections of planes inclined Planes - Auxiliary Planes;	CO1, CO2, CO3,		
3	 Projections of Regular Solids: those inclined to both the Planes- (Pyramid, Prism, Cone and Cylinder) Auxiliary Views. Floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. 			
4	Section of Solids: Sectional View of simple right regular solids, Development of Surfaces of right regular solids (Pyramid, Prism, Cone and Cylinder)			

Suggested Text/Reference Books:

- 5. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House
- 6. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education

7. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMHPublication

Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers

Course Code: Course Nemes Menufacturing Drocosses I T D C				
Course Code:	Course Name: Manufacturing Processes -			
EE-PRES-08	Workshop Lab		2 1	
Year and	1 st Yr.	Contact hours per	r week: (2Hrs)	
Semester	2 nd Semester	Exam: (3 Hrs)		
Pre-requisite of	NII	Evalı	uation	
course		CIE: 20	SEE: 30	
Course Objectives:				
1. Upon completion	of this course, the students	will gain knowled	ge of the different	
manufacturing pr	ocesses which are commonly	employed in the in	dustry, to fabricate	
components using	different materials.		-	
2. Upon completion	of this laboratory course, stude	ents will be able to fa	abricate	
components with	their ownhands.			
3. They will also get	practical knowledge of the dir	nensional accuracies	s and dimensional	
tolerances possibl	e with different manufacturing	processes.		
4. By assembling dif	fferent components, they will b	e able to produce sn	nall devices of their	
interest.		_		
Course Outcomes: On completion of the course, student would be able to:				
CO1 To provide the	CO1 To provide the basics of manufacturing processes			
CO2 To provide w	vorking knowledge of lathe ma	chines		
CO3 To provide th	CO3 To provide the study of measuring tools			
CO4 To study the machine tools				

Expt.	COURSE SYLLABUS			
No	CONTENTS OF MODULE	COS		
	Lectures & videos: Detailed contents			
	(i.) Manufacturing Methods- casting, forming, machining, joining,			
	advanced manufacturing methods (2 lectures)			
1	(ii.) CNC machining, Additive manufacturing (1lecture)			
1	(iii.) Fitting operations & power tools (1lecture)			
	(iv.) Plastic molding, glass cutting (1lecture)			
	(v.) Metal casting (1lecture)			
	(vi.) Welding (arc welding & gas welding), brazing (1 lecture)			
2	To study different types of measuring tools used in metrology and determine			
	least counts of vernier calipers, micrometers and Vernier height gauges.	001		
3	To study different types of machine tools (lathe, shape or planer or slotter,			
5	milling, drilling machines)			
Δ	To prepare a job on a lathe involving facing, outside turning, taper turning,			
-	step turning, radius making and parting-off.			
5	To study different types of fitting tools and marking tools used in fitting			
5	practice.			
6	To prepare lay out on a metal sheet by making and prepare rectangular tray,			
0	pipe shaped components e.g. funnel.			
7	To prepare joints for welding suitable for butt welding and lap welding.			
8	To perform pipe welding.			
0	To study various types of carpentry tools and prepare simple types of at least	1		
9	two wooden joints.			
10	To prepare simple engineering components/ shapes by forging.	1		

11	To prepare mold and core assembly, to put metal in the mold and fettle the	
	casting.	
12	To prepare horizontal surface/ vertical surface/ curved surface/ slots or V-	
	grooves on a shaper/ planner.	
13	To prepare a job involving side and face milling on a milling machine.	

Text Books:

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 2. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition,2002.
- **3.** Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- **4.** Roy A. Lindberg, "Processes and Materials of Manufacture", 4thedition, Prentice Hall India, 1998.
- **5.** Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017.

Course Co EE-PRES	ode: -10	Course Name: Idea Workshop/ Lab		L T P C - - 2 1
V 10 4		1 st Yr.	Contact hours per	week: (2Hrs)
rear and	Semester	2 nd Semester	Exam: (3 Hrs)	
Pre-requis	site of	NIT	Eval	uation
course		NIL	CIE: 50	SEE:
Course O	bjectives:			
1. To provide all facilities under one roof for the conversion of an idea into a prototype.				
2.Training	in the 21st c	entury skills- critical thinking	, problem-solving, collab	oration etc.
3.Making engineering students more curious, imaginative and creative; engineering education more engaging				
4.IDEA lat	b will be cent	tered around activities and eve	ents to promote multidisc	iplinary education and
research				
Course Outcomes: On completion of the course, student would be able to:				
CO1	Students w	ill be able to earn skill of PCE	Designing	
CO2	Students wi	Il be learning to write algorithms		
CO3	Students w	Il be able to earn skill of Artificial Intelligence		

List of Experiments

- 1. Circuits on Bread board to PCB transition.
- 2. To design and fabricate PCB for electronic circuits as micro project (any one)
 - a) Power Supply
 - b) 555 Timer based circuits
 - c) Op-amp based circuits
 - d) Amplifiers
 - e) Any other circuit of similar nature
- 3. To develop algorithms in any computer language
 - a) Complex Mathematical operations
 - b) Matrix transformations
 - c) Logic gates
 - d) Numerical Methods –Interpolation (forward, backward, leap frog,) -Approximations
- 4. To deploy and generate AI models to implement various tasks (any two)
 - a) Image classification
 - b) Voice swap
 - c) Image generation
 - d) Neural style transfer
 - e) Video to text conversion
 - f) Graphics design generation
 - g) Music generation
 - h) any other application of similar nature

The students are required to undertake one/two task from each of the experiments in the above list and demonstrate it to score marks in the evaluation. All the projects can be undertaken on open source platforms. Any other emerging area projects may be added to the list as per the availability of resources and expertise in the University Department.

Appendix –I Detailed first year curriculum contents Guide to Induction Program

1. Introduction

(Induction Program was discussed and approved for all colleges by AICTE in March 2017. It was discussed and accepted by the Council of IITs for all IITs in August 2016. It was originally proposed by a Committee of IIT Directors and accepted at the meeting of all IIT Directors in March 2016.¹This guide has been prepared based on the Report of the Committee of IIT Directors and the experience gained through its pilot implementation in July 2016 as accepted by the Council of IITs. Purpose of this document is to help institutions in understanding the spirit of the accepted Induction Program and implementing it.)

Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work formational needs and beyond.

The graduating student must have knowledge and skills in the area of his study. However, he must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he would understand and fulfill his responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.

There is a mad rush for engineering today, without the student determining for himself his interests and his goals. This is a major factor in the current state of demotivation towards studies that exists among UG students.

The success of gaining admission into a desired institution but failure in getting the desired branch, with peer pressure generating its own problems, leads to a peer environment that is demotivating and corrosive. Start of hostel life without close parental supervision at the same time, further worsens it with also a poor daily routine.

To come out of this situation, a multi-pronged approach is needed. One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character.

2. Induction Program

When new students enter an institution, they come with diverse thoughts, backgrounds and preparations. It is important to help them adjust to the new environment and inculcate in them the ethos of the institution with a sense of larger purpose. Precious little is done by most of the institutions, except for an orientation program lasting a couple of days.

We propose a 3-week long induction program for the UG students entering the institution, right at the start. Normal classes start only after the induction program is over. Its purpose is to make the students feel comfortable in the in new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.²

Department of Instrumentation, KUK, (From 2024-25 for UTD)

¹A Committee of IIT Directors was setup in the 152nd Meeting of IIT Directors on 6th September 2015 at IIT Patna, on how to motivate undergraduate students at IITs towards studies, and to develop verbal ability. The Committee submitted its report on 19th January 2016. It was considered at the 153rd Meeting of all IIT Directors at IIT Mandi on 26 March 2016, and the accepted report came out on 31 March 2016. The Induction Program was an important recommendation, and its pilot was implemented by three IITs, namely, IIT(BHU), IIT Mandi and IIT Patna in July 2016. At the 50th meeting of the Council of IITs on 23 August 2016, recommendation on the Induction Program and the report of its pilot implementation were discussed and the program was accepted for all IITs.

²Induction Program as described here borrows from three programs running earlier at different institutions: (1) Foundation Program running at IIT Gadhinagar since July 2011, (2) Human Values course running at IIIT

The time during the Induction Program is also used to rectify some critical lacunas, for example, English background, for those students who have deficiency in it. The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

- (i) IIT Gandhinagar was the first IIT to recognize and implement a special 5-week Foundation Program for the incoming 1st year UG students. It took a bold step that the normal classes would start only after the five week period. It involved activities such as games, art, etc., and also science and other creative workshops and lectures by resource persons from outside.
- (ii) IIIT Hyderabad was the first one to implement a compulsory course on Human Values. Under it, classes were held by faculty through discussions in small groups of students, rather than in lecture mode. Moreover, faculty from all departments got involved in conducting the group discussions under the course. The content is non-sectarian, and the mode is dialogical rather than sermonizing or lecturing. Faculty were trained beforehand, to conduct these discussions and to guide students on issues of life.
- (iii) Counselling at some of the IITs involves setting up mentor-mentee network under which 1st year students would be divided into small groups, each assigned a senior student as a student guide, and a faculty member as mentor. Thus, a new student gets connected to a faculty member as well as a senior student, to whom he/she could go to in case of any difficulty whether psychological, financial, academic, or otherwise.

The Induction Program defined here amalgamates all the three into an integrated whole, which leads to its high effectiveness in terms of building physical activity, creativity, bonding, and character. It develops sensitivity towards self and one's relationships, builds awareness about others and society beyond the individual, and also in bonding with their own batch-mates and a senior student besides a faculty member. Scaling up the above amalgamation to an intake batch of 1000 plus students was done at IIT(BHU), Varanasi starting from July 2016.

Physical Activity

This would involve a daily routine of physical activity with games and sports. It would start with all students coming to the field at 6 am for light physical exercise or yoga. There would also be games in the evening or at other suitable times according to the local climate. These would help develop teamwork. Each student should pick one game and learn it for three weeks. There could also be gardening or other suitably designed activity where labour yields fruits from nature.

Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it every day for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, flow into engineering design later.

Universal Human Values

It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting staff in the hostel and department, be sensitive to others, etc. Need for character building has been underlined earlier. A module in Universal Human Values

Hyderabad since July 2005, and (3) Counselling Service or mentorship running at several IITs for many decades. Contribution of each one is described next.

provides the base.

Methodology of teaching this content is extremely important. It must not be through do's and don'ts, but get students to explore and think by engaging the mini dialogue. It is best taught through group discussions and real life activities rather than lecturing. The role of group discussions, however, with clarity of thought of the teachers cannot be over emphasized. It is essential for giving exposure, guiding thoughts, and realizing values.

The teachers must come from all the departments rather than only one department like HSS or from outside of the Institute. Experiments in this direction at IIT (BHU) are noteworthy and one can learn from them.³

Discussions would be conducted in small groups of about 20 students with a faculty member to reach. It is too pen thinking towards these. If, Universal Human Values discussions could even continue for rest of the semester as a normal course, and not stop with the induction program.

Besides drawing the attention of the student to larger issues of life, it would build relationships between teachers and students which last for their entire4-year stay and possibly beyond.

Literary

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

Proficiency Modules

This period can be used to overcome some critical lacunas that students might have, for example, English, computer familiarity etc. These should run like crash courses, so that when normal courses start after the induction program, the student has overcome the lacunas substantially. We hope that problems arising due to lack of English skills, wherein students start lagging behind or failing in several subjects, for no fault of theirs, would, hopefully, become a thing of the past.

Lectures by Eminent People

This period can be utilized for lectures by eminent people, say, once a week. It would give the students exposure to people who are socially active or in public life.

Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

Familiarization to Dept./Branch &Innovations

Thestudentsshouldbetoldaboutdifferentmethodofstudycomparedtocoachingthat is needed at IITs. They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

³The Universal Human Values Course is a result of along series of experiments at educational institutes starting from IIT-Delhi and IIT Kanpur in the 1980s and 1990s as an elective course, NIT Raipur in late 1990s as a compulsory one-week off campus program. The courses at IIT (BHU) which started from July 2014, are taken and developed from two compulsory courses at IIIT Hyderabad first introduced in July 2005.

3. Schedule

The activities during the Induction Program would have an Initial Phase, a Regular Phase and a Closing Phase. The Initial and Closing Phases would be two days each.

Indui i hube		
Time	Activity	
Day 0	Students arrive - Hostel allotment.	
Whole day	(Preferably do pre-allotment)	
Day 1		
09:00am-03:00pm	Academic registration	
04:30 pm -06:00pm	Orientation	
Day 2		
09:00 am - 10:00 am	Diagnostic test (for English etc.)	
10:15 am - 12:25 pm	Visit to respective depts.	
12:30 pm - 01:55 pm	Lunch	
02:00 pm - 02:55 pm	Director's address	
03:00 pm - 03:30 pm	Interaction with parents	
03:30 pm - 05:00 pm	Mentor-mentee groups - Introduction within group.	
_	(Same as Universal Human Values groups)	

3.1 Initial Phase

3.2 Regular Phase

AftertwodaysisthestartoftheRegularPhaseofinduction.Withthisphasetherewould be regular program to be followed every day.

3.2.1 Daily Schedule

Some of the activities are on a daily basis, while some others are at specified periodswithintheInductionProgram.Wefirstshowatypicaldailytimetable.

	Sessn. Time	Activity	Remarks	
	Day 3 onwards			
	06:00am	Wake up call		
Ι	06:30 am -07:10am	Physical activity (mild exercise/yoga)		
	07:15am-08:55am	Bath, Breakfast, etc.		
П	09:00 am -10:55am	Creative Arts /Universal Human Value	Half the groups do Creative Arts	
Ш	11:00 am -12:55pm	Universal Human Values /Creative Arts	Complementary alternate	
	01:00pm-02:25pm	Lunch		
IV	02:30 pm - 03:55 pm	Afternoon Session	See below.	
v	04:00 pm - 05:00 pm	Afternoon Session	See below.	
	05:00 pm - 05:25 pm	Break / light tea		
VI	05:30 pm - 06:45 pm	Games / Special Lectures		
	06:50 pm - 08:25 pm	Rest and Dinner		

VII	08:30 pm pm	- 09:25	Informal interactions (in hostels)	
-----	----------------	---------	------------------------------------	--

Sundays are off. Saturdays have the same schedule as above or have outings.

3.2.2 Afternoon Activities(Non-Daily)

The following five activities are scheduled at different times of the Induction Program, and are not held daily for everyone:

- 1. Familiarization to Dept./Branch & Innovations
- 2. Visits to Local Area
- 3. Lectures by Eminent People
- 4. Literary
- 5. ProficiencyModules

Here is the approximate activity schedule for the afternoons (may be changed to suit local needs):

Activity	Session	Remarks	
Familiarization with	IV	For 3 days (Day 3 to 5)	
Dept./Branch & Innovations		•	
Visits to Local Area	IV V and VI	For 3 days - interspersed (e.g. 3	
VISIts to Local Alea		Saturdays)	
Lectures by Eminent People	IV	As scheduled - 3-5 lectures	
Literary (Play/Book Reading	157	Een 2 5 down	
/ Lecture)	1 V	For 5-5days	
	V	Daily, but only for those who need	
PronciencyModules		it	

5.5 Closing Phase		
Time	Activity	
Last But One Day		
08:30 am -12noon	Discussions and finalization of presentation within each group	
02:00 am -05:00pm	Presentation by each group in front of4other groups besides their own (about 100 students)	
Last Day		
Whole day	Examinations (if any). May be expanded to last 2 days, in case needed.	

3.3 Closing Phase

3.4 Follow Up after Closure

Aquestioncomesupastowhatwouldbethefollowupprogramaftertheformal3-week Induction Program is over? The groups which are formed should function as mentor- mentee network. A student should feel free to approach his faculty mentor or the student guide, when facing any kind of problem, whether academic or financial or psychological etc. (For every 10 undergraduate first year students, there would be a senior student as a *student guide, and* forevery20 students, there would be a *faculty mentor*.) Such a group should remain for the entire 4-5 year duration of the stay of the student. Therefore, it would be good to have groups with the students as well as teachers

from the same department/discipline⁴.

Here we list some important suggestions which have come up and which have been experimented with.

3.4.1 Follow-up after Closure – Same Semester

It is suggested that the groups meet with their faculty mentors once a month, within the semester after the3-week Induction Program is over. This should be a scheduled meeting shown in the timetable. (The groups are of course free to meet together on their own more often, for the student groups to be invited to their faculty mentor's home for dinner or tea, nature walk, etc.)

3.4.2 Follow Up – Subsequent Semesters

It is extremely important that continuity be maintained in subsequent semesters. It is suggested that at the start of the subsequent semesters (up to fourth semester), three days be set aside for three full days of activities related to follow up to Induction Program. The students be shown inspiring films, do collective artwork, and group discussions be conducted. Subsequently, the groups should meet atleast once a month.

4. Summary

Engineering institutions were set up to generate well trained manpower in engineering with a feeling of responsibility towards one self, one's family, and society. The incoming undergraduate students are driven by their parents and society to join engineering without understanding their own interests and talents. As a result, most students fail to linkup with the goals of their own institution.

The graduating student must have values as a human being, and knowledge and meta- skills related to his/her profession as an engineer and as a citizen. Most students who get demotivated to study engineering or their branch, also lose interest in learning.

The *Induction Program* is designed to make the newly joined students feel comfortable, sensitize them towards exploring their academic interests and activities, reducing competition and making them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and building of character.

The Universal Human Values component, which acts as an anchor, develops awareness and sensitivity, feeling of equality, compassion and oneness, draw attention to society and nature, and character to follow through. It also makes them reflect on their relationship with their families and extended family in the college (with hostel staff and others). It also connects students with each other and with teachers so that they can share any difficulty they might be facing and seek help. **References:**

Motivating UG Students Towards Studies, Rajeev Sangal, IITBHU Varanasi, Gautama Biswas, IIT Guwahati, Timothy Gonzales, IIT Mandi, Pushpak Bhattacharya, IIT Patna, (Committee of IIT Directors), 31 March 2016, IIT Directors' Secretariat, IIT Delhi.

Contact:

Prof. Rajeev Sangal, Director, IIT(BHU), Varanasi (director@iitbhu.ac.in)

⁴We are aware that there are advantages in mixing the students from different depts. However, in mixing, it is our experience that the continuity of the group together with the faculty mentor breaks down soon after. Therefore, the groups be from the same dept. but hostel wings have the mixed students from different depts. For example, the hostel room allotment should be in alphabetical order irrespective of dept.