# Kurukshetra University, Kurukshetra

(Established by the State Legislature Act XII of 1956) ('A++' Grade, NAAC Accredited)

> ।। योगस्थः कुरु कर्माणि।। समबुद्धि व योग युक्त होकर कर्म करो

(Perform Actions while Stead fasting in the State of Yoga)



# **DEPARTMENT OF INSTRUMENTATION (DOI)**

CBCS CURRICULUM (2024 -25) Program Name: B. Tech.-Electrical Engineering (For the Batches Admitted from 2024-2025)

# OUTCOME BASED EDUCATION SYSTEM



## CBCS CURRICULUM (2024 -25) Program Name: B. Tech.-Electrical Engineering (For the Batches Admitted from 2024-2025)

# VISION

Be globally acknowledged as a distinguished centre of academic excellence.

# MISSION

To prepare a class of proficient scholars and professionals with ingrained human values and commitment to expand the frontiers of knowledge for the advancement of society.

# **DEPARTMENT VISION AND MISSION:**

### VISION

• To become a model department as a Centre of quality education, research with innovation and recognition at National and International level for serving society.

### MISSION

- M1: To provide quality education to aspiring young minds for improving their skills, inculcating values, creating leadership qualities and enhance research with innovative methods.
- M2: To produce young engineers capable to be utilized in the areas of New Technological Design, Environment, ethics and sustainable technologies.
- M3: To develop Teaching-Learning methods which can produce socially committed good professional human being who can contribute effectively in Nation building and represent Country Internationally.

# Mapping of University Vision and Mission to Department Vision and Mission

Acclaimed as modal Centre of Learning and Research by

| University Vision and Mission                                                                          | Department Vision and<br>Mission |
|--------------------------------------------------------------------------------------------------------|----------------------------------|
| High quality knowledge delivery through state of art infrastructure and ethical values to the students | Yes                              |
| Students excellence will make them professionals and innovators emerging as global leaders             | Yes                              |
| Research and development will help in furtherance of Faculty knowledge                                 | Yes                              |

### **Programme Educational Objectives (PEOs):**

The Department of Instrumentation in consultation with various stakeholders have formulated the Programme Educational Objectives (PEO's) that are broad statements that describe the career and professional accomplishments that the program is preparing its graduates to achieve in few years,



subsequent to receiving the degree. The PEO's of the B. Tech. programme in Electrical Engineering are as follows:

- **PEO1:**The graduates will become competent by applying their technical and managerial skills.
- **PEO2:**The graduates will be able to adapt to any environment and succeed in higher positions in contemporary rapidly evolving technologies in Electrical engineering field.
- **PEO3:**The graduates will engage themselves in the life-long learning by pursuing higher education and participation in research and development activities to meet all challenges to transform them as responsible citizens of the nation

### Program Specific Outcomes (PSO's):

- **PSO1:** Clearly understand the fundamental concepts of Electrical Engineering
- **PSO2:** Graduates will be able to formulate and solve real life problems in the area of Electrical Engineering
- **PSO3:** Graduate will possess the skills to communicate effectively in both oral and written forms, demonstrating the practice of professional ethics, and responsive to societal and environmental needs.

### PEOs to Mission statement mapping

| PEO's       | MISSION OF THE DEPARTMENT |    |    |  |  |  |  |  |  |  |
|-------------|---------------------------|----|----|--|--|--|--|--|--|--|
| <b>FEUS</b> | M1                        | M2 | M3 |  |  |  |  |  |  |  |
| PEO1        | 3                         | 3  | 1  |  |  |  |  |  |  |  |
| PEO2        | 2                         | 3  | 2  |  |  |  |  |  |  |  |
| PEO3        | 2                         | 2  | 3  |  |  |  |  |  |  |  |

### **Program Outcomes (PO) with Graduate Attributes**

Programme Outcomes are attributes of the graduates from the programme that are indicative of the graduates' ability and competence to work as an engineering professional upon graduation. Program Outcomes are statements that describe what students are expected to know or do by the time of graduation, they must relate to knowledge and skills that the students acquire from the programme. The achievement of all outcomes indicates that the student is well prepared to achieve the program educational objectives down the road. The Department of Instrumentation has following twelve PO's. The course syllabi and the overall curriculum are designed to achieve these outcomes:

| S. No | Graduate                                  | Program Outcomes (POs)                                                                                                                                                                            |
|-------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Attributes                                |                                                                                                                                                                                                   |
| 1     | Engineering<br>Knowledge                  | <b>PO1:</b> Able to understand the fundamentals of mathematics, science, Electrical Engineering and apply them to provide solution of complex engineering problems.                               |
| 2     | Problem Analysis                          | <b>PO2:</b> Ability to analyze, identify, formulate and solve engineering problems in Electrical Engineering using basic fundamental principles of mathematics and science.                       |
| 3     | Design and<br>Development of<br>Solutions | <b>PO3:</b> Design a system, component or process to meet the desired needs and standards within realistic constraints such as public health and safety, social and environmental considerations. |
| 4     | Investigation of<br>Problem               | <b>PO4:</b> Design and conduct experiments, as well as do research, analyze and interpret data and give clear solutions.                                                                          |
| 5     | Modern Tool usage                         | <b>PO5:</b> Use and learn the recent techniques, skills and modern engineering and IT tools necessary for engineering practice with an understanding of the limitations.                          |
| 6     | Engineer and society                      | <b>PO6</b> : To give basic knowledge of social, economic, safety and cultural issues relevant to professional engineering.                                                                        |



| 7  | Environment and sustainability       | <b>PO7:</b> To impart knowledge related to the design and development of modern systems which are environmentally sensitive and to understand the importance of sustainable development.                                                                                                      |  |  |  |  |  |
|----|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 8  | Ethics                               | <b>PO8:</b> Apply ethical principles and professional responsibilities in engineering practice.                                                                                                                                                                                               |  |  |  |  |  |
| 9  | Individual & team<br>work            | <b>PO9:</b> Ability to visualize and function as an individual and as a member in a team of a multi-disciplinary environment.                                                                                                                                                                 |  |  |  |  |  |
| 10 | Communication                        | <b>PO10:</b> Ability to communicate effectively on complex engineering ideas to the engineering community & the society at large. (i.e. being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions) |  |  |  |  |  |
| 11 | Lifelong learning                    | <b>PO11:</b> To impart education to learn and to engage in independent and life – long learning in the technological change.                                                                                                                                                                  |  |  |  |  |  |
| 12 | Project<br>management and<br>finance | <b>PO12:</b> Ability to handle administrative responsibilities, manage projects & handle finance related issues in a multidisciplinary environment.                                                                                                                                           |  |  |  |  |  |

# Mapping of PEO's with PO's

| S.<br>No. | Program Educational<br>Objectives                                                                                                                                                                                                                           | P01 | P02 | P03 | P04 | P05 | P06 | P07          | P08          | P09 | P010 | P011 | P012 | PS01 | PSO2 | PSO3         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|--------------|--------------|-----|------|------|------|------|------|--------------|
| 1         | The graduates will become<br>competent by applying their<br>technical and managerial<br>skills.                                                                                                                                                             |     |     |     |     |     |     |              |              |     |      |      |      |      |      |              |
| 2         | The graduates will be able to<br>adapt to any environment and<br>succeed in higher positions in<br>contemporary rapidly<br>evolving technologies in<br>Electrical engineering field.                                                                        |     |     |     |     |     |     |              |              |     |      |      |      |      |      | $\checkmark$ |
| 3         | The graduates will engage<br>themselves in the life-long<br>learning by pursuing higher<br>education and participation in<br>research and development<br>activities to meet all<br>challenges to transform them<br>as responsible citizens of the<br>nation |     |     |     |     |     |     | $\checkmark$ | $\checkmark$ |     |      |      |      |      |      | $\checkmark$ |



# Kurukshetra University Kurukshetra CBCS CURRICULUM (2024 -25)

### Under Graduate Degree Program Name: B. Tech. (Electrical Engineering) Definition of Credit:

| 1 Hour Lecture (L) per week   | 1 credit    |
|-------------------------------|-------------|
| 1 Hour Tutorial (T) per week  | 1 credit    |
| 1 Hour Practical (P) per week | 0.5 credits |
| and/or                        |             |
| 2 Hours Practical(Lab)/week   | 1 credit    |

### **Course code and definition:**

| Category of        | Definitions                                                      |  |  |  |  |  |  |  |
|--------------------|------------------------------------------------------------------|--|--|--|--|--|--|--|
| Course/ Code       |                                                                  |  |  |  |  |  |  |  |
| L                  | Lecture                                                          |  |  |  |  |  |  |  |
| Т                  | Tutorial                                                         |  |  |  |  |  |  |  |
| Р                  | Practical                                                        |  |  |  |  |  |  |  |
| С                  | Credit                                                           |  |  |  |  |  |  |  |
| CIE                | Continuous Internal Evaluation                                   |  |  |  |  |  |  |  |
| SEE                | Semester End Examination                                         |  |  |  |  |  |  |  |
| BS                 | Basic Science Courses                                            |  |  |  |  |  |  |  |
| ES                 | Engineering Science Courses                                      |  |  |  |  |  |  |  |
| HSM                | Humanities, Social Sciences and Management Courses               |  |  |  |  |  |  |  |
| EE                 | Electrical Engineering                                           |  |  |  |  |  |  |  |
| PC                 | Professional core courses                                        |  |  |  |  |  |  |  |
| PE                 | Professional Elective courses                                    |  |  |  |  |  |  |  |
| OE                 | Open Elective courses                                            |  |  |  |  |  |  |  |
| PRBS/ PRPC/        | Practical Basic Science/Professional Core/                       |  |  |  |  |  |  |  |
| PRES/PRPE/         | Engineering Science/ Program Elective/                           |  |  |  |  |  |  |  |
| <b>PROE/ PRHSM</b> | Open Elective/Humanities, Social Sciences and Management Courses |  |  |  |  |  |  |  |
| MC                 | Mandatory courses                                                |  |  |  |  |  |  |  |
| PROJ               | Project                                                          |  |  |  |  |  |  |  |



|             |                        |    | Те | eachir | g Sch | edule         | Allot | ment of | marks | Exam                |
|-------------|------------------------|----|----|--------|-------|---------------|-------|---------|-------|---------------------|
| Course No.  | Course Title           | С  | L  | Т      | Р     | Cont.<br>Hrs. | CIE   | SEE     | Total | Duration<br>in Hrs. |
| EE-ES-101   | Basic Electrical       | 4  | 3  | 1      | -     | 4             | 40    | 60      | 100   | 3 Hrs               |
|             | Engineering            |    |    |        |       |               |       |         |       |                     |
| EE-BS-103   | Introduction to        | 4  | 3  | 1      | -     | 4             | 40    | 60      | 100   | 3 Hrs               |
|             | Electromagnetic Theory |    |    |        |       |               |       |         |       |                     |
| EE-BS-105   | Engineering Chemistry  | 4  | 3  | 1      | -     | 4             | 40    | 60      | 100   | 3 Hrs               |
| EE-HSM-107  | English for Technical  | 2  | 2  | -      | -     | 2             | 40    | 60      | 100   | 3 Hrs               |
|             | Writing                |    |    |        |       |               |       |         |       |                     |
| EE-BS-109   | Mathematics-I          | 4  | 3  | 1      | -     | 4             | 40    | 60      | 100   | 3 Hrs               |
| EE-PRES-01  | Basic Electrical       | 1  | -  | -      | 2     | 2             | 20    | 30      | 50    | 3 Hrs               |
|             | Engineering Lab        |    |    |        |       |               |       |         |       |                     |
| EE-PRBS-03  | Electromagnetics Lab   | 1  | -  | -      | 2     | 2             | 20    | 30      | 50    | 3 Hrs               |
| EE-PRBS-05  | Engineering Chemistry  | 1  | -  | -      | 2     | 2             | 20    | 30      | 50    | 3 Hrs               |
|             | Lab                    |    |    |        |       |               |       |         |       |                     |
| EE-PRHSM-07 | English Language Lab   | 1  | -  | -      | 2     | 2             | 50    |         | 50    |                     |
|             | Total                  | 22 | 14 | 4      | 8     | 26            | 310   | 390     | 700   |                     |

### B. Tech (Electrical Engineering), SCHEME OF EXAMINATIONS 1<sup>st</sup> YEAR (SEMESTER–I) (w.e.f.2024-25)

### B. Tech (Electrical Engineering), SCHEME OF EXAMINATIONS 1<sup>st</sup>YEAR (SEMESTER–II) (w.e.f.2024-25)

|            |                                                                                  |    | Те | achin | ig Sch | edule         | Allot | ment of | marks | Exam                |
|------------|----------------------------------------------------------------------------------|----|----|-------|--------|---------------|-------|---------|-------|---------------------|
| Course No. | Course Title                                                                     | С  | L  | Т     | Р      | Cont.<br>Hrs. | CIE   | SEE     | Total | Duration<br>in Hrs. |
| EE-BS-102  | Semiconductor Physics                                                            | 4  | 3  | 1     | -      | 4             | 40    | 60      | 100   | 3 Hrs               |
| EE-ES-104  | Programming for Problem<br>Solving                                               | 4  | 3  | 1     | -      | 4             | 40    | 60      | 100   | 3 Hrs               |
| EE-ES-106  | Engineering Graphics and Design                                                  | 2  | 2  | -     | -      | 2             | 40    | 60      | 100   | 3Hr                 |
| EE-HSM-108 | Universal Human Values-II:<br>Understanding Harmony and<br>Ethical Human Conduct | 3  | 3  | 0     | -      | 3             | 40    | 60      | 100   | 3 Hrs               |
| EE-BS-110  | Mathematics-II                                                                   | 4  | 3  | 1     | -      | 4             | 40    | 60      | 100   | 3 Hrs               |
| EE-PRES-02 | Semiconductor Physics Lab                                                        | 1  | -  | 1     | 2      | 2             | 20    | 30      | 50    | 3 Hrs               |
| EE-PRES-04 | Programming for Problem<br>Solving Lab                                           | 1  | -  | -     | 2      | 2             | 20    | 30      | 50    | 3 Hrs               |
| EE-PRES-06 | Engineering Graphics and Design lab                                              | 1  | -  | -     | 2      | 2             | 20    | 30      | 50    | 3 Hrs               |
| EE-PRES-08 | EE-PRES-08 Manufacturing Processes<br>Workshop Lab                               |    | -  | -     | 2      | 2             | 20    | 30      | 50    | 3 Hrs               |
| EE-PRES-10 | Idea Workshop Lab                                                                | 1  | -  | -     | 2      | 2             | 20    | 30      | 50    | 3Hrs                |
|            | Total                                                                            | 22 | 14 | 3     | 10     | 27            | 300   | 450     | 750   |                     |



|                     |                                                                                                                                                                                                                                                                                                                | Program Name: B. TechElect                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                   |             |                     |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------|---------------------|--|--|--|
| Course C<br>EE-ES-1 |                                                                                                                                                                                                                                                                                                                | Course Name: Basic Electrical En                                                                                                                                                                                                                                                                             | gineering                                                                                                                     | L T<br>3 1                        | Р           | <u>C</u><br>4       |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                | 1st week                                                                                                                                                                                                                                                                                                     | Contact hours non w                                                                                                           | • -                               | •<br>[rrc_) | =                   |  |  |  |
| Year and            |                                                                                                                                                                                                                                                                                                                | 1 <sup>st</sup> year<br>1 <sup>st</sup> Somostor                                                                                                                                                                                                                                                             | <b>Contact hours per week:</b> (4Hrs )                                                                                        |                                   |             |                     |  |  |  |
| Semester            |                                                                                                                                                                                                                                                                                                                | 1 <sup>st</sup> Semester<br>NIL                                                                                                                                                                                                                                                                              | Exam: (3hrs.)<br>Evaluat                                                                                                      | ion                               |             |                     |  |  |  |
| Pre-requ            | isite of                                                                                                                                                                                                                                                                                                       | NIL                                                                                                                                                                                                                                                                                                          |                                                                                                                               |                                   | SEE: 60     |                     |  |  |  |
| course              | )hiadiwa                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                              | CIE: 40                                                                                                                       | SEE                               | : 00        | )                   |  |  |  |
| Course C            |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                              |                                                                                                                               |                                   |             |                     |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                | s theory, laws and theorem of DC ele                                                                                                                                                                                                                                                                         |                                                                                                                               |                                   |             |                     |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                | ing of various electrical AC circuits,                                                                                                                                                                                                                                                                       |                                                                                                                               | ts paran                          | iete        | rs.                 |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                | orking theory of AC and DC electric                                                                                                                                                                                                                                                                          |                                                                                                                               |                                   |             |                     |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                | he domestic wiring and earthing in e                                                                                                                                                                                                                                                                         |                                                                                                                               |                                   |             |                     |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                | s: On completion of the course, stude                                                                                                                                                                                                                                                                        |                                                                                                                               | 1                                 |             | 1                   |  |  |  |
| CO1                 |                                                                                                                                                                                                                                                                                                                | erstand the basic concept of electric                                                                                                                                                                                                                                                                        | cal circuits, electrical I                                                                                                    | aws and                           | net         | work                |  |  |  |
| 000                 | theorem                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                              |                                                                                                                               |                                   |             | 1                   |  |  |  |
| CO2                 |                                                                                                                                                                                                                                                                                                                | erstand the basic components and wo                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                      |                                   | wor         | К.                  |  |  |  |
| CO3                 |                                                                                                                                                                                                                                                                                                                | erstand the parameters of electrical n                                                                                                                                                                                                                                                                       | * *                                                                                                                           |                                   |             |                     |  |  |  |
| CO4                 |                                                                                                                                                                                                                                                                                                                | erstand the circuits and working of va                                                                                                                                                                                                                                                                       |                                                                                                                               |                                   | -           | •                   |  |  |  |
| CO5                 |                                                                                                                                                                                                                                                                                                                | art basic technical knowledge of e                                                                                                                                                                                                                                                                           | lectrical wiring system                                                                                                       | and ap                            | ply         | it to               |  |  |  |
|                     | technolo                                                                                                                                                                                                                                                                                                       | ogical fields.<br>COURSE SYLLAB                                                                                                                                                                                                                                                                              |                                                                                                                               |                                   | -           |                     |  |  |  |
| Module              |                                                                                                                                                                                                                                                                                                                | Hrs                                                                                                                                                                                                                                                                                                          |                                                                                                                               | COs                               |             |                     |  |  |  |
| No                  | D G GI                                                                                                                                                                                                                                                                                                         | CONTENTS OF MOD                                                                                                                                                                                                                                                                                              |                                                                                                                               |                                   | _           |                     |  |  |  |
| 1                   | <b>DC Circuits:</b> Electrical circuit elements (Resistance, inductance and Capacitance), voltage and current sources, Kirchoff current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits. |                                                                                                                                                                                                                                                                                                              |                                                                                                                               |                                   |             |                     |  |  |  |
| 2                   | AC Cir<br>values,<br>power,<br>Analysi<br>RLC co<br>balance<br>connect                                                                                                                                                                                                                                         | cuits: Representation of sinusoidal v<br>phasor representation, real power,<br>power factor, power factor improver<br>s of single-phase ac circuits consist<br>ombinations (series and parallel),<br>d circuits, voltage and current rel<br>ions.3-phase power equation, measure<br>by two wattmeter method. | reactive power, appare<br>ment and its significant<br>ting of R, L, C, RL, R<br>resonance. Three-pha<br>ations in star and de | nt<br>c.,<br>se<br>ta             | C           | 201,<br>202,<br>203 |  |  |  |
| 3                   | ideal a transfor                                                                                                                                                                                                                                                                                               | ormers: Magnetic materials, BH ch<br>and practical transformer, equiva<br>mers, regulation and efficiency. Au<br>ansformer connections.                                                                                                                                                                      | lent circuit, losses                                                                                                          | in 7                              |             | 203,<br>204         |  |  |  |
| 4                   | fields, C<br>Signific<br>efficien<br>and wo<br>characte<br>control                                                                                                                                                                                                                                             | cal Rotating Machines: Generation<br>Construction and working of a three<br>rance of torque-slip characteristic.<br>cy, starting and speed control of indu-<br>orking of Single-phase induction<br>eristic. Construction and working of<br>of separately dc motor. Constru-<br>nous generators.              | e-phase induction moto<br>Loss components a<br>ction motor. Constructi<br>motor and torque-spe<br>f DC machine and spe        | or,<br>nd<br>on<br>ed<br>ed<br>ed | CO4         |                     |  |  |  |
| 5                   |                                                                                                                                                                                                                                                                                                                | cal Installations: Components of                                                                                                                                                                                                                                                                             | domastic wining aveta                                                                                                         | n, 4                              | 6           | 203,                |  |  |  |

| ſ | earthing | system  | and  | its | significance. | Elementary | calculations | for |  |
|---|----------|---------|------|-----|---------------|------------|--------------|-----|--|
| l | energy c | onsumpt | ion. |     |               |            |              |     |  |

#### **Suggested Text / Reference Books:**

- 1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 3. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 4. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989. 5.
- B.L. Theraja and A. K. Theraja, "Electrical Technology", Vol-I, S.Chand. 6.

#### Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- Section-C will comprise 4-questions uniformly spread to the entire syllabus and 3. questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section -B and Section -C. All questions will carry 12 marks.





|                  |                      | Program Name: D. TechElect                 | i icai Engineering          |        |        |        |        |  |  |
|------------------|----------------------|--------------------------------------------|-----------------------------|--------|--------|--------|--------|--|--|
| Course<br>EE-BS- | <b>Code:</b><br>-103 | Course Name: Introduction to Ele           | ectromagnetic Theory        | L<br>3 | T<br>1 | P<br>- | C<br>4 |  |  |
| Year a           | nd                   | 1 <sup>st</sup> Yr.                        | Contact hours per w         | veek   | : (4   | Hrs)   | 1      |  |  |
| Semest           | er                   | 1 <sup>st</sup> Semester                   | Exam: (3 Hrs)               |        |        |        |        |  |  |
| Pre-ree          | quisite              | NII                                        | Evaluat                     | ion    |        |        |        |  |  |
| of course        |                      | NIL                                        | CIE: 40                     | S      | SEE    | : 60   | 1      |  |  |
| Course           | e Objectiv           | res:                                       |                             |        |        |        |        |  |  |
| 1. It a          | ims to equ           | ip the students with basic concepts of p   | hysics principles.          |        |        |        |        |  |  |
| 2. To            | provide ad           | equate knowledge about tools at an inte    | ermediate to advanced le    | vel.   |        |        |        |  |  |
| 3. To            | provide stu          | idents to serve them well towards tackl    | ing more advanced level     | of p   | hysi   | cal    |        |  |  |
| pro              | blems.               |                                            |                             |        |        |        |        |  |  |
| 4. To            | provide kn           | owledge and applications that they wou     | uld find useful in their co | ore su | ıbjeo  | cts    |        |  |  |
| 5. To            | provide kn           | owledge about different applications of    | f optics, EM-theory,        |        |        |        |        |  |  |
| Course           | Outcom               | es: On completion of the course, stu       | dent would be able to:      |        |        |        |        |  |  |
| CO1              | Understan            | nd the applications of Electricity and M   | agnetism                    |        |        |        |        |  |  |
| CO2              | Understa             | nd components of a EM-Wave propaga         | tion                        |        |        |        |        |  |  |
| CO3              | Understar            | nd Electro and magneto statics, Maxwe      | ll's equations              |        |        |        |        |  |  |
| CO4              | Learn abo            | out potential applications of dielectric a | nd Magnetic materials       |        |        |        |        |  |  |
| CO5              | Understar            | nd the material composition and its app    | lications                   |        |        |        |        |  |  |

| Module<br>No | COURSE SYLLABUS<br>CONTENTS OF MODULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hrs | Cos        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| 1            | Differential and integral calculus: Concept of gradient, operator, divergence and curl Line, surface and volume integrals, <b>Electrostatics:</b> Divergence and curl of electrostatic field; Laplace's and Poisson's equations for electrostatic potential, Electrostatic field and charge density. electrostatics problems in presence of dielectrics.                                                                                                                                                                                                                                 | 8   | CO4<br>CO1 |
| 2            | <b>Magnetostatics</b> Gauss –Divergence theorem, Stokes theorem,<br>Equation of continuity, Divergence of magnetic induction, Biot<br>savarts law. Magnetic vector potential, Amperes circuital law,<br>Faraday's law of electromagnetic induction,                                                                                                                                                                                                                                                                                                                                      | 8   | CO1        |
| 3            | <b>EM</b> – <b>Theory:</b> The basic equations of electromagnetism, generalization of amperes law, Maxwell's equations. Energy in an electromagnetic field; Flow of energy and Poynting vector with examples. Hall Effect.                                                                                                                                                                                                                                                                                                                                                               | 9   | CO2<br>CO3 |
| 4            | <b>Dielectric and Magnetic materials:</b> Introduction, Nonpolar molecules, Polar molecules, Polar and nonpolar molecules in an electric field, Electric polarization of matter, Electric polarization vector, Electric field in dielectrics, Gauss's law in dielectrics, Relation between three electric vectors D, E and P, Effect of dielectric on capacitance. Magnetization of matter (Origin of Magnetic Moment, Diamagnetism, Paramagnetism, Ferromagnetism, B, H, M), Anti-ferro magnetism. Ferrimagnetic materials B-H curve. Applications of Dielectric and Magnetic materials | 4   | CO5        |

### **Text Books:**

- 1. Perspectives of Modern Physics Arthur Beiser (TMH), 2001
- 2. David Griffiths, Introduction to Electrodynamics, PHI 2004



3. Introduction to Solid State Physics (VII Ed.) - Charles Kittel (John Wiley)., 2007 Suggested Reference Books:

# 1. Halliday and Resnick, Physics, 1981

W. Saslow, Electricity, magnetism and light

#### **Reference Books:**

- 1. Classical Electrodynamics, By J D Jackson, Wiley Publishers, 1970
- 2. Fundamentals of Magnetism- B. Cullity Addison-Wiley Publishing, 2008
- 3. Semiconductor devices, physics and technology, S. M. Sze Wiley, 1981
- 4. Introduction to solid state physics AJ DEKKER 2011

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks each.



| Course Code:<br>EE-BS-105<br>Year and |                                                             | Course Name: Engineering Chen           | ourse Name: Engineering Chemistry |                     |  |  |  |
|---------------------------------------|-------------------------------------------------------------|-----------------------------------------|-----------------------------------|---------------------|--|--|--|
|                                       |                                                             | 1 <sup>st</sup> Yr.                     | Contact hours per v               | 3 1 - 4             |  |  |  |
| Semest                                |                                                             | 1 <sup>st</sup> Semester                | Exam: (3 Hrs)                     | veek. ( 4113 )      |  |  |  |
| Pre-rec                               |                                                             |                                         | Evalua                            | ation               |  |  |  |
| of cour                               | -                                                           | NIL                                     | CIE: 40                           | SEE: 60             |  |  |  |
|                                       | Objectiv                                                    | es:                                     |                                   |                     |  |  |  |
|                                       |                                                             | eloped in this course will aid in quant | tification of several con         | ncepts in chemistry |  |  |  |
|                                       | -                                                           | troduced at the 10+2 levels in school   |                                   | 1 5                 |  |  |  |
| Techno                                | logy is be                                                  | ing increasingly based on the electro   | nic, atomic and molect            | ular level          |  |  |  |
| modific                               |                                                             |                                         |                                   |                     |  |  |  |
| Quantu                                | m theory i                                                  | s more than 100 years old and to unc    | lerstand phenomena at             | a nanometer levels, |  |  |  |
| one has                               | to base th                                                  | e description of all chemical process   | es at molecular levels.           |                     |  |  |  |
| Course                                | Outcome                                                     | es: On completion of the course, stud   | lent would be able to:            |                     |  |  |  |
| CO1                                   | Analyze                                                     | microscopic chemistry in terms of at    | omic and molecular or             | bitals and inter    |  |  |  |
|                                       | molecula                                                    | r forces.                               |                                   |                     |  |  |  |
| CO2                                   |                                                             | e knowledge of conductance to expla     | in various electrochen            | nical               |  |  |  |
|                                       | phenome                                                     |                                         |                                   |                     |  |  |  |
| CO3                                   | 0                                                           | ish the ranges of the electromagnetic   | 1                                 | citing different    |  |  |  |
|                                       | molecular energy levels in various spectroscopic techniques |                                         |                                   |                     |  |  |  |
| <b>CO4</b>                            |                                                             | ze bulk properties and processes using  | <u> </u>                          |                     |  |  |  |
| CO5                                   |                                                             | ze periodic properties such as ioniza   | tion potential, electron          | iegativity,         |  |  |  |
|                                       |                                                             | idation states and electronegativity.   |                                   |                     |  |  |  |
| CO6                                   | Distingui                                                   | ish between various stereoisomers.      |                                   |                     |  |  |  |

| Module<br>No | COURSE SYLLABUS<br>CONTENTS OF MODULE                                                                                                                                                                                                                                                                                                                                | Hrs | COs         |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|
| 1            | Atomic and molecular structure: Schrodinger equation. Particle in<br>a one-dimensional box solution and its applications for molecules.<br>Molecular orbital theory and its applications to the formation of<br>homonuclear ( $H_2$ , $N_2$ ) and heteronuclear diatomic molecules (NO,<br>CO, CN) Energy level diagrams of diatomics. Pi (p)-molecular<br>orbitals. | 10  | CO1,<br>CO2 |
| 2            | <b>Spectroscopic techniques and applications:</b> Principles of spectroscopy and selection rules. Electronic spectroscopy. Spectroscopy and its applications in medicine. Applications of Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI), surface characterization with electron spectroscopy (Mass Spectrometry (MS).                        | 10  | CO3         |
| 3            | <b>Electrochemistry:</b> Conductance of electrolytic solutions,<br>Transference number and its determination by Hittorf method and<br>Moving boundary method, Kohlrausch's law of independent<br>migration of ions, Interionic attraction theory, activity and activity<br>coefficients of strong electrolytes.                                                      | 10  | CO4         |



|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | ALTHON OF SHALLAS |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------|
| 4 | <ul> <li>Periodic properties: Effective nuclear charge, penetration of orbitals, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries</li> <li>Stereochemistry: Representations of 3-dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity,</li> </ul> | 8 | CO4,<br>CO5       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                   |

#### **Text Books:**

- 1. University chemistry, by B. H.Mahan
- 2. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- **3.** Fundamentals of Molecular Spectroscopy, by C. N.Banwell
- 4. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M.S.
  - Krishnan
- 5. Physical Chemistry, by P. W. Atkins
- 6. Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

**Note for Examiner(s)**: Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.



| Course<br>EE-HS | e Code:<br>M-107 Course Name: English for Technical V |                                        | ical Writing           | L         T         P         C           2         -         -         2 |  |  |  |
|-----------------|-------------------------------------------------------|----------------------------------------|------------------------|---------------------------------------------------------------------------|--|--|--|
| Year a          | nd                                                    | 1 <sup>st</sup> Yr.                    | Contact hours per w    | veek: (2Hrs)                                                              |  |  |  |
| Semest          | er                                                    | 1 <sup>st</sup> Semester               | Exam: (3 Hrs)          |                                                                           |  |  |  |
| Pre-rec         | quisite                                               | NII                                    | Evaluation             |                                                                           |  |  |  |
| of course       |                                                       | NIL                                    | CIE: 40                | SEE: 60                                                                   |  |  |  |
| Course          | Objectiv                                              | es:                                    |                        |                                                                           |  |  |  |
| To mak          | e student                                             | understand the details of functional I | English.               |                                                                           |  |  |  |
| To mak          | e student ]                                           | learn the effective communication sk   | cills                  |                                                                           |  |  |  |
| Course          | Outcome                                               | es: On completion of the course, stud  | lent would be able to: |                                                                           |  |  |  |
| CO1             | The stude                                             | ent will acquire basic proficiency in  | English                |                                                                           |  |  |  |
| CO2             | <b>CO2</b> Writing and speaking skills                |                                        |                        |                                                                           |  |  |  |
| CO3             | Reading and listening skills                          |                                        |                        |                                                                           |  |  |  |
| CO4             | Vocabula                                              | Vocabulary enrichment                  |                        |                                                                           |  |  |  |

| Module<br>No | COURSE SYLLABUS<br>CONTENTS OF MODULE                                                                                                                                                                                                                                                                  | Hrs | COs                         |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------|
| 1            | <b>Vocabulary Building:</b> The concept of Word Formation<br>Root words from foreign languages and their use in English<br>Acquaintance with prefixes and suffixes from foreign languages in<br>English to form derivatives.<br>Synonyms, antonyms, and standard abbreviations.                        | 3   | CO1,<br>CO2,<br>CO3,<br>CO4 |
| 2            | <b>Basic Writing Skills:</b> Sentence Structures, Use of phrases and clauses in sentences, Importance of proper punctuation, Creating coherence, Organizing principles of paragraphs in documents, Techniques for writing precisely                                                                    | 5   | CO2                         |
| 3            | <b>Identifying Common Errors in Writing:</b> Subject-verb agreement,<br>Noun-pronoun agreement, Misplaced modifiers, Articles,<br>Prepositions, Redundancies, Clichés                                                                                                                                  | 4   | CO1                         |
| 4            | <b>Nature and Style of sensible Writing:</b> Describing, Defining,<br>Classifying, Providing examples or evidence, writing introduction<br>and conclusion                                                                                                                                              | 5   | CO1,<br>CO2                 |
| 5            | Writing Practices: Comprehension, Précis Writing, Essay Writing                                                                                                                                                                                                                                        | 3   | CO1,<br>CO2                 |
| 6            | <b>Oral Communication</b> (This unit involves interactive practice<br>sessions in Language Lab): Listening Comprehension,<br>Pronunciation, Intonation, Stress and Rhythm, Common Everyday<br>Situations: Conversations and Dialogues, Communication at<br>Workplace, Interviews, Formal Presentations | 4   | CO1,<br>CO3                 |

### **Text Books:**

- 1. Practical English Usage. Michael Swan. OUP.1995.
- 2. Remedial English Grammar. F.T. Wood. Macmillan.2007
- 3. On Writing Well. William Zinsser. Harper Resource Book.2001
- **4.** Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press.2006.



- 5. Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press.2011.
- 6. ExercisesinSpokenEnglish.Parts.I-III.CIEFL,Hyderabad.OxfordUniversityPress

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.



| <b>Course Code:</b><br>EE-BS-109 | Course Code:<br>EE-BS-109Course Name: Mathematics-I |                                                                            |         | T<br>1 | P<br>0 | C<br>4 |
|----------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|---------|--------|--------|--------|
| Year and                         | 1 <sup>st</sup> Year                                | Contact hours per                                                          | • - • · |        |        |        |
| Semester                         | 1 <sup>st</sup> Semester                            | Exam: (3 Hrs)                                                              |         |        |        | ,      |
| Pre-requisite o                  | <b>f</b> The course requires prior                  | Evalua                                                                     | atior   | 1      |        |        |
| course                           | knowledge of Differentiation,                       | CIE: 40                                                                    |         | SE     | E: 6   | 0      |
| course                           | Integration and vector algebra.                     | CIE: 40                                                                    |         | SE     | E: 0   | U      |
| Course Object                    |                                                     |                                                                            |         |        |        |        |
|                                  | ferentiation to geometric principles and            |                                                                            |         |        |        |        |
| 2. To understan                  | d Partial differentiation and apply to van          | rious mathematical sit                                                     | tuati   | ons.   |        |        |
| 3. To gain know                  | vledge on fundamentals of Multiple Inte             | grals and their Applic                                                     | catio   | ns.    |        |        |
| 4. To explore h                  | ow to differentiate and integrate Vectors           | s. To provide good un                                                      | ders    | tand   | ing o  | of     |
| interrelation                    | between vector differentiation and Integ            | ration through Basic                                                       | The     | orem   | s.     |        |
| Course Outcor                    | nes: On completion of the course, stude             | nt would be able to:                                                       |         |        |        |        |
| CO1 Un                           | derstand the Differentiation and Integra            | tion applications.                                                         |         |        |        |        |
| CO2 Un                           | derstand and solve Partial differentiation          | n and Multiple integra                                                     | als f   | or va  | riou   | S      |
| pro                              | blems.                                              |                                                                            |         |        |        |        |
| CO3 Ap                           | ply the knowledge of Differentiation to             | geometric principles                                                       | and     | expa   | nd     |        |
| fur                              | actions into series.                                | ions into series.                                                          |         |        |        |        |
| CO4 Stu                          | idents should be able to use his knowled            | ts should be able to use his knowledge of Vector analysis and relate it to |         |        |        | to     |
| flu                              | id flows.                                           | -                                                                          |         |        |        |        |

| Module<br>No | COURSE SYLLABUS<br>CONTENTS OF MODULE                                                                                                                                                                                                                                                                                                                                                               | Hrs | COs                         |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------|
| 1            | Applications of Differentiation:<br>Taylor's & Maclaurin's series, Expansion by use of known series,<br>Expansion by forming a differential equation, Asymptotes,<br>Curvature, Tracing of Cartesian curves.                                                                                                                                                                                        | 6   | CO1,<br>CO2,<br>CO3         |
| 2            | <b>Partial Differentiation &amp; its Applications:</b><br>Euler's theorem, Jacobian, Errors and approximations, Maxima-<br>minima of functions of two variables, Lagrange's method of<br>undetermined multipliers.                                                                                                                                                                                  | 6   | CO1,<br>CO2,<br>CO3         |
| 3            | <b>Double Integral:</b> Change of order of integration Double integral in polar coordinates, Applications of double integral to find area enclosed by plane curves volume of solids of revolution. <b>Triple integral:</b> Volume of solids,                                                                                                                                                        | 6   | CO1,<br>CO2,<br>CO3         |
| 4            | <ul> <li>Vector Calculus: Differentiation of vectors: Gradient of a scalar field and directional derivative, divergence, and curl of a vector field, Del applied twice to point functions, Del applied to product of point functions.</li> <li>Integration of vectors: line integral, surface integral, volume integral, Green's, Stoke's and Gauss divergence theorems (without proof).</li> </ul> | 6   | CO1,<br>CO2,<br>CO3,<br>CO4 |

### **TEXT BOOKS:**

- 1. Advanced Engineering Mathematics: E. Kreyszig. 10th Edition, John Wiley & sons,
- 2. Higher Engineering Mathematics: B.S. Grewal. 43rd Edition, Khanna Publications



### **REFERENCE BOOKS:**

- 1. Engineering Mathematics Part-I: S.S. Sastry, 4th Edition, PHI.
- 2. Advanced Engineering Mathematics: R.K. Jain, S.R.K. Iyengar, 3rd Edition, Narosa Publications
- 3. Advanced Engineering Mathematics: Michael D. Greenberg, 2nd Edition, Pearson Publications.

### Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.



|                  |               | Program.                                                              | Name: D. 1     | ecnEle      | ctrical Engineering     | ,      |        |        |          |
|------------------|---------------|-----------------------------------------------------------------------|----------------|-------------|-------------------------|--------|--------|--------|----------|
| Course<br>EE-PRE |               | Course N                                                              | Name: Basic    | Electrical  | Engineering Lab         | L<br>0 | Т<br>0 | P<br>2 | C<br>1   |
| Year a           | nd            | 1 <sup>st</sup> Year                                                  |                |             | Contact hours per       | · wee  | ek: (  | 2Hrs   | s)       |
| Semest           | er            | 1 <sup>st</sup> Seme                                                  | ster           |             | Exam: (3hrs.)           |        |        |        | ,        |
| Pre-ree          | uisite of     |                                                                       |                |             | Evalu                   | uatio  | n      |        |          |
| course           | 1             | В                                                                     | asic Science   | e           | CIE: 20                 |        |        | E: 3   | <b>0</b> |
|                  | Objectives:   |                                                                       |                |             |                         |        |        |        | -        |
| -                | v             |                                                                       | and theorem    | s of elect  | ric networks.           |        |        |        |          |
|                  | miliarize wit |                                                                       |                |             |                         |        |        |        |          |
|                  | udy different |                                                                       |                |             |                         |        |        |        |          |
| -                | iliarize with |                                                                       | * *            |             | **                      |        |        |        |          |
|                  |               |                                                                       |                |             | ident would be able     | to:    |        |        |          |
| CO1              |               | <b>1</b>                                                              |                |             | ric circuit laws and n  |        | rk tł  | ieor   | ems      |
| 001              |               |                                                                       | oratory wor    |             | ie energie in in and in |        |        | 1001   | 01115    |
| CO2              | 110           |                                                                       |                |             | lectric circuits as we  | ell as | han    | dling  | g of     |
|                  | electric equ  | -                                                                     | r              |             |                         | 40     |        |        | >        |
| CO3              |               |                                                                       | nciples of or  | peration a  | and the main features   | s of e | lect   | ric n  | etwork   |
| 0.00             | and their ap  |                                                                       |                |             |                         |        |        |        |          |
| CO4              | 1             | . 1                                                                   |                | trical con  | ponents and their ra    | tings  | s. De  | evelo  | op       |
|                  | -             |                                                                       | ent technolog  |             | -                       | 0      |        |        | T        |
| Expt.            |               |                                                                       | ,              | SE SYLI     |                         |        |        |        | ~ ~      |
| No               |               |                                                                       | CONTEN         |             |                         |        |        |        | COs      |
| 1                | To study an   | d verify K                                                            |                |             | w and Kirchhoff's vo    | oltage | e lav  | v.     |          |
| 2                |               |                                                                       | hevenin's th   |             |                         | 0      |        |        |          |
| 3                | To study an   |                                                                       |                |             |                         |        |        |        |          |
| 4                | To study an   |                                                                       |                |             | l.                      |        |        |        |          |
| 5                |               |                                                                       | <u> </u>       |             | fer theorem.            |        |        |        | CO1      |
|                  |               |                                                                       |                |             | ork and determine its   | s      |        |        | CO2      |
| 6                | parameters.   | 1                                                                     |                |             |                         |        |        |        | CO3      |
| 7                | To study the  | e operatior                                                           | of parallel    | RLC net     | work and determine      | its    |        |        | CO4      |
| /                | parameters.   | -                                                                     | -              |             |                         |        |        |        |          |
| 8                | To study the  | e character                                                           | istics of seri | ies RLC     | network under reson     | ance   |        |        |          |
| 0                | condition ar  | nd determi                                                            | ne its resona  | ance frequ  | uency from resonance    | ce cu  | rve.   |        |          |
| 9                | To study the  | e character                                                           | istics of par  | allel RLC   | C network under reso    | onanc  | ce     |        |          |
| 7                | condition ar  | nd determi                                                            | ne its resona  | ance freq   | uency from resonance    | ce cu  | rve.   |        |          |
| 10               | Perform three | ee phase p                                                            | ower measu     | rement b    | y using two wattmet     | ter's  |        |        |          |
| 10               | method for    | balanced t                                                            | hree phase l   | oad.        |                         |        |        |        |          |
| 11               | To study the  | To study the basic operation and equivalent circuit of a single-phase |                |             |                         |        |        |        |          |
|                  | transformer   | •                                                                     |                |             |                         |        |        |        |          |
| 12               | Perform Op    | en Circuit                                                            | & Short Cir    | rcuit tests | on single phase trar    | nsfor  | mer.   |        |          |
| 13               | Perform Loa   | ad test on                                                            | single phase   | transfor    | mer.                    |        |        |        |          |
| 14               | To study the  | e character                                                           | istics of flue | orescent    | lamps.                  |        |        |        |          |
| 15               | To study the  | e character                                                           | istics of tun  | gsten fila  | ment lamps.             |        |        |        |          |
| Text/Ref         | erence Books  |                                                                       |                |             |                         |        |        |        |          |

#### **Text/Reference Books:**

1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.

- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
  - L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011



|             | se Code:<br>RBS-03 | Course Name: Electromagne                                                        | tics Lab               | I<br>  -             | <b>T</b>                                | P<br>2 | C<br>1       |
|-------------|--------------------|----------------------------------------------------------------------------------|------------------------|----------------------|-----------------------------------------|--------|--------------|
| Year        |                    | 1 <sup>st</sup> Yr.                                                              | Contact hour           | rs per we            | ek: (                                   | 2Hrs   | <u> </u>     |
| Semes       |                    | 1 <sup>st</sup> Semester                                                         | Exam: (3 Hrs           | -                    | (), (), (), (), (), (), (), (), (), (), | 2111   | ,            |
|             | equisite           |                                                                                  |                        | <u>,</u><br>Evaluati | on                                      |        |              |
| of cou      | -                  | NIL                                                                              | CIE: 20                |                      |                                         | E: 3   | 0            |
|             | Objectives:        |                                                                                  | CIE: 20                |                      | SE.                                     | E: 3   | 0            |
|             |                    | applications of Optics                                                           |                        |                      |                                         |        |              |
|             |                    | ponents of a laser system and their app                                          | lications              |                      |                                         |        |              |
|             |                    | neasure conductivity in semiconductors                                           |                        |                      |                                         |        |              |
|             |                    | ics of quantum principles                                                        |                        |                      |                                         |        |              |
|             |                    | On completion of the course, student w                                           | ould be able to:       |                      |                                         |        |              |
| CO1         | Experime           | nts in Basic Physics                                                             |                        |                      |                                         |        |              |
| CO2         | Experime           | nts in acoustics/ applications                                                   |                        |                      |                                         |        |              |
| CO3         | Experime           | nts in Electromagnetics                                                          |                        |                      |                                         |        |              |
| CO4         | Experime           | nts in Magnetism/ applications                                                   |                        |                      |                                         |        |              |
| CO5         | -                  | nts in Semiconductor properties                                                  |                        |                      |                                         |        |              |
|             |                    | COURSE SYL                                                                       | LARIS                  |                      |                                         |        |              |
| Expt.<br>No |                    | COURSE STE<br>CONTENTS OF                                                        |                        |                      |                                         | (      | COs          |
|             | Magnetic           | field from Helmholtzcoil; To study                                               |                        | netic field          | with                                    |        |              |
| 1           |                    | and to find the radius of coil by Stewart                                        |                        |                      |                                         |        |              |
| 2           |                    | re the capacitances of two capacitors b                                          |                        |                      | find                                    |        |              |
| 2           |                    | tric constant of a medium.                                                       |                        |                      |                                         |        |              |
| 3           |                    | e frequency of A.C. mains by using sor                                           |                        |                      |                                         | ſ      | CO1          |
| 4           |                    | alue of high Resistance by substitution                                          |                        |                      |                                         | -      |              |
| 5           |                    | ne value of high resistance by leakage n                                         |                        |                      |                                         | -      | CO2          |
| 6           |                    | rt a galvanometer in to an Ammeter of<br>ne value of e/m for electrons by Helica |                        | mont of Lo           | rontz                                   |        | CO3          |
| 7           |                    | vacuum tube.                                                                     | a memou, wieasuren     |                      | Tentz                                   | C      | C <b>O</b> 4 |
| 8           |                    | e ionization potential of Mercury using                                          | a thyratron tube       |                      |                                         |        |              |
| 9           |                    | e value of Planck's constant by using a                                          |                        |                      |                                         |        |              |
| 10          |                    | e value of Hall Co-efficient of semi-co                                          |                        |                      |                                         |        |              |
| 11          | To find th         | e band gap of intrinsic semi-conductor                                           | using four probe met   | thod.                |                                         |        |              |
| 12          | Post-offic         |                                                                                  |                        |                      |                                         |        |              |
| 13          |                    | ate the hysteresis loss by tracing a B-H                                         |                        |                      |                                         |        |              |
| 14          |                    | ield Pattern Between Two Circular Elec                                           | trodes                 |                      |                                         |        |              |
| 15          |                    | ield between Parallel Conductors                                                 |                        |                      |                                         |        |              |
| 16          |                    | ield And Potential Inside The Parallel F                                         | -                      |                      |                                         |        |              |
| 17          | -                  | ce And Inductance Of Transmission L                                              | nes                    |                      |                                         |        |              |
| 18          | Magnetic           | Field Outside A Straight Conductor                                               |                        |                      |                                         |        |              |
| 19          | Magnetic           | Field Of Coils                                                                   |                        |                      |                                         |        |              |
| 20          | Magnetic           | Induction                                                                        |                        |                      |                                         |        |              |
| 21          | Hertz's Ex         | xperiment to demonstrate the productio                                           | n and reception of rac | dio waves            |                                         |        |              |
| 22          |                    | RF Transmitter and Receiver                                                      | *                      |                      |                                         |        |              |
| 23          | _                  | M Transmitter / Receiver                                                         |                        |                      |                                         |        |              |
|             | Books.             |                                                                                  |                        |                      |                                         |        |              |

#### **Text Books:**

- 1. Advanced Practical Physics B.L. Worshnop and H.T. Flint (KPH)
- 2. Practical Physics S.L.Gupta &V.Kumar (Pragati Prakashan).
- 3. Advanced Practical Physics Vol.I& II Chauhan & Singh (Pragati Prakashan).



|    | -                                                                           |
|----|-----------------------------------------------------------------------------|
| 2  | To find the wavelength of sodium light by Newton's rings experiment.        |
| 3  | To find the wavelength of sodium light by Fresnel's biprism experiment.     |
| 4  | To find the wavelength of various colours of white light with the help of a |
| 4  | plane transmission diffraction grating.                                     |
| 5  | To find the wavelength of sodium light by Michelson interferometer.         |
| 6  | To find the resolving power of a telescope.                                 |
| 7  | To find the specific rotation of sugar solution by using a polarimeter.     |
| 13 | To study laser beam characteristics, diffraction.                           |



| Course<br>EE-PRE | se Code:<br>RBS-05Course Name: Engineering Chemistry LabLTP2 |                                                                                                  |                           |                | C<br>1 |  |
|------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|----------------|--------|--|
| Year ar          | nd                                                           | 1 <sup>st</sup> Yr.                                                                              | <b>Contact hours per</b>  | week: ( 2Hrs   | )      |  |
| Semeste          |                                                              | 1 <sup>st</sup> Semester                                                                         | Exam: (3 Hrs)             |                | /      |  |
| Pre-req          |                                                              |                                                                                                  | Evalu                     | ation          |        |  |
| of cours         | -                                                            | NIL                                                                                              | CIE: 20                   | SEE: 3         | 0      |  |
| Course           | Objectiv                                                     | es:                                                                                              |                           |                |        |  |
|                  |                                                              | mentals of basic chemical sciences with                                                          | hand on experience ess    | ential for the |        |  |
|                  |                                                              | w technologies to Electrical and Instrum                                                         |                           |                |        |  |
|                  |                                                              | : On completion of the course, student v                                                         |                           |                |        |  |
| CO1              | Measuren                                                     | nolecular/system properties such as surfa                                                        | acetension, viscosity, co | nductance and  | pH of  |  |
|                  | solutions,                                                   | alkalinity, chloride content, dissolved o                                                        | xygen, hardness of wat    | er,etc.        | -      |  |
| CO2              | Identify th                                                  | ne number of compounds in a mixture us                                                           | sing TLC.                 |                |        |  |
| CO3              |                                                              | e a small drug molecule and polymer rea                                                          |                           |                |        |  |
| CO4              | Determine                                                    | e the amount of solute in a solution using                                                       | g spectrophotometers.     |                |        |  |
| CO5              | Measure t                                                    | he kinematic viscosity, pour and cloud                                                           | point of oil.             |                |        |  |
| Expt.            |                                                              | COURSE SYLL                                                                                      | ABUS                      |                | COa    |  |
| No               |                                                              | CONTENTS OF M                                                                                    | ODULE                     |                | COs    |  |
| 1                | To deter                                                     | mine the relative viscosity of a given lic                                                       | uid using Ostwald visc    | ometer.        |        |  |
| 2                |                                                              | edwood viscometer determine the visco                                                            |                           |                |        |  |
| 3                | To deter                                                     | mine the surface tension of a giving liqu                                                        | id using stalagmomete     | r.             |        |  |
| 4                | To deter                                                     | mine the alkalinity of a given water sam                                                         | ple.                      |                |        |  |
| 5                |                                                              | ify the number of components, present i                                                          |                           | ure by Thin    |        |  |
| 5                | Layer C                                                      | hromatography (TLC).                                                                             |                           |                |        |  |
| 6                | Determi                                                      | nation of strength of a given HCl solution                                                       | on by titrating it with a | standardized   |        |  |
| 0                | NaOH s                                                       | olution using conductivity meter.                                                                |                           |                |        |  |
| 7                | To deter                                                     | mine the strength of a given acid solution                                                       | on by titrating it with a | base using     |        |  |
|                  | pH mete                                                      |                                                                                                  |                           |                | CO1,   |  |
| 8                |                                                              | is of a drug (Aspirin/Paracetamol).                                                              |                           |                | CO2,   |  |
| 9                |                                                              | are Phenol-formaldehyde and Urea form                                                            |                           |                | CO3,   |  |
| 10               |                                                              | nation of chloride content of a given wa                                                         |                           |                | CO4,   |  |
| 11               | To deter<br>method.                                          | mine temporary and permanent hardnes                                                             | s of a given water samp   | ble by EDTA    | CO5    |  |
| 12               |                                                              | nation of the partition coefficient of a su niscible solvents.                                   | bstance for its distribut | ion between    |        |  |
| 13               | To find                                                      | To find out the content of sodium and potassium in a given salt solution by Flame<br>Photometer. |                           |                |        |  |
| 14               | To verif                                                     | y Beer-Lambert law and determine the of KMnO4 using a spectrophotometer.                         | max and concentration     | n of unknown   |        |  |
| 15               |                                                              | mine the amount of dissolved oxygen p                                                            | resent in a given water   | sample.        |        |  |
| 16               |                                                              | out the pour point and cloud point of a l                                                        | <u> </u>                  | *              |        |  |

#### **SUGGESTED BOOKS:**

- 1. A Text Book on Experimental and Calculation Engineering Chemistry, S.S. Dara, S. Chand & Company (Ltd.)
- 2. Essential of Experimental Engineering Chemistry, Shashi Chawla, Dhanpat Rai Publishing Company.
- 3. Theory & Practice Applied Chemistry O.P. Virmani, A.K. Narula (New Age)



| Cou             | rse Code:       |                                         |                                                                                                                                                                                                                                   | L              | Τ     | Р     | С      |  |
|-----------------|-----------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|-------|--------|--|
| EE-PRHSM-<br>07 |                 | Course Name: English Language Lab.      |                                                                                                                                                                                                                                   |                |       | 2     | 1      |  |
| 07              |                 |                                         | -     -     2     1       Contact hours per week: (2Hrs )       Evaluation       SEE:       s/investigations and interpret data with       ively in written, oral and instrumentation       engineering report in the process and |                |       |       | L      |  |
| Yea             | r and           | 1 <sup>st</sup> Yr.                     | Contact hours per v                                                                                                                                                                                                               | r week: (2Hrs) |       |       |        |  |
| Sem             | lester          | 1 <sup>st</sup> Semester                |                                                                                                                                                                                                                                   | _              |       |       |        |  |
| Pre-            | requisite       | Functional English                      | Evalua                                                                                                                                                                                                                            | Evaluation     |       |       |        |  |
| of co           | ourse           |                                         | CIE: 50                                                                                                                                                                                                                           |                | SE    | E: -  | -      |  |
| Cou             | rse Objectiv    | /es:                                    |                                                                                                                                                                                                                                   |                |       |       |        |  |
| 1. (            | Graduates wi    | ll attain skills to conduct experiments | s/investigations and int                                                                                                                                                                                                          | erpr           | et da | ita v | vith   |  |
| r               | reference to s  | ystems and standards                    |                                                                                                                                                                                                                                   |                |       |       |        |  |
| 2. (            | Graduates wi    | Il have ability to communicate effect   | ively in written, oral a                                                                                                                                                                                                          | nd in          | stru  | men   | tation |  |
| f               | formats to pu   | t forth solutions and prepare detailed  | engineering report in                                                                                                                                                                                                             | the p          | roce  | ess a | nd     |  |
|                 | automation in   |                                         |                                                                                                                                                                                                                                   |                |       |       |        |  |
|                 |                 | ll be able to apply the knowledge, sk   |                                                                                                                                                                                                                                   |                |       |       |        |  |
| i               | initiating, exe | ecuting and managing projects in the    | areas of design, manuf                                                                                                                                                                                                            | actu           | re, n | nark  | eting  |  |
| 8               | and entreprer   | eurship in multi-disciplinary environ   | iments.                                                                                                                                                                                                                           |                |       |       |        |  |
| Cou             | rse Outcom      | es: On completion of the course, stud   | lent would be able to:                                                                                                                                                                                                            |                |       |       |        |  |
| CO              | I Impartin      | g the role of communicative ability a   | s one of the soft skills                                                                                                                                                                                                          | need           | led f | or    |        |  |
|                 | placeme         | nt                                      |                                                                                                                                                                                                                                   |                |       |       |        |  |
| CO2             | 2 Develop       | ing communicative ability and soft sl   | kills needed for placen                                                                                                                                                                                                           | nent           |       |       |        |  |
| COS             | 3 Making        | students Industry-Ready through incu    | ulcating team-playing                                                                                                                                                                                                             | capa           | city  |       |        |  |

| Expt.<br>No | COURSE SYLLABUS<br>CONTENTS OF MODULE                                                                                                                                                                                                                                                                              | COs                 |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|--|
| 1           | <b>GRAMMAR IN COMMUNICATION:</b> Grammar and Usage – Building Blocks,<br>Homonyms, Subject and Verb Agreement, Error Correction - Grammar Application,<br>Framing Questions – Question words, Verbal Questions, Tags, Giving Replies –<br>Types of Sentences, Listening Comprehension –Listening and Ear training. |                     |  |  |  |  |  |
| 2           | ASSERTIVE COMMUNICATION: Listening Comprehension in Cross–Cultural<br>Ambience, Telephonic Conversations/Etiquette, Role Play Activities, Dramatizing<br>Situations- Extempore – Idioms and Phrases                                                                                                                |                     |  |  |  |  |  |
| 3           | <b>CORPORATE COMMUNICATION:</b> Video Sensitizing, Communicative<br>Courtesy – Interactions – Situational Conversations, Time Management, Stress<br>Management Techniques, Verbal Reasoning, Current Affairs – E Mail<br>Communication / Etiquette                                                                 | CO1,<br>CO2,<br>CO3 |  |  |  |  |  |
| 4           | <b>PUBLIC SPEAKING:</b> Giving Seminars and Presentations, Nuances of Addressing<br>a Gathering - one to one/ one to a few/ one to many, Communication Process, Visual<br>Aids & their Preparation, Accent Neutralization, Analyzing the Audience, Nonverbal<br>Communication.                                     |                     |  |  |  |  |  |
| 5           | <b>INTERVIEW &amp; GD TECHNIQUES:</b> Importance of Body Language –Gestures & Postures and Proxemics, Extempore, Facing the Interview Panel, Interview FAQs, Psychometric Tests and Stress Interviews, Introduction to GD, Mock GD Practices.                                                                      |                     |  |  |  |  |  |
|             | Books:<br>Bhatnagar P. P. & Pahul Bhargaya, "English for Competitive Examinations" Macmillian Publish                                                                                                                                                                                                              | <b>T</b> 11         |  |  |  |  |  |

1. Bhatnagar R.P. & Rahul Bhargava, "English for Competitive Examinations", Macmillian Publishers, India, 1989, ISBN: 9780333925591

 Devadoss K. & Malathy P., "Career Skills for Engineers", National Book Publishers, Chennai, 2013.
 Aggarwal R.S., "A Modern Approach to Verbal & Non–Verbal Reasoning", S.Chand Publishers, India, 2012, ISBN : 8121905516



| Course<br>EE-BS            |            | Course Name: Semiconductor Phy        | vsics                     | L         T         P         C           3         1         -         4 |
|----------------------------|------------|---------------------------------------|---------------------------|---------------------------------------------------------------------------|
| Year a                     | nd         | 1 <sup>st</sup> Yr.                   | Contact hours per w       | veek: (4Hrs)                                                              |
| Semest                     | er         | 2 <sup>nd</sup> Semester              | Exam: (3 Hrs)             |                                                                           |
| Dro roc                    | misito     | EE-BS-101, Physics-I First            | Evalua                    | ation                                                                     |
| Pre-requisite<br>of course |            | Semester, Introduction to Solid       | CIE: 40                   | SEE: 60                                                                   |
|                            |            | State Physics                         | CIE. 40                   | SEE. 00                                                                   |
| Course                     | Objectiv   | es:                                   |                           |                                                                           |
| 1.                         | To impart  | the basic concepts of Semi-Conduct    | or Electronics.           |                                                                           |
| 2.                         | To lay the | e foundation to understand the variou | s semi-conductor device   | ces.                                                                      |
| 3.                         | To impart  | the basic concept of design and stud  | ly of various circuits in | electronics.                                                              |
| 4.                         | To lay the | e foundation for the advance courses  | in electronics.           |                                                                           |
| Course                     | Outcom     | es: On completion of the course, stud | lent would be able to:    |                                                                           |
| CO1                        | Understa   | nd the principles of semiconductor F  | Physics and foundation    | of various semi-                                                          |
|                            | conducto   | or devices.                           |                           |                                                                           |
| CO2                        | Understa   | nd transistors as an amplifier and as | a switch and various d    | esign parameter of                                                        |
|                            | an ampli   | fier.                                 |                           |                                                                           |
| CO3                        | Know th    | e concept of feedback in amplifier an | nd oscillator and design  | n of different                                                            |
|                            | oscillator | ſ.                                    |                           |                                                                           |
| CO4                        | Understa   | nd the constructional geometry of FI  | ET family and FET am      | plifier circuit with                                                      |
|                            | a view to  | wards reduced power consumption.      |                           |                                                                           |

| Modu<br>le No | COURSE SYLLABUS<br>CONTENTS OF MODULE                                                                                                                                                                                                                                                                                                                                                                                      | Hrs | COs        |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| 1             | Semiconductors p-type and n-type, pn junction diodes and energy band<br>structure, pn junction as a circuit element and its characteristics, half<br>wave and full wave rectifier circuits, basic filter circuits, clipper &<br>clamper circuit. Zener diode and its applications as a voltage regulator.<br>LED its characteristics construction & applications.                                                          | 6   | CO1        |
| 2             | Transistor PNP and NPN- its fabrication and Characteristics in different<br>configurations. Biasing in transistors, Concept of d.c. and a.c. load line<br>and operating point selection. Transistor action as an amplifier and as a<br>switch, Various amplifiers configurations, Design of amplifier and<br>determination of parameters voltage gain current gain input resistance<br>and output resistance & power gain. | 6   | CO2        |
| 3             | Concept and need of feedback in amplifiers, Types of feedback in<br>amplifiers, their effect on the amplifier parameters with their<br>advantages and disadvantages, Cascading in amplifiers, Frequency<br>response of RC Coupled amplifiers with explanation, Oscillators<br>circuits and their types with explanation on their design difference,<br>Multivibrators and their types, design and their applications.      | 6   | CO2<br>CO3 |
| 4             | Field Effect Transistors, Constructions and their types, Characteristics<br>of JFET, MOSFET their types and Various amplifier configurations<br>using FET. Characteristics and Construction of SCR, TRIAC, UJT and<br>their basic areas applications.                                                                                                                                                                      | 6   | CO4        |

**Reference Books:** 



- 1. Electronic Devices & Circuits Boylstad & Nashelsky.
- 2. Integrated Electronics By Millman & Halkias.
- 3. Electronic Principles Malvino
- 4. Principles of Electronics V.K. Mehta, Shalu Melta.
  - 5. Solid State Electronics- Manera, Mc Graw Hill Publ.
- 6. Electronic Circuits Donald L. Shilling & Charles Beowl

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

**1.** Section – A is compulsory and attempt/answer all the four questions carrying 12 marks in total.

Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.



| Course<br>EE-ES- |                                                 | Course Name: Programming for P           | roblem Solving          | L         T         P         C           3         1         0         4 |  |
|------------------|-------------------------------------------------|------------------------------------------|-------------------------|---------------------------------------------------------------------------|--|
| Year a           | nd                                              | 1 <sup>st</sup> Year                     | Contact hours per v     | week: (4Hrs)                                                              |  |
| Semest           | er                                              | 2 <sup>nd</sup> Semester                 | Exam: (3 Hrs)           |                                                                           |  |
| Pre-rec          | quisite                                         | NIL                                      | Evalua                  | ation                                                                     |  |
| of cour          | se                                              | INIL                                     | CIE: 40                 | SEE: 60                                                                   |  |
| Course           | e Objectiv                                      |                                          |                         |                                                                           |  |
| 1. To ex         | xplain the                                      | problem solving concepts using a co      | mputer.                 |                                                                           |  |
| 2. To de         | evelop pro                                      | blem solutions for the computer by u     | using problem solving   | tools.                                                                    |  |
| 3. To de         | escribe the                                     | e Programming structure of C langua      | ge.                     |                                                                           |  |
| 4. To co         | onvert an A                                     | Algorithm, Pseudo code and Flowcha       | art into a C program    |                                                                           |  |
| 5. To fi         | nd errors a                                     | and execute a C program                  |                         |                                                                           |  |
| Course           | Outcome                                         | es: On completion of the course, stud    | lent would be able to:  |                                                                           |  |
| CO1              | Understa                                        | nd the fundamental concepts of com       | puter hardware and nu   | mber systems.                                                             |  |
| CO2              | Apply the                                       | e basic programming skills of C Lan      | guage in problem solv   | ing.                                                                      |  |
| CO3              | Use diffe                                       | erent data types, decision structures, l | oops, arrays, strings a | nd functions of C-                                                        |  |
|                  | program                                         | ming to design a computer program.       |                         |                                                                           |  |
| CO4              | O4 Apply dynamic memory concepts with pointers. |                                          |                         |                                                                           |  |
| CO5              | Apply va                                        | rious algorithms in solving sorting p    | roblems.                |                                                                           |  |
| CO6              | Apply lin                                       | near data structures like Stack, Queue   | es and Trees in organiz | zing and traversing                                                       |  |
|                  | data.                                           |                                          |                         |                                                                           |  |

| Module | COURSE SYLLABUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs | COs                 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------|
| No     | CONTENTS OF MODULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 005                 |
| 1      | <ul> <li>Generations and Classification of Computers - Applications of Computers - Basic Organization of a Computer - Number system - Binary, Decimal, Octal and Hexadecimal – Problems Introduction to C Language: Algorithm, Flowchart, Pseudo-code solution to problem, Basic concepts of a C program, Declaration, Assignment &amp; Print statement, Types of operators and expressions, Programming examples and exercise.</li> <li>Branching and Looping: Two-way selection (if, if- else, nested if- else, cascaded if-else), switch statement, ternary operator? Goto, Loops (For, do- while, while) in C, break and continue, programming examples and exercises.</li> </ul>                       | 9   | CO1,<br>CO2,<br>CO3 |
| 2      | <ul> <li>Functions: User defined functions-function definition, function declaration, function call, Formal and actual parameters, Categories of functions, Passing parameters to functions- Pass by value, Pass by reference, Recursion- types of recursion, programming example s and exercises.</li> <li>Arrays and Strings: Arrays: Classification of arrays, Storing value in arrays, Using arrays with Functions- passing individual elements of array, passing the whole array, Multidimensional arrays-addition and multiplication of matrices,</li> <li>Searching and Sorting-Linear search, Binary search, Bubble sort, String: Declaring, Initializing, Printing and reading strings,</li> </ul> | 9   | CO2,CO3,<br>CO5     |



|   |                                                                        |   | A MARI ALL BARRING |
|---|------------------------------------------------------------------------|---|--------------------|
|   | String input and output functions, String handling functions,          |   |                    |
|   | Arrays of strings, programming examples and Exercises.                 |   |                    |
|   | Structures and File Management: Basics of structures-                  |   |                    |
| 3 | structure data types, type definition, accessing structures,           |   |                    |
|   | Structure operations, Complex structures-nested structures,            |   |                    |
|   | structures containing arrays, Array of structures, Structures and      | 9 | CO3,CO4            |
|   | Functions,                                                             | 9 | 003,004            |
|   | File Management: Creating a file, Declaring file pointer               |   |                    |
|   | variable, Modes of a file, Opening and closing the files, Input        |   |                    |
|   | and output operations, Programming examples and exercises.             |   |                    |
|   | <b>Pointers:</b> Pointers concepts, Pointers and functions, Arrays and |   |                    |
|   | pointers, address arithmetic, Character pointer and functions,         |   |                    |
|   | Pointers to pointer, Dynamic allocations methods- malloc(),            |   |                    |
| 4 | calloc(), realloc(), free(), Array of pointers,                        | 9 | CO4,CO6            |
|   | Introduction to Data Structures: Primitive and non-primitive           |   |                    |
|   | data types, Definition and applications of Stacks, Queues,             |   |                    |
|   | Linked Lists and Trees                                                 |   |                    |

### **Text Books:**

- "The C Programming Language", BrianW. Kernighan and Dennis M. Ritchie, 2<sup>nd</sup>Edition, PHI, 2012.
- 2. "Problem Solving with C ", Jacqueline Jones &Keith Harrow, 1stEdition, Pearson2011.
- 3. "Let Us C", by Yashavant Kanetkar, 5th Edition, BPB

### **Reference Books:**

- 1. "Computer Concepts and C Programming", Vikas Gupta, Dreamtech Press2013.
- 2. "Programming with C ", R. S. Bichkar, University Press, 2012.
- 3. "Computer Programming in C ", V. Rajaraman, PHI, 2013.

### Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.



| Course<br>EE-ES-2 |                                                | Course Name: Engineering Graphics and DesignLTP2- |                           |                   |  |  |  |
|-------------------|------------------------------------------------|---------------------------------------------------|---------------------------|-------------------|--|--|--|
| Year an           | Year and1st Yr.Contact hours per week: (2Hrs ) |                                                   |                           |                   |  |  |  |
| Semeste           | r                                              | 2 <sup>nd</sup> Semester                          | Exam: (3 Hrs)             |                   |  |  |  |
| Pre-req           | uisite                                         | NIT                                               | Evaluation                |                   |  |  |  |
| of course         |                                                | NIL                                               | <b>CIE: 40</b>            | SEE: 60           |  |  |  |
| Course            | Objectiv                                       | es:                                               |                           |                   |  |  |  |
| 1. To r           | nake stud                                      | lents understand about construction               | on of various types of C  | urves and scales. |  |  |  |
|                   | nake stud<br>Ilar solids                       | lents understand about orthograpl<br>s.           | hic projections of Point, | Line, Plane and   |  |  |  |
| 3. To r<br>solid  |                                                | lents understand about sectional v                | views and development     | of right regular  |  |  |  |
| Course            | Outcome                                        | es: On completion of the course, s                | student would be able to  | ):                |  |  |  |
| CO1               | To learn                                       | about construction of various typ                 | es of Curves and scales.  |                   |  |  |  |
| CO2               | To learn                                       | about orthographic projections of                 | f Point, Line and Plane   |                   |  |  |  |
| CO3               | To learn                                       | about orthographic projections of                 | f regular solids.         |                   |  |  |  |
| CO4               | To learn                                       | about sectional views and develo                  | pment of right regular s  | olids             |  |  |  |

| Module<br>No | COURSE SYLLABUS<br>CONTENTS OF MODULE                                                                                                                                                                                                                                                                                               | COs                  |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|
| 1            | <b>Atroduction to Engineering Drawing covering:</b> Principles of<br>ngineering Graphics and their significance, usage of Drawing<br>struments, lettering, Conic sections including the Rectangular<br>yperbola (General method only); Cycloid, Epicycloid, Hypocycloid and<br>wolute; Scales – Plain, Diagonal and Vernier Scales; |                      |  |  |  |  |  |
| 2            | <b>Orthographic Projections covering:</b> Principles of Orthographic Projections-Conventions - Projections of Points and Projection of lines inclined to both planes; Projections of planes inclined Planes - Auxiliary Planes;                                                                                                     | CO1,<br>CO2,<br>CO3, |  |  |  |  |  |
| 3            | <b>Projections of Regular Solids:</b> those inclined to both the Planes-<br>(Pyramid, Prism, Cone and Cylinder) Auxiliary Views. Floor plans that<br>include: windows, doors, and fixtures such as WC, bath, sink, shower, etc.                                                                                                     | CO4                  |  |  |  |  |  |
| 4            | <b>Section of Solids:</b> Sectional View of simple right regular solids,<br>Development of Surfaces of right regular solids (Pyramid, Prism, Cone<br>and Cylinder)                                                                                                                                                                  |                      |  |  |  |  |  |

### **Suggested Text/Reference Books:**

- 1. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House
- 2. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMHPublication
- 4. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers



|                            |                  | Program Name: B. TechEle                                             | curical Engineering      |       |       |       |       |
|----------------------------|------------------|----------------------------------------------------------------------|--------------------------|-------|-------|-------|-------|
| Course Code:<br>EE-HSM-108 |                  | Course Name: Universal Human Values-II:                              |                          | L     | Т     | Р     | С     |
|                            |                  | Understanding Harmony and Etl                                        | hical Human              | 3     | 2 0   |       | 3     |
|                            |                  | Conduct                                                              |                          | 3     |       | 0     | 3     |
| Year an                    | d                | 1 <sup>st</sup> Yr.                                                  | Contact hours per w      | eek   | : (3E | lrs ) | Exam: |
| Semeste                    | er               | 2 <sup>nd</sup> Semester                                             | (3hrs.)                  |       |       |       |       |
| Pre-req                    | uisite of        | Nil                                                                  | Evalu                    | atio  | n     |       |       |
| course                     |                  |                                                                      | CIE: 40                  |       | SE    | E: 6  | 50    |
| Course                     | Objectives       | :                                                                    |                          |       |       |       |       |
|                            | 1. To            | create an awareness on Engineering                                   | Ethics and Human Val     | ues   |       |       |       |
|                            | 2. To            | understand social responsibility of a                                | n engineer.              |       |       |       |       |
|                            | 3. To            | appreciate ethical dilemma while dis                                 | scharging duties in prof | essio | onal  | life. |       |
| Course (                   | <b>Dutcomes:</b> | After successful completion of this                                  | course, the students s   | hou   | ld be | e abl | le to |
| CO1                        | Understan        | d the ethical theories and concepts                                  |                          |       |       |       |       |
| CO2                        | Understan        | d an engineer's work in the context of                               | of its impact on society |       |       |       |       |
| CO3                        | Understan        | d and analyse the concepts of safety                                 | and risk                 |       |       |       |       |
| CO4                        | Understan        | Understand the professional responsibilities and rights of Engineers |                          |       |       |       |       |
| CO5                        | Understan        | d the concepts of ethics in the global                               | context.                 |       |       |       |       |

| Module<br>No | COURSE SYLLABUS ;; CONTENTS OF MODULE                                                                                                                                                                                                                                                                                                                                                                   | Hrs       | COs |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
| 1            | <b>ENGINEERING ETHICS AND THEORIES</b> Definition, Moral issues,<br>Types of inquiry, Morality and issues of morality, Kohlberg and Gilligan's<br>theories, consensus and controversy, Professional and professionalism, moral<br>reasoning and ethical theories, virtues, professional responsibility, integrity,<br>self-respect, duty ethics, ethical rights, self-interest, egos, moral obligations |           |     |
| 2            | SOCIALETHICSANDENGINEERINGASSOCIALEXPERIMENTATION :Engineering as social experimentation, codes of<br>ethics, Legal aspects of social ethics, the challenger case study, Engineers duty<br>to society and environment.SAFETY:Safety and risk – assessment of safety and risk – risk benefit<br>analysis and reducing risk – the Three Mile Island and Chernobyl case studies.<br>Bhopal gas tragedy.    | 12<br>Hrs |     |
| 3            | <b>RESPONSIBILITIES AND RIGHTS OF ENGINEERS</b><br>Collegiality and loyalty – respect for authority – collective bargaining – confidentiality – conflicts of interest – occupational crime – professional rights – employee rights – Intellectual Property Rights (IPR) – discrimination                                                                                                                | 8<br>Hrs  |     |
| 4            | GLOBAL ISSUES AND ENGINEERS AS MANAGERS,<br>CONSULTANTS AND LEADERS : Multinational Corporations –<br>Environmental ethics – computer ethics – weapons development – engineers<br>as managers – consulting engineers – engineers as expert witnesses and<br>advisors – moral leadership – Engineers as trend setters for global values.                                                                 | 8<br>Hrs  |     |

#### **Reference Books:**

1. Mike Martin and Roland Schinzinger, "Ethics in Engineering". (2005) McGraw-Hill, New York.

2. John R. Boatright, "Ethics and the Conduct of Business", (2003) Pearson Education, New Delhi.

3. Bhaskar S. "Professional Ethics and Human Values", (2005) Anuradha Agencies, Chennai.

4. Charles D. Fleddermann, "Engineering Ethics", 2004 (Indian Reprint) Pearson Education / Prentice Hall, New Jersey.

5. Charles E. Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics – Concepts and cases", 2000 (Indian Reprint now available) Wadsworth Thompson Learning, United States.



| Course C<br>EE-BS- | [ Course Name: Mathematics_II               |                         |                  |        |       | C<br>4 |  |
|--------------------|---------------------------------------------|-------------------------|------------------|--------|-------|--------|--|
| Year and           | 1 <sup>st</sup> Yr.                         | Contact hours per       | er week: (4Hrs ) |        |       |        |  |
| Semester           | 2 <sup>nd</sup> Semester                    | Exam: (3 Hrs)           | -                |        |       |        |  |
|                    | The course assumes prior                    | Evalu                   | atio             | 1      |       |        |  |
| Pre-requi          | site knowledge of topics in Matrices,       |                         |                  |        |       |        |  |
| of course          | Differentiation, Partial Fractions,         | <b>CIE: 40</b>          |                  | SE     | E: 6  | 0      |  |
|                    | Partial Differentiation.                    |                         |                  |        |       |        |  |
| Course O           | bjectives:                                  |                         |                  |        |       |        |  |
| <b>1.</b> To ex    | plore the Properties of Matrices.           |                         |                  |        |       |        |  |
| <b>2.</b> To kr    | ow various basic Differential equations and | nd solve them.          |                  |        |       |        |  |
| <b>3.</b> To ga    | in knowledge on Laplace transformations     | and ability to apply t  | hem              | in va  | rious | 5      |  |
| probl              | ems                                         |                         |                  |        |       |        |  |
| <b>4.</b> To pr    | ovide good understanding of Linear and n    | on-linear Partial Diff  | erent            | ial ec | quati | ons.   |  |
| Course O           | utcomes: On completion of the course, st    | udent would be able t   | to:              |        |       |        |  |
| CO1                | Understand significance and Solve for dif   | ferent Matrix propert   | ies              |        |       |        |  |
| CO2                | Differentiate between linear and non-linear | ar differential equatio | ns an            | id sol | ve th | nem.   |  |
| CO3                | Understand and apply Laplace Transform      | ations and use them to  | o sol            | ve     |       |        |  |
|                    | Differential equations.                     |                         |                  |        |       |        |  |
| CO4                | Differentiate between linear and non-linear | ar partial differential | equat            | ions,  | form  | n      |  |
|                    | them related to in hand problems and solv   | e them.                 |                  |        |       |        |  |

| Module | COURSE SYLLABUS                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs | COs |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| No     | CONTENTS OF MODULE                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |
| 1      | <b>Matrices &amp; its Applications:</b> inverse using elementary transformations, consistency of linear system of equations, linear and orthogonal transformations, Eigen values and Eigen vectors, properties of Eigen values.                                                                                                                                                                                                                              | 6   | CO1 |
| 2      | <b>Ordinary Differential Equations &amp; its Applications:</b> Exact differential equations. Equations reducible to exact differential equations. <b>Linear differential equations of second and higher order</b> : complementary function and particular integral, method of variation of parameters to find particular Integral, Cauchy and Legendre linear differential equations, Simultaneous linear Differential equation with constant co-efficients. | 6   | CO2 |
| 3      | <ul> <li>Laplace Transforms and its Applications: Transforms of derivatives, transforms of integrals, multiplication by t<sup>n</sup>, division by t. Evaluation of integrals by Laplace transforms. Laplace transform of Unit step function, unit impulse function and periodic function.</li> <li>Inverse Laplace transforms, convolution theorem, application to linear differential equations</li> </ul>                                                 | 6   | CO3 |
| 4      | <b>Partial Differential Equations and Its Applications:</b> Formation of partial differential equations, Lagrange's linear partial differential equation, First order non-linear partial differential equation, Method of separation of variables and its applications.                                                                                                                                                                                      | 6   | CO4 |



### TEXT BOOKS:

- 1. Advanced Engineering Mathematics: E. Kreyszig, 10th Edition, John Wiley & son
- 2. Higher Engineering Mathematics: B.S. Grewal. 43rd Edition, Khanna Publication **REFERENCE BOOKS:**
- 1. Engineering Mathematics Part-I: S.S. Sastry, 4th Edition, PHI.
- 2. Advanced Engineering Mathematics: R.K. Jain, S.R.K. Iyengar, 3rd Edition, Narosa Publications

3. Advanced Engg. Mathematics: Michael D. Greenberg, 2nd Edition, Pearson Publications. **Note for Examiner(s)**: Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.



| Course Code:<br>EE-PRES-02 |                                                                                    | Course Name: Semiconductor Physics Lab |                        | L         T         P         C           -         -         2         1 |  |  |
|----------------------------|------------------------------------------------------------------------------------|----------------------------------------|------------------------|---------------------------------------------------------------------------|--|--|
| Year an                    | nd                                                                                 | 1 <sup>st</sup> Yr.                    | Contact hours per v    | veek: (2Hrs)                                                              |  |  |
| Semeste                    | er                                                                                 | 2 <sup>nd</sup> Semester               | Exam: (3 Hrs)          |                                                                           |  |  |
| Pre-req                    | uisite                                                                             | NII                                    | Evalua                 | ation                                                                     |  |  |
| of course                  |                                                                                    | NIL                                    | CIE: 20                | SEE: 30                                                                   |  |  |
| Course                     | Objectiv                                                                           | es:                                    |                        |                                                                           |  |  |
| 1. Abil                    | lity to ider                                                                       | ntify the basic electronic component   | S.                     |                                                                           |  |  |
| 2. Abil                    | lity to wor                                                                        | rk on the basic electronic equipments  | s.                     |                                                                           |  |  |
| 3. Abil                    | lity to get                                                                        | the electronic circuit concepts.       |                        |                                                                           |  |  |
| 4. Abil                    | ity to des                                                                         | ign the basic circuit in electronics.  |                        |                                                                           |  |  |
| Course                     | Outcome                                                                            | es: On completion of the course, stud  | lent would be able to: |                                                                           |  |  |
| CO1                        | Well ver                                                                           | se with the use of the electronic com  | ponents and equipmen   | ts.                                                                       |  |  |
| CO2                        | Well verse with the fundamentals and the parameters of components related to their |                                        |                        |                                                                           |  |  |
|                            | fabrication and construction.                                                      |                                        |                        |                                                                           |  |  |
| CO3                        | Able to s                                                                          | tart with the basic design concepts c  | ircuits operations.    |                                                                           |  |  |

| Expt. |                                                                         |        |
|-------|-------------------------------------------------------------------------|--------|
| No    | CONTENTS OF MODULE                                                      | - COs  |
|       | Familiarization of the basic electronic components and electronic lab   |        |
| 1     | equipments like Functional Generators, CRO, Power supplies, mustimeters |        |
|       | etc.                                                                    |        |
| 2     | Draw and study the forward and reverse characteristics of the PN Diode. |        |
| 3     | To draw and study the clipping circuits in various modes.               |        |
| 4     | To draw and study the clamping circuits in positive and negative mode.  |        |
| 5     | To draw and study the differentiating and integrating circuits.         |        |
| 6     | To draw and study the low pass and high pass filters.                   |        |
| 7     | To design and study the half and full wave rectifier                    |        |
| 8     | To design and study the effect of various filter circuits on rectifiers |        |
| 0     | performance.                                                            |        |
| 9     | To study the characteristics of pnp and npn transistors in CE mode and  | ~~ ^ / |
| 9     | determine h parameters from characteristics.                            | CO1,   |
| 10    | To study the characteristics of pnp and npn transistors in CB mode and  | CO2,   |
| 10    | determine h parameters from characteristics.                            | CO3    |
| 11    | To design and study the RC coupled CE amplifier and measure its voltage |        |
| 11    | and current gain.                                                       |        |
| 12    | To design and study Hartley oscillator.                                 |        |
| 13    | To design and study Phase shift oscillator.                             | -      |
| 14    | To measure the effect of negative feedback on amplifier in RC coupled   |        |
| 14    | current series mode.                                                    |        |



|                                   |             | Program Name: D. TechElec              | Li icai Engineering                             |       |              |           |     |        |
|-----------------------------------|-------------|----------------------------------------|-------------------------------------------------|-------|--------------|-----------|-----|--------|
| <b>Course Code:</b><br>EE-PRES-04 |             | Course Name: Programming for           | ourse Name: Programming for Problem Solving Lab |       | Т<br>0       | P<br>2    |     | C<br>1 |
| Year and                          | d           | 1 <sup>st</sup> Yr.                    | Contact hours per                               | weel  | <b>k:</b> (2 | Hrs       | )   |        |
| Semeste                           | r           | 2 <sup>nd</sup> Semester               | Exam: (3hrs.)                                   |       |              |           |     |        |
| Pre-requ                          | isite of    | NII                                    | Evalu                                           | iatio | n            |           |     |        |
| course                            |             | NIL                                    | CIE: 20                                         |       | SE           | <b>E:</b> | 30  |        |
| Course (                          | Objective   | es:                                    |                                                 |       |              |           |     |        |
| 1. To v                           | vrite C pro | ograms to solve the problems           |                                                 |       |              |           |     |        |
| 2. To c                           | ompile ar   | nd execute programs in C               |                                                 |       |              |           |     |        |
| 3. To i                           | dentify the | e syntax errors and semantic errors    |                                                 |       |              |           |     |        |
| 4. To d                           | lebug the   | program in C                           |                                                 |       |              |           |     |        |
| 5. To v                           | vrite C pro | ograms to solve the problems           |                                                 |       |              |           |     |        |
| Course O                          | utcomes     | : On completion of the course, stud    | ent would be able to:                           |       |              |           |     |        |
| CO1                               | Use flow    | wcharts to solve computational prob    | olems.                                          |       |              |           |     |        |
| CO2                               | Create a    | and develop algorithms with arithme    | etic and logical opera                          | tors. |              |           |     |        |
| CO3                               |             | e and implement an algorithm with      | 0 1                                             |       | ures.        | , loo     | ps, |        |
|                                   | •           | strings and functions.                 |                                                 |       |              |           | • ′ |        |
| CO4                               |             | and develop algorithms using prede     | fined or user-defined                           | func  | ction        | s to      | sol | ve     |
|                                   |             | is on sorting, searching and file pro- |                                                 |       |              |           |     |        |

| Expt. |                                                                                                                 |             |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------|-------------|--|--|
| No    | CONTENTS OF MODULE                                                                                              | COs         |  |  |
| 1     | Write a C program to compute roots of quadratic equation $ax^2+bx+c=0$ , where                                  |             |  |  |
| 1     | a, b, and c are three coefficients of a quadratic equation are inputs.                                          |             |  |  |
| 2     | Design and develop an algorithm to find the <i>reverse</i> of an integer number.                                |             |  |  |
|       | Design and develop an algorithm to check whether given number is                                                |             |  |  |
| 3     | PALINDROME or NOT, Implement a C program for the developed algorithm                                            |             |  |  |
| 3     | that takes an integer number as input and output the reverse of the same with                                   |             |  |  |
|       | suitable messages. Ex: Num: 2019, Reverse: 9102, Not a Palindrome.                                              |             |  |  |
| 4     | Design and develop a c program to implement simple calculator using switch                                      |             |  |  |
| 4     | case statement.                                                                                                 |             |  |  |
| 5     | Draw the flowchart and Write a C Program to compute Sin(x) using Taylor                                         |             |  |  |
| 5     | series approximation given by $Sin(x) = x - (x^{3}/3!) + (x^{5}/5!) - (x^{7}/7!) + \dots$                       |             |  |  |
| 6     | Develop, implement and execute a C program to search a Number in a list                                         |             |  |  |
| 0     | using <i>linear searching</i> Technique.                                                                        |             |  |  |
| 7     | Develop an algorithm, implement and execute a C program that reads N                                            | CO3,<br>CO4 |  |  |
| /     | integer numbers and arrange them in ascending order using Bubble Sort.                                          | 04          |  |  |
| 8     | Design and develop a C program to read and print a matrix and check whether                                     |             |  |  |
| 0     | a given Matrix is a sparse Matrix or not.                                                                       |             |  |  |
| 9     | Write and execute a C program to display Pascal Triangle using for loop.                                        |             |  |  |
|       | Write a C program to implements the following string manipulation functions                                     |             |  |  |
| 10    | till the use wishes to continue (infinite loop): (i) <i>strcpy</i> () (ii) <i>srrlen</i> () (iii) <i>strrev</i> |             |  |  |
| 10    | () (iv) strcmp() (v) strcat().                                                                                  |             |  |  |
|       | Read a sentence and print frequency of vowels and total count of consonants.                                    |             |  |  |
|       | Design and develop a C function $RightRotate(x, n)$ that takes two integers x                                   |             |  |  |
| 11    | and $n$ as input and returns value of the integer $x$ rotated to the right by $n$                               |             |  |  |
|       | positions. Assume the integers are unsigned.                                                                    |             |  |  |



|    |                                                                                                           | 141 4 |
|----|-----------------------------------------------------------------------------------------------------------|-------|
|    | Draw the flowchart and write a <i>recursive</i> C function to find the factorial of a                     |       |
| 12 | number, $n!$ , define by $fact(n)=1$ , if $n=0$ . Otherwise $fact(n) = n*fact(n-1)$ .                     |       |
| 12 | Using this function, write a C program to compute the binomial coefficient                                |       |
|    | ${}^{n}C_{r}$ . Tabulate the results for different values of <i>n</i> and <i>r</i> with suitable messages |       |
|    | Given two university information files such as "studentname.txt" and "usn.txt"                            |       |
|    | that contains students Name and USN respectively. Write a C program to                                    |       |
|    | create a new file called "output.txt" and copy the content of files                                       |       |
| 10 | "studentname.txt" and "usn.txt" into output file in the sequence shown below.                             |       |
| 13 | Display the contents of output file "output.txt" on to the screen.                                        |       |
|    | Student Name USN                                                                                          |       |
|    | Name 1 USN1                                                                                               |       |
|    | Name 2 USN2                                                                                               |       |
|    | <b>a.</b> Write a C program to maintain a record of n student details using an array                      |       |
|    | of structures with four fields (Roll number, Name, Marks, and Grade).                                     |       |
|    | Assume appropriate data type for each field. Input & Print the members of                                 |       |
| 14 | the structure                                                                                             |       |
|    | <b>b.</b> Write a C program to take 2 structures HH:MM: SS as T1 & T2 & display                           |       |
|    | the time difference as structure as T3.                                                                   |       |
|    | Write a C program using pointers to compute the sum, mean and standard                                    |       |
| 15 | deviation of all elements stored in an array of n real numbers.                                           |       |
|    | deviation of an elements stored in an array of infeat numbers.                                            |       |



| <b>Course Code:</b><br>E-PRES-06 Course Name: Engineering Graphics and Design lab |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1 <sup>st</sup> Yr.                                                               | Contact hours per                                                                                                                                                                                                                                                                                                                                                                                                                            | week: (2Hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 2 <sup>nd</sup> Semester                                                          | Exam: (3 Hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| ite                                                                               | Evalu                                                                                                                                                                                                                                                                                                                                                                                                                                        | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| INIL.                                                                             | <b>CIE: 20</b>                                                                                                                                                                                                                                                                                                                                                                                                                               | SEE: 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| jectives:                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| nake students understand about con                                                | struction of various types of                                                                                                                                                                                                                                                                                                                                                                                                                | Curves and scales.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| te students understand about orthog                                               | raphic projections of Point,                                                                                                                                                                                                                                                                                                                                                                                                                 | Line, Plane and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| solids.                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| te students understand about section                                              | al views and development of                                                                                                                                                                                                                                                                                                                                                                                                                  | of right regular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| tcomes: On completion of the cours                                                | se, student would be able to:                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| learn about construction of various                                               | types of Curves and scales.                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| **                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| To learn about sectional views and development of right regular solids            |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                                                   | Course Name: Engineering           1 <sup>st</sup> Yr.           2 <sup>nd</sup> Semester           ite         NIL           jectives:           nake students understand about con           cc students understand about orthog           solids.           cc students understand about section           tcomes: On completion of the cours           learn about orthographic projection           learn about orthographic projection | Course Name: Engineering Graphics and Design lab         1st Yr.       Contact hours per Exam: (3 Hrs)         ite       NIL       Evalu         jectives:       Evalu       CIE: 20         nake students understand about construction of various types of ce students understand about orthographic projections of Point, isolids.       Solids.         ce students understand about sectional views and development of the course, student would be able to: learn about construction of various types of Curves and scales.         learn about orthographic projections of Point, Line and Plane         learn about orthographic projections of regular solids. |  |  |  |

| Module<br>No | COURSE SYLLABUS<br>CONTENTS OF MODULE                                                                                                                                                                                                                                                                                          | COs                         |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1            | <b>Introduction to Engineering Drawing covering:</b> Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales; |                             |
| 2            | <b>Orthographic Projections covering:</b> Principles of Orthographic<br>Projections-Conventions - Projections of Points and Projection of lines<br>inclined to both planes; Projections of planes inclined Planes - Auxiliary<br>Planes;                                                                                       | CO1,<br>CO2,<br>CO3,<br>CO4 |
| 3            | <b>Projections of Regular Solids:</b> those inclined to both the Planes-<br>(Pyramid, Prism, Cone and Cylinder) Auxiliary Views. Floor plans that<br>include: windows, doors, and fixtures such as WC, bath, sink, shower, etc.                                                                                                | CO4                         |
| 4            | <b>Section of Solids:</b> Sectional View of simple right regular solids,<br>Development of Surfaces of right regular solids (Pyramid, Prism, Cone<br>and Cylinder)                                                                                                                                                             |                             |

### **Suggested Text/Reference Books:**

- 5. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House
- 6. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education

7. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMHPublication

Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers



| Program Name: B. TechElectrical Engineering |                                                     |                                  |                         |         |               |      |         |
|---------------------------------------------|-----------------------------------------------------|----------------------------------|-------------------------|---------|---------------|------|---------|
| Course                                      | Course Code: Course Name: Manufacturing Processes - |                                  | L                       | Т       | P             | С    |         |
| EE-PR                                       | ES-08                                               | Workshop Lab                     |                         | -       | -             | 2    | 1       |
| Year a                                      | nd                                                  | 1 <sup>st</sup> Yr.              | Contact hours per       | · weel  | <b>k:</b> ( ) | 2Hr  | s )     |
| Semest                                      | er                                                  | 2 <sup>nd</sup> Semester         | Exam: (3 Hrs)           |         |               |      |         |
| Pre-ree                                     | quisite of                                          | NIII                             | Evalu                   | atior   | 1             |      |         |
| course                                      | -                                                   | NIL                              | CIE: 20                 |         | SE            | E: 3 | 0       |
| Course                                      | Objectives:                                         |                                  |                         |         |               |      |         |
| 1. Upc                                      | on completion                                       | of this course, the students     | will gain knowled       | ge of   | the           | dif  | ferent  |
| -                                           | -                                                   | ocesses which are commonly       | -                       | -       |               |      |         |
| com                                         | ponents using                                       | different materials.             |                         | -       |               |      |         |
| 2. Upo                                      | on completion                                       | of this laboratory course, stude | ents will be able to fa | abrica  | te            |      |         |
| con                                         | ponents with                                        | their ownhands.                  |                         |         |               |      |         |
| 3. The                                      | y will also get                                     | practical knowledge of the dir   | nensional accuracies    | and     | dim           | ensi | onal    |
|                                             | • •                                                 | e with different manufacturing   |                         |         |               |      |         |
| 4. By a                                     | assembling dif                                      | ferent components, they will b   | e able to produce sn    | nall de | evic          | es o | f their |
| •                                           | rest.                                               | 1 2                              | 1                       |         |               |      |         |
| Course                                      | Outcomes: (                                         | On completion of the course, st  | udent would be able     | to:     |               |      |         |
| CO1                                         |                                                     | ne basics of manufacturing pro   |                         |         |               |      |         |
| CO2                                         | *                                                   | orking knowledge of lathe ma     |                         |         |               |      |         |
| CO3                                         | To provide the study of measuring tools             |                                  |                         |         |               |      |         |
| CO4                                         |                                                     | machine tools                    |                         |         |               |      |         |
| L                                           |                                                     |                                  |                         |         |               |      |         |

| Expt. | COURSE SYLLABUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COs          |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|
| No    | CONTENTS OF MODULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 005          |  |  |  |
| 1     | <ul> <li>Lectures &amp; videos: Detailed contents <ul> <li>(i.) Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods (2 lectures)</li> <li>(ii.) CNC machining, Additive manufacturing (1lecture)</li> <li>(iii.) Fitting operations &amp; power tools (1lecture)</li> <li>(iv.) Plastic molding, glass cutting (1lecture)</li> <li>(v.) Metal casting (1lecture)</li> <li>(vi.) Welding (arc welding &amp; gas welding), brazing (1 lecture)</li> </ul> </li> </ul> |              |  |  |  |
| 2     | To study different types of measuring tools used in metrology and determine least counts of vernier calipers, micrometers and Vernier height gauges.                                                                                                                                                                                                                                                                                                                                                        |              |  |  |  |
| 3     | To study different types of machine tools ( lathe, shape or planer or slotter, milling, drilling machines )                                                                                                                                                                                                                                                                                                                                                                                                 | CO1,<br>CO2, |  |  |  |
| 4     | To prepare a job on a lathe involving facing, outside turning, taper turning, step turning, radius making and parting-off.                                                                                                                                                                                                                                                                                                                                                                                  | CO3,<br>CO4  |  |  |  |
| 5     | To study different types of fitting tools and marking tools used in fitting practice.                                                                                                                                                                                                                                                                                                                                                                                                                       |              |  |  |  |
| 6     | To prepare lay out on a metal sheet by making and prepare rectangular tray, pipe shaped components e.g. funnel.                                                                                                                                                                                                                                                                                                                                                                                             |              |  |  |  |
| 7     | To prepare joints for welding suitable for butt welding and lap welding.                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |  |  |  |
| 8     | To perform pipe welding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |  |  |  |
| 9     | To study various types of carpentry tools and prepare simple types of at least two wooden joints.                                                                                                                                                                                                                                                                                                                                                                                                           |              |  |  |  |
| 10    | To prepare simple engineering components/ shapes by forging.                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |  |  |



| 11 | To prepare mold and core assembly, to put metal in the mold and fettle the casting. |   |
|----|-------------------------------------------------------------------------------------|---|
| 12 | To prepare horizontal surface/ vertical surface/ curved surface/ slots or V-        |   |
| 12 | grooves on a shaper/ planner.                                                       |   |
| 13 | To prepare a job involving side and face milling on a milling machine.              | ] |

### **Text Books:**

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 2. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4<sup>th</sup> edition, Pearson Education India Edition,2002.
- **3.** Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- **4.** Roy A. Lindberg, "Processes and Materials of Manufacture", 4<sup>th</sup>edition, Prentice Hall India, 1998.
- **5.** Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017.



|                            | i rogram Name. D. rech-Electrical Engineering |                                                     |                                       |        |        |        |  |  |
|----------------------------|-----------------------------------------------|-----------------------------------------------------|---------------------------------------|--------|--------|--------|--|--|
| Course Code:<br>EE-PRES-10 | Course Name: Idea Wor                         | Course Name: Idea Workshop Lab                      |                                       | Т<br>- | P<br>2 | C<br>1 |  |  |
| Year and Seme              | 1 <sup>st</sup> Yr.                           | Contact hours per                                   | <b>Contact hours per week:</b> (2Hrs) |        |        |        |  |  |
| rear and Seme              | 2 <sup>nd</sup> Semester                      | Exam: (3 Hrs)                                       |                                       |        |        |        |  |  |
| Pre-requisite of           | NII                                           | Eval                                                | uation                                |        |        |        |  |  |
| course                     | NIL                                           | CIE: 20                                             |                                       | SE     | E: 30  | )      |  |  |
| Course Objectiv            | ves:                                          |                                                     |                                       |        |        |        |  |  |
| 1.To provide all           | facilities under one roof for the c           | onversion of an idea into a                         | orototy                               | pe.    |        |        |  |  |
| 2.Training in the          | 21st century skills- critical thinki          | ng, problem-solving, collab                         | oration                               | etc.   |        |        |  |  |
| 3.Making engin             | eering students more curious, image           | ginative and creative; engine                       | eering                                | educ   | ation  | n more |  |  |
| engaging                   |                                               |                                                     |                                       |        |        |        |  |  |
| 4.IDEA lab will            | be centered around activities and e           | events to promote multidisc                         | iplinar                               | y edu  | ıcati  | on and |  |  |
| research                   |                                               | -                                                   | -                                     |        |        |        |  |  |
| <b>Course Outcom</b>       | es: On completion of the course,              | student would be able to:                           |                                       |        |        |        |  |  |
| CO1 Stud                   | ents will be able to earn skill of P          | ts will be able to earn skill of PCB Designing      |                                       |        |        |        |  |  |
| CO2 Stud                   | ents will be learning to write algor          |                                                     |                                       |        |        |        |  |  |
| CO3 Stud                   | ents will be able to earn skill of A          | Il be able to earn skill of Artificial Intelligence |                                       |        |        |        |  |  |

#### List of Experiments

- 1. Circuits on Bread board to PCB transition.
- 2. To design and fabricate PCB for electronic circuits as micro project (any one)
  - a) Power Supply
    - b) 555 Timer based circuits
    - c) Op-amp based circuits
    - d) Amplifiers
    - e) Any other circuit of similar nature
- 3. To develop algorithms in any computer language
  - a) Complex Mathematical operations
  - b) Matrix transformations
  - c) Logic gates
  - d) Numerical Methods –Interpolation (forward, backward, leap frog,) -Approximations
- 4. To deploy and generate AI models to implement various tasks (any two)
  - a) Image classification
  - b) Voice swap
  - c) Image generation
  - d) Neural style transfer
  - e) Video to text conversion
  - f) Graphics design generation
  - g) Music generation
  - h) any other application of similar nature

The students are required to undertake one/two task from each of the experiments in the above list and demonstrate it to score marks in the evaluation. All the projects can be undertaken on open source platforms. Any other emerging area projects may be added to the list as per the availability of resources and expertise in the University Department.



### Appendix –I Detailed first year curriculum contents Guide to Induction Program

### 1. Introduction

(Induction Program was discussed and approved for all colleges by AICTE in March 2017. It was discussed and accepted by the Council of IITs for all IITs in August 2016. It was originally proposed by a Committee of IIT Directors and accepted at the meeting of all IIT Directors in March 2016.<sup>1</sup>This guide has been prepared based on the Report of the Committee of IIT Directors and the experience gained through its pilot implementation in July 2016 as accepted by the Council of IITs. Purpose of this document is to help institutions in understanding the spirit of the accepted Induction Program and implementing it.)

Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work formational needs and beyond.

The graduating student must have knowledge and skills in the area of his study. However, he must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he would understand and fulfill his responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.

There is a mad rush for engineering today, without the student determining for himself his interests and his goals. This is a major factor in the current state of demotivation towards studies that exists among UG students.

The success of gaining admission into a desired institution but failure in getting the desired branch, with peer pressure generating its own problems, leads to a peer environment that is demotivating and corrosive. Start of hostel life without close parental supervision at the same time, further worsens it with also a poor daily routine.

To come out of this situation, a multi-pronged approach is needed. One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character.

### 2. Induction Program

When new students enter an institution, they come with diverse thoughts, backgrounds and preparations. It is important to help them adjust to the new environment and inculcate in them the ethos of the institution with a sense of larger purpose. Precious little is done by most of the institutions, except for an orientation program lasting a couple of days.

We propose a 3-week long induction program for the UG students entering the institution, right at the start. Normal classes start only after the induction program is over. Its purpose is to make the students feel comfortable in the in new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.<sup>2</sup>

Department of Instrumentation, KUK, (From 2024-25 for UTD)

<sup>&</sup>lt;sup>1</sup>A Committee of IIT Directors was setup in the 152nd Meeting of IIT Directors on 6th September 2015 at IIT Patna, on how to motivate undergraduate students at IITs towards studies, and to develop verbal ability. The Committee submitted its report on 19th January 2016. It was considered at the 153rd Meeting of all IIT Directors at IIT Mandi on 26 March 2016, and the accepted report came out on 31 March 2016. The Induction Program was an important recommendation, and its pilot was implemented by three IITs, namely, IIT(BHU), IIT Mandi and IIT Patna in July 2016. At the 50th meeting of the Council of IITs on 23 August 2016, recommendation on the Induction Program and the report of its pilot implementation were discussed and the program was accepted for all IITs.

<sup>&</sup>lt;sup>2</sup>Induction Program as described here borrows from three programs running earlier at different institutions: (1) Foundation Program running at IIT Gadhinagar since July 2011, (2) Human Values course running at IIIT



The time during the Induction Program is also used to rectify some critical lacunas, for example, English background, for those students who have deficiency in it. The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

- (i) IIT Gandhinagar was the first IIT to recognize and implement a special 5-week Foundation Program for the incoming 1st year UG students. It took a bold step that the normal classes would start only after the five week period. It involved activities such as games, art, etc., and also science and other creative workshops and lectures by resource persons from outside.
- (ii) IIIT Hyderabad was the first one to implement a compulsory course on Human Values. Under it, classes were held by faculty through discussions in small groups of students, rather than in lecture mode. Moreover, faculty from all departments got involved in conducting the group discussions under the course. The content is non-sectarian, and the mode is dialogical rather than sermonizing or lecturing. Faculty were trained beforehand, to conduct these discussions and to guide students on issues of life.
- (iii) Counselling at some of the IITs involves setting up mentor-mentee network under which 1st year students would be divided into small groups, each assigned a senior student as a student guide, and a faculty member as mentor. Thus, a new student gets connected to a faculty member as well as a senior student, to whom he/she could go to in case of any difficulty whether psychological, financial, academic, or otherwise.

The Induction Program defined here amalgamates all the three into an integrated whole, which leads to its high effectiveness in terms of building physical activity, creativity, bonding, and character. It develops sensitivity towards self and one's relationships, builds awareness about others and society beyond the individual, and also in bonding with their own batch-mates and a senior student besides a faculty member. Scaling up the above amalgamation to an intake batch of 1000 plus students was done at IIT(BHU), Varanasi starting from July 2016.

### **Physical Activity**

This would involve a daily routine of physical activity with games and sports. It would start with all students coming to the field at 6 am for light physical exercise or yoga. There would also be games in the evening or at other suitable times according to the local climate. These would help develop teamwork. Each student should pick one game and learn it for three weeks. There could also be gardening or other suitably designed activity where labour yields fruits from nature.

### **Creative Arts**

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it every day for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, flow into engineering design later.

### **Universal Human Values**

It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting staff in the hostel and department, be sensitive to others, etc. Need for character building has been underlined earlier. A module in Universal Human Values

Hyderabad since July 2005, and (3) Counselling Service or mentorship running at several IITs for many decades. Contribution of each one is described next.



provides the base.

Methodology of teaching this content is extremely important. It must not be through do's and don'ts, but get students to explore and think by engaging the mini dialogue. It is best taught through group discussions and real life activities rather than lecturing. The role of group discussions, however, with clarity of thought of the teachers cannot be over emphasized. It is essential for giving exposure, guiding thoughts, and realizing values.

The teachers must come from all the departments rather than only one department like HSS or from outside of the Institute. Experiments in this direction at IIT (BHU) are noteworthy and one can learn from them.<sup>3</sup>

Discussions would be conducted in small groups of about 20 students with a faculty member to reach. It is too pen thinking towards these. If, Universal Human Values discussions could even continue for rest of the semester as a normal course, and not stop with the induction program.

Besides drawing the attention of the student to larger issues of life, it would build relationships between teachers and students which last for their entire4-year stay and possibly beyond.

### Literary

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

### **Proficiency Modules**

This period can be used to overcome some critical lacunas that students might have, for example, English, computer familiarity etc. These should run like crash courses, so that when normal courses start after the induction program, the student has overcome the lacunas substantially. We hope that problems arising due to lack of English skills, wherein students start lagging behind or failing in several subjects, for no fault of theirs, would, hopefully, become a thing of the past.

### **Lectures by Eminent People**

This period can be utilized for lectures by eminent people, say, once a week. It would give the students exposure to people who are socially active or in public life.

### Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

### Familiarization to Dept./Branch & Innovations

Thestudentsshouldbetoldaboutdifferentmethodofstudycomparedtocoachingthat is needed at IITs. They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

<sup>&</sup>lt;sup>3</sup>The Universal Human Values Course is a result of along series of experiments at educational institutes starting from IIT-Delhi and IIT Kanpur in the 1980s and 1990s as an elective course, NIT Raipur in late 1990s as a compulsory one-week off campus program. The courses at IIT (BHU) which started from July 2014, are taken and developed from two compulsory courses at IIIT Hyderabad first introduced in July 2005.



### 3. Schedule

The activities during the Induction Program would have an Initial Phase, a Regular Phase and a Closing Phase. The Initial and Closing Phases would be two days each.

| Initial I hase      |                                                   |  |
|---------------------|---------------------------------------------------|--|
| Time                | Activity                                          |  |
| Day 0               | Students arrive - Hostel allotment.               |  |
| Whole day           | (Preferably do pre-allotment)                     |  |
| Day 1               |                                                   |  |
| 09:00am-03:00pm     | Academic registration                             |  |
| 04:30 pm -06:00pm   | Orientation                                       |  |
| Day 2               |                                                   |  |
| 09:00 am - 10:00 am | Diagnostic test (for English etc.)                |  |
| 10:15 am - 12:25 pm | Visit to respective depts.                        |  |
| 12:30 pm - 01:55 pm | Lunch                                             |  |
| 02:00 pm - 02:55 pm | Director's address                                |  |
| 03:00 pm - 03:30 pm | Interaction with parents                          |  |
| 03:30 pm - 05:00 pm | Mentor-mentee groups - Introduction within group. |  |
|                     | (Same as Universal Human Values groups)           |  |

### 3.1 Initial Phase

### 3.2 Regular Phase

AftertwodaysisthestartoftheRegularPhaseofinduction.Withthisphasetherewould be regular program to be followed every day.

### 3.2.1 Daily Schedule

Some of the activities are on a daily basis, while some others are at specified periods within the Induction Program. We first show a typical daily time table.

|    | Sessn. Time            | Activity                                 | Remarks                          |  |  |
|----|------------------------|------------------------------------------|----------------------------------|--|--|
|    | Day 3 onwards          |                                          |                                  |  |  |
|    | 06:00am                | Wake up call                             |                                  |  |  |
| Ι  | 06:30 am -07:10am      | Physical activity (mild exercise/yoga)   |                                  |  |  |
|    | 07:15am-08:55am        | Bath, Breakfast, etc.                    |                                  |  |  |
| Π  | 09:00 am -10:55am      | Creative Arts /Universal Human Value     | Half the groups do Creative Arts |  |  |
| Ш  | 11:00 am -12:55pm      | Universal Human Values /Creative<br>Arts | Complementary alternate          |  |  |
|    | 01:00pm-02:25pm        | Lunch                                    |                                  |  |  |
| IV | 02:30 pm - 03:55<br>pm | Afternoon Session                        | See below.                       |  |  |
| v  | 04:00 pm - 05:00<br>pm | Afternoon Session                        | See below.                       |  |  |
|    | 05:00 pm - 05:25<br>pm | Break / light tea                        |                                  |  |  |
| VI | 05:30 pm - 06:45<br>pm | Games / Special Lectures                 |                                  |  |  |
|    | 06:50 pm - 08:25<br>pm | Rest and Dinner                          |                                  |  |  |



| VII | 08:30 pm - 09:25<br>pm | Informal interactions (in hostels) |  |
|-----|------------------------|------------------------------------|--|
|-----|------------------------|------------------------------------|--|

Sundays are off. Saturdays have the same schedule as above or have outings.

### 3.2.2 Afternoon Activities(Non-Daily)

The following five activities are scheduled at different times of the Induction Program, and are not held daily for everyone:

- 1. Familiarization to Dept./Branch & Innovations
- 2. Visits to Local Area
- 3. Lectures by Eminent People
- 4. Literary
- 5. ProficiencyModules

Here is the approximate activity schedule for the afternoons (may be changed to suit local needs):

| Activity                                      | Session      | Remarks                                         |
|-----------------------------------------------|--------------|-------------------------------------------------|
| FamiliarizationwithDept./Branch & Innovations | IV           | For 3 days (Day 3 to 5)                         |
| Visits to Local Area                          | IV, V and VI | For 3 days - interspersed (e.g. 3<br>Saturdays) |
| Lectures by Eminent People                    | IV           | As scheduled - 3-5 lectures                     |
| Literary (Play/Book Reading / Lecture)        | IV           | For 3-5days                                     |
| ProficiencyModules                            | V            | Daily, but only for those who need it           |

| 3.3 Closing Phase |                                                                                            |  |
|-------------------|--------------------------------------------------------------------------------------------|--|
| Time              | Activity                                                                                   |  |
| Last But One Day  |                                                                                            |  |
| 08:30 am -12noon  | Discussions and finalization of presentation within each group                             |  |
| 02:00 am -05:00pm | Presentation by each group in front of4other groups besides their own (about 100 students) |  |
| Last Day          |                                                                                            |  |
| Whole day         | Examinations (if any). May be expanded to last 2 days, in case needed.                     |  |

3.3 Closing Phase

### 3.4 Follow Up after Closure

Aquestioncomesupastowhatwouldbethefollowupprogramaftertheformal3-week Induction Program is over? The groups which are formed should function as mentor- mentee network. A student should feel free to approach his faculty mentor or the student guide, when facing any kind of problem, whether academic or financial or psychological etc. (For every 10 undergraduate first year students, there would be a senior student as a *student guide, and* forevery20 students, there would be a *faculty mentor*.) Such a group should remain for the entire 4-5 year duration of the stay of the student. Therefore, it would be good to have groups with the students as well as teachers



from the same department/discipline<sup>4</sup>.

Here we list some important suggestions which have come up and which have been experimented with.

### 3.4.1 Follow-up after Closure – Same Semester

It is suggested that the groups meet with their faculty mentors once a month, within the semester after the3-week Induction Program is over. This should be a scheduled meeting shown in the timetable. (The groups are of course free to meet together on their own more often, for the student groups to be invited to their faculty mentor's home for dinner or tea, nature walk, etc.)

### **3.4.2** Follow Up – Subsequent Semesters

It is extremely important that continuity be maintained in subsequent semesters. It is suggested that at the start of the subsequent semesters (up to fourth semester), three days be set aside for three full days of activities related to follow up to Induction Program. The students be shown inspiring films, do collective artwork, and group discussions be conducted. Subsequently, the groups should meet atleast once a month.

### 4. Summary

Engineering institutions were set up to generate well trained manpower in engineering with a feeling of responsibility towards one self, one's family, and society. The incoming undergraduate students are driven by their parents and society to join engineering without understanding their own interests and talents. As a result, most students fail to linkup with the goals of their own institution.

The graduating student must have values as a human being, and knowledge and meta- skills related to his/her profession as an engineer and as a citizen. Most students who get demotivated to study engineering or their branch, also lose interest in learning.

The *Induction Program* is designed to make the newly joined students feel comfortable, sensitize them towards exploring their academic interests and activities, reducing competition and making them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and building of character.

The Universal Human Values component, which acts as an anchor, develops awareness and sensitivity, feeling of equality, compassion and oneness, draw attention to society and nature, and character to follow through. It also makes them reflect on their relationship with their families and extended family in the college (with hostel staff and others). It also connects students with each other and with teachers so that they can share any difficulty they might be facing and seek help. **References:** 

*Motivating UG Students Towards Studies*, Rajeev Sangal, IITBHU Varanasi, Gautama Biswas, IIT Guwahati, Timothy Gonzales, IIT Mandi, Pushpak Bhattacharya, IIT Patna, (Committee of IIT Directors), 31 March 2016, IIT Directors' Secretariat, IIT Delhi.

### **Contact:**

Prof. Rajeev Sangal, Director, IIT(BHU), Varanasi (director@iitbhu.ac.in)

<sup>&</sup>lt;sup>4</sup>We are aware that there are advantages in mixing the students from different depts. However, in mixing, it is our experience that the continuity of the group together with the faculty mentor breaks down soon after. Therefore, the groups be from the same dept. but hostel wings have the mixed students from different depts. For example, the hostel room allotment should be in alphabetical order irrespective of dept.