Ro	ll No	Total Pages : 03
		LMDQ/D-23 6531
	IN	ORGANIC CHEMISTRY (GENERAL)
		CHEM-301
		(CBCS-LOCF)
Tin	ne : T	Three Hours] [Maximum Marks : 45
No	te :	Attempt Five questions in all, selecting at least one
		question from each Unit. Q. No. 1 is compulsory. All
		questions carry equal marks.
		(Compulsory Question)
1.	(a)	Explain the structure and function of Hemerythrin.
		3
	(b)	Write and explain the ilkovic equation. 2
	(c)	What is the interference of O_2 in the determination
		of Metal ion in polarography?
	(d)	Define the terms vertical and adiabatic ionization. 2
		Unit I
2.	(a)	Describe the basic structural features of hemoglobin
		and myoglobin and explain their biological functions.
		5
	(b)	Explain that cytochrome p-450 is a monooxygenase.
		4
(5-12	2/3) L	-6531 P.T.O.

P.T.O.

Created by Universal Document Converter

- 3. (a) What are the electron carriers? Describe the role of iron-Sulphur proteins as electron carrier in biological system.
 - (b) Write a short note on model synthetic complexes of cobalt.

Unit II

- **4.** (a) Explain the determination of coordination number of complexes with the help of $E_{1/2}$.
 - (b) Describe the term hydrogen voltage and explain itsvolume, Erdy and Gruss theory.5
- 5. (a) Determine and depict the IR active modes of SF_4 (AX₄ type) by using group theoretic approach. 5
 - (b) On the basis of IR spectroscopy, explain the coordination behavior of β -diketones with transition metal ions.

Unit III

6. (a) Explain the term isomer shift and quadrupole splitting in Mossbauer.

L-6531

(b) Define photoelectric effect. Draw and explain the possible peaks for N_2 molecule in photoelectron spectrum. ${\bf 5}$

2

- 7. (a) Give the principle of ESCA. What chemical information is obtained from ESCA?

 5
 - (b) Explain the adiabatic and vibrational ionization energies in PES by using vibrational structure for a molecule.

(5-12/4) L-6531 3

- (b) Discuss the Mc-Connell equation and its application by taking suitable example.
- (c) Discuss the hyperfine structure in ESR spectra of an electron interacting with two non-equivalent protons. [Hint: Use 'stick diagram' and take $a_1 > a_2$]
- (d) List the factors which determine the suitability of a nucleus for investigation by NMR spectroscopy.

3,2,2,2

Section C

- **6.** (a) Draw stereogram corresponding to the following combination of symmetry elements:
 - (i) $\overline{3}$ m
 - (ii) $\overline{4}+i$
 - (iii) $\frac{3}{m}$
 - (iv) 3m.

Also state for each case, which point group is generated?

- (b) Draw space group diagram for Pm. Specify the coordinates of general positions.
- (c) Why is 2_1 called a neutral axis? 5,2,2

Roll No.

Total Pages: 05

LMDQ/D-23

6532

PHYSICAL CHEMISTRY GENERAL CHEM-302

Time : Three Hours]

[Maximum Marks: 45

Note: Attempt *Five* questions in all, selecting *one* question from each Section. Q. No. 1 is compulsory. All questions carry equal marks.

- 1. This question is compulsory:
 - (i) What is the basic criteria for a molecule to be IR active ?
 - (ii) Why is there no translational spectroscopy?
 - (iii) Express in eV, the thermal energy of a gaseous molecule at 298 K.
 - (iv) Why is NQR observed in solid state?
 - (v) A NMR frequency is approximately equal to 60 MHz. Calculate the corresponding energy in kJ/mol.
 - (vi) Why are ESR signals plotted in first-derivative mode?

- (vii) In tetragonal crystal system, A-centred lattice does not exist. Why ?
- (viii) Prove $\vec{a}^* \cdot \vec{a} = 1$ and $\vec{b}^* \cdot \vec{b} \cdot = 0$
- (ix) What is the index used to determine the accuracy of a structure after refinement? Give corresponding expression.

 1×9=9

Section A

- 2. (a) Show that for a diatomic rigid rotor, the moment of inertia is given by $I = \mu r^2$, where symbols have their usual meaning. Discuss how are molecules classified based on their principal moments of inertia? Give one example for each group.
 - (b) The rotational spectra of $^{79}Br^{19}F$ shows a series of equidistant lines 0.71433 cm⁻¹. Determine the energy of $J = 9 \rightarrow J = 10$ transition.
 - (c) What are the degeneracies of the following diatomic rotational energy levels: 5,2,2

2

- (i) 0
- (ii) $\frac{6\hbar^2}{I}$

- 3. (a) The fundamental vibrational frequency of $H^{35}Cl$ is 2890 cm^{-1} . Calculate the force constant of a molecule in Nm^{-1} .
 - (b) Discuss the quantum theory of Raman scattering.
 - (c) Elaborate with an example, the concept of 'zero-point energy'. 4,3,2

Section B

- **4.** (a) Explain with energy level diagram, the operating principle of NMR spectroscopy. Based on this diagram, justify why do nuclei such as ¹²C, ¹⁶O do not show NMR spectra.
 - (b) Explain the following terms:
 - (i) Chemical shift
 - (ii) Spin-spin coupling constant
 - (iii) Spin-Lattice relaxation.

4,5

5. (a) Calculate number of ESR lines in the following free radicals:

- (i) Pyrazine
- (ii) n-propyl
- (iii) $^{13}CF_2D$.

- 7. (a) Using reciprocal lattice concept, derive expression for interplanar spacing in case of cubic crystal system and determine the ratio $\frac{d_{112}}{d_{321}}$?
 - (b) Write down expression of structure factor for bodycentered lattice and derive the corresponding condition for systematic absences. Justify here which hkl reflection will be observed at smallest value of θ ?
 - (c) Powder XRD pattern of cubic crystal gives the following three peaks:

 2θ : 43.16; 50.30; 73.99

Index these reflections.

3,3,3

- 7. (a) Using reciprocal lattice concept, derive expression for interplanar spacing in case of cubic crystal system and determine the ratio $\frac{d_{112}}{d_{321}}$?
 - (b) Write down expression of structure factor for body-centered lattice and derive the corresponding condition for systematic absences. Justify here which hkl reflection will be observed at smallest value of θ ?
 - (c) Powder XRD pattern of cubic crystal gives the following three peaks:

 2θ : 43.16; 50.30; 73.99

Index these reflections.

3,3,3

- (a) How is UV-Visible spectroscopy helpful in detectionof functional group in organic compounds?
 - (b) Discuss the different ionisation techniques being used in mass spectrometry, highlighting the advantages and disadvantages of each.6

- 4. (a) [18] Annulene shows two signals in its ¹H-NMR spectrum, one at 9.25 ppm and other upfield at -2.88 ppm. What hydrogens are responsible for each of the signals? Also discuss about the factor responsible for these chemical shift values.
 - (b) How the 1 H-NMR spectra of four isomeric forms of compounds with molecular formula $C_{3}H_{6}Br_{2}$ differ ?
 - (c) How many signals will you get in the ¹H-NMR of the following compounds and mention the expected multiplicity for each proton?

Roll No. Total Pages: 06

LMDQ/D-23

6533

ORGANIC CHEMISTRY GENERAL CHEM-303

Time : Three Hours] [Maximum Marks : 45

Note: Attempt *Five* questions in all, selecting at least *one* question from each Section. Q. No. 1 is compulsory.

All questions carry equal marks.

(Compulsory Question)

- 1. (a) Why is an O-H stretch more intense than N-H stretch in IR?
 - (b) How an increase in solvent polarity shift $n-\pi^*$ and $n-\sigma^*$ absorption bands?
 - (c) Arrange the following compounds in order of decreasing frequency of carbonyl absorption in theirIR spectra:

(3-18/7) L-6533 P.T.O.

- (d) Primary alcohols have a strong peak at m/z = 31. What fragment is responsible for this peak?
- (e) What m/z value would you predict for the base peak in the mass spectrum of 3-methyl pentane?

1

- (f) A signal has been reported to occur at 120 Hz downfield from TMS in an NMR spectrometer with a 300-MHz operating frequency. Then:
 - (i) What is its chemical shift?
 - (ii) What would its chemical shift be in an instrument operating at 100 MHz?
 - (iii) How many Hz downfield from TMS would the signal be in an 100 MHz spectrometer?

2

(g) Compound A, with molecular formula C₄H₉Cl, shows two signals in its ¹³C-NMR spectrum.
 Compound B, an isomer of compound A, shows four signals and in the spin coupled mode, the signal most downfield is doublet. Identify compounds A and B.

Section A

2. (a) Using Woodward and Fisher's rule, calculate the expected is λ_{max} for the given compounds : 3

- (b) Discuss the fragmentation pattern of 4-n-butyltoluene involving (i) benzylic fission, (ii) the McLafferty rearrangement. Label the ions formed as cations or radical cations along with their masses.
- (c) What identifying characteristics would be present in the mass spectrum of a compound having single halogen atom or more halogens of same kind or different kinds?

 3

3

(3-18/8) L-6533

- 7. (a) Briefly introduce the terms (i) Fermi resonance and(ii) Overtones, used in IR spectroscopy with suitable examples.
 - (b) Deduce the structure of a compound of molecular formula C_3H_7NO with the following spectral data : 6 M.F. C_3H_7NO

UV : λ_{max} 238 nm, ϵ_{max} 10500

IR: v_{max} cm⁻¹ 3428, 2941-2857, 1681 and 1452 1 H NMR: δ 1.9 (3H, s), 2.7(3H, s) and 8.13 (1H, s) 13 C-NMR (off resonance decoupled): Two quartets and one singlet.

The singlet at δ 176.

- 5. Briefly discuss the following:
 - (a) Virtual coupling

3

(b) Nuclear Overhauser effect

- 3
- (c) Simplification of complex NMR spectra through chemical methods.

Section C

- 6. (a) How proton noise decoupled ¹³C-NMR spectroscopy be used to distinguish the following: 3
 - (i) 1,2-, 1,3-, and 1,4-dinitrobenzenes
 - (ii) 1-Methylcyclohexene and 1-Methylenecyclohexne
 - (iii) Acetone and Methylacetate
 - (b) Compare the sensitivity and chemical shifts values of ¹H and ¹³C-NMR spectroscopy. **3**
 - (c) How is IR spectroscopy used to differentiate the following:

(iii)
$$\bigcirc$$
 and \bigcirc o

Roll No Total Pages: 03					
LMDQ/D-23 6534					
INORGANIC CHEMISTRY SPECIAL–I CHEM-304					
Time : Three Hours] [Maximum Marks : 60					
Note: Attempt <i>Five</i> questions in all, selecting at least <i>one</i> question from each Section. All questions carry equal marks.					
Section A					
 (a) Comments on the lability or inertness of the following complexes with justification: 6 (i) [Cr(H₂O)₆]²⁺ (ii) [Cr(CN)₆]⁴⁻ (b) Discuss in brief about the theories of trans effect. 6 (a) Discuss the stereochemical changes in the acid 					
hydrolysis of Co(III)-ammine Complexes. 6 (b) Write down the mechanism of preparation of nitrito derivative of [Co(NH ₃) ₅ Cl] ²⁺ with explanation. 6					
Section B					
3. (a) Explain the following: (i) Mixed valance complexes and their electron transfer processes (ii) Non-complimentary redox reactions.					
(5-19/2) L-6534 P.T.O.					

Created by Universal Document Converter

- (b) Discuss the mechanism of electron transfer reactionwith reference to inner sphere reactions.6
- 4. (a) What are cross-reactions? Give two examples of such reactions and explain the evaluation of their rate constants with good degree of accuracy.6
 - (b) The electron transfer between $[Co(CN)_6]^{4-}$ + $[IrCl_6]^{2-}$ is relatively fast. Although both Cl⁻ and CN⁻ are good bridging ligands.

Section C

- 5. (a) Discuss the base hydrolysis reaction of coordinated nitriles and its bonding with transition metals.
 - (b) Give a brief account of redistribution reactions involving exchange of ligands between two molecules of the same type.6
- 6. (a) Discuss the nucleophilic substitution reactions of coordinated hydrocarbons.6
 - (b) What is fluxional isomerism? Explain fluxional behaviour in allylic and cyclopentadienyl organometallic complexes. 6

Section D

- 7. (a) Give preparation and properties of silicone elastomers. 6
 - (b) Discuss the structure and bonding in polyphosphazenes. Give its chemical reactions with water and ammonia.

- 8. (a) Acetic acid is a weak acid and nitric acid is a strong acid in aqueous solution, but both behave as base in sulfuric acid. Explain.6
 - (b) What is the aprotic solvent system concept of acids and bases? Ferric chloride exhibits acidic behaviour in phosphoryl chloride solvent. Explain.6

(5-19/3) L-6534 3 100

Rol	ll No.	Total Pages: 03	
		LMDQ/D-23	6535
	INC	ORGANIC CHEMISTRY	SPECIAL-II
		CHEM-305	
Tin	ne : Tl	nree Hours] [Maximum Marks : 60
Not	C	Attempt <i>Five</i> questions in all, squestion from each Section. All marks.	•
		Section A	
	(a)	Explain the synthesis of σ-be compounds by metal alkene n and elimination reactions.	· ·
	(b)		the fluxionality in
2.	(a)	Write the reactions of organ with α , β -unsaturated carbony mechanism.	
	(b)	Explain the β-hydrogen elimi	nation decomposition
		pathway in σ-bonded organon	netallic compounds. 4
		Section B	
3.	(a)	Discuss the structure and bon	ding in Schrock type
		carbene complexes.	6
5-32	2/8) I/	6E2E	РТО

Created by Universal Document Converter

- (b) Give any *three* methods of preparation of metal hydrides.
- 4. (a) Differentiate between Fischer and Schrock type carbene compounds.6
 - (b) Give any *three* methods of preparation of Fischer carbene complexes.

Section C

- 5. (a) Complete the following reactions: 6
 - (i) $\operatorname{Mn}\left(\eta^{5} C_{5}H_{5}\right)_{2} \xrightarrow{3CO} \rightarrow$
 - (ii) $\operatorname{Mn}\left(\eta^{5} C_{5}H_{5}\right)_{2} \xrightarrow{2H_{2}O} \rightarrow$
 - (iii) $\operatorname{Ni}\left(\eta^3 C_3H_5\right)_2 \xrightarrow{\operatorname{CO}_2}$.
 - (b) Give any *three* methods for the synthesis of transition metal cyclopentadienyls. 6
- 6. (a) Give any *two* methods of preparation of η^2 -alkene metal complexes.
 - (b) Write *three* reactions of η^2 -alkyne metal complexes with electrophiles. 6

Section D

7. (a) Explain the mechanism of hydrogenation of alkene using Wilkinson catalyst.6

2

(b) Discuss the hydroformylation of alkene by using Rhodium catalyst. 6

- 8. (a) Write a brief note on the activation of C.H bond. 6
 - (b) Give the mechanism of polymerization of propylene using Zeigler-Natta catalyst.6

(5-32/9) L-6535

Roll
Time Note
1.

Roll No. Total Pages : 03

LMDQ/D-23

6536

PHYSICAL CHEMISTRY (Special-I) CHEM-304 (CBCS-LOCF)

Fime: Three Hours] [Maximum Marks: 60

Note: Attempt *Five* questions in all selecting at least *one* question from each Section. All questions carry equal marks.

Section A

- 1. (a) Describe the general procedure to obtain the energy and the eigenfunction of a system up to first order correction by perturbation method.
 - (b) What is Born-Oppenheimer approximation? Under what condition is this approximation applicable? 3
 - (c) The trial function, $\varphi(x) = x(a x)$. At the boundaries, $\varphi(0) = 0$ and $\varphi(a) = x(a a) = 0$. Thus, φ satisfies these boundary conditions. Justify.
- 2. (a) What are symmetric and antisymmetric solution of hydrogen molecule ion (H_2^+) ?

(7-16/3) L-6536 P.T.O.

- (b) Write a note on "spin-orbit coupling". 2
- (c) Write the term symbol for the electronic configuration:
 - (i) $1s^22s^22p^4$
 - (ii) Term symbol for the ground state of nitrogen atom. 3

- (a) Compare the molecular orbital and valence bond treatments of hydrogen molecule in the ground state.
 - (b) Discuss the molecular orbital treatment of heteronuclear diatomic molecules with examples. 6
- 4. (a) What are hybrid orbitals? Describe the quantum mechanical treatment for bond formation in ethylene molecule.
 - (b) With the help of Hückel's rule, show that cyclopropenyl cation is more stable than its anion or radical 6

Section C

5. (a) Neatly draw Jablonsky diagram and label it with its various transitions that can occur after a molecule has been excited photochemically. With the diagram, explain why phosphorescence life time is much longer than fluorescence.

- (b) How do you correlate selection rules and transition moment integral? Explain. 4
- 6. (a) What is oscillator strength in spectroscopy?How is absorption intensity related to oscillator strength?
 - (b) Discuss about Einstein's coefficient of absorption and emission phenomenon.
 - (c) Write a note on "Probability of Induced Emission and its Application to Lasers". 3

Section D

- 7. (a) What is a surface active agents? Discuss the different types of surface active agents with examples.6
 - (b) Explain the terms 'Micellization' and 'Critical micellar concentration'. How the mass action model can be used to discuss micellization?
- 8. (a) Discuss briefly the different types of intermolecular forces in liquids.5
 - (b) What is the physical interpretation of internal pressure? Discuss the significance of internal pressure in liquids.
 - (c) Give a brief account about 'Liquids as disordered solids'.

(7-16/4) L-6536

3

Rol
Tim Not
1.
2.

Roll No. Total Pages : 03

LMDQ/D-23

6537

PHYSICAL CHEMISTRY SPECIAL-II CHEM-305

Fime: Three Hours] [Maximum Marks: 60

Note: Attempt *Five* questions in all, selecting at least *one* question from each Section. All questions carry equal marks. Calculator is allowed for solving numerical only.

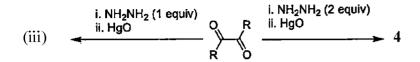
Section A

- (a) What do you mean by phase space, representative point and ensembles?
 - (b) Using Lagrange's method of undetermined multipliers derive an expression for Maxwell-Boltzmann Statistics.
- (a) Differentiate microcanonical, canonical and grand canonical ensembles.
 - (b) Derive a relation for Maxwell distribution law of velocities from Boltzmann distribution expression. 7
 - (c) Particles to be distinguished in 2 boxes such that box 1 contains 30 particles and box 2 contains 26 particles. Find the number of ways of distribution. 2

(7-23/2) L-6537 P.T.O.

- (a) Derive and expression for B.E statistics showing its deviation from ideal gas when B > 1.
 - (b) Why is He more degenerate than Hydrogen for B.E statistics ? 3
 - (c) Describe the case of degeneration for Fermi Dirac system when α of e^{α} is positive.
- 4. (a) Illustrate thermionic emission of electron from metals for F.D statistics.9
 - (b) Comment on the degeneracy of classical and quantum mechanical objects. 3

Section C


- 5. (a) Derive an expression for translational partition function of gas and also derive Sackur Tetrode equation.8
 - (b) The rotational constant of gaseous HCl, determined from microwave spectroscopy is 10 cm⁻¹. Calculate rotational partition function of HCl at 25°C. **2**
 - (c) What do you understand by characteristic vibrational temperature? 2
- 6. (a) Derive an expression of relationship of internal energy of system in terms of partition function and absolute temperature.6

- (b) What are the postulates of statistical thermodynamics? What is significance of Boltzmann constant?
- (c) The vibrational frequency of a homonuclear diatomic molecule is v. Calculate the temperature at which the population of the first excited state will be half that of the ground state.

Section D

- 7. (a) Derive a relationship between Partition function and equilibrium constant. How is this relationship helpful in understanding Activated complex theory? 5
 - (b) Determine pre exponential and steric factor for the system:
 Atom + Linear molecule ⇒ Linear molecule
 Linear molecule + Linear molecule ⇒ Nonlinear molecule
- 8. (a) What are the forces and fluxes in irreversible Thermodynamics? How are they related? Explain with examples.
 - (b) Derive an expression for :
 - (i) Entropy production in matter flow.
 - (ii) Entropy production in current flow. 6
 - (c) What is Onsager Reciprocal Relationship? 3

(7-23/3) L-6537

6. Rationalize the following transformation with a suitable mechanism:

(ii)
$$\frac{1.\text{TI}(\text{NO}_3)_3, \text{MeOH}}{2. \text{H}_2\text{SO}_4}$$

(iii)
$$\frac{1. O_3}{2. Zn}$$

Section D

7. Write the product and mechanism of the following reactions:

L-6538

Roll No. Total Pages : 05

LMDA/D-23

6538

ORGANIC CHEMISTRY SPECIAL-I CHEM-304

Time: Three Hours] [Maximum Marks: 60

Note: Attempt *Five* questions in all, selecting at least *one* question from each Section. All questions carry equal marks.

Section A

1. Write product of the following transformations and propose a mechanism for each transformation to explain the observed regionselectivity and stereochemistry.

(i)
$$\frac{\text{i. CO}_2}{\text{ii. H}_3\text{O}^+}$$
 $\frac{\text{i. 2 equv MeLi}}{\text{ii. H}_3\text{O}^+}$ 3

(2-13/11)L-6538 P.T.O.

2. Complete the following organic reactions and propose a mechanism for each transformation to explain the observed regioselectivity and stereochemistry.

(i)
$$\begin{array}{c|c} & \text{i. } \text{CH}_2\text{=CH}_2\\ \hline \text{ii. } \text{CH}_3\text{CH=CH}_2\\ \hline & \text{ii. } \text{(CF}_3\text{CO)}_2\text{O}\\ \hline & \text{iii. } \text{NaOH, } \text{H}_2\text{O}_2\\ \end{array} \qquad 3$$

(ii)
$$R_1$$
 $SiMe_3$ $PhCOCI$ AlCl₃

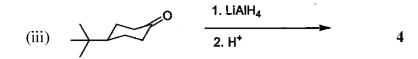
Section B

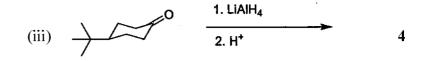
3. Complete the following chemical conversion with suitable mechanism:

2

L-6538

(ii) Br
$$\stackrel{OMe}{\longrightarrow}$$
 $\stackrel{Ni(CO)_4}{\longrightarrow}$ $X + \stackrel{O}{\longrightarrow}$ $\stackrel{(i)}{\longrightarrow}$ $\stackrel{(i)}{\longrightarrow}$ $\stackrel{(ii)}{\longrightarrow}$ $\stackrel{V}{\longrightarrow}$ $\stackrel{V}{\longrightarrow}$ $\stackrel{V}{\longrightarrow}$


(iii)
$$R = R + CH_3 = Co_2(CO)_8$$


4. Explain the role of the following organometallic reagent in carbon-carbon bond forming reaction.

- (a) Reaction of σ -organochromium
- (b) Tebbe Reagents 4
- (c) (η²-alkene)palladium(II) complex.

Section C

5. How will you carry out the following reactions and suggest a suitable mechanism:

- **8.** Explain the following with suitable example(s) and mechanism:
 - (i) Rosenmund's Reduction. 4
 - (ii) Reductive amination. 4
 - (iii) Why reduction of alkynes by electron transfer method gives trans-product?

- 8. Explain the following with suitable example(s) and mechanism:
 - i) Rosenmund's Reduction.
 - (ii) Reductive amination. 4
 - (iii) Why reduction of alkynes by electron transfer method gives trans-product?

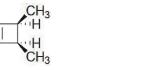
Section D

- 7. Discuss the mechanism of the the following reactions: 4×3
 - (a) Barton reactions
 - (b) Photofries rearrangement
 - (c) Di- π -methane rearrangement.
- 8. (a) Discuss the possible products after photo-irradiation of α -santonin. Give mechanistic details.
 - (b) Discuss the formation of products giving suitable mechanism after photo-irradiation of benzene. **6+6**

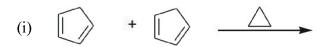
Roll No. Total Pages: 04

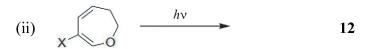
LMDQ/D-23

6539


ORGANIC CHEMISTRY SPECIAL-II CHEM-305

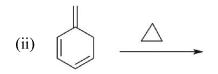
Time : Three Hours] [Maximum Marks : 60

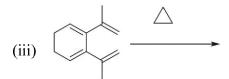

Note: Attempt *Five* questions in all, selecting at least *one* question from each Section. All questions carry equal marks.


Section A

- 1. (a) Predict the product of cycloaddition of ethylene and cis-2-butene, addition being supramolecular on both the reactants. State under which condition (thermal or photochemical) the reaction will be symmetry allowed.
 - (b) The following compound can open by two conrotatory modes. Predict the products in each case and state which one will be formed predominantly.

- 2. (a) Giving proper reasoning, predict the reaction condition for disrotatory interconversion of 1,3,5-hexatriene ⇒ cyclohexadiene.
 - (b) Predict the products and give mechanism for their formation for the following reactions:


3. (a) Write down the mechanism for the following rearrangement:



- (b) With the help of a suitable example discuss Sommlet-Houser and cope rearrangement. 12
- 4. Giving justification, predict the products in the following reactions under given reaction conditions: 4×3

(i)
$$CO_2$$
 CO_2

2

Section C

- 5. (a) Draw and discuss Jablonski diagram.
 - (b) Giving mechanism, predict the products of the photolysis of $(CH_3)_3CO(CH_3)_3$.
 - (c) Giving mechanism, predict the product(s) in the following reaction:

$$\xrightarrow{hv} \quad 4\times3$$

6. (a) Giving mechanism, predict the product(s) of the photolysis of following ketone:

- (b) Predict the product(s) when a solution of benzophenone in isopropyl alcohol is irradiated at 345 nm.
- (c) Discuss the photodimerisation of 1,3-butadiene.

 4×3

Section D

- 7. Sketch an important method for the synthesis of guanine and caffeine.
- **8.** (a) Give the general methods for the structural determination of quercetin.
 - (b) Write down the product(s) of the following reaction.Also sketch the mechanistic pathway: 8,4

Roll No. Total Pages: 04

LMDQ/D-23

6540

PHARMACEUTICAL CHEMISTRY

SPECIAL-I CHEM-304

(CBCS-LOCF)

Time : Three Hours] [Maximum Marks : 60

Note: Attempt *Five* questions in all, selecting at least *one* question from each Section. All questions carry equal marks.

Section A

- 1. (a) Discuss synthetic equivalents and FGI with examples.
 - (b) Analyze the molecule using disconnection approach:

(c) Discuss one group C-X disconnection of acid derivatives. 4,4,4

(5-18/12)L-6540

P.T.O.

- 2. (a) What do you understand by masked H_2S equivalent? Explain.
 - (b) Define and discuss reversal of polarity.
 - (c) Disconnect the molecule to propose a suitable synthetic method: 4,4,4

3. (a) Disconnect the compound using synthon approach:

- (b) Explain the application of synthon approach in the synthesis of nafimidone. 5,7
- **4.** (a) Apply synthon approach in the synthesis of propanolol.
 - (b) Describe the role of (i) THP and (ii) Cbz as protective groups. 5,7

Section C

5. (a) Write the systematic name of:

- (b) How will you synthesize pyrazole starting from acetylacetone?
- (c) Complete the reaction. Also discuss the mechanism: 3,5,4

$$\begin{array}{c|c} & \text{NH} & \underline{\text{conc. } H_2SO_4} \\ & \text{Ph} & \\ \end{array}$$

- **6.** (a) Discuss the reactivity of 1, 2- and 1, 3-azoles towards nucleophilic reactions.
 - (b) Write the product(s)/mechanism: 4,8

(i)
$$N \longrightarrow Br_2$$
 CHCl₃

(5-18/13)L-6540

3

P.T.O.

L-6540 2

Section III

- Discuss antipyretic agents in detail.
- Write the synthesis of the following:
 - Celecoxib
 - Diclofenac, and biosynthesis of eicosanoid.

Section IV

- Give recent advances of hormonal contraceptives in detail.
- Discuss calcium channel blockers and synthesis of clonidine and diltiazem.

Total Pages: 02 Roll No.

LMDQ/D-23

6541

PHARMACEUTICAL CHEMISTRY SPECIAL-II **CHEM-305**

Time: Three Hours] [Maximum Marks: 60

Note: Attempt *Five* questions in all, selecting at least *one* question from each Section. All questions carry equal marks.

Section I

- Explain the general mode of action, medicinal uses and synthesis of Thiotepa and 6-mercaptopurine drugs.
- Discuss antimalarial agents and mode of action of nucleoside reverse transcriptase inhibitors for AZT and ddC.

Section II

- Give synthesis, SAR, mechanism of action of sulphonamides.
- Illustrate structure, mode of action, synthesis of azithromycin and ampicillin.

(7-23/9) L-6541 P.T.O.