	ZOOLOGY:SEMESTER-VII										
Remarks			Name of the Course	Credit	Contact Hours/ Week	Assessment	End Term Marks	Max. Marks	Exam Duration		
For Honours in Zoology/ Honours with Research in Zoology	CC-H1 4credit	B23 200 701	Advances of Cell Biology	4	4	30	70	100	3hrs.		

Pre-requisite for the course(if any): Zoology as single major in 3 years UG

Course Learning Outcomes(CLO)

- 1. This core course will make students able to understand how the cell functions as a unit of life.
- 2. Through this course, students will be able to appreciate the importance of various cell function and structures in the evolution of multi cellular organisms.
- 3. The studies will make the students reveal elegance, dynamics and economy in the living cell and a gratifying unity in the principles by which a cell functions.
- 4. The students will know about the basic cellular and molecular approaches for cancer development and treatment.

- 1. Nine questions will be set in all. All questions will carry equal marks.
- 2. Question No.1, which will be short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set unit wise selecting two questions from each Unit Ito IV. The candidate will be required to attempt question No. 1 and four more questions selecting one question from each unit.

UNIT	TO	PICS	CONTACTHOUR
	1.	Bio membranes	15
		1.1 Molecular composition and arrangement, functional consequences	
I		1.2 Cellular Transport – Recapitulation of the plasma membrane; diffusion, activ	ve
1		transport and pumps, uniports, symports and antiports.	
		1.3 Donnan equilibrium; ion movements and cell function: acidification of cell organelles	
		1.4 Maintenance of cellular pH; cell excitation; bulk transport; Receptor mediated endocytosis	
		1.5 Trans epithelial transport	
	2.	Cytoskeleton and cell movement	
		2.1 Introduction to cytoskeleton and its role	
		2.2 Molecular structure of Actin, myosin and their organisation	
		2.3 Structure and dynamic organizations of microtubules and	
		microfilaments	
		2.4 Microtubule motors and movement	
		2.5 Intermediate filaments	
		2.6 Role of Centrioles and basal bodies	
		2.7 Structure and functions of Cilia and flagella	
	3	The Extra Cellular Matrix and Cell interactions	15
		3.1 Cell walls	
П		The E C M and cell-matrix interactions	
		3.3 Cell-cell interactions: adhesion junctions, tight junctions, gap junctions,	
		plasmodesmata	
		3.4 Ca ⁺⁺ dependent and Ca ⁺⁺ independent Homophilic cell-cell adhesion	
	4	Cell matrix adhesion	
		4.1 Integrins	
		4.2 Collagen	
		4.3 Non-collagen components	
		4.4 Auxin and cell expansion	
		4.5 Cellulose fibril synthesis and orientation	
	5	Protein sorting and transport	
		5.1 Protein uptake into the ER	
		5.2 Membrane proteins and Golgi sorting	
		5.3 Mechanism of vesicular transport	
		5.4 Lysosomes	
		5.5 Molecular mechanism of secretory pathway	

	6 Cell cy	ycle			15	
	6.1	Eukaryotic cell cycle				
	6.2	Regulators of cell cycle progression				
Ш	6.3	Role of Meiosis in Genetic Variation				
111	7 Cell–C	Cell signaling				
	7.1	Signaling molecules and their receptor	S			
	7.2	Pathways of intracellular signal transduc	ction			
	8 Biology	y of Cancer				
	8.1	The development and causes of cancer				
	8.2	Oncogenes				
	8.3	Tumor suppressor genes				
	8.4	Molecular approaches to cancer treatme	nt			
	9 Genon	ne organization			15	
	9.1	Chromosomal organization of genes				
	9.2	Transposons in prokaryotes and eukary	otes			
IV	9.3	Morphological and functional elements	of eu	karyotic chromosomes		
1 4	10 Cell De	eath				
	10.1	Necrosis and Programmed cell death				
	10.2	Molecular Mechanism				
	10.3	Applications and Significance				
	11 Biology	of Ageing				
	11.1	Morphological, Physiological and Func	tional	changes during Ageing		
	11.2	Telomeres and Ageing				
	11.3	Theories of Ageing				
		Total Contact Hours			60	
		Suggested Ev	aluati			
	Internal Assessment: 30 End Term Examination: 70					
Theo	ry		30	> Theory:	70	
Class Pa	ass Participation: 5 Written Examination			tion		

10

15

Recommended Books/e-resources/LMS:

• Mid-Term Exam:

- 1. Molecular Cell Biology ,J. Darnell, H.Lodish and D.Baltimore ScientificAmerican Book,Inc., USA.
- 2. Molecular Biology of the Cell, B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson. Garland Publishing Inc., New York.
- 3. Cell and molecular biology Phillip Sheeler, Donald E. Bianchi Wiley, 1987
- 4. Life: The Science of Biology by David Sadava

• Seminar/presentation/assignment/quiz/class test etc.:

- 5. Cell and Molecular Biology by De Robertis
- 6. Cell Biology by A.K.Berry, EMKAY Publications
- 7. Molecular Cell Biology, Lodish et al., W.H. Freeman and Company (8thEd.2016)
- 8. Molecular Biology, Weaver R. F.,Mc Graw-Hill Education(5thEd. 2011)

	ZOOLOGY: SEMESTER-7 (FOR HONOURS/HONOURS WITH RESEARCH IN ZOOLOGY)								
Remarks	Course Type	Course Code	Name of the Course	Credit	Contact Hours/ Week	Internal Assessment marks	Tarm	Max. Marks	Exam Duration
For Honours in Zoology/ Honours with Research in Zoology	CC-H2 4credit	B23-ZOO-702	Biochemistry and Biotechniques	4	4	30	70	100	3hrs.

Pre-requisite for the course(if any): Zoology as single major in 3 years UG

Course Learning Outcomes (CLO): Students will be able to understand A basic knowledge of the underlying principles and practical strategy of the analytical and preparative techniques that are fundamental to study and understanding of life processes.

- 1. The general reactions of various metabolic pathways.
- 2. The principle, working, materials used and applications of various biological techniques that are used to study the basic biological processes.
- 3. The underlying description of the structure and classification of bio molecules.

- 1. Nine questions will be set in all. All questions will carry equal marks.
- 2. Question No.1, which will be short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set unit wise selecting two questions from each Unit I to IV. The candidate will be required to attempt question No.1 and four more questions selecting one question from each unit.

question	is selecting one question from each unit.	1
UNIT	TOPICS	CONTACTHOURS
	1.0 General Principles of Biochemistry and chemical composition of life	
	1.1 General Introduction to Bio molecules	
I	2.0 Protein Biology:	15
_	2.1 Primary, Secondary, tertiary and quaternary structure of proteins :	
	i) Domain,	
	ii) Ramachandran plot and its significance	
	3.0 Enzyme:	
	3.1 Classification and nomenclature,	
	3.2 Co-enzymes and Cofactors	
	3.3 Induced fit and Molecular Mechanism of Enzyme action,	
	3.4 Enzyme feedback mechanism, Isozymes.	
	4.0 Nucleic acids: Structure and Functions	
	4.1 DNA structure and functions	
	4.2 RNA structure and functions,	
	4.3 DNA choreography	
	4.4 Qualitative and quantitative estimation of DNA	
	5.0 Metabolism:	
	5.1 Glycolysis, citric acid cycles its regulation and role as metabolic hub.	
	5.2 Hexose monophosphate pathway its regulation and significance.	
	5.3 Cholesterol biosynthesis, its metabolism and steroidogenesis.	
II	5.4 Bile acids and their metabolism	15
	5.5 Saturated and unsaturated fatty acid and their metabolism.	

	7.0 Principles and uses of analytical instruments: 7.1 Microscopes and imaging	
	7.2 Spectrophotometers,	
ш	7.3 NMR spectrophotometer	15
1111	8.0 Microbiological and cell culture Techniques 8.1 Setting of microbiological laboratory,	13
	8.2 Sterilization and Media preparation techniques	
	8.3 Inoculation and growth monitoring (Standard plate count technique),	
	8.4 Isolation of a microbial colony and slant preparation.	
	8.5 Design and functioning of tissue culture laboratory,	
	8.6 Basics of cell/tissue culture, Culture media preparation,	
	8.7 Cell proliferation measurements	
	8.8 Cell viability testing and Cell harvesting methods.	
	8.9 Bio safety levels	
	9.0 Cryotechniques:	
	9.1 Cryopreservation for cells, tissue, organisms	
	9.2 Cryotechniques for microscopy.	
	10.0 Separation techniques in biology.	
IV	10.1 Molecular separations by chromatography, electrophoresis, precipitation etc.	15
	10.2 Organelle separation by centrifugation. Density gradient centrifugation, Ultra	
	Centrifugation, unit gravity centrifugation, affinity adsorption, anchorage based	
	techniques etc.	
	10.3 Cell separation by flowcytometery and FACS	
	11.0 Radio isotope and mass isotope techniques in biology:	
	11.1 Carbon dating and radioactive counting	
	11.2 Autoradiography	
	11.3 Biosensors	
	12.0 DNA fingerprinting	
	Total Contact Hours	60
	Suggested Evaluation Methods	
Intorno	al Accessment: 30	mination: 70

Internal Assessment: 30

➤ Theory

• ClassParticipation: 5

End Term Examination: 70

➤ Theory

• Written Examination

• Seminar/presentation/assignment/quiz/classtestetc.: 10

• Mid-TermExam: 15

- 1. Animal Cell Culture–A practical approach, Ed. John R.W. Masters, IRL Press.
- 2. Introduction to Instrumental analysis, Robert Braun, McGraw Hill International editions
- 3. A Biologists guide to Principles and Techniques of Practical Biochemistry, K.Wilsonand K.H. Goulding, ELBS Edn.
- 4. Lehninger AL, Nelson DL & Cox MM(1993)Principles of Biochemistry,2ndedn.NewYork:Worth.
- 5. StryerL (1995)Biochemistry, 4thedn.NewYork:WHFreeman.
- 6. Voet D, Voet J G&PrattCW(1999)Fundamentals of Biochemistry.NewYork:Wiley.

ZOOLOGY:SEMESTER-VII									
Remarks	Course Type	Course Code	Name of the Course	Credit	Contact Hours/ Week	Internal Assessment marks	End Term Marks	Max. Marks	Exam Duration
For Honours in Zoology/ Honours with Research in Zoology	CC-H3 4credit		Structure and Function of Invertebrates	4	4	30	70	100	3hrs.

Pre-requisite for the course (if any): Zoology as single major in 3 years UG

Course Learning Outcomes (CLO)

- 1. The study of invertebrates reveals progressive evolutionary history and adaptations together which forms the basis of huge complex and diverse life forms.
- 2. Students will acquire a clear understanding about organization of minor phyla and their relationship with other animal phyla
- 3. Students will be able to know the structure and significance of various systems of Invertebrates
- 4. Will have detail understanding of adaptations and significance of Invertebrates

- 1. Nine questions will be set in all. All questions will carry equal marks.
- 2. Question No.1, which will be short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set unit wise selecting two questions from each Unit Ito IV. The candidate will be required to attempt question No. 1 and four more questions selecting one question from each unit.

UNIT	TOI	PICS	CONTACTHOURS
	1.0	Introduction to invertebrates with their general characters, Basic body plan, Concept of	
		Invertebrate v/s Vertebrata and Non-Chordata v/s Chordata	
I	2.0	Organization of coelom	15
		2.1 Concept and structure of Acoelomate, Pseudo coelomates and Coelomates.	
		2.2 Protostomia and Deuterostomia	
		2.3 Metamerism in Annelida, Pseudometamerism.	
	3.0	Minor Phyla:	
		3.1 Concept and significance	
		3.2 Organization and general characters of Acoelomate, Pseudo coelomates and Coelomates	
		minorphyla (with special emphasis on Ctenophora, Rotifera, Endoprocta, Ectoprocta,	
		Phoronida, Sipunculida and Echiuroidea).	
	4.0	Locomotion	
		4.1 Flagella and ciliary movement in Protozoa	
II	~ 0	4.2 Hydrostatic movement in Coelenterata, Annelida and Echinodermata	15
	5.0	Nutrition and Digestion	
		5.1 Patterns of feeding and digestion in lower metazoa	
	6.0	5.2 Filter-feeding in Polychaeta, Mollusca and Echinodermata	
	6.0	Respiration 6.1 Organs of respiration: Gills, lungs, trachea, skin, Cloacal chamber.	
		6.1 Organs of respiration: Gills, lungs, trachea, skin, Cloacal chamber, Bucco pharyangeal area etc.	
		6.2 Respiratory pigments	
		6.3 Mechanism of respiration	
	7.0	Excretion	
	1.0	7.1 Organs of excretion: Coelom, coelomoducts, Nephridia and Malpighian	
		tubules.	
Ш		7.2 Mechanism of excretion and osmoregulation	15
Ш	8.0	Nervous system	15
		8.1 Primitive nervous system: Coelenterata and Echinodermata	
		8.2 Advanced nervous system: Annelida, Arthropoda (Crustacea and Insecta) and	
		Mollusca (Cephalopoda).	
		8.3 Trends in neural evolution.	

	9.0	Social life in insects, Social life in Isoptera and Hymenoptera	
	10.0	Invertebrate larvae	
		10.1 Larval forms of free living invertebrates	
		10.2 Strategies and Evolutionary significance of larval forms	
TX 7		10.3 Conservation of invertebrates.	15
IV	11.0	Introduction to insects	15
		11.1 Mouthparts of Insects	
		11.2 Mechanism of insect flight and hovering	
		11.3 Metamorphosis in insects	
		Hormonal control of moulting.	
	12.0	Economic importance of Invertebrates; Various Adaptations in Invertebrates	
		Total Contact Hours	60

·			Tota	l Contact Hours	60			
Suggested Evaluation Methods								
Internal Assessment:30	End Term Examination: 70							
> Theory	30	~	Theory:	70				
Class Participation:	Class Participation: 5 Written Examination							
Seminar/presentation/assignment/quiz/class test etc.:	10							
Mid-Term Exam:	15							

RecommendedBooks/e-resources/LMS:

- 1. Hyman, L.H. The invertebrates, Vol.I. Protozoa through Ctenophora, Mc GrawHil lCo., NewYork.
- 2. Barrington, E.J.W. Invertebrate structure and function. Thomas Nelson and Sons Ltr J.London.
- 3. Jagerstein, G. Evolution of Metazoan life cycle, Academic Press, New York & London.
- 4. Barnes, R.D. Invertebrate Zoology, 3rd edition. W.B. Saundrs Co., Philadelphia.
- 5. Russel-Hunter, W.D. A Biology of higher invertebrates, the Macmillin Co. Ltd. London.
- 6. Hyman, L.H. the Invertebrates smaller coelomate groups, Vol. V. Mc Graw Hill Co., New York
- 7. Read, C.P. Animal Parasitism. PrenticeHallInc., NewJersey.
- 8. Sedgwick, A.A. Student text book of Zoology. Vol.I, II and III CentralBookDepot, Allahabad
- 9. Parker, T.J., Haswell, W.A. Textbook of Zoology, McMillanCo., London.

	ZOOLOGY: SEMESTER-VII										
Remarks	Course Type	Course Code	Name of the Course	Credit		Internal Assessment marks		Max. Marks	Exam Duration		
For Honours in Zoology/ Honours with Research in Zoology	DSE-H1 4 credit (option 1)	B23-ZOO- 704	Biosystematics and Biostatistics	4	4	30	70	100	3hrs.		

Pre-requisite for the course (if any): Zoology as single major in 3 years UG

Course Learning Outcomes(CLO): Students will be able to understand:

- 1. Knowledge of Taxonomy helps in classifying and identifying biodiversity and biologist study the well understood relationships by making phylogenetic trees.
- 2. It will help to understand the overall biodiversity of the world and their application in all the fields of biological sciences.
- 3. Biostatistics helps to generate a hypothesis from a set of observation and then design experiment to test the hypothesis.
- 4. Able to acquire, analyze and understand the significance of data.

- 1. Nine questions will be set in all. All questions will carry equal marks.
- 2. Question No.1, which will be short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set unit wise selecting two questions from each Unit I to IV. The candidate will be required to attempt question No.1 and four more questions selecting one question from each unit.

	duestion No.1 and four more questions selecting one question from each unit.	CONTRA CIT
UNIT		CONTACT HOURS
	1.0 Biosystematics and taxonomy: Definition and perspectives,	HOUKS
	2.0 Historical resume, Importance and applications of systematics in biology.	
I	2.1 Concepts of newer aspects of biosystematics: Chemotaxonomy, Cytotaxonomy,	15
	Molecular taxonomy.	
	3.0 Dimensions of speciation and taxonomic characters:	
	3.1 Different Species concepts – species category,	
	3.2 Sub-species and other intra-specific categories.	
	4.0 Theories of biological classification, hierarchy of categories.	
	5.0 Taxonomic characters – different kinds, weighing of characters	
	6.0Methodology:	
	6.1 Taxonomic collections, preservation, curetting process and identification.	
	6.2 Taxonomic keys-different kinds of taxonomic keys, their merits and demerits.	
П	7.0 Systematic publications:	15
	7.1 Different kinds of publications.	
	7.2 International code of Zoological Nomenclature (ICZN): principles, objectives and rules: Stability, Priority, Concept of availability, formation of names, synonymy, homonymy, the type method, kinds of type specimen, type-designation-8.0 Principles of Bioethics in Biodiversity	
	9.0 Measures of central value:	
	9.1 Arithmetic mean, mode and median, Definition, calculation and its properties.	
	10.0 Measures of Dispersion:	
	10.1 Range, Interquartile range,	
	10.2 Quartile deviation.	
III	10.3 Mean deviation and standard deviation,	15
	10.4 Standard error	

	11.0 Correlation: 11.1 Types and Methods studying correlation – Scatter diagram methomethod, Karl Pearson coefficient of correlation, Rank correlation. 12.0 Regression analysis (Regression lines and regression equation)	od, Graphic				
	13.0 Chi-square analysis					
IV	IV 14.0 Concept of sampling and sampling methods: 14.1 Definition and law of sampling, 14.2 Judgment sampling, Random sampling, stratified sampling, systematic sampling, multi-stages sampling and quota sampling. 15.0 Test of significance for large samples and small samples (student t-test, F- test;					
	 ANOVA). 16.0 Probability and law of probability, Theoretical probability distribution Binomial distribution, Poison distribution, Normal distribution. 17.0 Components of computers, Basic functioning of computers, Use of Statistical Software in Biology 					
	Total Con	tact Hours	60			
Suggested 1	Evaluation Methods	1				
Internal	Examination: 70					
		> Theo • Write	ory ten Examination			

- M. Kato. The Biology of Biodiversity, Springer. E.O. Wilson, Biodiversity, Academic Press, Washington.
- G.G. Simpson, Principle of animal taxonomy, Oxford ISH Publishing Company.
- E. Mayer, Elements of Taxonomy. E.O. Wilson, The Diversity of Life (The College Edition), W.W. Northerm& Co.
- Fundamental of statistics by S.C. Gupta. Himalayan Publishing House Elements of Biostatistics. By Satguru Prasad. Rastogi Publication.

ZOOLOGY: SEMESTER-VII										
Remarks	Course Type	Course Code	Name of the Course	Credit	Contact Hours/ Week	Internal Assessment marks	End Term Marks	Max. Marks	Exam Duration	
For Honours in Zoology/ Honours with Research in Zoology	DSE-H1 4 credit (option 2)	B23-ZOO- 705	Computational Biology	4	4	30	70	100	3 hrs.	

Pre-requisite for the course (if any): Zoology as single major in 3 years UG

Course Learning Outcomes (CLO)

- 1. Students will be able to describe basic components of computer hardware and software
- 2. Students will able to access Working with MS Excel, MS Word and MS power point.
- 3. Students will be able to describe about computational statistics.
- 4. Students will be able to understand the bioinformatics techniques of data handling and processing.

Instructions for Paper-Setter

- 1. Nine questions will be set in all. All questions will carry equal marks.
- 2. Question No. 1, which will be short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set unit wise selecting two questions from each Unit I to IV. The candidate will be required to attempt question No. 1 and four more questions selecting one question from each unit.

UNIT	TOPICS	CONTACT HOURS
I	Basic components of Computer: Hardware, CPU, input devices, output devices). Computer Memory, concepts of computing. Software: Basics of Operating system and its utilities., Application Software, word Processing, introduction to MS excel, Use of worksheet to enter Data, edit data, copy data, move data. Graphical tools in excel for data presentation, Various Formula and functions.	16
II	MS-word processor-editing, copying, formatting, table insertion, flow charts. Working with MS Powerpoint, Data handling and image Processing. Internet, Search engines, Web browser. Egovernance websites, Working with arc GIS, Working with Google Earth Pro, USGS.QGIS, GPS KIT. UTM converter. Working with software like DISTANCE, PREFER., RAVEN.	16
Ш	Use of in-built statistical functions for computation of mean, S.D, correlation and regression coefficient, correlation, regression coefficient, ANOVA, PCA, Confidence Interval, Chi square test, Z-test, T-test, F-Test Computational use of histogram, bar diagram, scatter plot. Statistical errors. Data handling, Image processing.	16
IV	Introduction to Bioinformatics, Introduction to computational genomics and proteomics. Basics of Microarray and Image analysis. Basics of Molecular Modelling. Biological Data base, Primary, Secondary and composite database, Protein and Nucleic Acid Data base.	16

Suggested Evaluation Methods

88	
InternalAssessment: 30	End Term Examination:
> Theory	> Theory
• Class Participation: 5	 Written Examination: 70
• Seminar/presentation/assignment/quiz/class test etc.: 10	
Mid-Term Exam: 15	

- 1. Kelley, S.T., & Didulo, D. (2018) Computational Biology: A Hyper text book (ASM Books). ASM press.
- 2. Low,L & Tammi, M (2017) Bioinformatics: A Practical hand book of next generation , sequencing and applications. World scientific publishing cooperation.
- 3. Ghosh, Z and Mallick, B 92008) Bioinformatics, principles and application. Oxford Universty Press.

ZOOLOGY: SEMESTER-VII										
Remarks	Course Type	Course Code	Name of the Course	Credit	Contact Hours/ Week	Internal Assessment marks	End Term Marks	Max. Marks	Exam Duration	
For Honours in Zoology/ Honours with Research in Zoology	PC-H1 4 credit	B23-ZOO-706	Practical Based on B23-ZOO-701 TO 704/705	4	8	30	70	100	6 hrs.	

Pre-requisite for the course (if any): Zoology as a Subject at B.Sc. Level

Course Learning Outcomes (CLO)

- Students will develop skills in basic laboratory techniques and understand the principles in Biology.
- 2. Students will be able to apply the scientific method to the process of experimentation.
- 3. This course will make students able to understand the regulation of chemical reactions in living cells.
- 4. Students will be able to understand the computational biology and techniques of data handling and processing.

Course Content	TOPICS	CONTACT HOURS
	Preparation of mitotic chromosomes from onion root tips.	
	2. Preparation of meiotic chromosomes from grasshopper testes.	
	3. Preparation of karyotypes from micrographs.	
	4. Calculation of morphometric data and preparations of idiogram.	
	5. Study of permanent slides of different stages of meiosis and mitosis.	
	6. Proteins: Quantitative estimation of proteins by Biuret method and Lowry's method.	
	7. Carbohydrates: quantitative estimation of total carbohydrates and glucose	
	8. Analysis of Fats/Oils: iodine number, saponification value, acid value quantitative estimation	
	of total lipids. 9. Paper chromatography:amino acids and carbohydrates.	
	10. Tools: demonstration of parts and working of the following tools: PCR, GLC, Spectrophotometers, various kinds of microscopes, pH meter, Electrophoresis, Centrifuges, Tissue culture unit, Incubators	120 Hrs
	11. Slides and Museum specimens of phylum Protozoa to Hemichordata	
	12. Study of various types of Larvae of class Insecta.	
	13. Study of various types of larvae of class Crustacea.	
	14. Identification and study of various types of Mouth parts in class insecta.	
	DSE-H1 (option 1) DSE-H1 (option 2)	
	15. Preparation and use of different types of taxonomic keys. 15. Use of Search engines like scopus Science direct of collection of reference material.	
	16. Statistical analysis of data using manual and computer software methods 16. Use of GIS software like ARCGIS, Google earth pro etc	

Suggested Evaluation Methods

InternalAssessment: 30	End Term Examination: 70
> Practicum	> Practicum
Class Participation: 5 Saminar/presentation/aggignment/guig/alogs tost etc. 10	Lab record, Viva-Voce.
 Seminar/presentation/assignment/quiz/class test etc.: 10 Mid-Term Exam: 15 	Execution of the practical
	Write up

- Sharma R K, Sangha S P S (2009). Basic Techniques in Biochemistry and Molecular Biology, I.K. International Publishing House Pvt. Ltd. New Delhi
- Podder T, Mukhopadhyay S, Das SK (2003). An Advanced Laboratory Manual Of Zoology Published by Rajiv Beri for Macmillan India Limited, Rajkamal Electric Press, Delhi Sadasivam S, Manickam A (1997). Biochemical Methods, Ed. 2nd, New Age International Publishers, New Delhi David T. Plummer (1987). An Introduction to Practical Biochemistry. Ed., 3rd, McGraw-Hill Publisher, Rajkamal Electric Press, Delhi:
- Delhi

ZOOLOGY:SEMESTER-VIII									
Remarks		Course Code	Name of the Course	Credit	Hours/	Assessment	End Term Marks	Max. Marks	Exam Duration
Honours in Zoology	CC-H4 4 credit	B23- ZOO-801	Structure and Function of Vertebrates	4	4	30	70	100	3hrs.

Pre-requisite for the course(if any): Zoology as single major in 3 years UG

Course Learning Outcomes (CLO)

- 1. Students will be able to understand various biological functions, the evolution of life from most primitive to most advanced form with respect to their habit and habitat.
- 2. Students will have acquaintance with the basic concepts, external morphology and sexual dimorphism in chordates and understand the various systems, adaptation and dentition in chordates.
- 3. Students will also Understand the Classification various classes of phylum Chordate i.e., Pisces, Reptiles, Aves and Mammals.
- 4. This core course will make students familiarize with the vertebrate diversity around them

- 1. Nine questions will be set in all. All questions will carry equal marks.
- 2. Question No.1, which will be short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set unit wise selecting two questions from each Unit Ito IV. The candidate will be required to attempt question No. 1 and four more questions selecting one question from each unit.

UNIT	TOP	ICS	CONTACTHOURS
	1.0	Introduction to Chordates with their general characters.	
		1.1 Origin of Chordates	
I		1.2 Concept of Proto chordata or pre-vertebrates	15
1		1.3 Classification of Vertebrates up to orders	13
	1.0	Integument and its derivatives	
		1.1 Development, general structure and functions of skin and its derivative	
		1.2 Glands, scales, horns, claws, nails, hoofs, feathers and hair	
	3.0	Skeletal system	
		3.1 Form, function, body size and skeletal elements of the body	
П		3.2 Comparative account of jaw suspensorium, Vertebral column	15
		3.3 Limbs and girdles	13
	4.1	Digestive system	
		4.1 Dentition, Stomach, Digestive Glands	
		4.2 Anatomy of gut in relation of to feeding habits- herbivores, carnivores and omnivores.	
	5.0	Respiratory system	
		5.1 Characters of respiratory tissue, Internal and External Respiration	
		5.2 Comparative account of respiratory organs	
	6.0	General plan of circulation in various groups	
		6.1 Components of Blood	
		6.2 General plan of circulation in reptiles, birds and mammals	
Ш		Evolution of heart, aortic arches and Portal systems	15
	7.0	Evolution of Urino-genital system in vertebrate series	
		7.1 Structure and functions of different types of kidney	
		7.2 Urino-genital ducts	
	0.0	8.0Flight adaptation in birds, Migration in fish and Birds	
	8.0	Nervous system	
		8.1 Comparative anatomy of the brain in relation to its functions	
		8.2 Comparative anatomy of spinal cord	
IV	0.0	8.3 Nerves-Cranial, Peripheral and Autonomous nervous systems	15
	9.0	Sense organs	
		9.1 Simple receptors	
		9.2 Organs of Olfaction and taste9.3 Lateral line system	
		9.3 Lateral line system	

				Tota	al Contact Hours	60				
	Suggested Evaluation Methods									
	Internal Assessment:30		EndTermExamination:70							
> Theor	y	30	>	Theory:	70					
• Class Pa	rticipation:	5	5 Written Examination							
Seminar/presentation/assignment/quiz/class test etc.:										
• Mid-Ter	m Exam:	15								

RecommendedBooks/e-resources/LMS:

9.4

Electroreception

- 1. Barrington, E.J.W. The Biology of Hemichordata and Protochordata .Oliver and Boyd, Edinbourgh.
- 2. Bourne, G.H. The structure and functions of nervous tissue. Academic Press, New York.
- 3. Carter, G.S. Structure and habit invertebrate evolution-Sedgwick and Jackson, London.
- 4. Kingsley, J.S. Outlines of Comparative Autonomy of Vertebrates. Central Book Depot, Allahabad.
- 5. Kent, C.G. Comparative anatomy of vertebrates.
- 6. Milton Hilderbrand. Analysis of vertebrate structure. IV. Ed. John Wiley and Sons Inc., NewYork.
- 7. Sedgwick, A. A Students Text Book of Zoology, Vol. II.
- 8. Torrey, T.W. Morphogenesis of vertebrates. John Wiley and Sons Inc., New York and London.
- 9. Walters, H.E. and Sayles, L.D. Biology of vertebrates. MacMillan &Co., New York.

	ZOOLOGY:SEMESTER-VIII										
Remarks	Course Type	Course Code	Name of the Course	Credit	Contact Hours/ Week	Internal Assessment marks	End Term Marks	Max. Marks	Exam Duration		
Honours in Zoology	CC-H5 4credit	B23- ZOO-802	Comparative Physiology	4	4	30	70	100	3hrs.		

Pre-requisite for the course (if any): Zoology as single major in 3 years UG

Course Learning Outcomes (CLO)

- 1. An appropriate understanding of functioning of each system of different groups of animals with their comparison will be acquainted.
- 2. The students will able to explore all reasoning and queries that how animals work.
- 3. The students will be able to learn that how the physiology of different groups of organisms is influenced by the different environments of their niches
- 4. Since this course also have some important practical component where interesting exercises will be conducted to perform experiment and answer various queries of animal physiology.

- 1. Nine questions will be set in all. All questions will carry equal marks.
- 2. Question No.1, which will be short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set unit wise selecting two questions from each Unit Ito IV. The candidate will be required to attempt question No. 1 and four more questions selecting one question from each unit.

UNIT	TOPI	CS	CONTACT HOURS
	1.0	Digestion	1100110
	1.1 I	Feeding mechanisms and regulation	
I	1.2 C	Comparative physiology of digestion and absorption in different animal groups	15
	2.0	Respiration	
	2.1	Respiratory organs, Types of respiration, mechanism of breathing	
	2.2	Transport of respiratory gases	
	2.3	Respiratory pigments through different phylogenetic groups.	
	2.4	Physiological response to oxygen deficient stress.	
	3.0	Excretion	
	3.1	Patterns of nitrogen excretion among different animal groups	
	3.2	Functional anatomy of renal unit; mechanisms of ultra filtration, Counter Current mechanism,	
		Dialysis	
	4.0	Osmo regulation in different animal groups	
	4.1	Definition and basic classification of organisms on the basis of osmo regulation	
	4.2	Osmotic challenges of different environments	
	4.3	Mechanism of Osmoregulation in fresh water, Estaurine and Marine animals	
	4.4	Osmoregulation in migratory organisms, Control and regulation of osmoregulation	
	5.0	Thermoregulation	
Π	5.1	Homeothermic animals, Poikilotherms, Hibernation and Aestivation,	15
	5.2	J ,	10
		Physiological adaptations acclimatization & acclimation in response to high, low ambient temperature	
	6.0	Circulation of body fluids and the irregulation among different animal groups	
	6.1	Systems of circulation, heart beat and blood pressure,	
	6.2	Cardiac cycle, Cardiac output and its regulation,	
	6.3	Lymphatic system	
	7.0	Receptor physiology-a comparative study of Mechanoreception, Photoreception,	
		Chemoreception and Equilibrium reception	

	8.0 Muscle and Contractile physiology							
	8.1 Contractile elements, cells and tissues am	ong diff	erent phylogenic groups; Muscle structure					
	and function-correlation;							
	8.2 Electric organs and tissues							
	9.0 Comparative testicular physiology in anir	nals						
	9.1 Morphology, Differentiation, Function and its regulation							
	10.0 Comparative ovarian physiology and differentiation in vertebrates							
Ш	10.1 Morphology, Endocrinolgy, Oogensis, vitellogensis 15							
	11.0 Neuronal physiology							
	11.1 Structure and classification of neurons ar	nd glial c	ells.					
	11.2 Synaptic action, dendritic properties and	unctiona	d operation of spinal cord, Brain stem					
	11.3 Autonomic nervous system.							
	12.0 Principles of synaptic transmission							
	12.1. Ca ²⁺ and neurotransmitter release; post syn	aptic tran	smission mechanism;					
	12.2. Diversity of neurotransmitters: acetylcholi	ne, catec	holamine, serotonin, GABA, glycine,					
IV	histamine, peptides, NO, and opiods.			15				
	13.0 Physiological adaptations to different envir	onments						
	13.1 Physiological adaptations acclimatization &	acclimat	ion in response to high, low ambient					
	temperature,							
	13.2 Physiological adaptation at high altitude and		sea environment.					
	14.0 Stress Physiology: Concept of Stress and Stra							
	14.1 Stress hormones and stress regulatory mech	anisms.	Total Contact Hours	60				
	Suggestee	l Evalua	tion Methods	00				
	Internal Assessment: 30	. 12 varua	End Term Examination: 70					
> Theo		30	> Theory: 70					
	articipation:	5	Written Examination					
	ur/presentation/assignment/quiz/class test etc.:	10	Witten Examination					
	erm Exam:	15						

RecommendedBooks/e-resources/LMS:

- 1. C.L.Prosser. Comparative Animal Physiology. W.B.Saunders & Company.
- 2. R.Eckert. Animal Physiology: Mechanisms and Adaptation. W.H. Freeman & Company.
- 3. W.S. Hoar. General and Comparative Animal Physiology
- 4. Schiemdt-Nielsen. Animal Physiology: Adaptation and Environment. Cambridge.
- 5. C.L.Prosser. Environment and Metabolic Physiology. Wiley-Liss, NewYork.
- 6. DavidRandall, WarrenBurggren, KathleenFrench: Eckert Animal Physiology
- 7. Guyton, A.X., Text Book of Medical Physiology, 7th edition, Saunders Company (1986).

	ZOOLOGY:SEMESTER-VIII								
Remarks	Course Type	Course Code	Name of the Course	Credit	Contact Hours/ Week	Internal Assessment marks	End Term Marks	Max. Marks	Exam Duration
Honours in Zoology	CC-H6 4credit	B23- ZOO-803	Population Genetics & Evolution	4	4	30	70	100	3hrs.

Pre-requisite for the course (if any): Zoology as single major in 3 years UG

Course Learning Outcomes (CLO)

- 1. To provide students the basic insight about the mechanism of evolution and to make them able to relate different forms of life on our planet earth. It will also provide them in-depth knowledge about the changing frequency and distribution of alleles within the population.
- 2. Acquire a clear understanding about genetic equilibrium in natural populations
- 3. To know about genetics of quantitative traits in populations
- 4. Detail understanding of molecular phylogenetics and methods of construction of phylogenetic tree

- 1. Nine questions will be set in all. All questions will carry equal marks.
- 2. Question No.1, which will be short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set unit wise selecting two questions from each Unit Ito IV. The candidate will be required to attempt question No. 1 and four more questions selecting one question from each unit.

UNIT	TOPI	CS		CONTACT HOURS
	1.0	Conce	epts of evolution and theories of organic evolution with an emphasis on Darwinism.	
	2.0	Emer	gence of Neo-Darwinism-Neutral Hypothesis	
I	3.0	Neo I	Darwinism	15
			3.1 Hardy-Weinberg law of genetic equilibrium	
			3.2 A detailed account of destabilizing forces:	
			3.2.1 Natural selection	
			3.2.2 Mutation	
			3.2.3 Genetic drift	
			3.2.4 Migration	
			3.3 Meioticdriv	е
	4.0	Quan	tifying genetic variability	
		4.1	Genetic structure of natural populations	
II		4.2	Phenotypic variations	15
		4.3	Models explaining changes in genetic structure of populations	
		4.4	Factors affecting human disease frequency	
	5.0	Mole	cular population genetics	
		5.1	Patterns of change in nucleotide and amino acid sequences	
		5.2	Ecological significance of molecular variations	
	6.0	Gene	tics of quantitative traits in populations	
		6.1	Analysis of quantitative traits	
		6.2	Estimation of heritability	
		6.3	Genotype-environment interactions	
		6.4	Inbreeding depression and heterosis	
		6.5	Molecular analysis of quantitative traits	
		6.6	Phenotypic plasticity	
	7.0	Genetic	s of speciation	
		7.1	Concept of species	
		7.2	Patterns and mechanisms of reproductive isolation	

Ш		7.3	Modes of speciation (Allopatric, Sympatric, Parapatric, Peripatric)	15
	8.0	Mole	cular Evolution	
		8.1	Gene Evolution	
		8.2	Evolution of gene families, Molecular drive	
		8.3	Assessment of molecular variations	
	9.0	Origi	n of higher categories	
		9.1	Phylogenetic gradualism and punctuated equilibrium	
		9.2	Major trends in the origin of higher categories	
			Micro-and Macro-evolution	
	10.0	Mole	cular phylogenetics	
		10.1	Concept of phylogenetic trees.	
		10.2	Methods of construction of Phylogenetic trees.	
IV	11.0	Popul	ation genetics and ecology	15
		11.1	Metapopulations	
		11.2	Monitoring Natural Populations	
		11.3	Populations size and extinction	
		11.4	Loss of genetic variations	
			Conservation of genetic resources in diverse taxa	
			Total Contact Hour	s 60

Suggested Evaluation Methods								
Internal Assessment:30								
> Theory	30	>	Theory:	70				
Class Participation:	5		Written Examination					
Seminar/presentation/assignment/quiz/class test etc.:	10							
Mid-Term Exam:	15							

RecommendedBooks/e-resources/LMS:

- 1. Dobzhansky, Th., Genetics and Origin of Species. Columbia University Press. Dobzhansky, Th., F.J. Ayala, G.L. Stebbines and J.M. Valentine. Evolution. Surject Publication, Delhi.
- 2. Futuyama, D.J. Evolutinary Biology, Suinuaer Associates, INC Publishers, Dunderland.
- 3. Hartl, D.L. APrimer of Population Genetics. Sinaue r Associates, Inc, Massachusetts.
- 4. Jha, A.P. Genes and Evolution. John Publication, New Delhi.
- 5. King, M. Species Evolution-The role of chromosomal change. The Cambridge University Press, Cambridge.
- 6. Merrel, D.J. Evolution and Genetics. Holt, Rinehartand Winston, Inc.
- 7. Smith, J.M. Evolutinary Gentics. Oxford University Press, New York.
- 8. Strikberger, M.W. Evolution. Jones and Bartett Publishers, Boston London.

	ZOOLOGY: SEMESTER-8								
Remarks	Course Type	Course Code	Name of the Course	Credit	Contact Hours/ Week	Internal Assessment marks			Exam Duration
Honours in Zoology	DSE-H2 4 credit (Option 1)	B23-ZOO-804	Population and Community Ecology	4	4	30	70	100	3hrs.

Pre-requisite for the course (if any): Zoology as single major in 3 years UG

Course Learning Outcomes (CLO): Students will be able to understand

- 1. Explanations of the need for intra- and interdisciplinary cooperation in researching different ecosystems.
- 2. The all biotic and abiotic factors that are related to individual, population, community and ecosystem and defines the relationships between them.
- 3. Information about the benefits of ecosystem and can be used in the management of natural resources for sustainable development in ways that leave the environment healthy.
- 4. Scope of the specialization within ecology such as marine, vegetation and statistical ecology to better understand the environment around them.

- 1. Nine questions will be set in all. All questions will carry equal marks.
- 2. Question No.1, which will be short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set unit wise selecting two questions from each Unit Ito IV. The candidate will be required to attempt question No. 1 and four more questions selecting one question from each unit.

	electing one question from each unit.	
UNIT	TOPICS	CONTACTHOURS
	1.0 Basic Concepts: Definition, Scope and Significance of Ecology, Concept of biosphere, atmosphere,	
	lithosphere and hydrosphere.	
I	2.0 Organizational level of ecological systems, Ecological aspects of abiotic, biotic and edaphic factors,	15
	limiting factors	
	3.0 Ecosystem: Concept, Kinds and components	
	4.0 Ecological energetic and energy flow: Food chains, food webs, trophic structure; concept of	
	productivity: primary, secondary, gross and net, Energy flow models.	
	5.0 Restoration Ecology	
	Ecology of Disturbed Ecosystems: disturbance and its impact on the structure and functioning of	
	terrestrial and aquatic ecosystems.	
	6.0 Population Characteristics	
II	6.1 Introduction and concepts of population ecology	15
	6.2 Attributes of populations	
	6.3 Population density, methods of population density measurement	
	6.4 Growth rate and growth forms	
	6.5 Natality, mortality, survivorship curves and life tables	
	6.6 Biotic potential— Generation time, net reproductive rate reproductive values	
	6.7 Population and distribution.	
	6.8 Population dispersion	
	7.0 Population regulation and Interactions	
	7.1 Extrinsic and intrinsic mechanisms	
	7.2 Concept of density dependent and density independent factors in population regulation.	
	7.3 Concept of intra specific and inter specific population interactions	
III	7.4 Proto-cooperation, mutualism and commensalisms	15
	7.5 Host-parasite interactions, Life history strategies—r and k selection.	
	8.0 Competition and niche theory	
	8.1 Intra specific and inter specific interactions	
	8.2 History of niche concepts	
	8.3 Gause's theory of niche	

	9.0 P	redation					
IV		9.1 Theory; predator-prey oscillations					
	9.2 Model of prey–predatory dynamics						
		9.3	Role of predation in nature				
		9.4	Parasitism				
	10.0	Commu	unity characteristics				
		10.1	Species diversity; Biodiversity indices: Diversity, dominance, Similarity&				
			dissimilarity Index				
		10.2	Ecological Succession				
		10.3	Ecological dominance				
		10.4	Ecotones and Edge effect				
	11.0	Ecologi	cal Impact Assessment				
			Total Contact Hours	60			

Suggested Evaluation Methods

Internal Assessment: 30 End Term Examination: 70 Theory Theory • Class Participation:5 Written Examination

- Seminar/presentation/assignment/quiz/class test etc.:10
- Mid-TermExam:15

- 1. Colinvaux, P.A. (1993). Ecology. II Edition. Wiley, John and Sons, Inc.
- Krebs, C.J. (2001). Ecology. VI Edition. Benjamin Cummings.
 Odum, E.P., (2008). Fundamentals of Ecology. Indian Edition. Brooks/Cole
- 4. Robert Leo Smith Ecology and field biology Harper and Row publisher
- 5. Ricklefs, R.E.,(2000). Ecology. V Edition. ChironPress
- 6. Rockwood Larry L.(2015) Introduction to Population Ecology, 2nd Edition Wiley-Blackwell

ZOOLOGY:SEMESTER-VIII

Remarks	Course Type	Course Code	Name of the Course	Credit	Hours/	Assessment	End Term Marks		Exam Duration
Honours	DSE-H2 credit (Option 2)	D_C DO 000	Environment and Public Health	4	4	30	70	100	3 Hrs.

Level of the course: 400-499

Pre-requisite for the course (if any): Zoology as single major in 3 years UG

Course Learning Outcomes (CLO)

- 1. Students will be able to explain the linkages between environmental factors (air, water, soil) and public health, and analyze the influence of nutrition, socio-cultural, and developmental aspects on individual health.
- 2. Students will be able to assess the impacts of climate change and modern agricultural and industrial practices on public health, with emphasis on pollution and disease outcomes.
- 3. Students will be able to classify various types of diseases (deficiency, infectious, pollution-related, non-communicable) and evaluate the role of hygiene, nutrition, and sanitation in disease prevention.
- 4. Students will be able to explain key concepts in epidemiology, disease surveillance, and public health interventions, including AYUSH systems, immunization programmes, and occupational health management.
- 5. Students will be able to critically evaluate environmental management policies and practices in India, particularly in waste management, pollution control, and their role in promoting public health.

- 1. Nine questions will be set in all. All questions will carry equal marks.
- 2. Question No.1, which will be short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set unit wise selecting two questions from each Unit Ito IV. The candidate will be required to attempt question No. 1 and four more questions selecting one question from each unit.

UNIT	TOPICS	CONTACT HOURS
I	 1.0 Linkages between Environment and Health 1.1 Understanding linkages between Environment and Public Health: Effect of quality of air, water and soil on health. 1.2 Perspective on Individual health: Nutritional, socio-cultural and developmental aspects. 1.3 Dietary diversity for good health, Human developmental indices for public health. 	14
п	2.0 Climate Change and Implications on Public Health 2.1 Global warming: Agricultural practices (chemical agriculture) and Industrial technologies (use of non-biodegradable materials like plastics, aerosols, refrigerants, pesticides). 2.2 Manifestations of climate change on Public Health 2.3 Burning of fossil fuels, automobile emissions and acid rain.	14
ш	3.0 Diseases in Contemporary Society 3.1 Definition and need for good health- factors affecting health. 3.2 Types of diseases: Deficiency diseases, infectious diseases, pollution-related diseases, allergies, respiratory diseases, cardiovascular diseases, and cancer. 3.3 Personal hygiene and food: Balanced diet, food habits and cleanliness, food adulterants, avoiding smoking, drugs and alcohol. 3.4 Communicable diseases: Mode of transmission; epidemic and endemic diseases. 3.5 Management of hygiene in public places: Railway stations, bus stands and other public places. Infectious diseases: Role of sanitation and poverty; case studies on TB, diarrhea, malaria, viral diseases Non-communicable diseases: Role of lifestyle and built environment; diabetes and hypertension	14
IV	diabetes and hypertension. 4.0 Perspectives and Interventions in Public Health 4.1 Epidemiological perspectives: Disease burden and surveillance. 4.2 Alternative systems of medicine: Ayurveda, Yoga, Unani, Siddha and Homeopathy (AYUSH); 4.3 Universal Immunization Programme (UIP). Reproductive health: Youth Unite for Victory on AIDS (YUVA) programme of Government of India. 4.4 Occupational health hazards: physical, chemical and biological. Occupational diseases: prevention and control. 5.0 Environmental Management Policies and Practices 5.1 Municipal solid waste management: Definition, sources, characterization, collection and transportation, and disposal methods. Solid waste management system in urban and rural areas. 5.2 Municipal Solid waste rules.	18

5.3 Policies and practices with respect to Environmental Protection Act, Water and Air Act, Industrial, Biomedical an			
Suggested Evaluation Mo	ethods		
Internal Assessment: End Term Examina			
 ClassParticipation:5 Seminar/presentation/assignment/quiz/classtestetc.:10 Mid-TermExam:15 	Written Examination: 70		

- 1. Indian Academy of Paediatrics. (2011). Guidebook on Immunization. MFC Bulletin, 45-50.
- 2. Nandini, N., Sunitha, N. and Tandon, S. (2007). Environmental Studies. Sapna Book House, Bangalore.
- 3. Park, K. (2011). Preventive and Social Medicine. Benarsi Das Publications, (pp. 16-19, 24-27).
- 4. Mckinney, M. L., Schoch, R. M. and Yonavjak, L. (2015). Environmental Science: systems and solutions. Jones & Barlett Publishers, Canada.
- 5. Vir, S.C. (2011) Public Health Nutrition in Developing Countries. (Part-2). Woodhead Publishing India
- 6. Gupta, AD., Sachin, Bhateja, S. and Rajshekhar (2022). Environment and Public Health. Academic Guru Publishing House, India.
- 7. Biswas, K. and Biswas, P. (2015). Environment and Public Health. Himalayan Publishing House Pvt. Ltd., India.

ZOOLOGY: SEMESTER-VIII										
Remarks	Course Type	Course Code	Name of the Course	Credit	Contact Hours/ Week	Internal Assessment marks	End Term Marks	Max. Marks	Exam Duration	
For Honours in Zoology/	PC-H2 4 credit	B23-ZOO-806	Practical Based on B23-ZOO-801 TO 804/805	4	8	30	70	100	6 hrs.	

Pre-requisite for the course (if any): Zoology as single major in 3 years UG

Course Learning Outcomes (CLO)

- 1. Students will able to understand the processes involved in the recognition of key groups of vertebrates.
- 2. Students will be able to identify and classify the available specimens of vertebrate classes. This course will make students able to understand the regulation of chemical reactions in living cells.

5. Students will be able to understand the computational biology and techniques of data handling and processing.

5. Students will be able to understand the computational blology and techniques of data handling and processing.									
Course Content	TOPICS	CONTACT HOURS							
Content	1. Museum specimens and slides :from Protochordates to mammals 2. Demonstration of cranial nerves and aortic arches of Scoliodon, Degestive system, Nervous system, Arterial and venous system of frog, Lizard, Pigeon and rabbit. 3. Comparative Osteology of Axial and appendicular skeleton 4. Construction of Phylogenetic tree 5. Histochemistry: Methods of fixation of different tissues. 6. Histochemical test: (a) Haemotoxylin-eosin (b) Toluidine Blue (c) Sudan Block-B (d) Mercury bromophenol blue (e) Methyl green-pyronin-Y (f) Periodic acid Schiff's (g) Acid phosphatase (h) Alkaline phosphatase 7. Demonstration of live gametes and their staining procedure. 8. Determination of optimum pH, temperature and concentration for optimum activity of salivary amylase 9. To demonstrate that the optimum activity of trypsin enzyme is pH and temperature dependent. 10. Qualitative test of vitamins and Quantification of vitamin A and C. 11. Total RBC, WBC and Differential WBC count 12. Estimation of Blood plasma	120 Hrs							
	13. Methods of population density measurements DSE- H2 (option 1) 14. Study of various components of pond and grassland ecosystem. 15. Determination of Water quality characteristics viz: Dissolved oxygen, pH, free carbon dioxide, salinity, transparency, alkalinity, chloride and hardness 16. Estimation of biodiversity indices. 17. Field Visit to Aquatic, Forest and other ecosystems for identification of biota. 18. Case Study Analysis on Occupational Health Hazards								

Suggested Evaluation Methods							
Internal Assessment: 30	End Term Examination: 70						
 Practicum Class Participation: 5 Seminar/presentation/assignment/quiz/class test etc.: 10 Mid-Term Exam: 15 	 Practicum Lab record, Viva-Voce, Execution of the practical Write up 						

- Sharma R K, Sangha S P S (2009). Basic Techniques in Biochemistry and Molecular Biology, I.K. International Publishing House Pvt. Ltd. New Delhi
 PodderT,MukhopadhyayS,DasSK(2003).AnAdvancedLaboratoryManualOfZoology Published by Rajiv Beri for Macmillan India Limited, Rajkamal Electric Press, Delhi
 SadasivamS,ManickamA(1997).BiochemicalMethods,Ed.2nd,NewAgeInternational Publishers, New Delhi
 DavidT.Plummer(1987).AnIntroductiontoPracticalBiochemistry.Ed.,3rd,McGraw-Hill Publisher, Rajkamal Electric Press, Delhi

ZOOLOGY:SEMESTER-VIII (FOR HONOURS WITH RESEARCH IN ZOOLOGY)										
Remarks		Course Code	Name of the Course	Credit	Contact Hours/ Week	Internal Assessment marks	End Term Marks		Exam Duration	
Honours with Research in Zoology	CC-H4 4credit	B23-ZOO-801	Structure and Function of Vertebrates	4	4	30	70	100	3hrs.	

Pre-requisite for the course (if any): Zoology as single major in 3 years UG

Course Learning Out comes (CLO)

- 1. Students will be able to understand various biological functions, the evolution of life from most primitive to most advanced form with respect to their habit and habitat.
- 2. Students will have acquaintance with the basic concepts, external morphology and sexual dimorphism in chordates and understand the various systems, adaptation and dentition in chordates.
- 3. Students will also Understand the Classification various classes of phylum Chordate i.e., Pisces, Reptiles, Aves and Mammals.
- 4. This core course will make students familiarize with the vertebrate diversity around them

- 1. Nine questions will be set in all. All questions will carry equal marks.
- 2. Question No.1, which will be short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set unit wise selecting two questions from each Unit Ito IV. The candidate will be required to attempt question No. 1 and four more questions selecting one question from each unit.

UNIT	TOPICS		CONTACTHOURS				
	1.0 Introduct	tion to Chordates with their general characters.					
	1.1						
I	1.2	1.2 Concept of Proto chordate or pre-vertebrates					
1	1.3	Classification of Vertebrates up to orders	15				
	2.0 Integume	ent and its derivatives					
	2.1	Development, general structure and functions of skin and its derivative					
	2.2	Glands, scales, horns, claws, nails, hoofs, feathers and hair					
	3.0 Skeletal s						
	3.1	Form, function, body size and skeletal elements of the body					
П	3.2	Comparative account of jaw suspensorium, Vertebral column Limbs and girdles	15				
	3.3						
	4.0 Digestive						
	4.1	Dentition, Stomach, Digestive Glands					
	4.2	Anatomy of gut in relation to feeding habits- herbivores, carnivores and omnivores.					
	5.0 Respirato	· ·					
	5.1	Characters of respiratory tissue, Internal and External Respiration					
	5.2	Comparative account of respiratory organs					
		plan of circulation in various groups					
	6.1	Components of Blood					
	6.2	General plan of circulation in reptiles, birds and mammals					
Ш	6.3	Evolution of heart, aortic arches and Portal systems	15				
		of Urino-genital system in vertebrate series					
	7.1	Structure and functions of different types of kidney					
	7.2	Urino-genital ducts					
	7.3	Flight adaptation in birds, Migration in fish and Birds					
	8.0 Nervous						
		comparative anatomy of the brain in relation to its functions					
		comparative anatomy of spinal cord					
IV		lerves-Cranial, Peripheral and Autonomous nervous systems	15				
	9.0 Sense org	gans					

9.1 Simple receptors 9.2 Organs of Olfaction and taste 9.3 Lateral line system
9.4 Electroreception

Total Contact Hours 60								
Suggested Evaluation Methods								
Internal Assessment:30	I							
> Theory	30	> Th	neory:	70				
• Class Participation:	5	Written Examination						
Seminar/presentation/assignment/quiz/class test etc.:	10							
• Mid-Term Exam:	15							

Recommended Books/e-resources/LMS:

- 1. Barrington, E.J.W. The Biology of Hemi-chordata and Protochordata. Oliver and Boyd, Edinbourgh.
- 2. Bourne, G.H. The structure and functions of nervous tissue. Academic Press, New York.
- 3. Carter, G.S. Structure and habit in vertebrate evolution-Sedgwick and Jackson, London.
- 4. Kingsley, J.S. Outlines of Comparative anatomy of Vertebrates. CentralBook Depot, Allahabad.
- 5. Kent, C.G.Comparative anatomy of vertebrates.
- 6. Milton Hilderbrand. Analysis of vertebrate structure. IV.Ed.JohnWiley and Sons Inc., New York.
- 7. Sedgwick, A. A Students Text Book of Zoology, Vol. II.
- 8. Torrey, T.W. Morphogenesis of vertebrates. John Wiley and Sons Inc., New York and London.
- 9. Walters, H.E. and Sayles, L.D. Biology of vertebrates. MacMillan & Co., New York.

ZOOLOGY:SEMESTER-VIII (FOR HONOURS WITH RESEARCH IN ZOOLOGY)										
Remarks	Course Type	Course Code	Name of the Course	Credit	Contact Hours/ Week	Internal Assessment marks	End Term Marks	Max. Marks	Exam Duration	
Honours with Researc h in Zoology	CC-H5 4credit	B23-ZOO-802	Comparative Physiology	4	4	30	70	100	3hrs.	

Pre-requisite for the course(if any): Zoology as single major in 3 years UG

Course Learning Outcomes (CLO)

- 1. Anappropriateunderstandingoffunctioningofeachsystemofdifferentgroupsof animals with their comparison will be acquainted.
- 2. Thestudentswillabletoexploreallreasoningandqueriesthathowanimalswork
- 3. The students will be able to learn that how the physiology of different groups of organisms is influenced by the different environments of their niches
- 4. Sincethiscoursealsohavesomeimportantpracticalcomponentwhereinteresting
- 5. exercises will be conducted to perform experiment and answer various queries of animal physiology

- 1. Nine questions will be set in all. All questions will carry equal marks.
- 2. Question No.1, which will be short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set unit wise selecting two questions from each Unit Ito IV. The candidate will be required to attempt question No. 1 and four more questions selecting one question from each unit.

UNIT	TOPICS	CONTACTHOURS
	1.0 Digestion	
	1.1 Feeding mechanisms and regulation,	
I	1.2 Comparative physiology of digestion and absorption in different animal groups	15
	3.0 Respiration	
	3.1 Respiratory organs, Types of respiration, mechanism of breathing	
	3.2 Transport of respiratory gases	
	3.3 Respiratory pigments through different phylogenetic groups.	
	3.4 Physiological response to oxygen deficient stress.	
	4.0 Excretion	
	4.1Patterns of nitrogen excretion among different animal groups	
	4.2Functional anatomy of renal unit; mechanisms of ultra filtration, Counter Current	
	mechanism, Dialysis	
	4.3Osmoregulation in different animal groups	
	4.4 Definition and basic classification of organisms on the basis of osmoregulation	
	4.5 Osmotic challenges of different environments	
	4.6 Mechanism of Osmoregulation in freshwater, Estaurine and Marine animals	
	4.7 Osmoregulation in migratory organisms, Control and regulation of osmoregulation	
	5.0 Thermoregulation	
II	5.1 Homeothermic animals, Poikilotherms, Hibernation and Aestivation,	15
	5.2 Physical, chemical, neural regulation,	
	5.3 Physiological adaptations acclimatization & acclimation in response to high, low	
	ambient temperature	
	6.0 Circulation of body fluids and their regulation among different animal groups	
	6.1 Systems of circulation, heart beat and blood pressure,	
	6.2 Cardiac cycle, Cardiac output and its regulation,	
	6.3 Lymphatic system	
	7.0 Receptor physiology–a comparative study of Mechano reception, Photoreception, Chemo	
i	reception and Equilibrium reception	

	8.0 Muscle and Contractile physiology	
	8.1 Contractile elements, cells and tissues among different phylogenic groups; Muscle	
	structure and function-correlation;	
	8.2 Electric organs and tissues	
	9.0 Comparative testicular physiology in animals	
	9.1 Morphology, Differentiation, Function and its regulation	
	10.0 Comparative ovarian physiology and differentiation in vertebrates	
III	10.1 Morphology, Endocrinolgy, Oogensis, vitellogensis	15
	11.0 Neuronalphysiology	
	11.1 Structure and classification of neurons and glial cells.	
	11.2 Synaptic action, dendritic properties and functional operation of spinal cord, Brain stem	
	11.3 Autonomic nervous system.	
	12.0 Principles of synaptic transmission	
	12.1 Ca2+and neurotransmitter release; post synaptic transmission mechanism;	
	12.2 Diversity of neurotransmitters:acetylcholine,catecholamine,serotonin, GABA, glycine,	
IV	histamine, peptides, NO, and opiods.	15
	12.3 Physiological adaptations to different environments	
	12.4 Physiological adaptations acclimatization & acclimation in response to high, low ambient	
	temperature,	
	12.5 Physiological adaptation at high altitude and in deep sea environment.	
	13 .0 Stress Physiology: Concept of Stress and Strain, Stress hormones and stress regulatory	
	mechanisms.	70
	Total Contact Hours Suggested Evaluation Methods	60

1 otal Contact Hours 60								
Suggested Evaluation Methods								
Internal Assessment: 30	End Term Examination: 70							
> Theory	30	> Theory:	70					
Class Participation:	5	Written Examination						
• Seminar/presentation/assignment/quiz/class test etc.:	10							
• Mid-Term Exam:	15							

Recommended Books/e-resources/LMS:

- 1. C.L.Prosser. Comparative Animal Physiology. W.B. Saunders & Company.
- 2. R.Eckert. Animal Physiology: Mechanisms and Adaptation. W.H .Freeman &Company.
- 3. W.S. Hoar. General and Comparative Animal Physiology
- 4. Schiemdt-Nielsen. Animal Physiology: Adaptation and Environment. Cambridge.
- 5. C.L.Prosser. Environment and Metabolic Physiology. Wiley-Liss, NewYork.
- 6. David Randall, Warren Burggren, Kathleen French: Eckert Animal Physiology
- 7. Guyton, A.X., Text Book of Medical Physiology, 7th edition, Saunders Company (1986).

	ZOOLOGY: SEMESTER-VIII (FOR HONOURS WITH RESEARCH IN ZOOLOGY)										
Remarks	Course Type	Course Code	Name of the Course	Credit	Contact Hours/ Week	Internal Assessment marks (Report)	End Term Mark s (Viva)	Max. Marks	Exam Duration		
Honours with Research in Zoology	Project/ Dissertation (12 credit)	B23-ZOO- 807	Project/ Dissertation	8+4	-	200 (Report as Dissertation)	100 (Viva- Voce)	300	-		

Pre-requisite for the course (if any): Zoology as single major in 3 years UG

Course Learning Outcomes (CLO)

Students will be able to

I

- 1. Formulate a focused research question and design a robust, methodologically sound investigation to address it.
- 2. Employ appropriate experimental, analytical, or field techniques to collect, analyze, and interpret botanical data effectively.
- 3. Critically evaluate research findings in light of existing theories, and communicate results clearly through well-structured scientific writing and presentations.
- 4. Exhibit independence, time management, and scientific integrity throughout the research process, while responding thoughtfully to feedback and defending

Description CONTACT HOURS

Each student is required to undertake a research project in a relevant area of Zoology. The outcome of this research will be compiled into a dissertation and submitted for evaluation at the end of the semester. Students will also present their dissertation before an external examiner. Both internal and external assessments of the project and training will be conducted as per the prescribed evaluation criteria.

Assessment Structure

Internal Assessment:

- Submission of Project Synopsis
- One Mid-Semester Progress Report and/or Presentation

External Assessment:

- Final Project Report (Dissertation)
- Viva-Voce Presentation before an External Examiner

Dissertation Report Submission Guidelines

1. Structure of the Dissertation Report:

The dissertation should include the following components in order:

- Cover page
- o Certificate signed by the student and supervisor
- Table of contents
- Introduction
- Objectives
- Literature review
- Methodology
- Results and Discussion
- Conclusion
- References

2. Formatting Requirements:

- o Paper size: A4
- Font: Times New Roman, size 12
- o Line spacing: 1.5 (one and a half spacing)
- o Printing: Double-sided (print on both sides of the paper)
- Length: The written portion should be between 40 to 60 pages

3. Submission Requirements:

- Students must submit **three hard-bound copies** of the dissertation along with a **CD** containing a soft copy, to the department by the specified deadline.
- 4. Evaluation and Presentation:

The student will be required to defend the dissertation/project work through a formal presentation before an external examinar at the and of the semester.	
formal presentation before an external examiner at the end of the semester. o Marks will be awarded based on both the written report and the oral presentation.	