Kurukshetra University, Kurukshetra (Established by the State Legislature Act XII of 1956) ('A++' Grade, NAAC Accredited)

॥ योगस्थः कुरु कर्माणि ॥ समबुद्धि व योग युक्त होकर कर्म करो (Perform Actions while Stead fasting in the State of Yoga)

Scheme of Examination (5th and 6th Semester) for Under-Graduate Programmes

Bachelor of Computer Applications (BCA) (ARTIFICIAL INTELLIGENCE) : SCHEME D

according to

Curriculum Framework for Under-Graduate Programmes As per NEP-2020 (Multiple Entry-Exit, Internships and Choice Based Credit System)

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

(For the Batches Admitted From 2023-2024)

Kurukshetra University Kurukshetra Scheme of Examination (5th and 6th Semester) for Undergraduate programmes Subject: BCA (Artificial Intelligence)

According to

Curriculum Framework for Undergraduate Programmes

as per NEP 2020 (Multiple Entry-Exit, Internships, and Choice Based Credit System)

Sem	Course Type	Course Code	Nomenclature of paper	Credits	Contact hours	Internal marks	End term Marks	Total Marks	Duration of exam (Hrs) T + P
5	CC-A5	B23-CAL- 501	Machine Learning Fundamentals	3	3	20	50	70	3
			Practical	1	2	10	20	30	3
	CC-B5	B23-CAL- 502	Python Programming for Machine Learning	3	3	20	50	70	3
			Practical	1	2	10	20	30	3
	CC-C5	B23-CAL- 503	Computer Graphics	3	3	20	50	70	3
			Practical	1	2	10	20	30	3
	CC- M5(V)	To be taken from VOC Pool							
	SEC-4	Internship @ 4 Credits							
6	CC-A6	B23-CAL- 601	Introduction to Neural Networks	3	3	20	50	70	3
			Practical	1	2	10	20	30	3
	CC-B6	B23-CAL- 602	Python Programming for Deep Learning	3	3	20	50	70	3
			Practical	1	2	10	20	30	3
	CC-C6	B23-CAL- 603	Data Mining and Warehousing	3	3	20	50	70	3
			Practical	1	2	10	20	30	3
	CC-M6	B23-CAL- 604	Design Thinking and Product Innovation	3	3	20	50	70	3

CC-M7(V) To be taken from VOC Pool			Practical	1	2	10	20	30	3
	CC- M7(V)	To be taken from VOC Pool							

Kurukshetra University, Kurukshetra (Established by the State Legislature Act XII of 1956) ('A++' Grade, NAAC Accredited)

॥ योगस्थः कुरु कर्माणि ॥ समबुद्धि व योग युक्त होकर कर्म करो (Perform Actions while Stead fasting in the State of Yoga)

Syllabus of Examination (5th & 6th Semester) for Under-Graduate Programmes **Bachelor of Computer Applications (BCA) (Artificial Intelligence) Scheme D**

according to

Curriculum Framework for Under-Graduate Programmes
As per NEP-2020 (Multiple Entry-Exit, Internships and Choice Based Credit System)
DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

(For the Batches Admitted From 2023-2024)

	eme: 2023-24, Syllal			
	Part A - Introducti	ion		
Subject	BCA(Artificial Int	elligence)		
Semester	V			
Name of the Course	Machine Learning	Fundamentals		
Course Code	B23-CAL-501			
Course Type:	CC-A5			
(CC/MCC/MDC/CC-				
M/DSEC/VOC/DSE/PC/AEC/				
VAC)				
Level of the course (As	300-399			
perAnnexure-I				
Pre-requisite for the course (if	Knowledge of Basi	c AI		
any)				
Course Learning Outcomes(CLO):	 Understand machine lear machine lear Implement so rithms using Apply mode mance. Solve real-valems using note. Implement the models. 	rning. upervised and unsup Python. el evaluation technic vorld classification nachine learning. e various machine le	pes, and workflow of pervised learning algo- ques to assess perfor- and clustering prob- earning	
Credits	Theory	Practical	Total	
	3	1	4	
Contact Hours	3	2	5	
Max. Marks:100(70(T)+30(P)) Internal Assessment Marks:30(2 End Term Exam Marks: 70(50(T)		Time: 3 Hrs.(T),	, 3Hrs.(P)	

Part B- Contents of the Course

Instructions for Paper-Setter

The examiner will set a total of nine questions. Out of which first question will be compulsory. Remaining eight questions will be set from four unit selecting two questions from each unit. The examination will be of three-hour duration. All questions will carry equal marks. The first question will comprise short answer-type questions covering the entire syllabus.

Candidate will have to attempt five questions in all, selecting one question from each unit. First question will be compulsory.

The practicum will be evaluated by an external and an internal examiner. The examination will be of three-hour duration.

Unit	Topics	Contact Hours
I	Introduction to Machine Learning:	11
	Definition and scope of machine learning, types of machine learning –	
	supervised, unsupervised, reinforcement learning, real-world	

	applications of machine learning, machine learning pipeline, features and labels, training and testing datasets, model building and evaluation	
	process	
II	Supervised Learning Algorithms: Linear regression, logistic regression, decision trees, k-nearest neighbors (k-NN), support vector machines (SVM), naïve Bayes classifier, model evaluation metrics – confusion matrix, accuracy, precision, recall, F1-score, cross-validation	
III	Unsupervised Learning Algorithms: Clustering — k-means, hierarchical clustering, DBSCAN, dimensionality reduction using PCA, evaluation of clustering results, association rule mining — support, confidence, lift, Apriori algorithm, market basket analysis	
IV	Model Optimization and Real-World Applications: Data preprocessing — normalization, standardization, encoding categorical variables, overfitting and underfitting, regularization — L1 and L2, feature selection techniques, ensemble methods — bagging, boosting, random forest, real-world use cases — spam detection, credit scoring, customer segmentation	
V*	Practicum: Students are advised to do laboratory/practical practice not limitedto but including the following types of problems: • Implement linear regression on a dataset and evaluate model performance • Apply logistic regression to binary classification problems • Use k-NN and Decision Trees for classification tasks • Build and evaluate clustering models using k-means and hierarchical clustering • Perform data preprocessing techniques including encoding and scaling • Apply PCA for dimensionality reduction and visualize clusters • Conduct market basket analysis using Apriori algorithm • Train and evaluate ensemble models such as Random Forest and AdaBoost	
	Suggested Evaluation Methods	l
Inter	nal Assessment:	End-Term
> T	Cheory Class Participation: 5	Examination: A three-hour exam
> P	Seminar/presentation/assignment/quiz/class test etc.: 5 Mid-Term Exam: 10 racticum Class Participation: NA	for boththeory and practicum. End Term Exam Marks: 70(50(T)+20(P))
	Part C-Learning Resources	-

- Tom M. Mitchell *Machine Learning*
- Aurélien Géron Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
- Ethem Alpaydin Introduction to Machine Learning
- Peter Flach Machine Learning: The Art and Science of Algorithms That Make Sense of Data
- Sebastian Raschka and Vahid Mirjalili Python Machine Learning
- Andreas C. Müller and Sarah Guido Introduction to Machine Learning with Python

^{*}Applicable for courses having practical components.

Sche	me: 2023-24, Syllab	ous: 2025-26		
I	Part A - Introduction	on		
Subject	BCA (Artificial In	telligence)		
Semester	V			
Name of the Course	Python Programmi	ng for Machine Lea	rning	
Course Code	B23-CAL-502			
Course Type:	CC-B5			
(CC/MCC/MDC/CC-				
M/DSEC/VOC/DSE/PC/AEC/				
VAC)				
Level of the course (As per	300-399			
Annexure-I				
Pre-requisite for the course (if	Knowledge of basic	es of Python.		
any)				
Course Learning Outcomes(CLO):	 Perform numfor deep lear Manipulate a das for traini Visualize da and Plotly. Apply maching to prepare for Implement th 	ning computations. and preprocess structing deep learning metata and model metroine learning technique deep learning worder deep learning worde various tools and chine learning.	sing NumPy essential tured data using Panodels. ics using Matplotlibues using scikit-learnekflows.	
Credits	Theory	Practical	Total	
	3	1	4	
Contact Hours	3	2	5	
Max. Marks:100(70(T)+30(P))	0(T) 40(T)	Time: 3 Hrs.(T) ,	, 3Hrs.(P)	
Internal Assessment Marks:30(2 End Term Exam Marks: 70(50(1				

Part B- Contents of the Course

Instructions for Paper-Setter

The examiner will set a total of nine questions. Out of which first question will be compulsory. Remaining eight questions will be set from four unit selecting two questions from each unit. The examination will be of three-hour duration. All questions will carry equal marks. The first question will comprise short answer-type questions covering the entire syllabus.

Candidate will have to attempt five questions in all, selecting one question from each unit. First question will be compulsory.

The practicum will be evaluated by an external and an internal examiner. The examination will be of

three-ho	ur duration.	
Unit	Topics	Contact Hours
I	NumPy Introduction to NumPy, array creation, indexing and slicing, reshaping arrays, broadcasting, mathematical operations on arrays, statistical operations, random number generation, linear algebra using NumPy	
II	Pandas Introduction to Pandas, Series and DataFrames, reading and writing data from CSV and Excel, filtering and selection, handling missing values, grouping and aggregation, merging and joining datasets, feature extraction, time-series analysis	
III	Matplotlib and Plotly Basics of data visualization, line plots, bar plots, scatter plots, histograms, pie charts, customizing plots (title, labels, colors, legends), subplots, introduction to Plotly, interactive plots, 3D visualizations, dynamic plots for model metrics	
IV	scikit-learn Introduction to machine learning, supervised vs unsupervised learning, data preprocessing (scaling, encoding, splitting), building models using Linear Regression, Decision Tree, k-Nearest Neighbors, Support Vector Machines, model evaluation using accuracy, confusion matrix, precision, recall	
V*	 Practicum: Students are advised to do laboratory/practical practice not limited to but including the following types of problems: NumPy: Create and reshape arrays, perform element-wise and matrix operations, simulate random data, apply statistical functions Pandas: Load datasets, clean missing values, filter rows and columns, merge datasets, perform group-by and aggregation Matplotlib and Plotly: Plot charts for data distribution, customize visualizations, build interactive charts, visualize training performance over epochs scikit-learn: Preprocess data, train machine learning models, evaluate model performance, implement basic classification and regression problems 	
	Suggested Evaluation Methods	,
> 7 • • • > I	Class Participation: 5 Seminar/presentation/assignment/quiz/class test etc.: 5 Mid-Term Exam: 10 Practicum Class Participation: NA Seminar/Demonstration/Viva-voce/Lab records etc.: 10	End-Term Examination: A three-hour exam for boththeory and practicum. End Term Exam Marks: 70(50(T)+20(P))
	Class Participation: NA	

- Wes McKinney Python for Data Analysis
- Jake VanderPlas *Python Data Science Handbook*
- Aurélien Géron Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
- Joel Grus Data Science from Scratch
- Mark Summerfield *Programming in Python 3*
- François Chollet Deep Learning with Python

^{*}Applicable for courses having practical components.

Sche	eme: 2023-24, Syllab	ous: 2025-26	
]	Part A - Introduction	on	
Subject	BCA (Artificial Int	telligence)	
Semester	V		
Name of the Course	Computer Graphics		
Course Code	B23-CAL-503		
Course Type: (CC/MCC/MDC/CC- M/DSEC/VOC/DSE/PC/AEC/ VAC)	CC-C5		
Level of the course (As per Annexure-I	300-399		
Pre-requisite for the course (if any)	Basic Knowledge of computer		
Course Learning Outcomes(CLO):	 understand the learn and impleadgorithms. acquire knowled transformat. understand 3-D designing 3-D generated. 	grams based on theo	er graphics d circle drawing onal g algorithms. nd acquire skills for
Credits	Theory	Practical	Total
	3	1	4
Contact Hours	3	2	5
Max. Marks:100(70(T)+30(P)) Internal Assessment Marks:30(2 End Term Exam Marks: 70(50(Time: 3 Hrs.(T),	3Hrs.(P)

Instructions for Paper-Setter

Examiner will set a total of nine questions. Out of which first question will be compulsory. Remaining eight questions will be set from four unit selecting two questions from each unit. Examination will be of three-hour duration. All questions will carry equal marks. First question will comprise of short answer type questions covering entire syllabus.

The candidate must attempt five questions in all, selecting one question from each unit. First question will be compulsory.

Practicum will be evaluated by an external and an internal examiner. Examination will be of three-hour duration.

	Part B- Contents of the Course	
Unit	Topics	Contact Hours
I	Introduction : History of Computer Graphics (CG), Applications of Computer Graphics, Components of interactive graphics systems	11
	Display devices : Refresh CRT, Color CRT, Plasma Panel displays LCD Panels, Raster-scan System, Random scan System, Graphic software, Input/Output Devices, Tablets	
II	Output Primitives: Points and Lines, Line Drawing Algorithms: DDA algorithm, Bresenham's algorithm, Circle drawing Algorithms: Polynomial Method, Bresenham's algorithm. Parametric representation of Cubic Curves, Bezier Curves	11
III	2D Transformation: Use of Homogeneous Coordinates Systems, Composite Transformation: Translation, Scaling, Rotation, Mirror Reflection, Rotation about an Arbitrary Point. Clipping and Windowing, Clipping Operations. Line Clipping Algorithms: The Mid-Point subdivision method, Cohen-Sutherland Line Clipping Algorithms, Polygon Clipping, Sutherland Hodgeman Algorithms, Text Clipping.	12
IV	3-D Graphics : 3-D object representations, 3-D Transformations: Translation, Rotation, Scaling, Projections, Hidden surface elimination : Back face removal, Depth Buffer algorithm, Scan-line algorithm, Depth sort algorithm, Shading.	11
V*	The following activities be carried out/ discussed in the labduring the semester. Programming Lab: Implement DDA line drawing algorithm for all types of slope. Implement Bresenham's line drawing algorithm for all types of slopes. Implement Bresenham's Circle drawing algorithm. Implement Bresenham's Ellipse drawing algorithm. Implement various 2-D transformations on objects like lines, rectangles, etc. Implement to clip a line using the Mid-Point subdivision algorithm Implement to clip a line using Cohen-Sutherland algorithm Implement 3-D transformations on objects. Suggested Evaluation Methods	30
> T • • •	Cheory Class Participation: 5 Seminar/presentation/assignment/quiz/class test etc.: 5 Mid-Term Exam: 10 Cracticum Class Participation: NA Seminar/Demonstration/Viva-voce/Lab records etc.: 10	End Term Examination: A three-hour exam for both theory and practicum. End Term Exam

I))

Part C-Learning Resources

- Donald Hearn, M. Pauline Baker, Computer Graphics, Pearson Education.
- J. D. Foley, A. Van Dam, S. K. Feiner and J. F. Hughes, Computer Graphics Principles and Practice, Pearson Education.
- Newmann & Sproull, Principles of Interactive Computer Graphics, McGraw Hill.
- Rogers, David F., Procedural Elements of Computer Graphics, McGraw Hill.
- Zhigang Xiang, Roy Plastock, Computer Graphics, Tata McGraw Hill.

^{*}Applicable for courses having practical components.

Sch	eme: 2023-24, Sylla	bus: 2025-26	
I	Part A - Introducti	on	
Subject	BCA (Artificial Int	elligence)	
Semester	VI		
Name of the Course	Introduction to Neu	ıral Networks	
Course Code	B23-CAL-601		
Course Type: (CC/MCC/MDC/CC- M/DSEC/VOC/DSE/PC/AEC/ VAC)	CC-A6		
Level of the course (As per Annexure-I	300-399		
Pre-requisite for the course (if any)	Basics of Machine	Learning	
Course Learning Outcomes(CLO):	 Understar networks Explain p tions used Apply traward prop Implement using real 	nd the fundamentals and their biological erceptron learning a lin neural networks ining techniques like bagation in multilayed and analyze neur-world datasets ls based on Machine	of artificial neural inspiration and activation function function function function forward and backer networks and network models
Credits	Theory	Practical	Total
	3	1	4
Contact Hours	3	2	5
Max. Marks:100(70(T)+30(P)) Internal Assessment Marks:30(20(T)+10(P)) End Term Exam Marks: 70(50)(T)+20(P))	Time: 3 Hrs.(T),	3Hrs.(P)

Part B- Contents of the Course

Instructions for Paper-Setter

The examiner will set a total of nine questions. Out of which first question will be compulsory. The remaining eight questions will be set from four units selecting two questions from each unit. The examination will be of three-hour duration. All questions will carry equal marks. The first question will comprise short answer-type questions covering the entire syllabus.

The candidate must attempt five questions, selecting one from each unit. The first question will be compulsory.

The practicum will be evaluated by an external and an internal examiner. The examination will be of three-hour duration.

Unit	Topics	Contact Hours
I	Introduction to Neural Networks: Biological neuron vs artificial neuron, neural network structure, types of neural networks — feedforward, recurrent, convolutional, single-layer perceptron, limitations of perceptron, applications of neural networks in real-world scenarios	11
II	Activation and Loss Functions, Perceptron Learning: Step function, sigmoid, tanh, ReLU, softmax, mean squared error, cross-entropy loss, learning rate, weight initialization, perceptron learning algorithm, logic gates using perceptron, linear vs non-linear separability	11
III	Multilayer Neural Networks and Backpropagation: Structure of multilayer perceptrons, forward propagation, backward propagation algorithm, gradient descent, stochastic and mini-batch gradient descent, overfitting and regularization, dropout and batch normalization	11
IV	Applications and Trends in Neural Networks: Image classification, speech recognition, natural language processing basics, introduction to convolutional neural networks (CNN), introduction to recurrent neural networks (RNN), transfer learning, trends in deep learning and neural network research	12
V*	 The following activities be carried out/ discussed in the lab during the initial period of the semester. Programming Lab: Simulate a single-layer perceptron for AND, OR, XOR gates Visualize and apply different activation functions Implement forward and backward propagation manually using NumPy Train a multilayer perceptron for image classification using Keras Plot accuracy and loss over epochs Demonstrate overfitting and use dropout for regularization Use a pretrained neural network for classification using transfer learning Analyze neural network performance using confusion matrix and accuracy metrics 	30

Internal Assessment:

> Theory

• Class Participation: 5

• Seminar/presentation/assignment/quiz/class test etc.:5

• Mid-Term Exam: 10

> Practicum

• Class Participation: NA

• Seminar/Demonstration/Viva-voce/Lab records etc.:10

• Mid-Term Exam: NA

End Term
Examination:
A three-hour exam
for both theory and
practicum.

Part C-Learning Resources

- Simon Haykin *Neural Networks and Learning Machines*
- Michael Nielsen Neural Networks and Deep Learning
- François Chollet Deep Learning with Python
- Aurélien Géron Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
- Charu C. Aggarwal Neural Networks and Deep Learning: A Textbook
- Satish Kumar Neural Networks: A Classroom Approach

^{*}Applicable for courses having practical component.

Scheme: 2023-24, Syllabus: 2025-26			
I	Part A - Introduction	on	
Subject	BCA (Artificial Int	telligence)	
Semester	VI		
Name of the Course	Python Programmin	ng for Deep Learnin	g
Course Code	B23-CAL-602		
Course Type: (CC/MCC/MDC/CC- M/DSEC/VOC/DSE/PC/AEC/ VAC)	CC-C5		
Level of the course (As per Annexure-I	300-399		
Pre-requisite for the course (if any)	Basic Knowledge o	of Python Programm	ing
Course Learning Outcomes(CLO):	After completing this course, the learner will be able to: 1. Build and train deep learning models using Tensor-Flow for real-world applications 2. Develop neural networks using Keras and tune hyperparameters 3. Apply OpenCV for preprocessing and visualizing image data in deep learning workflows 4. Integrate Python tools to automate and visualized deep learning pipelines 5. * Implement Practicals based on Deep Learning		
Credits	Theory	Practical	Total
	3	1	4
Contact Hours	3	2	5
Max. Marks:100(70(T)+30(P)) Internal Assessment Marks:30(2 End Term Exam Marks: 70(50(T)	Γ)+20(P))	Time: 3 Hrs.(T),	3Hrs.(P)
Part R- Contents of the Course			

Part B- Contents of the Course

Instructions for Paper- Setter

The examiner will set a total of nine questions. Out of which first question will be compulsory. Remaining eight questions will be set from four unit selecting two questions from each unit. Examination will be of three-hour duration. All questions will carry equal marks. First question will comprise of short answer type questions covering entire syllabus.

Candidate will have to attempt five questions in all, selecting one question from each unit. First question will be compulsory.

Practicum will be evaluated by an external and an internal examiner. Examination will be of three-hour duration.

Unit	Topics	Contact Hours
I	TensorFlow:	11
	Introduction to TensorFlow, computational graphs, tensors and tensor operations, constants and variables, gradient computation using GradientTape, building simple neural networks using low-level	

TensorFlow, TensorBoard for visualizing training, saving and restoring	g	
models		
II Keras: Keras architecture and workflow, sequential and functional API defining dense and dropout layers, compiling models with optimizer and loss functions, training and validating models, evaluation metric callbacks – early stopping, model checkpointing, model serialization and loading	es s,	
III OpenCV for Deep Learning:	12	
Introduction to OpenCV, loading and displaying images, resizing an cropping, color space conversion, filtering and blurring, edge detection contour detection, image thresholding, preprocessing image data for CNNs, drawing and annotating images, integrating OpenCV with deelearning pipelines	ı, or	
IV Integration and Applications:	11	
Image classification using CNNs, sentiment analysis using text data object detection using pretrained models, real-time image recognition using webcam feed, transfer learning – VGG16, MobileNet, ResNe automation of data pipelines using Python, deployment basics of deelearning models	n t,	
V* Practicum:	30	
 Students are advised to do laboratory/practical practice not limited to but including the following types of problems: Build and train a basic neural network using TensorFlow Visualize training progress using TensorBoard Construct and tune deep learning models using Keras (wit dropout, callbacks) Train a CNN on MNIST or CIFAR-10 using Keras Use OpenCV to read, preprocess, and transform image data Detect and annotate image features using OpenCV filters an contours Perform transfer learning with pretrained networks like VGG1 or MobileNet Integrate real-time webcam feed with a trained image classifie 	d 6	
Suggested Evaluation Methods	End-Term	
Internal Assessment:	Eng-1 erm Examination: A	
TheoryClass Participation: 5	three-hour exam	
• Seminar/presentation/assignment/quiz/class test etc.: 5	for both theory	
Mid-Term Exam: 10	and practicum.	
> Practicum	End Term	
Class Participation: NA	Exam Marks:	
Seminar/Demonstration/Viva-voce/Lab records etc.: 10	70(50(T)+20(P))	
Mid-Term Exam: NA		
Part C-Learning Resources		

- François Chollet *Deep Learning with Python*
- Aurélien Géron Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
- Adrian Rosebrock Deep Learning for Computer Vision with Python
- Ian Goodfellow, Yoshua Bengio and Aaron Courville *Deep Learning*
- Michael Nielsen Neural Networks and Deep Learning
- Sebastian Raschka and Vahid Mirjalili *Python Machine Learning*

^{*} Applicable for courses having practical components.

Scheme: 2023-24, Syllabus: 2025-26			
	Part A - Introducti	on	
Subject	BCA (Artificial Intelligence)		
Semester	VI		
Name of the Course	Data Mining and Warehousing		
Course Code	B23-CAL-603		
Course Type: (CC/MCC/MDC/CC- M/DSEC/VOC/DSE/PC/AEC/ VAC)	CC-C6		
Level of the course (As per Annexure-I	300-399		
Pre-requisite for the course (if any)	Basics of Databases, Python Programming, Probability & Statistics, Introduction to AI		
Course Learning Outcomes(CLO):	After completing this course, the learner will be able to: 1. Understand the architecture and components of data warehousing and data mining systems. 2. Apply preprocessing and transformation techniques to prepare data for mining. 3. Use classification, clustering, and association algorithms to discover patterns. 4. Design and query data warehouses using OLAP operations. 5. *Implement data mining techniques using Python and visualization libraries.		
Credits	Theory	Practical	Total
	3	1	4
Contact Hours	3	2	5
Max. Marks:100(70(T)+30(P)) Internal Assessment Marks:30(2 End Term Exam Marks: 70(50(Time: 3 Hrs.(T),	3Hrs.(P)

Instructions for Paper-Setter

The examiner will set a total of nine questions. Out of which first question will be compulsory. Remaining eight questions will be set from four unit selecting two questions from each unit. The examination will be of three-hour duration. All questions will carry equal marks. The first question will comprise short answer-type questions covering the entire syllabus.

The candidate must attempt five questions in all, selecting one question from each unit. The first question will be compulsory.

The practicum will be evaluated by an external and an internal examiner. The examination will be of three-hour duration.

	Part B- Contents of the Course			
Unit	Topics	Contact Hours		
I	Introduction to Data Warehousing and Data Preprocessing:	11		
	Introduction to data warehousing - characteristics, benefits, and			
	architecture, Data Marts, ETL process, OLAP vs OLTP, OLAP			
	operations – roll-up, drill-down, slice, dice, pivot, Data cube and			
	dimensional modeling – star and snowflake schemas, Data			
	preprocessing – cleaning, integration, transformation, reduction, normalization techniques.			
II	Introduction to Data Mining and Association Analysis:	11		
	Introduction to data mining – goals, functions, KDD process, Types	11		
	of data – structured, unstructured, Data mining architecture, Frequent			
	pattern mining – Apriori algorithm, FP-Growth algorithm, Evaluation			
	of association rules – support, confidence, lift, Applications – market			
	basket analysis, recommendation engines.			
III	Classification and Prediction Techniques:	11		
	Classification vs prediction, Decision tree classifiers (ID3, C4.5),			
	Naïve Bayes classification, K-nearest neighbor, Rule-based			
	classification, Model evaluation – confusion matrix, accuracy, precision, recall, F1-score, ROC curve, Cross-validation, Overfitting			
	and pruning.			
IV	Clustering, Trends and Applications in AI:	12		
1,	Clustering – introduction and applications, Partitioning methods – K-	12		
	means, K-medoids, Hierarchical clustering – agglomerative and			
	divisive, Cluster evaluation methods – silhouette score, DB index,			
	Applications of data mining in AI – fraud detection, healthcare,			
	customer segmentation, Web mining, text mining, privacy and ethical			
T Tab	issues in data mining.	20		
V*	The following activities be carried out/ discussed in the lab	30		
	during the semester. Programming Lab:			
	 Creating and querying a star schema and snowflake schema 			
	using SQL			
	 Performing data preprocessing – cleaning, normalization, 			
	transformation using Python			
	• Implementing Apriori algorithm using Python or ML libraries			
	Implementing FP-Growth for frequent itemset generation			
	• Building and evaluating a decision tree classifier using Scikit-			
	learn			
	Applying Naïve Bayes for classification problems			
	Performing K-means clustering on sample datasets Visualizing clusters using Metaletlih/Seeham			
	Visualizing clusters using Matplotlib/Seaborn Performing OLAP operations using Python based tools or			
	 Performing OLAP operations using Python-based tools or SQL queries 			
	 Mini Project: Applying a complete data mining pipeline (pre- 			
	processing, mining, visualization) to a real dataset			
	Suggested Evaluation Methods			

Internal Assessment:

> Theory

• Class Participation: 5

• Seminar/presentation/assignment/quiz/class test etc.: 5

• Mid-Term Exam: 10

> Practicum

• Class Participation: NA

• Seminar/Demonstration/Viva-voce/Lab records etc.: 10

• Mid-Term Exam: NA

End Term Examination: A three-hour exam for both theory and practicum. End Term Exam Marks: 70(50(T)+20(P))

Part C-Learning Resources

- Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, Morgan Kaufmann
- Margaret H. Dunham Data Mining: Introductory and Advanced Topics, Pearson
- Alex Berson and Stephen J. Smith Data Warehousing, Data Mining & OLAP, McGraw-Hill
- Arun K. Pujari *Data Mining Techniques*, Universities Press
- Pang-Ning Tan, Michael Steinbach and Vipin Kumar Introduction to Data Mining, Pearson
- Ian Witten, Eibe Frank, Mark A. Hall Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann.

^{*}Applicable for courses having practical components.

Sci	heme: 2023-24, Sylla	abus: 2025-26	
]	Part A - Introduction	on	
Subject	BCA (Artificial Intelligence)		
Semester	VI		
Name of the Course	Design Thinking and Product Innovation		
Course Code	B23-CAL-604		
Course Type: (CC/MCC/MDC/CC- M/DSEC/VOC/DSE/PC/AEC/ VAC)	CC-M6		
Level of the course (As per Annexure-I	300-399		
Pre-requisite for the course (if any)	Basic understanding of software development and AI applications		
Course Learning Outcomes(CLO):	 After completing this course, the learner will be able to: Understand and apply the five stages of design thinking in AI problem-solving. Identify real-world problems and define user-centric product goals. Create and test prototypes for AI-based products using iterative feedback. Apply innovation frameworks to bring AI product ideas to market. *Implement Practical aspects of innovations. 		
Credits	Theory	Practical	Total
	3	1	4
Contact Hours	3	2	5
Max. Marks:100(70(T)+30(P)) Internal Assessment Marks:30(2 End Term Exam Marks: 70(50(7	() ()/	Time: 3 Hrs.(T),	3Hrs.(P)

Part B- Contents of the Course

Instructions for Paper- Setter

Examiner will set a total of nine questions. Out of which first question will be compulsory. Remaining eight questions will be set from four unit selecting two questions from each unit. Examination will be of three-hour duration. All questions will carry equal marks. First question will comprise of short answer type questions covering entire syllabus.

Candidate will have to attempt five questions in all, selecting one question from each unit. First question will be compulsory.

Practicum will be evaluated by an external and an internal examiner. The examination will be of three-hour duration.

Unit	Topics	Contact Hours
I	Foundations of Design Thinking: Definition and significance of design thinking, Human-centered design principles, Five phases of design thinking – empathize, define, ideate, prototype, test, Need for design thinking in AI product development, Overview of product innovation, Introduction to innovation frameworks – Lean Startup, Agile, MVP	11
II	Empathy, Problem Definition and Ideation: Empathy research – interviews, surveys, observation techniques, Persona development, User journey maps, Defining meaningful problem statements – "How Might We" framework, Brainstorming techniques – SCAMPER, reverse thinking, Affinity mapping and idea clustering, Mapping AI capabilities to user problems	11
III	Prototyping and Testing for AI Products: Types of prototypes – low-fidelity, high-fidelity, Wireframing tools (Figma, Balsamiq), Storyboarding and user flows, User testing – methods and metrics, Feedback loops and iterations, Aligning AI model outputs with UX goals, Examples of AI-powered product mock-ups (e.g., chatbot UI, recommendation UI)	11
IV	Innovation and Real-World AI Product Development: AI product lifecycle – from concept to deployment, Go-to-market strategy, Risk assessment and feasibility study, Innovation in AI domains – healthcare, education, fintech, social good, Introduction to AI ethics – fairness, transparency, bias, Case studies – successful AI product innovation journeys (e.g., Siri, Google Lens, ChatGPT)	12
V*	Practicum: Students are advised to do laboratory/practical practice not limited to but including the following types of problems: • Conduct empathy interviews and create personas for an AI product idea • Create a user journey map for an AI-driven solution • Define problem statements using the "How Might We" method • Brainstorm AI solution features and cluster ideas using affinity mapping • Develop low-fidelity wireframes using pen-and-paper or Figma • Build a clickable prototype/mock UI for an AI-based product • Collect user feedback through usability testing • Present product idea using elevator pitch and lean canvas • Map AI model input-output flow with UX design • Mini project: End-to-end product concept (empathy to proto-	30

type) of an AI-based application (e.g., AI tutor, sentimer alyzer)	nt an-
Suggested Evaluation Methods	
Internal Assessment:	End Term
➤ Theory	Examination:
• Class Participation: 5	A three-hour
 Seminar/presentation/assignment/quiz/class test etc.: 5 	exam for both
• Mid-Term Exam: 10	theory and
> Practicum	practicum.
Class Participation: NA	
• Seminar/Demonstration/Viva-voce/Lab records etc.: 10	
Mid-Term Exam: NA	

Part C-Learning Resources

- Tim Brown *Change by Design*, Harvard Business Press
- Jeanne Liedtka and Tim Ogilvie *Designing for Growth: A Design Thinking Toolkit for Managers*, Columbia Business School Publishing
- Jake Knapp Sprint: How to Solve Big Problems and Test New Ideas in Just Five Days, Simon & Schuster
- Tom Kelley and David Kelley *Creative Confidence*, Crown Business
- Vijay Kumar 101 Design Methods: A Structured Approach for Driving Innovation, Wiley
- Barry O'Reilly Lean Enterprise: How High Performance Organizations Innovate at Scale, O'Reilly Media.

^{*}Applicable for courses having practical components.